WO2014091096A1 - Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique - Google Patents

Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique Download PDF

Info

Publication number
WO2014091096A1
WO2014091096A1 PCT/FR2013/052356 FR2013052356W WO2014091096A1 WO 2014091096 A1 WO2014091096 A1 WO 2014091096A1 FR 2013052356 W FR2013052356 W FR 2013052356W WO 2014091096 A1 WO2014091096 A1 WO 2014091096A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
node
inverter
switch
Prior art date
Application number
PCT/FR2013/052356
Other languages
English (en)
Inventor
Sébastien Boisseau
Ghislain Despesse
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to US14/650,644 priority Critical patent/US10511295B2/en
Priority to EP13782792.9A priority patent/EP2932588B1/fr
Publication of WO2014091096A1 publication Critical patent/WO2014091096A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/181Circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16504Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed
    • G01R19/16519Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed using FET's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the conversion of electrical energy in general, and more particularly to the conversion of electrical energy in generators or power supplies with ambient energy recovery.
  • the present application also relates to a circuit for comparing a voltage with a threshold.
  • generators adapted to convert the energy available in the system environment, for example mechanical energy, into electrical energy.
  • generators are known in which ambient mechanical energy is converted into electrical energy by a piezoelectric element.
  • these generators comprise an electric energy conversion device placed downstream of the piezoelectric element.
  • the electrical energy conversion device may comprise a circuit for comparing a voltage to a threshold.
  • One embodiment provides a circuit for comparing a voltage at a threshold, comprising: a first inverter whose first and second supply nodes are respectively coupled to first and second application nodes of said voltage; and a first normally closed switch connecting an input of the first inverter to the first application node of the voltage, a control gate of the first switch being connected to the second voltage application node.
  • the first supply node of the first inverter is connected to the first application node of the voltage via a voltage limiter.
  • the voltage limiter comprises a second normally closed switch between the first voltage application node and the first power supply node of the first inverter.
  • the voltage limiter further comprises at least one third normally closed switch cascaded with the second switch.
  • the voltage limiter comprises a diode whose anode is on the first voltage application node side (M) and whose cathode is on the first supply node side of the first inverter.
  • the comparison circuit comprises a second inverter in series with the first inverter. According to one embodiment, an output node of the comparison circuit is connected to an output of the second inverter.
  • the first switch is a depletion OS transistor.
  • the input of the first inverter is connected to an output of the comparison circuit via a first resistor.
  • the input of the first inverter is connected to the second application node of the voltage via a second resistor.
  • the input of the first inverter is connected to the first switch via a third resistor.
  • Another embodiment provides an energy conversion circuit comprising: a first element comprising an electric energy converter; and a voltage comparison circuit of the aforementioned type.
  • the energy conversion circuit further comprises a second electrical energy storage element that can be powered by the first element.
  • the energy conversion circuit further comprises a normally closed bypass switch placed between an input node and an output node of the first element.
  • the comparison circuit is configured to compare the voltage across the second element at the threshold.
  • the comparison circuit is configured to control the bypass switch as a function of the voltage across the second element.
  • the comparison circuit is configured to control a switch normally open connected to a power supply node of a control circuit of the electric power converter.
  • the second element is configured to supply a control circuit of the electrical energy converter, and a third electrical energy storage element is configured to supply an external load.
  • Figure 1 schematically shows an example of an embodiment of an electrical energy conversion device
  • FIG. 2 represents an example of an embodiment of a circuit for comparing a voltage at a threshold
  • Figure 3 is a timing diagram illustrating the operation of the comparison circuit of Figure 2;
  • FIG. 4 represents an alternative embodiment of a circuit for comparing a voltage at a threshold
  • FIG. 5 schematically represents an alternative embodiment of the electrical energy conversion device of FIG. 1;
  • FIG. 6 schematically represents an example of another embodiment of an electrical energy conversion device.
  • Generators with ambient energy recovery can be used in various fields, for example transport, to supply pressure, temperature, vibration, etc. sensors, placed on a vehicle; industry, to supply machine monitoring sensors; habitat, to power wireless switches, presence sensors, stress sensors, etc. ; the medical, for supplying assistive devices or monitoring devices implanted in the body of a patient; the environment, to supply sensors for monitoring weather phenomena or other phenomena; defense and space, to power surveillance sensors of devices or borders; and consumer electronics, to power totally or partially portable devices such as telephones, P3 players, remote control, etc.
  • the use of ambient energy recovery generators makes it possible, in particular, to make wireless sensors totally autonomous, thus easy to set up and not requiring recurrent and expensive battery replacement operations.
  • the use of generators with ambient energy recovery also makes it possible to extend the life of the batteries of certain sensors.
  • the recovered energy can come from various sources, for example vibrations, shocks, deformations, a force exerted by a user, etc.
  • the mechano-electrical conversion element may be of the piezoelectric type, or of another type, for example of the electrostatic, electromagnetic, magnetostrictive type, etc.
  • a mechanical energy recovery generator may comprise an electrical energy conversion device, comprising, for example, a voltage converter. or current, or a current / voltage converter.
  • the electrical energy conversion device may comprise a rectifying element, for example a diode bridge, receiving the energy supplied by the mechano-electric conversion element, and, at the output of the rectifying element, an element capacitive storage device, for example a capacitor, an accumulator, or a battery, providing a level DC voltage suitable for powering an electronic system.
  • a rectifying element for example a diode bridge
  • an element capacitive storage device for example a capacitor, an accumulator, or a battery
  • an electrical energy conversion device comprising an active electrical energy converter, for example a switching converter, the mechano-electrical conversion element and the storage element.
  • the switching converter receives a signal (optionally rectified) of amplitude depending on the amount of mechanical energy received and the characteristics of the mechano-electrical conversion element, and provides, at the terminals of the storage element , a level continuous signal suitable for powering an electronic system.
  • the losses related to the difference in signal level between the output of the mechano-electrical conversion element and the storage element are thus reduced.
  • a problem is that a switching converter requires power to operate. In steady state, the power supply of the switching converter can be taken from the output storage element of the voltage converter.
  • FIG. 1 schematically represents an example of an embodiment of an electrical energy conversion device 100, adapted to transform an alternating or transient electrical energy, for example provided by a mechano-electric conversion element (not shown) or any other source of fluctuating or intermittent energy, in a DC voltage, for example compatible with the power supply of an electronic system (not shown).
  • a mechano-electric conversion element not shown
  • any other source of fluctuating or intermittent energy in a DC voltage, for example compatible with the power supply of an electronic system (not shown).
  • the device 100 comprises a rectifying element 101 comprising input nodes A and B respectively connected to or coupled to input nodes E1 and E2 of the device 100 (which can be connected to output nodes of a recovery device of energy), and output nodes C and D.
  • the rectifying element 101 comprises a diode 102 between the nodes A and C, a diode 103 between the nodes B and C, a diode 104 between the nodes D and A, and a diode 105 between the nodes D and B, the anodes of the diodes 102, 103, 104 and 105 being respectively node A side, node side B, node side D, and node side D.
  • the device 100 includes in in addition to a switching converter 107 of continuous / DC type (DC / DC), comprising input nodes E and F, respectively connected to the output nodes C and D of the rectifying element 101, and output nodes G and H, respectively connected to output nodes S1 and S2 of the device 100.
  • the device 100 further comprises a storage element 109, for example a capacitor, an accumulator, or an electric battery, between the nodes S1 and S2. Element 109 may also have a filtering function.
  • the device 100 furthermore comprises an electronic circuit 111 for controlling transistors (not visible in FIG. 1) of the switching converter 107.
  • the circuit 111 comprises top and bottom feed nodes J connected respectively to the nodes S1 and S2.
  • the node J is directly connected to the node S2, and the node I is connected to the node S1 through a normally open switch 113, for example a P-channel MOS transistor.
  • the device 100 includes a normally-closed (“bypass switch") switch 115 between an output node of the rectifier 101 and an output node of the switching converter 107.
  • the switch 115 may be a normally on transistor, or a depletion transistor, that is to say a transistor in which a channel exists when no voltage is present. applied on its control node (for example when the gate-source voltage is zero in the case of a MOS transistor).
  • the switch 115 is for example a DMOS transistor, also called MOS depletion or depletion transistor.
  • the conduction nodes of the switch 115 are directly connected respectively to the output node C of the rectifying element 101 and to the output node G of the switching converter 107.
  • a diode (not shown) may be connected in series with the switch 115, between the nodes C and G, for example upstream of the switch 115, so as not to allow the passage of current in the switch 115 only in the direction of the node C to the node G.
  • the device 100 further comprises a circuit 117 for comparing a voltage at a threshold, adapted to control the switches 115 and 113 as a function of the voltage across the storage element 109.
  • the circuit 117 comprises input nodes of high potential M and low potential N respectively connected to the output nodes S1 and S2 of the device 100, and an output node 0 connected to the control gates of the switches 115 and 113.
