WO2020155829A1 - 一种基于霍尔效应传感器和平面电机的位移装置 - Google Patents

一种基于霍尔效应传感器和平面电机的位移装置 Download PDF

Info

Publication number
WO2020155829A1
WO2020155829A1 PCT/CN2019/121897 CN2019121897W WO2020155829A1 WO 2020155829 A1 WO2020155829 A1 WO 2020155829A1 CN 2019121897 W CN2019121897 W CN 2019121897W WO 2020155829 A1 WO2020155829 A1 WO 2020155829A1
Authority
WO
WIPO (PCT)
Prior art keywords
hall
effect sensor
array
planar motor
plane
Prior art date
Application number
PCT/CN2019/121897
Other languages
English (en)
French (fr)
Inventor
丁晨阳
李涵雄
张国旗
陈椿元
吴晓辉
Original Assignee
广东极迅精密仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东极迅精密仪器有限公司 filed Critical 广东极迅精密仪器有限公司
Priority to US17/425,831 priority Critical patent/US20220052585A1/en
Publication of WO2020155829A1 publication Critical patent/WO2020155829A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Abstract

一种基于霍尔效应传感器和平面电机的位移装置(1),至少包括一个平面电机定子(10)、一个平面电机动子(20)和一个霍尔效应传感器阵列(30),平面电机定子(10)上的磁体阵列(11)在与X方向和Y方向大致平行的第一平面上延伸,形成一个工作区,平面电机动子(20)上的线圈阵列配置在与第一平面平行的第二平面上,线圈阵列与磁体阵列(11)相互作用使平面电机动子(20)在工作区范围内产生至少两个自由度的位移,磁体阵列(11)由第一磁体块(11X)和第二磁体块(11Y)交替成行成列配置,霍尔效应传感器阵列(30)由多个霍尔效应传感器组成,安装在平面电机动子(20)上,磁体阵列(11)的磁体块在X方向的尺寸不小于霍尔效应传感器阵列(30)的列间距的两倍,磁体阵列(11)的磁体块在Y方向的尺寸不小于霍尔效应传感器阵列(30)的行间距的两倍。

