WO2014091811A1 - 熱硬化性着色組成物及び硬化膜、その硬化膜を具備したタッチパネル、その熱硬化性着色組成物を用いるタッチパネルの製造方法 - Google Patents

熱硬化性着色組成物及び硬化膜、その硬化膜を具備したタッチパネル、その熱硬化性着色組成物を用いるタッチパネルの製造方法 Download PDF

Info

Publication number
WO2014091811A1
WO2014091811A1 PCT/JP2013/076255 JP2013076255W WO2014091811A1 WO 2014091811 A1 WO2014091811 A1 WO 2014091811A1 JP 2013076255 W JP2013076255 W JP 2013076255W WO 2014091811 A1 WO2014091811 A1 WO 2014091811A1
Authority
WO
WIPO (PCT)
Prior art keywords
coloring composition
mol
cured film
touch panel
resin solution
Prior art date
Application number
PCT/JP2013/076255
Other languages
English (en)
French (fr)
Inventor
岡沢徹
諏訪充史
井上欣彦
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201380064075.XA priority Critical patent/CN104822771B/zh
Priority to KR1020157006967A priority patent/KR101938603B1/ko
Priority to JP2013547414A priority patent/JP5505569B1/ja
Publication of WO2014091811A1 publication Critical patent/WO2014091811A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a thermosetting coloring composition and a cured film, a touch panel provided with the cured film, and a method for manufacturing a touch panel using the thermosetting coloring composition.
  • a projected capacitive touch panel has an ITO (Indium Tin Oxide) film pattern formed in a screen region, and a metal wiring portion such as molybdenum is further formed in the periphery thereof. And in order to hide such a metal wiring part, the light shielding pattern of black or white is often formed inside the cover glass of the projected capacitive touch panel.
  • ITO Indium Tin Oxide
  • the touch panel system is an out-cell type in which a touch panel layer is formed between the cover glass and the liquid crystal panel, an on-cell type in which the touch panel layer is formed on the liquid crystal panel, and an in-cell type in which the touch panel layer is formed inside the liquid crystal panel.
  • OGS One Glass Solution
  • the light shielding pattern needs to be formed of a material that can be applied without repellency. There is.
  • Silicone and siloxane which are silicon oxide compounds, are widely known as highly heat-resistant and transparent resins, and thermosetting coloring compositions containing them have been reported (Patent Document 1).
  • thermosetting coloring composition has high heat resistance, it is not suitable for forming a light-shielding pattern for an OGS type touch panel in terms of chemical resistance, and further has an affinity with a photosensitive transparent material, etc. Therefore, repelling when a photosensitive transparent material or the like is applied to the light-shielding pattern can be regarded as a problem. Therefore, the present invention has high heat resistance and excellent chemical resistance, and even when a general photosensitive transparent material or the like is applied to the formed cured film, there is no problem of repelling. It aims at providing a coloring composition.
  • a touch panel manufacturing method is provided.
  • (I) (A) Inorganic pigment or phthalocyanine pigment, (B) obtained by cohydrolyzate condensation of an alkoxysilane compound containing a compound represented by the following general formula (1) and a compound represented by the following general formula (2)
  • a thermosetting coloring composition containing polysiloxane and (C) an organic solvent (I)
  • a thermosetting coloring composition containing polysiloxane and (C) an organic solvent (C)
  • R 1 independently represents an alkyl group having 1 to 4 carbon atoms.
  • thermosetting coloring composition as described in said (i) in which the said alkoxysilane compound further contains the compound shown by following General formula (3).
  • the said alkoxysilane compound is a thermosetting coloring composition as described in said (i) or (ii) whose ratio of the compound shown by following General formula (4) is less than 5 mol%.
  • thermosetting coloring composition according to any one of (i) to (iii), wherein the inorganic pigment contains a white pigment mainly composed of titanium oxide.
  • V A cured film obtained by curing the thermosetting coloring composition as described in any of (i) to (iv) above.
  • a touch panel comprising the cured film described in (v) above.
  • Vii A method for manufacturing a touch panel comprising a step of forming a colored light-shielding cured film pattern using the thermosetting coloring composition according to any one of (i) to (iv) above.
  • thermosetting coloring composition of the present invention it is possible to form a cured film excellent in heat resistance and chemical resistance. It is possible to form a cured film that does not cause this problem.
  • thermosetting coloring composition of the present invention comprises (A) an inorganic pigment or a phthalocyanine pigment, (B) an alkoxysilane compound containing a compound represented by the following general formula (1) and a compound represented by the following general formula (2). It contains polysiloxane obtained by cohydrolyzate condensation and (C) an organic solvent.
  • R 1 independently represents an alkyl group having 1 to 4 carbon atoms.
  • thermosetting coloring composition has high heat resistance, it is not assumed to be used for forming a light shielding pattern of an OGS type touch panel, and the chemical resistance of the light shielding pattern or a photosensitive transparent material for the light shielding pattern. It was not suitable in terms of repelling when etc. were applied.
  • thermosetting coloring composition suitable for the above can be obtained.
  • the alkoxysilane compound subjected to the cohydrolyzate condensation of the present invention includes a compound represented by the general formula (1) and a compound represented by the general formula (2).
  • the present inventors considered that a certain amount of organic component bonding is necessary to provide chemical resistance, and found that vinyltrialkoxysilane is suitable. And it thought that the alkoxysilane cyclic compound by-produced at the time of co-hydrolyzate condensation might cause repellency, and found that diphenylalkoxysilane hardly generated the cyclic compound as a by-product. And it discovered that the further synergistic effect was acquired by combining diphenylalkoxysilane and vinyl trialkoxysilane.
  • Examples of the compound represented by the general formula (1) include diphenyldimethoxysilane and diphenyldiethoxysilane.
  • the proportion of the compound represented by the general formula (1) in the alkoxysilane compound to be subjected to cohydrolyzate condensation is preferably 8 to 45 mol%.
  • the ratio of the compound represented by the general formula (1) is less than 8 mol%, the crack resistance is lowered, and the thickness of the cured film that can be formed at a time is greatly limited.
  • it exceeds 45 mol% the adhesion of the resulting cured film to the substrate or the like is lowered.
  • Specific examples of the compound represented by the general formula (2) include vinyltrimethoxysilane and vinyltriethoxysilane.
  • the proportion of the compound represented by the general formula (2) in the alkoxysilane compound to be subjected to cohydrolyzate condensation is preferably 20 to 40 mol%.
  • the compound represented by the general formula (2) is less than 20 mol%, the adhesion of the obtained cured film to a substrate or the like is lowered.
  • it exceeds 45 mol% crack resistance is lowered, and the thickness of the cured film that can be formed at a time is greatly limited.
  • the alkoxysilane compound to be subjected to the cohydrolyzate condensation of the present invention preferably further includes a compound represented by the following general formula (3) in order to suppress surface roughness of the obtained cured film.
  • a compound represented by the following general formula (3) it is considered that a certain amount of organic components need to be bonded to provide chemical resistance, and it is preferable to further include epoxysilane from the viewpoint of improving chemical resistance.
  • R 3 represents an epoxy group-containing monovalent organic group having 1 to 10 carbon atoms
  • R 4 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • Examples of the compound include 3-glycidoxy propyl trimethoxy silane, 3-glycidoxy propyl triethoxy silane, 3- (3,4-epoxycyclohexyl) propyl trimethoxy silane, and 3- (3,4-epoxy (Cyclohexyl) propyltriethoxysilane.
  • the proportion of the compound represented by the general formula (3) in the alkoxysilane compound to be subjected to cohydrolyzate condensation is preferably 1 to 9 mol%.
  • the compound represented by the general formula (2) is less than 1 mol%, the chemical resistance of the obtained cured film may be lowered. On the other hand, when it exceeds 9 mol%, heat resistance may be reduced.
  • compounds suitably used as alkoxysilane compounds to be subjected to the cohydrolyzate condensation of the present invention include, for example, dimethyldimethoxysilane, dimethoxydiethoxysilane methyltri Methoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, hexyltrimethoxysilane, octadecyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, naphthyltrimethoxysilane, anthracenyltrimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxy
  • the alkoxysilane cyclic compound by-produced during cohydrolyzate condensation is considered to cause surface repellency.
  • the proportion of the compound represented by the general formula (4) in the alkoxysilane compound subjected to cohydrolyzate condensation is preferably less than 5 mol%, more preferably less than 3 mol%, and less than 1 mol%. More preferably. When it is less than 0.1 mol%, it is most preferable that the alkoxysilane compound subjected to cohydrolyzate condensation does not contain the compound represented by the general formula (4).
  • a ratio of the compound represented by the general formula (4) of less than 5 mol% does not mean that the compound represented by the general formula (4) must be contained in some amount, but 0.1 mol%. Less, that is, the case where the compound represented by the general formula (4) is not included.
  • thermosetting coloring composition of the present invention is a cohydrolyzate condensation of an alkoxysilane compound containing a compound represented by the general formula (1) and a compound represented by the general formula (2), That is, it is obtained by hydrolysis and partial condensation.
  • a general method can be used for cohydrolyzate condensation. For example, a method of adding an organic solvent, water and, if necessary, a catalyst to the mixture and heating and stirring at 50 to 150 ° C. for about 0.5 to 100 hours can be used. During heating and stirring, if necessary, hydrolysis by-products (alcohols such as methanol) and condensation by-products (water) may be distilled off by distillation.
