WO2014090112A1 - 一种六自由度磁悬浮工件台 - Google Patents

一种六自由度磁悬浮工件台 Download PDF

Info

Publication number
WO2014090112A1
WO2014090112A1 PCT/CN2013/088726 CN2013088726W WO2014090112A1 WO 2014090112 A1 WO2014090112 A1 WO 2014090112A1 CN 2013088726 W CN2013088726 W CN 2013088726W WO 2014090112 A1 WO2014090112 A1 WO 2014090112A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet array
mover
planar motion
stator
Prior art date
Application number
PCT/CN2013/088726
Other languages
English (en)
French (fr)
Inventor
朱煜
张鸣
宋玉晶
成荣
刘昊
刘召
杨开明
胡金春
徐登峰
尹文生
穆海华
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US14/652,072 priority Critical patent/US20150326150A1/en
Publication of WO2014090112A1 publication Critical patent/WO2014090112A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings

Definitions

  • the present invention contemplates a six degree of freedom magnetically suspended workpiece stage for use in a semiconductor fabrication process.
  • the plane motion of the motion platform is realized and the 360° rotation is simultaneously performed by a series structure, that is, the planar motion of the motion platform is realized by two or more linear motors, and the planar motion structure is stacked in a straight line.
  • the direct drive motor is connected in series, and the direct drive motor can perform 360° rotation, thereby performing the rotary motion while moving the plane of the motion platform.
  • this structure is relatively complicated, and the space occupied is large. In the process of stacking structures, transmission errors occur, and the accuracy of the workpiece table is difficult to improve.
  • the invention provides a six-degree-of-freedom magnetic suspension workpiece table, which can simultaneously perform 360° rotation and large-scale plane motion, and aims to reduce the space occupied by the workpiece table, reduce transmission errors, and improve motion precision.
  • a six-degree-of-freedom magnetic suspension workpiece table characterized in that: the workpiece table comprises a base, a rotary driving device, a plane moving device, an angle measuring device and a displacement measuring device; the rotary driving device comprises a rotary driving device annular coil array stator and Rotary drive device annular permanent magnet array mover; planar motion device includes planar motion device coil array stator, planar motion device permanent magnet array mover and linear motor; rotary drive device toroidal coil array stator fixed on the base, rotary drive device ring forever
  • the magnetic array mover is coaxially suspended above the stator of the rotary drive device toroidal coil array; the planar motion device coil array stator and the rotary drive device annular permanent magnet array mover are connected by a shaft, and the planar motion device permanent magnet array mover is under the maglev Suspended above the planar motion device coil array stator; the angle measuring device is located above the rotary drive device permanent magnet array mover; the displacement measuring device PSD assembly includes a receiving device and a transmitting
  • the technical feature of the present invention is further characterized in that: in the rotary driving device, the permanent magnet of the circular permanent magnet array mover of the rotary driving device and the coil of the rotary coil array of the rotary drive device are both rectangular, fan-shaped or trapezoidal;
  • the planar motion device coil array stator adopts a laminated form, and adjacent two layers of coil arrays are arranged in a direction perpendicular to each other.
  • the motion platform can perform 360° wide-range motion around the Z axis in a wide range of plane motions; the structure is simple, non-redundant, and the footprint is small under the same conditions; compared with the conventional structure, the transmission error is reduced; Through effective control, higher precision can be achieved, and even nanometer precision can be achieved.
  • Figure 1 is a perspective view of a six degree of freedom magnetic suspension workpiece table apparatus provided by the present invention.
  • FIG. 2 is a top plan view of a permanent magnet array mover of the planar motion device of the present invention.
  • FIG 3 is a perspective view of a stator array stator array of the present invention.
  • Figure 4 is a front elevational view of the planar motion apparatus and displacement measuring apparatus of the present invention.
  • Fig. 5 is a view showing the force analysis of the permanent magnet array mover of the planar motion device of the present invention.
  • Figure 6 is a diagram showing the force analysis of a single permanent magnet array of the planar motion device of the present invention.
  • 100-plane motion device permanent magnet array mover 101-first permanent magnet array; 102-second permanent magnet array; 103-third permanent magnet array; 104-fourth permanent magnet array; 200-plane motion device Coil array stator; 201-first layer coil array, 202-second layer coil array; 300-rotary drive device annular permanent magnet array mover; 400-rotary drive device toroidal coil array stator; 500-angle measuring device; 600- Linear motor; 601-first linear motor; 602-second linear motor; 603-third linear motor; 604-fourth linear motor; 700-displacement measuring device PSD assembly; 701-first PSD receiving device; a second PSD receiving device; 703 - a third PSD receiving device; 704 - a fourth PSD receiving device; 705 - a first PSD transmitting device; 706 - a second PSD transmitting device; 707 - a third PSD transmitting device; PSD launcher; 800-base.
  • the invention provides a six-degree-of-freedom magnetic suspension workpiece table, which comprises a base 800, a rotary driving device, a plane moving device, an angle measuring device and a displacement measuring device; and the rotary driving device comprises a rotary driving device toroidal coil array stator 400 and rotary drive device annular permanent magnet array mover 300; the planar motion device comprises a planar motion device coil array stator 200, a planar motion device permanent magnet array mover 100 and a linear motor 600; the rotary drive device annular coil array stator is fixed on the base The rotary drive device annular permanent magnet array mover is coaxially suspended above the rotary drive device toroidal coil array stator; the planar motion device coil array stator and the rotary drive device annular permanent magnet array mover are connected Then, the permanent magnet array mover of the planar motion device is suspended above the planar motion device coil array stator under the maglev; the angle measuring device 500 is located above the rotary drive device permanent magnet array mover; the displacement measuring device PSD assembly 700 includes the receiver
  • the rotary drive includes a rotary drive toroidal array stator and a rotary drive annular permanent magnet array mover.
  • the rotary drive device toroidal coil array stator is located on the base. When the coil is energized, a Lorentz force is generated between the rotary drive device toroidal coil array stator and the rotary drive annular permanent magnet array mover to provide torque, so that the rotary drive device is ring-shaped.
  • the permanent magnet array mover performs a 360° rotation motion.
  • the planar motion device is located on the circular permanent magnet array mover of the rotary drive device, and includes a planar motion device coil array stator and a planar motion device permanent magnet array mover.
  • a Lorentz force is generated between the planar motion device coil array stator and the planar motion device permanent magnet array mover, so that the planar motion device permanent magnet array mover is generated along the X axis, the Y axis, and the Z
  • the thrust in the axial direction, the thrust in the horizontal direction along the x and y directions realizes the plane motion of the permanent magnet array mover of the plane motion device on the 0 plane and the small angle rotation around the Z axis, and the thrust along the Z axis direction realizes the plane motion device
  • the suspension of the permanent magnet array mover, and the permanent magnet array mover of the planar motion device rotates around the X axis and the Y axis by the difference between the thrusts along the Z axis direction, thereby realizing the
  • planar motion device coil array stator is fixed on the rotating permanent magnet array rotor by the shaft, so that the planar motion device coil array stator performs 360° under the rotation of the rotary drive device permanent magnet array mover. Rotating, so that the permanent magnet array mover of the planar motion device rotates 360° around the Z axis under the action of Lorentz force and moment.
  • the angle measuring device is located on the rotary driving device, and when the rotary driving device annular permanent magnet array mover performs the rotating motion, the moving angle can be measured.
  • the displacement measuring device is located on the planar motion device, the four linear motors are located around the stator of the planar motion device coil array, the four PSD receiving devices are respectively located on the four linear motors, and the four PSD radiation transmitting devices are located in the permanent magnet array of the planar motion device.
  • Four sub-outs correspond to four PSD receiving devices.
  • Figure 1 is an isometric view of a six degree of freedom magnetically suspended workpiece stage.
  • the rotary drive ring permanent magnet array mover 300 Under the action of the Lorentz force, the rotary drive ring permanent magnet array mover 300 generates torque for rotation relative to the rotary drive toroidal stator 400. Since the rotary drive ring permanent magnet array mover 300 and the planar motion device coil array stator 200 are connected by a shaft as a whole, the rotation of the rotary drive ring permanent magnet array mover 300 is the rotation of the planar motion device coil array stator 200.
  • planar motion device coil array stator When the planar motion device coil array stator is energized, a Lorentz force is generated between the planar motion device coil array stator 200 and the planar motion device permanent magnet array mover 100, such that the planar motion device permanent magnet array mover 100 is generated along x, y
  • the force in the z direction, the thrust in the x direction and the y direction in the horizontal direction realizes the plane motion of the permanent magnet array mover 100 of the planar motion device and the rotation about the Z axis, and the thrust along the Z axis direction overcomes the permanent magnet array mover of the plane motion device
  • the gravity of 100 causes it to float, and the permanent magnet array mover 100 of the planar motion device can be rotated at a small angle about the X-axis and the Y-axis by the difference between the thrusts in the Z-axis direction.
  • the moving device coil array stator 200 When transported When the moving device coil array stator 200 rotates, a phase difference is generated between the planar motion device coil array stator 200 and the planar motion device permanent magnet array mover 100, thereby generating torque, so that the surface motion device permanent magnet array mover 100 relative surface motion device
  • the coil array stator 200 performs 360° rotation, thereby realizing the plane motion device permanent magnet array mover 100 to perform 360° arbitrary angular rotation around the Z axis, thereby achieving six-degree-of-freedom movement of the surface motion device permanent magnet array mover 100.
  • the angle measuring device 500 is for performing angular measurement on the rotary drive ring permanent magnet array mover 300.
  • Displacement Measuring Device The PSD assembly 700 includes a receiving device and a transmitting device. The receiving device is symmetrically fixed on the linear motor 600 around the stator array 200 of the planar motion device, and the transmitting device is symmetrically fixed around the permanent magnet array mover 100 of the planar motion device, and the six-degree-of-freedom displacement of the planar motion device can be measured.
  • FIG. 2 is a plan view of the permanent magnet array mover 100 of the planar motion device, including the first permanent magnet array 101, the second permanent magnet array 102, the third permanent magnet array 103, and the fourth permanent magnet array 104! ⁇ LBfi H Yong Magnetic array.
  • the first permanent magnet array 101 and the third permanent magnet array 103 are arranged along the X direction
  • the second permanent magnet array 102 and the fourth permanent magnet array 104 are arranged along the y direction.
  • the difference between the thrusts can generate the torque around the Z axis and the torque around the X and Y axes, thus The six-degree-of-freedom motion of the permanent magnet array mover 100 of the planar motion device is realized.
  • planar motion device coil array stator 200 is formed by superposing mutually perpendicular coil arrays, such as the first layer coil array 201 and the second layer coil array 202 being arranged 90° out of phase.
  • the respective coils of the first layer coil array 201 are connected and fixed in the y direction, and the respective coils of the second layer coil array 202 are fixed together in the X direction.
  • the third layer coil array is arranged in the same manner as the first layer coil array, and the fourth layer coil array and the second layer coil array are arranged in the same manner, and so on, and the number of coil array layers is determined according to actual needs.
  • the planar motion device coil array stator 200 is capable of providing Lorentz forces in three different directions of x, y, and z for the planar motion device permanent magnet array mover 100, respectively.
  • Figure 4 is a front elevational view of the planar motion device and the displacement measuring device.
  • the displacement measuring device is used to measure the displacement and the rotation angle of the planar motion device permanent magnet array mover 100 relative to the planar motion device coil array stator 200.
  • the first PSD receiving device 701, the second PSD receiving device 702, the third PSD receiving device 703, and the fourth PSD receiving device 704 of the displacement measuring device PSD are symmetrically fixed to the first linear motor around the planar motion device coil array stator 200, respectively.
  • 601, the second linear motor 602, the third linear motor 603, and the fourth linear motor 604, the first PSD transmitting device 705, the second PSD transmitting device 706, the third PSD transmitting device 707, and the fourth PSD transmitting device 708 are symmetrically located.
  • the planar motion device is arranged around the permanent magnet array mover 100.
  • the first PSD receiving device 701 and the first PSD transmitting device 705 are a group
  • the second PSD receiving device 702 and the second PSD transmitting device 706 are a group
  • the third PSD receiving device 703 and the third PSD transmitting device 707 are one.
  • the group, the fourth PSD receiving device 704 and the fourth PSD transmitting device 708 are a group.
  • the projections of the rays emitted by the fourth PSD transmitting device 708 on the first PSD receiving device 701, the second PSD receiving device 702, the third PSD receiving device 703, and the fourth PSD receiving device 704 respectively generate an offset.
  • the plane movement range and the rotation angle of the permanent magnet array mover 100 of the planar motion device are obtained.
  • Fig. 5 is a force analysis diagram of a permanent magnet array mover of a planar motion device.
  • the planar motion device permanent magnet array mover is composed of four H ⁇ LBfi H permanent magnet array first permanent magnet arrays 101, a second permanent magnet array 102, a third permanent magnet array 103, and a fourth permanent magnet array 104.
  • the first permanent magnet array 101 and the third permanent magnet array 103 are arranged in the X direction, and the second permanent magnet array 102 and the fourth permanent magnet array 104 are arranged in the y direction.
  • the first layer coil array 201 When the first layer coil array 201 is energized, the first permanent magnet The array 101 and the third permanent magnet array 103 generate forces in the x, z directions, while the second permanent magnet array 102 and the fourth permanent magnet array 104 do not generate a force.
  • the second layer coil array 202 When the second layer coil array 202 is energized, the first permanent magnet array 101 and the third permanent magnet array 103 generate no force, and the second permanent magnet array 102 and the fourth permanent magnet array 104 generate forces in the y, z directions.
  • the first permanent magnet array 101 and the third permanent magnet array 103 when the odd-numbered layer coils are energized, the first permanent magnet array 101 and the third permanent magnet array 103 generate a force in the x, z direction, which can push the permanent magnet array mover of the planar motion device to move along the X-axis direction and Move along the Z axis.
  • the magnitudes of the thrusts of the first permanent magnet array 101 and the third permanent magnet array 103 in the Z-axis direction are not equal, a torque about the X-axis is generated, and the permanent magnet array mover of the planar motion device can be rotated about the X-axis.
  • the second permanent magnet array 102 and the fourth permanent magnet array 104 When the even layer coils are energized, the second permanent magnet array 102 and the fourth permanent magnet array 104 generate forces in the y, z directions that can push the planar motion device permanent magnet array movers along the Y axis and along the Z axis Directional movement.
  • the magnitudes of the thrusts of the second permanent magnet array 102 and the fourth permanent magnet array 104 in the Z-axis direction are not equal, a torque about the Y-axis is generated, and the permanent-array array mover of the planar motion device can be rotated about the Y-axis.
  • the stator of the planar motion device coil array rotates, four H ⁇ LB H permanent magnet arrays are generated in the x, y, and z directions due to the phase difference of the planar motion device coil array stator and the planar motion device permanent magnet array mover.
  • the force causes the permanent magnet array mover of the planar motion device to rotate about the Z axis.
  • the permanent magnet array mover of the planar motion device can generate torque around the Z axis, move in a wide range along the x and y directions, and adjust the height in the X and Y axis pitch and vertical directions.
  • the six-degree-of-freedom motion of the permanent magnet array mover of the planar motion device is realized.
  • Fig. 6 is a force analysis diagram of a single permanent magnet array of a permanent magnet array mover of a planar motion device.
  • the first permanent magnet arrays 101 are arranged in the X direction, and the first layer of the coil array 201, i.e., the odd number of layers of the coil array, provides the first permanent magnet array 101 with Lorentz forces Fx, Fz in the x, z directions. Other permanent magnet arrays are similarly stressed.