Description

一种基于霍尔效应传感器和平面电机的位移装置 技术领域
本发明涉及精密运动系统领域,尤其涉及一种基于霍尔效应传感器和平面电机的位移装置。
背景技术
很多行业应用需要至少在两个彼此大致正交的方向上准确地定位对象。以半导体行业为例,集成电路制造需要在至少两个方向准确地定位对象(例如芯片或标线),以进行光刻、检验、切割、封装等。传统技术分为多级,其中每一级只能引起单自由度运动,以产生多自由度组合运动。
近年来,在光刻装置领域,在光刻机的工件台和掩模台中采用了一种被称作磁浮平面电机的能够多自由度驱动的位移装置,它基于洛伦兹力原理,将产生的电磁力直接施加到工件台上,从而能够提供多轴运动。这种磁浮平面电机一般包括磁体阵列和线圈绕组单元两大部分,该磁体阵列中的磁体阵列单元呈交替排列方式,非常便于拓展,有效解决了大行程设计上的技术瓶颈。另外,这种位移装置不但可以实现六个自由度的运动,而且可以节省中间传动环节,结构紧凑,整体刚度高,且具有可以直接驱动、无机械摩擦和无反冲等特点,利于实现更高的加速性能和定位精度,有利于提高运动台的运动效率,可以实现更高的定位精度与运动加速度。另外,通过磁浮技术,降低了对运动面型的约束,工作过程无接触磨损,非常适合微电子装备中需要大行程、真空、超洁净、超精密定位的需求。
在本发明人的提交申请的专利文献1和2中描述的基于平面电机的位移装置,线圈阵列设置在动子上,磁体阵列设置在定子上。动子可以相对于定子做两个自由度(沿X方向平动和沿Y方向平动)的长距离运动和在另外四个自由度(沿Z方向平动和绕X、Y和Z方向转动)的短距离运动。如果要实现这六个自由度的运动,则需要一种实时的位移测量系统,以向闭环控制提供位移反馈信号。
专利文献1:PCT/EP2016/063454
专利文献2:CN201680039160.4
发明内容
为了解决上述问题,本发明公开一种基于霍尔效应传感器和平面电机的位移装置,至少包括一个平面电机定子、一个平面电机动子和一个霍尔效应传感器阵列,所述平面电机定子上的磁体阵列在与X方向和Y方向大致平行的第一平面上延伸,形成一个工作区,所述平面电机动子上的线圈阵列配置在与所述第一平面平行的第二平面上,所述平面电机动子沿Z方向可移动地与所述平面电机定子邻接配置,所述线圈阵列与所述磁体阵列相互作用使所述平面电机动子在工作区范围内产生至少两个自由度的位移,其中,所述X方向和所述Y方向大致垂直,所述Z方向与所述第一平面大致垂直,所述磁体阵列由第一磁体块和第二磁体块交替成行成列配置,所述第一磁体块包括多个第一磁体,每个所述第一磁体沿X方向线性延伸,并在Y方向依次排列,所述第二磁体块包括多个第二磁体,每个所述第二磁体沿Y方向线性延伸,并在X方向依次排列,所述霍尔效应传感器阵列配置在所述工作区范围内,由多个霍尔效应传感器组成,安装在所述平面电机动子上,所述磁体阵列的磁体块在X方向的尺寸mx不小于霍尔效应传感器阵列的列间距sx的两倍,所述磁体阵列的磁体块在Y方向的尺寸my不小于霍尔效应传感器阵列的行间距sy的两倍。
本发明的基于霍尔效应传感器和平面电机的位移装置中,优选为,所述霍尔效应传感器阵列每行或每列的霍尔效应传感器数量相同。
本发明的基于霍尔效应传感器和平面电机的位移装置中,优选为,所述霍尔效应传感器阵列测量方向都相同。
本发明的基于霍尔效应传感器和平面电机的位移装置中,优选为,所述霍尔效应传感器阵列包括至少一个第一霍尔效应传感器阵列和一个第二霍尔效应传感器阵列,所述第一霍尔效应传感器阵列的列数大于行数,且阵列中每个所述霍尔效应传感器测量方向相同;所述第二霍尔效应传感器阵列的行数大于列数,且阵列中每个所述霍尔效应传感器测量方向相同。
本发明的基于霍尔效应传感器和平面电机的位移装置中,优选为,每行所述霍尔效应传感器的测量方向呈周期排列,每列所述霍尔效应传感器的测量方向也呈周期排列。
本发明的基于霍尔效应传感器和平面电机的位移装置中,优选为,每个所述霍尔效应传感器均同时测量X方向,Y方向和Z方向的磁场强度。
本发明的基于霍尔效应传感器和平面电机的位移装置中,优选为,所述霍尔效应传感器阵列配置在一个与所述第一平面大致平行的平面内,并且处于所述第一平面和所述第二平面之间。