  • the organic solvent used for the cohydrolyzate condensation is preferably the same as the organic solvent (C) contained in the thermosetting coloring composition of the present invention.
  • the amount of the organic solvent added is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the alkoxysilane compound to be subjected to cohydrolyzate condensation.
  • the amount of water added is preferably 0.5 to 2 moles per mole of hydrolyzable groups.
  • the catalyst added as necessary for the cohydrolyzate condensation is preferably an acid catalyst or a base catalyst.
  • the acid catalyst include acetic acid, trifluoroacetic acid, formic acid or polyvalent carboxylic acid or anhydride thereof, hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, or an ion exchange resin.
  • Examples of the base catalyst include triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, diethylamine, triethanolamine, diethanolamine, sodium hydroxide, potassium hydroxide, amino group
  • An alkoxysilane or ion exchange resin having The addition amount of the catalyst is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the alkoxysilane compound to be subjected to the cohydrolyzate condensation.
  • the added catalyst may be removed.
  • the catalyst removal method include water washing or ion exchange resin treatment.
  • the water washing refers to a method in which an organic layer obtained by diluting a polysiloxane solution with an appropriate hydrophobic solvent and washing several times with water is concentrated with an evaporator.
  • the treatment with an ion exchange resin refers to a method of bringing a polysiloxane solution into contact with an appropriate ion exchange resin.
  • the thermosetting coloring composition of the present invention contains (A) an inorganic pigment or a phthalocyanine pigment.
  • the inorganic pigment (A) include titanium dioxide, zinc oxide, iron oxide, cadmium sulfide, titanium nickel antimony, titanium nickel barium, strontium chromate, viridian, chromium oxide, cobalt aluminate, carbon black, and titanium nitride. It is done.
  • the surface of the inorganic pigment may be surface-treated with other inorganic components or organic components, and is preferably surface-treated with an inorganic component to ensure heat resistance.
  • the phthalocyanine pigment include blue pigments such as pigment blue 15: 3, 15: 4 or 15: 6, and green pigments such as pigment green 7 or 36 (both are index numbers).
  • the inorganic pigment is a white pigment containing titanium oxide as a main component
  • the shielding property is lower than that of other color pigments
  • the inorganic pigment is a black pigment such as carbon black, sufficient shielding properties can be obtained even if the thickness of the resulting cured film is 5 ⁇ m or less.
  • the particle diameter of titanium oxide used as the inorganic pigment is preferably 0.19 to 0.31 ⁇ m in order to improve the shielding property.
  • the titanium oxide is preferably surface-treated with Al or Zr in order to improve light resistance. On the other hand, surface treatment with Si is not preferable because it adversely affects pigment dispersibility.
  • the amount of (A) the white pigment mainly composed of titanium oxide is preferably 20 to 400 parts by weight, more preferably 50 to 200 parts by weight, based on 100 parts by weight of (B) polysiloxane. If the amount of titanium oxide is less than 20 parts by weight, sufficient shielding properties cannot be obtained. On the other hand, if it exceeds 400 parts by weight, the resulting cured film has insufficient chemical resistance, and a protective film is required.
  • thermosetting coloring composition of the present invention contains (C) an organic solvent.
  • C Since an organic solvent melt
  • thermosetting coloring composition of the present invention when the thermosetting coloring composition of the present invention is applied by screen printing, problems such as clogging of the screen plate and separation of the substrate are likely to occur, and when it is applied by ink jet printing, nozzle clogging occurs. easy.
  • the boiling point exceeds 250 ° C., the organic solvent remains in the obtained cured film, and the heat resistance and solvent resistance of the cured film are deteriorated.
  • Compounds having a boiling point of 140 to 250 ° C. suitable as an organic solvent include, for example, ethylene glycol mononormal butyl ether, 2-ethoxyethyl acetate, 1-methoxypropyl-2-acetate, 3-methoxy -3-Methylbutanol, 3-methoxy-3-methylbutanol acetate, 3-methoxybutyl acetate, 1,3-butylene glycol diacetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, ethyl lactate, butyl lactate, acetoacetic acid Examples include ethyl or ⁇ -butyrolactone.
  • thermosetting coloring composition of the present invention may contain a surfactant for improving coating properties.
  • the surfactant include a fluorine-based surfactant, a silicone-based surfactant, a polyalkylene oxide-based surfactant, and a poly (meth) acrylate-based surfactant.
  • thermosetting coloring composition of the present invention A typical method for producing the thermosetting coloring composition of the present invention will be described below.
  • a mixed solution of (A) inorganic pigment or phthalocyanine pigment, (B) polysiloxane, and (C) organic solvent is kneaded with a stirrer or three rollers. If necessary, (B) polysiloxane, (C) an organic solvent or other additives are added, dissolved by stirring, and then the resulting solution is filtered to obtain a thermosetting coloring composition. can get.
  • thermosetting coloring composition of the present invention is suitably used for a touch panel.
  • it is suitably used as a colored light-shielding cured film pattern.
  • thermosetting coloring composition of the present invention The method for forming a colored light-shielding cured film pattern using the thermosetting coloring composition of the present invention will be described with examples. After a desired pattern is formed on glass by screen printing or ink jet printing, it is cured by a heating device such as a hot plate or oven.
  • Curing temperature is not less than 230 ° C and not more than 300 ° C for 1 minute to 60 minutes.
  • the film thickness is preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • thermosetting coloring composition of the present invention is used as a shading agent for a touch panel, and the OD value of the cured film is preferably 0.7 or more, more preferably 0.8 or more.
  • the light-shielding agent is preferably used because it requires recoatability and chemical resistance.
  • Recoatability means that surface repellency does not occur when a transparent coating agent or the like is applied.
  • chemical resistance means having chemical resistance used for ITO film formation. Specific items of chemical resistance include, for example, ITO etchant, positive resist developer, and positive resist stripper. The most important chemical resistance is adhesion to the glass surface. If the surface is only slightly peeled off, it can be expected to prevent peeling of the surface layer by forming a transparent layer on the light-shielding agent.
  • the ITO film forming temperature and the curing temperature of the transparent material are considered. In particular, it is essential that no yellowing occurs, and it is also important that there are few volatile components at the ITO film forming temperature.
  • thermosetting coloring composition 50 g of the above acrylic resin solution, 16 g of dipentaerythritol pentaacrylate (manufactured by Nippon Kayaku Co., Ltd.), 2 g of 1.2-octanedione, 1- [4- (phenylthio)-, 2- (O— Benzoyloxime)] ("IRGACURE” (registered trademark) OXE-01; manufactured by BASF), 31.9 g of diacetone alcohol and 0.1 g of polyether-modified polydimethylsiloxane (BYK-333; manufactured by BYK Chemie) A thermosetting coloring composition was prepared.
  • thermosetting coloring composition On a 10 cm square non-alkali glass substrate (glass thickness 0.5 mm), the thermosetting coloring composition was applied with a spin coater so that the film thickness after curing was 10 ⁇ m, and cured at 250 ° C. for 60 minutes. Note that the evaluation was not performed when a crack occurred in the cured film after curing.
  • 4 g of the acrylic resin solution was applied with a spin coater at 500 rpm. Thereafter, pre-baking was performed at 100 ° C. for 2 minutes using a hot plate (SCW-636; manufactured by Dainippon Screen Mfg. Co., Ltd.). Thereafter, the area where the acrylic resin solution is applied is visually evaluated.
  • thermosetting coloring composition If the area where the thermosetting coloring composition is applied is 97% or more, “ ⁇ ”, and if it is 90% or more and less than 97%. If “ ⁇ ”, less than 90%, it was determined as “x”. In addition, if judgment is "x", it will be difficult to use for the process of creating an organic film on a thermosetting coloring composition.
  • thermosetting coloring composition On a 10 cm square non-alkali glass substrate (glass thickness 0.5 mm), the thermosetting coloring composition was applied with a spin coater so that the film thickness after curing was 10 ⁇ m, and cured at 250 ° C. for 60 minutes. Note that the evaluation was not performed when a crack occurred in the cured film after curing.
  • the obtained cured film after curing was cut vertically and horizontally at 1 mm intervals using a cutter knife to produce 100 squares of 1 mm ⁇ 1 mm.
  • ITO etching solution 200 g was put into a 500 cc glass beaker, and the internal temperature was adjusted to 50 ° C. with a hot water bath. There, 100 cured square cured films were immersed in the glass substrate for 2 minutes and further immersed in pure water prepared in another container for 30 seconds.
  • thermosetting coloring composition On a 10 cm square non-alkali glass substrate (glass thickness 0.5 mm), the thermosetting coloring composition was applied with a spin coater so that the film thickness after curing was 10 ⁇ m, and cured at 250 ° C. for 60 minutes. Note that the evaluation was not performed when a crack occurred in the cured film after curing.
  • a spectrophotometer UV-2450; manufactured by Shimadzu Corporation
  • the reflection chromaticity of the cured film after curing is measured from the glass substrate side in the CIE 1976 (L *, a *, b *) color space. Yellowness was evaluated by the value of b * when displayed. When b * was 1.5 or less, “ ⁇ ” was judged, when b * was 1.5 to 2, “ ⁇ ” was judged, and when b * was 2.1 or more, “x” was judged.
  • a C light source was used as the light source.
  • Synthesis Example 1 Synthesis of Siloxane Resin Solution (b-1) 122.18 g of diphenyldimethoxysilane (DiPh-DiMS, 0.5 mol), 74.10 g of vinyltrimethoxysilane (Vinyl-TMS, 0.5 mol) ) And 37.37 g of ethyl acetoacetate were charged into a 500 mL three-necked flask. While stirring the solution at room temperature, an aqueous phosphoric acid solution in which 1.0 g of phosphoric acid was dissolved in 54.0 g of water was added over 30 minutes. Thereafter, the flask was immersed in an oil bath at 40 ° C.
  • Synthesis Example 2 Synthesis of Siloxane Resin Solution (b-2) What was initially charged into a three-necked flask was 122.18 g diphenyldimethoxysilane (0.5 mol), 44.46 g vinyltrimethoxysilane (0.3 mol). Mol), 39.66 g of phenyltrimethoxysilane (Ph-TMS, 0.2 mol) and 42.08 g of ethyl acetoacetate, the siloxane resin solution (b-2) was prepared in the same manner as in Synthesis Example 1. Obtained.
  • Synthesis Example 6 Synthesis of Siloxane Resin Solution (b-6) First, a three-necked flask was charged with 73.31 g of diphenyldimethoxysilane (0.3 mol), 44.46 g of vinyltrimethoxysilane (0.3 mol). Mol), 12.32 g 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane (0.05 mol), 69.41 g phenyltrimethoxysilane (0.35 mol) and 38.88 g ethyl acetoacetate
  • a siloxane resin solution (b-6) was obtained in the same manner as in Synthesis Example 1 except that
  • a siloxane resin solution (b-7) was obtained in the same manner as in Synthesis Example 1 except that phenyltrimethoxysilane (0.35 mol) and 35.96 g of ethyl acetoacetate were used.
  • siloxane resin solution (b-10) was obtained in the same manner as in Synthesis Example 1 except that silane (Tetra-ES, 0.05 mol) and 39.11 g ethyl acetoacetate were used.
  • Synthesis Example 11 Synthesis of Siloxane Resin Solution (b-11) First, a three-necked flask was charged with 73.31 g diphenyldimethoxysilane (0.3 mol), 22.23 g vinyltrimethoxysilane (0.15 Mol), 12.32 g 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane (0.05 mol), 99.15 g phenyltrimethoxysilane (0.5 mol) and 42.42 g ethyl acetoacetate A siloxane resin solution (b-11) was obtained in the same manner as in Synthesis Example 1 except that.
  • Synthesis Example 12 Synthesis of Siloxane Resin Solution (b-12) First, a three-necked flask was charged with 73.31 g diphenyldimethoxysilane (0.3 mol), 22.23 g vinyltrimethoxysilane (0.15 Mol), 12.32 g 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane (0.05 mol), 69.41 g phenyltrimethoxysilane (0.35 mol), 35.15 g 3-acryloxypropyl
  • a siloxane resin solution (b-12) was obtained in the same manner as in Synthesis Example 1 except that trimethoxysilane (Acryl-TMS, 0.15 mol) and 44.96 g of ethyl acetoacetate were used.
  • Synthesis Example 14 Synthesis of Siloxane Resin Solution (b-14) First, a three-necked flask was charged with 73.31 g of diphenyldimethoxysilane (0.3 mol) and 12.32 g of 3- (3,4-epoxy). (Cyclohexyl) propyltrimethoxysilane (0.05 mol), 69.41 g phenyltrimethoxysilane (0.35 mol), 70.30 g 3-acryloxypropyltrimethoxysilane (0.3 mol) and 51.04 g A siloxane resin solution (b-14) was obtained in the same manner as in Synthesis Example 1, except that ethyl acetoacetate was used.
  • Synthesis Example 16 Synthesis of Siloxane Resin Solution (b-16) First, a three-necked flask was charged with 44.46 g of vinyltrimethoxysilane (0.3 mol), 12.32 g of 3- (3,4- Epoxycyclohexyl) propyltrimethoxysilane (0.05 mol), 36.07 g dimethyldimethoxysilane (0.3 mol), 69.41 g phenyltrimethoxysilane (0.35 mol) and 21.35 g ethyl acetoacetate A siloxane resin solution (b-16) was obtained in the same manner as in Synthesis Example 1 except that
  • Example 1 In a 100 mL death cup, 17.33 g of a white pigment, that is, a titanium oxide pigment (JR-600A; manufactured by Teika Co., Ltd.) and 8.89 g of a siloxane resin solution (b-1) were charged. This mixture was stirred at 200 rpm for 2 minutes using a stirring motor (TORNADO SM-102; manufactured by ASONE Co., Ltd.), and further stirred at 500 rpm for 2 minutes. 23.69 g of the siloxane resin solution (b-1) was mixed therewith and similarly stirred at 500 rpm for 30 seconds to obtain a thermosetting white composition (W-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • thermosetting white composition (W-2) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-2) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • thermosetting white composition (W-3) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-3) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • Example 4 A thermosetting white composition (W-4) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-4) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • thermosetting white composition (W-5) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-5) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • thermosetting white composition (W-6) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-6) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • thermosetting white composition (W-7) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-7) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • thermosetting white composition (W-8) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-8) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • Example 9 A thermosetting white composition (W-9) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-9) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • Example 10 A thermosetting white composition (W-10) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-10) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • thermosetting white composition (W-11) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-11) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • Example 12 A thermosetting white composition (W-12) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-12) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • thermosetting green composition (G-1) was obtained in the same manner as in Example 4 except that a green pigment (Colortherm Green GN; manufactured by Lanxess) was used instead of the titanium oxide pigment. Using this composition, crack resistance, surface repellency and chemical resistance were evaluated. Since the pigment is not a white pigment, the yellowness of the reflected color was not evaluated.
  • a green pigment Colortherm Green GN; manufactured by Lanxess
  • thermosetting red composition (R-1) was obtained in the same manner as in Example 4 except that a red pigment (Bayferrox 140M; manufactured by Lanxess) was used instead of the titanium oxide pigment. Using this composition, crack resistance, surface repellency and chemical resistance were evaluated. Since the pigment is not a white pigment, the yellowness of the reflected color was not evaluated.
  • thermosetting white composition (W-13) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-13) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated. In the chemical resistance evaluation, the adhesiveness was 0B, and the entire surface was peeled off. Therefore, the surface roughness was not evaluated.
  • thermosetting white composition (W-14) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-14) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • thermosetting white composition (W-15) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-15) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance and surface repellency were evaluated. As a result, cracks occurred even at 10 ⁇ m, and thus the chemical resistance and the yellowness of the reflected color were not evaluated.
  • thermosetting white composition (W-16) was obtained in the same manner as in Example 1 except that the siloxane resin solution (b-16) was used instead of the siloxane resin solution (b-1). Using this composition, crack resistance, surface repellency, chemical resistance, and yellowness of the reflected color were evaluated.
  • Table 1 shows the compositions of the alkoxysilane compounds used in the synthesis of the siloxane resin solutions (b-1) to (b-16) used in the examples and comparative examples.
  • Table 2 shows the evaluation results of the examples and comparative examples.
  • thermosetting coloring composition of the present invention it is possible to form a cured film excellent in heat resistance and chemical resistance, and a general photosensitive transparent material or the like. It is clear that it is possible to form a cured film that does not cause the problem of repelling even if it is applied.
  • thermosetting coloring composition of the present invention was prepared using the thermosetting coloring composition of the present invention, and the conductivity was evaluated.
  • Example 15 (1) Preparation of white light-shielding pattern
  • the film thickness after curing the thermosetting white composition (W-6) obtained in Example 6 on a tempered glass having a size of 10 cm ⁇ 10 cm and a thickness of 0.7 mm is 15 ⁇ m.
  • screen printing was performed using a TM-750 model manufactured by Microtech Co., Ltd. as a small screen printer.
  • “Inert Oven” DN43HI manufactured by Yamato Co., Ltd. curing was performed in air at 250 ° C. for 60 minutes to produce a glass substrate 1 having a white light-shielding pattern 2 (FIG. 1).
  • the resulting film was subjected to pattern exposure with an ultrahigh pressure mercury lamp through a mask, then shower developed with a 2.38 mass% TMAH aqueous solution for 90 seconds using an automatic developing device, and then rinsed with water for 30 seconds. . Thereafter, the ITO is etched by immersing in a 3.5 mass% oxalic acid aqueous solution for 150 seconds, and the photoresist is processed by treating with a stripping solution at 50 ° C. (“N-321” manufactured by Nagase ChemteX Corporation) for 120 seconds. The film was removed and annealed at 230 ° C. for 30 minutes to produce a patterned ITO 3 having a thickness of 150 nm (FIG. 2).
  • FIG. 5 shows a cross-sectional view along the line AA ′ of the touch panel substrate of FIG.
  • thermosetting white composition (W-6) was found to have no problem in touch panel preparation.
  • thermosetting white composition (W-16) was used instead of the thermosetting white composition (W-6), and a continuity test was performed. As a result, it was found that the poorly conductive portion was confirmed, and thus the thermosetting white composition (W-16) was not suitable for touch panel production.
  • the cured film obtained by curing the thermosetting resin composition of the present invention is suitably used as a colored light-shielding cured film pattern of the touch panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Silicon Polymers (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明は、高い耐熱性を有しながら耐薬品性にも優れ、かつ形成した硬化膜に一般的な感光性透明材料等を塗布しても、ハジキの問題が生じることのない、熱硬化性着色組成物を提供することを目的とする。本発明は、(A)無機顔料又はフタロシアニン顔料、(B)特定範囲の化合物を含む、アルコキシシラン化合物を共加水分解物縮合して得られるポリシロキサン、並びに、(C)有機溶媒、を含有する、熱硬化性着色組成物を提供する。

Description

熱硬化性着色組成物及び硬化膜、その硬化膜を具備したタッチパネル、その熱硬化性着色組成物を用いるタッチパネルの製造方法
 本発明は、熱硬化性着色組成物及び硬化膜、その硬化膜を具備したタッチパネル、その熱硬化性着色組成物を用いるタッチパネルの製造方法に関する。
 近年、スマートフォンやタブレットPC等、投影型静電容量式タッチパネルを用いたモバイル機器が急速に普及しつつある。投影型静電容量式タッチパネルは、画面領域にITO(Indium Tin Oxide)膜のパターンが形成され、その周辺部にさらにモリブデン等の金属配線部が形成されていることが一般的である。そしてこのような金属配線部を隠すため、投影型静電容量式タッチパネルのカバーガラスの内側には、黒又は白色等の遮光パターンが形成されていることが多い。
 タッチパネルの方式は、カバーガラスと液晶パネルとの間にタッチパネル層を形成するOut-sellタイプ、液晶パネル上にタッチパネル層を形成するOn-sellタイプ、液晶パネルの内部にタッチパネル層を形成するIn-sellタイプ、及び、カバーガラスにタッチパネル層を直接形成するOGS(One Glass Solution)タイプに大別されるが、従来よりも薄型化及び軽量化を図れることから、OGSタイプのタッチパネルの開発が盛んになってきている。
 OGSタイプのタッチパネルの製造においては、遮光パターンの耐熱性及び耐薬品性が要求される。遮光パターンの耐熱性が低い場合には、ITOの成膜温度を高くすることができず、タッチパネル性能が低下する。また遮光パターンの耐薬品性が低い場合には、遮光パターン上にさらにSiOの膜を成膜する等せねばならず、製造工程が煩雑となる。
 また、OGSタイプのタッチパネルの製造においては、遮光パターン上に感光性透明材料等を塗布することが多いため、遮光パターンは、それら感光性透明材料等がハジキなく塗布可能な材質により形成される必要がある。
 高耐熱性であり、かつ透明な樹脂としては酸化ケイ素化合物であるシリコーンやシロキサンが広く知られており、それらを含有する熱硬化性着色組成物が報告されている(特許文献1)。
特開平9-291214号公報
 しかしながら従来の熱硬化性着色組成物は、耐熱性は高いものの、耐薬品性の面からはOGSタイプのタッチパネルの遮光パターン形成に適したものではなく、さらには感光性透明材料等との親和性も低いことから、遮光パターンに感光性透明材料等を塗布した際のハジキが問題視されかねないものであった。 そこで本発明は、高い耐熱性を有しながら耐薬品性にも優れ、かつ形成した硬化膜に一般的な感光性透明材料等を塗布しても、ハジキの問題が生じることのない、熱硬化性着色組成物を提供することを目的とする。
 上記課題を解決するため、本発明は、以下の(i)~(vii)に記載した熱硬化性着色組成物及び硬化膜、その硬化膜を具備したタッチパネル、その熱硬化性着色組成物を用いるタッチパネルの製造方法を提供する。
(i)(A)無機顔料又はフタロシアニン顔料、(B)下記一般式(1)で示される化合物及び下記一般式(2)で示される化合物を含むアルコキシシラン化合物を共加水分解物縮合して得られるポリシロキサン並びに(C)有機溶媒を含有する熱硬化性着色組成物。
Figure JPOXMLDOC01-appb-C000005
(Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000006
(Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。)
(ii)上記アルコキシシラン化合物は下記一般式(3)で示される化合物をさらに含む上記(i)に記載の熱硬化性着色組成物。
Figure JPOXMLDOC01-appb-C000007
(Rはエポキシ基を有する、炭素数1~10の1価の有機基を表し、Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。)
(iii)上記アルコキシシラン化合物は下記一般式(4)で示される化合物の割合が5モル%未満である上記(i)又は(ii)に記載の熱硬化性着色組成物。
Figure JPOXMLDOC01-appb-C000008
(Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。)
(iv)上記無機顔料は酸化チタンを主成分とする白色顔料を含有する上記(i)~(iii)のいずれかに記載の熱硬化性着色組成物。
(v)上記(i)~(iv)のいずれかに記載の熱硬化性着色組成物を硬化させてなる硬化膜。
(vi)上記(v)記載の硬化膜を具備するタッチパネル。
(vii)上記(i)~(iv)のいずれかに記載の熱硬化性着色組成物を用いて着色遮光性硬化膜パターンを形成する工程を備えるタッチパネルの製造方法。
 本発明の熱硬化性着色組成物によれば、耐熱性及び耐薬品性に優れた硬化膜を形成することが可能であり、かつ、一般的な感光性透明材料等を塗布しても、ハジキの問題が生じることのない硬化膜を形成することが可能となる。
白色遮光パターンを有するガラス基板 パターン加工されたITO及び白色遮光パターンを有するガラス基板 透明絶縁膜、パターン加工されたITO及び白色遮光パターンを有するガラス基板 MAM配線、透明絶縁膜、パターン加工されたITO及び白色遮光パターンを有するガラス基板(タッチパネル基板) タッチパネル基板のA-A’断面図
 本発明の熱硬化性着色組成物は、(A)無機顔料又はフタロシアニン顔料、(B)下記一般式(1)で示される化合物及び下記一般式(2)で示される化合物を含むアルコキシシラン化合物を共加水分解物縮合して得られるポリシロキサン並びに(C)有機溶媒を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000009
(Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000010
(Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。)
 従来の熱硬化性着色組成物は、耐熱性は高いものの、OGSタイプのタッチパネルの遮光パターン形成等に用いることを想定しておらず、遮光パターンの耐薬品性や、遮光パターンに感光性透明材料等を塗布した際のハジキの面で好適ではなかった。
 そこで、本発明者らは熱硬化性着色組成物が含有するポリシロキサンを構成するアルコキシシラン化合物に着目し、鋭意検討した。そして、特定の化合物を含むアルコキシシラン化合物を共加水分解物縮合して得られるポリシロキサンを含有することで、遮光パターンの耐薬品性や、遮光パターンに感光性透明材料等を塗布した際のハジキの面で好適な熱硬化性着色組成物が得られることを見出したものである。
 本発明の共加水分解物縮合に供するアルコキシシラン化合物は一般式(1)で示される化合物及び一般式(2)で示される化合物を含む。本発明者らは、耐薬品性を持たせるにはある程度の有機成分の結合が必要と考え、ビニルトリアルコキシシランが好適であることを見出した。そして、共加水分解物縮合時に副生するアルコキシシラン環状化合物がハジキの原因になるのではないかと考え、ジフェニルアルコキシシランは環状化合物が副生しにくいことを見出した。そして、ジフェニルアルコキシシランとビニルトリアルコキシシランを組み合わせることで、さらなる相乗効果が得られることを見出したものである。
 一般式(1)で示される化合物としては、例えば、ジフェニルジメトキシシラン又はジフェニルジエトキシシランが挙げられる。共加水分解物縮合に供するアルコキシシラン化合物に占める、一般式(1)で示される化合物の割合は、8~45モル%が好ましい。一般式(1)で示される化合物の割合が8モル%未満であると、クラック耐性が低くなり、一度に成膜できる硬化膜の膜厚が大きく制限される。一方で、45モル%を超えると、得られる硬化膜の基板等への密着性が低下する。
 一般式(2)で示される化合物の具体例としては、例えば、ビニルトリメトキシシラン又はビニルトリエトキシシランが挙げられる。共加水分解物縮合に供するアルコキシシラン化合物に占める、一般式(2)で示される化合物の割合は、20~40モル%が好ましい。一般式(2)で示される化合物が20モル%未満であると、得られる硬化膜の基板等への密着性が低下する。一方で、45モル%を超えると、クラック耐性が低くなり、一度に成膜できる硬化膜の膜厚が大きく制限される。
 本発明の共加水分解物縮合に供するアルコキシシラン化合物は、得られる硬化膜の表面あれを抑止するため、下記一般式(3)で示される化合物をさらに含むことが好ましい。上述の通り、耐薬品性を持たせるにはある程度の有機成分の結合が必要と考えられ、エポキシシランを更に含むことは、耐薬品性向上の面から好ましい。
Figure JPOXMLDOC01-appb-C000011
(Rはエポキシ基を有する、炭素数1~10の1価の有機基を表し、Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。) 一般式(3)で示される化合物としては、例えば、3-グリシドキシシプロピルトリメトキシシラン、3-グリシドキシシプロピルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン又は3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシランが挙げられる。共加水分解物縮合に供するアルコキシシラン化合物に占める、一般式(3)で示される化合物の割合は、1~9モル%が好ましい。一般式(2)で示される化合物が1モル%未満であると、得られる硬化膜の耐薬品性が低下する場合がある。一方で、9モル%を超えると、耐熱性が低下する可能性がある。
 上記の一般式(1)~(3)で示される化合物以外の本発明の共加水分解物縮合に供するアルコキシシラン化合物として好適に用いられる化合物は、例えば、ジメチルジメトキシシラン、ジメトキシジエトキシシランメチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ナフチルトリメトキシシラン、アントラセニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、ジメチルジメトキシシラン又はジメトキシジエトキシシランが挙げられる。
 しかしながら、下記一般式(4)で示される化合物は、クラック耐性を向上させる一方で、上述の通り、共加水分解物縮合時に副生するアルコキシシラン環状化合物が表面ハジキの要因となると考えられるため、共加水分解物縮合に供するアルコキシシラン化合物に占める、一般式(4)で示される化合物の割合が5モル%未満であることが好ましく、3モル%未満であることがより好ましく、1モル%未満であることがさらに好ましい。0.1モル%未満である場合、共加水分解物縮合に供するアルコキシシラン化合物が一般式(4)で示される化合物を含まないとし、このことが最も好ましい。よって、例えば、一般式(4)で示される化合物の割合が5モル%未満とは、一般式(4)で示される化合物がいくらか含まれていなければならないということはなく、0.1モル%未満、すなわち、一般式(4)で示される化合物を含まない場合を含む。
Figure JPOXMLDOC01-appb-C000012
(Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。)
 本発明の熱硬化性着色組成物が含有する(B)ポリシロキサンは、一般式(1)で示される化合物及び一般式(2)で示される化合物を含むアルコキシシラン化合物を共加水分解物縮合、すなわち、加水分解及び部分縮合させることにより得られる。共加水分解物縮合には、一般的な方法を用いることができる。例えば、混合物に有機溶媒、水及び必要に応じて触媒を添加し、50~150℃で0.5~100時間程度加熱撹拌する方法を用いることができる。なお、加熱撹拌中、必要に応じて、蒸留によって加水分解副生物(メタノール等のアルコール)や縮合副生物(水)の留去を行っても構わない。
 共加水分解物縮合に用いる有機溶媒としては、本発明の熱硬化性着色組成物が含有する(C)有機溶媒と同じものが好ましい。有機溶媒の添加量は、共加水分解物縮合に供するアルコキシシラン化合物100重量部に対して、10~1000重量部が好ましい。また、水の添加量は、加水分解性基1モルに対して0.5~2モルが好ましい。
 共加水分解物縮合に必要に応じて添加される触媒としては、酸触媒又は塩基触媒が好ましい。酸触媒としては、例えば、酢酸、トリフルオロ酢酸、ギ酸若しくは多価カルボン酸又はその無水物、塩酸、硝酸、硫酸、フッ酸、リン酸あるいはイオン交換樹脂が挙げられる。塩基触媒としては、例えば、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、ジエチルアミン、トリエタノールアミン、ジエタノールアミン、水酸化ナトリウム、水酸化カリウム、アミノ基を有するアルコキシシラン又はイオン交換樹脂が挙げられる。触媒の添加量は、共加水分解物縮合に供するアルコキシシラン化合物100重量部に対して、0.01~10重量部が好ましい。
 さらに必要に応じて、添加した触媒を除去しても構わない。触媒の除去方法としては、例えば、水洗浄又はイオン交換樹脂の処理が挙げられる。ここで水洗浄とは、ポリシロキサン溶液を適当な疎水性溶媒で希釈した後、水で数回洗浄して得られた有機層をエバポレーターで濃縮する方法をいう。またイオン交換樹脂での処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる方法をいう。
 本発明の熱硬化性着色組成物は(A)無機顔料又はフタロシアニン顔料を含有する。(A)無機顔料としては、例えば、二酸化チタン、酸化亜鉛、酸化鉄、硫化カドミウム、チタンニッケルアンチモン、チタンニッケルバリウム、クロン酸ストロンチウム、ビリジアン、酸化クロム、アルミン酸コバルト、カーボンブラック又は窒化チタンが挙げられる。無機顔料の表面は、他の無機成分又は有機成分で表面処理されていても構わない、耐熱性を確保するため、無機成分で表面処理されていることが好ましい。フタロシアニン顔料としては、例えば、ピグメントブルー15:3、15:4若しくは15:6等の青色顔料又はピグメントグリーン7若しくは36等の緑色顔料(いずれもインデックスナンバー)が挙げられる。
 (A)無機顔料が酸化チタンを主成分とする白色顔料である場合には、他色の顔料と比較して遮蔽性が低いことから、得られる硬化膜の膜厚を10μm以上にする必要があるが、20μm以上が好ましく、30μm以上がより好ましい。よって、得られる硬化膜の耐クラック性は、(A)無機顔料が酸化チタンを主成分とする白色顔料である場合においてより重要となる。一方で、例えば(A)無機顔料がカーボンブラック等の黒色顔料である場合には、得られる硬化膜の膜厚が5μm以下であっても、十分な遮蔽性が得られる。
 (A)無機顔料として使用する酸化チタンの粒子径は、遮蔽性を高めるため、0.19~0.31μmが好ましい。また酸化チタンは、耐光性を高めるため、Al又はZrで表面処理されていることが好ましい。一方で、Siでの表面処理は、顔料分散性に悪影響を及ぼすため、好ましくない。(A)酸化チタンを主成分とする白色顔料の量は、(B)ポリシロキサン100重量部に対し、20~400重量部が好ましく、50~200重量部がより好ましい。酸化チタンの量が20重量部未満であると、十分な遮蔽性が得られなくなる。一方で、400重量部を超えると、得られる硬化膜の耐薬品性が不足し、保護膜が必要となる。
 本発明の熱硬化性着色組成物は(C)有機溶媒を含有する。(C)有機溶媒は、組成物の各成分を均一に溶解するため、アルコール性化合物、エステル系化合物又はエーテル系化合物が好ましい。また、大気圧下の沸点が140~250℃の化合物がより好ましく、160~210℃以下の化合物がさらに好ましい。本発明の熱硬化性着色組成物は印刷方式での塗布が想定されることから、沸点が140℃未満であると有機溶媒の乾燥速度が早く、印刷特性に不具合が生じ易い。例えば、本発明の熱硬化性着色組成物をスクリーン印刷で塗布する場合においては、スクリーン版の目詰まりや基板離れに関する問題が発生し易く、インクジェット印刷で塗布する場合においては、ノズルの詰まりが生じ易い。一方で、沸点が250℃を超えると、得られる硬化膜に有機溶媒が残存し、硬化膜の耐熱性や耐溶媒性が悪化してしまう。
 (C)有機溶媒として好適な、大気圧下の沸点が140~250℃の化合物としては、例えば、エチレングリコールモノノルマルブチルエーテル、酢酸2-エトキシエチル、1-メトキシプロピル-2-アセテート、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブタノールアセテート、3-メトキシブチルアセテート、1,3-ブチレングリコルジアセテート,エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、乳酸エチル、乳酸ブチル、アセト酢酸エチル又はγ-ブチロラクトンが挙げられる。
 本発明の熱硬化性着色組成物は、塗布性向上のために界面活性剤を含有しても構わない。界面活性剤としては、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤又はポリ(メタ)アクリレート系界面活性剤が挙げられる。
 本発明の熱硬化性着色組成物の代表的な製造方法について、以下に説明する。まず、(A)無機顔料又はフタロシアニン顔料、(B)ポリシロキサン及び(C)有機溶媒の混合液を、撹拌機又は三本ローラーで混練する。そこに、必要に応じて(B)ポリシロキサン、(C)有機溶媒又は他の添加物を加え、撹拌して溶解させた後、得られた溶液をろ過することで熱硬化性着色組成物が得られる。
 本発明の熱硬化性着色組成物を硬化させてなる硬化膜はタッチパネルに好適に用いられる。特に着色遮光性硬化膜パターンとして好適に用いられる。
 本発明の熱硬化性着色組成物を用いた着色遮光性硬化膜パターン形成方法について、例を挙げて説明する。ガラス上にスクリーン印刷あるいはインクジェット印刷により所望のパターン形成後、ホットプレート、オーブンなどの加熱装置で硬化させる。
 硬化温度は230℃以上、300℃以下の温度範囲で1分以上、60分以下行う。膜厚は1μm以上、30μm以下とすることが好ましい。
 本発明の熱硬化性着色組成物をタッチパネル用遮光剤として使用する場合は遮蔽性が重要で有り、硬化膜のOD値は0.7以上が好ましく、0.8以上がより好ましい。
 本発明の熱硬化性着色組成物をOGSタイプのタッチパネル向け遮光剤として使用する場合、遮光剤にはリコート性、耐薬品性が必要であるので好適に用いられる。リコート性とは透明コーティング剤などを塗布した場合に表面ハジキが発生しないことである。また耐薬品性とは、ITO製膜などに使用する対薬品性を有することである。耐薬品性の具体的な項目としては、例えばITOのエッチャント液、ポジレジストの現像液ならびにポジレジストの剥離液などが挙げられる。耐薬品性はガラス表面との密着性が最も重要である。表面がわずかに剥がれるだけであれば、透明層を遮光剤の上に製膜することで、表層の剥がれを防止することが期待できる。そして耐熱性にはITOの製膜温度ならびに透明材料等のキュア温度が考えられる。特に黄変しないことが必須であり、ITO製膜温度での揮発成分が少ないことも重要である。
 以下、実施例及び比較例を挙げて、本発明をさらに詳しく説明する。各実施例及び比較例における評価方法は以下のとおりである。
 <クラック耐性の評価>
 10cm角のガラス基板上に、熱硬化性着色組成物をキュア後の膜厚が10μm、15μm、20μm、25μm及び30μmとなるようにスピンコーター(1H-360S;ミカサ(株)製)にてそれぞれ塗布し、250℃で60分キュアした後のクラックの発生有無を目視にて確認した。クラックはその数によらず、1つでもクラックが発生すれば、その膜厚でのクラック耐性はないと判断した。例えば、15μmにてクラックが入らず、20μmではクラックが入った場合には、耐クラック膜厚は「15-20μm」と判定した。また、30μmでもクラックが入らない場合の耐クラック膜厚は「>30μm」、10μmでもクラックが入る場合の耐クラック膜厚は「<10μm」と、それぞれ判定した。
 <表面ハジキの評価用の透明感光材料及び熱硬化性着色組成物の調製>
 透明感光材料(アクリル樹脂溶液)の合成
 500mLのフラスコに、3gの2,2’-アゾビス(イソブチロニトリル)及び50gのプロピレングリコールメチルエーテルアセテートを仕込んだ。その後、30gのメタクリル酸、22.48gのスチレン及び25.13gのシクロヘキシルメタクリレートを仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液に、15gのメタクリル酸グリシジル、1gのジメチルベンジルアミン、0.2gのp-メトキシフェノール及び100gのプロピレングリコールモノメチルエーテルアセテートを添加し、90℃で4時間加熱撹拌した。得られたアクリル樹脂溶液が固形分濃度が40質量%になるようにプロピレングリコールモノメチルエーテルアセテートを加え、アクリル樹脂溶液を得た。得られたアクリル樹脂の重量平均分子量は13500、酸価は100mgKOH/gであった。
 <熱硬化性着色組成物の調製>
 50gの上記アクリル樹脂溶液を、16gのジペンタエリトリトールペンタアクリレート(日本化薬(株)製)を、2gの1.2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)](“IRGACURE”(登録商標)OXE-01;BASF製)、31.9gのダイアセトンアルコール及び0.1gのポリエーテル変性ポリジメチルシロキサン(BYK-333;ビックケミー製)を混合し、熱硬化性着色組成物を調製した。
 <表面ハジキの評価>
 10cm角の無アルカリガラス基板(ガラス厚み0.5mm)上に、熱硬化性着色組成物をキュア後の膜厚が10μmとなるようにスピンコーターにて塗布し、250℃で60分キュアした。なお、キュア後の硬化膜にクラックが発生した場合は、評価を行わないこととした。キュア後の硬化膜上に4gの上記アクリル樹脂溶液を、スピンコーターにて分速500回転にて塗布した。その後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を使用し、100℃で2分間のプリベークを行った。その後、アクリル樹脂溶液が塗布されている面積を目視にて評価し、熱硬化性着色組成物が塗布されている面積が97%以上であれば「○」、90%以上97%未満であれば「△」、90%未満であれば「×」と判定した。なお、判定が「×」であれば、熱硬化性着色組成物上に有機膜を作成する工程に供することは困難と考えられる。
 <耐薬品性の評価用のITOエッチング液の調製>
 500gの36質量%塩化ナトリウム水溶液、100gの60質量%硝酸水溶液及び400gの純水を混合したものを、ITOエッチング液とした。
 <耐薬品性の評価>
 10cm角の無アルカリガラス基板(ガラス厚み0.5mm)上に、熱硬化性着色組成物をキュア後の膜厚が10μmとなるようにスピンコーターにて塗布し、250℃で60分キュアした。なお、キュア後の硬化膜にクラックが発生した場合は、評価を行わないこととした。得られたキュア後の硬化膜を、カッターナイフを用いて1mm間隔で縦横に切断して、1mm×1mmのマス目を100個作製した。
 次に、200gのITOエッチング液を500ccのガラスビーカーに入れ、湯煎により内温が50℃となるように調整した。そこに、マス目を100個作製したキュア後の硬化膜をガラス基板ごと2分間浸漬し、さらに別の容器に準備した純水に30秒間浸漬した。
 全てのマス目が覆われるようにセロハン粘着テープ(幅=18mm、粘着力=3.7N/10mm)を貼り付け、消しゴム(JIS S6050合格品)で擦って密着させた。その後、セロハン粘着テープの一端を持ち、これをガラス基板に直角に保ちながら瞬間的に剥離した後のマス目の残存数を確認し。剥離したマス目の割合すなわち剥離面積比率を求めた。以下の評価基準に基づき、剥離面積比率を5段階に区分した。
5B : 剥離面積0%
4B : 剥離面積1~4%
3B : 剥離面積5~14%
2B : 剥離面積15~34%
1B : 剥離面積35~64%
0B : 剥離面積65~100%
 また、セロハン粘着テープ剥離後の表面状態を観察し表層のみが剥がれた部分が5%以上ある場合を「△」、表層のみが剥がれた部分が20%以上ある場合を「×」、その他を「○」、とそれぞれ判定した。なお、剥離面積比率による判定が「0B」である場合は、この観察評価を行わないこととした。
 <反射色の黄色味(b*)の評価>
 使用する顔料が酸化チタン粒子である場合にのみ、この評価をした。
 10cm角の無アルカリガラス基板(ガラス厚み0.5mm)上に、熱硬化性着色組成物をキュア後の膜厚が10μmとなるようにスピンコーターにて塗布し、250℃で60分キュアした。なお、キュア後の硬化膜にクラックが発生した場合は、評価を行わないこととした。分光光度計(UV-2450;株式会社島津製作所製)を用いて、ガラス基板側からキュア後の硬化膜の反射色度を測定し、CIE1976(L*,a*,b*)色空間にて表示した場合のb*の値により黄色味を評価した。b*が1.5以下であれば「○」、b*が1.5~2であれば「△」、b*が2.1以上であれば「×」と判定した。なお、光源としてはC光源を用いた。
 (合成例1) シロキサン樹脂溶液(b-1)の合成
 122.18gのジフェニルジメトキシシラン(DiPh-DiMS、0.5モル)、74.10gのビニルトリメトキシシラン(Vinyl-TMS、0.5モル)及び37.37gのアセト酢酸エチルを、500mLの三ツ口フラスコに仕込んだ。溶液を室温で撹拌しながら、54.0gの水に1.0gのリン酸を溶かしたリン酸水溶液を30分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分撹拌した後、オイルバスを80℃に設定して30分間加熱し、さらにオイルバスを120℃にまで昇温した。昇温開始3時間後に、反応を終了した。このとき、溶液の内温はオイルバスの設定より5℃程度低い温度まで上昇した。反応中に生成するメタノールや消費されなかった水は、蒸留により取り除いた。得られたポリシロキサンのアセト酢酸エチル溶液が、ポリマー濃度が65質量%となるようにアセト酢酸エチルを加えて、シロキサン樹脂溶液(b-1)を得た。
 (合成例2) シロキサン樹脂溶液(b-2)の合成
 最初に三ツ口フラスコに仕込むものを、122.18gのジフェニルジメトキシシラン(0.5モル)、44.46gのビニルトリメトキシシラン(0.3モル)、39.66gのフェニルトリメトキシシラン(Ph-TMS、0.2モル)及び42.08gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-2)を得た。
 (合成例3) シロキサン樹脂溶液(b-3)の合成
 最初に三ツ口フラスコに仕込むものを、122.18gのジフェニルジメトキシシラン(0.5モル)、44.46gのビニルトリメトキシシラン(0.3モル)、27.24gのメチルトリメトキシシラン(Me-TMS、0.2モル)及び36.24gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-3)を得た。
 (合成例4) シロキサン樹脂溶液(b-4)の合成
 最初に三ツ口フラスコに仕込むものを、122.18gのジフェニルジメトキシシラン(0.5モル)、44.46gのビニルトリメトキシシラン(0.3モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(Epocy-TMS、0.05モル)、29.75gのフェニルトリメトキシシラン(0.15モル)及び43.21gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-4)を得た。
 (合成例5) シロキサン樹脂溶液(b-5)の合成
 最初に三ツ口フラスコに仕込むものを、122.18gのジフェニルジメトキシシラン(0.5モル)、44.46gのビニルトリメトキシシラン(0.3モル)、11.82gの3-グリシドキシシプロピルトリメトキシシラン(Gly-TMS、0.05モル)、29.75gのフェニルトリメトキシシラン(0.15モル)及び42.98gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-5)を得た。
 (合成例6) シロキサン樹脂溶液(b-6)の合成
 最初に三ツ口フラスコに仕込むものを、73.31gのジフェニルジメトキシシラン(0.3モル)、44.46gのビニルトリメトキシシラン(0.3モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、69.41gのフェニルトリメトキシシラン(0.35モル)及び38.88gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-6)を得た。
 (合成例7) シロキサン樹脂溶液(b-7)の合成
 最初に三ツ口フラスコに仕込むものを、61.09gのジフェニルジメトキシシラン(0.25モル)、44.46gのビニルトリメトキシシラン(0.3モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、6.01gのジメチルジメトキシシラン(DiMe-DiMeS、0.05モル)、69.41gのフェニルトリメトキシシラン(0.35モル)及び35.96gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-7)を得た。
 (合成例8) シロキサン樹脂溶液(b-8)の合成
 最初に三ツ口フラスコに仕込むものを、24.44gのジフェニルジメトキシシラン(0.1モル)、44.46gのビニルトリメトキシシラン(0.3モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、109.07gのフェニルトリメトキシシラン(0.55モル)及び34.54gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-8)を得た。
 (合成例9) シロキサン樹脂溶液(b-9)の合成
 最初に三ツ口フラスコに仕込むものを、12.22gのジフェニルジメトキシシラン(0.05モル)、44.46gのビニルトリメトキシシラン(0.3モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、118.98gのフェニルトリメトキシシラン(0.60モル)及び33.46gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-9)を得た。
 (合成例10) シロキサン樹脂溶液(b-10)の合成
 最初に三ツ口フラスコに仕込むものを、73.31gのジフェニルジメトキシシラン(0.3モル)、44.46gビのニルトリメトキシシラン(0.3モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、59.49gのフェニルトリメトキシシラン(0.3モル)、10.41gのテトラエトキシシラン(Tetra-ES、0.05モル)及び39.11gアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-10)を得た。
 (合成例11) シロキサン樹脂溶液(b-11)の合成
 最初に三ツ口フラスコに仕込むものを、73.31gのジフェニルジメトキシシラン(0.3モル)、22.23gのビニルトリメトキシシラン(0.15モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、99.15gフェニルトリメトキシシラン(0.5モル)及び42.42gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-11)を得た。
 (合成例12) シロキサン樹脂溶液(b-12)の合成
 最初に三ツ口フラスコに仕込むものを、73.31gのジフェニルジメトキシシラン(0.3モル)、22.23gのビニルトリメトキシシラン(0.15モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、69.41gのフェニルトリメトキシシラン(0.35モル)、35.15g3-アクリロキシプロピルトリメトキシシラン(Acryl-TMS、0.15モル)及び44.96gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-12)を得た。
 (合成例13) シロキサン樹脂溶液(b-13)の合成
 最初に三ツ口フラスコに仕込むものを、73.31gのジフェニルジメトキシシラン(0.3モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、128.90gのフェニルトリメトキシシラン(0.65モル)及び45.95gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-13)を得た。
 (合成例14) シロキサン樹脂溶液(b-14)の合成
 最初に三ツ口フラスコに仕込むものを、73.31gのジフェニルジメトキシシラン(0.3モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、69.41gのフェニルトリメトキシシラン(0.35モル)、70.30gの3-アクリロキシプロピルトリメトキシシラン(0.3モル)及び51.04gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-14)を得た。
 (合成例15) シロキサン樹脂溶液(b-15)の合成
 最初に三ツ口フラスコに仕込むものを、44.46gのビニルトリメトキシシラン(0.3モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、128.90gのフェニルトリメトキシシラン(0.65モル)及び45.95gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-15)を得た。
 (合成例16) シロキサン樹脂溶液(b-16)の合成
 最初に三ツ口フラスコに仕込むものを、44.46gのビニルトリメトキシシラン(0.3モル)、12.32gの3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン(0.05モル)、36.07gのジメチルジメトキシシラン(0.3モル)、69.41gのフェニルトリメトキシシラン(0.35モル)及び21.35gのアセト酢酸エチルとした以外は、合成例1と同様にしてシロキサン樹脂溶液(b-16)を得た。
 (実施例1)
 100mLのデスカップに、17.33gの白色顔料すなわち酸化チタン顔料(JR-600A;テイカ(株)製)及び8.89gのシロキサン樹脂溶液(b-1)を仕込んだ。この混合液を撹拌用モーター(TORNADO SM-102;アズワン(株)製)を使用し、200rpmにて2分間撹拌し、さらに500rpmにて2分間撹拌した。そこに23.69gのシロキサン樹脂溶液(b-1)を混合し、同様に500rpmにて30秒間撹拌し、熱硬化性白色組成物(W-1)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例2)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-2)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-2)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例3)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-3)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-3)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例4)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-4)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-4)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例5)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-5)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-5)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例6)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-6)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-6)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例7)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-7)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-7)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例8)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-8)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-8)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例9)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-9)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-9)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例10
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-10)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-10)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例11)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-11)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-11)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例12)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-12)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-12)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (実施例13)
 酸化チタン顔料の代わりに、緑色顔料(Colortherm Green GN;Lanxess社製)を使用する以外は、実施例4と同様にして熱硬化性緑色組成物(G-1)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性を評価した。顔料が白色顔料ではないので、反射色の黄色味の評価は実施しなかった。
 (実施例14)
 酸化チタン顔料の代わりに、赤色顔料(Bayferrox 140M;Lanxess社製)を使用する以外は、実施例4と同様にして熱硬化性赤色組成物(R-1)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性を評価した。顔料が白色顔料ではないので、反射色の黄色味の評価は実施しなかった。
 (比較例1)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-13)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-13)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。なお耐薬品性評価において、密着性は0Bであり全面的に剥がれたため、表面あれの評価は実施しなかった。
 (比較例2)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-14)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-14)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 (比較例3)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-15)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-15)を得た。この組成物を用いて、クラック耐性と表面ハジキを評価した。その結果、10μmにおいてもクラックが発生したため、耐薬品性及び反射色の黄色味の評価は実施しなかった。
 (比較例4)
 シロキサン樹脂溶液(b-1)の代わりに、シロキサン樹脂溶液(b-16)を使用する以外は、実施例1と同様にして熱硬化性白色組成物(W-16)を得た。この組成物を用いて、クラック耐性、表面ハジキ、耐薬品性及び反射色の黄色味を評価した。
 実施例及び比較例で用いたシロキサン樹脂溶液(b-1)~(b-16)を合成する際のアルコキシシラン化合物の組成を、表1に示す。また、実施例及び比較例の評価結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表2の評価結果から、本発明の熱硬化性着色組成物によれば、耐熱性及び耐薬品性に優れた硬化膜を形成することが可能であり、かつ、一般的な感光性透明材料等を塗布しても、ハジキの問題が生じることのない硬化膜を形成することが可能となることは明らかである。
 また、本発明の熱硬化性着色組成物を用いてタッチパネル基板を作成し、導通性を評価した。
 (実施例15)
 (1)白色遮光パターンの作製
 10cm×10cm、厚み0.7mmの強化ガラス上に、実施例6で得られた熱硬化性白色組成物(W-6)をキュア後の膜厚が15μmとなるように、小型スクリーン印刷機としてマイクロテック(株)製TM-750型を用いて、スクリーン印刷を行った。その後、ヤマト(株)製“イナートオーブン”DN43HI を用いて、空気中250℃で60分間キュアして、白色遮光パターン2を有するガラス基板1を作製した(図1)。
 (2)パターン加工されたITOの作製
 上記(1)で得られた白色遮光パターンを有するガラス基板にスパッタリング装置HSR-521A((株)島津製作所製)を用いて、RFパワー1.4kW、真空度6.65×10-1Paで12.5分間スパッタリングすることにより、膜厚が150nmのITOを成膜し、ポジ型フォトレジスト(東京応化工業(株)製「OFPR-800」)を塗布し、80℃で20分間プリベークして膜厚1.1μmのレジスト膜を得た。PLAを用いて、得られた膜に超高圧水銀灯でマスクを介してパターン露光した後、自動現像装置を用いて2.38質量%TMAH水溶液で90秒間シャワー現像し、次いで水で30秒間リンスした。その後、3.5質量%シュウ酸水溶液に150秒浸すことでITOをエッチングし、50℃の剥離液(ナガセケムテックス(株)製「N-321」)で120秒処理することでフォトレジストを除去し、230℃で30分アニール処理を加え、膜厚150nmのパターン加工されたITO3を作製した(図2)。
 (3)透明絶縁膜の作製
 上記(2)で得られたパターン加工されたITO及び白色遮光パターンを有するガラス基板上に、表面ハジキの評価用に作成したアクリル樹脂溶液を用いて、キュア後膜厚が2μmとなるようにスピンコートし、基板をホットプレートを用いて100℃で3分間プリベークした。次に、PLAを用いて超高圧水銀灯を光源とし、タッチパネル用の遮光パターンを有したマスクを介して、露光量200mJ(i線)、マスクギャップ150μmで露光した。その後、自動現像装置を用いて、0.40質量%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。最後に基板をオーブンを用いて空気中230℃で30分間キュアして、透明絶縁膜4を作製した(図3)。
 (4)MAM配線の作製
 上記(3)で得られたガラス基板上に、ターゲットとしてモリブデン及びアルミニウムを用いて、エッチング液としてHPO/HNO/CHCOOH/HO=65/3/5/27(質量比)混合溶液を用いた以外は上記(1)と同様にして、膜厚250nmのMAM配線5を作製し、タッチパネル基板6を完成させた(図4)。図4のタッチパネル基板のA-A’断面図を図5に示す。
 得られたタッチパネル基板について、導通試験を実施したところ、問題なく導通が可能であり、熱硬化性白色組成物(W-6)はタッチパネル作成に問題ないことがわかった。
 (比較例5)
 熱硬化性白色組成物(W-6)の代わりに、熱硬化性白色組成物(W-16)を使用する以外は、実施例15と同様にしてタッチパネルを作成し、導通試験を実施した。その結果、導通不良箇所が確認されたことから、熱硬化性白色組成物(W-16)はタッチパネル作成に適していないことがわかった。
1:ガラス基板
2:白色遮光パターン
3:パターン加工されたITO
4:透明絶縁膜
5:MAM配線
6:タッチパネル基板
 本発明の熱硬化性樹脂組成物を硬化させてなる硬化膜は、タッチパネルの着色遮光性硬化膜パターン等として好適に用いられる。

Claims (7)

  1.  (A)無機顔料又はフタロシアニン顔料、
     (B)下記一般式(1)で示される化合物及び下記一般式(2)で示される化合物を含むアルコキシシラン化合物を共加水分解物縮合して得られるポリシロキサン並びに
     (C)有機溶媒を含有する熱硬化性着色組成物。
    Figure JPOXMLDOC01-appb-C000001
    (Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。)
  2.  前記アルコキシシラン化合物は下記一般式(3)で示される化合物をさらに含む請求項1記載の熱硬化性着色組成物。
    Figure JPOXMLDOC01-appb-C000003
    (Rはエポキシ基を有する炭素数1~10の1価の有機基を表し、Rはそれぞれ独立して炭素数1~4のアルキル基を表す。)
  3.  前記アルコキシシラン化合物は下記一般式(4)で示される化合物の割合が5モル%未満である請求項1又は2記載の熱硬化性着色組成物。
    Figure JPOXMLDOC01-appb-C000004
    (Rはそれぞれ独立して、炭素数1~4のアルキル基を表す。)
  4.  前記無機顔料が酸化チタンを主成分とする白色顔料である請求項1~3のいずれかに記載の熱硬化性着色組成物。
  5.  請求項1~4のいずれかに記載の熱硬化性着色組成物を硬化させてなる硬化膜。
  6.  請求項5記載の硬化膜を具備するタッチパネル。
  7.  請求項1~4のいずれかに記載の熱硬化性着色組成物を用いて着色遮光性硬化膜パターンを形成する工程を備えるタッチパネルの製造方法。
PCT/JP2013/076255 2012-12-11 2013-09-27 熱硬化性着色組成物及び硬化膜、その硬化膜を具備したタッチパネル、その熱硬化性着色組成物を用いるタッチパネルの製造方法 WO2014091811A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380064075.XA CN104822771B (zh) 2012-12-11 2013-09-27 热固化性着色组合物和固化膜、具备该固化膜的触摸面板、使用该热固化性着色组合物的触摸面板的制造方法
KR1020157006967A KR101938603B1 (ko) 2012-12-11 2013-09-27 열경화성 착색 조성물 및 경화막, 그 경화막을 구비한 터치 패널, 그 열경화성 착색 조성물을 사용하는 터치 패널의 제조 방법
JP2013547414A JP5505569B1 (ja) 2012-12-11 2013-09-27 熱硬化性着色組成物及び硬化膜、その硬化膜を具備したタッチパネル、その熱硬化性着色組成物を用いるタッチパネルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-269968 2012-12-11
JP2012269968 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014091811A1 true WO2014091811A1 (ja) 2014-06-19

Family

ID=50934110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076255 WO2014091811A1 (ja) 2012-12-11 2013-09-27 熱硬化性着色組成物及び硬化膜、その硬化膜を具備したタッチパネル、その熱硬化性着色組成物を用いるタッチパネルの製造方法

Country Status (5)

Country Link
JP (1) JP5505569B1 (ja)
KR (1) KR101938603B1 (ja)
CN (1) CN104822771B (ja)
TW (1) TWI598408B (ja)
WO (1) WO2014091811A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6575429B2 (ja) * 2016-05-02 2019-09-18 横浜ゴム株式会社 密着付与剤及び硬化性樹脂組成物
CN115356873A (zh) * 2018-07-05 2022-11-18 东丽株式会社 树脂组合物、遮光膜、遮光膜的制造方法及带隔壁的基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130706A (ja) * 1997-07-11 1999-02-02 Fuji Photo Film Co Ltd 反射防止膜およびそれを配置した表示装置
JP2002512293A (ja) * 1998-04-21 2002-04-23 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク 固体の溶融可能な熱硬化性素材、その製造及び使用
JP2008107529A (ja) * 2006-10-25 2008-05-08 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2011208009A (ja) * 2010-03-30 2011-10-20 Toray Ind Inc 絶縁性樹脂組成物、それから形成された硬化膜、および硬化膜を有するタッチパネル用素子
WO2011155382A1 (ja) * 2010-06-09 2011-12-15 東レ株式会社 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
JP2012158743A (ja) * 2011-01-14 2012-08-23 Toray Ind Inc 非感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有するタッチパネル用素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012638A (ja) * 2000-06-30 2002-01-15 Dow Corning Toray Silicone Co Ltd 高エネルギー線硬化性組成物および樹脂成形体
EP1905795A4 (en) * 2005-07-19 2010-08-11 Dow Corning Toray Co Ltd POLYSILOXAN AND MANUFACTURING METHOD THEREFOR

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130706A (ja) * 1997-07-11 1999-02-02 Fuji Photo Film Co Ltd 反射防止膜およびそれを配置した表示装置
JP2002512293A (ja) * 1998-04-21 2002-04-23 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク 固体の溶融可能な熱硬化性素材、その製造及び使用
JP2008107529A (ja) * 2006-10-25 2008-05-08 Toray Ind Inc 感光性シロキサン組成物、それから形成された硬化膜、および硬化膜を有する素子
JP2011208009A (ja) * 2010-03-30 2011-10-20 Toray Ind Inc 絶縁性樹脂組成物、それから形成された硬化膜、および硬化膜を有するタッチパネル用素子
WO2011155382A1 (ja) * 2010-06-09 2011-12-15 東レ株式会社 感光性シロキサン組成物、それから形成された硬化膜および硬化膜を有する素子
JP2012158743A (ja) * 2011-01-14 2012-08-23 Toray Ind Inc 非感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有するタッチパネル用素子

Also Published As

Publication number Publication date
JP5505569B1 (ja) 2014-05-28
TW201422720A (zh) 2014-06-16
CN104822771A (zh) 2015-08-05
JPWO2014091811A1 (ja) 2017-01-05
TWI598408B (zh) 2017-09-11
CN104822771B (zh) 2017-03-08
KR20150094586A (ko) 2015-08-19
KR101938603B1 (ko) 2019-01-15

Similar Documents

Publication Publication Date Title
JP6201984B2 (ja) ネガ型感光性着色組成物、硬化膜、タッチパネル用遮光パターン及びタッチパネルの製造方法
JP5459315B2 (ja) シランカップリング剤、ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
KR20120102090A (ko) 포지티브형 감광성 수지 조성물, 그것으로부터 형성된 경화막, 및 경화막을 갖는 소자
TW201404781A (zh) 矽烷偶合劑、感光性樹脂組成物、硬化膜及觸控面板構件
TWI848910B (zh) 負型感光性樹脂組成物及硬化膜
TW201446723A (zh) 感光性樹脂組成物、保護膜或絕緣膜、觸控面板及其製造方法
JP6327366B2 (ja) ポリメタロキサン、その製造方法、その組成物、硬化膜およびその製造方法ならびにそれを備えた部材および電子部品
JP7115054B2 (ja) ガラス強化基板
TWI785051B (zh) 透明樹脂組成物、透明被膜及被覆透明樹脂之玻璃基板
JP5505569B1 (ja) 熱硬化性着色組成物及び硬化膜、その硬化膜を具備したタッチパネル、その熱硬化性着色組成物を用いるタッチパネルの製造方法
JP2018120069A (ja) ネガ型感光性樹脂組成物、硬化膜およびタッチパネル部材
JP2012158743A (ja) 非感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有するタッチパネル用素子
CN113474730B (zh) 负型感光性树脂组合物、使用它的固化膜的制造方法及触控面板
KR20240072125A (ko) 감광성 수지 조성물, 마이크로 렌즈

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013547414

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006967

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863197

Country of ref document: EP

Kind code of ref document: A1