Abstract

一种六自由度磁悬浮工件台,该六自由度磁悬浮工件台包括底座(800)、一个旋转驱动装置、一个平面运动装置、角度测量装置(500)和位移测量装置。其中位移测量装置包括四个直线电机(600)、四个位移测量装置PSD组件。在旋转驱动装置作用下,和旋转驱动装置环形永磁阵列动子(300)轴连接的平面运动装置线圏阵列定子(200)进行旋转,使得平面运动装置永磁阵列动子(100)和平面运动装置线圏阵列定子之间形成相位差,从而磁悬浮工件台动子即平面运动装置永磁阵列动子在水平面内实现360°旋转。同时平面运动装置永磁阵列动子在洛伦兹力作用下进行大范围的平面运动,并可进行小幅度绕X轴和Y轴转动及沿Z轴运动,实现磁悬浮工件台的六自由度运动。

Description

说 明 书 一种六自由度磁悬浮工件台
技术领域
本发明设计一种半导体制造过程中使用的六自由度磁悬浮工件台。
背景技术
在传统工件台中, 实现运动平台的平面运动并同时进行 360° 旋转采用的是串联结构, 即由两个或多个直线电机进行结构叠加实现运动平台的平面运动, 在直线堆叠成的平面运动 结构上再串联直驱电机, 直驱电机可进行 360° 旋转, 从而实现在运动平台平面运动的同时 进行旋转运动。 但这种结构比较复杂, 占地空间大, 在结构堆叠过程中出现传递误差, 工件 台精度较难提高。
发明内容
本发明提供一种六自由度磁悬浮工件台, 可以同时进行 360° 旋转和大范围平面运动, 目的在于减小工件台占地空间, 减少传递误差, 提高运动精度。
本发明的技术方案如下:
一种六自由度磁悬浮工件台, 其特征在于: 该工件台包括一个底座, 一个旋转驱动装置, 一个平面运动装置, 角度测量装置和位移测量装置; 旋转驱动装置包括旋转驱动装置环形线 圈阵列定子和旋转驱动装置环形永磁阵列动子; 平面运动装置包括平面运动装置线圈阵列定 子、平面运动装置永磁阵列动子和直线电机; 旋转驱动装置环形线圈阵列定子固定在底座上, 旋转驱动装置环形永磁阵列动子同轴悬空于旋转驱动装置环形线圈阵列定子之上; 平面运动 装置线圈阵列定子和旋转驱动装置环形永磁阵列动子进行轴连接, 平面运动装置永磁阵列动 子在磁浮作用下悬空于平面运动装置线圈阵列定子之上; 角度测量装置位于旋转驱动装置环 形永磁阵列动子之上; 位移测量装置 PSD组件包括接收装置和发射装置, 其中接收装置对称 固定在平面运动装置线圈阵列定子四周的直线电机上, 发射装置对称固定在平面运动装置永 磁阵列动子的四周。
当平面运动装置线圈阵列定子通电时, 平面运动装置线圈阵列定子与平面运动装置永磁 阵列动子间产生洛伦兹力, 使得平面运动装置永磁阵列动子产生沿 X轴、 Y轴、 Z轴方向的推 力; 水平方向沿 x、 y方向的推力实现平面运动装置永磁阵列动子在) 平面上的平面运动及 绕 Z轴的小角度转动, 沿 Z轴方向的推力实现平面运动装置永磁阵列动子的悬浮, 并通过沿 Z轴方向推力之间的差分使平面运动装置永磁阵列动子绕 X轴与 Y轴小角度转动, 因此实现 平面运动装置永磁阵列动子的六自由度运动; 旋转驱动装置环形线圈阵列定子与旋转驱动装 置环形永磁阵列动子之间由于洛仑兹力产生扭矩, 使旋转驱动装置环形永磁阵列动子实现 360° 转动, 同时带动平面运动装置线圈阵列定子进行 360° 转动, 使得平面运动装置永磁阵 列动子在洛仑兹力及力矩的作用下绕 Z轴进行 360° 旋转。
本发明的技术特征还在于: 旋转驱动装置中, 所述的旋转驱动装置环形永磁阵列动子的 永磁体和旋转驱动装置环形线圈阵列定子的线圈均采用矩形、扇形或梯形; 平面运动装置中, 所述的平面运动装置线圈阵列定子采用叠层形式, 相邻两层线圈阵列排列方向相互垂直。
本发明与现有技术相比, 具有以下优点和突出性效果:
运动平台在大范围平面运动的平时可绕 Z轴进行 360° 大范围运动; 结构简单, 不冗余, 同等条件下占地面积小; 与传统结构相比, 减少传递误差; 由于采用的磁悬浮技术, 通过有 效控制, 可以达到较高的精度, 甚至可以实现纳米级精度。
附图说明
图 1是本发明提供的六自由度磁悬浮工件台装置的轴测图。
图 2是本发明的平面运动装置永磁阵列动子俯视图。
图 3是本发明的平面运动装置线圈阵列定子轴测图。
图 4是本发明的平面运动装置及位移测量装置主视图。
图 5是本发明的平面运动装置永磁阵列动子受力分析图。
图 6是本发明的平面运动装置单个永磁阵列受力分析图。
其中: 100-平面运动装置永磁阵列动子; 101-第一永磁阵列; 102-第二永磁阵列; 103- 第三永磁阵列; 104-第四永磁阵列; 200-平面运动装置线圈阵列定子; 201-第一层线圈阵列, 202-第二层线圈阵列; 300-旋转驱动装置环形永磁阵列动子; 400-旋转驱动装置环形线圈阵 列定子; 500-角度测量装置; 600-直线电机; 601-第一直线电机; 602-第二直线电机; 603- 第三直线电机; 604-第四直线电机; 700-位移测量装置 PSD组件; 701-第一 PSD接受装置; 702-第二 PSD接受装置; 703-第三 PSD接受装置; 704-第四 PSD接受装置; 705-第一 PSD发 射装置; 706-第二 PSD发射装置; 707-第三 PSD发射装置; 708-第四 PSD发射装置; 800-底 座。
具体实施方式
下面结合附图对本发明的结构原理和工作过程作进一步详细描述。
本发明提供的一种六自由度磁悬浮工件台, 该工件台包括一个底座 800, 一个旋转驱动 装置, 一个平面运动装置, 角度测量装置和位移测量装置; 旋转驱动装置包括旋转驱动装置 环形线圈阵列定子 400和旋转驱动装置环形永磁阵列动子 300; 平面运动装置包括平面运动 装置线圈阵列定子 200、平面运动装置永磁阵列动子 100和直线电机 600; 旋转驱动装置环形 线圈阵列定子固定在底座上, 旋转驱动装置环形永磁阵列动子同轴悬空于旋转驱动装置环形 线圈阵列定子之上; 平面运动装置线圈阵列定子和旋转驱动装置环形永磁阵列动子进行轴连 接, 平面运动装置永磁阵列动子在磁浮作用下悬空于平面运动装置线圈阵列定子之上; 角度 测量装置 500位于旋转驱动装置环形永磁阵列动子之上; 位移测量装置 PSD组件 700包括接 收装置和发射装置,其中接收装置对称固定在平面运动装置线圈阵列定子四周的直线电机上, 发射装置对称固定在平面运动装置永磁阵列动子的四周;
旋转驱动装置包括旋转驱动装置环形线圈阵列定子和旋转驱动装置环形永磁阵列动子。 旋转驱动装置环形线圈阵列定子位于底座上, 当线圈通电流后, 旋转驱动装置环形线圈阵列 定子和旋转驱动装置环形永磁阵列动子之间产生洛伦兹力, 提供扭矩, 使得旋转驱动装置环 形永磁阵列动子进行 360° 旋转运动。
平面运动装置位于旋转驱动装置环形永磁阵列动子上, 包括平面运动装置线圈阵列定子 和平面运动装置永磁阵列动子。 当平面运动装置线圈阵列定子通电时, 平面运动装置线圈阵 列定子与平面运动装置永磁阵列动子间产生洛伦兹力, 使得平面运动装置永磁阵列动子产生 沿 X轴、 Y轴、 Z轴方向的推力, 水平方向沿 x、 y方向的推力实现平面运动装置永磁阵列动 子在)0 平面上的平面运动及绕 Z轴的小角度转动,沿 Z轴方向的推力实现平面运动装置永磁 阵列动子的悬浮, 并通过沿 Z轴方向推力之间的差分使平面运动装置永磁阵列动子绕 X轴与 Y轴小角度转动, 因此实现平面运动装置永磁阵列动子的六自由度运动。 平面运动装置线圈 阵列定子位于旋转驱动装置环形永磁阵列动子之上通过轴与之进行固连, 从而在旋转驱动装 置环形永磁阵列动子的带动下, 平面运动装置线圈阵列定子进行 360° 转动, 使得平面运动 装置永磁阵列动子在洛仑兹力及力矩的作用下绕 Z轴进行 360° 旋转。
角度测量装置位于旋转驱动装置上,在旋转驱动装置环形永磁阵列动子进行旋转运动时, 可对其运动角度进行测量。
位移测量装置位于平面运动装置上,四个直线电机位于平面运动装置线圈阵列定子四周, 四个 PSD接受装置分别位于四个直线电机之上, 四个 PSD射线发射装置位于平面运动装置永 磁阵列动子四周, 分别和四个 PSD接受装置对应。
图 1是六自由度磁悬浮工件台的轴测图。 在洛伦兹力的作用下, 旋转驱动装置环形永磁 阵列动子 300相对于旋转驱动装置环形线圈定子 400产生转矩进行转动。 由于旋转驱动装置 环形永磁阵列动子 300和平面运动装置线圈阵列定子 200由轴连接为一个整体, 旋转驱动装 置环形永磁阵列动子 300的旋转即为平面运动装置线圈阵列定子 200的旋转。 当平面运动装 置线圈阵列定子通电时, 平面运动装置线圈阵列定子 200和平面运动装置永磁阵列动子 100 之间产生洛伦兹力, 使得平面运动装置永磁阵列动子 100产生沿 x、 y、 z方向的力, 水平方 向沿 x、 y方向的推力实现平面运动装置永磁阵列动子 100的平面运动及绕 Z轴的转动, 沿 Z 轴方向的推力克服平面运动装置永磁阵列动子 100的重力使其悬浮, 并通过沿 Z轴方向推力 之间的差分使平面运动装置永磁阵列动子 100能够绕 X轴和 Y轴进行小角度转动。 当平面运 动装置线圈阵列定子 200旋转时, 平面运动装置线圈阵列定子 200和平面运动装置永磁阵列 动子 100之间产生相位差, 从而产生扭矩, 使得面运动装置永磁阵列动子 100相对面运动装 置线圈阵列定子 200进行 360° 转动, 从而实现平面运动装置永磁阵列动子 100绕 Z轴进行 360° 任意角度旋转, 至此实现面运动装置永磁阵列动子 100的六自由度运动。
角度测量装置 500用于对旋转驱动装置环形永磁阵列动子 300进行角度测量。 位移测量 装置 PSD组件 700包括接收装置和发射装置。 其中接收装置对称固定在平面运动装置线圈阵 列定子 200四周的直线电机 600上, 发射装置对称固定在平面运动装置永磁阵列动子 100的 四周, 可对平面运动装置的六自由度位移进行测量。
图 2是平面运动装置永磁阵列动子 100的俯视图, 包括第一永磁阵列 101、 第二永磁阵 列 102、 第三永磁阵列 103、 第四永磁阵列 104四组! ^LBfi H永磁阵列。 其中第一永磁阵列 101、第三永磁阵列 103沿 X方向排列,第二永磁阵列 102、第四永磁阵列 104沿 y方向排列。 线圈通电时, 第一永磁阵列 101和第三永磁阵列 103产生 x、 z方向的力, 第二永磁阵列 102 和第四永磁阵列 104产生 y、 z方向的力。 实现平面运动装置永磁阵列动子 100沿 x、 y方向 的平面运动及 z方向的悬浮, 通过推力之间的差分能够产生绕 Z轴的转矩以及绕 X轴、 Y轴 的转矩, 因此实现了平面运动装置永磁阵列动子 100的六自由度运动。
图 3是平面运动装置线圈阵列定子 200的轴测图。 平面运动装置线圈阵列定子 200由相 互垂直的线圈阵列叠加形成, 如第一层线圈阵列 201和第二层线圈阵列 202排列形式相差 90° 。 第一层线圈阵列 201的各个线圈沿 y方向连接固定, 第二层线圈阵列 202的各个线圈 沿 X方向固定在一起。 第三层线圈阵列和第一层线圈阵列排列方式一样, 第四层线圈阵列和 第二层线圈阵列排列方式一样, 依次类推, 线圈阵列层数视实际需要确定。 平面运动装置线 圈阵列定子 200能够为平面运动装置永磁阵列动子 100分别提供 x、 y、 z三个不同方向的洛 伦兹力。
图 4是平面运动装置及位移测量装置主视图。 位移测量装置用来测量平面运动装置永磁 阵列动子 100相对平面运动装置线圈阵列定子 200的位移以及转动角度。 位移测量装置 PSD 的第一 PSD接收装置 701、第二 PSD接收装置 702、第三 PSD接收装置 703和第四 PSD接收装 置 704分别对称固定于平面运动装置线圈阵列定子 200四周的第一直线电机 601、 第二直线 电机 602、 第三直线电机 603、 第四直线电机 604上, 第一 PSD发射装置 705、 第二 PSD发射 装置 706、第三 PSD发射装置 707、第四 PSD发射装置 708对称位于平面运动装置永磁阵列动 子 100的四周。 其中第一 PSD接收装置 701和第一 PSD发射装置 705为一组, 第二 PSD接收 装置 702和第二 PSD发射装置 706为一组, 第三 PSD接收装置 703和第三 PSD发射装置 707 为一组, 第四 PSD接收装置 704和第四 PSD发射装置 708为一组。 当平面运动装置永磁阵列 动子 100进行运动时, 第一 PSD发射装置 705、 第二 PSD发射装置 706、 第三 PSD发射装置 707、第四 PSD发射装置 708发射的射线分别在第一 PSD接收装置 701、第二 PSD接收装置 702、 第三 PSD接收装置 703、 第四 PSD接收装置 704上的投影产生偏移, 通过解算可得平面运动 装置永磁阵列动子 100的平面移动范围及转动角度。
图 5是平面运动装置永磁阵列动子受力分析图。 平面运动装置永磁阵列动子由四个 H^LBfi H永磁阵列第一永磁阵列 101、 第二永磁阵列 102、 第三永磁阵列 103、 第四永磁阵列 104组成。 第一永磁阵列 101、 第三永磁阵列 103沿 X方向排列, 第二永磁阵列 102、 第四永 磁阵列 104沿 y方向排列, 在第一层线圈阵列 201通电时, 第一永磁阵列 101和第三永磁阵 列 103产生沿 x、 z方向的力, 而第二永磁阵列 102和第四永磁阵列 104不产生力。在第二层 线圈阵列 202通电时, 第一永磁阵列 101和第三永磁阵列 103不产生力, 第二永磁阵列 102 和第四永磁阵列 104产生沿 y、 z方向的力。 依次类推, 当奇数层线圈通电时, 第一永磁阵列 101和第三永磁阵列 103产生沿 x、 z方向的力, 该力可以推动平面运动装置永磁阵列动子沿 X轴方向运动及沿 Z轴方向运动。 当第一永磁阵列 101和第三永磁阵列 103沿 Z轴方向推力 大小不相等时, 将产生绕 X轴的扭矩, 进而可以使平面运动装置永磁阵列动子绕 X轴转动。 当偶数层线圈通电时, 第二永磁阵列 102和第四永磁阵列 104产生沿 y、 z方向的力, 该力能 够推动平面运动装置永磁阵列动子沿 Y轴方向运动及沿 Z轴方向运动。 当第二永磁阵列 102 和第四永磁阵列 104沿 Z轴方向推力大小不相等时, 将产生绕 Y轴的扭矩, 进而可以使平面 运动装置永磁阵列动子绕 Y轴转动。 当平面运动装置线圈阵列定子转动时, 由于平面运动装 置线圈阵列定子和平面运动装置永磁阵列动子的相位差作用, 四个 H^LB H永磁阵列会在 x、 y、 z方向均产生力, 从而使平面运动装置永磁阵列动子能够绕 Z轴进行转动。 在四个永磁阵 列的作用力下, 平面运动装置永磁阵列动子可产生绕 Z轴的转矩, 沿 x、 y方向大范围运动, 绕 X、 Y轴俯仰及竖直方向高度调整, 实现平面运动装置永磁阵列动子的六自由度运动。
图 6是平面运动装置永磁阵列动子单个永磁阵列受力分析图。 第一永磁阵列 101沿 X方 向排列, 第一层线圈阵列 201即奇数层的线圈阵列为第一永磁阵列 101提供 x、 z方向的洛仑 兹力 Fx、 Fz。 其他永磁阵列受力情况类似。

Claims

权利 要 求 书
1一种六自由度磁悬浮工件台, 其特征在于: 该工件台包括一个底座 (800), 一个旋转 驱动装置, 一个平面运动装置, 角度测量装置和位移测量装置; 旋转驱动装置包括旋转驱动 装置环形线圈阵列定子(400)和旋转驱动装置环形永磁阵列动子(300); 平面运动装置包括 平面运动装置线圈阵列定子 (200)、 平面运动装置永磁阵列动子 (100) 和直线电机 (600); 旋转驱动装置环形线圈阵列定子 (400) 固定在底座 (800) 上, 旋转驱动装置环形永磁阵列 动子 (300) 同轴悬空于旋转驱动装置环形线圈阵列定子 (400) 之上; 平面运动装置线圈阵 列定子 (200) 和旋转驱动装置环形永磁阵列动子 (300) 进行轴连接, 平面运动装置永磁阵 列动子 (100) 在磁浮作用下悬空于平面运动装置线圈阵列定子 (200) 之上; 角度测量装置 ( 500)位于旋转驱动装置环形永磁阵列动子( 300)之上; 位移测量装置 PSD组件包括接收装置 和发射装置, 其中接收装置对称固定在平面运动装置线圈阵列定子 (200) 四周的直线电机 ( 600) 上, 发射装置对称固定在平面运动装置永磁阵列动子(100)的四周;
当平面运动装置线圈阵列定子通电时, 平面运动装置线圈阵列定子(200)与平面运动装 置永磁阵列动子 (100) 间产生洛伦兹力, 使得平面运动装置永磁阵列动子 (100) 产生沿 X 轴、 Y轴、 Z轴方向的推力;水平方向沿 x、y方向的推力实现平面运动装置永磁阵列动子(100) 在)0 平面上的平面运动及绕 Z轴的小角度转动,沿 Z轴方向的推力实现平面运动装置永磁阵 列动子(100)的悬浮,并通过沿 Z轴方向推力之间的差分使平面运动装置永磁阵列动子(100) 绕 X轴与 Y轴小角度转动, 因此实现平面运动装置永磁阵列动子(100) 的六自由度运动; 旋 转驱动装置环形线圈阵列定子 (400) 与旋转驱动装置环形永磁阵列动子 (300) 之间由于洛 仑兹力产生扭矩, 使旋转驱动装置环形永磁阵列动子 (300) 实现 360° 转动, 同时带动平面 运动装置线圈阵列定子 (200) 进行 360° 转动, 使得平面运动装置永磁阵列动子 (100) 在 洛仑兹力及力矩的作用下绕 Z轴进行 360° 旋转。
2 按照权利要求 1所述的一种六自由度磁悬浮工件台, 其特征在于: 旋转驱动装置中, 所述的旋转驱动装置环形永磁阵列动子的永磁体和旋转驱动装置环形线圈阵列定子的线圈均 采用矩形、 扇形或梯形。
3按照权利要求 1所述的一种六自由度磁悬浮工件台, 其特征在于: 平面运动装置中, 所述的平面运动装置线圈阵列定子采用叠层形式, 相邻两层线圈阵列排列方向相互垂直。
PCT/CN2013/088726 2012-12-12 2013-12-06 一种六自由度磁悬浮工件台 WO2014090112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/652,072 US20150326150A1 (en) 2012-12-12 2013-12-06 Maglev workpiece table with six degrees of freedom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210535413.0 2012-12-12
CN201210535413.0A CN103066894B (zh) 2012-12-12 2012-12-12 一种六自由度磁悬浮工件台

Publications (1)

Publication Number Publication Date
WO2014090112A1 true WO2014090112A1 (zh) 2014-06-19

Family

ID=48109385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088726 WO2014090112A1 (zh) 2012-12-12 2013-12-06 一种六自由度磁悬浮工件台

Country Status (3)

Country Link
US (1) US20150326150A1 (zh)
CN (1) CN103066894B (zh)
WO (1) WO2014090112A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066894B (zh) * 2012-12-12 2015-05-20 清华大学 一种六自由度磁悬浮工件台
CN103309176B (zh) * 2013-06-17 2015-07-22 清华大学 一种带升降真空爪的六自由度微动台
CN103441708B (zh) * 2013-09-09 2016-05-18 清华大学 一种模块化动铁式六自由度磁浮运动平台
CN103546067B (zh) * 2013-09-25 2016-01-13 清华大学 一种大角度旋转的大行程磁浮运动平台
CN103543613B (zh) * 2013-09-25 2015-12-23 清华大学 一种动铁式无线缆的六自由度磁浮运动平台
CN104009674B (zh) * 2014-06-13 2016-03-23 哈尔滨工业大学 六自由度短行程磁悬浮工作台
CN105045042B (zh) * 2015-04-23 2017-06-16 清华大学 一种硅片台曝光区域六自由度位移测量方法
CN105414180B (zh) * 2015-11-03 2017-11-07 大连交通大学 磁悬浮超导轧钢机
CN107020478B (zh) * 2016-01-31 2019-01-15 南京理工大学 一种磁悬浮和磁驱动多轴柔性变位装置
CN105629982B (zh) * 2016-02-18 2018-09-21 三峡大学 基于光学位移传感的空间小磁体悬浮控制装置
CN106441158B (zh) * 2016-11-29 2023-06-09 淮阴工学院 五自由度数据处理投影仪
CN108336884B (zh) * 2017-01-19 2020-07-21 广东极迅精密仪器有限公司 位移装置
CN107315445B (zh) * 2017-07-07 2020-12-22 京东方科技集团股份有限公司 一种磁悬浮物体的控制方法和磁悬浮底座和磁悬浮物体
DE102018117953B3 (de) * 2018-07-25 2019-11-07 Beckhoff Automation Gmbh Statoreinheit
CN111490642B (zh) * 2019-01-29 2022-05-20 苏州隐冠半导体技术有限公司 一种基于霍尔效应传感器和平面电机的位移装置
CN111302071A (zh) * 2020-03-09 2020-06-19 哈尔滨工业大学 组合式模块化磁悬浮平面输送系统
CN111839110A (zh) * 2020-07-22 2020-10-30 苏亮 一种磁悬浮自旋转动变形展示架
CN111963624B (zh) * 2020-08-06 2022-03-01 哈尔滨工业大学 一种空间六自由度磁悬浮隔振平台
CN112729338B (zh) * 2020-12-23 2023-07-25 北京航空航天大学 应用于半实物仿真平台的具有十五自由度的磁悬浮转台
CN113488308B (zh) * 2021-06-22 2023-05-16 深圳市火乐科技发展有限公司 磁悬浮装置及音响
CN115694263B (zh) * 2022-11-15 2023-10-24 哈尔滨工业大学 一种集成式模块化六自由度磁悬浮平面运动装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1434459A (zh) * 2003-01-21 2003-08-06 武汉理工大学 磁悬浮硬盘单自由度多功能实验台
CN101075098A (zh) * 2007-04-27 2007-11-21 清华大学 一种超薄3自由度微动工作台
CN101551598A (zh) * 2009-04-03 2009-10-07 清华大学 一种光刻机硅片台双台交换系统
CN101807010A (zh) * 2010-03-19 2010-08-18 清华大学 纳米精度六自由度磁浮微动台及应用
CN103066894A (zh) * 2012-12-12 2013-04-24 清华大学 一种六自由度磁悬浮工件台

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857051A (en) * 1973-08-30 1974-12-24 Giddings & Lewis Rotary position transducer assembly using hydrostatic bearings
US4808892A (en) * 1985-12-13 1989-02-28 Kulick And Soffa Ind. Inc. Bi-directional drive motor system
NL8601095A (nl) * 1986-04-29 1987-11-16 Philips Nv Positioneerinrichting.
US5153494A (en) * 1990-04-06 1992-10-06 International Business Machines Corp. Ultrafast electro-dynamic x, y and theta positioning stage
NL9100421A (nl) * 1991-03-08 1992-10-01 Asm Lithography Bv Ondersteuningsinrichting met een kantelbare objecttafel alsmede optisch lithografische inrichting voorzien van een dergelijke ondersteuningsinrichting.
JP2974535B2 (ja) * 1993-03-11 1999-11-10 キヤノン株式会社 位置決め装置
US5828142A (en) * 1994-10-03 1998-10-27 Mrs Technology, Inc. Platen for use with lithographic stages and method of making same
US5523941A (en) * 1994-10-04 1996-06-04 Burton; Gary L. X-Y-theta positioning mechanism
KR0141161B1 (ko) * 1995-03-20 1998-07-01 이대원 회전 테이블을 구비한 스테이지 장치 및 스테이지 장치의 구동 방법
US5606206A (en) * 1995-04-10 1997-02-25 Eastman Kodak Company Device for detecting the position of an optical or magnetic head used on linear motors
DE19628921C2 (de) * 1995-10-02 2000-02-24 Wiemers Karl Heinz Werkzeugmaschine mit mittels Magnetkräften spann- und positionierbarer Spanneinrichtung
JP3815750B2 (ja) * 1995-10-09 2006-08-30 キヤノン株式会社 ステージ装置、ならびに前記ステージ装置を用いた露光装置およびデバイス製造方法
JPH10521A (ja) * 1996-06-07 1998-01-06 Nikon Corp 支持装置
US5886432A (en) * 1997-04-28 1999-03-23 Ultratech Stepper, Inc. Magnetically-positioned X-Y stage having six-degrees of freedom
AU8747698A (en) * 1997-08-21 1999-03-16 Nikon Corporation Positioning device, driving unit, and aligner equipped with the device
TWI248718B (en) * 1999-09-02 2006-02-01 Koninkl Philips Electronics Nv Displacement device
JP2003022960A (ja) * 2001-07-09 2003-01-24 Canon Inc ステージ装置及びその駆動方法
EP1300932B1 (en) * 2001-10-05 2013-12-18 Canon Kabushiki Kaisha Linear motor, stage apparatus, and exposure apparatus
JP3826087B2 (ja) * 2002-08-30 2006-09-27 キヤノン株式会社 位置決め装置、荷電粒子線露光装置
JP2005253179A (ja) * 2004-03-03 2005-09-15 Canon Inc 位置決め装置、露光装置およびデバイス製造方法
DE102006036051A1 (de) * 2006-08-02 2008-02-07 Schaeffler Kg Rundtischlagerungs- und Antriebsvorrichtung
US8803354B2 (en) * 2006-12-20 2014-08-12 Unimodal Systems Llc Modular electric generator for variable speed turbines
CN100507724C (zh) * 2007-06-29 2009-07-01 清华大学 一种6自由度微动工作台
JP5446865B2 (ja) * 2007-09-04 2014-03-19 株式会社安川電機 磁気浮上システム
CN101214617B (zh) * 2007-12-28 2012-09-05 清华大学 动圈式大范围移动磁浮六自由度工作台
US20100264756A1 (en) * 2008-10-29 2010-10-21 Georgia Tech Research Corporation Multiple-Degree Of Freedom System And Method Of Using Same
US8492934B2 (en) * 2009-03-23 2013-07-23 Nikon Corporation Coil variations for an oval coil planar motor
US7808133B1 (en) * 2009-04-21 2010-10-05 Asm Assembly Automation Ltd. Dual-axis planar motor providing force constant and thermal stability
JP5421709B2 (ja) * 2009-09-30 2014-02-19 Thk株式会社 リニアモータの駆動システム及び制御方法
US20110273789A1 (en) * 2010-05-05 2011-11-10 Digital Imaging Systems Gmbh Linear motor with integral position sensor
CN102722089B (zh) * 2011-06-28 2014-06-18 清华大学 一种无接触式粗精动叠层六自由度定位装置
KR101829030B1 (ko) * 2011-10-27 2018-03-29 더 유니버시티 오브 브리티쉬 콜롬비아 변위 장치 및 변위 장치의 제조, 사용 그리고 제어를 위한 방법
CN102681364B (zh) * 2012-05-16 2014-06-18 华中科技大学 一种六自由度磁浮微动台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1434459A (zh) * 2003-01-21 2003-08-06 武汉理工大学 磁悬浮硬盘单自由度多功能实验台
CN101075098A (zh) * 2007-04-27 2007-11-21 清华大学 一种超薄3自由度微动工作台
CN101551598A (zh) * 2009-04-03 2009-10-07 清华大学 一种光刻机硅片台双台交换系统
CN101807010A (zh) * 2010-03-19 2010-08-18 清华大学 纳米精度六自由度磁浮微动台及应用
CN103066894A (zh) * 2012-12-12 2013-04-24 清华大学 一种六自由度磁悬浮工件台

Also Published As

Publication number Publication date
CN103066894B (zh) 2015-05-20
US20150326150A1 (en) 2015-11-12
CN103066894A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2014090112A1 (zh) 一种六自由度磁悬浮工件台
TWI393340B (zh) 球形旋轉式壓電馬達
CN101610054B (zh) 采用三维永磁阵列的平面电机
US20100187917A1 (en) Micro stage with 6 degrees of freedom
CN105811730B (zh) 一种六自由度直线电机
US9634540B2 (en) Magnetic suspension planar motor with structure of superconductor excitation
CN101290808B (zh) 一种三自由度超精密微动工作台
CN103226296B (zh) 一种带激光干涉仪测量的粗精动叠层工作台
CN101527484A (zh) 水平行程易扩展的气磁混合悬浮平面电机
CN108591750A (zh) 大型精密磁悬浮旋转工作台
CN103546067A (zh) 一种大角度旋转的大行程磁浮运动平台
CN103383526B (zh) 一种粗精动叠层工作台
Yan et al. Analysis of pole configurations of permanent-magnet spherical actuators
CN102497083A (zh) 同心式绕组结构永磁同步平面电机
CN101610022B (zh) 一种采用槽型线圈的平面电机
CN106936337B (zh) 磁浮平面旋转电机及光刻装置
CN101752983B (zh) 长行程高精度多自由度平面电机
CN105811809B (zh) 磁浮旋转电机
WO2020155829A1 (zh) 一种基于霍尔效应传感器和平面电机的位移装置
CN103997186B (zh) 直线电机、盘式旋转电机和电机平台
CN106838566A (zh) 一种三向压电驱动的二维并联精密定位机构
CN212230084U (zh) 基于压电驱动的托卡马克装置轨道检测系统
Maeda et al. Feedback control of electromagnetic spherical actuator with three-degree-of-freedom
WO2018133555A1 (zh) 位移装置
CN203984218U (zh) 直线电机、盘式旋转电机和电机平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14652072

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13862479

Country of ref document: EP

Kind code of ref document: A1