本发明的基于霍尔效应传感器和平面电机的位移装置中,优选为,所述霍尔效应传感器阵列配置在一个与所述第一平面大致平行的平面内,并且处于所述线圈阵列远离所述磁体阵列的一侧。
本发明的基于霍尔效应传感器和平面电机的位移装置中,优选为,所述霍尔效应传感器阵列配置在一个与所述第一平面大致平行的第三平面内,所述第三平面与所述第二平面在Z方向上相邻接,所述霍尔效应传感器阵列在X方向或Y方向的位置邻接所述线圈阵列。
本发明的基于霍尔效应传感器和平面电机的位移装置中,优选为,所述霍尔效应传感器阵列配置在一个与所述第一平面大致平行的第三平面内,所述第三平面与所述第二平面为同一平面,所述霍尔效应传感器阵列在X方向或Y方向的位置邻接所述线圈阵列。
附图说明
图1是基于霍尔效应传感器和平面电机的位移装置的结构示意图。
图2是霍尔效应传感器阵列的一种排布方式的示意图。
图3是霍尔效应传感器阵列的第一实施例的位置配置方式的主视图。
图4是霍尔效应传感器阵列的第二实施例的位置配置方式的主视图。
图5是霍尔效应传感器阵列的第三实施例的位置配置方式的示意图:(a)俯视图,(b)主视图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“垂直”“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。除非在下文中特别指出,器件中的各个部分可以由本领域的技术人员公知的材料构成,或者可以采用将来开发的具有类似功能的材料。
如图1所示,本发明的基于霍尔效应传感器和平面电机的位移装置1,至少包括一个平面电机定子10、一个平面电机动子20和一个霍尔效应传感器阵列30,平面电机定子10上的磁体阵列11在与X方向和Y方向大致平行的第一平面上延伸(X-Y平面),形成一个工作区,平面电机动子20上的线圈阵列配置在与第一平面平行的第二平面上,平面电机动子20沿Z方向可移动地与平面电机定子10邻接配置,线圈阵列与磁体阵列相互作用使平面电机动子在工作区范围内产生六个自由度的位移,包括两个自由度的长距离位移(沿X方向平动和沿Y方向平动)和另外四个自由度的短距离位移(沿Z方向平动和沿X、Y和Z方向转动),其中,X方向和Y方向大致垂直,Z方向与第一平面大致垂直。
磁体阵列11由第一磁体块11X和第二磁体块11Y交替成行成列配置,第一磁体块11X包括多个第一磁体111X,每个第一磁体111X沿X方向线性 延伸,并在Y方向依次排列,第二磁体块11Y包括多个第二磁体111Y,每个第二磁体111Y沿Y方向线性延伸,并在X方向依次排列。优选地,每个磁体块在X方向的尺寸mx和Y方向上的尺寸my相同。
线圈阵列(图1中未示出)包括至少三组三相线圈。每组三相线圈可以和磁体阵列作用,产生一个Z方向的力和一个垂直于Z方向的力。整个线圈阵列即可以产生三个Z方向的力和三个垂直于Z方向的力(这三个力中,至少有两个力互相不平行),等效于X,Y,Z三个方向的力和X,Y,Z三个方向的力矩。
在此需要说明的是本发明的平面电机主体部分的结构采用本发明人在专利文献1,2中公开的位移装置的结构,也就是说关于磁体阵列和线圈阵列的具体结构以引用专利文献1,2的方式全部纳入本发明中。
霍尔效应传感器阵列30配置在上述磁体阵列形成的工作区范围内,由多个霍尔效应传感器31组成,安装在平面电机动子20上,磁体阵列11的每行至少对应两行霍尔效应传感器31,磁体阵列11的每列至少对应两列霍尔效应传感器31。也就是说磁体阵列11的磁体块即第一磁体块11X和第二磁体块11Y在X方向的尺寸mx不小于霍尔效应传感器阵列30的列间距sx的两倍,磁体阵列11的磁体块即第一磁体块11X和第二磁体块11Y在Y方向的尺寸不小于霍尔效应传感器阵列30的行间距sy的两倍,以实现对上述六个自由度的位移进行实时测量。
图1中所示出的霍尔效应传感器阵列30的每行的霍尔效应传感器31的数量都相同,每列的霍尔效应传感器31的数量也都相同。但是,本发明不限定于此,霍尔效应传感器阵列每行或每列的传感器数量也可以不同。如图2所示,霍尔效应传感器阵列的各奇数行R1,R3,R5,R7的霍尔效应传感器的数量相同,各偶数行R2,R4,R6的霍尔效应传感器数量相同,但奇数行与偶数行的霍尔效应传感器数量不相同。同样,各奇数列C1,C3,C5,C7的霍尔效应传感器的数量相同,各偶数列C2,C4,C6的霍尔效应传感器的数量相同,但是奇数列与偶数列的霍尔效应传感器的数量不相同。此外,霍尔效应传感器阵列的还可以以如下方式排布:包括一个第一霍尔效应传感器阵列和一个第二霍尔效应传感器阵列,第一霍尔效应传感器阵列的列数大于行数,第二霍尔效 应传感器阵列的行数大于列数。
进一步优选地,霍尔效应传感器阵列具有相同的行间距sy和相同的列间距sx,其大小满足mx≥2sx;my≥2sy,以确保每行磁体块至少对应两行霍尔效应传感器,每列磁体块至少对应两列霍尔效应传感器。
霍尔效应传感器阵列测量磁场强度的方向的配置方案有多种。例如,每个霍尔效应传感器阵列测量方向都相同,如都沿着+Z方向。还可以,每行霍尔效应传感器测量方向呈周期排列,比如+X,+Y,+Z,+X,+Y,+Z,…;或者+X,+Z,+X,+Z,…。每列霍尔效应传感器测量方向也呈周期排列,比如+X,+Y,+Z,+X,+Y,+Z,…;或者+X,+Z,+X,+Z,…。也可以,每个霍尔效应传感器均同时测量X,Y,Z三个方向的磁场强度。此外,对于上述由第一霍尔效应传感器阵列和第二霍尔效应传感器阵列配置而成的霍尔效应传感器阵列,测量磁场强度的方向的配置方案还可以是采用第一霍尔效应传感器阵列中的每个霍尔效应传感器测量方向相同,比如是+X,+Y,而第二霍尔效应传感器阵列中的每个霍尔效应传感器测量方向相同,比如是+Z。
霍尔效应传感器阵列的位置配置方案的一些实施例:
如图3所示,霍尔效应传感器阵列30配置在一个与磁体阵列11所在的第一平面平行的平面内,并且处于线圈阵列21所在的第二平面和磁体阵列11所在的第一平面之间。本实施例中,由于霍尔效应传感器阵列与磁体阵列距离较近,因此有利于提高传感器系统在静态或低速运动时的精度。同时,霍尔效应传感器阵列不会增大动子在X或Y方向的尺寸。
如图4所示,所述霍尔效应传感器阵列30配置在一个与磁体阵列11所在的第一平面平行的平面内,并且处于线圈阵列21远离磁体阵列11的一侧。本实施例中由于霍尔效应传感器阵列离磁体阵列距离较远,磁场强度变化较为柔和,有利于提高传感器系统在高速运动时的精度。此外,霍尔效应传感器阵列不会增大动子在X或Y方向的尺寸。
如图5所示,霍尔效应传感器阵列30配置在一个与磁体阵列11所在的第一平面平行的第三平面内,该第三平面与线圈阵列21所在的第二平面在Z方向相邻接,霍尔效应传感器阵列30在X方向或Y方向的位置邻接线圈阵列 21。本实施例中,由于霍尔效应传感器阵列离线圈阵列较远,因此不会因受线圈散热而影响精度。在本实施例的一种变形例中,第三平面与第二平面为同一平面。
安装霍尔效应传感器阵列时,可以将所有霍尔效应传感器都集成在一个PCB板上,并在PCB板上集成供电单元和信号处理单元。所有霍尔效应传感器串联连接。每个霍尔效应传感器的信号通过一个单独的模数转换通道转换成数字信号,并向运动控制单元传送。
进行实时的位移测量时,预先测量并存储平面电机定子所产生的磁场强度在不同的位置上的数值,形成位置与磁场强度大小的对应数据库。然后,将平面电机动子上的霍尔效应传感器阵列的实时测量结果与上述数据库中的数值进行对比匹配,计算出平面电机动子的当前的位置。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种基于霍尔效应传感器和平面电机的位移装置,其特征在于,至少包括一个平面电机定子、一个平面电机动子和一个霍尔效应传感器阵列,
    所述平面电机定子上的磁体阵列在与X方向和Y方向大致平行的第一平面上延伸,形成一个工作区,所述平面电机动子上的线圈阵列配置在与所述第一平面平行的第二平面上,所述平面电机动子沿Z方向可移动地与所述平面电机定子邻接配置,所述线圈阵列与所述磁体阵列相互作用使所述平面电机动子在工作区范围内产生至少两个自由度的位移,其中,所述X方向和所述Y方向大致垂直,所述Z方向与所述第一平面大致垂直,
    所述磁体阵列由第一磁体块和第二磁体块交替成行成列配置,所述第一磁体块包括多个第一磁体,每个所述第一磁体沿X方向线性延伸,并在Y方向依次排列,所述第二磁体块包括多个第二磁体,每个所述第二磁体沿Y方向线性延伸,并在X方向依次排列,
    所述霍尔效应传感器阵列配置在所述工作区范围内,由多个霍尔效应传感器组成,安装在所述平面电机动子上,所述磁体阵列的磁体块在X方向的尺寸mx不小于霍尔效应传感器阵列的列间距sx的两倍,所述磁体阵列的磁体块在Y方向的尺寸my不小于霍尔效应传感器阵列的行间距sy的两倍。
  2. 根据权利要求1所述的基于霍尔效应传感器和平面电机的位移装置,其特征在于,
    所述霍尔效应传感器阵列每行或每列的霍尔效应传感器数量相同。
  3. 根据权利要求1所述的基于霍尔效应传感器和平面电机的位移装置,其特征在于,
    所述霍尔效应传感器阵列测量方向都相同。
  4. 根据权利要求1所述的基于霍尔效应传感器和平面电机的位移装置,其特征在于,
    所述霍尔效应传感器阵列包括至少一个第一霍尔效应传感器阵列和一个 第二霍尔效应传感器阵列,所述第一霍尔效应传感器阵列的列数大于行数,且阵列中每个所述霍尔效应传感器测量方向相同;所述第二霍尔效应传感器阵列的行数大于列数,且阵列中每个所述霍尔效应传感器测量方向相同。
  5. 根据权利要求1~2中任一项所述的基于霍尔效应传感器和平面电机的位移装置,其特征在于,
    每行所述霍尔效应传感器的测量方向呈周期排列,每列所述霍尔效应传感器的测量方向也呈周期排列。
  6. 根据权利要求1~4中任一项所述的基于霍尔效应传感器和平面电机的位移装置,其特征在于,
    每个所述霍尔效应传感器均同时测量X方向,Y方向和Z方向的磁场强度。
  7. 根据权利要求1~4中任一项所述的基于霍尔效应传感器和平面电机的位移装置,其特征在于,
    所述霍尔效应传感器阵列配置在一个与所述第一平面大致平行的平面内,并且处于所述第一平面和所述第二平面之间。
  8. 根据权利要求1~4中任一项所述的基于霍尔效应传感器和平面电机的位移装置,其特征在于,
    所述霍尔效应传感器阵列配置在一个与所述第一平面大致平行的平面内,并且处于所述线圈阵列远离所述磁体阵列的一侧。
  9. 根据权利要求1~4中任一项所述的基于霍尔效应传感器和平面电机的位移装置,其特征在于,
    所述霍尔效应传感器阵列配置在一个与所述第一平面大致平行的第三平面内,所述第三平面与所述第二平面在Z方向上相邻接,所述霍尔效应传感器阵列在X方向或Y方向的位置邻接所述线圈阵列。
  10. 根据权利要求1~4中任一项所述的基于霍尔效应传感器和平面电机的位移装置,其特征在于,
    所述霍尔效应传感器阵列配置在一个与所述第一平面大致平行的第三平面内,所述第三平面与所述第二平面为同一平面,所述霍尔效应传感器阵列在X方向或Y方向的位置邻接所述线圈阵列。
PCT/CN2019/121897 2019-01-29 2019-11-29 一种基于霍尔效应传感器和平面电机的位移装置 WO2020155829A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/425,831 US20220052585A1 (en) 2019-01-29 2019-11-29 Displacement device based on hall-effect sensors and planar motors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910088055.5A CN111490642B (zh) 2019-01-29 2019-01-29 一种基于霍尔效应传感器和平面电机的位移装置
CN201910088055.5 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020155829A1 true WO2020155829A1 (zh) 2020-08-06

Family

ID=71794193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121897 WO2020155829A1 (zh) 2019-01-29 2019-11-29 一种基于霍尔效应传感器和平面电机的位移装置

Country Status (3)

Country Link
US (1) US20220052585A1 (zh)
CN (1) CN111490642B (zh)
WO (1) WO2020155829A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028949A1 (zh) * 2021-09-02 2023-03-09 中国科学院深圳先进技术研究院 磁悬浮轴承
CN113833755B (zh) * 2021-09-02 2023-08-15 中国科学院深圳先进技术研究院 磁悬浮轴承

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077786A1 (en) * 2003-10-09 2005-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20100090545A1 (en) * 2008-10-09 2010-04-15 Binnard Michael B Planar motor with wedge shaped magnets and diagonal magnetization directions
CN102722089A (zh) * 2011-06-28 2012-10-10 清华大学 一种无接触式粗精动叠层六自由度定位装置
CN105452812A (zh) * 2013-08-06 2016-03-30 不列颠哥伦比亚大学 移位装置以及用于检测和估计与其相关联的运动的方法和设备
CN108336884A (zh) * 2017-01-19 2018-07-27 广东极迅精密仪器有限公司 位移装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692504B2 (en) * 2010-09-08 2014-04-08 Nikon Corporation Apparatus and methods for determining an initially unknown commutation position of a member moved by a planar motor
KR101829030B1 (ko) * 2011-10-27 2018-03-29 더 유니버시티 오브 브리티쉬 콜롬비아 변위 장치 및 변위 장치의 제조, 사용 그리고 제어를 위한 방법
CN103066894B (zh) * 2012-12-12 2015-05-20 清华大学 一种六自由度磁悬浮工件台
CN103973172B (zh) * 2013-01-25 2016-09-28 上海微电子装备有限公司 一种动线圈式磁浮平面电机磁对准系统及其对准方法
US10261419B2 (en) * 2014-05-22 2019-04-16 Nikon Corporation Magnet array for moving magnet planar motor
DE102015216199A1 (de) * 2015-08-25 2017-03-02 Physik Instrumente (Pi) Gmbh & Co. Kg Planar-Positioniervorrichtung und Positioniertisch
CN204993012U (zh) * 2015-10-23 2016-01-20 安徽工程大学 一种直驱式平面电机控制器
DE102016215212A1 (de) * 2016-08-16 2018-02-22 Robert Bosch Gmbh Bewegungsvorrichtung mit magnetischer Positionsbestimmung und Datenübertragungsvorrichtung
JP6926434B2 (ja) * 2016-09-30 2021-08-25 株式会社ニコン エンコーダ装置、駆動装置、ステージ装置、及びロボット装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077786A1 (en) * 2003-10-09 2005-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20100090545A1 (en) * 2008-10-09 2010-04-15 Binnard Michael B Planar motor with wedge shaped magnets and diagonal magnetization directions
CN102722089A (zh) * 2011-06-28 2012-10-10 清华大学 一种无接触式粗精动叠层六自由度定位装置
CN105452812A (zh) * 2013-08-06 2016-03-30 不列颠哥伦比亚大学 移位装置以及用于检测和估计与其相关联的运动的方法和设备
CN108336884A (zh) * 2017-01-19 2018-07-27 广东极迅精密仪器有限公司 位移装置

Also Published As

Publication number Publication date
CN111490642B (zh) 2022-05-20
US20220052585A1 (en) 2022-02-17
CN111490642A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
US8599361B2 (en) Nanometer-precision six-degree-of-freedom magnetic suspension micro-motion table and application thereof
CN101609265B (zh) 采用磁悬浮平面电机的硅片台多台交换系统
CN101694560B (zh) 采用气浮平面电机的硅片台双台交换系统
JP5422126B2 (ja) 移動装置
CN101610054B (zh) 采用三维永磁阵列的平面电机
US9755493B2 (en) Linear motor and stage apparatus
US20150326150A1 (en) Maglev workpiece table with six degrees of freedom
WO2020155829A1 (zh) 一种基于霍尔效应传感器和平面电机的位移装置
TWI558071B (zh) Six - degree - of - freedom linear motor
CN101515119A (zh) 采用气浮平面电机的硅片台双台交换系统
CN103454864B (zh) 一种粗精动一体的磁浮掩膜台系统
CN103226296B (zh) 一种带激光干涉仪测量的粗精动叠层工作台
KR100851058B1 (ko) 기계장치의 평면 스테이지 이동장치
CN102569151B (zh) 硅片机械手
CN103543613A (zh) 一种动铁式无线缆的六自由度磁浮运动平台
CN101770180A (zh) 一种采用多关节机械手的光刻机硅片台的线缆台
CN101610022B (zh) 一种采用槽型线圈的平面电机
CN103105743A (zh) 带平面衍射光栅测量的具有六自由度粗动台的掩膜台系统
CN103105742A (zh) 带光电位置探测器测量的六自由度粗动台的掩膜台系统
CN103116250A (zh) 带激光干涉仪测量的具有六自由度粗动台的掩膜台系统
CN112104182B (zh) 运动装置
CN105278255A (zh) 一种磁浮平面电机非接触六自由度定位装置及方法
CN203951388U (zh) 一种六自由度磁悬浮运动台
KR20160014827A (ko) 자기부상 이중서보 스테이지
CN203827153U (zh) 直线电机及电机平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205AA DATED 16/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19913795

Country of ref document: EP

Kind code of ref document: A1