  • the storage element 109 is discharged, that is, the voltage between the output nodes SI and S2 is substantially zero. Since the circuit 117 is not powered, no control signal is applied to the switches 115 and 113. The switch 115, which is normally closed, is therefore in the on state, and the switch 113, which is normally open, is in the off state. In addition, the control circuit 111 of the switching converter 107 is not powered, the switching converter 107 is inactive.
  • the switch 115 is a N-channel depletion transistor (D OS), and the switch 113 is a P-channel enhancement transistor (MOS).
  • the circuit 117 applies a same low level control signal to the gates transistors 115 and 113, thus makes it possible simultaneously to control the opening of transistor 115 and the closing of transistor 113.
  • the closing of the switch 113 causes the control circuit 111 of the switching converter 107 to be powered up, and thus the activation of the converter 107.
  • the electrical energy required to control the transistors of the switching converter 107 is drawn from the storage element 109 by the circuit 111.
  • the opening of the switch 115 interrupts the bypassing conductive path of the switching converter 107.
  • the electrical output signal of the rectifying element 101 is therefore no longer directly reported. at the terminals of the storage element 109, but is transformed by the switching converter 107, and the output signal of the converter 107 charges the storage element 109.
  • An advantage of the embodiment of Figure 1 is that the device 100 can start autonomously, even when the storage element 109 is fully discharged (for example after a long period without use). The device 100 therefore does not require an extra power supply.
  • the device 100 presents a high conversion efficiency compared to a device that does not include an active electrical energy converter (That is, receiving a specific power supply energy, other than the input signal to be converted).
  • the switches 113 and 115 may not be simultaneously controlled via the same signal, as in the example of Figure 1, but via separate signals.
  • a control unit (not shown), for example a microcontroller, may be provided between the output 0 of the circuit 117 and the control gates of the switches 113 and 115 for controlling the switch 113 independently of the transistor 115.
  • the closing of the switch 113 may, for example, be controlled slightly before the switch 115 is closed so as to ensure that the switching converter 107 is operational as soon as the switch 115 is opened.
  • the switch 115 switch 113 may be removed, i.e., node I may be directly connected to node S1.
  • FIG. 2 shows in greater detail an example of an embodiment of the voltage threshold detection circuit 117 of the device of FIG. 1, or circuit for comparing a voltage at a threshold.
  • the circuit 117 comprises three depletion MOS transistors (D OS) 201, 203 and 205, and two CMOS inverters (or NMOS-PMOS pairs) 207 and 209.
  • D OS depletion MOS transistors
  • CMOS inverters or NMOS-PMOS pairs
  • the source (S) of the transistor 201 is connected to the low potential input node N or ground node of the circuit 117 via a resistor 202 the source (S) of the transistor 203 is connected to an input node p of the inverter 207, and the source (S) of the transistor 205 is connected to a high supply node q of the inverters 207 and 209.
  • the inverters 207 and 209 are connected in series, that is to say the output r of the inverter 207 is connected to the input of the inverter 209.
  • the output of the inverter 209 is connected to the node 0 of output of the circuit 117.
  • the node N is connected to a low supply node of the inverters 207 and 209.
  • the gate of the transistor 205 is connected to the source of the transistor 201.
  • the gates of the transistors 201 and 203 are connected to the node N.
  • FIG. 3 is a timing diagram illustrating the evolution as a function of time, during a start-up phase of the device 100 of FIG. 1, of the voltages between the nodes M and N of the circuit 117, V " 2 between the nodes p and N of the circuit 117, V3 between the nodes q and N of the circuit 117, and V4 between the nodes 0 and N of the circuit 117.
  • the DMOS transistors 201, 203 and 205 are N-channel transistors, that is to say normally closed transistors, which open when a source-gate voltage greater than one positive threshold of tripping or opening is applied.
  • TH 201 'V TH203 and TH205 V ⁇ - opening are respective thresholds of the transistors 201, 203 and 205.
  • the voltage V] _ between the input nodes M and N of the circuit 117 is substantially zero (storage element 109 discharged).
  • the voltages V2, V3, and V4 are also substantially zero.
  • the transistor 203 tends to open.
  • the transistor 203 then behaves like a voltage limiter, and the voltage V2 stabilizes substantially at the value TH 203.
  • the voltage continues to increase with the charge of the capacitor 109, and the voltages V3 and V4 follow the same progression as the voltage V ] _.
  • the output voltage V4 remains low as long as the input voltage VI remains greater than the switching threshold of the circuit 117, that is to say approximately twice the saturation level VTR203 of the input voltage V2 of the inverters in this example. If the voltage VI drops below this threshold, the output voltage V4 of the circuit 117 switches back to a high state.
  • An advantage of the circuit 117 of FIG. 2 is that, when the voltage V] reaches the switching threshold of the circuit
  • the change of state of the output 0 of the circuit 117 is particularly fast.
  • this makes it possible in particular to avoid undesirable locking of the device 100 in a configuration in which the switches 113 and 115 are both partially closed.
  • Another advantage is that after the start-up phase, when the device 100 is running established, the inverters 207 and 209 do not switch, and the DMOS transistors 201, 203 and 205 are in a state almost completely open, each DMOS transistor having its source-gate voltage substantially equal to the opening threshold of the transistor. As a result, the consumption of circuit 117 in steady state is very low, for example less than 50 nanoamperes.
  • circuit 117 does not require, in order to operate, to receive a specific power supply other than the voltage to be monitored between its input nodes M and N.
  • the inverters 207 and 209 of the circuit 117 are for example so-called simple inverters, that is to say each comprising first and second complementary transistors in series between high and low supply nodes of the inverter, the gates of the two transistors being interconnected.
  • the inverters 207 and 209 may be so-called encapsulated inverters, that is to say each comprising, in addition to the first and second transistors of a single inverter, third and fourth transistors respectively between the node of high power supply and the source of the first transistor, and between the low supply node and the source of the second transistor, the gates of the third and fourth transistors being connected to the gates of the first and second transistors.
  • the inverters 207 and 209 may be so-called delayed encapsulated inverters, that is to say each comprising, in addition to the four transistors of an encapsulated inverter, an RC delay circuit between the gates of the first and second transistors, and the gates of the third and fourth transistors.
  • delayed encapsulated inverters that is to say each comprising, in addition to the four transistors of an encapsulated inverter, an RC delay circuit between the gates of the first and second transistors, and the gates of the third and fourth transistors.
  • circuit 117 of Figure 2 may be provided, these variants may, if necessary, be combined.
  • a capacitance can be added between the ground node N of the circuit 117, and each of the inputs and / or outputs of the inverters 207 and 209, so as to stabilize the input and / or output states of the inverters.
  • a resistor can be added between the ground node N of the circuit 117, and each of the inputs and / or outputs of the inverters 207 and 209, so as to facilitate the switching of the inverters or their return to the state. initial when the voltage VI is reduced.
  • the transistor 203 acts as a limiter of the input voltage V2 of the inverter 207
  • the cascade of the transistors 201 and 205 acts as a voltage limiter.
  • V3 for supplying the inverters 207 and 209.
  • the transistors 201, 205 and the resistor 202 may be replaced by a single DMOS transistor (whose drain, source and gate are respectively connected to the nodes M, q and N) having an opening threshold equal to TH 201 + V TH205 ' or P by a limiter of voltage comprising a number of cascaded DMOS transistors greater than 2, and the transistor 203 can be replaced by several cascaded DMOS transistors.
  • the limiter of the voltage V3, formed in the example of FIG. 2 by the cascade of the transistors 201 and 205 and by the resistor 202 can be replaced by a simplified voltage limiter, comprising a first diode (Not shown) whose anode is connected to the node M and whose cathode is connected to the node q.
  • a second diode (not shown) may further be provided between the node M and the drain (D) of the transistor 203.
  • each of the first and second diodes may be replaced by a combination of a plurality of diodes. series, depending on the voltage drop that it is desired to obtain between the node M and the node q on the one hand, and between the node M and the drain of the transistor 203 on the other hand.
  • the limiter of the voltage V3, formed in the example of Figure 2 by the cascade of the transistors 201 and 205 and the resistor 202, is optional.
  • this voltage limiter can be deleted, and the node M can for example be directly connected to the node q.
  • the DMOS transistors 201, 203 and 205 of the circuit 117 may be replaced by other types of normally closed switches having a similar operation, that is to say, tending to open when a Control voltage exceeding a threshold is applied to them, for example JFET transistors.
  • the circuit 117 may comprise a number of CMOS inverters in series greater than 2. This in particular makes it possible to increase the switching speed of the circuit.
  • the circuit 117 may include a single inverter (i.e., the inverter 209 may be removed, and the output r of the inverter 207 may be directly connected to the output 0 of the circuit 117).
  • FIG. 4 represents another example of an embodiment of a circuit 617 for comparing a voltage at a threshold.
  • the circuit 617 can be used instead of the circuit 117 for comparing a voltage at a threshold in the electrical energy conversion circuit described above in connection with FIG. 1, or in conversion circuits. of electrical energy of the type described hereinafter with reference to FIGS. 5 and 6.
  • the circuit 617 comprises the same elements as the circuit 117 of Figure 2, arranged substantially in the same manner, and further comprises additional resistors. In the following, only the differences between the circuits 617 and 117 will be detailed.
  • the circuit 617 comprises a resistor 621 between the input node p of the inverter 207 and the source node (S) of the transistor 203 (instead of a direct connection in the circuit 117 of the FIG. 2), a resistor 623 between the node p and the node N, and a resistor 625 between the input node p of the inverter 207 and the output node 0 of the comparison circuit.
  • a resistor 627 may optionally be provided between the source node (S) of the transistor 203 and the node N.
  • the resistors 621, 623 and 625 give the circuit 617 hysteresis properties.
  • the circuit 617 behaves like a comparison circuit Schmitt trigger type with two switching thresholds, a high threshold VH and a low threshold VB (with VB ⁇ VH). In other words, in operation, the output 0 of the circuit 617 goes low when the voltage V ] _ between the nodes M and N exceeds the threshold VH, but returns to the high state only when the voltage drops below the threshold VB.
  • the circuit 617 finds a very particular interest in electrical energy conversion circuits of the type described above in connection with FIG. 1, or of the type described below in relation with FIGS. 5 and 6.
  • the switching of the comparison circuit of voltage causes the activation of a switching converter, and may cause a temporary decrease in the voltage V ] _ monitored by the comparison circuit.
  • this decrease in voltage could cause a new switching of the comparison circuit, causing the almost immediate deactivation of the switching converter.
  • This phenomenon of voltage reduction monitored at the switching of the comparison circuit is particularly observed in electric energy conversion circuits with two storage elements, of the type described hereinafter with reference to FIG. 5.
  • circuit 617 of FIG. 4 is compatible with the various aforementioned embodiments of the circuit 117 of FIG. 2.
  • FIG. 5 schematically represents an alternative embodiment of the electrical energy conversion device of FIG. 1.
  • the conversion device 300 of FIG. 5 comprises the same elements as the device 100 of FIG. 1, and furthermore comprises , in addition to the storage element 109 connected between the nodes S1 and S2, a second capacitive storage element 302, for example a capacitor, a first electrode 302a of which is connected to the node G via a diode 304 , the anode of the diode 304 being node side G, and a second electrode 302b of which is connected to the node H.
  • a second capacitive storage element 302 for example a capacitor
  • the switching converter 107 and the diode 304 are components of an element 306 whose nodes 306a and 306b are respectively connected to the electrodes 302a and 302b of the storage element 302.
  • the device 300 furthermore differs from the device 100 of FIG. 1 in that the nodes M and I of high power of the circuits 111 and 117 are connected not to the node S1, as in the example of Figure 1, but at the output node 306a of the element 306, the cathode side of the diode 304 (through the switch 113 for the node I).
  • the switch 115 connects the output node C of the rectifier element 101 not directly to the output node G of the switching converter 107 as in the converter 100, but to the node 306a.
  • the circuit 117 opens the switch 115 and closes the switch 113, which causes the activation of the switching converter 107.
  • the storage elements 302 and 109 are both loaded by the electrical output signal of the switching converter 107.
  • the embodiment variant of FIG. 5 separates the storage element used for the power supply of the converter.
  • switching device 107 (element 302) of that used for supplying an external electronic system (element 109).
  • a storage element 109 of greater capacity than the storage element 302 for example of the order of 1 ⁇ F for the element 302 and of the order of 10 F to 1 mF for the item 109.
  • One advantage is that this makes it possible to start the switching converter more quickly, the charging speed of the element 302 being greater than that of the element 109.
  • the switching converter may comprise a transformer comprising, at the primary winding, and at the secondary, as many windings as there are storage elements in the conversion device, each winding of the secondary being electromagnetically coupled to the primary winding, and each winding being connected to one of the storage elements of the conversion device.
  • Each storage element is thus mainly loaded by the energy received by the secondary winding of the transformer associated with it.
  • the switching converter may comprise a transformer comprising, at the primary, a winding, and at the secondary, a single winding electromagnetically coupled to the primary winding, the energy received by the secondary winding being distributed between the various storage elements, for example by means of switches using MOS transistors and / or diodes.
  • FIG. 6 schematically represents an example of another embodiment of an electrical energy conversion device 400, adapted to transform an alternating or transient electrical signal (fluctuating signal), for example provided by a conversion element. mechanical-electric (not shown), in a continuous signal, for example compatible with the power supply of an electronic system (not shown).
  • the device 400 comprises a rectifying element 101, for example a diode bridge, comprising input nodes A and B respectively connected to input nodes E1 and E2 of the device, and output nodes C and D.
  • the device 400 further comprises a switching converter 407 comprising input nodes E and F, respectively connected to the input nodes E1 and E2 of the device 400, and output nodes G and H, respectively connected to nodes of output S1 and S2 of the device 400.
  • the output node D of the element of rectifier 101 is directly connected to the output node H of the switching converter 407, and the output node C of the rectifier element 101 is connected to the output node G of the switching converter 407 via a switch normally In other words, in the embodiment of FIG.
  • the switching converter is placed in parallel with the rectifying element 101, between the input and the output of the device 400, rather than series of the rectifying element as in the embodiments of Figures 1 and 3.
  • the device 400 further comprises a storage element 109, for example a capacitor between the nodes SI and S2.
  • the device 400 furthermore comprises an electronic circuit 111 for controlling transistors of the switching converter 407.
  • the circuit 111 comprises top and bottom feed nodes J respectively connected to the nodes S1 and S2. In the example shown, the node J is directly connected to the node S2, and the node I is connected to the node S1 through a switch 113 normally open.
  • the device 400 further comprises a circuit 113 for comparing a voltage at a threshold, for controlling the switches 115 and 113 as a function of the charge level of the element 109.
  • the circuit 117 comprises nodes high potential input M and low potential N respectively connected to the nodes S1 and S2, and an output node 0 connected to the control gates of the switches 115 and 113.
  • the switching converter 407 itself comprises a rectifier, so that, in steady state, when the switching converter is active, the rectifying element 101 is no longer need to be used, and can be disabled by opening the switch 115.
  • the switching converter 407 comprises a transformer comprising, at the primary, two windings 409 and 411, and, at the secondary, a winding 413 electromagnetically coupled to both winding 409 and the winding 411.
  • the switching converter 407 comprises a first branch comprising, in series between the nodes E and F, the winding 409, a diode 415 whose anode is winding side 409 , and a switching transistor 417, for example an N-channel OS transistor.
  • the first branch further comprises, in antiparallel of the transistor 417 and in anti-series of the diode 415, a freewheeling diode 419 which may be the diode parasite source / drain transistor 417.
  • the switching converter 407 further comprises, on the primary side, a second branch, parallel to the first branch, comprising, in series between the nodes E and F, the winding 411, a diode 421 of which the cathode is on the winding side 411, and a switching transistor 423, for example a P-channel MOS transistor.
  • the second branch further comprises, in antiparallel of the transistor 423 and in anti-series with the diode 421, a free-wheeling diode 425 which may be the source / drain parasitic diode of the transistor 423.
  • the switching converter 407 comprises, in series between the nodes G and H, the winding 413 and a diode 427 whose anode is on the H-side.
  • the embodiments described in the present application are not limited to the specific example of a start-up circuit described with reference to FIG. 2.
  • Those skilled in the art will be able to produce electrical energy conversion devices of the type described in the present application, replacing the circuit 117 by another starting circuit adapted to implement the desired operation, for example a circuit comprising an internal reference comparator whose output is connected to the gates of the switches 113 and 115, the comparator being configured to go from a high state to a low state when the voltage across a storage element of the device exceeds a threshold.
  • the electrical energy conversion devices described in the present application can be used in systems other than mechanical energy recovery generators, for example thermoelectric generators, photovoltaic generators, transponders or radio frequency devices, etc. .
  • the electrical energy conversion devices described can be used in any system requiring the transformation of an electrical input signal into a different level electrical signal.
  • the conversion devices described are of particular interest when there is a significant difference in voltage level between the input and the output of the device, and / or when the source of electrical energy input of the device is intermittent or fluctuating.
  • the rectifying element provided in the conversion devices of Figures 1, 4 and 5 is optional.
  • the embodiment of the switching converters 107 of the conversion devices of FIGS. 1 and 4 has not been detailed in the present application. It will be noted that the embodiments of FIGS. 1 and 4 are compatible with all conventional switching converters, and more generally with all active electrical energy converters, that is to say having at least one transistor, and requiring a specific power supply for its operation.
  • the embodiment of FIG. 6 is not limited to the specific example of a switching converter 407 described. More generally, the embodiment of FIG. 6 is compatible with any active converter adapted to implement a righting function.
  • circuits 117 and 617 described in connection with FIGS. 2 and 4 may be used in other electrical energy conversion devices than those described in the present application.
  • the circuits 117 and 617 can be used to detect a threshold voltage in an electrical energy conversion device of the type described in the aforementioned patent application 2873242, or in the article "Power Conversion and Integrated Circuit Architecture for High Voltage Piezoelectric Energy Harvesting" above.
  • circuits 117 and 617 are particularly advantageous for use in electrical energy conversion devices from fluctuating or intermittent sources such as ambient energy recovery generators, the circuits 117 and 617 may also be used in other electric power conversion devices, and, more generally, in any device requiring a circuit adapted to monitor a voltage and to switch a node between a first and a second state when the voltage to be monitored crosses a threshold .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne un circuit (117) de comparaison d'une tension (VI) à un premier seuil, dans lequel ledit premier seuil dépend d'un deuxième seuil d'ouverture d'au moins un premier interrupteur (203) normalement fermé.

Description

CIRCUIT DE COMPARAISON D ' UNE TENSION A UN SEUIL ET CONVERSION
D ' ENERGIE ELECTRIQUE
Domaine
La présente demande concerne la conversion d'énergie électrique de façon générale, et vise plus particulièrement la conversion d'énergie électrique dans des générateurs ou alimentations à récupération d'énergie ambiante. La présente demande vise aussi un circuit de comparaison d'une tension à un seuil .
Exposé de 1 ' art antérieur
Pour alimenter des systèmes électroniques à faible consommation d'énergie, on a proposé d'utiliser des générateurs adaptés à convertir de l'énergie disponible dans l'environnement du système, par exemple de l'énergie mécanique, en énergie électrique. On connaît notamment des générateurs dans lesquels de 1 ' énergie mécanique ambiante est convertie en énergie électrique par un élément piézoélectrique. Pour transformer l'énergie électrique fournie par l'élément piézoélectrique en énergie électrique exploitable par un système électronique, ces générateurs comprennent un dispositif de conversion d'énergie électrique placé en aval de l'élément piézoélectrique. Le dispositif de conversion d'énergie électrique peut comprendre un circuit de comparaison d'une tension à un seuil. Des exemples de dispositifs de conversion d'énergie électrique sont notamment décrits dans la demande de brevet français publiée sous le numéro 2873242, précédemment déposée par la demanderesse, et dans l'article "Power Conversion and Integrated Circuit Architecture for High Voltage Piezoelectric Energy Harvesting" de Pierre Gasnier et al . , décrivant des travaux antérieurs effectués par la demanderesse.
Résumé
Un mode de réalisation prévoit un circuit de comparaison d'une tension à un seuil, comportant : un premier inverseur dont des premier et second noeuds d'alimentation sont couplés respectivement à des premier et second noeuds d'application de ladite tension ; et un premier interrupteur normalement fermé reliant une entrée du premier inverseur au premier noeud d'application de la tension, une grille de commande du premier interrupteur étant reliée au deuxième noeud d'application de la tension.
Selon un mode de réalisation, le premier noeud d'alimentation du premier inverseur est relié au premier noeud d'application de la tension par l'intermédiaire d'un limiteur de tension.
Selon un mode de réalisation, le limiteur de tension comprend un deuxième interrupteur normalement fermé entre le premier noeud d'application de la tension et le premier noeud d'alimentation du premier inverseur.
Selon un mode de réalisation, le limiteur de tension comprend en outre au moins un troisième interrupteur normalement fermé cascadé avec le deuxième interrupteur.
Selon un mode de réalisation, le limiteur de tension comprend une diode dont l'anode est côté premier noeud (M) d'application de la tension et dont la cathode est côté premier noeud d'alimentation du premier inverseur.
Selon un mode de réalisation, le circuit de comparaison comporte un deuxième inverseur en série avec le premier inverseur. Selon un mode de réalisation, un noeud de sortie du circuit de comparaison est relié à une sortie du deuxième inverseur .
Selon un mode de réalisation, le premier interrupteur est un transistor OS à déplétion.
Selon un mode de réalisation, l'entrée du premier inverseur est reliée à une sortie du circuit de comparaison par l'intermédiaire d'une première résistance.
Selon un mode de réalisation, l'entrée du premier inverseur est reliée au deuxième noeud d'application de la tension par l'intermédiaire d'une deuxième résistance.
Selon un mode de réalisation, l'entrée du premier inverseur est reliée au premier interrupteur par 1 ' intermédiaire d'une troisième résistance.
Un autre mode de réalisation prévoit un circuit de conversion d'énergie comportant : un premier élément comprenant un convertisseur d'énergie électrique ; et un circuit de comparaison de tension du type susmentionné.
Selon un mode de réalisation, le circuit de conversion d'énergie comporte en outre un deuxième élément de stockage d'énergie électrique, susceptible d'être alimenté par le premier élément .
Selon un mode de réalisation, le circuit de conversion d'énergie comporte en outre un interrupteur de contournement normalement fermé placé entre un noeud d'entrée et un noeud de sortie du premier élément.
Selon un mode de réalisation, le circuit de comparaison est configuré pour comparer la tension aux bornes du deuxième élément au seuil .
Selon un mode de réalisation, le circuit de comparaison est configuré pour commander 1 ' interrupteur de contournement en fonction de la tension aux bornes du deuxième élément .
Selon un mode de réalisation, le circuit de comparaison est configuré pour commander un interrupteur normalement ouvert relié à un noeud d'alimentation d'un circuit de commande du convertisseur d'énergie électrique.
Selon un mode de réalisation, le deuxième élément est configuré pour alimenter un circuit de commande du convertisseur d'énergie électrique, et un troisième élément de stockage d'énergie électrique est configuré pour alimenter une charge extérieure .
Brève description des dessins
Ces caractéristiques et leurs avantages, ainsi que d'autres, seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
la figure 1 représente de façon schématique un exemple d'un mode de réalisation d'un dispositif de conversion d'énergie électrique ;
la figure 2 représente un exemple d'un mode de réalisation d'un circuit de comparaison d'une tension à un seuil ;
la figure 3 est un chronogramme illustrant le fonctionnement du circuit de comparaison de la figure 2 ;
la figure 4 représente une variante de réalisation d'un circuit de comparaison d'une tension à un seuil ;
la figure 5 représente de façon schématique une variante de réalisation du dispositif de conversion d'énergie électrique de la figure 1 ; et
la figure 6 représente de façon schématique un exemple d'un autre mode de réalisation d'un dispositif de conversion d'énergie électrique.
Par souci de clarté, de mêmes éléments ont été désignés par de mêmes références aux différentes figures.
Description détaillée
Des générateurs à récupération d'énergie ambiante (par exemple d'énergie mécanique) peuvent être utilisés dans des domaines variés, par exemple le transport, pour alimenter des capteurs de pression, de température, de vibration, etc., placés sur un véhicule ; l'industrie, pour alimenter des capteurs de surveillance de machines ; l'habitat, pour alimenter des interrupteurs sans fil, des capteurs de présence, des capteurs de contraintes, etc. ; le médical, pour alimenter des appareils d'assistance ou de surveillance implantés dans le corps d'un patient ; l'environnement, pour alimenter des capteurs de surveillance de phénomènes météorologiques ou autres ; la défense et le spatial, pour alimenter des capteurs de surveillance d'appareils ou de frontières ; et l'électronique grand public, pour alimenter totalement ou partiellement des appareils portatifs tels que des téléphones, lecteurs P3, télécommande, etc. L'utilisation de générateurs à récupération d'énergie ambiante permet notamment de réaliser des capteurs sans fil totalement autonomes, donc faciles à mettre en place et ne nécessitant pas des opérations récurrentes et coûteuses de remplacement de batteries. L'utilisation de générateurs à récupération d'énergie ambiante permet aussi de prolonger la durée de vie des batteries de certains capteurs .
Dans un générateur à récupération d'énergie mécanique, l'énergie récupérée peut provenir de diverses sources, par exemple de vibrations, de chocs, de déformations, d'une force exercée par un utilisateur, etc. L'élément de conversion mécano- électrique peut être de type piézoélectrique, ou d'un autre type, par exemple de type électrostatique, électromagnétique, magnétostrictif, etc.
La plupart du temps, l'énergie électrique fournie par l'élément de conversion mécano-électrique n'est pas directement exploitable pour alimenter un système électronique. En effet, les systèmes électroniques usuels sont alimentés par des tensions continues de quelques volts, par exemple de l'ordre de 2 à 12 volts, alors que l'élément de conversion mécano- électrique fournit généralement une tension alternative ou transitoire de forte amplitude, par exemple supérieure à 30 volts, et un courant très faible, par exemple de l'ordre de 10 nano-ampères à 100 micro-ampères, ou moins. Pour transformer l'énergie électrique fournie par l'élément de conversion mécano-électrique en énergie exploitable par un système électronique, un générateur à récupération d'énergie mécanique peut comprendre un dispositif de conversion d'énergie électrique, comprenant par exemple un convertisseur de tension ou de courant, ou un convertisseur courant/tension.
Le dispositif de conversion d'énergie électrique peut comprendre un élément de redressement, par exemple un pont de diodes, recevant l'énergie fournie par l'élément de conversion mécano-électrique, et, en sortie de l'élément de redressement, un élément capacitif de stockage, par exemple un condensateur, un accumulateur, ou une batterie, fournissant une tension continue de niveau adapté à l'alimentation d'un système électronique. Un problème est que le rendement d'un tel dispositif de conversion est relativement faible, notamment lorsqu'il existe une différence de niveau de tension importante entre l'entrée et la sortie de l'élément de redressement.
Pour augmenter le rendement de conversion, on peut prévoir un dispositif de conversion d'énergie électrique comportant un convertisseur d'énergie électrique actif, par exemple un convertisseur à découpage, l'élément de conversion mécano-électrique et l'élément de stockage. En fonctionnement, le convertisseur à découpage reçoit un signal (éventuellement redressé) d'amplitude dépendant de la quantité d'énergie mécanique reçue et des caractéristiques de l'élément de conversion mécano-électrique, et fournit, aux bornes de l'élément de stockage, un signal continu de niveau adapté à l'alimentation d'un système électronique. Les pertes liées à la différence de niveau de signal entre la sortie de l'élément de conversion mécano-électrique et l'élément de stockage sont ainsi réduites. Un problème est lié au fait qu'un convertisseur à découpage nécessite d'être alimenté pour pouvoir fonctionner. En régime établi, l'énergie électrique d'alimentation du convertisseur à découpage peut être prélevée dans l'élément de stockage de sortie du convertisseur de tension. Toutefois, pendant une phase de démarrage du générateur, si l'élément de stockage est déchargé, une alimentation d'appoint est nécessaire. Il peut de plus être nécessaire de prévoir un circuit de comparaison d'une tension à un seuil pour détecter la fin de la phase de démarrage. Un problème est que les circuits de comparaison de tension connus ont une consommation en énergie électrique relativement importante. En outre, à la fin de la phase de démarrage, la commutation entre l'alimentation d'appoint et l'alimentation par l'élément de stockage peut poser des difficultés.
Il serait souhaitable de pouvoir résoudre tout ou partie des problèmes des dispositifs de conversion d'énergie électrique connus .
En outre, il serait souhaitable de pouvoir disposer d'un circuit de comparaison d'une tension à un seuil palliant tout ou partie des problèmes des circuits de comparaison connus .
La figure 1 représente de façon schématique un exemple d'un mode de réalisation d'un dispositif de conversion d'énergie électrique 100, adapté à transformer une énergie électrique alternative ou transitoire, par exemple fournie par un élément de conversion mécano-électrique (non représenté) ou toute autre source d'énergie fluctuante ou intermittente, en une tension continue, par exemple compatible avec l'alimentation d'un système électronique (non représenté) .
Le dispositif 100 comprend un élément de redressement 101 comportant des noeuds d'entrée A et B, respectivement reliés ou couplés à des noeuds d'entrée El et E2 du dispositif 100 (pouvant être reliés à des noeuds de sortie d'un dispositif de récupération d'énergie), et des noeuds de sortie C et D. Dans l'exemple représenté, l'élément de redressement 101 comprend une diode 102 entre les noeuds A et C, une diode 103 entre les noeuds B et C, une diode 104 entre les noeuds D et A, et une diode 105 entre les noeuds D et B, les anodes des diodes 102, 103, 104 et 105 étant respectivement côté noeud A, côté noeud B, côté noeud D, et côté noeud D. Le dispositif 100 comprend en outre un convertisseur à découpage 107 de type continu/continu (DC/DC) , comportant des noeuds d'entrée E et F, respectivement reliés aux noeuds de sortie C et D de l'élément de redressement 101, et des noeuds de sortie G et H, respectivement reliés à des noeuds de sortie SI et S2 du dispositif 100. Le dispositif 100 comprend de plus un élément de stockage 109, par exemple un condensateur, un accumulateur, ou une batterie électrique, entre les noeuds SI et S2. L'élément 109 peut aussi avoir une fonction de filtrage. Le dispositif 100 comprend par ailleurs un circuit électronique 111 de contrôle de transistors (non visibles sur la figure 1) du convertisseur à découpage 107. Le circuit 111 comprend des noeuds d'alimentation haut I et bas J reliés respectivement aux noeuds SI et S2. Dans l'exemple représenté, le noeud J est directement relié au noeud S2, et le noeud I est relié au noeud SI par l'intermédiaire d'un interrupteur 113 normalement ouvert, par exemple un transistor MOS à canal P.
Selon un aspect, le dispositif 100 comprend un interrupteur 115 de contournement ("bypass switch" en anglais) normalement fermé ("normally on" en anglais) , entre un noeud de sortie de l'élément de redressement 101 et un noeud de sortie du convertisseur à découpage 107. L'interrupteur 115 peut être un transistor normalement passant ("normally on" en anglais) , ou transistor à appauvrissement, c'est-à-dire un transistor dans lequel un canal existe lorsqu ' aucune tension n'est appliquée sur son noeud de commande (par exemple lorsque la tension grille- source est nulle dans le cas d'un transistor MOS). L'interrupteur 115 est par exemple un transistor DMOS, aussi appelé transistor MOS à déplétion ou à appauvrissement. Dans l'exemple de la figure 1, des noeuds de conduction de l'interrupteur 115 sont directement reliés respectivement au noeud C de sortie de l'élément de redressement 101 et au noeud G de sortie du convertisseur à découpage 107. A titre de variante, une diode (non représentée) peut être reliée en série de l'interrupteur 115, entre les noeuds C et G, par exemple en amont de l'interrupteur 115, de façon à n'autoriser le passage du courant dans l'interrupteur 115 que dans le sens du noeud C vers le noeud G.
Le dispositif 100 comprend de plus un circuit 117 de comparaison d'une tension à un seuil, adapté à commander les interrupteurs 115 et 113 en fonction de la tension aux bornes de l'élément de stockage 109. Dans l'exemple représenté, le circuit 117 comprend des noeuds d'entrée de potentiel haut M et de potentiel bas N reliés respectivement aux noeuds de sortie SI et S2 du dispositif 100, et un noeud de sortie 0 relié aux grilles de commande des interrupteurs 115 et 113.
Le fonctionnement du dispositif de conversion d'énergie électrique de la figure 1 va maintenant être décrit.
Au début d'une phase de démarrage, par exemple lorsque le dispositif 100 n'a pas été utilisé pendant une longue période, l'élément de stockage 109 est déchargé, c'est-à-dire que la tension entre les noeuds de sortie SI et S2 est sensiblement nulle. Le circuit 117 n'étant pas alimenté, aucun signal de commande n'est appliqué aux interrupteurs 115 et 113. L'interrupteur 115, qui est normalement fermé, est donc à l'état passant, et l'interrupteur 113, qui est normalement ouvert, est à l'état non passant. De plus, le circuit 111 de contrôle du convertisseur à découpage 107 n'étant pas alimenté, le convertisseur à découpage 107 est inactif.
Lorsqu'un signal électrique alternatif ou transitoire, par exemple fourni par un élément de conversion mécano- électrique d'un générateur à récupération d'énergie mécanique, est reçu sur les noeuds d'entrée El et E2 du dispositif 100, ce signal est redressé par l'élément 101, qui ne nécessite pas d'alimentation spécifique (autre que le signal d'entrée qu'il reçoit) pour fonctionner. L'interrupteur 115 étant à l'état passant, il forme un chemin conducteur de contournement du convertisseur à découpage 107, et le signal électrique redressé fourni en sortie de l'élément 101 est reporté sur les noeuds de sortie SI et S2 du dispositif 100. Ce signal vient charger l'élément de stockage 109. Lorsque le niveau de charge de 1 ' élément de stockage 109 dépasse un seuil, le circuit 117 le détecte et commande l'ouverture de l'interrupteur 115 et la fermeture de l'interrupteur 113. Dans cet exemple, l'interrupteur 115 est un transistor à déplétion (D OS) à canal N, et l'interrupteur 113 est un transistor à enrichissement (MOS) à canal P. L'application, par le circuit 117, d'un même signal de commande de niveau bas sur les grilles des transistors 115 et 113, permet donc de commander simultanément l'ouverture du transistor 115 et la fermeture du transistor 113.
La fermeture de l'interrupteur 113 provoque la mise sous tension du circuit 111 de contrôle du convertisseur à découpage 107, et donc l'activation du convertisseur 107. L'énergie électrique nécessaire à la commande des transistors du convertisseur à découpage 107 est puisée dans l'élément de stockage 109 par le circuit 111. L'ouverture de l'interrupteur 115 interrompt le chemin conducteur de contournement du convertisseur à découpage 107. Le signal électrique de sortie de l'élément de redressement 101 n'est donc plus directement reporté aux bornes de l'élément de stockage 109, mais est transformé par le convertisseur à découpage 107, et le signal de sortie du convertisseur 107 vient charger l'élément de stockage 109.
Un avantage du mode de réalisation de la figure 1 est que le dispositif 100 peut démarrer de façon autonome, même lorsque l'élément de stockage 109 est totalement déchargé (par exemple après une longue période sans utilisation) . Le dispositif 100 ne nécessite donc pas d'alimentation d'appoint.
Un autre avantage est que, en régime établi, c'est-à- dire après une phase de démarrage au cours de laquelle l'élément de stockage 109 est chargé à un niveau suffisant pour alimenter le convertisseur à découpage 107, le dispositif 100 présente un rendement de conversion élevé par rapport à un dispositif ne comportant pas de convertisseur d'énergie électrique actif (c'est-à-dire dire recevant une énergie d'alimentation électrique spécifique, autre que le signal d'entrée à convertir) .
A titre de variante, les interrupteurs 113 et 115 peuvent ne pas être commandés simultanément via un même signal, comme dans l'exemple de la figure 1, mais via des signaux distincts. A titre d'exemple, une unité de contrôle non représentée, par exemple un microcontrôleur, peut être prévue entre la sortie 0 du circuit 117 et les grilles de commande des interrupteurs 113 et 115 pour commander l'interrupteur 113 indépendamment du transistor 115. La fermeture de l'interrupteur 113 peut par exemple être commandée légèrement avant la fermeture de l'interrupteur 115 de façon à garantir que le convertisseur à découpage 107 soit opérationnel dès l'ouverture de l'interrupteur 115. Dans une autre variante de réalisation, l'interrupteur 113 peut être supprimé, c'est-à-dire que le noeud I peut être directement relié au noeud SI .
La figure 2 représente plus en détail un exemple d'un mode de réalisation du circuit 117 de détection de seuil de tension du dispositif de la figure 1, ou circuit de comparaison d'une tension à un seuil. Dans cet exemple, le circuit 117 comprend trois transistors MOS à déplétion (D OS) 201, 203 et 205, et deux inverseurs CMOS (ou paires NMOS-PMOS) 207 et 209. Les drains (D) des transistors 201, 203 et 205 sont reliés au noeud d'entrée M de potentiel haut du circuit 117. La source (S) du transistor 201 est reliée au noeud d'entrée N de potentiel bas ou noeud de masse du circuit 117 par l'intermédiaire d'une résistance 202, la source (S) du transistor 203 est reliée à un noeud p d'entrée de l'inverseur 207, et la source (S) du transistor 205 est reliée à un noeud q d'alimentation haute des inverseurs 207 et 209. Les inverseurs 207 et 209 sont reliés en série, c'est-à-dire que la sortie r de l'inverseur 207 est reliée à l'entrée de l'inverseur 209. La sortie de l'inverseur 209 est reliée au noeud 0 de sortie du circuit 117. Le noeud N est relié à un noeud s d'alimentation basse des inverseurs 207 et 209. La grille du transistor 205 est reliée à la source du transistor 201. Les grilles des transistors 201 et 203 sont reliées au noeud N.
Le fonctionnement du circuit 117 de la figure 2 va maintenant être décrit en relation avec les figures 1, 2 et 3.
La figure 3 est un chronogramme illustrant l'évolution en fonction du temps, lors d'une phase de démarrage du dispositif 100 de la figure 1, des tensions entre les noeuds M et N du circuit 117, V"2 entre les noeuds p et N du circuit 117, V3 entre les noeuds q et N du circuit 117, et V4 entre les noeuds 0 et N du circuit 117.
Dans l'exemple de la figure 2, les transistors DMOS 201, 203 et 205 sont des transistors à canal N, c'est-à-dire des transistors normalement fermés, qui s'ouvrent lorsqu'une tension source-grille supérieure à un seuil positif de déclenchement ou d'ouverture est appliquée. On désignera ci-après par TH201' VTH203 et VTH205 ^-es seuils d'ouverture respectifs des transistors 201, 203 et 205.
A un instant tO de début d'une phase de démarrage, la tension V]_ entre les noeuds d'entrée M et N du circuit 117 est sensiblement nulle (élément de stockage 109 déchargé) . Les tensions V2, V3, et V4 sont aussi sensiblement nulles.
A un instant tl, lorsque l'élément de stockage 109 (figure 1) commence à se charger, la tension augmente. Les transistors 203 et 205 étant à l'état passant, les tensions V2 et V3 suivent la même progression que la tension V]_ . La tension V4 de sortie du circuit 117 augmente également.
A un instant t2, lorsque la tension V2 approche du seuil d'ouverture TH203 du transistor 203, le transistor 203 tend à s'ouvrir. Le transistor 203 se comporte alors comme un limiteur de tension, et la tension V2 se stabilise sensiblement à la valeur TH203- La tension continue d'augmenter avec la charge du condensateur 109, et les tensions V3 et V4 suivent la même progression que la tension V]_ .
A un instant t3, lorsque la tension V3 d'alimentation des inverseurs 207 et 209 dépasse un seuil égal à environ deux fois le niveau de saturation TH203 de tension d'entrée V2 des inverseurs, la sortie r de l'inverseur 207 commute d'un état bas à un état haut. La sortie de l'inverseur 209 commute alors d'un état haut (tension V sensiblement égale à la tension V3 d'alimentation des inverseurs) à un état bas (tension V4 sensiblement nulle) , c'est-à-dire que le noeud 0 de sortie du circuit 117 est ramené sensiblement au potentiel du noeud de masse N. Cette commutation marque la fin de la phase de démarrage. Dans le dispositif conversion d'énergie électrique de la figure 1, elle provoque l'ouverture de l'interrupteur 115 et la fermeture de l'interrupteur 113, et donc l'activation du convertisseur à découpage 107.
A un instant t4 peu après l'instant t3, la tension V3 se stabilise à une valeur sensiblement égale à VTH201 + VTH205' et ce, même si la tension V]_ continue d'augmenter au-delà de cette valeur. Ceci permet de limiter la consommation des inverseurs 207 et 209.
Après l'instant t4, la tension de sortie V4 reste à l'état bas tant que la tension d'entrée VI reste supérieure au seuil de commutation du circuit 117, c'est-à-dire approximativement deux fois le niveau de saturation VTR203 de la tension d'entrée V2 des inverseurs dans cet exemple. Si la tension VI redescend en dessous de ce seuil, la tension de sortie V4 du circuit 117 commute à nouveau vers un état haut.
Un avantage du circuit 117 de la figure 2 est que, lorsque la tension V]_ atteint le seuil de commutation du circuit
117, le changement d'état de la sortie 0 du circuit 117 est particulièrement rapide. Lorsque le circuit 117 est utilisé dans le dispositif de conversion d'énergie électrique 100 de la figure 1, ceci permet notamment d'éviter un verrouillage indésirable du dispositif 100 dans une configuration dans laquelle les interrupteurs 113 et 115 seraient tous deux partiellement fermés .
Un autre avantage est que, après la phase de démarrage, lorsque le dispositif 100 fonctionne en régime établi, les inverseurs 207 et 209 ne commutent pas, et les transistors DMOS 201, 203 et 205 sont dans un état presque totalement ouvert, chaque transistor DMOS ayant sa tension source-grille sensiblement égale au seuil d'ouverture du transistor. Il en résulte que la consommation du circuit 117 en régime établi est très faible, par exemple inférieure à 50 nano- ampères .
Un autre avantage du circuit 117 est qu'il ne nécessite pas, pour fonctionner, de recevoir une alimentation électrique spécifique, autre que la tension à surveiller entre ses noeuds d'entrée M et N.
Les inverseurs 207 et 209 du circuit 117 sont par exemple des inverseurs dits simples, c'est-à-dire comportant chacun des premier et deuxième transistors complémentaires en série entre des noeuds d'alimentation haute et basse de l'inverseur, les grilles des deux transistors étant reliées entre elles. A titre de variante, les inverseurs 207 et 209 peuvent être des inverseurs dits encapsulés, c'est-à-dire comportant chacun, en plus des premier et deuxième transistors d'un inverseur simple, des troisième et quatrième transistors respectivement entre le noeud d'alimentation haute et la source du premier transistor, et entre le noeud d'alimentation basse et la source du deuxième transistor, les grilles des troisième et quatrième transistors étant reliées aux grilles des premier et deuxième transistors. A titre de variante, les inverseurs 207 et 209 peuvent être des inverseurs dits encapsulés retardés, c'est- à-dire comportant chacun, en plus des quatre transistors d'un inverseur encapsulé, un circuit de retard RC entre les grilles des premier et deuxième transistors, et les grilles des troisième et quatrième transistors. L'utilisation d'inverseurs de type encapsulé ou encapsulé-retardé permet notamment de limiter la consommation du circuit 117, en évitant qu'un chemin de conduction ne soit créé entre les noeuds d'alimentation haut et bas de l'inverseur lors de la commutation du circuit 117. Les inventeurs ont constaté que le circuit de 117 de la figure 2 présente de bonnes performances lorsqu'on utilise, pour le transistor D OS 201, un composant référencé BF992 présentant un seuil d'ouverture de 1,4 volts, pour les transistors DMOS 203 et 205, des composants référencés BF994 présentant un seuil de d'ouverture de 1 volt, pour les inverseurs 207 et 209, des montages de type encapsulé utilisant des composants référencés MC14007, et pour la résistance 202, une résistance de 500 ΜΩ. Les modes de réalisation décrits ne se limitent bien entendu pas à ce cas particulier.
Diverses variantes du circuit 117 de la figure 2 peuvent être prévues, ces variantes pouvant, le cas échéant, être combinées .
A titre de première variante, une capacité peut être ajoutée entre le noeud de masse N du circuit 117, et chacune des entrées et/ou sorties des inverseurs 207 et 209, de façon à stabiliser les états d'entrée et/ou de sortie des inverseurs.
A titre de deuxième variante, une résistance peut être ajoutée entre le noeud de masse N du circuit 117, et chacune des entrées et/ou sorties des inverseurs 207 et 209, de façon à faciliter la commutation des inverseurs ou leur retour à l'état initial en cas de diminution de la tension VI .
Dans l'exemple de la figure 2, le transistor 203 joue le rôle d'un limiteur de la tension V2 d'entrée de l'inverseur 207, et la cascade des transistors 201 et 205 joue le rôle d'un limiteur de la tension V3 d'alimentation des inverseurs 207 et 209. A titre de troisième variante, on peut prévoir de réaliser chacun de ces limiteurs de tension avec un nombre de transistors DMOS cascadés différent de l'exemple de la figure 2, ce qui permet notamment d'ajuster le seuil de commutation du circuit 117. Par exemple, dans l'exemple de la figure 2, les transistors 201, 205 et la résistance 202 peuvent être remplacés par un unique transistor DMOS (dont le drain, la source et la grille sont respectivement connectés aux noeuds M, q et N) ayant un seuil d'ouverture égal à TH201 + VTH205' ou Par un limiteur de tension comportant un nombre de transistors DMOS cascadés supérieur à 2, et le transistor 203 peut être remplacé par plusieurs transistors DMOS cascadés .
A titre de quatrième variante, le limiteur de la tension V3, formé dans l'exemple de la figure 2 par la cascade des transistors 201 et 205 et par la résistance 202, peut être remplacé par un limiteur de tension simplifié, comportant une première diode (non représentée) dont l'anode est connectée au noeud M et dont la cathode est connectée au noeud q. Dans cette quatrième variante, une deuxième diode (non représentée) peut en outre être prévue entre le noeud M et le drain (D) du transistor 203. On notera que chacune des première et deuxième diodes peut être remplacée par une association de plusieurs diodes en série, en fonction de la chute de tension que l'on souhaite obtenir entre le noeud M et le noeud q d'une part, et entre le noeud M et le drain du transistor 203 d'autre part.
On notera par ailleurs que le limiteur de la tension V3, formé dans l'exemple de la figure 2 par la cascade des transistors 201 et 205 et par la résistance 202, est facultatif. A titre de cinquième variante, ce limiteur de tension peut être supprimé, et le noeud M peut par exemple être directement connecté au noeud q.
A titre de sixième variante, les transistors DMOS 201, 203 et 205 du circuit 117 peuvent être remplacés par d'autres types d'interrupteurs normalement fermés ayant un fonctionnement similaire, c'est-à-dire tendant à s'ouvrir lorsqu'une tension de commande dépassant un seuil leur est appliquée, par exemple des transistors JFET.
A titre de septième variante, le circuit 117 peut comporter un nombre d'inverseurs CMOS en série supérieur à 2. Ceci permet notamment d'augmenter la vitesse de commutation du circuit. Alternativement, le circuit 117 peut comporter un unique inverseur (c'est-à-dire que l'inverseur 209 peut être supprimé, et la sortie r de l'inverseur 207 peut être directement reliée à la sortie 0 du circuit 117) . La figure 4 représente un autre exemple d'un mode de réalisation d'un circuit 617 de comparaison d'une tension à un seuil. A titre d'exemple, le circuit 617 peut être utilisé en remplacement du circuit 117 de comparaison d'une tension à un seuil dans le circuit de conversion d'énergie électrique décrit précédemment en relation avec la figure 1, ou dans des circuits de conversion d'énergie électrique du type décrit ci-après en relation avec les figures 5 et 6.
Dans l'exemple de la figure 4, le circuit 617 comprend les mêmes éléments que le circuit 117 de la figure 2, agencés sensiblement de la même manière, et comprend en outre des résistances supplémentaires. Dans la suite, seules les différences entre les circuits 617 et 117 seront détaillées. Dans l'exemple représenté, le circuit 617 comprend une résistance 621 entre le noeud p d'entrée de l'inverseur 207 et le noeud de source (S) du transistor 203 (au lieu d'une connexion directe dans le circuit 117 de la figure 2) , une résistance 623 entre le noeud p et le noeud N, et une résistance 625 entre le noeud p d'entrée de l'inverseur 207 et le noeud 0 de sortie du circuit de comparaison. Une résistance 627 peut optionnellement être prévue entre le noeud de source (S) du transistor 203 et le noeud N. Les résistances 621, 623 et 625 confèrent au circuit 617 des propriétés d'hystérésis. Le circuit 617 se comporte comme un circuit de comparaison de type trigger de Schmitt à deux seuils de commutation, un seuil haut VH et un seuil bas VB (avec VB < VH) . En d'autres termes, en fonctionnement, la sortie 0 du circuit 617 passe à l'état bas lorsque la tension V]_ entre les noeuds M et N dépasse le seuil VH, mais ne repasse à nouveau à l'état haut que lorsque la tension redescend en dessous du seuil VB.
Le circuit 617 trouve un intérêt tout particulier dans des circuits de conversion d'énergie électrique du type décrit précédemment en relation avec la figure 1, ou du type décrit ci- après en relation avec les figures 5 et 6. En effet, dans de tels circuits, la commutation du circuit de comparaison de tension provoque l'activation d'un convertisseur à découpage, et peut entraîner une diminution temporaire de la tension V]_ surveillée par le circuit de comparaison. En l'absence d'hystérésis, cette diminution de tension pourrait entraîner une nouvelle commutation du circuit de comparaison, provoquant la désactivation quasi-immédiate du convertisseur à découpage. Ce phénomène de diminution de tension surveillée à la commutation du circuit de comparaison s'observe tout particulièrement dans des circuits de conversion d'énergie électrique à deux éléments de stockage, du type décrit ci-après en relation avec la figure 5.
On notera que le circuit 617 de la figure 4 est compatible avec les diverses variantes de réalisation susmentionnées du circuit 117 de la figure 2. Dans un mode de réalisation préféré, on prévoit un circuit de comparaison de tension à un seuil du type représenté en figure 4, mais dans lequel le limiteur de tension formé par les transistors 201 et 205 et par la résistance 202 est remplacé par une première diode dont 11 anode est connectée au noeud M et dont la cathode est connectée au noeud q, et dans lequel une deuxième diode est connectée en direct entre le noeud M et le drain (D) du transistor 203.
La figure 5 représente de façon schématique une variante de réalisation du dispositif de conversion d'énergie électrique de la figure 1. Le dispositif de conversion 300 de la figure 5 comprend les mêmes éléments que le dispositif 100 de la figure 1, et comprend en outre, en plus de l'élément de stockage 109 connecté entre les noeuds SI et S2, un deuxième élément capacitif de stockage 302, par exemple un condensateur, dont une première électrode 302a est reliée au noeud G par l'intermédiaire d'une diode 304, l'anode de la diode 304 étant côté noeud G, et dont une deuxième électrode 302b est reliée au noeud H. Dans le dispositif 300, le convertisseur à découpage 107 et la diode 304 sont des composants d'un élément 306 dont des noeuds de sortie 306a et 306b sont reliés respectivement aux électrodes 302a et 302b de l'élément de stockage 302. Le dispositif 300 diffère en outre du dispositif 100 de la figure 1 en ce que les noeuds M et I d'alimentation haute des circuits 111 et 117 sont reliés non pas au noeud SI, comme dans l'exemple de la figure 1, mais au noeud de sortie 306a de l'élément 306, côté cathode de la diode 304 (par l'intermédiaire de l'interrupteur 113 pour le noeud I) . De plus, l'interrupteur 115 relie le noeud C de sortie de l'élément de redressement 101 non pas directement au noeud G de sortie du convertisseur à découpage 107 comme dans le convertisseur 100, mais au noeud 306a.
Pendant une phase de démarrage, tant que le convertisseur à découpage 107 est inactif, seul l'élément de stockage 302 se charge. Lorsque l'élément 302 atteint un niveau de charge suffisant pour alimenter le convertisseur à découpage 107, le circuit 117 ouvre l'interrupteur 115 et ferme l'interrupteur 113, ce qui entraîne l'activation du convertisseur à découpage 107. En régime établi, les éléments de stockage 302 et 109 sont tous deux chargés par le signal électrique de sortie du convertisseur à découpage 107. En d'autres termes, la variante de réalisation de la figure 5 sépare l'élément de stockage utilisé pour l'alimentation du convertisseur à découpage 107 (élément 302) de celui utilisé pour l'alimentation d'un système électronique extérieur (élément 109) . On peut par exemple prévoir un élément de stockage 109 de plus grande capacité que l'élément de stockage 302 (par exemple de l'ordre de 1 uF pour l'élément 302 et de l'ordre de 10 F à 1 mF pour l'élément 109) . Un avantage est que ceci permet de démarrer plus rapidement le convertisseur à découpage, la vitesse de charge de l'élément 302 étant supérieure à celle de l'élément 109.
A titre de variante, un nombre d'éléments de stockage supérieur à deux peut être prévu, par exemple pour fournir des tensions de niveaux différents pour alimenter simultanément plusieurs systèmes électroniques distincts. On notera que pour réaliser un dispositif de conversion d'énergie électrique à deux éléments de stockage ou plus, d'autres montages que celui de la figure 5 peuvent être prévus. A titre d'exemple, le convertisseur à découpage peut comprendre un transformateur comportant, au primaire, un enroulement, et, au secondaire, autant d'enroulements qu'il y a d'éléments de stockage dans le dispositif de conversion, chaque enroulement du secondaire étant couplé électro-magnétiquement à l'enroulement primaire, et chaque enroulement étant relié à l'un des éléments de stockage du dispositif de conversion. Chaque élément de stockage est ainsi chargé principalement par l'énergie reçue par l'enroulement secondaire du transformateur qui lui est associé. A titre de variante, le convertisseur à découpage peut comprendre un transformateur comportant, au primaire, un enroulement, et au secondaire, un seul enroulement couplé électro-magnétiquement à l'enroulement primaire, l'énergie reçue par l'enroulement secondaire étant répartie entre les divers éléments de stockage, par exemple au moyen d'aiguillages utilisant des transistors MOS et/ou des diodes.
La figure 6 représente de façon schématique un exemple d'un autre mode de réalisation d'un dispositif de conversion d'énergie électrique 400, adapté à transformer un signal électrique alternatif ou transitoire (signal fluctuant) , par exemple fourni par un élément de conversion mécano-électrique (non représenté) , en un signal continu, par exemple compatible avec l'alimentation d'un système électronique (non représenté).
Le dispositif 400 comprend un élément de redressement 101, par exemple un pont de diodes, comportant des noeuds d'entrée A et B, respectivement reliés à des noeuds d'entrée El et E2 du dispositif, et des noeuds de sortie C et D. Le dispositif 400 comprend en outre un convertisseur à découpage 407 comportant des noeuds d'entrée E et F, respectivement reliés aux noeuds d'entrée El et E2 du dispositif 400, et des noeuds de sortie G et H, respectivement reliés à des noeuds de sortie SI et S2 du dispositif 400. Le noeud de sortie D de l'élément de redressement 101 est directement relié au noeud de sortie H du convertisseur à découpage 407, et le noeud de sortie C de l'élément de redressement 101 est relié au noeud de sortie G du convertisseur à découpage 407 par l'intermédiaire d'un interrupteur normalement fermé 115. En d'autres termes, dans le mode de réalisation de la figure 6, le convertisseur à découpage est placé en parallèle de l'élément de redressement 101, entre l'entrée et la sortie du dispositif 400, plutôt qu'en série de l'élément de redressement comme dans les modes de réalisation des figures 1 et 3. Le dispositif 400 comprend de plus un élément de stockage 109, par exemple un condensateur, entre les noeuds SI et S2. Le dispositif 400 comprend par ailleurs un circuit électronique 111 de contrôle de transistors du convertisseur à découpage 407. Le circuit 111 comprend des noeuds d'alimentation haut I et bas J reliés respectivement aux noeuds SI et S2. Dans l'exemple représenté, le noeud J est directement relié au noeud S2, et le noeud I est relié au noeud SI par l'intermédiaire d'un interrupteur 113 normalement ouvert. Le dispositif 400 comprend de plus un circuit 117 de comparaison d'une tension à un seuil, pour commander les interrupteurs 115 et 113 en fonction du niveau de charge de l'élément 109. Dans l'exemple représenté, le circuit 117 comprend des noeuds d'entrée de potentiel haut M et de potentiel bas N reliés respectivement aux noeuds SI et S2, et un noeud de sortie 0 relié aux grilles de commande des interrupteurs 115 et 113.
Selon un aspect du mode de réalisation de la figure 6, le convertisseur à découpage 407 comprend lui-même un redresseur, de sorte que, en régime établi, lorsque le convertisseur à découpage est actif, l'élément de redressement 101 n'a plus besoin d'être utilisé, et peut être désactivé par l'ouverture de l'interrupteur 115.
Dans l'exemple de la figure 6, le convertisseur à découpage 407 comprend un transformateur comportant, au primaire, deux enroulements 409 et 411, et, au secondaire, un enroulement 413 couplé électro-magnétiquement à la fois à l'enroulement 409 et à l'enroulement 411. Côté primaire, le convertisseur à découpage 407 comporte une première branche comportant, en série entre les noeuds E et F, l'enroulement 409, une diode 415 dont l'anode est côté enroulement 409, et un transistor de découpage 417, par exemple un transistor OS à canal N. La première branche comporte en outre, en antiparallèle du transistor 417 et en anti-série de la diode 415, une diode de roue libre 419 qui peut être la diode parasite source/drain du transistor 417. Le convertisseur à découpage 407 comporte en outre, côté primaire, une deuxième branche, parallèle à la première branche, comportant, en série entre les noeuds E et F, l'enroulement 411, une diode 421 dont la cathode est côté enroulement 411, et un transistor de découpage 423, par exemple un transistor MOS à canal P. La deuxième branche comporte en outre, en antiparallèle du transistor 423 et en anti-série avec la diode 421, une diode de roue libre 425 qui peut être la diode parasite source/drain du transistor 423. Côté secondaire, le convertisseur à découpage 407 comporte, en série entre les noeuds G et H, l'enroulement 413 et une diode 427 dont l'anode est côté noeud H.
Des modes de réalisation particuliers ont été décrits. Diverses variantes et modifications apparaîtront à l'homme de 1 ' art .
En particulier, les modes de réalisation décrits dans la présente demande ne se limitent pas à l'exemple spécifique de circuit de démarrage décrit en relation avec la figure 2. L'homme du métier saura réaliser des dispositifs de conversion d'énergie électrique du type décrit dans la présente demande, en remplaçant le circuit 117 par un autre circuit de démarrage adapté à mettre en oeuvre le fonctionnement recherché, par exemple un circuit comportant un comparateur à référence interne dont une sortie est reliée aux grilles des interrupteurs 113 et 115, le comparateur étant configuré pour passer d'un état haut à un état bas lorsque la tension aux bornes d'un élément de stockage du dispositif dépasse un seuil. De plus, les dispositifs de conversion d'énergie électrique décrits dans la présente demande peuvent être utilisés dans des systèmes autres que des générateurs à récupération d'énergie mécanique, par exemple des générateurs thermoélectriques, des générateurs photovoltaïques, des transpondeurs ou dispositifs radiofréquences, etc. Plus généralement, les dispositifs de conversion d'énergie électrique décrits peuvent être utilisés dans tout système nécessitant la transformation d'un signal électrique d'entrée en un signal électrique de niveau différent. Les dispositifs de conversion décrits trouvent un intérêt tout particulier lorsqu'il existe une différence de niveau de tension importante entre l'entrée et la sortie du dispositif, et/ou lorsque la source d'énergie électrique en entrée du dispositif est intermittente ou fluctuante .
On notera par ailleurs que l'élément de redressement prévu dans les dispositifs de conversion des figures 1, 4 et 5 est optionnel. De plus, la réalisation des convertisseurs à découpage 107 des dispositifs de conversion des figures 1 et 4 n'a pas été détaillée dans la présente demande. On notera que les modes de réalisation des figures 1 et 4 sont compatibles avec tous les convertisseurs à découpage usuels, et plus généralement, avec tous les convertisseurs d'énergie électrique actifs, c'est-à-dire comportant au moins un transistor, et nécessitant une alimentation électrique spécifique pour son fonctionnement. En outre, le mode de réalisation de la figure 6 ne se limite pas à l'exemple spécifique de convertisseur à découpage 407 décrit. Plus généralement, le mode de réalisation de la figure 6 est compatible avec tout convertisseur actif adapté à mettre en oeuvre une fonction de redressement.
Par ailleurs, les circuits 117 et 617 décrits en relation avec les figures 2 et 4 peuvent être utilisés dans d'autres dispositifs de conversion d'énergie électrique que ceux décrits dans la présente demande. A titre d'exemple, les circuits 117 et 617 peuvent être utilisés pour détecter un seuil de tension dans un dispositif de conversion d'énergie électrique du type décrit dans la demande de brevet 2873242 susmentionnée, ou dans l'article "Power Conversion and Integrated Circuit Architecture for High Voltage Piezoelectric Energy Harvesting" susmentionné .
De plus, bien que les circuits 117 et 617 soient particulièrement avantageux pour une utilisation dans des dispositifs de conversion d'énergie électrique provenant de sources fluctuantes ou intermittentes tels que des générateurs à récupération d'énergie ambiante, les circuits 117 et 617 peuvent aussi être utilisés dans d'autres dispositifs de conversion d'énergie électrique, et, plus généralement, dans tout dispositif nécessitant un circuit adapté à surveiller une tension et à faire commuter un noeud entre un premier et un deuxième état lorsque la tension à surveiller franchit un seuil.

Claims

REVENDICATIONS
1. Circuit (117 ; 617) de comparaison d'une tension (V]_) à un seuil, comportant :
un premier inverseur (207) dont des premier (q) et second (s) noeuds d'alimentation sont couplés respectivement à des premier (M) et second (N) noeuds d'application de ladite tension (V^) ; et
un premier interrupteur (203) normalement fermé reliant une entrée (p) du premier inverseur (207) au premier noeud (M) d'application de ladite tension (V^) , une grille de commande (G) du premier interrupteur (203) étant reliée au deuxième noeud (N) d'application de ladite tension (V^) .
2. Circuit (117 ; 617) selon la revendication 1, dans lequel le premier noeud (q) d'alimentation du premier inverseur (207) est relié au premier noeud (M) d'application de ladite tension (V]_) par l'intermédiaire d'un limiteur de tension.
3. Circuit (117 ; 617) selon la revendication 2, dans lequel ledit limiteur de tension comprend un deuxième interrupteur (205) normalement fermé entre le premier noeud (M) d'application de ladite tension (VI) et le premier noeud (q) d'alimentation du premier inverseur.
4. Circuit (117 ; 617) selon la revendication 3, dans lequel ledit limiteur de tension comprend en outre au moins un troisième interrupteur (201) normalement fermé cascadé avec le deuxième interrupteur (205) .
5. Circuit (117 ; 617) selon la revendication 2, dans lequel ledit limiteur de tension comprend une diode dont l'anode est côté premier noeud (M) d'application de ladite tension (V^) et dont la cathode est côté premier noeud (q) d'alimentation du premier inverseur (q) .
6. Circuit (117 ; 617) selon l'une quelconque des revendications 1 à 5, comportant un deuxième inverseur (209) en série avec le premier inverseur (207) .
7. Circuit (117 ; 617) selon la revendication 6, dans lequel un noeud de sortie (0) du circuit est relié à une sortie du deuxième inverseur (209) .
8. Circuit (117 ; 617) selon l'une quelconque des revendications 1 à 7, dans lequel le premier interrupteur (203) est un transistor OS à déplétion.
9. Circuit (617) selon l'une quelconque des revendications 1 à 8, dans lequel l'entrée (p) du premier inverseur (207) est reliée à une sortie (0) du circuit par l'intermédiaire d'une première résistance (625).
10. Circuit (617) selon l'une quelconque des revendications 1 à 9, dans lequel l'entrée (p) du premier inverseur (207) est reliée au deuxième noeud (N) d'application de ladite tension (V^) par l'intermédiaire d'une deuxième résistance (623) .
11. Circuit (617) selon l'une quelconque des revendications 1 à 10, dans lequel l'entrée (p) du premier inverseur (207) est reliée au premier interrupteur (203) par l'intermédiaire d'une troisième résistance (621).
12. Circuit (100 ; 300 ; 400) de conversion d'énergie comportant :
un premier élément (107 ; 306 ; 407) comprenant un convertisseur d'énergie électrique (107 ; 307 ; 407) ; et
un circuit (117 ; 617) de comparaison de tension selon l'une quelconque des revendications 1 à 11.
13. Circuit (100 ; 300 ; 400) selon la revendication
12, comportant en outre un deuxième élément (109 ; 302) de stockage d'énergie électrique, susceptible d'être alimenté par ledit premier élément (107 ; 306 ; 407).
14. Circuit (100 ; 300 ; 400) selon la revendication
13, comportant en outre un interrupteur de contournement (115) normalement fermé placé entre un noeud (E) d'entrée et un noeud (G ; 306a) de sortie du premier élément (107 ; 306 ; 407) .
15. Circuit (100 ; 300 ; 400) selon la revendication 13 ou 14, dans lequel le circuit (117 ; 617) de comparaison est configuré pour comparer la tension aux bornes du deuxième élément (109 ; 302) audit seuil.
16. Circuit (100 ; 300 ; 400) selon la revendication 15 dans son rattachement à la revendication 14, dans lequel le circuit (117 ; 617) de comparaison est configuré pour commander ledit interrupteur (115) de contournement en fonction de la tension aux bornes du deuxième élément (109 ; 302) .
17. Circuit (100 ; 300 ; 400) selon l'une quelconque des revendications 12 à 16, dans lequel le circuit (117 ; 617) de comparaison est configuré pour commander un interrupteur (113) normalement ouvert relié à un noeud d'alimentation d'un circuit (111) de commande dudit convertisseur d'énergie électrique (107 ; 307 ; 407) .
18. Circuit (300) selon la revendication 14, dans lequel le deuxième élément (302) est configuré pour alimenter un circuit (111) de commande dudit convertisseur d'énergie électrique (107 ; 307 ; 407) , et dans lequel un troisième élément (109) de stockage d'énergie électrique est configuré pour alimenter une charge extérieure.
PCT/FR2013/052356 2012-12-11 2013-10-03 Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique WO2014091096A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/650,644 US10511295B2 (en) 2012-12-11 2013-10-03 Circuit for comparison of a voltage with a threshold and conversion of electrical energy
EP13782792.9A EP2932588B1 (fr) 2012-12-11 2013-10-03 Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRPCT/FR2012/052880 2012-12-11
PCT/FR2012/052880 WO2014091088A1 (fr) 2012-12-11 2012-12-11 Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique

Publications (1)

Publication Number Publication Date
WO2014091096A1 true WO2014091096A1 (fr) 2014-06-19

Family

ID=47630397

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2012/052880 WO2014091088A1 (fr) 2012-12-11 2012-12-11 Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique
PCT/FR2013/052356 WO2014091096A1 (fr) 2012-12-11 2013-10-03 Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052880 WO2014091088A1 (fr) 2012-12-11 2012-12-11 Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique

Country Status (3)

Country Link
US (1) US10511295B2 (fr)
EP (1) EP2932588B1 (fr)
WO (2) WO2014091088A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988836B (zh) * 2013-12-16 2023-02-28 台达电子企业管理(上海)有限公司 控制方法及功率电路的封装结构
JP6274289B1 (ja) * 2016-10-18 2018-02-07 オムロン株式会社 電源回路
US10972093B2 (en) 2018-01-30 2021-04-06 Delta Electronics, Inc. Auxiliary circuit and power converter
CN108321773B (zh) * 2018-02-07 2019-07-30 上海艾为电子技术股份有限公司 检测电路及应用其的电子装置
IT201900004067A1 (it) * 2019-03-20 2020-09-20 Univ Degli Studi Della Campania Luigi Vanvitelli Dispositivo e metodo per l’ottimizzazione elettronica della potenza estratta da un harvester da vibrazioni

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070035334A1 (en) * 2005-08-15 2007-02-15 Winbond Electronics Corp. Comparator
KR20080089752A (ko) * 2007-04-02 2008-10-08 주식회사 하이닉스반도체 저 전력 비교기
US20110109347A1 (en) * 2009-11-09 2011-05-12 University Of Florida Research Foundation, Inc. Self-powered comparator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607854B2 (ja) * 1977-10-28 1985-02-27 株式会社東芝 単安定マルチバイブレ−タ回路
US4556961A (en) * 1981-05-26 1985-12-03 Tokyo Shibaura Denki Kabushiki Kaisha Semiconductor memory with delay means to reduce peak currents
JPH05137267A (ja) * 1991-11-12 1993-06-01 Dia Semikon Syst Kk 電源装置
JP3862306B2 (ja) * 1995-06-23 2006-12-27 三菱電機株式会社 半導体装置
JP3902111B2 (ja) * 2002-10-21 2007-04-04 新日本無線株式会社 スイッチ半導体集積回路
CN100364200C (zh) * 2004-02-12 2008-01-23 三菱电机株式会社 功率变换器
FR2873242B1 (fr) 2004-07-13 2007-12-21 Commissariat Energie Atomique Convertisseur de tension miniature monolithique a tres faible tension d'entree
US7106536B2 (en) * 2004-09-30 2006-09-12 Agere Systems Inc. Write head demagnetizer
TWI307553B (en) 2006-09-22 2009-03-11 Richtek Technology Corp Depletion mode transistor as start-up control element
KR100935720B1 (ko) * 2007-05-17 2010-01-08 주식회사 하이닉스반도체 입/출력라인 감지증폭기 및 이를 이용한 반도체 메모리장치
US8305050B2 (en) 2009-04-28 2012-11-06 Massachusetts Institute Of Technology Circuit and method to startup from very low voltages and improve energy harvesting efficiency in thermoelectric harvesters
US9112428B2 (en) * 2012-10-05 2015-08-18 Power Integrations, Inc. Application of normally-on switching elements/devices in a stacked switching circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070035334A1 (en) * 2005-08-15 2007-02-15 Winbond Electronics Corp. Comparator
KR20080089752A (ko) * 2007-04-02 2008-10-08 주식회사 하이닉스반도체 저 전력 비교기
US20110109347A1 (en) * 2009-11-09 2011-05-12 University Of Florida Research Foundation, Inc. Self-powered comparator

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAN NIU ET AL: "A sub-0.3V CMOS rectifier for energy harvesting applications", CIRCUITS AND SYSTEMS (MWSCAS), 2011 IEEE 54TH INTERNATIONAL MIDWEST SYMPOSIUM ON, IEEE, 7 August 2011 (2011-08-07), pages 1 - 4, XP031941291, ISBN: 978-1-61284-856-3, DOI: 10.1109/MWSCAS.2011.6026347 *
GASNIER P ET AL: "Power conversion and integrated circuit architecture for high voltage piezoelectric energy harvesting", NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2012 IEEE 10TH INTERNATIONAL, IEEE, 17 June 2012 (2012-06-17), pages 377 - 380, XP032248100, ISBN: 978-1-4673-0857-1, DOI: 10.1109/NEWCAS.2012.6329035 *
YUAN RAO ET AL: "An input-powered active AC/DC converter with zero standby power for energy harvesting applications", ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2010 IEEE, IEEE, PISCATAWAY, NJ, USA, 12 September 2010 (2010-09-12), pages 4441 - 4446, XP031787642, ISBN: 978-1-4244-5286-6 *

Also Published As

Publication number Publication date
EP2932588B1 (fr) 2018-09-26
EP2932588A1 (fr) 2015-10-21
US10511295B2 (en) 2019-12-17
WO2014091088A1 (fr) 2014-06-19
US20150326212A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
EP2932588B1 (fr) Circuit de comparaison d&#39;une tension a un seuil et conversion d&#39;energie electrique
EP1148404B1 (fr) Régulateur de tension à faible consommation électrique
EP3493357B1 (fr) Circuit de recharge d&#39;une batterie électrique au moyen d&#39;un module photovoltaïque
EP1950885A1 (fr) Dispositif de commande d&#39;un interrupteur électronique de puissance et variateur comprenant un tel dispositif.
EP0579561A1 (fr) Circuit de protection d&#39;un composant de puissance contre des surtensions directes
EP0680245A2 (fr) Ensemble comprenant un convertisseur statique à interrupteur commandé et un circuit de commande
FR3030157A1 (fr) Circuit de comparaison d&#39;une tension a un seuil
EP3075067B1 (fr) Circuit de commande pour convertisseur de puissance
FR3102620A1 (fr) Convertisseur de tension
EP1704634A1 (fr) Gestion du court-circuit dans une inductance d un convertiss eur elevateur de tension
EP3032729B1 (fr) Convertisseur continu-continu à démarrage à froid
FR3068187B1 (fr) Circuit a pompe de charges negative
EP1774641B1 (fr) Convertisseur de tension miniature monolithique a tres faible tension d&#39;entree
FR2977410A1 (fr) Modulation de largeur d&#39;impulsion sans comparateur
EP3432373B1 (fr) Générateur piézoélectrique
FR2611283A1 (fr) Dispositif comportant un circuit electronique de traitement d&#39;un signal analogique
FR2490895A1 (fr) Circuit d&#39;entretien pour oscillateur a faible consommation de courant
WO2005031943A1 (fr) Module de transfert de charges entre deux dipoles
EP4092892A1 (fr) Alimentation à découpage
EP3945674A1 (fr) Convertisseur de tension
EP3584918B1 (fr) Convertisseur à découpage
EP3945673A1 (fr) Comparateur de tension
EP0147306A2 (fr) Amplificateur de puissance linéaire
FR2887704A1 (fr) Convertisseur regulateur de tension sans pertes de commutation
EP3726731B1 (fr) Circuit de commande de transistors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782792

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013782792

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14650644

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE