WO2014090184A1 - 一种生物活性多肽qepvl及其制备和应用 - Google Patents

一种生物活性多肽qepvl及其制备和应用 Download PDF

Info

Publication number
WO2014090184A1
WO2014090184A1 PCT/CN2013/089294 CN2013089294W WO2014090184A1 WO 2014090184 A1 WO2014090184 A1 WO 2014090184A1 CN 2013089294 W CN2013089294 W CN 2013089294W WO 2014090184 A1 WO2014090184 A1 WO 2014090184A1
Authority
WO
WIPO (PCT)
Prior art keywords
qepvl
biologically active
active polypeptide
sample
concentration
Prior art date
Application number
PCT/CN2013/089294
Other languages
English (en)
French (fr)
Inventor
张少辉
卢姗姗
马鎏镠
孙冠华
崔磊
余芳
周婕慧
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2014090184A1 publication Critical patent/WO2014090184A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/19Dairy proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • A61K38/012Hydrolysed proteins; Derivatives thereof from animals
    • A61K38/018Hydrolysed proteins; Derivatives thereof from animals from milk
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4732Casein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to the field of proteins, and in particular to a biologically active polypeptide QEPVL and its preparation and use.
  • Oxidation and oxidative metabolism are essential for both food and humans. Free radicals and reactive oxygen species cause a series of oxidation reactions. When excess free radicals are formed, they exceed the protective effects of protective enzymes such as superoxide dismutase and catalase, resulting in a series of side effects such as lipid oxidation and apoptosis. This type of oxidation reaction not only affects the shelf life of fat-containing foods, but also causes certain harm to human health, such as rheumatoid arthritis, diabetes, and arteriosclerosis. In addition, Collins et al. (2005) found that cancer is also associated with oxidative damage to DNA. The body's antioxidant defense system is divided into two ways: enzymatic and non-enzymatic.
  • the non-enzymatic system is mainly vitamins, amino acids and metal proteins. It scavenges free radicals through its own reducing structure or utilizes chelation of proteins to remove catalysis.
  • Metal ions. S0D, GSH-Px, and CAT act as antioxidant enzymatic systems, and work together with non-enzymatic systems through different mechanisms of action to play a role in maintaining the balance of active oxygen metabolism in the body. Reductase achieves antioxidant effects mainly through two different pathways: SOD is involved in the removal of superoxide anions in the body to avoid lipid peroxidation; GSH-PX and CAT effectively catalyze the decomposition of peroxides and block the formation of peroxidation chains.
  • MDA is a lipid peroxidation product formed by the reaction of free radicals with cell membrane unsaturated fatty acids, reflecting the degree of peroxidation of the body. Lipid peroxide can increase the permeability of the cell membrane and cause serious damage to the body. A large number of studies have shown that inflammation induces a large amount of reactive oxygen species in the cells, and the metabolism of free radicals in the body is broken. S0D, GSH-PX, and CAT are consumed in large quantities, resulting in a decrease in the total enzyme activity of the reductase system and an increase in the content of MDA. Oxidative stress is one of the important causes of endotoxic shock.
  • antioxidants such as butylated hydroxyanisole (BHA) and 2,6-di-tert-butyl-4-methylphenol (BHT) were used in foods as antioxidants for lipids, but these artificial Synthetic additives for the human body Potential risks. Therefore, it is especially important to find safe antioxidants in natural food sources.
  • some food-derived peptides have been found to have good antioxidant effects, such as corn short peptides, soy peptides, and milk peptides.
  • polypeptides can be obtained by various methods such as microbial fermentation, digestive enzymatic hydrolysis, etc., and most of the polypeptides having antioxidant activity are composed of 2 to 20 amino acid residues, have a molecular weight of less than 6000 Da, and contain a certain amount of hydrophobic amino acids and aromatic amino acids.
  • the immunologically active peptide is a type of biologically active polypeptide which is first obtained from milk after the discovery of opioid peptide and which demonstrates its physiological activity.
  • Jolles et al. discovered for the first time that trypsin hydrolyzed human milk protein to obtain a hexapeptide with the amino acid sequence Val-Glu-Pro-Ile-Pra-Tyr.
  • the peptide can enhance mouse peritoneal macrophages. Phagocytosis of sheep red blood cells. Migliore-Samour et al.
  • Li Suping et al. used a synthetic milk-derived immunomodulatory peptide (PGPIPN) to feed rats and found that the phagocytosis of rat peritoneal macrophages and the red blood cell-related immunoregulatory function were significantly enhanced.
  • PGPIPN synthetic milk-derived immunomodulatory peptide
  • immunologically active peptides can not only enhance the body's immunity, stimulate the proliferation of lymphocytes, enhance the phagocytic function of macrophages, promote the release of cytokines, improve the body's ability to resist external pathogen infection, and reduce the incidence of the body, and Will cause the body's immune rejection.
  • Inflammation is a series of defense responses in the body to remove pathogens and prevent the body from causing greater damage to damaged tissues.
  • Moderate inflammation removes pathogenic factors and repairs damaged tissues by activating and modulating the secretion of cytokines, NO and ROS from immune cells.
  • excessive inflammation leads to excessive secretion of pro-inflammatory cytokines, inhibits the secretion of anti-inflammatory cytokines, and produces excessive amounts of NO and R0S in the cells, destroying the antioxidant capacity of the body's defense system, forming an oxidative stress state, further aggravating inflammation.
  • Animal experiments and clinical observations have revealed the occurrence of systemic inflammation or endotoxic shock, which greatly increases the mortality of the body.
  • anti-inflammatory treatment is to eliminate the adverse effects of inflammation on the body and to avoid the excessive expression of inflammation, so to prevent the immune disability of the body while inhibiting the activity of pro-inflammatory cells.
  • most anti-inflammatory drugs currently control excessive inflammation by inhibiting the activity of lymphocytes, macrophages, or directly killing immune cells. In normal organs and inflammasomes, such anti-inflammatory drugs show proliferation of cells. Significant inhibition has strong side effects on the body. Therefore, it is extremely important to reduce the damage of the drug itself to the body while effectively anti-inflammatory in the body when inflammation occurs.
  • the object of the present invention is to provide a biologically active polypeptide having an amino acid sequence of Gln-Glu-Pro-Val-Leu (QEPVL) (SEQ ID NO: 1).
  • the source of the biologically active polypeptide is milk-derived.
  • the bioactive polypeptide QEPVL of the present invention is milk-derived, specifically derived from ⁇ -casein, and is an amino acid residue at positions 209 to 213 of ⁇ -casein.
  • the biologically active polypeptide has the functions of in vitro antioxidant activity and enhancing immunity of the body.
  • the biologically active polypeptide of the present invention can be artificially synthesized by genetic engineering methods and chemical methods, or can be directly obtained from a dairy product by separation and purification.
  • nucleotide fragments encoding the aforementioned biologically active polypeptides.
  • amino acid sequence and nucleotide sequence of ⁇ -casein are a prior art, and a nucleotide fragment encoding amino acid residues 209 to 213 of ⁇ -casein (SEQ ID NO: 3) can encode a mature biologically active polypeptide QEPVL. .
  • nucleotide fragment encoding the aforementioned biologically active polypeptide has the sequence: 5'- Ca g gag CC t gt a C t C -3'
  • the second aspect of the present invention discloses a method for preparing the aforementioned biologically active polypeptide, and the steps are as follows:
  • step 2) crude extraction of the polypeptide: the Lactobacillus helveticus fermented milk of step 1) is subjected to cryogenic centrifugation, and the supernatant is taken;
  • step 1) the anaerobic fermentation conditions are: fermentation temperature 36 ⁇ 38 ° C, fermentation culture 15 ⁇ 20h; preferably fermentation culture 19h.
  • the conditions of the low temperature centrifugation in step 2) are: 4 ° C, 8000 ⁇ 10000 rpm, centrifugation for 15 to 30 min.
  • the molecular weight cut-off molecular weight of the filter used in the ultrafiltration method is 10 kDa and 3 kDa, respectively.
  • a filter membrane having a molecular weight cutoff of 10 kDa and 3 kDa is used, and the sample is sequentially subjected to ultrafiltration through two membranes. More preferably, in step 3) a, during the ultrafiltration, the pressure ranges from 0.1 to 0.3 MPa, and the filtrate flow rate is from 0.8 to 1.2 mL/min.
  • step 3) b reversed-phase high performance liquid chromatography separation method mobile phase A is ddH 2 0 containing 2% acetonitrile and 0.05% TFA ; mobile phase B is 100% acetonitrile.
  • step 3) b reverse phase high performance liquid chromatography separation method collecting the elution peak of the polypeptide having a molecular weight of 585.32Da, which is the biologically active polypeptide QEPVL.
  • the molecular weight of QEPVL is known, and the elution peak having a molecular size of 585.32 Da is collected, which is the biologically active polypeptide QEPVL of the present invention.
  • the elution peak of the molecular size of the present invention having a molecular size of 585.32 Da has a retention time of 33 min.
  • the third aspect of the invention discloses the use of the aforementioned biologically active polypeptide in the preparation of foods, health care products and medicaments which are resistant to oxidation and/or enhance immunity of the body.
  • the biologically active polypeptide QEPVL of the present invention can be degraded by digestive enzymes under simulated gastrointestinal digestion conditions in vitro to obtain the biologically active polypeptide QEPV.
  • the present invention confirmed by experiments that not only the biologically active polypeptide QEPVL itself has the functions of in vitro antioxidant activity and enhancing immunity of the body, but the product QEPV which is digested by the human digestive tract also has the functions of in vitro antioxidant activity and enhancement of immunity of the body. .
  • the biologically active polypeptide QEPVL can be digested and digested by digestive enzymes in the body during digestion, and then absorbed by the animal body to continue to exert its biological activity.
  • the bioactive polypeptide QEPVL of the invention can be used for preparing cosmetics for reducing free radical damage to skin, preparing skin care products having anti-inflammatory and anti-inflammatory functions and/or injecting drugs, preparing injections having anti-oxidation and/or enhancing immunity of the body.
  • the product of the bioactive polypeptide QEPVL of the present invention which is degraded by the gastrointestinal tract is still biologically active, and therefore can also be used for preparing foods such as yoghurt, health care products for improving immunity, and oral preparation for antioxidation.
  • a fourth aspect of the invention discloses an antioxidant drug comprising the aforementioned biologically active polypeptide QEPVL or a derivative of the aforementioned biologically active polypeptide QEPVL.
  • a medicament for enhancing immunity of a living body comprising the aforementioned biologically active polypeptide QEPVL or a derivative of the aforementioned biologically active polypeptide QEPVL is disclosed.
  • a sixth aspect of the invention discloses an anti-inflammatory drug comprising the aforementioned biologically active polypeptide QEPVL or a derivative of the aforementioned biologically active polypeptide QEPVL.
  • a seventh aspect of the invention discloses a method for enhancing immunity of a living body comprising administering to a patient a biologically active polypeptide QEPVL or a derivative of the aforementioned biologically active polypeptide QEPVL.
  • a final aspect of the invention also discloses a method of eliminating inflammation in the body comprising administering to the patient a biologically active polypeptide QEPVL or a derivative of the aforementioned biologically active polypeptide QEPVL.
  • the derivative of the polypeptide refers to hydroxylation, carboxylation, carbonylation, methylation, acetylation, phosphorylation, esterification or glycosylation on the amino acid side chain group of the polypeptide, at the amino terminus or the carboxy terminus. Etc., the resulting polypeptide derivative.
  • the beneficial effect of the biologically active polypeptide QEPVL of the invention is:
  • the milk-derived biologically active polypeptide QEPVL of the invention has good antioxidant activity, anti-inflammatory activity and promoting immunity of the body; on the one hand, it can remove free radicals in the body, and reduce Free radical damage to the human body; at the same time, improve the body's own antioxidant enzyme activity, improve the body's own efficiency of scavenging free radicals in the body; on the other hand, the bioactive peptide QEPVL of the present invention can also enhance the body's immunity and enhance lymphocyte proliferation.
  • Figure 1 Mass spectrometry comparison of crude extracts from Lactobacillus helveticus fermented milk and unfermented skim milk ultrafiltration (A: 3000Da unfermented skim milk crude extract mass spectrum, B: 3000Da Lactobacillus helveticus fermented milk Crude extract mass spectrum)
  • Figure 2 Molecular weight difference and abundance of crude extract of 3000Da unfermented skim milk and 3000Da Lactobacillus helveticus fermented milk extract
  • Figure 3 Reversed-phase high performance liquid chromatography separation of control fermented milk and Switzerland Comparison of Bioactive Peptides in Lactobacillus fermented milk (a curve: elution profile of 215 nm reverse phase high performance liquid chromatography of fermented milk; b curve: Lactobacillus helveticus fermented milk 3000D supernatant supernatant RP-HPLC 215 nm wash
  • Figure 5 First-order mass spectrum of the fragment with a mass-to-charge ratio of 585.
  • Figure 6 Fragment of the mass-to-charge ratio of 585.
  • Mass spectrum Figure 7 Total ion chromatogram of bioactive peptide QEPVL before and after digestive enzyme treatment
  • Figure 8 Mass spectrometry analysis of the b2 peak of the bioactive peptide QEPVL before and after digestive enzyme treatment
  • Fig. 9 Mass spectrometry analysis of the bl peak before and after treatment with the biologically active peptide QEPVL by digestive enzymeFig.
  • FIG 14 Bioactive peptide QEPVL in vitro macrophage proliferation assay
  • Figure 15 Bioactive peptide QEPV in vitro macrophage proliferation assay
  • Figure 16 Bioactive peptide QEPVL on mouse ROS secretion
  • Figure 30 Effect of bioactive peptide QEPVL on IL-1 ⁇ secretion in mice
  • Figure 31 Total NO standard curve
  • Figure 32 Effect of bioactive peptide QEPVL on total NO secretion in mice
  • Figure 33 Effect of bioactive peptide QEPVL on secretion of iNOS and COX-2 in mice
  • Figure 34 Bioactive peptide QEPVL on mouse iNOS and COX-2 Effect of relative gray scale
  • Figure 35 Effect of bioactive peptide QEPVL on lymphocyte surface antigen
  • the experimental methods, detection methods, and preparation methods disclosed in the present invention employ conventional molecular biology, biochemistry, chromatin structure and analysis, analytical chemistry, cell culture, recombinant DNA technology, and related fields. Conventional technology. These techniques are well described in the existing literature. For details, see Sambrook et al.
  • Lactobacillus helveticus fermented milk Using skim milk powder (New Zealand NZMP brand skim milk powder) and water with 12wt% skim milk (12g skim milk powder added to 88g water, the same below). Under sterile conditions, Lactobacillus helveticus ⁇ Lactobacillus helveticus, CICC6024 colony triad was picked and added to the sterilized 12 wt% skim milk and stirred under sterile conditions. After the seeding is completed, it is sealed with aluminum foil to prevent contamination. Incubate in an incubator at 37 ° C for 19 hours.
  • the curd was uniformly stirred under sterile conditions, i.e., activation of Lactobacillus helveticus was completed, and a starter for preparing Lactobacillus helveticus fermented milk was obtained.
  • the specific method is: under aseptic conditions The three rings of Lactobacillus bulgaricus and Streptococcus thermophilus were picked separately and added to the sterilized 12 wt% skim milk, and stirred evenly. After the inoculation was completed, it was sealed with aluminum foil to prevent contamination. The mixture was cultured for 19 hours at 37 ° C. After the completion of the culture, the curd was stirred uniformly under aseptic conditions to complete the activation of Lactobacillus bulgaricus and Streptococcus thermophilus, and two starters for preparing the control fermented milk were prepared.
  • Lactobacillus helveticus fermented milk and the control fermented milk prepared in the previous step, and 12 wt% of skim milk were respectively placed in a centrifuge tube and centrifuged at a temperature of 9000 rpm/min, 4 ° C, and 20 min. After centrifugation, the precipitate was discarded and the supernatant was taken.
  • the supernatant is poured into the ultrafiltration cup, respectively.
  • the nitrogen tank pressure valve is opened to fill the nitrogen, and the magnetic stirring device is turned on to prevent the solution from being polarized. Passing the sample through the molecular weight cutoff lOkDa, 3kDa filter, collected when the filtrate flows out.
  • the flow rate should be kept stable and the filtrate should be clear.
  • the flow rate was controlled at about 1 mL/min, and the pressure was 0.1 to 0.3 MPa.
  • the filtrates of Lactobacillus helveticus fermented milk, control fermented milk, and unfermented 12 wt% skim milk were collected as test samples, control samples and blank controls, respectively. Store at 4 ° C for free.
  • the filtrate (ultrasample) after ultrafiltration of the Lactobacillus helveticus fermented milk collected in the previous step and the filtrate (blank control) after skim milk ultrafiltration were subjected to mass spectrometry.
  • the mass spectrometric conditions were as follows:
  • the mass spectrometric results of the filtrate after ultrafiltration of the Lactobacillus helveticus fermented milk (experimental sample) and the filtrate after ultrafiltration of skim milk (blank control) are shown in Figures 1 to 2.
  • the A curve in Fig. 1 is a 3000 Da unfermented skim milk (blank control) crude extract sample
  • the B curve in Fig. 1 is a 3000 Da Lactobacillus helveticus fermented milk crude extract sample (experimental sample).
  • Fig. 2 is a comparison result of the difference in abundance of different molecular weight substances of crude extract of 3000 Da unfermented skim milk (blank control) and 3000 Da Lactobacillus fermented skim milk (test sample) crude extract.
  • the longitudinal axis indicates the contents of the crude skim milk extract
  • the transverse axis indicates the molecular weight corresponding to the substance contained in the crude extract of the fermented milk.
  • the molecular weight of the material of the Lactobacillus helveticus fermented milk and the unfermented skim milk which are largely different due to fermentation, can be obtained, and the parent ions of these mass-to-charge ratios are selected for further analysis by secondary mass spectrometry.
  • the substance having a molecular weight of 397.07 Da and a retention time of 6.72 minutes was higher in the crude extract of skim milk (the peak in the graph of Fig.
  • Table 1 Comparison of the difference between the crude extract of 3000Da Lactobacillus helveticus fermented milk and 3000Da skim milk
  • UV detection wavelength 215nm
  • test sample preparation The test sample and the control sample were diluted with the mobile phase A liquid (diluted by a volume ratio of 1:1) as a sample for loading. The sample was subjected to reversed-phase high performance liquid chromatography analysis, and the experimental results are shown in Fig. 3.
  • the experimental results can be seen from Fig. 3.
  • the a curve is the 215 nm elution spectrum of the reversed-phase high performance liquid chromatography.
  • the elution time is 26 min.
  • the proportional relationship of the peptide bond concentration is considered to be less in the 12% control fermented milk 3000Da supernatant (control), and the species is single.
  • the b curve is the elution profile of the 215 nm supernatant of the Lactobacillus helveticus fermented milk 3000D (experimental sample) by reversed-phase high performance liquid chromatography.
  • the fermented milk obtained by fermentation of Lactobacillus helveticus contained a polypeptide substance having a molecular weight of less than 3000 Da which was richer than the control fermented milk.
  • These peptides are formed by the breakdown of large peptides in the original skim milk by intracellular and extracellular enzymes secreted by Lactobacillus helveticus, releasing some polypeptide fragments and free amino acids.
  • the extracellular enzyme secreted by the lactic acid bacteria has a non-specific or specific cleavage of the ⁇ -casein fragment in the dairy.
  • these peptides obtained by microbial fermentation are highly likely to have certain biological activities. If a common yoghurt is produced using a combination of Lactobacillus bulgaricus and Streptococcus thermophilus, the yield of the polypeptide is small, the variety is single, and the biological activity is relatively low.
  • the less hydrophobic substance has a weaker binding force to the separation column, and is first eluted from the separation column, and the hydrophobic substance is solid-phase bonded with the separation column. Larger, then eluted from the separation column.
  • the hydrophobicity of the three isolates is arranged in the following order: Lactobacillus helveticus fermented milk isolate Peak > [peak> 0 peak. After the collection operation, the sample with D peak was obtained, freeze-dried by vacuum freeze-drying technique, and frozen and stored at -4 °C, and used as experimental materials for subsequent mass spectrometry and in vitro functional detection. 4. Determination of the mass and amino acid sequence of biologically active peptides
  • UV detection wavelength 210nm
  • the mass chromatogram extraction, first-order mass spectrum, and molecular weight of the polypeptide with molecular weight of 585.32D in the D peak of Lactobacillus helveticus fermented milk extract were obtained by ultra performance liquid-electrospray-quadrupole-time of flight mass spectrometry.
  • the secondary mass spectrum was calculated and the amino acid sequence was calculated by Masslynx software. The results are shown in Figures 4 to 6.
  • the amino acid sequence of the active polypeptide fragment having a molecular weight of 585.32 Da was Gln-Glu-Pro-Val-Leu (QEPVL), which was designated as SEQ ID NO: 1.
  • the fragment is derived from the D peak of the Lactobacillus helveticus fermented milk isolate, corresponding to the residue sequence of 209-213 of ⁇ -casein, the GenBank number of the ⁇ -casein amino acid sequence is AAA30431.1, and the sequence is shown in SEQ ID NO. : 3.
  • Simulated gastrointestinal digestive experiments are mainly divided into two steps. First, sterilized deionized water was used to prepare a biologically active peptide QEPVL solution at a concentration of 500 ⁇ g/mL. Pepsin (purchased from Sigma) was added to a concentration of 500 ⁇ g/mL QEPVL solution, and the ratio was added to the stomach per gram of QEPVL.
  • Mobile phase A 0.1% aqueous formic acid
  • mobile phase B 0.1% formic acid acetonitrile
  • Q-TOF-MS conditions Time-of-flight mass spectrometer, mass spectrometry using electrospray ionization source (ESI), positive ion mode. and
  • the mass scan range is m/z 80-1000 and the scan time is 0.3s.
  • Capillary voltage 3kV; cone voltage 35V; - level mass spectrometry collision energy is 4; ion source temperature 100
  • desolvation gas temperature and flow rate are 300 ° C, 500 L / h.
  • the biologically active polypeptide QEPVL is treated by the digestive enzyme before and after the treatment.
  • FIG. 7 A is a blank control group, which is a total ion chromatogram of the bioactive polypeptide QEPVL without enzymatic digestion.
  • TIC total ion chromatogram of the bioactive polypeptide QEPVL without enzymatic digestion.
  • Figure 7 B is the total ion chromatogram (TIC) of the bioactive peptide QEPVL after pepsin treatment
  • Figure 7 C is the total ion of the bioactive peptide QEPVL after pepsin and trypsin treatment
  • the retention time of the b2 peak in Figure 7 is about 6.50 min; the mass spectrometric analysis in Figure 8 shows that the relative molecular mass of b2 is 585.3223 Da, which is consistent with the molecular weight of the bioactive peptide QEPVL, indicating that the b2 peak is the original QEPVL. peak.
  • the retention time of the bl peak in Figure 7 is about 7.10 min; the mass spectrometry results in Figure 9 demonstrate that the relative molecular mass of the bl peak is 568.2966 Da, which is the product of QEPVL after removal of a water molecule.
  • the amino acid composition and molecular weight of the degradation product of the bioactive polypeptide QEPVL in combination with pepsin and trypsin were detected, and the corresponding mass spectra 10 and 11 of b3 peak and b4 were obtained by Q-TOF-MS analysis.
  • Figure 10 is a mass spectrum of the b4 peak extract with a molecular weight of 472.2409 Da.
  • Figure 11 is a mass spectrum of the b3 peak extract with a molecular weight of 455.2092 Da.
  • the b3 peak extract is the corresponding molecular mass after the b4 peak extract is removed from a water molecule.
  • the molecular formula is calculated and the molecular weight is calculated according to the possible fracture mode of QEPVL. The results are shown in Table 2.
  • EPVL C 21 H 36 N 4 0 7 456.2584 Table 3 Retention time, peak height, peak area and peak area ratio of mass spectrometric analysis of main products before and after digestive enzyme treatment of bioactive peptide QEPVL Sample retention time (min) Peak height Peak area Peak area ratio (%) Blank control group (before treatment) 6.49 55491 3222.66 61.11 Blank control group (after treatment) 7.01 26030 2050.83 38.89 Pepsin digestion group (before treatment) 6.50 47494 2638.98 57.95 Pepsin digestion group (after treatment) 7.01 23604 1915.09 42.05
  • the polypeptide QEPVL may be degraded by digestive enzymes after entering the gastrointestinal tract of animals and humans. Its degradation product is the newly formed biologically active polypeptide QEPV. The newly produced bioactive polypeptide QEPV is not further degraded by digestive enzymes, which proves that the bioactive polypeptide QEPV produced is stable during digestion and can be directly absorbed by animal organisms.
  • Example 3 Antioxidant Activity of Bioactive Peptides QEPVL and QEPV
  • the bioactive polypeptide QEPVL obtained in Example 1 was subjected to a scavenging free radical method (DPPH* method) and a total antioxidant capacity method (Ferric Reducing Ability Power FRAP method). Antioxidant activity was tested.
  • DPPH* method scavenging free radical method
  • FRAP method total antioxidant capacity method
  • Blank group On the same 96-well plate, a blank control was added with 80 ⁇ L of a sample of 1 mmol/L [DPPH ⁇ ] methanol solution and 20 ⁇ L of deionized water.
  • Negative control phytic acid 58.49 ⁇ 0.08
  • 2.5 mg/mL of Trolox as the positive control has the strongest ability to scavenge free radicals under the same conditions, and almost eliminates all free radicals in the solution.
  • 0. 025m g /mL of Trolox, phytic acid, active peptide 0. 025m g /mL of Trolox, phytic acid, active peptide.
  • the free radical rate was inverted with the concentration, and both reached at a concentration of 2. 5m g /mL. The highest values were 22.50% and 21.81%, respectively.
  • the concentration of FeS0 4 is in good proportional relationship with the absorbance.
  • the higher the concentration of FeS0 4 the higher the absorbance.
  • the results of the FeSO ⁇ quasi-curve of the present invention are shown in Fig. 13.
  • the linear relationship of the standard curve is good, and the correlation coefficient is 0. 998.
  • the precision and accuracy of the FeSO ⁇ quasi-curve are in compliance with the detection requirements and can be used for subsequent calculation.
  • the total antioxidant activity of the peptide QEPVL and its degradation product polypeptide QEPV isolated from Lactobacillus helveticus fermented milk was determined by the Ferric Reducing Ability Power FRAP method. The bioactive peptide QEPVL and biological activity were found.
  • the peptide QEPV has a good ability to reduce oxidizing substances; at a concentration of 4 mg/mL, the polypeptide QEPV shows a total antioxidant capacity of 0.0201 mmol/g, and the total antioxidant level of the polypeptide QEPVL reaches 0.0212 mmol/g;
  • the total antioxidant capacity of bioactive peptides QEPVL and QEPV was higher than that of phytic acid with weak antioxidant activity at the same concentration, which was significantly different (p>0.05). Therefore, it has been confirmed that the biologically active polypeptides QEPVL and QEPV of the invention have remarkable antioxidant ability.
  • Example 4 Bioactive peptide promotes immunity test of body 1. Determination of in vitro lymphocyte proliferation ability of bioactive peptide QEPVL and QEPV by MTT assay
  • mice spleens were taken under aseptic conditions, and mouse lymphocytes were extracted with lymphocyte extracts for metagenesis.
  • the cell density was adjusted to 2.5 X 10 6 /mL with complete RPMI 1640 medium.
  • 100 mouse lymphocyte suspension 100 L RPMI1640 complete medium, 20 concanavalin, 100 L sample.
  • a blank control group pH 7.2 to 7.4, 3 mol/L PBS
  • a negative control group 500 ⁇ g/mL BSA
  • Al is the absorbance at 570 nm of the blank control
  • A2 is the absorbance at 570 nm in the negative control group
  • a 3 is the absorbance at 570 nm in the experimental group.
  • the stimulation index of the negative control group is set to 1, the polypeptide QEPV The stimulation index can reach 1.1466, indicating that QEPV is a biologically active polypeptide with a function of promoting lymphocyte proliferation, and is significantly different from the negative control group (P ⁇ 0.05). Therefore, it can be concluded that the active polypeptide QEPVL isolated from the Lactobacillus helveticus fermented milk and the human body's digestive metabolite QEPV have the ability to significantly promote the proliferation of mouse lymphocytes, and can be eaten as a health supplement or an additive, thereby improving the animal. And the body's immunity. Table 8 Effect of bioactive peptide QEPVL on lymphocyte proliferation in vitro
  • Reagents experimental animal balb/c mice (male 6-8 weeks old) Animal Experimental Center, School of Agriculture and Biology, Shanghai Jiaotong University; milk-derived biologically active peptide QEPVL obtained by fermentation of Lactobacillus helveticus; 3-(4, 5- Methylthiazole-2)-2,5-diphenyltetrazolium bromide (MTT) Amresco; LPS (lipopolysaccharide) Sigma; Bovine Serum Albumin (BSA) Genebase; triple solution An aqueous solution containing 10% SDS, 5% isobutanol, and 0.0012 mol/L HCl.
  • mice were intraperitoneally injected with 2 ml of 2% (w/w) sterile starch solution for three consecutive days, and the neck was sacrificed 24 hours after the last injection. Peel off the abdominal skin, use a syringe to absorb 4 ° C phosphate buffer (PBS) repeatedly rinse the abdominal cavity, centrifuge to collect the rinse, centrifuge (lOOOOrpm, 4 ° C) 10 minutes, discard the supernatant, completely cultured with 4 ° C RPMI1640 The solution (containing 10% FBS) was washed twice, and the 0.2% trypan blue solution was stained for cell viability assay, confirming that more than 95% of the viable macrophages were collected. After the cell counting plate is read, adjust the cell concentration to the appropriate concentration.
  • PBS ° C phosphate buffer
  • Blank group OD value blank medium OD value
  • the blank group was the cell treatment group to which no small peptide and BSA were applied, and the BSA group was the negative control.
  • the bioactive polypeptide (QEPVL or QEPV) was added at a concentration of 1000, 500, 100 g/mL, and the blank group was added with the corresponding amount of PBS as a blank control, indicating that there was no LPS. Proliferation of macrophages in the case of stimulation.
  • the QEPVL group with different concentrations of peptides increased the proliferation of macrophages with the increase of the experimental concentration, and there was a significant difference at the concentration of 1000, 500 g/mL (PO.05).
  • LPS Bacterial lipopolysaccharide
  • the 6-week-old Balb/c mice were randomly divided into 3 groups at a feeding temperature of 21 ⁇ 1 and a relative humidity of 30-70%, and 48 rats in each group were blank group, inflammation group and peptide group. .
  • the blank group and the inflammatory group were intragastrically administered with normal saline.
  • the peptide group was intragastrically administered with QEPVL solution at a dose of 200 mg/kg for 3 weeks.
  • the blank group was intraperitoneally injected with normal saline.
  • the inflammatory group and the peptide group were intraperitoneally injected at a dose of 5 mg/kg. LPS. After intraperitoneal injection, blood was collected at different time points and the liver was collected for 1, 2, 3, 4, 6, 9, 12, 24, and 48 hours after intraperitoneal injection, and 6 mice were collected each time.
  • the blood collection method was performed by taking the eyeball and taking the blood, and the serum was separated by centrifugation at 3000 r/min for 10 minutes at 4 ° C, and placed in a refrigerator at 4 ° C for testing.
  • the concentration of liver homogenate in ROS samples is 5%. Therefore, it is necessary to semi-dilute or accurately weigh the processed liver homogenate by weight (g): volume (ml).
  • the ratio of 1:20 was added to the homogenization medium (the homogenate medium was recommended to use 100 mM phosphate buffer PBS), mechanically homogenized under ice-water bath conditions, centrifuged at 3000 r/min for 10 minutes, and the supernatant was taken for testing.
  • Protein concentration detection using the Braford protein content detection kit, first dissolve the standard BSA protein with a standard dilution, control the final concentration of 0.5mg / mL, according to 0, 1, 2, 4, 8, 12, 16, 20 L Add to standard wells of a 96-well plate and make up to 20 L per well with standard dilution. The remaining wells were sequentially added with 20 ⁇ L of sample and 200 ⁇ L of G250 staining solution, and allowed to stand at room temperature for 3-5 minutes, and mix gently with shaking. The OD value was obtained by reading with a microplate reader at 595 nm, and the protein concentration was calculated from the standard curve.
  • the optimal excitation wavelength is between 485-515 nm (500 ⁇ 15 nm), and the optimal emission wavelength is around 525 nm (530 ⁇ 20 nm). The fluorescence intensity is measured.
  • the final measurement results are expressed in fluorescence intensity / microgram protein.
  • the results of the experiment are shown in Fig. 16.
  • the ROS content in normal mice is extremely low, but it is significantly increased in the inflammatory mice after LPS induction.
  • the ROS content in the liver of mice not pretreated with QEPVL was significantly higher than that of mice pretreated with QEPVL. It can be proved that QEPVL can effectively reduce the ROS content in mice under oxidative stress and protect the body from active oxygen free radical damage.
  • a small sample was taken to detect the protein concentration, and the detection method was as described in the Ferric Reducing Ability Power FRAP method of Example 3.
  • the NADPH in the kit was made up to a concentration of 10 mM in deionized water, and immediately stored in a freezer at -70 ° C.
  • the GSH in the kit was made up to a concentration of 84 mM GSH solution with deionized water. There is a refrigerator at -20 °C for freezing. The two solutions were taken out at room temperature for dissolution before the experiment. Determine the volume of GPx working fluid to be configured according to the number of samples to be tested.
  • the working fluid required for each sample includes: 5 ⁇ L 10 mM NADPH, 5 ⁇ L 84 mM GSH and 0.4 ⁇ L glutathione reductase.
  • a 15 mM peroxide reagent solution was also dispensed with deionized water prior to the experiment.
  • the GPx working solution and the peroxide reagent solution need to be used now and cannot be used repeatedly.
  • the activity of glutathione peroxidase in the sample can be calculated by the following formula:
  • the final result is expressed in mU/mg protein.
  • the WST working solution was prepared by mixing 10 mL of WST-1 per 1.8 mL of the SOD detection buffer, and the enzyme working solution was prepared by mixing 10 ⁇ L of the enzyme solution per 200 ⁇ L of the diluted solution.
  • the experiments can be divided into four groups: sample group, blank control 1, blank control 2, and blank control 3.
  • sample is colorless and contains no antioxidants, it is not necessary to set a blank control 3 .
  • a blank control 3 must be set.
  • 20 L samples were added to the sample group and the blank control 3, then 20 ⁇ L PBS was added to the three blank control groups, mixed, and all wells were added with 180 ⁇ L of WST working solution, and incubated at 37 ° C for 5 minutes. Finally, add 20 L enzyme working solution to the sample group and blank control 1 and mix well.
  • the reaction starts after the addition of the enzyme working solution, it can be operated on ice or at a low temperature to reduce the influence error caused by the difference in the time of addition of each well.
  • the well plate was incubated in a 37 ° C incubator for 30-40 minutes. At the end of the incubation, the reader was read at 450 nm to obtain the absorbance.
  • Percent inhibition [(blank control 1-blank control 2) - (sample - blank control 3)] / (blank control 1-blank control 2) X 100%
  • the MDA detection working solution was prepared according to the sample quantity. It was mixed with 150 ⁇ L ⁇ dilution solution, 50 L TBA storage solution and 3 L antioxidant for each sample. It was heated at 70 °C and violently dissolved. The prepared MDA test solution must be used on the same day. Take appropriate amount of standard and dilute to 1, 2, 5, 10, 20, 50 ⁇ ⁇ with deionized water to prepare a standard curve.
  • the experiment was divided into three groups: blank control group, standard product group and sample group.
  • 0.1 mL PBS, standard and sample were added into the fistula. All EP tubes were added with 0.2 mL MDA test solution, mixed, and heated in boiling water for 15 minutes. After the end of the heating, the mixture was cooled to room temperature, centrifuged at 30000 r/min for 10 minutes, and 200 ⁇ L of the supernatant was added to a 96-well plate, and a reading was performed on a microplate reader to measure the absorbance at 532 nm.
  • the MDA concentration ⁇ ⁇ in the system was calculated according to the standard curve.
  • the MDA content of the sample was divided by the concentration of the sample MDA by the protein concentration of the sample, and the final result was expressed as ⁇ mol/mg protein.
  • 250 mM hydrogen peroxide solution was prepared in advance, and 10 was added to the blank control EP tube and the sample group EP tube.
  • the blank control tube was quickly added to the 40 catalase buffer, and the sample tube was quickly added to the 40 sample, which was separately blown with a gun.
  • Reaction at 25 ° C for 1-5 minutes try to control the reaction time of all EP tubes as consistent, add 450 L catalase reaction stop solution to each tube, and vortex and mix to stop the reaction.
  • Standard absorbance k [micromoles of hydrogen peroxide] + b, the values of k and b are calculated from the standard curve.
  • Residual hydrogen peroxide micromoles (sample absorbance -b) / k.
  • Sample catalase enzyme activity consumption of hydrogen peroxide micromoles X dilution factor / (reaction minutes X sample volume X protein concentration).
  • the unit of sample catalase enzyme activity is units/mg protein.
  • the LPS-induced inflammation model can significantly reduce the antioxidant capacity of the liver.
  • the activities of the liver antioxidant enzymes GSH-Px, SOD, and CAT are significantly decreased, and the MDA concentration is significantly increased.
  • the QEPVL-pretreated experimental group can improve the antioxidant capacity of the liver under acute inflammatory conditions, and the enzyme activities of various reducing enzymes are significantly improved, and lipid peroxidation can be alleviated, proving that QEPVL can be Eliminate the peroxidation caused by inflammation.
  • the total antioxidant capacity and the increase in SOD activity were particularly significant (P ⁇ 0.01).
  • mice model of inflammation was induced by intraperitoneal injection of LPS.
  • the secretion of cytokines, the secretion of NO and the synthesis of inflammatory proteins in mice immunized with QEPVL aqueous solution and non-administered mice were compared.
  • the bioactive peptide QEPVL pair was investigated. The ability to regulate inflammation in mice.
  • mice The method of feeding, grouping and sample collection of mice was the same as in Example 5.
  • LPS Bacterial lipopolysaccharide
  • cytokines IFN- ⁇ TNF-a, GM-CSF, IL-1 ⁇ , IL-4, IL-6, IL-10, IL-13
  • IFN- ⁇ TNF-a GM-CSF, IL-1 ⁇ , IL-4, IL-6, IL-10, IL-13
  • the highest concentration standard was resuspended in 2 mL of the experimental dilution, equilibrated for 15 minutes at room temperature, and gently mixed with the tip of the gun. It is strictly prohibited to violently oscillate.
  • the standard was diluted according to 1: 2, 1: 4, 1: 8, 1: 16, 1: 32, 1: 64, 1: 128 and 1: 256 to obtain 9 concentration gradient standards, respectively 2500pg /mL, 1250pg/mL, 625pg/mL, 312.5pg/mL 156pg/mL, 80pg/mL, 40pg/mL, 20pg/mL and lOpg/mLo
  • the instrument microspheres were used to obtain voltage adjustment and compensation value adjustment before the machine was completed. After the sample data was obtained, the FCAP Array software was used for data analysis. The unit of cytokine concentration is pg/mL.
  • the IFN- ⁇ content was slightly higher than that of the same group of inflammatory model mice except for the LPS injection.
  • the IFN-Y content in the remaining time period was lower than that of the untreated inflammatory mice, but it was still significant. Higher than normal mice. This proves that QEPVL can effectively inhibit the secretion of IFN- ⁇ and inhibit the further expansion of inflammation, but the function of inflammation to eliminate pathogens is still retained.
  • TNF-a reached the highest concentration 1 hour after LPS injection, and then the secretion began to decrease, but it was always higher than the TNF-a level in normal mice.
  • the concentration of TNF-a at each time point was lower than that of the non-QEPVL-treated inflammatory mice, although the concentration trend was similar to that of the inflammatory model mice after LPS injection.
  • the concentration of TNF-a in the two groups of mice injected with LPS was in an inflammatory state and exerted a killing effect at a high concentration. This proves that QEPVL can effectively inhibit the secretion of TNF-a in mice, but it can still ensure the necessary killing function of TNF-a under inflammatory conditions to remove pathogens in time.
  • IL-4 could not be detected in both inflammatory model mice and normal mice, and IL-4 was stably maintained at 4-4.5 pg/1-9 hours after intraperitoneal injection of LPS in QEPVL-pretreated mice. In mL, the IL-4 concentration decreased slightly after 9 hours, but remained at 3.81 pg/mL. This proves that QEPVL can increase Th2 activity and exert anti-inflammatory function. IL-4 maintains stability at a lower concentration, which proves that Th2 activity is not significantly inhibited by other pro-inflammatory cytokines, and can not effectively exert anti-inflammatory function in the early stage of inflammation, but In the late stage of inflammation, inflammation can be effectively controlled to avoid excessive inflammation.
  • the concentration of IL-13 in the inflammatory model mice and normal mice is extremely low, which is lower than the minimum detection limit of the CBA kit, but the QEPVL pretreated mice stably secrete low concentrations of IL-13 under inflammatory conditions. , play anti-inflammatory function.
  • serum IL-6 in the inflammatory model group showed an explosive growth from the time of injection, and continued to rise from 1 hour to 9 hours, peaked at 9 hours after the injection, and then the secretion decreased, but still with normal mice. There are extremely significant differences.
  • the trend of IL-6 was basically the same as that of the inflammatory model group, but the concentration began to regress 6 hours after the injection, and the concentration was lower at 1, 2, 6, 9 and 12 hours after the intraperitoneal injection.
  • the time of inflammatory burst was delayed, and the time of inflammation and expansion was shortened, and the occurrence of excessive inflammation was suppressed.
  • the secretion rate of GM-CSF increased from 1 hour after the injection, reached the maximum secretion amount at the 4th hour, and reached the normal mouse level at the 12th hour.
  • QEPVL pretreated mice changed The trend was basically the same as that of the inflammatory model mice, but it still had a certain concentration at the 12th hour after the intraperitoneal injection, which was significantly higher than that of the normal mice and the inflammatory model group.
  • This may be related to the function of GM-CSF, which is mainly used as a pro-inflammatory cytokine, but can stimulate epithelial cell proliferation and accelerate vascular repair during the period of inflammatory regression. It can be speculated that QEPVL can not only inhibit the secretion of pro-inflammatory cytokines, but also accelerate the repair of tissues and blood vessels during the period of inflammation regression.
  • mice pretreated with QEPVL showed a large increase in IL-1 ⁇ concentration 1 hour after LPS injection, and the concentration at 2 hours was significantly higher than that of normal mice, and the concentration rose to the peak at 4 hours, and then began to subside. .
  • the cytokine concentration peaked at 3 hours after intraperitoneal injection in QEPVL-pretreated mice.
  • QEPVL increased the concentration of IL- ⁇ at 3 and 4 hours after intraperitoneal injection, and down-regulated the concentration of IL- ⁇ in other time periods, demonstrating that QEPVL can shorten inflammation and enlarge this. The time required for the process allows the body to clear pathogens faster and enter the stage of regression repair.
  • the results of the above seven cytokines show that QEPVL does not directly down-regulate pro-inflammatory cytokines and up-regulate anti-inflammatory cytokines, but dynamically regulates the concentration of cytokines in various stages of inflammation, accelerating anti-inflammatory in the early stage of inflammation. Occurrence and expansion of the inflammatory reaction process, so that the body more quickly and effectively remove the pathogen, so that the victim body can enter the state of inflammation regression and tissue repair in the later stage of inflammation, and properly assist the body to accelerate the repair of blood vessels and tissues.
  • the NO molecule has a very short half-life in the body, and it is easily oxidized to nitrite in combination with ROS. Nitrite continues to be oxidized to nitrate. It is easy to estimate the NO content by detecting the nitrite content in the serum of mice by the classical Griess method. Wrong conclusion. Therefore, the total nitric oxide kit was used to reduce the nitrate in the mouse serum to nitrite using nitrate reductase, and the content of NO was detected by the Griess method.
  • the exact detection range of the kit is 2-50 ⁇ , a pre-experiment is required to determine the dilution factor of the sample.
  • the standard KN0 2 with a concentration of 10 mM was diluted to 2, 5, 10, 20, 50 ⁇ ⁇ , and it was used now.
  • the powder NADPH was adjusted to a concentration of 2 mM and stored at -70 °C. Remove all reagents from the kit from the -20 ° C refrigerator before the experiment, dissolve at room temperature It is then stored on ice, otherwise it will cause a decrease in the reductive enzyme activity used in the reagent.
  • the experiment needs to set up a 2-3 hole blank control tube for zero adjustment and draw a standard curve with a 5-6 well standard tube.
  • the blank control tube was sequentially added with 60 ⁇ L of PBS, 5 ⁇ L of NADPH working solution, 10 ⁇ L of FAD and 5 ⁇ L of Nirtate Reductase.
  • the standard tube was sequentially added with 60 ⁇ L of different concentration standard solution and 5 ⁇ L of NADPH working solution per well. 10 ⁇ L FAD and 5 ⁇ L Nirtate Reductase, the sample tube was sequentially added with 60 ⁇ L of diluted sample to a certain ratio, 5 ⁇ L of NADPH working solution, lO L FAD and 5 L Nirtate Reductase.
  • the concentration of NO in the serum was calculated from the standard curve in units of ⁇ ⁇ .
  • the NO secretion was significantly higher in the 4th hour after LPS induction than in the normal group, and the NO concentration increased from 4 hours to 12 hours, indicating that the inflammatory signal was continuously amplified.
  • the concentration of NO in the serum of QEPVL-pretreated mice was significantly higher than that of normal mice at 4, 6, 9 and 12 hours, indicating that inflammation is still playing a role in clearing LPS, but serum NO concentration is lower than inflammation at various time points. The mice in the model group indicated that inflammation was effectively inhibited.
  • BCA Reagent A 50 volumes to a volume of BCA Reagent B (50: 1) to prepare an appropriate amount of BCA working solution, then mix well with the tip.
  • the BCA working solution is stable for 24 hours at room temperature.
  • the protein standard was completely dissolved, and the lOuL protein standard was diluted to 100 L to a final concentration of 0.5 mg/mL.
  • Add the standard to 0, 1, 2, 4, 8, 12, 16, 20 ⁇ L in the standard wells of a 96-well plate and make up to 20 uL per well with a standard dilution.
  • 200 ⁇ L of BCA working solution was added to each well and incubated at 32 ° C for 30 min.
  • the OD values at 520 nm of the samples and standards were determined.
  • the protein concentration of each group of samples was calculated based on the concentration standard curve of the protein standard.
  • Double distilled water 6.6 mL; 30% acrylamide: 8.0 mL; TrisCI (pH 8.8): 5.0 mL; 10% SDS: 0.2 mL; 10% ammonium persulfate: 0.2 mL; TEMED: 24 L.
  • Double distilled water 6.8 mL; 30% acrylamide: 1.66 mL; 1.0 MTrisCI (pH 6.8): 1.26 mL; 10% SDS: 0.1 m; 10% ammonium persulfate: O.lmL; TEMED: 16 L.
  • the transfer liquid was pre-cooled at 4 ° C in advance. Open the transfer box on the tray, and place the inner surface of the cathode side with a perforated mat that has been soaked with the transfer buffer. Place three layers of Whatman3MM filter paper soaked with the transfer buffer to remove the air bubbles. Carefully open the glass plate, place the glue in the tray containing the transfer liquid, cut off the separation gel containing the desired strip, soak it in the transfer solution and place it on the filter paper. An NC film soaked with methanol and a transfer solution was placed on the gel, and no bubbles were present between the glue and the film. The size of the film, filter paper and gel was approximately the same.
  • the NC membrane was placed in a dish, and a blocking solution containing 5% skim milk powder was added and shaken for 1.5-2 hours to block. After the closure, the membrane was washed 3 times with TBST for 10 minutes each time.
  • the membrane was placed in a dish containing primary antibody (diluted with western-anti-diluted solution) and incubated overnight at 4 ° C with shaking. Remove the next day, shake at room temperature for 30 min, aspirate the primary antibody, and wash the TBST 3 times for 10 minutes each time.
  • the secondary antibody was diluted with a 5% skim milk powder blocking solution and shaken at room temperature for 1-2 h. After the secondary antibody reaction is completed, the secondary antibody is recovered. The membrane was then washed 3 times with TBST for 5-10 minutes each time.
  • the two liquids A and B in the ECL chemiluminescence kit are mixed in an equal volume of 1:1, and configured as a working fluid for use.
  • the photographic film is placed in the developing clip, the exposure time is adjusted according to the strength of the protein strip, and then the film is sequentially placed in the developing solution and the fixing solution to develop and fix the film, and the computer analyzes the gradation.
  • COX-2 and iNOS are not expressed at all, but in the inflammatory state, COX-2 and iNOS are secreted and synthesized in large quantities, which produce a large amount of PGE-2 and NO, respectively, which amplifies the inflammation and is closely related to inflammation and immunity.
  • COX-2 and iNOS are regulated by various cytokines such as IL-6 and TNF- ⁇ , and the synthesis of the protein can directly affect the secretion of various cytokines such as anti-inflammatory and pro-inflammatory.
  • mice 6-8 weeks old Balb/c mice were cultured for one week at a feeding temperature of 21 ⁇ 1 °C, relative humidity of 30-70%, and were sacrificed by cervical dislocation. They were immersed in 75% alcohol for 5 minutes and then transferred to super. In the net. The mouse was fixed with a pin, and the abdomen of the mouse was cut with sterile scissors and forceps to pick out the spleen. The spleen was washed in a petri dish with RPMI1640 incomplete medium and placed on a wire mesh. The mouse spleen was gently ground, and a small amount of RPMI1640 incomplete medium was added 2-3 times to repeatedly rinse the total volume of RPMI1640 incomplete medium. Control within 10mL.
  • the cells were thoroughly mixed with an equal amount of RPMI 1640 incomplete medium and centrifuged at 1500 r/min for 10 minutes at 4 ° C to reveal white blood cells deposited at the bottom of the tube. Discard the supernatant, fully suspend it with RPMI complete medium, and take a small amount of trypan blue staining to determine the cell viability. When the survival rate is greater than 90%, the next experiment can be performed.
  • the cell concentration was adjusted to IX 10 6 /mL in a 24-well plate, 400 L per plate, and cultured at 37 ° C under 5% CO 2 . After the lymphocyte status was stabilized for 4-6 hours, different concentrations of QEPVL solution were added to each well according to the experimental group.
  • the experiment divided the cells into 4 groups: blank group, hydrocortisone group, peptide group and peptide-hydrocortisone group.
  • 100 L of QEPVL solution was added to control the final concentration of 200 ⁇ g/mL.
  • the blank group and the hydrocortisone group were added to 100 RPMI 1640 complete medium and returned to the incubator. After 48 hours of incubation, the plates were removed.
  • the blank group and the peptide group were added with 100 ⁇ L of RPMI1640 complete medium.
  • the inflammation group and the peptide-hydrocortisone group were added with 100 hydrocortisone, and the final concentration was controlled to 1 ⁇ .
  • Lymphocytes are suspended in RPMI 1640 medium, but may be sedimented for a longer period of time. Therefore, gently pipette the wells with a pipette and aspirate all cells. After centrifugation at 2000 r/min for 20 minutes, the supernatant was discarded to obtain lymphocytes. PBS was added to each tube of lymphocytes, and a single suspension of lymphocytes was prepared by gently pipetting to control the final concentration of the cells at 1 ⁇ 10 6 cells/mL.
  • Fluorescently labeled monoclonal antibody CD3/CD28 was added and an isotype control was added and incubated for 15 minutes at room temperature in the dark.
  • Isotype control included a pure cell negative control (no fluorescently labeled monoclonal antibody) and a single standard CD3/CD28 for each machine to adjust the value of the machine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Polymers & Plastics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Nutrition Science (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

提供了一种具有体外抗氧化活性和促进机体免疫力活性的乳源性生物活性多肽,其氨基酸序列为QEPVL。经过体外抗氧化实验、体外免疫功能促进实验,验证了该肽具有较好的抗氧化生物学活性和提高免疫力的功能。

Description

一种生物活性多肽 QEPVL及其制备和应用
技术领域 本发明涉及蛋白领域, 具体涉及一种生物活性多肽 QEPVL及其制备和应用。
背景技术
在牛乳经乳酸菌发酵的过程中, 牛乳中的一部分蛋白质被乳酸菌代谢利用, 并发生了 一系列生理生化反应, 使蛋白质变为多肽或者游离的氨基酸, 被人体消化吸收或通过小肠 上皮细胞的吸收转运直接进入人体的血液循环。 在这些多肽中, 有一部分具有特殊的生理 功能, 被称为 "生物活性肽"。
氧化反应和氧化代谢对于食物和人体来说都是至关重要的, 自由基和活性氧引起了一 系列的氧化反应。 当过量的自由基形成, 它们会超过保护性酶如超氧化物歧化酶、 过氧化 氢酶的保护作用, 从而导致脂质氧化、 细胞凋亡等一系列的副作用产生。 这一类的氧化反 应, 不仅影响含脂食物的保质期, 也对人体的健康造成了一定的危害, 如风湿性关节炎、 糖尿病、 动脉硬化等。 此外, Collins等人 2005年研究发现癌症的发生也与 DNA的氧化损 伤有关。 机体抗氧化防御体系分为酶促与非酶促两种方式, 非酶促体系主要为维生素、 氨 基酸和金属蛋白质, 通过本身的还原性结构清除自由基或者利用蛋白的螯合作用除去起催 化作用的金属离子。 S0D、 GSH-Px、 CAT作为抗氧化酶促体系, 通过不同作用机制与非酶促 体系相互协同, 共同在维持机体活性氧代谢平衡过程中发挥作用。 还原酶主要通过两种不 同途径达到抗氧化功效: SOD 参与清除机体内超氧化物阴离子, 避免脂质过氧化; GSH-PX 和 CAT有效催化过氧化物分解, 阻断过氧化链形成。 防御性酶系的酶活越高, 清除自由基 的能力越强。 MDA是自由基与细胞膜不饱和脂肪酸反应生成的脂质过氧化产物, 反映了机体 的过氧化程度。 脂质过氧化物可以增加细胞膜的通透性, 对机体造成严重损伤。 大量研究 表明, 炎症引发细胞内活性氧大量生成, 机体自由基代谢平衡被打破, S0D、 GSH-PX, CAT 被大量消耗, 造成还原酶系总酶活的降低, MDA 的含量升高, 从而导致氧化应激, 是内毒 素性休克的重要原因之一。
早期一些人工合成的抗氧化剂如丁基羟基茴香醚 (BHA)、 2,6-二叔丁基 -4-甲基苯酚 (BHT) 被运用到食品中, 作为脂质的抗氧化剂, 但这些人工合成的添加剂对于人体都有 潜在的风险。 因此, 在天然食物来源中寻找安全的抗氧化剂尤为重要。 近些年来, 人们发 现一些食物来源的多肽类物质具有良好的抗氧化作用, 如玉米短肽、 大豆肽、 牛乳多肽等。 这些多肽可以通过微生物发酵、 消化酶解等多种途径得到, 并且大多具有抗氧化活性的多 肽是由 2〜20个氨基酸残基组成, 分子量小于 6000Da, 含有一定量的疏水氨基酸、 芳香族 氨基酸。
免疫活性肽是继阿片肽发现后首次从乳中获得并证明其生理活性的一类生物活性多 肽。 1981年 Jolles等人首次发现, 利用胰蛋白酶水解人乳蛋白, 可以得到一个氨基酸序列 为 Val-Glu-Pro-Ile-Pra-Tyr的六肽, 体外实验证明该肽能够增强小鼠腹腔巨噬细胞对绵羊红 细胞的吞噬作用。 Migliore-Samour等人发现来自酪蛋白的六肽 Thr-Thr-Met-Pro-Leu-Trp能 够刺激绵羊血红细胞对小鼠腹膜巨噬细胞的吞噬作用以及增强对于肺炎克雷伯菌的抵抗。 李素萍等人用合成的乳源免疫调节肽 (PGPIPN) 伺喂大鼠发现大鼠腹腔巨噬细胞的吞噬作 用和红细胞相关的免疫调节功能有显著的增强。
研究表明, 免疫活性肽不仅能够增强机体免疫力, 刺激机体淋巴细胞的增殖, 增强巨 噬细胞的吞噬功能, 促进细胞因子的释放、 提高机体抵御外界病原体感染的能力, 降低机 体发病率, 而且不会引起机体的免疫排斥反应。
炎症是机体为清除病原体、 防止对机体在损伤组织造成更大损伤引发过程中的一系列 防御反应。 适度的炎症通过活化、 调节免疫细胞分泌细胞因子、 NO及 R0S来清除致病因子、 修复受损组织,。 但过度的炎症导致促炎细胞因子过度分泌, 抑制了抗炎细胞因子的分泌, 同时细胞内产生过量的 NO与 R0S, 破坏机体防御体系的抗氧化能力, 形成氧化应激状态, 进一步加剧炎症。 动物实验与临床由此观察到发现发生全身性炎症或内毒性休克, 极大增 加机体的死亡率。 抗炎治疗的目的是消除炎症对机体带来的不利影响和避免炎症的过度表 达发生, 因此在抑制促炎细胞的活性的同时, 要避免造成机体的免疫失能。 然而, 当前大 多数抗炎药物通过抑制淋巴细胞、 巨噬细胞的活性或者直接杀灭免疫细胞对过度炎症进行 控制, 在正常机体内和炎症机体内, 这类抗炎药物显示出对细胞增殖的显著性抑制作用, 对机体具有强烈的副作用。 因此, 在机体发生炎症时有效抗炎的同时, 减少药物本身对机 体的损害极其非常重要。
发明内容 本发明的目的在于提供一种生物活性多肽, 其氨基酸序列为 Gln-Glu-Pro-Val-Leu (QEPVL) (SEQ ID NO: 1 )。 较优的, 所述生物活性多肽的来源为乳源性。
本发明的生物活性多肽 QEPVL为乳源性, 具体来源于 β-酪蛋白, 并且为 β-酪蛋白第 209〜213位的氨基酸残基。
较优的, 所述生物活性多肽具有体外抗氧化活性和增强机体免疫力的功能。 本发明的生物活性多肽可以通过基因工程的方法和化学方法人工合成, 也可以从乳制 品中通过分离纯化的方法直接获得。
本发明还公开了编码前述生物活性多肽的核苷酸片段。
β-酪蛋白的氨基酸序列以及核苷酸序列为既有技术, 编码 β-酪蛋白 (SEQ ID NO:3)第 209〜213位氨基酸残基的核苷酸片段能编码成熟的生物活性多肽 QEPVL。
进一步的, 编码前述生物活性多肽的核苷酸片段, 其序列为: 5'-Cag gag CCt gta CtC-3'
Figure imgf000004_0001
本发明第二方面公开了前述生物活性多肽的制备方法, 步骤如下:
1 ) 发酵: 将瑞士乳杆菌 iLactobacillus helveticus ) 添加到脱脂乳中进行厌氧发酵, 获得瑞 士乳杆菌发酵乳;
2) 多肽的粗提: 对步骤 1 ) 的瑞士乳杆菌发酵乳进行低温离心分离, 取上清液;
3) 多肽的纯化: a. 对步骤 2) 的上清液进行超滤处理, 收集滤液; b. 收集的滤液采用反向层析柱 SOURSE 5 RPC ST (4.6 X 150mm) 进行反相高效液相 色谱分离, 收集生物活性多肽 QEPVL。 本发明所述脱脂乳为经过脱脂处理的牛乳, 通常脱脂乳中脂肪含量小于 0. 1%。 较优的, 步骤 1 ) 所述厌氧发酵的条件为: 发酵温度 36〜38°C, 发酵培养 15〜20h; 优选发酵培养 19h。 较优的, 步骤 2) 所述低温离心的条件为: 4°C, 8000〜10000rpm, 离心 15〜30min。 较优的, 步骤 3) a所述超滤法所采用的滤膜的截留分子量分别为 lOkDa和 3kDa。 本 发明采用截留分子量分别为 10kDa、 3kDa的滤膜, 使样品依次通过两张滤膜进行超滤。 更优的, 步骤 3 ) a 所述超滤过程中, 压力范围为 0.1〜0.3MPa, 滤液流速为 0.8〜 1. 2mL/min。 较优的, 步骤 3 ) b反相高效液相色谱分离法中, 流动相 A为含有 2%乙腈和 0.05%TFA 的 ddH20; 流动相 B为 100%乙腈。 较优的, 步骤 3 ) b反相高效液相色谱分离法中, 收集分子量为 585. 32Da的多肽的洗 脱峰, 即为生物活性多肽 QEPVL。 在本发明反相高效液相色谱法分离过程中, 已知 QEPVL 的分子量, 收集分子大小为 585. 32Da的洗脱峰,即为本发明的生物活性多肽 QEPVL。具体的,本发明分子大小为 585. 32Da 的洗脱峰其保留时间为 33min。
本发明第三方面公开了前述生物活性多肽在制备抗氧化和 /或增强机体免疫力的食品、 保健品及药物中的应用。 本发明的生物活性多肽 QEPVL在体外模拟胃肠道消化条件下可以被消化酶降解, 获 得生物活性多肽 QEPV。 并且, 本发明通过实验证实不仅生物活性多肽 QEPVL本身具有体 外抗氧化活性和增强机体免疫力的功能, 其经人体消化道消化后的产物 QEPV也同样具有 体外抗氧化活性和增强机体免疫力的功能。 因此, 生物活性多肽 QEPVL在体内消化过程中 可以先被消化酶消化降解, 然后被动物机体吸收, 继续发挥其生物活性。 本发明的生物活性多肽 QEPVL可以用于制备减少自由基对皮肤伤害的化妆品、 制备具 有抗炎消炎功能的护肤品和 /或注射类药物、 制备具有抗氧化和 /或增强机体免疫力的注射 类药物; 并且由于本发明的生物活性多肽 QEPVL通过胃肠道降解后的产物仍旧具有生物活 性, 因此还可以用于制备酸奶等食品、 提高免疫力的保健品, 以及口服的用于制备具有抗 氧化和 /或增强机体免疫力的药物。 本发明第四方面公开了一种抗氧化药物, 包含前述生物活性多肽 QEPVL或前述生物活 性多肽 QEPVL的衍生物。 本发明第五方面公开了一种增强机体免疫力药物, 包含前述生物活性多肽 QEPVL或前 述生物活性多肽 QEPVL的衍生物。 本发明第六方面公开了一种抗炎药物, 包含前述生物活性多肽 QEPVL或前述生物活性 多肽 QEPVL的衍生物。 本发明第七方面公开了一种增强机体免疫力的方法, 包括对患者施用前述生物活性多 肽 QEPVL或前述生物活性多肽 QEPVL的衍生物。
本发明最后一方面还公开了一种消除机体炎症的方法, 包括对患者施用前述生物活性 多肽 QEPVL或前述生物活性多肽 QEPVL的衍生物。
所述多肽的衍生物, 是指在多肽的氨基酸侧链基团上、 氨基端或羧基端进行羟基化、 羧基化、 羰基化、 甲基化、 乙酰化、 磷酸化、 酯化或糖基化等修饰, 得到的多肽衍生物。 本发明生物活性多肽 QEPVL的有益效果为: 本发明的乳源性生物活性多肽 QEPVL具有 较好的抗氧化活性、 抗炎活性和促进机体免疫力活性; 一方面能够清除机体内的自由基, 减少自由基对人体的伤害; 同时提高机体本身抗氧化酶的活力, 提高机体自身清除体内自 由基的效率; 另一方面, 本发明的生物活性多肽 QEPVL还能够增强机体免疫力, 增强淋巴 细胞的增殖能力, 在保证清除炎症病原体的前体下, 保护机体不受过度炎症损害, 加速炎 症愈合的进程, 提高机体抵御外界病原体感染的能力, 降低机体发病率, 而且不会引起机 体的免疫排斥反应, 对开发具有抗氧化功能及增强免疫功能的乳制品和保健品具有十分重 要的意义。
附图说明
图 1 : 瑞士乳杆菌发酵乳与未经发酵处理的脱脂乳超滤后粗提物的质谱对比图 (A: 3000Da未经发酵的脱脂乳粗提物质谱图, B : 3000Da瑞士乳杆菌发酵乳粗提物质谱图) 图 2 : 3000Da未经发酵脱脂乳粗提物与 3000Da瑞士乳杆菌发酵脱脂乳粗提物分子量 差异及丰度比较 图 3 : 反相高效液相色谱分离对照发酵乳和瑞士乳杆菌发酵乳中生物活性多肽比较图 ( a 曲线: 对照发酵乳反相高效液相色谱 215nm的洗脱图谱; b 曲线: 瑞士乳杆菌发酵乳 3000Da上清液反相高效液相色谱 215nm的洗脱图谱) 图 4: 质量色谱提取图 (m/z= 585. 32 ) 图 5 : 质荷比为 585. 32的片段的一级质谱图 图 6 : 质荷比为 585. 32的片段的二级质谱图 图 7 : 生物活性多肽 QEPVL经过消化酶处理前后的总离子流图 图 8: 生物活性多肽 QEPVL经消化酶处理前后 b2峰的质谱分析图 图 9: 生物活性多肽 QEPVL经消化酶处理前后 bl峰的质谱分析图 图 10: 生物活性多肽 QEPVL经消化酶处理后 b3峰的质谱分析图 图 11: 生物活性多肽 QEPVL经消化酶处理后 b4峰的质谱分析图 图 12: [DPPH · ]甲醇标准曲线
图 13: FeS04标准曲线
图 14: 生物活性多肽 QEPVL的体外巨噬细胞增殖能力实验 图 15: 生物活性多肽 QEPV的体外巨噬细胞增殖能力实验 图 16: 生物活性多肽 QEPVL对小鼠 R0S分泌量的影响
图 17: IFN- γ标准曲线
图 18: 生物活性多肽 QEPVL对小鼠 IFN- γ分泌量的影响 图 19: TNF-α标准曲线
图 20: 生物活性多肽 QEPVL对小鼠 TNF- a分泌量的影响 图 21: IL-4标准曲线
图 22: 生物活性多肽 QEPVL对小鼠 IL-4分泌量的影响
图 23: IL-13标准曲线
图 24: 生物活性多肽 QEPVL对小鼠 IL-13分泌量的影响 图 25: IL-6标准曲线
图 26: 生物活性多肽 QEPVL对小鼠 IL-6分泌量的影响
图 27: GM-CSF标准曲线
图 28: 生物活性多肽 QEPVL对小鼠 GM-CSF分泌量的影响 图 29: IL-Ιβ标准曲线
图 30: 生物活性多肽 QEPVL对小鼠 IL-1 β分泌量的影响 图 31: 总 NO标准曲线 图 32 : 生物活性多肽 QEPVL对小鼠总 NO分泌量的影响 图 33 : 生物活性多肽 QEPVL对小鼠 iNOS与 C0X-2分泌量的影响 图 34: 生物活性多肽 QEPVL对小鼠 iNOS与 C0X-2相对灰度的影响 图 35 : 生物活性多肽 QEPVL对淋巴细胞表面抗原的影响
具体实施方式
在进一步描述本发明具体实施方式之前, 应理解, 本发明的保护范围不局限于下述特 定的具体实施方案; 还应当理解, 本发明实施例中使用的术语是为了描述特定的具体实施 方案, 而不是为了限制本发明的保护范围。
当实施例给出数值范围时, 应理解, 除非本发明另有说明, 每个数值范围的两个端点 以及两个端点之间任何一个数值均可选用。 除非另外定义, 本发明中使用的所有技术和科 学术语与本技术领域技术人员通常理解的意义相同。 除实施例中使用的具体方法、 设备、 材料外, 根据本技术领域的技术人员对现有技术的掌握及本发明的记载, 还可以使用与本 发明实施例中所述的方法、 设备、 材料相似或等同的现有技术的任何方法、 设备和材料来 实现本发明。
除非另外说明, 本发明中所公开的实验方法、 检测方法、 制备方法均采用本技术领域 常规的分子生物学、 生物化学、 染色质结构和分析、 分析化学、 细胞培养、 重组 DNA技术 及相关领域的常规技术。 这些技术在现有文献中已有完善说明, 具体可参见 Sambrook等 MOLECULAR CLONING : A LABORATORY MANUAL, Second edition, Cold Spring Harbor Laboratory Press, 1989 and Third edition, 2001 ; Ausubel等, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, 1987 and periodic updates ; the series METHODS IN ENZYMOLOGY, Academic Press, San Diego ; Wolffe, CHROMATIN STRUCTURE AND FUNCTION, Third edition, Academic Press, San Diego, 1998 ; METHODS IN ENZYMOLOGY, Vol.304, Chromatin (P.M.Wassarman and A.P.Wolffe, eds.), Academic Press, San Diego, 1999 ; 和 METHODS IN MOLECULAR BIOLOGY, Vol.119, Chromatin Protocols(P. B.Becker, ed.)Humana Press, Totowa, 1999等。 实施例 1 活性肽 QEPVL的制备 一、 发酵乳的制备
1 ) 瑞士乳杆菌发酵乳 采用脱脂奶粉 (新西兰 NZMP牌脱脂奶粉) 与水配置 12wt%的脱脂乳 (12g脱脂奶粉 加入到 88g 水中, 下同)。 在无菌条件下, 挑取瑞士乳杆菌 ί Lactobacillus helveticus , CICC6024 菌落三环, 将其加入已灭菌的 12wt%的脱脂乳中, 在无菌条件下搅拌均匀。 接 种完成后, 用铝箔封口, 以防止污染。 置于培养箱中 37°C培养 19小时。 培养结束后, 在无 菌条件下将凝乳搅拌均匀, 即完成瑞士乳杆菌的活化, 制得用于制备瑞士乳杆菌发酵乳的 发酵剂。
取 10mL已制备的瑞士乳杆菌发酵剂接种到 500mL已灭菌的 12 ^%脱脂乳中(接种率 为 2 v/v %), 37°C发酵 19小时后, 在无菌条件下搅开凝乳, 在 4°C条件下保存, 得到瑞士 乳杆菌发酵乳。
2 ) 对照发酵乳 采用同样方法, 使用保加利亚乳杆菌 Lactobadllus Bulgaricus, LB340)和嗜热链球茵 (Streptococcus The画 philus, TA40 M乍为发酵菌种制作对照发酵乳。 具体方法为: 在无菌条件下, 分别挑取保加利亚乳杆菌与嗜热链球茵菌落三环, 将其 分别加入已灭菌的 12 wt%的脱脂乳中, 搅拌均匀。 接种完成后, 用铝箔封口, 以防止污染。 置于培养箱中 37°C培养 19h。 培养结束后, 在无菌条件下将凝乳搅拌均匀, 即完成保加利 亚乳杆菌与嗜热链球茵的活化, 制得用于制备对照发酵乳的两种发酵剂。
取 5mL已制备的保加利亚乳杆菌发酵剂和 5mL嗜热链球菌发酵剂,共同接种到 500mL 已灭菌的 12 ^ %脱脂乳中(接种率为 2 v/v %), 37°C发酵 19h后, 在无菌条件下搅开凝乳, 在 4°C条件下保存, 得到对照发酵乳。 二、 生物活性多肽的确认
1.实验方法
1 ) 样品处理
分别将前一步骤制备的瑞士乳杆菌发酵乳和对照发酵乳, 以及 12 wt%的脱脂乳装入离 心管中进行低温离心, 离心条件为 9000rpm/min, 4°C, 20min。 离心后弃沉淀, 取上清液。
将上清液分别倒入超滤杯中, 为了防止生物活性多肽被氧化, 打开氮气罐压力阀充氮, 同时打开磁力搅拌装置, 以防止溶液出现浓差极化现象。 使样品分别通过截留分子量为 lOkDa, 3kDa的滤膜, 待有滤液流出时进行收集。
超滤过程中, 应保持流速稳定, 滤液清澈。 流速控制在 lmL/min 左右, 压力为 0.1〜0.3MPa, 分别收集瑞士乳杆菌发酵乳、 对照发酵乳, 以及未发酵的 12 wt%脱脂乳的滤 液作为实验样、 对照样以及空白对照, 于 -4°C冷冻保存。
2) 质谱分析
将前一步骤收集的瑞士乳杆菌发酵乳超滤后的滤液 (实验样) 和脱脂乳超滤后的滤液 (空白对照) 进行质谱分析, 质谱条件如下:
离子方式: ES+
质量范围 (m/z): 100-1500
毛细管电压 (Capillary) (kV): 3.0
采样锥 (V): 35.0
离子源温度 (°C ) ): 100
去溶剂温度 (°C ): 350
去溶剂气流 (L/hr): 600.0
碰撞能量 ( eV): 6.0
扫描时间 (sec): 0.3
内扫描时间 (sec): 0.02
2. 实验结果
瑞士乳杆菌发酵乳超滤后的滤液(实验样)和脱脂乳超滤后的滤液(空白对照) 的质谱 对比结果见图 1〜2。图 1中的 A曲线为 3000Da未经发酵的脱脂乳(空白对照)粗提物样品, 图 1中的 B曲线为 3000Da瑞士乳杆菌发酵乳粗提物样品 (实验样)。 经过比较可以看出, 经过瑞士乳杆菌发酵后, 3000Da未经发酵乳粗提物和 3000Da瑞士乳杆菌发酵脱脂乳粗提物 的组分上发生很大变化, 且这些组分由于疏水性不同保留时间亦有所差异。 此质谱质量范 围为 100Da-1500Da, 因此可知脱脂乳在 1500Da以下、 210nm处有吸收的小分子物质相对较 少; 而经过瑞士乳杆菌发酵后, 在这一分子量范围内的物质明显增多, 说明了这些多肽并 不存在于未经发酵处理的脱脂乳中, 而是经瑞士乳杆菌发酵后才产生的。 而且我们发现随 着发酵时间的延长, 多肽的丰度明显增多, 进一步证实了通过瑞士乳杆菌的发酵, 脱脂乳 中原有的大分子蛋白被分解, 从单一的大分子蛋白变为量多且复杂的小分子多肽。 图 2是 3000Da未经发酵脱脂乳(空白对照)粗提物与 3000Da瑞士乳杆菌发酵脱脂乳(实 验样) 粗提物不同分子量物质丰度差异的比较结果。 纵向轴表明在脱脂乳粗提物中所含物 质对应的分子量, 横向轴表明发酵乳粗提物中所含物质对应的分子量。 通过比较, 可以得 到瑞士乳杆菌发酵乳和未经发酵脱脂乳中, 因为发酵所带来的差异较大的物质的分子量, 从而选择这些质荷比的母离子通过二级质谱进行进一步的分析。 如图 1所示, 分子量 397. 07Da, 保留时间 6. 72分钟的物质在脱脂乳粗提物中含量较高 (图 1-A图谱中的峰), 而对照发酵乳中几乎没有。 而分子量为 232. 15Da, 保留时间为 3. 61min的物质在发酵乳和脱脂乳中的含量均比较高。 因此, 我们选择了在发酵乳中含量较 高而在未经发酵的脱脂乳中含量较低的组分进行了差异比较, 比较结果见表 1。
表 1 : 3000Da瑞士乳杆菌发酵乳粗提物与 3000Da脱脂乳粗提物差异比较
分子量 3000Da脱脂乳粗提物 3000Da发酵乳粗提物
显著性
(Da) (unit) (unit)
504.2302 0.0779 0 37.23±2.78
444.2442 0.1498 0 71.58±4.27
585.3251 0.0886 0 41.72±4.02
748.3877 0.0753 0 35.25±2.46
439.291 0.3968 0 186.95±10.67
1025.5662 0.2441 0 115.86±7.17 根据 MarkerLynx 软件分析,得到具有显著性差异的(p〉0. 05 )分子量片段如表 1所示, 根据丰度和质荷比情况, 选择 585. 3251Da, 保留时间为 16. 20 min的多肽进行二级质谱的 测序分析。 三、 生物活性多肽的分离提纯和产量的比较 1.实验仪器和试剂 仪器: AKTA蛋白纯化仪 purifier 10
色谱柱规格: SOURSE 5 RPC ST4.6/150
流速: lmL/min
温度: 25 °C
紫外检测波长: 215nm
流动相 A: 含有 2%乙腈和 0.05%TFA的 ddH20
流动相 B: 100%乙腈
进样量: lmL
梯度条件: 0min-7.5min保持 100%A液; 7.5min-42.5minB液从 0%变为 50%; 42.5min-45minB 液从 50%变为 100%; 45min-50min保持 100%B液; 50min-72minA液从 0%变为 100%。
2. 实验方法 样品前处理: 将实验样和对照样与流动相 A液对半稀释 (体积比 1 : 1进行稀释), 作为 上样样品。 上样样品进行反相高效液相色谱分析, 实验结果见图 3。
3. 实验结果 由图 3可见, a曲线是对照样的反相高效液相色谱 215nm的洗脱图谱,洗脱时间为 26min 处有一明显的吸收峰, 其余峰高相对较低, 根据吸收值和肽键浓度的正比关系, 可认为在 12%对照发酵乳 3000Da上清液 (对照样) 中, 其多肽类物质较少, 且种类单一。 b曲线是 瑞士乳杆菌发酵乳 3000Da上清液(实验样)反相高效液相色谱 215nm的洗脱图谱, 与对照 发酵乳相比, 瑞士乳杆菌发酵乳 3000Da上清液的反相图谱中吸收峰明显增多, 且在洗脱时 间为 21min、 24min和 33min处有三处最为明显的吸收峰, 实验中对这三个峰进行了收集, 分别记录为发酵乳分离物 B峰、 发酵乳分离物 C峰和发酵乳分离物 D峰。
根据对各分子量对应的多肽与原发酵乳分离物 B峰、 C峰和 D峰对应分子量物质的保留 时间对比, 发现 585. 32Da的物质来源于发酵乳分离物的 D峰。
通过对照发酵乳和瑞士乳杆菌发酵乳的比较, 可发现经过瑞士乳杆菌发酵得到的发酵 乳, 其含有比对照发酵乳更为丰富的、 分子量小于 3000Da的多肽物质。 这些多肽类物质是 由于原脱脂乳中的大蛋白被瑞士乳杆菌所分泌的胞内酶和胞外酶分解, 释放出一些多肽片 段和游离的氨基酸所形成的。乳酸菌所分泌的胞外酶对乳品中 β -酪蛋白片段具有非特异性 或特异性的切割。 通常这些由微生物发酵得到的多肽类物质, 极有可能具有一定的生物活 性。 如果使用保加利亚乳杆菌和嗜热链球菌组合生产普通酸奶, 由于多肽的产量少, 品种 单一, 生物活性相对较低。
根据反相高效液相色谱原理, 疏水性较差的物质由于与分离柱固相结合力较弱, 先从 分离柱中洗脱下来, 而疏水性较好的物质与分离柱固相键合作用较大, 后从分离柱中被洗 脱下来。 由此可得, 三个分离物其疏水性按如下顺序排列: 瑞士乳杆菌发酵乳分离物 Β峰> 〔峰> 0峰。 经过收集操作, 得到 D峰值的样品, 采用真空冷冻干燥技术进行冷冻干燥, -4 °C冷冻保藏, 作为后续质谱分析、 体外功能性检测的实验材料。 四、 生物活性多肽的质量和氨基酸序列测定
1.实验方法
( 1 ) 色谱条件: 仪器: Waters ACQUITY UPLC超高效液相 -电喷雾-四级杆-飞行时间质仪
色谱柱规格: BEH C18 色谱柱
流速: 0.4mL/min
温度: 45 °C
紫外检测波长: 210nm
进样量: 7 L
梯度条件: 0min-3min保持 99%A液, 1%B液; 3min-9minB液从 1%变为 5%, A液从 99% 变为 95%; 9min-15minB液从 5%变为 10%, A液从 95%变为 90%; 15min-21min%B液从 10%变为 25%, A液从 90%变为 75%; 21min-24min, B液从 25%变为 40%, A也从 75%变 为 60%; 24min-27min, B液从 40%变为 80%, A液从 60%变为 20%; 27min-27.5min保持 80%B 液, 20%A 液; 27.5min-28min, B 液从 80%变为 5%, A 液从 20%变为 95% ; 28min-28.5min, B液从 5%变为 1%, A液从 95%变为 99%; 28.5min-30min, 保持 99%A液, 1%B液。 A液: 含有 2%乙腈和 0.05%TFA的 ddH20; B液: 100%乙腈
(2) 质谱条件:
离子方式: ES+
质量范围 (m/z): 100-1500
毛细管电压 (Capillary) (kV): 3.0
采样锥 (V): 35.0
离子源温度 (°C ) ): 100
去溶剂温度 (°C ): 350
去溶剂气流 (L/hr): 600.0
碰撞能量 ( eV): 6.0
扫描时间 (sec): 0.3
内扫描时间 (sec): 0.02
二级质谱母离子质量 (m/z): 439.3
根据上述实验条件, 利用超高效液相-电喷雾 -四级杆-飞行时间质谱, 得到瑞士乳杆菌 发酵乳分离物 D峰中分子量为 585.32Da的多肽的质量色谱提取图、 一级质谱图、 二级质谱 图, 并通过 Masslynx软件计算氨基酸序列, 结果见图 4〜图 6。
2. 实验结果 经过 Masslynx软件分析计算,得到分子量为 585.32Da的活性多肽片段的氨基酸序列为 Gln-Glu-Pro-Val-Leu ( QEPVL), 记为 SEQ ID NO: 1。 该片段来源于瑞士乳杆菌发酵乳分 离物 D峰, 与 β-酪蛋白的 209〜213位的残基序列相对应, β-酪蛋白氨基酸序列的 GenBank 编号为 AAA30431.1 , 序列见 SEQ ID NO: 3。
实施例 2生物活性肽 QEPV的制备和确认
1. 体外模拟胃肠道消化对生物活性多肽 QEPVL进行酶解
模拟胃肠道消化实验主要分为两步进行。 首先, 采用灭菌去离子水配制浓度为 500 μ g/mL生物活性多肽 QEPVL溶液, 在浓度为 500 μ g/mL QEPVL溶液中加入胃蛋白酶 (购自 Sigma公司), 比例是每克 QEPVL加入胃蛋白酶 20mg, 调节反应液的 pH值至 2.0, 在 37°C恒温水浴中保温 90min; 然后将反应液的 pH值调整至 7.5, 加入胰酶(Corolase PP, 购自德国 AB公司), 比例是每克 QEPVL加入胰酶 40mg, 在 37°C恒温水浴中保温 150min; 最后置于 95 °C水浴中加热 5min使酶失活, 将反应液冷冻浓縮干燥, 制成干粉, 储存于 -20 °〇条件下, 备用。
2.酶解产物的质量和氨基酸序列测定
取体外模拟肠胃道消化后的样品粉末 0.2mg, 加入 50 水和 450 无水乙醇, 充分 震荡后放入 -20 °C冰箱 20min, 在 15000rpm转速条件下离心 30min, 取上清液 400 μ L进行
UPLC-Q-TOF-MS分析。
UPLC 条件: Hypersil GOLD C18 色谱柱 ( 100mm*2.1mm, 1.9 μ ηι, 19θΑ) (Thermo
Scientific Co.); 流动相 A: 0.1%甲酸水溶液, 流动相 B: 含 0.1%甲酸乙腈; 采用从 99%的
A相到 50%A相的梯度洗脱程序; 流速 0.4mL/min; 柱温: 45 °C ; 进样量: 5 L。
Q-TOF-MS条件: 飞行时间质谱仪, 质谱采用电喷雾电离源 (ESI), 正离子模式。 并以
200ng/mL的亮氨酸脑啡肽进行实时精确质量校正。 质量扫描范围为 m/z 80-1000, 扫描时 间为 0.3s。 毛细管电压 3kV; 锥孔电压 35V; —级质谱碰撞能量分别为 4; 离子源温度 100
°C ; 脱溶剂气温度和流量分别为 300°C, 500L/h。
根据上述实验条件, 生物活性多肽 QEPVL 经过消化酶处理前和处理后产物经
UPLC-Q-TOF-MS分析, 获得的总离子流图见图 7。 并对图中 bl峰和 b2峰进行了提取, 采 用 Q-TOF-MS分析获得了相应的质谱图, 见图 8-9。
图 7中 A是空白对照组, 为没有经过酶消化处理的生物活性多肽 QEPVL总离子流图 (TIC); 图 7中 B是生物活性多肽 QEPVL经过胃蛋白酶处理后产物的总离子流图 (TIC); 图 7 中 C 是生物活性多肽 QEPVL 经过胃蛋白酶和胰酶先后处理得到的产物总离子流图
(TIC)o图 7中 b2峰的保留时间约为 6.50 min; 图 8的质谱分析结果表明 b2的相对分子质 量为 585.3223Da, 与生物活性多肽 QEPVL的分子量一致, 说明是 b2峰是 QEPVL的原始 峰。 图 7中 bl峰的保留时间约为 7.10 min; 图 9的质谱分析结果证明 bl峰的相对分子质量 568.2966Da, 是 QEPVL脱去一个水分子之后的产物。 在图 7中 A、 B、 C三条曲线的这两 个峰的分子量和保留时间完全相同, 说明是来源于同一物质。 和空白对照组相比, 经过胃 蛋白酶处理后的消化产物 bl 和 b2 的峰面积与空白对照组基本相等, 说明生物活性多肽 QEPVL并没有被胃蛋白酶消化。 在胃蛋白酶和胰蛋白酶组合作用下, 消化产物中 bl 峰、 b2峰的面积大大减少, 同时新增了 b3峰和 b4峰, 说明生物活性多肽 QEPVL在胃蛋白酶 和胰蛋白酶组合作用下, 可以消化降解为新的产物。
对生物活性多肽 QEPVL 在胃蛋白酶和胰蛋白酶组合作用下降解产物的氨基酸组成和 分子量进行检测, 采用 Q-TOF-MS分析获得 b3峰和 b4的相应的质谱图 10和图 11。
图 10为 b4峰提取物的质谱图,分子量为 472.2409 Da。图 11为 b3峰提取物的质谱图, 分子量为 455.2092Da。 并且 b3峰提取物为 b4峰提取物脱去一个水分子后相对应的分子质 量。 按照 QEPVL可能的断裂方式进行分子式的推算和分子量的计算, 结果见表 2。 经过上 述计算并结合 Masslynx软件分析结果, 最终确认生物活性多肽 QEPVL经消化酶处理后的 主要新产物为 QEPV (其含量占全部物质总量的 86.37 wt%, 为 b3和 b4峰面积之和), 其分 子量为 472.2409 Da; 同时存在少量的其他降解物。 生物活性多肽 QEPVL经消化酶处理前 后的主要产物保留时间、 峰高度、 峰面积和峰面积比例见表 3。 表 2生物活性多肽 QEPVL经消化酶处理后可能的断裂方式和分子量的计算
可能断裂方式 分子式 精确分子量
QEPVL C26H44N609 584.317
QEPV C20H33N5O8 471.2329
L CeHnNO 113.0841
QEP C15H24N407 372.1645
Figure imgf000015_0001
PVL C16H29N304 327.2158
Q C5H8N202 128.0586
EPVL C21H36N407 456.2584 表 3 生物活性多肽 QEPVL经消化酶处理前后的主要产物质谱分析时的保留时间、 峰 高度、 峰面积和峰面积比例 样品 保留时间(min) 峰高度 峰面积 峰面积比例 (%) 空白对照组 (处理前) 6.49 55491 3222.66 61.11 空白对照组 (处理后) 7.01 26030 2050.83 38.89 胃蛋白酶消化组 (处理前) 6.50 47494 2638.98 57.95 胃蛋白酶消化组 (处理后) 7.01 23604 1915.09 42.05
胰酶消化组 (处理前) 3.46 3118 680.18 26.78 胰酶消化组 (处理后) 5.36 12730 1511.09 59.49 胰酶消化组 (处理前) 6.50 672 36.26 1.43 胰酶消化组 (处理后) 7.10 6050 312.60 12.31 由上述数据可知, 多肽 QEPVL在进入动物和人的胃肠道后可能被消化酶降解。其降解 产物是新生成的生物活性多肽 QEPV。 而新生成的生物活性多肽 QEPV没有被消化酶进一 步降解, 证明产生的生物活性多肽 QEPV在消化过程中稳定, 可以被动物机体直接吸收利 用。
实施例 3 生物活性多肽 QEPVL和 QEPV的抗氧化活性实验 采用清除自由基法(DPPH*法)和总抗氧化能力法(Ferric Reducing Ability Power FRAP 法), 对实施例 1得到的生物活性多肽 QEPVL的抗氧化活性进行了测试。
1、 [DPPH- ]法测定生物活性肽 QEPVL的体外抗氧化活性
1 ) 实验试剂及仪器
试剂: 1, 1-二苯基 -2-三硝基苯肼 ( 1, l-Diphenyl-2-picrylhydrazyl [DPPH · ] ) , 日本 Wako公司生产; 甲醇, 上海国药公司提供; 实施例 1获得的瑞士乳杆菌发酵得到 的乳源性生物活性多肽 QEPVL (收集到的 D峰值样品) 和实施例 2获得的乳源性生物 活性多肽 QEPV。
主要仪器: Sunrise 酶标仪,奥地利 Tecan公司产品;96孔细胞培养板,美国 Mi l l ipore 公司制造; 分析天平, Meitelei-tol ido公司产品。
2 ) 实验方法
( 1 ) lmmol/L [DPPH · ]甲醇溶液
用分析天平称取 0· 349mg [DPPH · ]溶于 lmL甲醇溶液中, 配制得到的 lmmol/L [DPPH · ] 甲醇溶液, 锡纸避光保存, 即配即用。
( 2) [DPPH · ]甲醇标准曲线的测定
在 96孔板中按表 4分别加入 ΙΟΟ μ L [DPra · ]甲醇标准曲线样品, 室温静置 90min, 用酶标仪在 517nm处检测吸光值。 表 4 [DPPH · ]甲醇标准曲线溶液配制
1 2 3 4 5 6
[DPPH · ]甲醇(μ 100 80 60 40 20 0
甲醇 (μί) 0 20 40 60 80 100
[DPPH · ]甲醇标准 1.0 0.8 0.6 0.4 0.2 0
溶液 (mmol/1) 根据实验结果, 使用 Excel 拟合曲线并计算回归方程, 结果见图 12 (回归方程: y=-0. 192x十 0. 2271 , R2=0. 9991 )。 [DPPH ·]甲醇标准曲线的线性关系良好,相关系数为 0. 999, 表明 [DPPH ·]甲醇标准曲线精密度和准确度均符合检测要求。从结果看,吸光度值与 [DPPH ·] 含量呈反比关系, [DPPH · ]含量越少, 吸光值越高, 即样品清除自由基的能力越强。
(3) [DPPH · ]法测定生物活性肽 QEPVL和 QEPV的抗氧化活性
1 ) 样品组: 在 96孔板中加入 80 μ L浓度为 lmmol/L [DPPH · ]甲醇溶液、 按表 5分别加入 20 不同浓度的待测样品 (QEPV QEPV)、 阳性对照 1 ( 2. 5mg/mL的 Trolox)、 阳性对照 2 (0. 025mg/mL的 Trolox), 和阴性对照 (植酸);
2) 空白组: 在同一 96孔板上, 以加入 80 μ L浓度为 lmmol/L [DPPH · ]甲醇溶液和 20 μ L 去离子水的样品做空白对照。
待检测样品加样完毕后, 室温静置 90min, 用酶标仪在 517nm处检测吸光值。 按照下 式计算自由基清除率, 实验结果见表 3。 公式: [DPPH · ]自由基清除率 = 0D空白— ^样品 X 100%
OD空白 表 5 [DPPH · ]法测定瑞士乳杆菌发酵乳中生物活性多肽的抗氧化活性结果
样品浓度 ( mg/mL)
样品名称 10.00 5.00 2.50 1.25 0.625 待;则样品 (多肽 15.23±0.06 22.14±0.12 22.50±0.04 14.16±0.17 14.52±0.07
QEPVL)
待;则样品 (多肽 15.32±0.09 20.58±0.06 21.81±0.65 14.89±0.02 14.76±0.05
QEPV)
阳性对照 1 99.96±0.0016
(2.5mg/mL Trolox )
阳性对照 2 71.08±0.03
( 0.025g/mL
Trolox )
阴性对照(植酸) 58.49±0.08 从表 5可以看出, 作为阳性对照的 2. 5mg/mL的 Trolox在相同条件下具有最强的清除 自由基的能力, 几乎能清除溶液中所有的自由基, 其次为 0. 025mg/mL的 Trolox、 植酸、 活 性多肽。 从发酵乳分离物 D峰中分离的多肽 QEPVL, 以及多肽 QEPVL的降解产物 QEPV清除 [DPPH « ]自由基率随浓度变化均呈现倒钟型, 并且都在浓度为 2. 5mg/mL处达到最高值, 分 别为 22. 50%和 21. 81%。
2、 FARP法测定瑞士乳杆菌发酵乳中多肽体外抗氧化能力
1 ) 实验试剂和仪器
总抗氧化能力检测试剂盒(Ferric Reducing Ability of Plasma FRAP法), 购自上海碧云 天生物科技公司; FeS04溶液 (10mmol/L), 水溶性维生素 E (Trolox溶液) (10mmol/L), 实施例 1获得的瑞士乳杆菌发酵得到的乳源性生物活性多肽 QEPVL和实施例 2获得的 乳源性生物活性多肽 QEPV。
主要仪器: Sunrise 酶标仪, 奥地利 Tecan 公司产品; 96 孔细胞培养板, 美国 Mi l l ipore公司制造; 分析天平, Meitelei-tol ido公司产品; HWS26型 电热恒温水 浴锅, 上海一恒科技有限公司制造。
2) 实验方法
( 1 ) FRAP工作液的配制
根据总抗氧化能力检测试剂盒, 将 TPTZ 7. 5mL稀释液、 TPTZ 750 L溶液、 检测缓冲液 750 L混合均匀, 并在 37°C水浴中孵育, 2小时内用完。
( 2) FeS04标准曲线曲线的制作
在 96孔板中先加入 180 μ LFRAP工作液, 按表 6加入 5 μ L FeSO^ 准曲线溶液, 轻轻 混匀, 37°C孵育 3_5min后, 用酶标仪在 593nm处测定吸光值。 表 6 FeS04标准曲线测定的溶液配制
1 2 3 4
FeS04溶液(μ 10 5 2 1 0.5 0
dd¾0 0 5 8 9 9.5 10
FeS04标准溶液 1 0.5 0.2 0.1 0.05 0 (mmol/L)
FeS04浓度与吸光值呈良好的正比关系, FeS04浓度越高, 吸光值越高。 本发明 FeSO^ 准曲线结果见图 13, 标准曲线的线性关系良好, 相关系数为 0. 998, FeSO^ 准曲线的精密 度和准确度均符合检测要求, 可用于后续计算。
( 3 ) FRAP法测定生物活性多肽 QEPVL和 QEPV的抗氧化能力
在 96孔板中先加入 180 μ L FRAP工作液, 空白对照孔中加入 5 μ L dd¾0, 样品检测孔 内加入 5 L待测样品、 阳性对照内加入 5 L植酸, 轻轻混匀, 37°C孵育 3-5min后, 用酶 标仪在 593nm处测定吸光值。 总抗氧化能力表示方式以 FeS04标准溶液的浓度来表示。 按照 下式计算总抗氧化能力, 实验结果见表 7。
与样品 OD值相同的 FeS04标准溶液浓度 ( mmol/L) 总抗氧化能力 (mmol/g)
样品浓度 (mg/mL) 表 7 FARP法测定瑞士乳杆菌发酵乳中生物活性多肽的总抗氧化能力结果
对应的 FeS04浓 总抗氧化能力 样品名称
度 (mmol/L) (mmol/g) 样品组 多肽 QEPVL 4.00 0.0849±0.0257 0.0212 样品组 多肽 QEPV 4.00 0.0804±0.0214 0.0201 阳性对照 植酸 4.00 0.0356±0.0055 0.0089
组 通过总抗氧化能力法 (Ferric Reducing Ability Power FRAP法) 对瑞士乳杆菌发酵乳中 分离的多肽 QEPVL和其降解产物多肽 QEPV的体外总抗氧化活性进行了测定,发现生物活 性多肽 QEPVL和生物活性多肽 QEPV均具有较好的还原氧化物质的能力;在浓度为 4mg/mL 情况下, 多肽 QEPV显示出的总抗氧化能力达到 0.0201mmol/g, 多肽 QEPVL的总抗氧化 水平达到 0.0212mmol/g;说明生物活性多肽 QEPVL和 QEPV的总抗氧化能力,高于同等浓 度下的具有弱抗氧化活性的植酸, 具有显著性(p>0.05 )差异。 因此, 可认定发明的生物活 性多肽 QEPVL和 QEPV具有显著的抗氧化能力。
实施例 4 生物活性肽的促进机体免疫力活性实验 一、 MTT法测定生物活性多肽 QEPVL和 QEPV的体外淋巴细胞增殖能力实验
1)实验材料与仪器: 试剂与材料: 实验动物 balb/c小鼠 (雄性 6-8周龄, 上海交通大学农业与生物学院动 物实验中心); 瑞士乳杆菌发酵得到的乳源性生物活性多肽 QEPVL ; 小鼠淋巴细胞提取液 (购自索来宝公司); RPMI1640培养基 (购自 GIBCO公司); 3-(4, 5-二甲基噻唑 -2)-2, 5- 二苯基四氮唑溴盐 (MTT, 购自 Amresco公司); 伴刀豆蛋白 (ConA, 购自 Sigma公司); 牛血清白蛋白 ( BSA, 购自 Genebase公司); 胃蛋白酶(购自 Sigma公司); 胰酶( Corolase PP, 购自 AB公司)。
仪器: LRH-250F生化培养箱, 上海一恒科技有限公司; GL-22M高速冷冻离心机, 上 海卢湘仪离心机仪器有限公司; Hera cell 150 C02 培养箱, Heraeus公司; Dragon Wellscan MK3酶标仪, Labsystems公司; ALPHA 1-2-LD 真空冷冻干燥机, Christ公司; 超高效液 相色谱 -四极杆飞行时间质谱仪, waters公司。
2) 实验方法:
无菌条件下取小鼠脾脏, 用淋巴细胞提取液提取小鼠淋巴细胞, 进行元代培养。 用完 全 RPMI1640培养液将细胞密度调整为 2.5 X 106个 /mL。 在 96孔细胞培养板中依次加入: 100 小鼠淋巴细胞悬液, 100 L RPMI1640完全培养液, 20 伴刀豆蛋白, lOO L样 品。另外,设置空白对照组(pH7.2〜7.4, 3mol/L的 PBS)和阴性对照组 (500 μ g/mL BSA), 研究表明其对于体外淋巴细胞增殖没有影响。 每组 3个平行实验样。 在 5%C02 37°C培养箱 中培养 68h后, 无菌条件下每孔加入 20 L MTT, 继续培养 4h, 小心弃去上清液, 每孔加 入 100 二甲基亚砜, 37°C生化培养箱孵化 10min, 摇匀, 用酶标仪在 570nm处测定吸光 值。
体外淋巴细胞增殖能力用刺激指数来表示, 计算方法如下: 束纖指数= ^:^ x lOOo/o
A2 - Al 式中: Al为空白对照在 570nm处下的吸光值; A2为阴性对照组在 570nm处下的吸光 值, A 3为实验组在 570nm处下的吸光值。
3 ) 实验结果及分析 实验结果见表 8。由表 8可知,在生物活性肽 QEPVL的质量浓度为 100 μ g/mL的条件下, 乳源性生物活性肽 QEPVL的刺激指数大于 BSA,说明 QEPVL—定程度上能刺激体外小鼠淋巴 细胞的增殖。 并且 QEPVL的刺激指数达到了 1. 186, 和阴性对照组具有显著差异(P〈0. 05)。 在多肽 QEPV的质量浓度为 100 μ g/mL的情况下,设定阴性对照组的刺激指数为 1,多肽 QEPV 的刺激指数可以达到 1.1466, 说明 QEPV是一种具有促进淋巴细胞增殖功能的生物活性多 肽, 且和阴性对照组具有显著差异 (P〈0. 05)。 因此, 可以认定该瑞士乳杆菌发酵乳分离的 到的活性多肽 QEPVL以及其人体内消化代谢产物 QEPV均具有显著促进小鼠淋巴细胞增殖的 能力, 可以作为一种保健品或者添加剂食用, 能够提高动物和人体的免疫力。 表 8生物活性多肽 QEPVL对体外淋巴细胞增殖的影响
Figure imgf000021_0001
二、 ΜΤΤ法测定生物活性多肽 QEPVL的体外巨噬细胞增殖能力实验
1 ) 实验试剂及仪器
试剂: 实验动物 balb/c小鼠 (雄性 6-8周龄) 上海交通大学农业与生物学院动物实验 中心; 瑞士乳杆菌发酵得到的乳源性生物活性多肽 QEPVL; 3-(4, 5-二甲基噻唑 -2)-2, 5- 二苯基四氮唑溴盐(MTT) Amresco公司; LPS (脂多糖) Sigma公司;牛血清白蛋白(Bovine Serum Albumin, BSA) Genebase公司; 三联溶解液,含 10%SDS、 5%异丁醇以及 0. 012mol/L HC1的水溶液。
仪器设备: LRH-250F生化培养箱 上海一恒科技有限公司; GL-22M高速冷冻离心机 上 海卢湘仪离心机仪器有限公司; Hera cell 150 C02 培养箱 Heraeus公司; Dragon Wellscan MK3酶标仪 Labsystems公司。
2) 试验方法:
balb/c小鼠腹腔注射 2ml的 2% (w/w) 灭菌淀粉溶液, 连续注射三天, 最后一次注射 24小时后断颈处死。剥去腹部皮肤,用注射器吸取 4°C磷酸盐缓冲液(PBS )反复冲洗腹腔, 离心管收集冲洗液后, 离心 (lOOOrpm, 4°C ) 10分钟后弃上清, 用 4°CRPMI1640完全培养 液(含 10%FBS)洗涤两次, 0.2%台盼蓝溶液染色做细胞活力检测, 确认采集到的有活力巨 噬细胞占 95%以上。 细胞计数板读数后, 调整细胞浓度至合适浓度。
将已吹打至完全悬浮的细胞悬液以合适体积加入 96孔细胞培养板, 37°C、 5%C02环境 下培养 4小时后, 吸弃孔中液体, 用 37°C RPMI1640完全培养液小心清洗细胞培养板孔底, 洗去未贴壁的细胞和细胞碎片,得到纯化后的贴壁腹腔巨噬细胞。每孔加入 0.2ml RPMI1640 完全培养基, 实验用小肽样品及 LPS事先溶解于培养基后加入, 开始细胞培养。 加入细胞个数为 2x l05/ml的细胞悬液 ΙΟΟμΙ/孔, 贴壁纯化后加入含生物活性多肽(100, 500, 100(^g/mL)的 RPMI1640完全培养液 (10%FBS ) 200μ1/孔, 连续培养 48小时, 炎症 组在 24小时时加入 LPS至终浓度 100ng/ml。 44小时时加入 5% MTT 20μ1/孔, 达到 48小时 后加入 ΙΟΟμΙ/孔的三联溶解液以终止培养, 隔夜溶解后, 在波长 570nm下用酶标仪测各孔 的吸光度值 (OD570 ) , 生长指数 (Growth Indices ) 的计算公式如下:
=小肽组 OD值 -空白培养液 OD值
—空白组 OD值 -空白培养液 OD值 其中, 空白组为不施加小肽和 BSA的细胞处理组, BSA组为阴性对照。
3 ) 实验结果
实验结果见图 14-图 15, 在实验组中生物活性多肽 (QEPVL或 QEPV ) 的添加浓度分 别为 1000, 500, 100 g/mL, 空白组加入相应量的 PBS作为空白对照, 表示在没有 LPS 刺激的情况下巨噬细胞的增殖情况。和空白对照组相比, 添加不同浓度的多肽 QEPVL实验 组随着实验浓度的增加, 巨噬细胞的增殖能力逐渐上升, 在浓度为 1000, 500 g/mL时, 具有显著性差异 (PO.05 ) ; 添加不同浓度的多肽 QEPV实验组也随着实验浓度的增加, 巨 噬细胞的增殖能力逐渐上升, 在浓度为 1000, 500 g/mL时, 具有显著性差异 (P<0.05 )。 说明生物活性多肽 QEPVL和其代谢产物 QEPV均具有促进巨噬细胞增殖的能力。 实施例 5 生物活性肽的提高机体抗氧化能力活性实验 通过腹腔注射 LPS细菌脂多糖造成炎症氧化应激模型,比较预先经过 QEPVL水溶液灌 胃和未经过灌胃的小鼠机体抗氧化能力的不同, 考察生物活性肽 QEPVL对小鼠肝脏 ROS 活性氧、脂质氧化物 MDA和肝脏抗氧化酶 GSH-Px、 SOD, CAT的调节能力, 测定 QEPVL 提高机体抗氧化功能的能力。
一、 实验试剂及设备
1 ) 实验主要试剂
QEPVL (纯度 >90%) 上海强耀生物技术有限公司
PBS 南京凯基生物科技有限公司
实验动物 Balb/c小鼠 (雄性 6-8周龄) 上海斯莱克实验动物有限公司
细菌脂多糖 (LPS ) (E. Coli 055 -.B5 ) Sigma公司
ROS检测试剂盒 南京建成生物工程研究所
总 NO检测试剂盒 碧云天生物技术研究所
总谷胱甘肽过氧化物酶检测试剂盒 碧云天生物技术研究所
总 SOD活性检测试剂盒 碧云天生物技术研究所
脂质氧化 (MDA) 检测试剂盒 碧云天生物技术研究所 BCA蛋白含量检测试剂盒 碧云天生物技术研究所
2) 实验主要仪器
台式低速离心机 中国上海医疗器械股份有限公司
EP管 美国 AXYGEN
GL-22M高速冷冻离心机 上海卢湘仪离心机仪器有限公司
通风橱 苏州亿达
电热鼓风干燥箱 上海圣欣
涡旋振荡器 海门其林贝尔
恒温水浴箱 常州国华电器有限公司
M200 PRO酶标仪 瑞士 TEC AN公司 二、 小鼠的伺喂、 分组与样品采集与制备
6周龄 Balb/c小鼠在伺养温度 21±1 , 相对湿度 30-70%条件下适应性培养一周后被随 机分成 3组, 每组 48只, 分别为空白组、 炎症组和肽组。 空白组和炎症组灌胃生理盐水, 肽组按 200mg/kg剂量灌胃 QEPVL水溶液, 连续 3周, 末次灌胃 2h后空白组腹腔注射生理 盐水, 炎症组、 肽组按 5mg/kg剂量腹腔注射 LPS。 腹腔注射后按不同时间点采血并采集肝 脏, 分别为腹腔注射后 1、 2、 3、 4、 6、 9、 12、 24、 48小时, 每次采集 6只小鼠。
采血方式采用摘眼球取血, 4°C条件下 3000 r/min离心 10分钟分离得到血清, 放入 4 °C冰箱待测。 小鼠采血后进行脱颈处置, 迅速解剖并摘取肝脏, 准确称取肝脏重量, 按重 量(g): 体积 (ml) =1 :9的比例加入 4°C预冷的 PBS制备成 10%的肝脏匀浆液。 4°C条件下 3000 r/min离心 10分钟得到上清液, 放入 4°C冰箱待测。
三、 小鼠肝脏 ROS浓度检测
1 ) 实验方法
考虑到最大检出限, ROS样本的肝脏匀浆液浓度为 5%, 因此需要将已经处理好的肝脏 匀浆液对半稀释或者准确称取小块组织重量, 按重量 (g):体积 (ml) =1 :20 的比例加入匀浆 介质 (匀浆介质推荐采用 lOOmM磷酸缓冲液 PBS), 冰水浴条件下机械匀浆, 3000r/min离 心 10分钟, 取上清液待测。
取部分上清用于蛋白的测定。 蛋白浓度检测使用 Braford蛋白含量检测试剂盒, 首先用 标准品稀释液溶解标准品 BSA蛋白, 控制终浓度为 0.5mg/mL, 按 0, 1, 2, 4, 8, 12, 16, 20 L依次加到 96孔板的标准品孔中, 用标准品稀释液补足到每孔 20 L。 其余各孔依次 加入 20 μ L样品和 200 μ L G250染色液, 室温放置 3-5分钟, 可轻微震荡混匀。 用酶标仪 在 595nm下读数, 得到 OD值, 根据标准曲线计算得到蛋白浓度。 在样品与荧光探针结合前, 首先进行 lmmol/L DCFH-DA 工作液的配制, 按 10mM DCFH-DA:PBS=1 :9的比例进行配制, 现用现配。 测定孔与对照孔分别加入 190 匀浆液 禾口 190 L PBS, 所有孔加入 10 ImM DCFH-DA工作液, 移液器吸打使之充分混匀, 37 °C孵育 30 分钟, 用酶标仪的荧光功能进行检测。 最佳激发波长在 485-515nm之间 (500士 15nm), 最佳发射波长在 525nm左右 (530 ±20 nm), 测定其荧光强度。
最终测定结果以荧光强度 /微克蛋白表示。
2) 实验结果
实验结果见图 16,正常小鼠体内 ROS含量极低,但经 LPS诱导后在炎症小鼠体内显著 性增加。 腹腔注射 6小时后, 未经 QEPVL预处理的小鼠肝脏 ROS含量显著高于经 QEPVL 预处理的小鼠。 由此可证明 QEPVL能够有效降低氧化应激状态下小鼠体内 ROS含量, 保 护机体不受活性氧自由基损伤。
四、 小鼠肝脏抗氧化酶酶活检测
1、 实验方法
1 ) 总谷胱甘肽过氧化物酶酶活检测
取少量样品检测蛋白浓度, 检测方法同实施例 3 中总抗氧化能力法 (Ferric Reducing Ability Power FRAP法) 所述。 事先将试剂盒中的 NADPH用去离子水定容为 10mM浓度, 立即分装冻存在 -70°C冰箱中; 将试剂盒中的 GSH用去离子水定容为 84mM浓度的 GSH溶 液, 立即分装冻存在 -20°C冰箱。 两种溶液实验前取出室温溶解备用。 按照需要检测的样品 数量,确定需要配置的 GPx工作液体积,每个样品需要的工作液包括: 5 μ L 10mM NADPH, 5 μ L 84mM GSH和 0.4 μ L谷胱甘肽还原酶。 实验前还需用去离子水配置 15mM过氧化物 试剂溶液。 GPx工作液和过氧化物试剂溶液需现配现用, 不能反复多次使用。
配好所有所需试剂后, 向各孔依次加入检测缓冲液、 待测样品和 GPx工作液并混匀。 其中, 空白对照孔加入 186 μ L检测缓冲液和 10 μ L GPx工作液; 样品孔加入 176 μ L检测 缓冲液、 10 μ L样品和 10 μ L GPx工作液。 最后向所有孔各加入 4 μ L 15mM过氧化物试剂 溶液, 充分混匀, 在 340nm条件下酶标仪读取吸光值。
样品中谷胱甘肽过氧化物酶的活力可通过以下公式进行计算:
检测体系中过氧化物酶的活力= (样品吸光值 -空白对照吸光值) /0.00622
样品中谷胱甘肽过氧化物酶的活力 =检测体系计算得到酶活 X稀释倍数 /样品蛋白浓度
最终得到结果以 mU/毫克蛋白表示。
2) 总 SOD酶活检测 实验前事先配好 WST工作液和酶工作液。 WST工作液按每 1.8mLSOD检测缓冲液中加 入 10mL WST-1的比例混匀进行配制, 酶工作液按照每 200 μ L稀释液中加入 10 μ L酶溶液 的比例混匀进行配制。
实验可分为四组: 样品组、 空白对照 1、 空白对照 2和空白对照 3。 当样品没有颜色且 不含抗氧化物质时, 可以不用设置空白对照 3。本实验由于各管肝脏匀浆液的颜色存在一定 色差干扰检测结果, 必需设置空白对照 3。实验首先往样品组与空白对照 3中加入 20 L样 品, 随后向 3种空白对照组分别加入 20 μ L PBS, 混匀, 所有孔加入 180 μ L WST工作液, 37°C孵育 5分钟。 最后向样品组和空白对照 1加入 20 L酶工作液, 充分混匀。 由于加入 酶工作液加入后反应开始, 可以在冰上或低温下操作以减小各孔加入时间不同带来的影响 误差。 加入酶工作液后孔板放入 37°C培养箱孵育 30-40分钟。 孵育结束后在酶标仪 450nm 处读数, 得到吸光值。
所得数据计算方法如下:
抑制百分率 =[ (空白对照 1-空白对照 2) - (样品-空白对照 3 ) ]/ (空白对照 1-空白对照 2) X 100%
待测样品中 SOD酶活力 =抑制百分率 / ( 1-抑制百分率), 单位为 U/mL
3 ) 脂质氧化 (MDA) 检测
实验前根据样品数量事先配制好 MDA检测工作液,按每检测 1个样品需要 150 μ L ΤΒΑ 稀释液、 50 L TBA储存液和 3 L抗氧化剂混匀, 在 70°C加热并剧烈震荡溶解。配制好的 MDA检测工作液必需当天使用。 取适量标准品, 用去离子水稀释至 1、 2、 5、 10、 20、 50 μ Μ用于制备标准曲线。
实验分为 3组: 空白对照组、 标准品组和样品组, 分别在 ΕΡ管内加入 0.1mLPBS、 标 准品和样品, 所有 EP管加入 0.2mLMDA检测工作液, 混匀, 沸水加热 15分钟。 加热结束 后, 水浴冷却至室温, 30000r/min离心 10分钟, 取 200 μ L上清液加入到 96孔板中, 在酶 标仪上进行读数, 测定 532nm条件下的吸光值。 按标准曲线计算得到体系中 MDA浓度 μ Μ。
样品 MDA含量用体系 MDA浓度除以样品蛋白浓度, 最终所得结果表示为 μ mol/毫克 蛋白。
4) 过氧化氢酶酶活检测
事先配制 5mM过氧化氢溶液, 取 0、 12.5、 25、 50、 75 μ L配置好的过氧化氢溶液至 ΕΡ管中, 分别加入过氧化氢酶检测缓冲液至终体积为 100 L, 混匀。 各取 4 L加入到 96 孔板内,随后各孔加入 200 μ L显色工作液,混匀, 25 °C孵育 30分钟后取出,在酶标仪 520nm 条件下读取各孔 OD值。
事先配制好 250mM过氧化氢溶液, 各取 10 加入到空白对照组 EP管和样品组 EP 管。 空白对照管迅速加入 40 过氧化氢酶缓冲液, 样品管迅速加入 40 样品, 分别用 枪吹打混匀。 25°C反应 1-5分钟, 尽量控制所有 EP管内反应时间一致, 各管加入 450 L 过氧化氢酶反应终止液, 涡旋震荡混匀终止反应。 每管吸取 8 L混合液加入到 96孔板, 随后依次往 96孔板每实验孔加入 2 μ L过氧化氢酶检测缓冲液和 200 μ L显色工作液。震荡 混匀, 25 °C孵育 30分钟, 在酶标仪 520nm条件下读取各孔 OD值。
过氧化氢酶活力计算公式如下:
标准品吸光值 =k[过氧化氢微摩尔数] +b, 由标准曲线计算出 k和 b的值。
残余过氧化氢微摩尔数 = (样品吸光值 -b)/k。
样品过氧化氢酶酶活力 =消耗过氧化氢微摩尔数 X稀释倍数 /(反应分钟数 X样品体积 X蛋 白浓度)。 样品过氧化氢酶酶活力的单位为 units/毫克蛋白。
其中, 公式中消耗过氧化氢摩尔数 =空白对照残余过氧化氢微摩尔数-样品残余过氧化 氢微摩尔数; 稀释倍数 =250; 反应分钟数即为实际的反应分钟数; 样品体积为表 2中的 X 微升, 以毫升来表示即为 X/1000毫升; 蛋白浓度为取 X微升样品时, 样品中的蛋白浓度, 单位为 mg/mlo
2、 实验结果
实验结果见表 9,与空白组相比, LPS诱导的炎症模型可以显著降低肝脏的抗氧化能力, 肝脏抗氧化酶 GSH-Px、 SOD, CAT的酶活均显著降低, MDA浓度显著升高。 与炎症组相 比, 经过 QEPVL预处理的实验组均可提高急性炎症状态下肝脏的抗氧化能力, 各项还原性 酶的酶活得到了显著提升, 脂质过氧化情况得以缓解, 证明 QEPVL可以消除炎症带来的过 氧化反应。 并且, 总抗氧化能力与 SOD 酶活增加情况尤其显著 (P<0.01 )。 实验结果说明 QEPVL通过提高机体各种抗氧化酶的酶活, 达到有效清除自由基、 保护机体的目的, 并且 这种调节作用主要作用于 SOD。 表 9 QEPVL预处理小鼠应激状态下抗氧化能力的变化
,„n l SOD GSH-Px CAT MDA
组另 |J
/(U - mg ) /活力单位 /( U . mg- ^ /(nmol - mg )
空白 25.14士1.949** 234.3±39.30* 239.1±9.637* 1.462士0.1065** 炎症 7.662士 0.8457 124.3士18.73 184.9士14.53 3.884士 0.4940 肽预处理 28.77士3.325** 268.1±47.54* 286.5士24.68* 2.149±0.8455*
*与炎症组相比具有显著性差异 (P<0.05 ), **与炎症组相比具有显著性差异 (P<0.01 )。
实施例 6 生物活性肽的抗炎能力活性实验
通过腹腔注射 LPS造成小鼠炎症模型,比较预先经过 QEPVL水溶液灌胃的小鼠和未经 灌胃小鼠体内细胞因子的分泌、 NO的分泌和炎性蛋白的合成情况,考察生物活性肽 QEPVL 对小鼠炎症的调节能力。
小鼠的伺喂、 分组与样品采集方法同实施例 5。
一、 实验试剂及设备
1 ) 实验主要试剂
QEPVL (纯度 >90% ) 上海强耀生物技术有限公司
PBS 南京凯基生物科技有限公司
实验动物 Balb/c小鼠 (雄性 6-8周龄) 上海斯莱克实验动物有限公司
细菌脂多糖 (LPS ) ( E. Coli 055 -.B5 ) Sigma公司
总 NO检测试剂盒 碧云天生物技术研究所
CBA Flex Sets试剂盒 BD公司
Braford蛋白含量检测试剂盒 南京凯基生物科技有限公司
X光胶片 一 上海申贝感光材料厂
5 SDS-PAGE蛋白上样缓冲液 南京凯基生物科技有限公司
SDS -PAGE凝胶配制试剂盒 南京凯基生物科技有限公司
预染蛋白分子量 南京凯基生物科技有限公司
l OxTris-甘氨酸蛋白电泳缓冲液 南京凯基生物科技有限公司
考马斯亮蓝染色法检测蛋白试剂盒 南京凯基生物科技有限公司
l Ox电转移缓冲液 南京凯基生物科技有限公司
丽春红染色液 南京凯基生物科技有限公司
l Ox WB洗涤液 南京凯基生物科技有限公司
WB封闭液 南京凯基生物科技有限公司
WB一抗稀释液 南京凯基生物科技有限公司
WB二抗稀释液 南京凯基生物科技有限公司
WB抗体清除缓冲液 南京凯基生物科技有限公司
ECL检测试剂盒 南京凯基生物科技有限公司
内参一抗 ( β-Actin) 南京凯基生物科技有限公司
二抗 (羊抗小鼠 /兔 IgG-HRP ) 南京凯基生物科技有限公司
显影定影试剂 南京凯基生物科技有限公司
一抗 iNOS 武汉博士德生物工程有限公司
一抗 COX-2 武汉博士德生物工程有限公司 2) 实验主要仪器
台式低速离心机 中国上海医疗器械股份有限公司
EP管 美国 AXYGEN公司
GL-22M高速冷冻离心机 上海卢湘仪离心机仪器有限公司
通风橱 苏州亿达公司
电热鼓风干燥箱 上海圣欣公司
涡旋振荡器 海门其林贝尔公司
凝胶成像仪 美国 BIO-RAD公司
Wester 电泳仪 美国 BIO-RAD公司
恒温水浴箱 常州国华电器有限公司
多用脱色摇床 江苏金坛市正基仪器厂
M200 PRO酶标仪 瑞士 TEC AN公司
流式细胞仪 美国 BD公司 一、 在炎症发生过程中 QEPVL对各种细胞因子分泌的调节功能
1、 实验方法
1 ) 制备细胞因子标准品
由于 8种细胞因子 (IFN- Y TNF- a、 GM-CSF、 IL-1 β、 IL-4、 IL-6、 IL-10、 IL-13 ) 标准品是独立存放的冻干粉, 因此在需要将 8 管不同的标准品混合进行重悬并进行梯度稀 释, 溶解后的标准品不能重复使用, 需要现配现用。 最高浓度标准品用 2mL实验稀释液重 悬, 室温下平衡 15分钟, 用枪头轻轻混匀, 严禁剧烈震荡。 标准品依次按照 1 : 2、 1: 4、 1: 8、 1: 16、 1: 32、 1: 64、 1: 128和 1 : 256进行稀释, 得到 9个浓度梯度的标准品, 分别为 2500pg/mL、 1250pg/mL、 625pg/mL、 312.5pg/mL 156pg/mL、 80pg/mL、 40pg/mL、 20pg/mL禾口 lOpg/mLo
2) 混合细胞因子捕获微球
实验前确定实验管数, 包括标准品管、 试样管、 对照管, 从而确定吸取的微球数量, 确 保每管内每一种捕获微球量为 10 L。 8种捕获微球分别装在 8个小瓶中, 需要将 8种微球 混合在一起, 充分涡旋 3-5 秒。 因为每种细胞因子标准曲线的检测范围是 0.15pg/mL-5000pg/mL, 因此需要进行预实验大致测量样品中细胞因子浓度, 并对样品进行 适当稀释。 稀释好后的样品、 标准品、 对照各取 50 与捕获微球充分混合, 室温避光孵 育 30分钟。
3 ) 上机样本获取与分析
孵育结束向所有管中加入 PE检测试剂 50 L, 避光孵育 2小时。 孵育结束, 每管加入 lmL洗涤缓冲液, 200g离心 5分钟, 小心吸取上清液, 得到底部充分与血清混合的微球。 用 300 μ L洗涤缓冲液重悬微球, 涡旋 3-5秒混匀后立即上机。 需注意的是, CBA样本必需 当天进行上机检测, 如果样本放置时间过长会增高背景值并降低实验灵敏度。
上机前进行仪器微球获取电压调节和补偿值调节, 完成样本数据获取后, 使用 FCAP Array 软件进行数据分析。 细胞因子浓度单位为 pg/mL。
2、 实验结果
1 ) QEPVL对 IFN- Y的调节作用
IFN- Y标准曲线的绘制: 以浓度为横坐标 (单位 pg/mL), MFI荧光检测量为纵坐 标, 用 FCAP Array软件进行数据分析, 如图 17所示, 获得标准曲线, R2=0.9998。 由于所 有数据均由软件直接分析得出, 不需要拟合出标准曲线公式, 计算公式可由图中所示数据 自行计算得到。 由图 18可以看出,炎症模型小鼠 IFN- Y浓度在 LPS注射 2小时后开始 显著高于正常小鼠, 分泌量持续上升, 从注射第 3小时后分泌速度激增, 在注射后 9小时 达到峰值, 随后开始降低。 经过 QEPVL预处理的小鼠, 除了 LPS注射后第 3小时 IFN- Y 含量略高于同组炎症模型小鼠, 其余时间段 IFN- Y含量均低于未经处理的炎症小鼠, 但仍 显著高于正常小鼠。这证明 QEPVL能有效抑制 IFN- Y的分泌, 抑制炎症的进一步扩大, 但 炎症消灭病原体的功能仍得以保留。
2) QEPVL对 TNF- α的调节作用
TNF- α标准曲线的绘制: 以浓度为横坐标 (单位 pg/mL), MFI荧光检测量为纵坐标, 用 FCAP Army软件进行数据分析, 如图 19所示, 获得标准曲线, R2=0.9999。 由于所有数 据均由软件直接分析得出, 不需要拟合出标准曲线公式, 计算公式可由图中所示数据自行 计算得到。
由图 20, TNF- a在 LPS注射 1小时后即达到最高浓度, 随后分泌量开始减少, 但始终 高于正常小鼠体内 TNF- a水平。 经 QEPVL预处理的小鼠, 在 LPS注射后虽然浓度变化趋 势与炎症模型小鼠相同, 但各时间点的 TNF- a浓度低于未经 QEPVL处理的炎症小鼠。 与 正常小鼠比较,经过 LPS注射的两组小鼠 TNF- a浓度处于炎症状态以高浓度发挥杀伤作用。 这证明 QEPVL能有效抑制小鼠机体 TNF- a的分泌,但仍能保证炎症状态下 TNF- a必要的 杀伤功能及时清除病原体。
3 ) QEPVL对 IL-4的调节作用
IL-4标准曲线的绘制: 以浓度为横坐标 (单位 pg/mL), MFI荧光检测量为纵坐标, 用 FCAP Army软件进行数据分析, 如图 21所示, 获得标准曲线, R2=0.9994。 由于所有数据 均由软件直接分析得出, 不需要拟合出标准曲线公式, 计算公式可由图中所示数据自行计 算得到。
由图 22可见, 炎症模型小鼠和正常小鼠体内均无法检测到 IL-4, 经过 QEPVL预处理 的小鼠在腹腔注射 LPS后 1-9小时 IL-4始终稳定维持在 4-4.5pg/mL, 9小时后 IL-4浓度略 微降低, 但仍维持在 3.81pg/mL。 这证明 QEPVL可以增加 Th2活力, 使其行使抗炎功能, IL-4以较低浓度维持稳定, 证明 Th2活力未显著受到其他促炎细胞因子的抑制, 在炎症前 期不能有效发挥抗炎功能, 但在炎症后期可以有效控制炎症, 避免过度炎症。
4) QEPVL对 IL-13的调节作用
IL-13标准曲线的绘制: 以浓度为横坐标 (单位 pg/mL), MFI荧光检测量为纵坐标, 用 FCAP Array软件进行数据分析, 如图 23所示, 获得标准曲线, R2=0.9997。 由于所有数 据均由软件直接分析得出, 并未提供标准曲线公式, 计算公式可由图中所示数据自行计算 得到。
由图 24可见, 炎症模型小鼠和正常小鼠体内 IL-13的浓度极低, 低于 CBA试剂盒最低 检出限, 但经过 QEPVL预处理小鼠在炎症状态下稳定分泌低浓度 IL-13, 发挥抗炎功能。
5 ) QEPVL对 IL-6的调节作用
IL-6标准曲线的绘制: 以浓度为横坐标 (单位 pg/mL), MFI荧光检测量为纵坐标, 用 FCAP Array软件进行数据分析, 如图 25所示, 获得标准曲线, R2=0.9996。 由于所有数据 均由软件直接分析得出, 并未提供标准曲线公式, 计算公式可由图中所示数据自行计算得 到。
由图 26, 炎症模型组小鼠血清 IL-6从注射后即呈现爆发性增长, 从 1小时到 9小时持 续上升, 在注射后 9小时达到峰值, 随后分泌量下降, 但仍与正常小鼠存在极显著性差异。 经过 QEPVL预处理的小鼠, IL-6变化趋势基本与炎症模型组相同, 但在注射后 6小时浓度 即开始消退, 且腹腔注射后 1、 2、 6、 9、 12小时其浓度均低于炎症模型组, 证明炎症爆发 时间被延迟, 且炎症发生、 扩大阶段的时间被縮短, 抑制了过度炎症的发生。
6) QEPVL对 GM-CSF的调节作用
GM-CSF标准曲线的绘制: 以浓度为横坐标(单位 pg/mL), MFI荧光检测量为纵坐标, 用 FCAP Array软件进行数据分析, 如图 27所示, 获得标准曲线, R2=0.9999。 由于所有数 据均由软件直接分析得出, 不需要拟合标准曲线公式, 计算公式可由图中所示数据自行计 算得到。
由图 28可见, 炎症模型小鼠体内 GM-CSF从注射后 1小时开始分泌速度加快, 于第 4 小时达到最大分泌量, 到第 12小时基本达到正常小鼠水平。 经 QEPVL预处理的小鼠, 变 化趋势基本与炎症模型小鼠相同, 但在腹腔注射后第 12小时仍具有一定浓度, 显著高于正 常小鼠和炎症模型组小鼠。 这可能与 GM-CSF虽然主要作为一种促炎细胞因子, 但在炎症 消退期可以刺激上皮细胞增殖、加速血管修复的功能有关。 由此可以推测 QEPVL不仅可以 抑制促炎细胞因子的分泌, 还可以在炎症消退期加速组织、 血管的修复。
7) QEPVL对 IL-1 β的调节作用
IL-Ι β标准曲线的绘制: 以浓度为横坐标 (单位 pg/mL), MFI荧光检测量为纵坐标, 用 FCAP Array软件进行数据分析, 如图 29所示, 获得标准曲线, R2=0.9997。 由于所有数 据均由软件直接分析得出, 不需要拟合标准曲线公式, 计算公式可由图中所示数据自行计 算得到。
由图 30, 未经 QEPVL预处理的小鼠在 LPS注射 1小时后 IL-1 β浓度开始大量增加, 第 2小时浓度显著高于正常小鼠,浓度上升至第 4小时达到峰值,随后开始消退。经过 QEPVL 预处理的小鼠于腹腔注射后第 3小时细胞因子浓度达到峰值。 与炎症模型组相比, QEPVL 提高了小鼠在腹腔注射后第 3、 4小时的 IL-Ι β浓度, 下调了其他时间段 IL-Ι β的浓度, 证 明 QEPVL可以縮短炎症发生、 扩大这一过程需要的时间, 使得机体更快清除病原体、 进入 消退修复阶段。
3、 小结
以上 7个细胞因子实验结果表明, QEPVL对机体的抗炎功能不是单一下调促炎细 胞因子和上调抗炎细胞因子, 而是通过动态调节细胞因子在炎症各阶段的浓度, 在炎症初 期加快抗炎发生、 扩大炎症反应过程的发生时间, 使得机体更快速有效的清除病原体, 使 受害机体在炎症后期更快进入炎症消退、 组织修复状态, 同时适当辅助机体加速血管、 组 织的修复。
二、 小鼠血清 NO浓度检测 1、 实验方法
NO分子在机体内半衰期极短, 很容易与 ROS结合被氧化为亚硝酸盐, 亚硝酸盐继续 被氧化为硝酸盐, 通过经典 Griess法检测小鼠血清中亚硝酸盐含量来推测 NO含量容易得 到错误结论。 因此, 采用总一氧化氮试剂盒, 利用硝酸还原酶将小鼠血清中的硝酸盐还原 为亚硝酸盐, 再利用 Griess法检测 NO含量。
由于试剂盒的精确检出范围为 2-50 μ Μ, 因此需要预实验确定样品的稀释倍数。实验前 把浓度为 10mM的标准品 KN02稀释为 2、 5、 10、 20、 50 μ Μ, 现配现用; 粉剂 NADPH 定容为 2mM浓度, -70°C保存。 实验前将试剂盒中所有试剂从 -20°C冰箱取出, 室温下溶解 后保存在冰上, 否则会造成试剂所用的还原性酶活下降。
实验需要设置 2-3孔空白对照管进行调零并用 5-6孔标准品管进行标准曲线的绘制。 空 白对照管依次加入 60 μ LPBS、 5 μ L NADPH工作液、 10 μ L FAD和 5 μ L Nirtate Reductase, 标准品管每孔依次加入 60 μ L不同浓度的标准液、 5 μ L NADPH工作液、 10 μ L FAD和 5 μ L Nirtate Reductase, 样品管依次加入 60 μ L经过稀释到一定比例的样品、 5 μ L NADPH 工作液、 lO L FAD和 5 L Nirtate Reductase。 轻微震荡 96孔板混匀各类试剂后, 37°C避 光孵育 15分钟。孵育结束后各孔依次加入 10 μ LLDH Buffer禾 B 10 μ L LDH, 混匀后 37°C避 光孵育 5分钟。 取出孔板, 向各孔依次加入 50 μ L Griess I试剂和 50 μ L Griess II试剂, 混 匀, 室温孵育 10分钟后上酶标仪读数, 在 540nm处测定每孔的吸光值。
根据标准曲线计算出血清中 NO浓度, 浓度单位为 μ Μ。
2、 实验结果
1 ) QEPVL对 NO产量的影响
总 NO标准曲线的绘制: 以浓度为横坐标 (单位 mol/L), 540 nm下的吸光值为纵坐 标, 进行一次回归拟合, 如图 31所示, 获得标准曲线 Y=0.104.62X-6.224, R2=0.9998。 其 中 X代表 NO浓度, 单位为 mol/L, Y代表 OD540下的吸光值。
由图 32可见, 在 LPS诱导第 4小时起 NO分泌量显著高于正常组小鼠, NO浓度从 4 小时至 12小时不断升高, 证明炎症信号不断放大。 经过 QEPVL预处理的小鼠血清中 NO 浓度在 4、 6、 9、 12小时仍显著性高于正常小鼠, 说明炎症仍在发挥作用清除 LPS , 但在 各个时间段血清 NO浓度均低于炎症模型组小鼠, 说明炎症得到了有效的抑制。
三、 小鼠肝脏炎性蛋白 iNOS与 COX-2表达检测
1、 实验方法
1 ) 总蛋白的提取
将组织剪切成小块, 加入适量的冰冷 PBS均浆后, 静置 5 min , 弃沉淀, 小心吸取液 体转移至另一离心管中; 上清 4°C 1500r/min离心 3 min, 弃上清, 估计细胞压积 PCV (离 心后的紧实细胞体积); 事先准备 Buffer A工作液, 即在每 mL Buffer A加入 1 μ L DTT、 5 μ L lOOmM PMSF、 5 μ L蛋白酶抑制剂并振荡混匀。 每 20 μ L细胞压积中, 加入 200 μ L 预冷的 Buffer Α工作液, 最大转速涡旋剧烈振荡 15s, 放置冰上 10〜15min; 随后加入 11 μ L冷 Buffer Β, 最大转速涡旋剧烈振荡 5秒, 放置冰上 1分钟; 再次最大转速涡旋剧烈振荡 5秒后, 4°C离心, 16000 X g, 5min; 尽快将上清转入另一预冷的洁净微量离心管, 置于冰 上, 即得胞浆蛋白; 实现准备 Buffer C工作液, 使用前每 mL Buffer C力口入 1 μ L DTT, 5 μ L lOOmM PMSF, 5 μ L蛋白酶抑制剂并混匀。 在离心沉淀物细胞核中加入 100 预冷的 Buffer C, 最大转速涡旋剧烈振荡 15秒, 放置冰上 40分钟, 每间隔 10 分钟涡旋剧烈振荡 15 秒; 4°C离心, 16000 X g, 10 分钟, 尽快将上清转入预冷的洁净微量离心管, 即得核蛋 白; 上述提取的胞浆蛋白和核蛋白进行蛋白定量, 分装并保存于 -80°C, 避免反复冻融。
2) BCA法蛋白浓度的测定
根据样品的数量, 按 50体积 BCA试剂 A加入 1体积的 BCA试剂 B(50: 1)配制适量 BCA工作液, 然后用枪头充分混匀。 BCA工作液在室温条件下, 24小时内保持稳定。
完全溶解蛋白标准品, 取 lOuL蛋白标准品稀释至 lOO L, 使其终浓度为 0.5mg/mL。 将标准品按 0, 1, 2, 4, 8, 12, 16, 20 μ L依次加到 96孔板的标准品孔中, 用标准品稀 释液补足到每孔 20uL。 加 lOul待测样品到 96孔板的样品孔中, 用标准品稀释液到 20 μ 1。 各孔加入 200 μ L的 BCA工作液, 32°C孵育 30min。 测定样品和标准品的在 520nm波长的 OD值。 根据蛋白标准品的浓度标准曲线, 计算出各组样品的蛋白浓度。
3 ) SDS-PAGE电泳
将 15 μ L调整为相同浓度的蛋白裂解液加入 5 μ L的 SDS上样缓冲液混匀, 取干净的 Bio-Radl .5玻璃板, 按说明书在制胶架上装好。
按配方配制 12%的分离胶, 配方如下:
双蒸水: 6.6mL; 30%丙烯酞胺: 8.0mL; TrisCI(PH8.8): 5.0mL; 10%SDS: 0.2mL; 10%过 硫酸胺: 0.2mL; TEMED: 24 L。
小心用枪头将分离胶注入玻璃板间隙中, 大约在占三分之二玻璃板高度处停止, 尔后 在上面加入几毫升双蒸水, 目的是阻止空气对凝胶聚合的抑制作用。 分离胶聚合完成后, 倒掉胶上面覆盖的双蒸水, 用滤纸尽量吸净残存的液体, 小心不要碰到分离胶。
按配方配制 5%成层胶, 并注入分离胶的上端, 小心插入与玻璃板厚度相适应的样品梳 子, 避免产生气泡。 配方如下:
双蒸水: 6.8mL; 30%丙烯酞胺: 1.66mL; 1.0MTrisCI(PH6.8): 1.26mL; 10%SDS : 0.1m; 10%过硫酸胺: O.lmL; TEMED: 16 L。
成层胶聚合后, 小心拔去样品梳子, 然后加入 lxTris-Gly的电泳缓冲液, 检查是否有泄 漏。 吸取适量样品上清加入样品孔中, 在样品旁的孔中加入预染的蛋白 Marker, 未添加样 品上清的孔中, 加入 I X SDS上样缓冲液保持胶面平衡。 打开电源, 电压开始设置为 60V, 当蛋白样品进入分离胶后, 电压可提高到 90V。 参照预染 Marker的位置, 待目的条带进入 凝胶最佳分离区 (大约凝胶的 2/3)时, 停止电泳。 4) 转膜
预先将转膜液 4°C预冷。在托盘上打开转移盒, 靠近阴极侧的内面铺上己经用转膜缓冲 液浸湿的有孔维垫, 其上放三层浸有转膜缓冲液的 Whatman3MM滤纸, 注意排净气泡。小 心撬开玻璃板, 将胶放置含有转膜液的托盘内, 将含有目的条带的分离胶切下, 用转膜液 浸泡后置于滤纸上。在凝胶上铺上经甲醇和转膜液浸湿的 NC膜,胶和膜之间不能存有气泡, 膜、 滤纸和凝胶的大小, 大致相同。 在 NC膜上再放两层浸过转膜液的 Whatman滤纸, 注 意排净气泡。 放上第二块海绵垫, 使整个转印夹层依次形成 "纤维垫 -滤纸 -凝胶 -NC 膜-滤 纸-纤维垫"层次, 关闭转印夹, 放入转移槽中, 槽中灌满转膜液。 打开电源, 稳流 300mA, 90分钟。 转膜结束后, 取出 NC膜并作好标记, 用 TBST洗膜 3次, 每次 10分钟。
5 ) 封闭、 抗原抗体反应
将 NC膜放入平皿中, 加入含 5%脱脂奶粉的封闭液, 摇床振荡 1.5-2h, 进行封闭。 封 闭结束后, 用 TBST洗膜 3次, 每次 10分钟。 将膜放入含一抗 (用 western—抗稀释液稀释) 的平皿中, 4°C摇床振荡孵育过夜。 第二天取出, 室温振荡 30min, 吸弃一抗, TBST洗 3 次, 每次 10分钟。 用 5%脱脂奶粉封闭液稀释二抗, 室温摇床振荡反应 1-2 h。 二抗反应结 束后, 回收二抗。 然后用 TBST洗膜 3次, 每次 5-10分钟。
6) 显色
将 ECL化学发光试剂盒中的 A、 B两种液体按 1: 1等体积混合, 配置成工作液备用。 将 NC膜从 TBST中取出, 甩掉多余的液体, 将含有蛋白质的膜正面朝上, 放在保鲜膜, 滴 加适量工作液, 用保鲜膜覆盖, 放置显影夹内, 关闭显影夹。 进入暗室显影, 将感光胶片 放在显影夹中, 根据蛋白条带强度调整曝光时间, 然后将胶片依次放入显影液、 定影液中, 使胶片显影和定影, 计算机分析灰度。
2、 实验结果
由图 33与图 34可见,腹腔注射 LPS后,在炎症环境下,小鼠肝脏表达 iNOS与 COX-2 蛋白量增加;经 QEPVL预处理的小鼠两种蛋白表达量显著减少,但仍大量存在。由此证明, 在经 QEPVL预处理之后, 小鼠体内炎症减轻, 但仍有部分 iNOS与 COX-2表达, 使得这促 炎物质发挥其清除病原体和活化免疫细胞的功效。
在正常状态下, iNOS与 COX-2基本不表达, 但炎症状态下, COX-2与 iNOS大量分泌 合成, 分别产生大量 PGE-2、 NO, 起到放大炎症的效果, 与炎症、 免疫密切相关。 同时, COX-2与 iNOS受 IL-6、 TNF- α等多种细胞因子的调节, 其蛋白的合成量也能直接影响抗 炎、 促炎等多种细胞因子的分泌。 实验结果表明, QEPVL可以有效抑制炎性蛋白 iNOS与 COX-2的合成与分泌, 减轻机 体内炎症程度, 但仍维持一定的炎性蛋白分泌, 使得炎症仍能够发挥其清除病原体功效。
实施例 7 生物活性肽活化淋巴细胞表面抗原能力活性实验
利用流式细胞仪对实施例 1得到的生物活性多肽 QEPVL活化淋巴细胞表面抗原能力进 行了测试。 一、 实验试剂与设备
1 ) 实验主要试剂
QEPVL (纯度 >90%) 上海强耀生物技术有限公司
PBS 南京凯基生物科技有限公司
实验动物 Balb/c小鼠 (雄性 6-8周龄) 上海斯莱克实验动物有限公司
小鼠淋巴细胞提取液 上海索莱宝生物科技有限公司
RPMI1640培养基 GIBCO公司
氢化可的松
CD3 BioLegend
CD4 BioLegend
CD28 BioLegend
FITC Isotype Ctrl BioLegend
PE Isotype Ctrl BioLegend
2) 实验主要仪器 台式低速离心机 中国上海医疗器械股份有限公司
EP管 美国 AXYGEN公司
Hera cell 150 C02 培养箱 Heraeus公司
GL-22M高速冷冻离心机 上海卢湘仪离心机仪器有限公司
涡旋振荡器 海门其林贝尔
流式管 美国 BD公司
流式细胞仪 美国 BD公司 二、 实验方法
1 ) 小鼠脾脏淋巴细胞分离与培养
6-8周龄 Balb/c小鼠在伺养温度 21±1 °C, 相对湿度 30-70%条件下适应性培养一周, 断 颈处死, 置于 75%酒精中浸泡 5分钟后转移至超净台内。 将老鼠用大头针固定, 用消毒后 的剪刀、镊子将小鼠腹部剪开, 挑出脾脏。用 RPMI1640不完全培养液将脾脏在培养皿中洗 涤后置于钢丝筛上, 轻轻研磨小鼠脾脏, 分 2-3次加入少量 RPMI1640不完全培养液反复冲 洗,将 RPMI1640不完全培养液总体积控制在 10mL以内。将培养皿中的细胞悬液转移到离 心管中。 在离心管中加入 5 mL淋巴细胞提取液, 再取过钢丝筛的细胞悬液 5 mL沿管壁缓 缓加入。4°C条件下,2000 r/min离心 20分钟。离心后可见明显分层,上层上清液为 RPMI 1640 培养基, 下层沉淀为红细胞裂解碎片, 中间即为淋巴细胞层。 弃去上层细胞培养液后, 吸 取中间较为透明的淋巴细胞层。用等量的 RPMI 1640不完全培养液使其充分混匀, 4°C条件 下 1500 r/min离心 10分钟可见离心管底部沉积的白细胞。 弃上清, 用 RPMI完全培养基充 分悬浮, 取少量以台盼蓝染色确定细胞存活率, 存活率大于 90%时可以进行下一步实验。
调整细胞浓度为 I X 106个 /mL接种于 24孔板中, 每孔板加入 400 L, 37 °C 5%C02条 件下培养。待培养 4-6小时淋巴细胞状态稳定后,按实验分组向各孔加入不同浓度的 QEPVL 溶液。
2) 流式细胞仪检测淋巴细胞表面抗原 CD3、 CD28
实验将细胞分为 4组: 空白组、 氢化可的松组、 肽组和肽-氢化可的松组。 向肽组和肽- 氢化可的松组各孔加入 lOO L QEPVL溶液, 控制终浓度为 200 μ g/mL, 空白组和氢化可 的松组加入 100 RPMI 1640完全培养液, 放回培养箱。 继续培养 48小时后, 取出培养 板, 空白组和肽组加入 lOO L的 RPMI1640完全培养液, 炎症组与肽 -氢化可的松组加入 100 氢化可的松, 控制终浓度为 1μΜ, 轻微震荡使培养板各孔反应完全, 放回培养箱, 4小时后取出。淋巴细胞在 RPMI 1640培养液中为悬浮细胞,但放置时间较长可能有沉底现 象, 因此用移液枪轻轻吹打各孔, 吸出所有细胞。 2000r/min离心 20分钟, 弃上清液, 得到 淋巴细胞。 向每管淋巴细胞加入 PBS, 轻轻吹打制成淋巴细胞单悬液, 控制细胞终浓度在 1 X 106个 /mL。
加入荧光标记单克隆抗体 CD3/CD28并做同型对照, 室温避光孵育 15分钟。 同型对照 包括纯细胞阴性对照 (不加荧光标记单克隆抗体) 和单标 CD3/CD28各一管进行上机补偿 值调节。 用流式细胞仪检测 (Ex=488 nm; Em=530 nm) 细胞表面抗原表达。
三、 实验结果 从图 35与表 10中可以看出, 正常淋巴细胞经过 QEPVL共培养后淋巴细胞表面 CD3+ 和 CD28+阳性表达增加,双阴性细胞数量减少,证实成熟 T细胞数量增多,表面表达 CD28+ 共刺激信号的细胞数量增多, QEPVL活化了 T细胞, 但这种调节作用不具有显著性作用。 氢化可的松可以有效抑制正常淋巴细胞表面 CD3+和 CD28+的表达, 双阴性细胞所占比例显 著增加,证明 T细胞活力得到显著性抑制。 QEPVL预处理的细胞在接受氢化可的松刺激后, 表面 CD3+和 CD28+的表达有显著性回复, 证明 QEPVL能使病理性抑制状态下 T细胞活力 得到维持。
表 10 QEPVL对淋巴细胞 CD3CD28调节作用
分组 QEPVL Hydrocortisone CD3— CD28— % CD3+CD28+%
Control - - 63.45±1.039 20.75±0.333
QEPVL + - 62.32±0.446 21.75±0.167
Hydrocortisone - + 78.27±0.205** 12.84±0.547** QEPVL+
+ + 65.11±0.465* 18.93±1.674*
Hydrocortisone 注: *与阴性对照组比较, 有显著性差异 (P <0.05); **与阴性对照组比较, 具有极显著性差异 (PO.01 )

Claims

权 利 要 求 书
1. 一种生物活性多肽, 其氨基酸序列为 Gln-Glu-Pro-Val-Leu。
2. 权利要求 1所述的生物活性多肽, 其特征在于, 所述生物活性多肽为乳源性。
3. 编码权利要求 1所述生物活性多肽的核苷酸片段。
4. 权利要求 3所述的核苷酸片段, 其特征在于, 所述核苷酸片段的序列如 SEQ ID NO: 2 所示。
5. 权利要求 1-2任一权利要求所述生物活性多肽的制备方法, 步骤如下:
1 ) 发酵: 将瑞士乳杆菌添加到脱脂乳中进行厌氧发酵, 获得瑞士乳杆菌发酵乳;
2 ) 多肽的粗提: 对步骤 1 ) 的瑞士乳杆菌发酵乳进行低温离心分离, 取上清液;
3 ) 多肽的纯化:
a. 对步骤 2 ) 的上清液进行超滤处理, 收集滤液;
b. 收集的滤液采用反向层析柱 S0URSE 5 RPC ST进行反相高效液相色谱分离, 收集 生物活性多肽 QEPVL。
6. 如权利要求 5所述的制备方法, 其特征在于, 步骤 1 ) 所述厌氧发酵的条件为: 发酵温 度 36〜38°C, 发酵时间 15〜20h。
7. 如权利要求 5所述的制备方法, 其特征在于, 步骤 3 ) a所述超滤法所采用的滤膜的截 留分子量分别为 lOkDa和 3kDa; 所述超滤过程中, 压力范围为 0. 1〜0. 3MPa, 滤液流速 为 0· 8〜L 2mL/min o
8. 权利要求 1-2任一权利要求所述生物活性多肽在制备抗氧化和 /或增强机体免疫力的食 品、 保健品及药物中的应用。
9. 一种抗氧化药物, 包含权利要求 1-2任一权利要求所述生物活性多肽 QEPVL, 或者权利 要求 1-2任一权利要求所述生物活性多肽 QEPVL的衍生物。
10. 一种增强机体免疫力药物, 包含权利要求 1-2任一权利要求所述生物活性多肽 QEPVL, 或者权利要求 1-2任一权利要求所述生物活性多肽 QEPVL的衍生物。
11. 一种消炎药物, 包含权利要求 1-2任一权利要求所述生物活性多肽 QEPVL, 或者权利要 求 1-2任一权利要求所述生物活性多肽 QEPVL的衍生物。
12. 一种消除机体炎症的方法,包括对患者施用权利要求 1-2任一权利要求所述生物活性多 肽 QEPVL, 或者权利要求 1-2任一权利要求所述生物活性多肽 QEPVL的衍生物。
13. 一种增强机体免疫力的方法,包括对患者施用权利要求 1-2任一权利要求所述生物活性 多肽 QEPVL, 或者权利要求 1-2任一权利要求所述生物活性多肽 QEPVL的衍生物。
PCT/CN2013/089294 2012-12-12 2013-12-12 一种生物活性多肽qepvl及其制备和应用 WO2014090184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210536708.X 2012-12-12
CN201210536708.XA CN102964427B (zh) 2012-12-12 2012-12-12 一种生物活性多肽qepvl及其制备和应用

Publications (1)

Publication Number Publication Date
WO2014090184A1 true WO2014090184A1 (zh) 2014-06-19

Family

ID=47794884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089294 WO2014090184A1 (zh) 2012-12-12 2013-12-12 一种生物活性多肽qepvl及其制备和应用

Country Status (2)

Country Link
CN (1) CN102964427B (zh)
WO (1) WO2014090184A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444609A (zh) * 2022-11-30 2023-07-18 内蒙古伊利实业集团股份有限公司 乳源活性肽lppplpsrwpl及其制备方法与应用
CN116444612A (zh) * 2022-11-30 2023-07-18 内蒙古伊利实业集团股份有限公司 乳源活性肽apadpgrptgy及其制备方法与应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012552B (zh) * 2012-12-12 2014-03-12 上海交通大学 一种生物活性多肽qepv及其制备和应用
CN102964427B (zh) * 2012-12-12 2014-01-15 上海交通大学 一种生物活性多肽qepvl及其制备和应用
CN107163128B (zh) * 2014-12-19 2019-12-24 浙江辉肽生命健康科技有限公司 κ-酪蛋白来源生物活性肽的制备和应用
CN107188949B (zh) * 2017-07-06 2019-12-24 浙江辉肽生命健康科技有限公司 一种生物活性多肽eintvqvtst及其制备方法和应用
CN107226857B (zh) * 2017-07-06 2020-04-14 浙江辉肽生命健康科技有限公司 一种生物活性多肽tiasgept及其制备方法和应用
CN107176995B (zh) * 2017-07-06 2019-12-24 浙江辉肽生命健康科技有限公司 一种生物活性多肽skvlpvpekavpypq及其制备方法和应用
CN114573664B (zh) * 2022-01-28 2023-11-21 福州大学 一种忧遁草抗氧化十三肽及其制备方法和应用
CN114409735B (zh) * 2022-01-28 2023-11-21 福州大学 一种忧遁草抗氧化十一肽及其制备方法和应用
CN114989248B (zh) * 2022-04-28 2023-11-21 福州大学 一种具有抗炎抗氧化活性的忧遁草多肽及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124261A (zh) * 2004-03-01 2008-02-13 派普特拉医药有限公司 酪蛋白衍生肽及其治疗用途
CN102964427A (zh) * 2012-12-12 2013-03-13 上海交通大学 一种生物活性多肽qepvl及其制备和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141394C (zh) * 2001-04-27 2004-03-10 陆晓民 用粗奶酪生产酪蛋白活性多肽的工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124261A (zh) * 2004-03-01 2008-02-13 派普特拉医药有限公司 酪蛋白衍生肽及其治疗用途
CN102964427A (zh) * 2012-12-12 2013-03-13 上海交通大学 一种生物活性多肽qepvl及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOZO, J. ET AL.: "Comparative analysis of p-casein proteolysis by PrtP proteinase from Lactobacillus paracasei subsp. paracasei BGHN14, PrtR proteinase from Lactobacillus rhamnosus BGT10 and PrtH proteinase from Lactobacillus helveticus BGRA43.", INTERNATIONAL DAIRY JOURNAL, vol. 21, no. 11, November 2011 (2011-11-01), pages 863 - 868 *
MA, L. L. ET AL.: "Effect of simulated gastrointestinal digestion on lymphocyte proliferation of Milk-derived Peptides.", CHINA DAIRY INDUSTRY, vol. 41, no. 5, May 2013 (2013-05-01), pages 4 - 7 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444609A (zh) * 2022-11-30 2023-07-18 内蒙古伊利实业集团股份有限公司 乳源活性肽lppplpsrwpl及其制备方法与应用
CN116444612A (zh) * 2022-11-30 2023-07-18 内蒙古伊利实业集团股份有限公司 乳源活性肽apadpgrptgy及其制备方法与应用
CN116444609B (zh) * 2022-11-30 2024-06-04 内蒙古伊利实业集团股份有限公司 乳源活性肽lppplpsrwpl及其制备方法与应用

Also Published As

Publication number Publication date
CN102964427B (zh) 2014-01-15
CN102964427A (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2014090184A1 (zh) 一种生物活性多肽qepvl及其制备和应用
WO2014090183A1 (zh) 一种生物活性多肽lplp及其制备和应用
WO2014090172A1 (zh) 一种生物活性多肽delq及其制备和应用
CN107176995B (zh) 一种生物活性多肽skvlpvpekavpypq及其制备方法和应用
CN107226860B (zh) 一种生物活性多肽skhssldcvl及其制备方法和应用
CN107236031B (zh) 一种生物活性多肽pmigvnqelay及其制备方法和应用
CN107226857B (zh) 一种生物活性多肽tiasgept及其制备方法和应用
CN107163136B (zh) 一种生物活性多肽wnipmglivnq及其制备方法和应用
CN109160944B (zh) 一种生物活性多肽atavpiiff及其制备方法和应用
CN107141346B (zh) 一种生物活性多肽atledspevi及其制备方法和应用
CN109053868B (zh) 一种生物活性多肽dienikitgei及其制备方法和应用
CN107200782B (zh) 一种生物活性多肽vavvkkgsnfq及其制备方法和应用
WO2014090180A1 (zh) 一种生物活性多肽qepv及其制备和应用
CN108794590B (zh) 一种生物活性多肽epgivnld及其制备方法和应用
CN108997483B (zh) 一种生物活性多肽dqdlvli及其制备方法和应用
Zhao et al. Anti-inflammatory effect of two novel peptides derived from Binglangjiang buffalo whey protein in lipopolysaccharide-stimulated RAW264. 7 macrophages
CN108794602B (zh) 一种生物活性多肽pnimviqh及其制备方法和应用
CN108017703B (zh) 一种生物活性多肽vpitptln及其制备方法和应用
CN108558991B (zh) 一种生物活性多肽giqdpkep及其制备方法和应用
CN107903316B (zh) 一种生物活性多肽lpypyya及其制备方法和应用
CN108017707B (zh) 一种生物活性多肽qpvlgpvrgp及其制备方法和应用
CN108794601B (zh) 一种生物活性多肽pllpqsl及其制备方法和应用
CN109180782B (zh) 一种生物活性多肽ddvtevm及其制备方法和应用
CN108794594B (zh) 一种生物活性多肽ipliags及其制备方法和应用
CN108794592B (zh) 一种生物活性多肽nagvlqdirfkq及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, FORM 1205A DATED 19-10-2015

122 Ep: pct application non-entry in european phase

Ref document number: 13861868

Country of ref document: EP

Kind code of ref document: A1