WO2014091770A1 - 断続装置及びこの断続装置を用いた動力伝達装置 - Google Patents

断続装置及びこの断続装置を用いた動力伝達装置 Download PDF

Info

Publication number
WO2014091770A1
WO2014091770A1 PCT/JP2013/052439 JP2013052439W WO2014091770A1 WO 2014091770 A1 WO2014091770 A1 WO 2014091770A1 JP 2013052439 W JP2013052439 W JP 2013052439W WO 2014091770 A1 WO2014091770 A1 WO 2014091770A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
torque
plate
interrupting device
rotating member
Prior art date
Application number
PCT/JP2013/052439
Other languages
English (en)
French (fr)
Inventor
功 廣田
高橋 正樹
寿明 小松
篤史 田村
Original Assignee
Gkn ドライブライン ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gkn ドライブライン ジャパン株式会社 filed Critical Gkn ドライブライン ジャパン株式会社
Publication of WO2014091770A1 publication Critical patent/WO2014091770A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/344Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
    • B60K17/346Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear the transfer gear being a differential gear
    • B60K17/3462Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear the transfer gear being a differential gear with means for changing distribution of torque between front and rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • B60K17/3515Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with a clutch adjacent to traction wheel, e.g. automatic wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch

Definitions

  • the present invention relates to an intermittent device applied to a vehicle and a power transmission device using the intermittent device.
  • a vehicle such as a passenger car or a truck is provided with one or more interrupting devices for interrupting torque, and an example thereof is an interrupting device for switching a drive mode between four-wheel drive and two-wheel drive.
  • an interrupting device for switching a drive mode between four-wheel drive and two-wheel drive.
  • Friction clutches such as multi-plate clutches can be used for such applications because torque transmission can be adjusted by adjusting the pressing force.
  • the multi-plate clutch is excellent in torque transmission adjustment capability, even when no pressing force is applied, the lubricating oil interposed between the clutch plates transmits a part of the torque, and so-called drag torque is generated. Drag torque is a factor of energy loss.
  • the present invention has been made in view of providing an intermittent device that contributes to improving the fuel efficiency of a vehicle by reducing energy loss due to drag torque.
  • the interrupting device for interrupting torque between the external first rotating body and the second rotating body is drivably coupled to the first rotating body.
  • a first rotating member configured to receive and rotate the torque and can be drivingly coupled to the second rotating body and can be rotated independently of the first rotating member.
  • a second rotating member a first clutch plate drivingly connected to the first rotating member, and frictionally connectable to the first clutch plate;
  • a second clutch plate configured to conduct the torque to and from the clutch plate; and a drive clutch coupled to the second clutch plate, wherein the first rotating member and A connecting member rotatable independently of the second rotating member, and movable in the axial direction A movable member coupled to the second rotating member to rotate integrally therewith to form a clutch with the coupling member, and configured to conduct the torque with the coupling member when the clutch is coupled. And comprising.
  • FIG. 1 is a schematic diagram conceptually showing a power system of a vehicle to which an interrupting device according to an embodiment of the present invention is applied.
  • FIG. 2 is a cross-sectional view of a power transmission device including an interrupting device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the interrupting device.
  • FIG. 4 is a graph for explaining the moving distance of the movable member according to the axial movement of the pressing device in the intermittent device.
  • FIG. 5 is a cross-sectional view illustrating a cam mechanism for driving the pressing member in the axial direction.
  • FIG. 6 is a cross-sectional view of a power transmission device according to another application mode of the interrupting device.
  • FIG. 7 is a schematic diagram conceptually showing a power system of a vehicle according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a power transmission device including an interrupting device according to the embodiment illustrated in FIG.
  • the interrupting device 1 can take various forms in application to a power system of a vehicle.
  • the interrupting device 1 is incorporated in a power transmission device, interrupts torque transmission between a front wheel and a rear wheel, It can also be used for adjusting torque distribution.
  • FIG. 1 shows an example, and the interrupting device 1 is used in combination with a rear differential that distributes torque to the axles 425 and 427 of the rear wheels 429 and 431.
  • the power system of such a vehicle generally includes a driving power source 405, a transmission 407 that transmits the driving force, a front differential 409 that distributes torque to the axles 411 and 413 of the front wheels 415 and 417, and a driving force between the front and rear axles. And a rear differential including the intermittent device 1.
  • the drive source 405 includes one or both of the engine 401 and the electric motor 403, and supplies torque to the vehicle.
  • the front differential 409 includes a differential case 439 that is drivingly coupled to the transmission 407, and distributes torque to the pair of side gears 435 and 437. Since the side gears 435 and 437 are coupled to the axles 411 and 413, respectively, the distributed torque drives the front wheels 415 and 417. Further, the differential case 439 is coupled to the hollow shaft 441, and a part of the torque is transmitted to the transfer 421 through this. The transfer 421 transmits this torque to the propeller shaft 423 via the direction change gear set 443.
  • the rear differential includes a gear set 225 through which the differential case 213 receives torque from the propeller shaft 423.
  • the rear differential includes a pinion 207 and a pair of side gears 211 and distributes torque to rear wheels 429 and 431 via axles 425 and 427.
  • the interrupting device 1 is coupled to one side gear 211 of the rear differential, and when the interrupting device 1 does not transmit torque, the side gear 211 idles, so the rear differential cannot transmit torque to the axles 425 and 427.
  • the vehicle travels in a two-wheel drive mode driven only by the front wheels 415 and 417.
  • the interrupting device 1 transmits torque
  • the rear differential can transmit torque to the axles 425 and 427, so the vehicle travels in the four-wheel drive mode.
  • a multi-plate clutch is employed in the interrupting device 1 as described later, the torque distribution to the front wheels and the rear wheels can be adjusted by adjusting the pressing force applied to the multi-plate clutch.
  • the multi-plate clutch other friction clutches such as a cone clutch can be employed.
  • the power transmission device 201 includes a rear differential and the intermittent device 1 combined therewith. The whole is accommodated in the casing 203.
  • the interrupting device 1 is coupled to the right side gear is shown, but of course, it may be coupled to the left side gear.
  • the rear differential includes a differential case 205 that is rotatably accommodated in the casing 203 and receives torque, and a distribution mechanism 213 that is accommodated in the differential case 205 and differentially distributes torque to the left and right axles.
  • the differential case 205 rotates around the axis by the received torque with the one-dot chain line running in the width direction of the figure as an axis.
  • the distribution mechanism 213 includes a pair of side gears 209 and 211 that output torque differentially, the left side gear 209 can be coupled to the left axle, and the right side gear 211 can be coupled to the intermittent device 1.
  • the interrupting device 1 is used for the purpose of interrupting torque between the right side gear (first rotating body) 211 and the right axle (second rotating body).
  • the interrupting device 1 generally includes a first rotating member 3 to which torque is input, a second rotating member 5 to which torque is output, and a multi-plate clutch 7 that functions to interrupt torque or adjust torque transmission therebetween. And comprising.
  • the first rotating member 3 is drivingly coupled to the right side gear 211 through a shaft portion 21 that is fitted into the differential case 205 and extends.
  • the second rotating member 5 is drivingly coupled to the right axle.
  • the multi-plate clutch 7 includes a plurality of outer clutch plates (first clutch plates) 7a and a plurality of inner clutch plates (second clutch plates) 7b, which are alternately arranged. When a pressing force is applied to the multi-plate clutch 7, the clutch plates 7a and 7b are frictionally connected to transmit torque from the outer clutch plate 7a to the inner clutch plate 7b.
  • the outer clutch plate 7a is drivingly connected to the first rotating member 3, but the inner clutch plate 7b is not directly connected to the second rotating member 5, but instead connected to the connecting member 9. This can rotate independently of the first rotating member 3 and the second rotating member 5.
  • the interrupting device 1 includes a movable member 11 that constitutes a clutch 13 with the connecting member 9, and the clutch 13 is engaged in conjunction with the connection of the clutch plates 7 a and 7 b, whereby the first rotating member 3 and Torque transmission with the second rotating member 5 is established. That is, when no pressing force is applied to the multi-plate clutch 7, the clutch 13 is not engaged and the connecting member 9 can freely rotate, so that no drag torque is generated between the clutch plates 7a and 7b. , Energy loss is prevented.
  • the details of the power transmission device 201 will be described in more detail below.
  • the inside of the casing 203 is roughly divided into two spaces. One of them mainly accommodates the rear differential, and the other houses the intermittent device 1. The two spaces communicate with each other for the circulation of the lubricating oil, or may be separated.
  • the entire casing 203 is fixed to a stationary member (not shown) such as a body frame.
  • the input shaft 227 is inserted into the casing 203 from above in the figure. Its end has a drive pinion 223 and its opposite end has a spline 233. A connecting member 235 for connecting to the propeller shaft is coupled to the spline 233, and these are fixed by a nut 237.
  • the fixing mode is not limited to the nut, and any other mode may be used.
  • the input shaft 227 is rotatably supported by the casing 203, and appropriate bearings 229 and 231 such as roller bearings may be interposed for the support.
  • the input shaft 227 rotates around the axis by the torque transmitted by the propeller shaft about the one-dot chain line running in the vertical direction of the figure.
  • a seal member 239 is provided around the input shaft 227. Further, a dust cover 241 that slides on the lip portion of the seal member 239 may be added to prevent external dust from entering.
  • the differential case 205 is rotatably supported by the casing 203 at boss portions formed on both sides in the axial direction. For example, bearings 217 and 219 may be interposed for the support.
  • the differential case 205 is provided with a flange portion around an axis, to which the ring gear 221 is fixed by a bolt or other means.
  • the ring gear 221 is engaged with the drive pinion 223 to form a gear set 225, whereby the torque transmitted by the propeller shaft rotates the differential case 205 around the axis.
  • the rear differential includes a distribution mechanism 213 accommodated in the differential case 205.
  • Various differential gear mechanisms such as a bevel gear type and a hypoid type can be applied to the distribution mechanism 213.
  • the distribution mechanism 213 is a bevel gear type, and includes a plurality of pinions 207 rotatably supported by the differential case 205 and a pair of side gears 209 and 211 meshed with these pinions 207.
  • Each pinion 207 can rotate around the pinion shaft 215 fitted to the differential case 205, and further rotates together with the differential case 205 when it rotates.
  • the side gears 209 and 211 are provided with connecting portions 243 and 27 having splines, respectively. Therefore, the left side gear 209 can be coupled to the left axle, and the right side gear 211 can be coupled to the intermittent device 1.
  • torque is transmitted to the side gears 209 and 211, and relative rotation is possible between the side gears 209 and 211, so that differential torque distribution is possible. .
  • a spherical washer may be interposed between the pinion 207 and the differential case 205, respectively. Further, thrust washers may be interposed between the side gears 209 and 211 and the differential case 205 in order to bear the meshing reaction force received by the side gears 209 and 211.
  • the casing 203 is opened to allow access to the left side gear 209 from the outside, and the left axle is inserted through the opening and coupled to the left side gear 209. Further, a seal member 245 may be provided in this opening to prevent leakage of the lubricating oil.
  • the intermittent device 1 includes a first rotating member 3, a second rotating member 5, a multi-plate clutch 7, a first rotating member, and a second rotating member. And a movable member 11 that constitutes the clutch 13 in combination with the coupling member 9.
  • the first rotating member 3 includes a shaft portion 21 extended to fit in the differential case 205, and is connected to the right side gear 211 by driving by providing a spline on the outer periphery thereof. Further, the first rotating member 3 extends radially outward in a flange shape, and a substantially cylindrical clutch drum portion 23 extends in the axial direction from an outer peripheral portion thereof.
  • the clutch drum portion 23 includes an engagement portion 25 having a spline on the inner periphery thereof, and is coupled to a key groove of an outer clutch plate 7a described later.
  • the first rotating member 3 is used exclusively for inputting torque in the present embodiment, but can also be used for outputting.
  • the second rotating member 5 can have a hollow cylindrical shape, for example, and has a spline 37 on the inner periphery thereof and is drivingly coupled to the right axle.
  • a partition wall 35 may be provided in a hollow portion in order to block the inside from the outside.
  • the second rotating member 5 is supported by the first rotating member 3 via a bearing 29 at one end and is supported by the casing 203 via a bearing 31 in the vicinity of the other end. And can be rotated.
  • a seal member 33 is preferably interposed between the casing 203 and the second rotating member 5.
  • the second rotating member 5 is used exclusively for outputting torque in the present embodiment, but can also be used for inputting.
  • the multi-plate clutch 7 is interposed between the clutch drum portion 23 and the second rotating member 5.
  • the multi-plate clutch 7 includes a plurality of outer clutch plates 7a and a plurality of inner clutch plates 7b, which are alternately arranged.
  • the outer clutch plate 7 a is drivingly coupled to the first rotating member 3 by engaging with the engaging portion 25 of the clutch drum portion 23.
  • the inner clutch plate 7 b is coupled to the connecting member 9.
  • a pressing portion 53 that is movable in the axial direction is provided, and a pressure receiving plate 47 is provided in combination with the connecting member 9, and the multi-plate clutch 7 is frictionally connected by sandwiching the clutch plates 7a and 7b.
  • a first urging member 57 that urges the pressing portion 53 in a direction to release the connection of the multi-plate clutch 7 is provided.
  • the first urging member 57 is a leaf spring, for example, and is interposed between the multi-plate clutch 7 and the pressing portion 53, but may have other configurations.
  • the connecting member 9 is a substantially cylindrical member that is rotatably fitted around the second rotating member 5. In order to allow rotation, for example, a sliding bush 41 may be interposed between them.
  • Engaging portions 39 having splines are formed on the outer periphery of the connecting member 9, and the corresponding key grooves of the inner clutch plate 7 b are engaged with the engaging portions 39, so that they are drivingly coupled to each other.
  • the connecting member 9 is not directly coupled to the first rotating member 3 and the second rotating member 5. Therefore, when the multi-plate clutch 7 and the clutch 13 are not connected, the first rotating member 3 is not connected. And the second rotating member 5 can be rotated independently of each other.
  • the regulating member 43 is fixed to the second rotating member 5 so as to regulate the movement of the connecting member 9 in the axial direction.
  • a thrust bearing 45 is interposed between the regulating member 43 and the connecting member 9.
  • the connecting member 9 is provided with a clutch tooth 15 at an end facing the movable member 11, and the movable member 11 is provided with a clutch tooth 17 corresponding to the clutch tooth 15.
  • the clutch 13 is a so-called dog clutch in which clutch teeth are engaged with each other, but other types, for example, a clutch having a form of a sleeve having opposed teeth in the radial direction may be applied, and a roller or a sprag is interposed. Alternatively, a 1-way or 2-way clutch may be used. Moreover, it can replace with a clutch and can also employ
  • the movable member 11 is a substantially cylindrical member fitted around the second rotating member 5 and is disposed adjacent to the connecting member 9.
  • the movable member 11 has a spline 49 on the inner periphery thereof, whereby it can be coupled to the second rotating member 5 and rotate together, thereby transmitting torque to the second rotating member 5.
  • the spline 49 runs in the axial direction, so that the movable member 11 is movable in the axial direction. As the movable member 11 moves in the axial direction toward the connecting member 9, the clutch 13 is connected.
  • a second urging member 61 that urges the movable member 11 in a direction to release the clutch 13 is provided.
  • the second urging member 61 is a leaf spring, for example, and is interposed between the connecting member 9 and the movable member 11, but may have other configurations.
  • a thrust bearing 59 is further interposed between the second urging member 61 and the movable member 11.
  • the inner clutch plate 7b is coupled to the second rotating member 5
  • the movable member 11 is coupled to the first rotating member 3 instead, so that the clutch drum portion 23 can be rotated.
  • the movable member 11 and the clutch drum portion 23 may constitute the clutch 13.
  • a pressing member 19 is provided to operate the pressing portion 53 and the movable member 11 in conjunction with each other.
  • the pressing portion 53 and the movable member 11 may be operated by individual members, but in the present embodiment, the single pressing member 19 operates them.
  • the pressing member 19 can be a flange-shaped member disposed substantially coaxially with the second rotating member 5.
  • the pressing member 19 includes a substantially disc portion facing the movable member 11 and a flange portion 51 extending from the disc portion toward the pressing portion 53.
  • a thrust bearing 63 is preferably interposed between the disc portion and the movable member 11, but a third biasing member 65 such as a leaf spring may be further interposed.
  • a thrust bearing 57 is preferably interposed between the flange portion 51 and the pressing portion 53.
  • the pressing member 19 waits at the first position approaching to the right under the force of the biasing member described above or by other means. In the first position, neither the multi-plate clutch 7 nor the clutch 13 is connected. When the pressing member 19 is driven by a driving device to be described later, the pressing member 19 moves in the axial direction to the second position where the pressing force is exerted on the pressing member 19 and the movable member 11. Both the multi-plate clutch 7 and the clutch 13 are connected in conjunction.
  • the multi-plate clutch 7 and the clutch 13 may be simultaneously connected by the pressing member 19, but the related members are preferably configured so that the clutch 13 is connected prior to the connection of the multi-plate clutch 7. . If the clutch 13 is connected in advance, the difference in the relative rotational speed between the connecting member 9 and the movable member 11 is small at the time of connection, so that the connection of the clutch 13 does not fail.
  • An example of such a configuration is that the pressing member 19, the multi-plate clutch 7 and the clutch 13 are specially dimensioned as follows.
  • the multi-plate clutch 7 and the clutch 13 hold an appropriate gap so as not to be connected.
  • the first gap to which the movable member should move to connect the clutch 13 is S1
  • the second gap to which the pressing portion 53 should move to connect the multi-plate clutch 7 is S2. If there is substantially no play between the flange portion 51 and the pressing portion 53, the distance that the pressing member 19 moves is equal to the distance that the pressing portion 53 moves. If the third urging member 65 is sufficiently rigid and its contraction can be ignored, the distance that the movable member 11 moves is equal to the distance that the pressing member 19 moves. Therefore, if the second gap S2 is wider than the first gap S1, the clutch 13 is connected prior to the connection of the multi-plate clutch 7.
  • each gap may be sized in consideration of contraction of the biasing member.
  • each urging member is a linear spring
  • the spring constant of the second urging member 61 is k 61
  • the spring constant of the third urging member 65 is k 65 .
  • distance D 53 is the distance M 19 and the pressing portion 53 which is press member 19 as described above moves to move is equal (the slope in the graph of FIG. 5 is 1).
  • both the second urging member 61 and the third urging member 65 contract due to the pressing force, and the amount of contraction is inversely proportional to the spring constant.
  • the distance D 11 that the movable member 11 moves depends on the contraction amount of the second biasing member 61.
  • the clutch 13 is connected prior to the connection of the multi-plate clutch 7. That is, if the spring constant of the urging member is associated with each gap so as to satisfy these relationships, the clutch 13 is connected prior to the connection of the multi-plate clutch 7.
  • the spring constant k 65 of the third biasing member 65 is larger than the spring constant k 61 of the second biasing member 61 (inclination k 65 / (k 61 + k 65 in the graph of FIG. 5). ) Is closer to 1), and it is advantageous that the second gap S2 is larger compared to the first gap S1.
  • each urging member is assumed to be a linear spring.
  • a non-linear spring may be used, and a characteristic that does not start to contract until any urging member receives a certain pressing force. It may be.
  • Various modifications are possible in light of the above teaching.
  • the clutch 13 is connected prior to the connection of the multi-plate clutch 7. After the clutch 13 is connected, the third urging member 65 contracts to allow the pressing portion 53 to further approach the multi-plate clutch 7. This can be pressed in contact.
  • An appropriate driving device for driving the pressing member 19 is provided.
  • a drive device may be a device that exerts an axial force such as a hydraulic cylinder, solenoid, motor / shift rod mechanism, air diaphragm, or a device that generates a rotational motion such as a motor.
  • You may combine with the cam apparatus to convert. Below, the example of the actuator using the combination of an electric motor and a cam apparatus is demonstrated.
  • the arrangement of the drive device may be laterally off-axis as shown, or may be coaxial if possible.
  • the power transmission device 201 includes an actuator 67 for driving the pressing member 19.
  • the actuator 67 includes an electric motor 69, a speed reduction mechanism 71, and a cam mechanism 73.
  • the speed reduction mechanism 71 is a device for reducing the rotation of the electric motor 69 by a gear mechanism and obtaining a large rotational force instead
  • the cam mechanism 73 is a device for converting a rotational motion into an axial motion.
  • the electric motor 69 includes a motor shaft 75 that is assembled to the outside of the casing 203 and extends so as to be inserted into the casing 203. If possible, it may be incorporated in the casing 203.
  • the electric motor 69 is connected to a controller 70 (see FIG. 1) for intermittently adjusting the applied power, and the operation of the controller 70 is controlled by the controller 70.
  • the controller 70 may be connected to the actuator 420 of the transfer 421 (see connection A in FIG. 1) to control this, so that the integrated control of the actuators 67 and 420 is possible.
  • the reduction mechanism 71 can include a plurality of reduction gear sets. In the example shown in FIG. 2, there are three sets, that is, the reduction mechanism 71 includes a first reduction gear set 77, a second reduction gear set 79, and a third reduction gear set 81.
  • the first reduction gear set 77 includes a motor shaft 75 of the electric motor 69 and a first large-diameter gear portion 83.
  • the first large-diameter gear portion 83 is provided in a first intermediate gear 87 that is rotatably supported in the casing 203 via a first intermediate shaft 85, and meshes with the motor shaft 75 of the electric motor 69.
  • the first reduction gear set 77 reduces the rotation of the electric motor 69 and transmits it to the second reduction gear set 79 via the first intermediate gear 87.
  • the second reduction gear set 79 includes a second small diameter gear portion 89 and a second large diameter gear portion 91.
  • the second small diameter gear portion 89 is provided adjacent to the first large diameter gear portion 83 in the first intermediate gear 87 and meshes with the second large diameter gear portion 91.
  • the second large-diameter gear portion 91 is provided in a second intermediate gear 95 that is rotatably supported in the casing 203 via a second intermediate shaft 93.
  • the second reduction gear set 79 further reduces the rotation from the first intermediate gear 87 and transmits it to the third reduction gear set 81 via the second intermediate gear 95.
  • the third reduction gear set 81 includes a third small diameter gear portion 97 and a third large diameter gear portion 99.
  • the third small diameter gear portion 97 is provided adjacent to the second large diameter gear portion 91 in the second intermediate gear 95, and meshes with the third large diameter gear portion 99.
  • the third large-diameter gear portion 99 is provided on the outer diameter of the moving portion 51 of the pressing member 19.
  • the third reduction gear set 81 further reduces the rotation from the second intermediate gear 95 to rotate the pressing member 19.
  • the reduction ratio is, for example, 100: 1.
  • the speed reduction mechanism 71 is a parallel gear set, but a planetary gear, a strange planetary gear mechanism, a cyclo gear, or the like may be employed instead.
  • the planetary gear and the mysterious planetary gear mechanism are advantageous for realizing a coaxial arrangement with respect to the interrupting device 1.
  • the cam mechanism 73 includes, for example, a cam ring 101, a cam ball 103, and inclined surfaces 107 and 109 formed on the back surface of the pressing member 19.
  • the cam ball 103 may be replaced with a cam protrusion fixed to or integrated with either the cam ring 101 or the pressing member 19.
  • a conversion mechanism such as a ball screw may be employed in place of the mechanism as shown.
  • the cam ring 101 is a member attached to the casing 203, and is prevented from rotating by a locking structure 105 for preventing rotation.
  • the cam ring 101 may be positioned by being partially sandwiched between the bearing 31 and the casing 203, and one end thereof may be in contact with the casing 203 in the axial direction so as to receive a thrust reaction force.
  • An inclined surface may be formed on the surface of the cam ring 101 facing the pressing member 19 so as to correspond to the inclined surfaces 107 and 109.
  • the cam ball 103 is interposed between the cam ring 101 and the pressing member 19. As described above, when the pressing member 19 is rotated around the axis by the electric motor 69 and the speed reduction mechanism 71, the cam ball 103 rolls on the inclined surfaces 107 and 109 and pushes the pressing member 19 in the axial direction. Is converted to For convenience of rolling, the cam ball 103 is preferably spherical, but may be conical or other shapes.
  • the inclined surfaces 107 and 109 are preferably composed of a relatively steep first inclined surface 107 and a very gentle second inclined surface 109.
  • the first inclined surface 107 is a surface suitable for coupling the clutch 13, and a relatively small force is sufficient for coupling the clutch 13, so that the first inclined surface 107 is a relatively steep inclined surface. Further, the level difference can be not less than E1 and less than E2.
  • the second inclined surface 109 is a surface suitable for connecting the multi-plate clutch 7, and a relatively large force is required for connecting the multi-plate clutch 7, and in order to obtain controllability of the force, It is a gentle slope.
  • the height of the end of the second inclined surface 109 is E2 or more as measured from the bottom surface of the first inclined surface 107.
  • the configuration of the cam mechanism 73 as described above makes it possible to connect the multi-plate clutch 7 with a sufficient pressing force while allowing the clutch 13 to be quickly connected, and to control the pressing force to the multi-plate clutch 7. It is advantageous to ensure.
  • the transfer 421 can include an interrupting portion 419 in order to interrupt the transmission of torque to the propeller shaft 423.
  • the interrupting unit 419 includes a dog clutch or other type of clutch driven by the actuator 420 and interrupts transmission of torque. If necessary, a synchronizer ring may be interposed.
  • a motor / generator 433 may be further provided. The motor / generator 433 functions not only as a drive source but also as a generator. When the connection of the intermittent portion 419 is released, the torque of the drive source 405 and the motor / generator 433 is not transmitted to the propeller shaft 423.
  • the intermittent of the intermittent device 1 and the intermittent of the intermittent part 419 can be interlocked.
  • the integrated control using the connection A described above can be used.
  • the connection of the interrupting part 419 precedes the connection of the interrupting device 1, but the opposite may be possible.
  • the rotation of the rear wheel 429 only rotates the side gear 209 and the differential case 205 does not rotate. Therefore, the propeller shaft 423 is not driven by either the drive source 405 or the rear wheel.
  • the right side gear 211 cannot receive torque, so that even if the input shaft 227 rotates, distribution is performed.
  • the idling of the mechanism 213 occurs, and the vehicle travels in a two-wheel drive mode in which only the front wheels are driven.
  • the connecting member 9 can freely rotate and no drag torque is generated between the clutch plates 7a and 7b. Therefore, energy loss is prevented and fuel consumption is improved.
  • the torque transmission is also interrupted at the intermittent portion 419.
  • the propeller shaft 423 is disconnected from the drive system and energy is not consumed for its rotation, which is further advantageous in improving fuel consumption.
  • the clutch 13 When the actuator 67 operates, the clutch 13 is connected in advance, and then the multi-plate clutch 7 is connected. By preceding the connection of the multi-plate clutch 7, the clutch 13 can be connected under slight relative rotation, and the connection of the clutch 13 does not fail. Such an operation does not require a separate actuator, and both the multi-plate clutch 7 and the clutch 13 are driven by a single actuator and a single pressing member. This is advantageous not only in terms of cost reduction and simplification of the apparatus, but also in that the risk of failure is reduced.
  • both the side gears 209 and 211 can bear the torque, so the distribution mechanism 213 distributes the torque to the both side gears 209 and 211.
  • Torque is transmitted from the left side gear 209 to the left wheel 429 via the left axle 425 coupled thereto.
  • the torque transmitted to the right side gear 211 is transmitted to the second rotating member 5 via the multi-plate clutch 7 and the clutch 13, and the torque is transmitted to the right wheel 431 via the right axle 427 coupled thereto. Communicated. That is, the rear wheels are also driven, and the vehicle travels in the four-wheel drive mode.
  • the torque to be transmitted can be adjusted by adjusting the pressing force applied to the multi-plate clutch 7, the torque distribution to the front and rear wheels can be adjusted.
  • the actuator 67 has a multistage reduction mechanism and uses a cam mechanism 73 capable of multiplying the driving force, a relatively small motor 69 can be used. Therefore, the entire apparatus is small. It is. Further, the cam mechanism 73 has the relatively steep first inclined surface 107, so that the clutch 13 can be quickly connected, and since the cam mechanism 73 has the extremely gentle second inclined surface 109, the multi-plate clutch has a sufficient pressing force. 7 can be connected, and the pressing force to the multi-plate clutch 7 can be adjusted.
  • the interrupting device 1 is combined with the rear differential that is drivingly coupled to the propeller shaft 423, and the first rotating member 21 is coupled to the side gear 211 of the rear differential, but other combinations are possible. It is also possible to use the intermittent device 1 in FIG. In the embodiment shown in FIG. 6, the interrupting device 1 is interposed between the propeller shaft 423 and the rear differential to interrupt torque transmission.
  • the power transmission device 301 according to the present embodiment will be described in more detail with reference to FIG.
  • the interrupting device 1 may be substantially the same as any of the above-described configurations, but mainly, the second rotating member 5 is connected to the distribution mechanism 213 via the gear set 225, and the interrupting device 1 This embodiment is different from the above-described embodiment in that the first rotating member 3 is connected to the propeller shaft 423.
  • the first rotating member 3 is rotatably supported by the casing 203 via a bearing 303, and the extended shaft portion 21 faces the opening of the casing 203, and is preferably drawn out of the casing 203.
  • a connecting member 307 for connecting to the propeller shaft is coupled to the tip, and these are fixed by a nut 309.
  • the fixing mode is not limited to the nut, and any other mode may be used.
  • the first rotating member 3 rotates around the axis by the torque transmitted by the propeller shaft with the one-dot chain line running in the vertical direction in the figure as an axis.
  • a seal member 311 is provided around the first rotating member 3 in order to prevent leakage of the lubricating oil, and a dust cover 313 that slides on the lip portion of the seal member 311 in order to prevent intrusion of external dust. It may be added.
  • the second rotating member 5 is supported by the casing 203 via the bearing 31. If the multi-plate clutch 7 and the clutch 13 are not connected together, the second rotating member 5 can rotate independently of the first rotating member 3.
  • the second rotating member 5 includes, for example, a spline 37 on its inner periphery and is drivingly coupled to the input shaft 227.
  • the opposite end of the input shaft 227 is provided with the drive pinion 223 as described above, and forms the gear set 225 by engaging with the ring gear 221, so that the rear differential receives torque from the intermittent device 1. .
  • a seal member 315 may be provided around the second rotating member 5 so as to partition a space in which the intermittent device 1 is accommodated from a space in which the distribution mechanism 213 is accommodated.
  • the left side gear 209 of the distribution mechanism 213 can be coupled to the left axle as in the above-described embodiment.
  • the right side gear 211 can be directly coupled to the right axle.
  • the seal member 33 abuts on the right axle instead of the second rotating member 5.
  • the torque transmission is also interrupted at the intermittent portion 419.
  • the propeller shaft 423 is disconnected from the drive system and energy is not consumed for its rotation, which is further advantageous in improving fuel consumption.
  • the clutch 13 When the actuator 67 operates, the clutch 13 is connected in advance, and then the multi-plate clutch 7 is connected. By preceding the connection of the multi-plate clutch 7, the clutch 13 can be connected under slight relative rotation, and the connection of the clutch 13 does not fail. Such an operation does not require a separate actuator, and both the multi-plate clutch 7 and the clutch 13 are driven by a single actuator and a single pressing member. This is advantageous not only in terms of cost reduction and simplification of the apparatus, but also in that the risk of failure is reduced.
  • the entire apparatus is small, and the clutch 13 can be quickly connected, and the multi-plate clutch 7 can be connected with sufficient pressing force. Moreover, the pressing force to the multi-plate clutch 7 can be adjusted.
  • the vehicle power system generally distributes torque to a drive source 405, a transfer 421A that transmits the driving force to the front and rear axles, and axles 411 and 413 of the front wheels 415 and 417. It includes a front differential 409A, a propeller shaft 423 that communicates driving force from the transfer 421A to the rear axle, and a rear differential 201A that distributes torque to the axles 425 and 427 of the rear wheels 429 and 431.
  • the interrupting device 1 is incorporated in the transfer 421A and coupled to the front differential 409A via the coupling 422 and the shaft 424, and interrupts and adjusts torque transmission to the front differential 409A.
  • the front differential 409A can be provided with an intermittence portion 419 in order to intermittently transmit torque to the axle 413.
  • the intermittent of the intermittent device 1 and the intermittent of the intermittent part 419 can be interlocked.
  • the interrupting device 1 may be substantially the same as any of the above-described configurations, but mainly, the second rotating member 5 is in direct communication between the power source 405 and the propeller shaft 423.
  • the present embodiment is different from the previous embodiments in that the first rotating member 3 protrudes in the radial direction to form a sprocket wheel.
  • the first rotating member 3 is exclusively used for input and the second rotating member 5 is used for output.
  • the second rotating member is exclusively used. 5 is used for input, and the first rotating member 3 is used for output.
  • the second rotating member 5 penetrates the entire interrupting device 1 in the axial direction, and both ends thereof are drawn out of the casing of the transfer 421A.
  • One end which is close to the drive source 405, has a structure for coupling such as a spline and can be coupled to the transmission.
  • a connecting member C1 for connecting to the propeller shaft is coupled to the other end, and is further fixed by a nut or other means. That is, the torque of the drive source 405 is transmitted to the propeller shaft regardless of whether or not the multi-plate clutch 7 and the clutch 13 are connected.
  • the drive system may be provided with a separate intermittent portion 419 in order to separate the propeller shaft from the drive system.
  • the first rotating member 3 is fitted around the second rotating member 5 and can be rotated independently of this. Further, as described above, the first rotating member 3 is a sprocket wheel on which a sprocket chain is hung. The sprocket chain is further hung on the other sprocket wheel 3A, so that a coupling 422 is formed.
  • the coupling 422 may be a gear set or another mechanism instead of the sprocket.
  • the sprocket wheel 3A is rotatably supported on the casing via a ball bearing or the like, and one end thereof is drawn out of the casing.
  • a connecting member C2 for connecting to the shaft is coupled to the drawn end, and is fixed by a nut or other means.
  • the first rotating member 3 the coupling 422, the shaft 424, and the front differential 409A are disconnected from the drive system and consume energy for the rotation. Not. Therefore, it is further advantageous in improving fuel consumption.
  • the clutch 13 When the actuator 67 operates, the clutch 13 is connected in advance, and then the multi-plate clutch 7 is connected. By preceding the connection of the multi-plate clutch 7, the clutch 13 can be connected under slight relative rotation, and the connection of the clutch 13 does not fail. Such an operation does not require a separate actuator, and both the multi-plate clutch 7 and the clutch 13 are driven by a single actuator and a single pressing member. This is advantageous not only in terms of cost reduction and simplification of the apparatus, but also in that the risk of failure is reduced.
  • the entire apparatus is small, and the clutch 13 can be quickly connected, and the multi-plate clutch 7 can be connected with sufficient pressing force. Moreover, the pressing force to the multi-plate clutch 7 can be adjusted.
  • An intermittent device that reduces energy loss due to drag torque and contributes to an improvement in vehicle fuel efficiency, and a power transmission device using the intermittent device are provided.

Abstract

 外部の第1の回転体と第2の回転体との間でトルクを断続するための断続装置は、前記第1の回転体に駆動的に結合可能であって、前記トルクを受容して回転するべく構成された第1の回転部材と、前記第2の回転体に駆動的に結合可能であって、前記第1の回転部材から独立して回転可能な第2の回転部材と、前記第1の回転部材に駆動的に連結された第1のクラッチ板と、前記第1のクラッチ板に摩擦的に連結可能であって、連結した時に前記第1のクラッチ板との間で前記トルクを伝導するべく構成された第2のクラッチ板と、を備えた多板クラッチと、前記第2のクラッチ板に駆動的に結合され、前記第1の回転部材および前記第2の回転部材から独立して回転可能な連結部材と、軸方向に移動可能であって一体的に回転するべく前記第2の回転部材に結合され、前記連結部材とクラッチを構成し、前記クラッチが連結した時には前記連結部材との間で前記トルクを伝導するべく構成された可動部材と、を備える。

Description

断続装置及びこの断続装置を用いた動力伝達装置
 本発明は、車両に適用される断続装置及びこの断続装置を用いた動力伝達装置に関する。
 乗用車やトラックのごとき車両は、トルクを断続するべく一以上の断続装置を備え、そのうちの一例は、四輪駆動と二輪駆動との間で駆動モードを切り替えるための断続装置である。用途によっては、トルクを断続するのみならず、トルクの分配を調整する必要がある。多板クラッチのごとき摩擦クラッチは、押圧力の加減によってトルク伝達を調整できるので、こうした用途に利用される。
 多板クラッチはトルク伝達の調整能に優れるものの、押圧力が印加されない時においてもクラッチ板間に介在する潤滑油がトルクの一部を伝達してしまい、いわゆる引き摺りトルクが発生する。引き摺りトルクはエネルギ損失の要因である。
日本国特許出願公開2009-269605号
 近年、車両の燃費向上への要求が特に強くなっている。断続装置における引き摺りトルクによるエネルギ損失は、かつては燃費に及ぼす影響が無視しうる程度であった。発明者らによる検討によれば、近年の燃費の改善された車両においては、このエネルギ損失は燃費において無視し得ない割合を占めるまでに至っていることが分かった。本発明は、引き摺りトルクによるエネルギ損失を低減して車両の燃費向上に寄与する断続装置を提供することに鑑みて為されたものである。
 本発明の一局面によれば、外部の第1の回転体と第2の回転体との間でトルクを断続するための断続装置は、前記第1の回転体に駆動的に結合可能であって、前記トルクを受容して回転するべく構成された第1の回転部材と、前記第2の回転体に駆動的に結合可能であって、前記第1の回転部材から独立して回転可能な第2の回転部材と、前記第1の回転部材に駆動的に連結された第1のクラッチ板と、前記第1のクラッチ板に摩擦的に連結可能であって、連結した時に前記第1のクラッチ板との間で前記トルクを伝導するべく構成された第2のクラッチ板と、を備えた多板クラッチと、前記第2のクラッチ板に駆動的に結合され、前記第1の回転部材および前記第2の回転部材から独立して回転可能な連結部材と、軸方向に移動可能であって一体的に回転するべく前記第2の回転部材に結合され、前記連結部材とクラッチを構成し、前記クラッチが連結した時には前記連結部材との間で前記トルクを伝導するべく構成された可動部材と、を備える。
図1は、本発明の一実施形態に係る断続装置が適用された車両の動力系を概念的に示す模式図である。 図2は、本発明の一実施形態に係る断続装置を含む動力伝達装置の断面図である。 図3は、前記断続装置の断面図である。 図4は、前記断続装置において押圧装置の軸方向の移動に応じた可動部材の移動距離を説明するグラフである。 図5は、押圧部材を軸方向に駆動するためのカム機構を例示する断面図である。 図6は、断続装置の他の適用形態に係る動力伝達装置の断面図である。 図7は、本発明の他の実施形態に係る車両の動力系を概念的に示す模式図である。 図8は、図7に例示された形態による断続装置を含む動力伝達装置の断面図である。
 添付の図面を参照して以下に本発明の幾つかの例示的な実施形態を説明する。
 本発明の一実施形態による断続装置1は、車両の動力系への適用において種々の形態が可能であり、例えば、動力伝達装置に組み込まれ、前輪と後輪の間でトルク伝達を断続し、またトルクの分配を調整する用途に利用できる。図1はその一例であって、断続装置1は後輪429,431の車軸425,427にトルクを分配するリアデフと組み合わされて利用される。
 かかる車両の動力系は、概略、駆動源405と、その駆動力を伝達するトランスミッション407と、前輪415,417の車軸411,413にトルクを分配するフロントデフ409と、前後の車軸間で駆動力を連絡するトランスファ421およびプロペラシャフト423と、断続装置1を含むリアデフと、よりなる。
 駆動源405は、エンジン401および電動モータ403の一方または両方を含み、車両にトルクを供給する。フロントデフ409は、トランスミッション407に駆動的に結合されたデフケース439を備え、一対のサイドギア435,437にトルクを分配する。サイドギア435,437はそれぞれ車軸411,413に結合しているので、分配されたトルクは前輪415,417を駆動する。またデフケース439は中空軸441に結合されており、これを介してトルクの一部はトランスファ421にも伝達される。トランスファ421は、方向変換ギア組443を介してこのトルクをプロペラシャフト423へ伝える。
 リアデフはギア組225を備え、これを介してデフケース213がプロペラシャフト423からトルクを受容する。リアデフはピニオン207と一対のサイドギア211とを備え、車軸425,427を介して後輪429,431にトルクを分配する。
 この例においては、断続装置1はリアデフの一方のサイドギア211に結合しており、断続装置1がトルクを伝達しない時にはサイドギア211が空転するので、リアデフはトルクを車軸425,427に伝達できず、車両は前輪415,417のみにより駆動される二輪駆動モードにて走行する。断続装置1がトルクを伝達するときには、リアデフはトルクを車軸425,427に伝達できるので、車両は四輪駆動モードにて走行する。後述のごとく断続装置1に多板クラッチを採用すれば、多板クラッチへの押圧力の調整により、前輪および後輪へのトルクの分配を調整することもできる。多板クラッチに代えてコーンクラッチのごとき他の摩擦クラッチを採用することもできる。
 図2および3を参照して本発明の一実施形態を説明する。
 図2を参照するに、本実施形態による動力伝達装置201は、リアデフと、これと組み合わされた断続装置1と、を含む。その全体はケーシング203に収容される。以下の説明において、断続装置1が右サイドギアに結合された例を示すが、もちろん左サイドギアに結合されていてもよい。
 リアデフは、ケーシング203に回転可能に収容されトルクを受容するデフケース205と、デフケース205に収容されて左右の車軸にトルクを差動的に分配する分配機構213とを備える。デフケース205は、図の幅方向に走る一点鎖線を軸として、受容したトルクにより軸周りに回転する。分配機構213は、差動的にトルクを出力する一対のサイドギア209,211を備え、左サイドギア209は左車軸に結合可能であり、右サイドギア211は断続装置1に結合可能である。
 断続装置1は、右サイドギア(第1の回転体)211と右車軸(第2の回転体)との間でトルクを断続する目的で利用される。断続装置1は、概して、トルクが入力される第1の回転部材3と、トルクが出力される第2の回転部材5と、その間においてトルクの断続あるいはトルク伝達の調整に機能する多板クラッチ7と、を備える。第1の回転部材3は、デフケース205中に嵌入して延びる軸部21により右サイドギア211と駆動的に結合する。第2の回転部材5は右車軸に駆動的に結合する。
 多板クラッチ7は、複数枚の外側クラッチ板(第1のクラッチ板)7aと複数枚の内側クラッチ板(第2のクラッチ板)7bとからなり、これらは交互に配置されている。多板クラッチ7に押圧力が作用すると、クラッチ板7a,7bが摩擦的に連結し、以って外側クラッチ板7aから内側クラッチ板7bへトルクを伝達する。
 外側クラッチ板7aは第1の回転部材3に駆動的に結合しているが、内側クラッチ板7bは第2の回転部材5に直接に結合しておらず、代わりに連結部材9に結合しており、これは第1の回転部材3からも第2の回転部材5からも独立して回転可能である。断続装置1は、連結部材9との間でクラッチ13を構成する可動部材11を備え、クラッチ板7a,7bの連結に連動してクラッチ13が係合することによって、第1の回転部材3と第2の回転部材5との間のトルク伝達が確立される。すなわち、多板クラッチ7に押圧力が印加されていないときには、クラッチ13も係合しておらず、連結部材9が自由に回転できるので、クラッチ板7a,7bの間に引き摺りトルクが発生せず、エネルギ損失が防止される。
 動力伝達装置201の詳細につき、以下にさらに詳しく述べる。
 ケーシング203の内部は、概ね2つの空間に仕切られている。その一方は、主にリアデフを収容し、他方は断続装置1を収容する。2つの空間同士は、潤滑油の循環のために連通しているが、あるいは分離されていてもよい。ケーシング203の全体は、車体フレームなどの静止系部材(不図示)に固定される。
 ケーシング203には、図において上方から、入力軸227が嵌入している。その終端はドライブピニオン223を備え、その反対の端はスプライン233を有する。スプライン233には、プロペラシャフトと連結するための連結部材235が結合しており、さらにナット237によってこれらは固定される。固定の態様は、ナットに限らず他の何れかでもよい。入力軸227はケーシング203に回転可能に支持されており、支持のためにローラベアリングのごとき適宜のベアリング229,231が介在してもよい。入力軸227は、図の縦方向に走る一点鎖線を軸として、プロペラシャフトにより伝えられたトルクにより軸周りに回転する。
 潤滑油の漏れを防止するべく、入力軸227の周囲にシール部材239が設けられる。さらに外部の粉塵の侵入を防止するべく、シール部材239のリップ部と摺動するダストカバー241が付加されてもよい。
 デフケース205は、軸方向両側に形成されたボス部において、ケーシング203に回転可能に支持される。支持のために、例えばベアリング217,219が介在してもよい。デフケース205は軸周りにフランジ部を備え、これにリングギア221がボルトまたは他の手段によって固定される。リングギア221はドライブピニオン223と係合してギア組225を構成し、これによりプロペラシャフトにより伝えられたトルクがデフケース205を軸周りに回転せしめる。
 リアデフは、デフケース205に収容された分配機構213を備える。分配機構213には、ベベルギア式やハイポイド式等の種々の差動歯車機構を適用可能である。図示の例によれば、分配機構213はベベルギア式であって、デフケース205に回転可能に支承された複数のピニオン207と、これらのピニオン207と噛み合った一対のサイドギア209,211と、よりなる。
 各ピニオン207は、デフケース205に嵌合したピニオンシャフト215の周りに回転可能であり、さらにデフケース205が回転する時にはこれと共に回転する。サイドギア209,211は、それぞれスプラインを有する連結部243,27を備えている。それゆえ左サイドギア209は左車軸に結合可能であり、右サイドギア211は断続装置1に結合可能である。サイドギア209,211がピニオン207と係合することにより、トルクが各サイドギア209,211に伝達されるとともに、サイドギア209,211の間では相対回転が可能なので、差動的なトルク分配が可能である。
 ピニオン207が受ける噛み合い反力を負担するために、ピニオン207とデフケース205との間に、それぞれ球面ワッシャが介在してもよい。またサイドギア209,211が受ける噛み合い反力を負担するために、サイドギア209,211とデフケース205との間に、それぞれスラストワッシャが介在してもよい。
 ケーシング203は、外部から左サイドギア209へのアクセスを許容するべく開口しており、この開口を通して左車軸が挿入されて左サイドギア209に結合する。また、この開口には潤滑油の漏れを防ぐべくシール部材245が設けられていてもよい。
 図2と組み合わせて図3を参照するに、断続装置1は、第1の回転部材3と、第2の回転部材5と、多板クラッチ7と、第1の回転部材および第2の回転部材から独立して回転可能な連結部材9と、連結部材9との組み合わせでクラッチ13を構成する可動部材11と、を備える。
 第1の回転部材3は、デフケース205中に嵌入するべく延長された軸部21を備え、その外周にスプラインを備えることによって右サイドギア211に駆動的に結合する。また第1の回転部材3は、フランジ状に径方向外側に延びており、その外周部分から略円筒状のクラッチドラム部23が軸方向に延びている。クラッチドラム部23はその内周にスプラインを有する係合部25を備え、後述の外側クラッチ板7aのキー溝に結合する。第1の回転部材3は、本実施形態においては専らトルクの入力のために利用されるが、あるいは出力のために利用することもできる。
 第2の回転部材5は、例えば中空の円筒形状とすることができ、その内周にスプライン37を備えて、右車軸に駆動的に結合する。外部に対して内部を遮断するべく、中空な部分に区画壁35が設けられていてもよい。第2の回転部材5は、例えば一方の端においてベアリング29を介して第1の回転部材3に支持され、他方の端の近傍においてベアリング31を介してケーシング203に支持され、以って独立して回転可能にされている。ケーシング203と第2の回転部材5との間には、好ましくはシール部材33が介在する。第2の回転部材5は、本実施形態においては専らトルクの出力のために利用されるが、あるいは入力のために利用することもできる。
 多板クラッチ7は、クラッチドラム部23と第2の回転部材5との間に介在している。多板クラッチ7は、複数枚の外側クラッチ板7aと複数枚の内側クラッチ板7bとからなり、これらは交互に配置されている。外側クラッチ板7aはクラッチドラム部23の係合部25と係合することにより、第1の回転部材3に駆動的に結合している。内側クラッチ板7bは、連結部材9に結合する。
 軸方向に移動可能な押圧部53が設けられ、また連結部材9に結合して受圧プレート47が設けられ、これらがクラッチ板7a,7bを挟むことにより多板クラッチ7が摩擦的に連結する。好ましくは多板クラッチ7の連結を解除する方向に押圧部53を付勢する第1の付勢部材57が設けられる。第1の付勢部材57は、例えば板ばねであって多板クラッチ7と押圧部53との間に介在するが、他の構成であってもよい。
 連結部材9は、第2の回転部材5の周りに回転可能に嵌合した略円筒状の部材である。回転を許容するべく、例えば摺動ブッシュ41がこれらの間に介在していてもよい。連結部材9の外周にはスプラインを有する係合部39が形成されており、内側クラッチ板7bの対応するキー溝が係合部39に係合することにより、互いに駆動的に結合する。連結部材9は、第1の回転部材3および第2の回転部材5に直接には結合しておらず、それゆえ多板クラッチ7やクラッチ13が接続されていない時には、第1の回転部材3からも第2の回転部材5からも独立して回転可能である。
 連結部材9の軸方向の移動を規制するべく、規制部材43が第2の回転部材5に固定されている。好ましくは規制部材43と連結部材9との間に、スラストベアリング45が介在する。
 連結部材9は、可動部材11に対向する端に、クラッチ歯15を備え、可動部材11はこれに対応してクラッチ歯17を備え、以って連結部材9と可動部材11とはクラッチ13を構成する。この例ではクラッチ13はクラッチ歯同士が係合する所謂ドッグクラッチだが、他の形式、例えば径方向に対向歯を有するスリーブの形態を有するクラッチが適用されてもよいし、ローラやスプラグを介在させた1ウェイ又は2ウェイクラッチなどでもよい。またクラッチに代えて、スプライン同士を係合/脱係合させるような、他の連結の形式を採用することもできる。
 可動部材11は、第2の回転部材5の周りに嵌合した略円筒状の部材であり、連結部材9に隣接して配置される。可動部材11はその内周にスプライン49を有し、これにより第2の回転部材5に結合して共に回転し、以って第2の回転部材5へトルクを伝達することができる。スプライン49は軸方向に走り、それゆえ可動部材11は軸方向に移動可能である。可動部材11が連結部材9に向かって軸方向に移動することにより、クラッチ13は連結される。
 好ましくはクラッチ13の連結を解除する方向に可動部材11を付勢する第2の付勢部材61が設けられる。第2の付勢部材61は、例えば板ばねであって連結部材9と可動部材11との間に介在するが、他の構成であってもよい。また好ましくは、第2の付勢部材61と可動部材11との間にさらにスラストベアリング59が介在する。
 なお、上述の構成を変更して、内側クラッチ板7bを第2の回転部材5に結合し、代わりに可動部材11を第1の回転部材3に結合し、クラッチドラム部23を回転可能とし、可動部材11とクラッチドラム部23とによってクラッチ13が構成されるようにしてもよい。その他種々の変形が可能である。
 押圧部53と可動部材11とを連動して操作するべく、押圧部材19が設けられる。押圧部53と可動部材11とはそれぞれ個別の部材により操作してもよいが、本実施形態においては単一の押圧部材19がこれらを操作する。
 押圧部材19は、第2の回転部材5と略同軸的に配置されたフランジ状の部材とすることができる。押圧部材19は、可動部材11に対向した略円板部分と、かかる円板部分から押圧部53に向けて延びたフランジ部51とを備える。円板部分と可動部材11との間には、好ましくはスラストベアリング63が介在するが、さらに板ばねのごとき第3の付勢部材65が介在していてもよい。フランジ部51と押圧部53との間にも、好ましくはスラストベアリング57が介在する。
 押圧部材19が図中左方に向かって駆動されなければ、上述の付勢部材の力を受けて、あるいは他の手段により、押圧部材19は右方に寄った第1の位置に待機する。第1の位置においては、多板クラッチ7とクラッチ13の何れも連結されない。押圧部材19が後述の駆動装置により駆動されると、押圧部材19と可動部材11とに押圧力を行使する第2の位置へと軸方向に移動し、以って単一の押圧部材19により多板クラッチ7およびクラッチ13の両方が連動して連結される。
 押圧部材19による多板クラッチ7およびクラッチ13の連結は同時であってもよいが、好ましくは多板クラッチ7の連結に先行してクラッチ13の連結が為されるべく、関係部材が構成される。クラッチ13の連結が先行すれば、連結の時点において連結部材9と可動部材11との間に相対的な回転速度の差が僅かであるから、クラッチ13の連結に失敗することがない。そのような構成の一例は、押圧部材19と多板クラッチ7とクラッチ13とが以下のごとく特別に寸法づけられていることである。
 押圧部材19が第1の位置に待機している時に、多板クラッチ7およびクラッチ13は連結しないよう適宜のギャップを保持している。いま、クラッチ13を連結せしめるために可動部材が移動するべき第1のギャップをS1とし、多板クラッチ7を連結せしめるために押圧部53が移動するべき第2のギャップをS2とする。フランジ部51と押圧部53との間に実質的に遊びが無ければ、押圧部材19が移動する距離と押圧部53が移動する距離は等しい。第3の付勢部材65が十分に剛直であってその収縮が無視できれば、可動部材11が移動する距離も押圧部材19が移動する距離と等しい。従って、第1のギャップS1より第2のギャップS2が広ければ、多板クラッチ7の連結に先行してクラッチ13が連結する。
 あるいは、付勢部材の収縮を考慮して各ギャップを寸法づけてもよい。いま、各付勢部材を線形ばねと仮定し、第2の付勢部材61のバネ定数をk61とし、第3の付勢部材65のバネ定数をk65と仮定する。図5を参照するに、上述のごとく押圧部材19が移動する距離M19と押圧部53が移動する距離D53は等しい(図5のグラフにおいて傾きは1)。一方、押圧部材19が移動すると、その押圧力を受けて第2の付勢部材61と第3の付勢部材65は共に収縮し、その収縮量はバネ定数に反比例する。可動部材11は、第2の付勢部材61と第3の付勢部材65とに挟まれているので、可動部材11が移動する距離D11は、第2の付勢部材61の収縮量により決まり(図5のグラフにおいて傾きはk65/(k61+k65))、すなわち距離D11は距離M19のk65/(k61+k65)倍である。それゆえ、押圧部53を第2のギャップS2だけ進ませるために押圧部材19が移動すべき距離E2(=S2)よりも、可動部材11を第1のギャップS1だけ進ませる押圧部材19が移動すべき距離E1(=S1・(k61+k65)/k65)のほうが小さければ、多板クラッチ7の連結に先行してクラッチ13が連結する。すなわち、これらの関係を満たすべく付勢部材のバネ定数と各ギャップとを関連付ければ、多板クラッチ7の連結に先行してクラッチ13が連結する。端的には、第2の付勢部材61のバネ定数k61との比較で第3の付勢部材65のバネ定数k65がより大きい(図5のグラフにおいて傾きk65/(k61+k65)が1に近い)ほうが有利であり、第1のギャップS1との比較で第2のギャップS2がより大きいほうが有利である。
 上述の説明では、各付勢部材を線形バネと仮定したが、もちろん非線形バネであってもよいし、また何れかの付勢部材が一定の押圧力を受けるまでは収縮を開始しない特性のものであってもよい。上述の教示に照らして種々の変形が可能である。
 上述の何れの構成においても、多板クラッチ7の連結に先行してクラッチ13が連結する。クラッチ13が連結した後には、第3の付勢部材65が収縮することにより、押圧部53がさらに多板クラッチ7に接近することを許容し、以って押圧部53は多板クラッチ7に接してこれを押圧することができる。
 押圧部材19を駆動するための適宜の駆動装置が設けられる。そのような駆動装置としては、油圧シリンダ、ソレノイド、モータ・シフトロッド機構、エアダイアフラムのごとき軸力を発揮する装置でもよく、あるいはモータのごとき回転運動を生ずる装置を、回転運動を軸方向運動に変換するカム装置に組み合わせてもよい。以下では電動モータとカム装置との組み合わせを用いたアクチュエータの例を説明する。駆動装置の配置は、図示のごとく軸から側方に外れていてもよいし、可能ならば同軸的でもよい。
 主に図2を参照するに、動力伝達装置201は押圧部材19を駆動するためのアクチュエータ67を備える。アクチュエータ67は、電動モータ69と、減速機構71と、カム機構73とを備えている。減速機構71は、ギア機構によって電動モータ69の回転を減速し、代わりに大きな回転力を得るための装置であり、カム機構73は回転運動を軸方向運動に変換するための装置である。
 電動モータ69は、ケーシング203の外側に組付けられ、ケーシング203に陥入するように延びたモータ軸75を備える。可能ならばケーシング203内に組み込まれてもよい。電動モータ69には、印加する電力を断続または調整するコントローラ70(図1参照)に接続され、以ってコントローラ70にその動作が制御される。コントローラ70は、トランスファ421のアクチュエータ420にも接続されて(図1の接続Aを参照)これを制御していてもよく、以ってアクチュエータ67,420の統合制御が可能である。
 減速機構71は、複数組の減速ギア組を備えることができる。図2に示した例では3組であって、すなわち、減速機構71は、第1減速ギア組77と、第2減速ギア組79と、第3減速ギア組81とを備えている。
 第1減速ギア組77は、電動モータ69のモータ軸75と第1大径ギア部83とからなる。第1大径ギア部83は、ケーシング203内に第1中間軸85を介して回転可能に支持された第1中間ギア87に設けられ、電動モータ69のモータ軸75と噛み合っている。この第1減速ギア組77は、電動モータ69の回転を減速して第1中間ギア87を介して第2減速ギア組79に伝達する。
 第2減速ギア組79は、第2小径ギア部89と第2大径ギア部91とからなる。第2小径ギア部89は、第1中間ギア87に第1大径ギア部83と隣接して設けられ、第2大径ギア部91と噛み合っている。第2大径ギア部91は、ケーシング203内に第2中間軸93を介して回転可能に支持された第2中間ギア95に設けられている。この第2減速ギア組79は、第1中間ギア87からの回転をさらに減速して第2中間ギア95を介して第3減速ギア組81に伝達する。
 第3減速ギア組81は、第3小径ギア部97と第3大径ギア部99とからなる。第3小径ギア部97は、第2中間ギア95に第2大径ギア部91と隣接して設けられ、第3大径ギア部99と噛み合っている。第3大径ギア部99は、押圧部材19の移動部51の外径に設けられている。この第3減速ギア組81は、第2中間ギア95からの回転をさらに減速して押圧部材19を回転させる。
 減速機構71による減速比が高いほど電動モータの出力は小さくてよく、小出力の電動モータの利用が可能になるので、コスト削減および装置の小型化の観点から有利である。そこで、減速比は、例えば100:1である。図示の例では減速機構71は平行ギア組だが、これに代えて遊星ギア、不思議遊星歯車機構、サイクロギア等を採用してもよい。遊星ギアや不思議遊星歯車機構は、断続装置1に対して同軸的な配置を実現するに有利である。
 カム機構73は、図5を参照するに、例えば、カムリング101と、カムボール103と、押圧部材19の背面に形成された傾斜面107,109と、よりなる。あるいは、カムボール103は、カムリング101か押圧部材19かの何れかに固定ないし一体化されたカム突起に代えてもよい。さらにあるいは、図示のような機構に代えて、ボールスクリューのごとき変換機構を採用してもよい。
 図5と組み合わせて図2を参照するに、カムリング101は、ケーシング203に取り付けられた部材であって、回り止めのための係止構造105により回り止めされている。カムリング101は、部分的にベアリング31とケーシング203との間に挟まれることによって位置決めされていてもよく、スラスト反力を受容するべくその一端がケーシング203に軸方向に当接していてもよい。カムリング101において押圧部材19に面した面は、傾斜面107,109と対応するように傾斜面が形成されていてもよい。
 カムボール103は、カムリング101と押圧部材19との間に介在する。上述のごとく電動モータ69と減速機構71とによって押圧部材19が軸周りに回転すると、カムボール103は傾斜面107,109上を転がり、押圧部材19を軸方向に押すので、回転運動が軸方向運動に変換される。転がる便宜のためにカムボール103は球形が好ましいが、あるいは円錐やその他の形状であってもよい。
 傾斜面107,109は、好ましくは比較的に急な第1傾斜面107と、ごく緩やかな第2傾斜面109と、よりなる。第1傾斜面107は、クラッチ13を連結せしめるに適した面であり、クラッチ13の連結には比較的に小さな力でよいので、比較的に急な傾斜面である。またその段差は、上述のE1以上であってE2未満とすることができる。第2傾斜面109は、多板クラッチ7を連結せしめるに適した面であり、多板クラッチ7の連結には比較的大きな力が必要であり、またその力の制御性を得るために、ごく緩やかな傾斜面である。第2傾斜面109の終端の高さは、第1傾斜面107の底面から測って、上述のE2以上である。
 上述のごときカム機構73の構成は、クラッチ13の迅速な連結を可能にしつつ、十分な押圧力をもって多板クラッチ7を連結することを可能にし、また多板クラッチ7への押圧力の制御性を確保するに有利である。
 なお図1を参照するに、トランスファ421は、プロペラシャフト423へのトルクの伝達を断続するべく、断続部419を備えることができる。断続部419は、アクチュエータ420により駆動されるドッグクラッチあるいはその他の形式のクラッチを備えてトルクの伝達を断続する。必要に応じてシンクロナイザーリングが介在していてもよい。また、駆動源405に加えて、モータ/ジェネレータ433をさらに備えてもよい。モータ/ジェネレータ433は、駆動源としてのみならず、ジェネレータとしても機能する。断続部419の連結が解除されると、駆動源405およびモータ/ジェネレータ433のトルクはプロペラシャフト423に伝達されない。
 断続装置1の断続と断続部419の断続とは、連動させることができる。連動のために、既に述べた接続Aを利用した統合制御が利用できる。好ましくは断続部419の接続は断続装置1の接続に先行するが、その反対でもよい。断続装置1と断続部419とが共にトルクを伝達しないとき、後輪429の回転はサイドギア209を回転させるに留まり、デフケース205は回転しない。それゆえ、プロペラシャフト423は駆動源405と後輪との何れによっても駆動されない。
 本実施形態によれば、アクチュエータ67が動作せずに多板クラッチ7およびクラッチ13が連結していないときには、右サイドギア211はトルクを受容することができないので、入力軸227が回転しても分配機構213の空転が起こり、車両は前輪のみが駆動される二輪駆動モードで走行する。このとき、クラッチ13の連結が絶たれているので、連結部材9は自由に回転することができ、クラッチ板7a,7bの間に引き摺りトルクが発生しない。それゆえエネルギ損失が防止されて燃費が改善される。
 統合制御によってアクチュエータ420も動作しなければ、断続部419においてもトルク伝達が遮断される。このときプロペラシャフト423は駆動系から切り離されてその回転のためにエネルギが消費されないので、燃費の改善にさらに有利である。
 アクチュエータ67が動作すると、先行してクラッチ13が連結し、次いで多板クラッチ7が連結する。多板クラッチ7の連結に先行することにより、クラッチ13は僅かな相対回転の下に連結することができ、クラッチ13の連結に失敗することがない。かかる操作に、個別のアクチュエータを要さず、単一のアクチュエータと単一の押圧部材によって、多板クラッチ7およびクラッチ13の両方が駆動される。コスト削減と装置の簡略化の点で有利であるのみならず、故障のリスクが小さくなる点でも有利である。
 多板クラッチ7およびクラッチ13が連結すると、両サイドギア209,211がトルクを負担できるようになるので、分配機構213は両サイドギア209,211にトルクを分配する。左サイドギア209からは、これに結合した左車軸425を経由して左ホイール429へトルクが伝達される。右サイドギア211に伝達されたトルクは、多板クラッチ7とクラッチ13とを経由して第2の回転部材5へと伝達され、これに結合した右車軸427を経由して右ホイール431へトルクが伝達される。すなわち、後輪も駆動され、車両は四輪駆動モードで走行する。
 多板クラッチ7に印加する押圧力を加減することにより、伝達するトルクを調整することができるので、前後輪へのトルクの分配を調整することができる。
 アクチュエータ67は複数段の減速機構を有し、また駆動力を増倍することができるカム機構73を利用しているので、比較的に小型のモータ69が利用でき、それゆえ装置の全体が小型である。またカム機構73は、比較的に急な第1傾斜面107を有するのでクラッチ13の迅速な連結を可能にし、またごく緩やかな第2傾斜面109を有するので、十分な押圧力をもって多板クラッチ7を連結することを可能にし、また多板クラッチ7への押圧力を調整することができる。
 上述の実施形態においては、断続装置1は、プロペラシャフト423に駆動的に結合したリアデフと組み合わされており、その第1の回転部材21はリアデフのサイドギア211に結合しているが、他の組み合わせにおいて断続装置1を利用することも可能である。図6に示した実施形態においては、断続装置1はプロペラシャフト423とリアデフとの間に介在してトルクの伝達を断続する。
 図6を参照して本実施形態による動力伝達装置301をより詳しく説明する。
 本実施形態においては、断続装置1は上述の構成の何れかと実質的に同一でよいが、主に、第2の回転部材5がギア組225を介して分配機構213に接続され、断続装置1の第1の回転部材3がプロペラシャフト423に接続される点において、本実施形態は上述の実施形態と異なる。
 第1の回転部材3は、ベアリング303を介してケーシング203に回転可能に支持され、その延長された軸部21はケーシング203の開口に臨み、好ましくはケーシング203の外部に引き出されている。かかる先端には、プロペラシャフトと連結するための連結部材307が結合しており、さらにナット309によってこれらは固定される。固定の態様は、ナットに限らず他の何れかでもよい。第1の回転部材3は、図の縦方向に走る一転鎖線を軸として、プロペラシャフトにより伝えられたトルクにより軸周りに回転する。潤滑油の漏れを防止するべく、第1の回転部材3の周囲にシール部材311が設けられ、さらに外部の粉塵の侵入を防止するべく、シール部材311のリップ部と摺動するダストカバー313が付加されてもよい。
 第2の回転部材5はベアリング31を介してケーシング203に支持されている。多板クラッチ7およびクラッチ13が共に連結していなければ、第2の回転部材5は第1の回転部材3から独立して回転可能である。第2の回転部材5は、例えばその内周にスプライン37を備えて、入力軸227に駆動的に結合する。入力軸227の反対側の端は、既に述べたようにドライブピニオン223を備え、リングギア221と係合することによりギア組225を構成し、以ってリアデフは断続装置1からトルクを受容する。
 分配機構213が収容される空間に対して断続装置1が収容される空間を区画するべく、第2の回転部材5の周りにシール部材315が設けられてもよい。
 分配機構213の左サイドギア209は、上述の実施形態と同様に左車軸に結合可能である。右サイドギア211は、上述の実施形態と異なり、右車軸に直接に結合可能である。シール部材33は、第2の回転部材5に代わって右車軸に当接する。
 多板クラッチ7およびクラッチ13が連結していないときには、ピニオン223にトルクが伝達されず、連結によってピニオン223を介してリアデフにトルクが伝達される。すなわち、本実施形態によっても、断続装置1によるトルク伝達の断続と調整が可能であり、以って前輪のみが駆動される二輪駆動モードと後輪による駆動も参加する四輪駆動モードとの間の切り替えが可能である。二輪駆動モードの時、クラッチ13の連結が絶たれているので、連結部材9は自由に回転することができ、クラッチ板7a,7bの間に引き摺りトルクが発生しない。それゆえエネルギ損失が防止されて燃費が改善される。
 統合制御によってアクチュエータ420も動作しなければ、断続部419においてもトルク伝達が遮断される。このときプロペラシャフト423は駆動系から切り離されてその回転のためにエネルギが消費されないので、燃費の改善にさらに有利である。
 アクチュエータ67が動作すると、先行してクラッチ13が連結し、次いで多板クラッチ7が連結する。多板クラッチ7の連結に先行することにより、クラッチ13は僅かな相対回転の下に連結することができ、クラッチ13の連結に失敗することがない。かかる操作に、個別のアクチュエータを要さず、単一のアクチュエータと単一の押圧部材によって、多板クラッチ7およびクラッチ13の両方が駆動される。コスト削減と装置の簡略化の点で有利であるのみならず、故障のリスクが小さくなる点でも有利である。
 さらに複数段の減速機構とカム機構とを利用することによって、装置の全体が小型であり、クラッチ13の迅速な連結も可能にし、十分な押圧力をもって多板クラッチ7を連結することを可能にし、また多板クラッチ7への押圧力を調整することができる。
 これまでに説明した実施形態によれば、前輪のみにより駆動される二輪駆動と四輪駆動との間の切り替えが可能であったが、後輪駆動による二輪駆動と四輪駆動との間の切り替えに断続装置1を利用することもできる。図7,8はそのような例を例示する。
 図7を参照するに、かかる車両の動力系は、概略、駆動源405と、その駆動力を伝達する前後車軸に伝達するトランスファ421Aと、前輪415,417の車軸411,413にトルクを分配するフロントデフ409Aと、トランスファ421Aから後車軸に駆動力を連絡するプロペラシャフト423と、後輪429,431の車軸425,427にトルクを分配するリアデフ201Aと、よりなる。断続装置1はトランスファ421Aに組み込まれて、カップリング422とシャフト424を介してフロントデフ409Aに結合しており、フロントデフ409Aへのトルク伝達を断続および調整する。
 フロントデフ409Aは、車軸413へのトルクの伝達を断続するべく、断続部419を備えることができる。断続装置1の断続と断続部419の断続とは、連動させることができる。
 図8を参照するに、断続装置1は上述の構成の何れかと実質的に同一でよいが、主に、第2の回転部材5は動力源405とプロペラシャフト423の間を直接に連絡しており、第1の回転部材3は径方向に突出してスプロケットホイールとなっている点において、本実施形態はこれまでの実施形態と異なる。またこれまでに説明した実施形態においては、専ら第1の回転部材3が入力に利用され、第2の回転部材5が出力に利用されるが、本実施形態においては、専ら第2の回転部材5が入力に利用され、第1の回転部材3が出力に利用される。
 第2の回転部材5は、軸方向に断続装置1の全体を貫通しており、その両端はトランスファ421Aのケーシングの外に引き出されている。一方の端であって駆動源405に近い端は、スプラインのごとき結合のための構造を有してトランスミッションと結合可能である。他方の端には、プロペラシャフトと連結するための連結部材C1が結合しており、さらにナットやその他の手段により固定されている。すなわち、多板クラッチ7やクラッチ13が連結するか否かに関わらず、駆動源405のトルクはプロペラシャフトに伝達される。
 これまでに説明した実施形態と同じく、プロペラシャフトを駆動系から切り離すべく、駆動系は別途の断続部419を備えてもよい。
 第1の回転部材3は、第2の回転部材5の周りに嵌合し、これとは独立して回転可能である。さらに上述のごとく、第1の回転部材3は、スプロケットホイールとなっており、これにスプロケットチェーンが掛けられている。スプロケットチェーンは他方のスプロケットホイール3Aにさらに掛けられており、以ってカップリング422が構成されている。カップリング422は、スプロケットに代えてギア組あるいは他の機構であってもよい。
 スプロケットホイール3Aは、ボールベアリング等を介してケーシングに回転可能に支持され、その一端はケーシングの外に引き出されている。引き出された端には、シャフトと連結するための連結部材C2が結合しており、ナットやその他の手段により固定されている。
 本実施形態によっても、断続装置1によるトルク伝達の断続と調整が可能であり、以って後輪のみが駆動される二輪駆動モードと前輪による駆動も参加する四輪駆動モードとの間の切り替えが可能である。二輪駆動モードの時、クラッチ13の連結が絶たれているので、連結部材9は自由に回転することができ、クラッチ板7a,7bの間に引き摺りトルクが発生しない。それゆえエネルギ損失が防止されて燃費が改善される。
 断続装置1と断続部419とが共に連結を解除されれば、第1の回転部材3、カップリング422、シャフト424およびフロントデフ409Aは、駆動系から切り離されてその回転のためにエネルギが消費されない。それゆえ燃費の改善にさらに有利である。
 アクチュエータ67が動作すると、先行してクラッチ13が連結し、次いで多板クラッチ7が連結する。多板クラッチ7の連結に先行することにより、クラッチ13は僅かな相対回転の下に連結することができ、クラッチ13の連結に失敗することがない。かかる操作に、個別のアクチュエータを要さず、単一のアクチュエータと単一の押圧部材によって、多板クラッチ7およびクラッチ13の両方が駆動される。コスト削減と装置の簡略化の点で有利であるのみならず、故障のリスクが小さくなる点でも有利である。
 さらに複数段の減速機構とカム機構とを利用することによって、装置の全体が小型であり、クラッチ13の迅速な連結も可能にし、十分な押圧力をもって多板クラッチ7を連結することを可能にし、また多板クラッチ7への押圧力を調整することができる。
 好適な実施形態により本発明を説明したが、本発明は上記実施形態に限定されるものではない。上記開示内容に基づき、当該技術分野の通常の技術を有する者が、実施形態の修正ないし変形により本発明を実施することが可能である。
 引き摺りトルクによるエネルギ損失を低減して車両の燃費向上に寄与する断続装置およびこの断続装置を用いた動力伝達装置が提供される。

Claims (10)

  1.  外部の第1の回転体と第2の回転体との間でトルクを断続するための断続装置であって、
     前記第1の回転体に駆動的に結合可能であって、前記トルクを受容して回転するべく構成された第1の回転部材と、
     前記第2の回転体に駆動的に結合可能であって、前記第1の回転部材から独立して回転可能な第2の回転部材と、
     前記第1の回転部材に駆動的に連結された第1のクラッチ板と、前記第1のクラッチ板に摩擦的に連結可能であって、連結した時に前記第1のクラッチ板との間で前記トルクを伝導するべく構成された第2のクラッチ板と、を備えた多板クラッチと、
     前記第2のクラッチ板に駆動的に結合され、前記第1の回転部材および前記第2の回転部材から独立して回転可能な連結部材と、
     軸方向に移動可能であって一体的に回転するべく前記第2の回転部材に結合され、前記連結部材とクラッチを構成し、前記クラッチが連結した時には前記連結部材との間で前記トルクを伝導するべく構成された可動部材と、
     を備えた断続装置。
  2.  請求項1の断続装置であって、さらに、
     第1の位置から前記多板クラッチおよび前記可動部材に押圧力を行使する第2の位置へ軸方向に移動するべく構成され、前記第2の位置において前記多板クラッチと前記クラッチとを共に連結せしめる単一の押圧部材を備えた、断続装置。
  3.  請求項2の断続装置であって、前記押圧部材と前記多板クラッチと前記クラッチとは、前記多板クラッチの連結に先行して前記クラッチの連結が為されるべく寸法づけられている、断続装置。
  4.  請求項3の断続装置であって、さらに、
     前記クラッチを連結せしめるために前記可動部材が移動するべき第1のギャップと、
     前記多板クラッチを連結せしめるために前記押圧部材が移動するべき第2のギャップであって、前記第1のギャップより広い第2のギャップと、
     を備えた断続装置。
  5.  請求項3の断続装置であって、さらに、
     前記連結部材と前記可動部材との間に介在して前記可動部材を前記連結部材から離れるべく付勢する第1の弾撥部材と、
     前記可動部材と前記押圧部材との間に介在して前記押圧部材を前記第1の位置に向けて付勢する第2の弾撥部材と、を備え、
     前記第2の弾撥部材は、前記クラッチが連結した後にも前記押圧部材が前記多板クラッチに接近することを許容する、断続装置。
  6.  請求項5の断続装置であって、さらに、
     前記クラッチを連結せしめるために前記可動部材が移動するべき第1のギャップと、
     前記多板クラッチを連結せしめるために前記押圧部材が移動するべき第2のギャップと、を備え、
     前記第1のギャップと前記第2のギャップと前記第1の弾撥部材と前記第2の弾撥部材とは、前記第2の弾撥部材を介して前記押圧部材により移動させられた前記可動部材が、前記押圧部材が前記多板クラッチに接するのに先行して前記クラッチを連結するべく、関係付けられている、断続装置。
  7.  請求項2乃至6の何れか1項の断続装置であって、さらに、
     前記押圧部材を軸方向に駆動する単一の駆動機構を備えた、断続装置。
  8.  請求項7の断続装置であって、前記駆動機構は、前記押圧部材に回転運動を生ずるべく前記押圧部材に連結されたモータと、前記回転運動を前記押圧部材の軸方向運動に変換するカム機構と、を備えた、断続装置。
  9.  エンジンと、第1の車軸と、第2の車軸と、前記第1の車軸と前記第2の車軸との間でトルクを伝達するプロペラシャフトとを有する車両に利用される動力伝達装置であって、
     前記第1の車軸と前記第2の車軸との間で、前記トルクの分配を調整するべく介在した請求項1の断続装置を備えた動力伝達装置。
  10.  請求項9の動力伝達装置であって、さらに、
     それぞれ前記第2の車軸および前記断続装置の前記第1の回転部材に結合した一対のサイドギアを備え、前記プロペラシャフトに駆動的に結合したデファレンシャルギア、
     前記断続装置の前記第2の回転部材に結合して前記第2の車軸に前記トルクを分配するべく構成されたデファレンシャルギア、および
     前記第1の車軸と前記断続装置の前記第1の回転部材とに駆動的に結合したカップリング、
     よりなる群より選択された何れか一以上の伝達機構を備えた、動力伝達装置。
PCT/JP2013/052439 2012-12-14 2013-02-04 断続装置及びこの断続装置を用いた動力伝達装置 WO2014091770A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/082507 WO2014091621A1 (ja) 2012-12-14 2012-12-14 断続装置及びこの断続装置を用いた動力伝達装置
JPPCT/JP2012/082507 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091770A1 true WO2014091770A1 (ja) 2014-06-19

Family

ID=50933937

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/082507 WO2014091621A1 (ja) 2012-12-14 2012-12-14 断続装置及びこの断続装置を用いた動力伝達装置
PCT/JP2013/052439 WO2014091770A1 (ja) 2012-12-14 2013-02-04 断続装置及びこの断続装置を用いた動力伝達装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082507 WO2014091621A1 (ja) 2012-12-14 2012-12-14 断続装置及びこの断続装置を用いた動力伝達装置

Country Status (1)

Country Link
WO (2) WO2014091621A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145465A1 (en) * 2018-01-25 2019-08-01 Borgwarner Sweden Ab Electromechanical actuator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119760A (ja) * 1993-10-20 1995-05-09 Kubota Corp 湿式の摩擦クラッチ
JPH1037977A (ja) * 1996-07-25 1998-02-13 Kubota Corp 伝動装置の連回り防止装置
WO2007100011A1 (ja) * 2006-02-28 2007-09-07 Gkn Driveline Torque Technology Kk トルク伝達装置
JP2010260383A (ja) * 2009-04-30 2010-11-18 Univance Corp 4輪駆動車用駆動力伝達装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611800B2 (ja) * 1988-04-05 1997-05-21 株式会社表鉄工所 クラッチ装置
JPH07133831A (ja) * 1993-11-08 1995-05-23 Toyoda Mach Works Ltd 駆動力断続装置
JP2010254058A (ja) * 2009-04-23 2010-11-11 Univance Corp 4輪駆動車用駆動力伝達装置
JP5254142B2 (ja) * 2009-07-14 2013-08-07 Gknドライブラインジャパン株式会社 トルク伝達装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119760A (ja) * 1993-10-20 1995-05-09 Kubota Corp 湿式の摩擦クラッチ
JPH1037977A (ja) * 1996-07-25 1998-02-13 Kubota Corp 伝動装置の連回り防止装置
WO2007100011A1 (ja) * 2006-02-28 2007-09-07 Gkn Driveline Torque Technology Kk トルク伝達装置
JP2010260383A (ja) * 2009-04-30 2010-11-18 Univance Corp 4輪駆動車用駆動力伝達装置

Also Published As

Publication number Publication date
WO2014091621A1 (ja) 2014-06-19

Similar Documents

Publication Publication Date Title
US9534663B2 (en) Transmission device
JP6028507B2 (ja) 電気自動車用駆動装置
US20170356888A1 (en) Two-speed drive module
CN102449337B (zh) 具有斜面体齿轮组的紧凑型分动器
US7951036B2 (en) Differential transmission unit featuring active controlling of the moment distribution
JP2013108619A5 (ja)
US20100062891A1 (en) Power take-off unit with active coupling and hypoid disconnect system
JP2004249979A (ja) 共通のキャリアを有する2つの遊星歯車装置を備えたトランスファーケース
US20070240962A1 (en) Infinitely-Variable Transmission with Double Mode Power Transmission Controlled by a Sliding Dog for a Motor Vehicle
KR20180038372A (ko) 차량을 위한 차동 제한 장치
TW201725136A (zh) 具有雙離合器的電動車用兩速變速箱
US10118484B2 (en) Transfer
US20150045171A1 (en) Axle differential transmission for an engageably driven vehicle of a motor vehicle
US20200292045A1 (en) Differential device with two-step ability to limit differential motion
US10479199B2 (en) Disconnectable power transfer unit
US9518643B2 (en) Axle differential transmission for an engageably driven vehicle of a motor vehicle
GB2391595A (en) Transfer case with clutch engaged by a ball screw actuator
JPH03248919A (ja) 動力伝達装置
WO2014091770A1 (ja) 断続装置及びこの断続装置を用いた動力伝達装置
US11060594B2 (en) Driving force distribution apparatus
JP2013221604A (ja) 動力伝達装置
JP4376745B2 (ja) 四輪駆動車両の駆動力分配装置
KR100786533B1 (ko) 4륜 구동용 동력 절환장치
JP2004316892A (ja) トルク伝達カップリング
US11913527B2 (en) Gear unit for a vehicle and powertrain with such a gear unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP