WO2014089818A1 - 光纤端面处理方法、光纤端面及处理装置 - Google Patents

光纤端面处理方法、光纤端面及处理装置 Download PDF

Info

Publication number
WO2014089818A1
WO2014089818A1 PCT/CN2012/086634 CN2012086634W WO2014089818A1 WO 2014089818 A1 WO2014089818 A1 WO 2014089818A1 CN 2012086634 W CN2012086634 W CN 2012086634W WO 2014089818 A1 WO2014089818 A1 WO 2014089818A1
Authority
WO
WIPO (PCT)
Prior art keywords
face
optical fiber
fiber end
area
fiber
Prior art date
Application number
PCT/CN2012/086634
Other languages
English (en)
French (fr)
Inventor
王七月
衷诚
陈新军
Original Assignee
深圳日海通讯技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳日海通讯技术股份有限公司 filed Critical 深圳日海通讯技术股份有限公司
Priority to PCT/CN2012/086634 priority Critical patent/WO2014089818A1/zh
Priority to JP2015546800A priority patent/JP6262763B2/ja
Priority to US14/651,256 priority patent/US20150323741A1/en
Publication of WO2014089818A1 publication Critical patent/WO2014089818A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2553Splicing machines, e.g. optical fibre fusion splicer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina

Definitions

  • Fiber end face processing method fiber end face and processing device
  • the invention belongs to the technical field of optical fibers, and in particular relates to an optical fiber end face processing method, an optical fiber end face and a processing device. Background technique
  • the connection between fiber and fiber, fiber and other devices requires alignment of the core to ensure high optical transmission efficiency.
  • the fiber cutting process uses a fiber cutter to cut the fiber to form a flat fiber end face;
  • the fiber grinding process uses a fiber mill to grind the fiber end face into a smooth plane, a bevel or a curved surface by multi-step grinding. Comparing the two processing processes, the fiber cutting process is relatively flat, and the cutting forms a flat surface. Especially, due to the brittleness of the core itself, after the cutting, the end face of the core and the end face close to the core cladding are relatively flat.
  • the cut end face formed is prone to bad end face defects such as sharp corners, bevels, burrs and cracks, resulting in fiber connection.
  • the insertion loss and return loss indicators are not ideal; however, the end face formed by the fiber grinding method can achieve reliable physical contact between the fiber cores, has good connection performance and high stability, but the manufacturing process is relatively complicated and the manufacturing cost is high.
  • the prior art patent document CN 102346275 A discloses a fiber end face treatment method, which provides a heat source to instantaneously reach or exceed the melting point of the fiber material, and then utilizes the surface tension of the end portion of the liquid fiber to form a smooth end face of the fiber.
  • Spherical or quasi-spherical achieving fiber optic
  • the fiber end face can better form physical contact, achieving the effect of approaching the grinding process.
  • the fiber end face hot melt processing method provided by the patent document avoids the adverse effects caused by the refractive index matching liquid, and can ensure the reliable physical contact of the fiber core at the time of connection to a certain extent.
  • a core and a cladding layer may appear at a joint portion thereof with the fiber cladding layer.
  • the mutual fusion causes the refractive index of the core and the core cladding to change, which affects the transmission performance of the light in the core.
  • the alignment difficulty of the fiber end face is increased, thereby reducing the Alignment accuracy, so it is generally not appropriate to directly fuse the core area.
  • the object of the present invention is to provide an optical fiber end face processing method, an optical fiber end face and a processing device.
  • the method has a small processing area and is easy to implement.
  • the end face of the optical fiber formed by the method is smooth and flat, and the contact area is large and easy to align during docking.
  • the device adds a detecting device which can be used for detecting the quality of the end face of the fiber, the distance between the end face of the fiber and the electrode, improves the end face processing precision, and enhances the processing flexibility.
  • An optical fiber end face processing method includes the following steps:
  • Step A chamfering hot melt, by providing a heat source to the end face of the fiber formed by cutting the optical fiber, The outer edge of the fiber end face is chamfered and melted;
  • Step B The end face is formed by the surface tension of the liquid fiber at the end of the fiber so that the outer edge of the end face of the fiber is curved or chamfered.
  • the intersection point of the core central axis and the end face of the fiber is centered on the end face of the fiber, and a boundary circle is formed with a radius not less than the radius of the core, and the area within the boundary circle is The first region, except for the boundary circle, the region within the outer edge of the fiber end face is the second region, and the second region is the region of the chamfer hot melt process.
  • the step A before the step A further includes the following steps:
  • Step A1 Optical fiber cutting, cutting the optical fiber to form an optical fiber end face.
  • the step A includes the following steps: within the range.
  • the step A includes the following steps:
  • the quality detection includes:
  • the intersection point of the core central axis and the end face of the fiber is centered on the end face of the fiber, and the boundary circle is formed by a radius not smaller than the radius of the core, and the area within the boundary circle is the first area, outside the boundary circle The area inside the outer edge of the fiber end face is the second area, and the second area is the chamfered hot melt processed area. If there is a bad feature of sharp corner, bevel, burr or crack in the first area, the returning step Al.
  • the angle ⁇ between the end face of the optical fiber and the axis of the core when the slope is detected is 80° ⁇ 90°.
  • the step B further includes the following steps:
  • Step B1 detecting the quality of the formed end face, performing quality inspection on the end face of the formed fiber in the step B, centering on the intersection of the core central axis and the end face of the fiber on the end face of the fiber, and radiusing not less than the radius of the core Generating a boundary circle, the area within the boundary circle is the first area, and the area outside the outer edge of the fiber end face is the second area, if there is a sharp corner, a bevel, a burr or a crack in the first area If the feature is returned to step A1, if only the bad feature occurs in the second region, the process returns to step A, otherwise the process is completed.
  • the heat source in the step A is a heat source formed by an arc, a laser, or a flame.
  • a processing apparatus for the above-described fiber end face processing method comprising: a discharge device for hot melt processing, and a detecting device for detecting a quality of an end face of the optical fiber and a distance between the end face of the optical fiber and the heat source, the discharge device including the discharge electrode
  • the detecting device includes a camera and a distance measuring device.
  • the outer edge of the cladding is chamfered and melted, which not only reduces the area of the hot melt treatment, but also makes the processing more compact. It is easier to ensure the shape of the end face of the fiber formed by the treatment, and the end face near the core and the core can be effectively avoided.
  • the fuse is melted to cause fusion, and the cross-sectional shape of the end face of the fibril core and the core is cut to form a better fiber end face.
  • the end face of the fiber end face formed by the fiber end face treatment method is cut.
  • the cross-section of the fiber, the outer edge surface of the fiber end face is a curved surface or a chamfered arc surface, and is lower than the end surface of the core.
  • the end face of the fiber is easier to ensure the alignment of the end faces of the core during the docking process, thereby ensuring reliable physical contact of the core.
  • the fiber end face transmission device is improved.
  • the fiber end face processing device of the present invention includes a discharge device, and further includes a detecting device, so that the quality of the cut fiber end face can be detected in real time after cutting, to assist in judging direct hot melt processing or returning again.
  • a detecting device By cutting, the distance between the end face of the fiber and the heat source can be better controlled by the detecting device during the process, so that the end face of the fiber can be within the effective range of heat fusion of the heat source to ensure the subsequent hot melt chamfering action to the end face. Effective, which improves the accuracy and efficiency of fiber end face processing.
  • Figure 1 is a cross-sectional view showing the structure of the optical fiber of the present invention after cutting
  • FIG. 2a is a schematic view showing the division of the cut end face of the optical fiber in FIG. 1;
  • FIG. 2b is a schematic view showing the division of the quality area of the cut end face of the optical fiber in FIG. 1;
  • FIG. 3 is a schematic view showing the principle of hot melt processing of the fiber cutting end face in FIG. 1;
  • Figure 4 is a schematic view showing the state of the end face of the optical fiber in Figure 1;
  • Figure 5a is a schematic view showing an end face structure of an optical fiber treated by the fiber end face processing method of the present invention
  • Fig. 6 is a schematic view showing the end face docking of the optical fiber after the hot melt treatment in Fig. 5.
  • an optical fiber end face processing method includes the following steps:
  • Step A chamfering hot melt, providing a heat source by the fiber end face 3 formed by cutting the optical fiber, The outer edge of the fiber end face 3 is subjected to chamfering hot melt processing;
  • Step B End face forming, the outer edge 33 of the fiber end face is curved or chamfered by the surface tension of the liquid fiber at the end of the fiber.
  • the outer edge of the end face of the optical fiber formed by the hot melt processing during chamfering hot melt is formed by the hot melt processing during chamfering hot melt
  • 33 is a chamfered bevel or a curved surface.
  • the intersection point of the core central axis and the fiber end face 3 is centered on the end face 3 of the fiber, and the boundary circle 4 is generated with a radius not less than the core radius, and the boundary circle 4 is within
  • the area is the first area 5, and the area outside the outer edge of the fiber end face is the second area 6, and the second area 6 is the chamfered hot melt processed area.
  • the step A before the step A further includes the following steps:
  • Step A1 Fiber cutting, cutting the fiber to form the fiber end face 3.
  • the step A includes the following steps: distance positioning, wherein after the step A1, the step A further includes the following steps: quality detection, performing the fiber end face 3 formed by cutting End face quality inspection.
  • the quality detection includes:
  • the intersection of the central axis of the core 2 and the end face 3 of the fiber 2 is centered on the end face 3 of the fiber, and the boundary circle 4 is formed with a radius not less than the radius of the core 2, and the area within the boundary circle 4 is The first region 5, outside the boundary circle 4, the region within the outer edge of the fiber end face 3 is the second region 6, and the second region 6 is a chamfered hot melt processed region, if a sharp corner appears in the first region 5 If the bad feature 31 of the bevel, burr or crack is 31, return to step A1.
  • the angle ⁇ between the end face of the optical fiber and the axis of the core when the slope is detected is
  • the step ⁇ further includes the following steps:
  • Step B1 detecting the quality of the formed end face, performing quality inspection on the end face 3 of the fiber formed in the step ,, and centering on the intersection of the core central axis and the end face 3 of the fiber on the end face 3 of the fiber, not less than the core radius
  • the dimension is a radius to generate a boundary circle 4, and the area within the boundary circle 4 is the first region 5, and the region outside the boundary circle 4 and the outer edge of the fiber end face 3 is the second region 6, if the first region 5 is pointed If the bad feature 31 of the angle, bevel, burr or crack is returned to step A1, if there is only a bad feature in the second area, return to step ⁇ , otherwise the processing is completed.
  • a processing apparatus for the fiber end face processing method comprising: a discharge device for hot melt processing, and a detecting device for detecting a quality of an end face of the optical fiber and a distance between the end face of the optical fiber and the heat source, wherein the discharge device includes an electrode, and the detecting The device includes a camera and a distance measuring device.
  • the principle of hot melt is as shown in FIG. 3, and the end face 3 of the fiber to be subjected to the hot melt treatment is moved to a predetermined distance of the end face 3 of the fiber and the heat source, and the position of the defective feature 31 of the end face 3 of the fiber is located. That is, the heat source treatment portion 7 is subjected to a hot melt treatment by providing a heat source therein.
  • the end face 3 of the optical fiber formed by cutting is centered at the intersection of the central axis of the core and the end face 3 of the fiber on the end face 3 of the fiber, and is formed by a radius not less than the radius of the core.
  • a boundary circle 4 the area within the boundary circle 4 is the first area 5, and the area outside the outer edge of the fiber end face is the second area 6 without the quality detection, and the second area 6 is directly chamfered Hot melt the treated area and eventually form. In the case of hot melt, it is ensured that only the end face 34 of the cladding is processed, and the step is single.
  • the end face 3 of the optical fiber formed by cutting is in the hot melt
  • the fiber end face 3 is positioned by the distance measuring device of the detecting device in the processing device, and the end face 3 of the fiber that needs to be hot melt is moved and positioned within a distance from which the heat source can be hot melted, that is, the fiber end face needs to be accurately positioned.
  • the distance S from the electrode 8 in the discharge device ensures that the hot-melt treatment can be performed according to a predetermined size during hot-melting, and the hot-melt treatment can be completely performed on the region where the defective feature 31 is present without damaging the core end face 32. , to ensure the effect of hot melt and hot melt efficiency.
  • the quality of the fiber end face 3 is detected by the camera of the processing device:
  • the core end face 32 is also easily subjected to the hot melt treatment during the hot melt processing, and the final effect is not obtained. Fiber end face 3, and repeat the detection of the end face quality again;
  • the fiber end face 3 is subjected to a hot melt process.
  • the hot melt treatment is freely performed according to the specific position where the defective feature 31 appears. If the bad feature 31 is far from the boundary circle 4, the area of the hot melt processing portion is slightly smaller. On the contrary, the area of the hot melt processing portion is slightly larger, but the treatment is slightly larger. The area will be within the required range, and will not affect the core end face 32.
  • the end face quality inspection is performed, and the end face quality detection only detects the bad feature 31, and the slope is not detected.
  • the size required for the chamfering hot melt treatment can be effectively obtained, and unnecessary hot melt processing steps can be avoided, and the processing efficiency can be improved.
  • the order of distance positioning and hot melt processing can also be interchanged. For example, distance positioning is performed first, and then quality inspection is performed, and the final effect is also the same; likewise, the inclination detection in the step quality detection and The order of bad feature detection is also interchangeable. For example, the bad feature detection is performed first, and then the slope detection is performed. When both conditions meet the conditions, the hot melt processing is performed.
  • the outer edge 33 of the end face of the optical fiber formed by the processing method of the present invention has a curved surface or a chamfered slope, and the core end face 32 of the fiber end face 3 is a section formed by cutting the optical fiber, and is not subjected to heat fusion. This not only makes the hot melt processing more flexible, but also ensures the minimum mating area of the fiber docking.
  • the core end face 32 of the fiber end face 3 can be aligned to improve the alignment of the core 2, and further improve. The transmission rate of light.
  • the hot melt treatment is performed only on the outer edge of the cladding 1 of the core 2, that is, only the cladding end face 34 on the end face 3 of the optical fiber is subjected to hot-melt treatment, and the temperature of the heat source during hot-melting is not lower than that of the package.
  • the melting point of the material of the layer 1 is such that the area of the outer edge of the cladding 1 with the defective features 31 is rapidly melted; at the same time, the time of the heat fusion is precisely controlled to ensure the shape of the surface after heat fusion.
  • the treatment method not only reduces the area of the hot melt processing portion, but also makes the processing more compact, and it is easier to ensure the shape of the end face of the fiber formed by the treatment, and can effectively prevent the end faces of the core 2 and the core 2 from being hot melted, and retain the original
  • the end face of the core and the end face near the core is cut.
  • the end face of the optical fiber formed by the processing method can more easily ensure the alignment of the end faces of the core during the docking process, ensure the reliable physical contact of the core, and improve the transmission index of the optical fiber docking; meanwhile, the processing method adopts a processing device with a detecting device.
  • the optical fiber can detect the quality of the fiber end face in real time after cutting, to assist in judging the direct hot melt process or returning to re-cut, and can better control the distance between the fiber end face and the heat source through the detecting device during the processing. Therefore, the end face of the fiber can be within the effective range of the heat source of the heat source to ensure that the subsequent hot melt chamfering action is effective for the end face, thereby improving the precision and efficiency of the fiber end face processing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种光纤端面处理方法、一种采用该处理方法处理形成的光纤端面、以及一种用于该光纤端面处理方法的处理装置。该处理方法包括:倒角热熔,通过对切割光纤形成的光纤端面(3)提供热源,对该光纤端面(3)的外边缘(33)进行倒角热熔处理;端面成型,通过光纤端部的液态光纤的表面张力作用使光纤端面(3)的外边缘(33)呈弧面或倒角斜面。通过该光纤端面处理方法处理部位面积较小,处理过的光纤端面光滑平整、容易对接,并避免纤芯及其附近端面被热熔融合从而保留该处的断面形状,从而提高光纤对接传输指标。

Description

光纤端面处理方法、 光纤端面及处理装置 技术领域
本发明属于光纤技术领域, 尤其涉及一种光纤端面处理方法、 光纤端面 及处理装置。 背景技术
光纤与光纤、 光纤与其他器件之间的连接均需要将纤芯对齐, 以保证较 高的光传输效率。 目前, 对于需要进行连接的光纤端面的处理方法主要有光 纤切割处理和光纤研磨处理两种方法。 其中, 光纤切割处理方法是利用光纤 切割刀切割光纤以形成平整的光纤端面; 光纤研磨处理方法是利用光纤研磨 机, 通过多工序的研磨, 将光纤端面研磨成光滑平面、 斜面或弧面。 比较两 种加工过程, 光纤切割处理方法相对筒单, 切割形成的是平面, 尤其由于纤 芯本身较脆的特性, 经切割后, 纤芯的端面及靠近纤芯包层的端面会较为平 整。 但是, 限于光纤切割刀的精度, 其形成的切割端面, 尤其是切割端面上 远离纤芯及光纤包层端部的边缘易出现尖角、 斜角、 毛刺和裂痕等不良端面 缺陷, 导致光纤连接时插损和回损指标不理想; 然而, 光纤研磨处理方法形 成的端面可实现光纤纤芯之间的可靠物理接触, 接续性能良好, 稳定性高, 但其制作过程相对复杂, 制造成本高。
现有中国专利文献 CN 102346275 A公开了一种光纤端面处理方法,通过 提供热源使光纤端部温度瞬间达到或超过光纤材料的熔点, 然后利用液态光 纤端部的表面张力作用使光纤端面形成光滑的球面或准球面, 实现光纤在对 接时, 光纤端面能更好地形成物理接触, 达到接近研磨法处理的效果。 与现 有处理方法相比, 该专利文献所提供的光纤端面热熔处理法, 避免了折射率 匹配液等带来的不利影响, 一定程度上可以保证接续时光纤纤芯的可靠物理 接触。
但根据上述专利方法对切割形成的光纤端面整体进行热熔处理, 并使之 形成球面或准球面时, 单纯地依靠光纤端面的液态表面张力形成一个确定的 球面或者准球面有一定的难度, 且该方法的热熔处理加工面积较大, 工序复 杂。 同时, 也避免不了会对光纤包层内的纤芯端面也同时进行了热熔处理。 然而, 光纤纤芯本身较脆且易变形, 如果直接对其进行热熔处理, 纤芯容易 向端面外凸出, 严重时, 在其与光纤包层的结合部位会出现纤芯和包层的相 互融合, 导致纤芯和纤芯包层结合部位的各自设计折射率会发生变化, 从而 影响到光在纤芯中的传输性能; 同时, 增加了光纤端面对接时的对准难度, 从而降低其对准精度, 所以一般不宜直接对纤芯区域进行热熔处理。 发明内容
本发明的目的在于提出一种光纤端面处理方法、 光纤端面及处理装置, 该方法处理部位面积较小、 容易实现, 通过该方法处理形成的光纤端面光滑 平整, 对接时接触面积大, 容易对准, 该装置增加了可用于检测光纤端面质 量、 光纤端面与电极之间距离的检测装置, 提高了端面处理精度, 增强了处 理灵活性。
为达到此目的, 本发明采用以下技术方案:
一种光纤端面处理方法, 包括如下步骤:
步骤 A: 倒角热熔, 通过对切割光纤形成的光纤端面提供热源, 对所述 光纤端面的外边缘进行倒角热熔处理;
步骤 B: 端面成型, 通过光纤端部的液态光纤的表面张力作用使光纤端 面的外边缘呈弧面或倒角斜面。
其中, 所述步骤 A中的倒角热熔时, 在光纤端面上以纤芯中心轴线与光 纤端面的交点为圆心, 以不小于纤芯半径为半径生成分界圆, 该分界圆以内 的区域为第一区域, 该分界圆以外、 光纤端面的外边缘以内的区域为第二区 域, 第二区域为倒角热熔处理的区域。
其中, 所述步骤 A之前还包括以下步骤:
步骤 A1 : 光纤切割, 对光纤进行切割处理形成光纤端面。
其中, 所述步骤 A1之后, 所述步骤 A之前还包括以下步骤: 范围内。
其中, 所述步骤 A1之后, 所述步骤 A之前还包括以下步骤:
质量检测, 对切割形成的光纤端面进行端面质量检测。
其中, 所述质量检测包括:
斜度检测, 若切割后的光纤端面与纤芯的轴线之间的夹角小于 Θ, 则返 回步骤 A1 ;
不良特征检测, 在光纤端面上以纤芯中心轴线与光纤端面的交点为圆 心, 以不小于纤芯半径的尺寸为半径生成分界圆, 该分界圆以内的区域为第 一区域, 该分界圆以外、 光纤端面的外边缘以内的区域为第二区域, 所述第 二区域为倒角热熔处理的区域, 若第一区域内出现尖角、 斜角、 毛刺或裂痕 的不良特征, 则返回步骤 Al。
其中, 所述斜度检测时光纤端面与纤芯的轴线之间的夹角 Θ的范围为 80° ~ 90°。
其中, 所述步骤 B之后还包括如下步骤:
步骤 B1 : 成型端面质量检测, 对所述步骤 B中成型后的光纤端面进行质 量检测, 在光纤端面上以纤芯中心轴线与光纤端面的交点为圆心, 以不小于 纤芯半径的尺寸为半径生成分界圆, 该分界圆以内的区域为第一区域, 该分 界圆以外、 光纤端面的外边缘以内的区域为第二区域, 若第一区域内出现尖 角、 斜角、 毛刺或裂痕的不良特征, 则返回步骤 A1 , 若仅有第二区域内出现 不良特征, 则返回步骤 A, 否则完成处理。
其中, 所述步骤 A中的热源为采用电弧、 激光、 火焰形成的热源。
一种采用上述光纤端面处理方法处理形成的光纤端面。
一种用于上述光纤端面处理方法的处理装置, 包括用于热熔处理的放电 装置, 以及用于检测光纤端面质量及光纤端面与热源之间的距离的检测装 置, 所述放电装置包括放电电极, 所述检测装置包括摄像头与测距装置。 包层的外边缘进行倒角热熔处理, 不仅使得热熔处理的部位面积减小, 处理 更加筒单, 更容易保证处理形成的光纤端面形状, 又能有效避免纤芯和纤芯 附近的端面被热熔处理导致融合,保留原纤芯及纤芯附近的端面切割后的断 面形状, 最终形成更好的光纤端面; 本发明通过光纤端面处理方法处理形成 的光纤端面的纤芯端面处为切割光纤形成的断面, 光纤端面的外边缘面为弧 面或倒角弧面, 并低于纤芯端面, 该光纤端面在对接的过程中更易确保纤芯 端面对齐, 保证了纤芯的可靠物理接触, 提高光纤对接传输指标; 本发明的 光纤端面处理装置, 除了包括放电装置, 还包括检测装置, 使得在切割后能 实时检测切割光纤端面的质量, 用以辅助判断直接进行热熔处理或返回重新 切割, 又能在处理过程中通过该检测装置更好地控制光纤端面与热源之间的 距离, 使得光纤端面能处在热源热熔的有效范围内, 以确保随后的热熔倒角 动作对端面有效, 从而提升了光纤端面处理的精度和效率。 附图说明
图 1是本发明的光纤切割后的结构剖视图;
图 2 a是图 1中的光纤切割端面区域划分示意图;
图 2b是图 1中的光纤切割端面质量区域划分示意图;
图 3是图 1中的光纤切割端面热熔处理原理示意图;
图 4是图 1中的光纤端面热熔处理状态示意图;
图 5a是经本发明的光纤端面处理方法处理后的一种光纤端面结构示意 图; 意图;
图 6是图 5中的热熔处理后的光纤端面对接示意图。
图中: 1、 包层; 2、 纤芯; 3、 光纤端面; 4、 分界圆; 5、 第一区域; 6、 第二区域; 7、 热源处理部位; 8、 电极; 31、 不良特征; 32、 纤芯端面; 33、 光纤端面的外边缘; 34、 包层端面。 具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
如图 1至 6所示, 一种光纤端面处理方法, 包括如下步骤:
步骤 A: 倒角热熔, 通过对切割光纤形成的光纤端面 3提供热源, 对所述 光纤端面 3的外边缘进行倒角热熔处理;
步骤 B: 端面成型, 通过光纤端部的液态光纤的表面张力作用使光纤端 面的外边缘 33呈弧面或倒角斜面。
优选的, 在本实施例中, 倒角热熔时热熔处理形成的光纤端面的外边缘
33为倒角斜面或弧面。
其中,所述步骤 A的倒角热熔时,在光纤端面 3上以纤芯中心轴线与光纤 端面 3的交点为圆心, 以不小于纤芯半径为半径生成分界圆 4, 该分界圆 4以 内的区域为第一区域 5 , 该分界圆以外、 光纤端面的外边缘以内的区域为第 二区域 6, 第二区域 6为倒角热熔处理的区域。
其中, 所述步骤 A之前还包括以下步骤:
步骤 A1 : 光纤切割, 对光纤进行切割处理形成光纤端面 3。
其中, 所述步骤 A1之后, 所述步骤 A之前还包括以下步骤: 距离定位, 其中, 所述步骤 A1之后, 所述步骤 A之前还包括以下步骤: 质量检测, 对切割形成的光纤端面 3进行端面质量检测。
其中, 所述质量检测包括:
斜度检测, 若切割后的光纤端面 3与纤芯 2的轴线之间的夹角小于 Θ, 则 返回步骤 A1 ;
不良特征检测, 在光纤端面 3上以纤芯 2的中心轴线与光纤端面 3的交点 为圆心, 以不小于纤芯 2的半径的尺寸为半径生成分界圆 4, 该分界圆 4以内 的区域为第一区域 5 , 该分界圆 4以外、 光纤端面 3的外边缘以内的区域为第 二区域 6, 所述第二区域 6为倒角热熔处理的区域, 若第一区域 5内出现尖角、 斜角、 毛刺或裂痕的不良特征 31 , 则返回步骤 Al。 其中, 所述斜度检测时光纤端面与纤芯的轴线之间的夹角 Θ的范围为
80° ~ 90°。
其中, 所述步骤 Β之后还包括如下步骤:
步骤 B1 : 成型端面质量检测, 对所述步骤 Β中成型后的光纤端面 3进行 质量检测, 在光纤端面 3上以纤芯中心轴线与光纤端面 3的交点为圆心, 以不 小于纤芯半径的尺寸为半径生成分界圆 4 , 该分界圆 4以内的区域为第一区域 5 , 该分界圆 4以外、 光纤端面 3的外边缘以内的区域为第二区域 6 , 若第一区 域 5内出现尖角、 斜角、 毛刺或裂痕的不良特征 31 , 则重返回步骤 A1 , 若仅 有第二区域内出现不良特征, 则返回步骤 Α, 否则完成处理。
一种采用上述光纤端面处理方法处理形成的光纤端面。
一种用于所述光纤端面处理方法的处理装置, 包括用于热熔处理的放电 装置, 以及用于检测光纤端面质量及光纤端面与热源之间的距离的检测装 置, 放电装置包括电极, 检测装置包括摄像头与测距装置。
在本实用新型中, 热熔的原理如图 3所示, 将需要进行热熔处理的光纤 端面 3移动到光纤端面 3与热源的预设定距离内, 光纤端面 3的不良特征 31所 在的位置即为热源处理部位 7 , 通过在此处设置热源进行热熔处理。
作为本发明的一种优选实施例, 经切割形成的光纤端面 3在热熔时, 在光纤 端面 3上以纤芯中心轴线与光纤端面 3的交点为圆心, 以不小于纤芯半径为半 径生成分界圆 4 , 该分界圆 4以内的区域为第一区域 5 , 该分界圆以外、 光纤 端面的外边缘以内的区域为第二区域 6, 无需进行质量检测, 直接以第二区 域 6为倒角热熔处理的区域, 并最终成型。 热熔时, 保证仅对包层端面 34进 行处理, 步骤筒单。
作为本发明的另一种优选的实施例, 经切割形成的光纤端面 3在热熔之 前, 通过处理装置中的检测装置的测距装置对光纤端面 3进行定位, 将需要 热熔的光纤端面 3移动并定位在热源可热熔的距离范围之内, 也就是需要准 确定位光纤端面 3与放电装置中的电极 8的距离 S , 保证热熔时可以按照既定 的尺寸进行热熔处理, 在不损坏纤芯端面 32的同时, 又能完全地对出现不良 特征 31的区域进行热熔处理, 保证了热熔的效果以及热熔效率。 定位后, 通 过处理装置的摄像头对光纤端面 3的质量进行检测:
( 1 )斜度检测, 若切割后的光纤端面 3与纤芯 2的轴线之间的夹角小于 80。 ~ 90。的范围, 则返回步骤 A1 ;
( 2 ) 不良特征检测, 在光纤端面 3的表面上以纤芯 2的中心轴线与光纤 端面 3的交点为圆心, 以不小于纤芯 2的半径的尺寸为半径生成分界圆 4 , 该 分界圆 4以内的区域为第一区域 5 , 该分界圆 4以外、 光纤端面 3的外边缘以内 的区域为第二区域 6, 判断会有以下两种情况:
第一种情况, 若第一区域 5出现不良特征 31 , 意味着热熔处理时容易对 纤芯端面 32也进行连带热熔处理, 达不到最终的效果, 此时, 需要重新切割 光纤形成新的光纤端面 3 , 并再一次进行重复检测端面质量;
第二种情况, 若第一区域 5未出现不良特征 31 , 则开始对光纤端面 3进行 热熔处理。 根据不良特征 31出现的具体位置自由地进行热熔处理, 若不良特 征 31远离分界圆 4 , 热熔处理部位的面积会稍小, 反之, 热熔处理部位的面 积会稍大一些, 但该处理面积都会在要求范围内, 不会对纤芯端面 32处造成 影响; 热熔处理及端面成型之后, 进行成型端面质量检测, 该端面质量检测 仅仅检测不良特征 31 , 不再对斜度进行检测, 通过对处理后的光纤端面重复 处理, 而第二区域 6的不良特征已经处理掉, 保证对接效果。 通过上述端面质量检测的判断, 可以有效的获取需要倒角热熔处理的尺 寸, 也可以避免进行不必要的热熔处理工序, 提高处理效率。 当然, 在实际 操作中, 距离定位与热熔处理的顺序也可以互换, 如先进行距离定位, 再进 行质量检测, 最终达到的效果也是一样的; 同样, 步骤质量检测中的斜度检 测和不良特征检测的顺序也是可以互换的, 如先进行不良特征检测, 再进行 斜度检测, 两种同时符合条件时, 进行热熔处理。
通过本发明的处理方法形成的光纤端面的外边缘 33的形状为弧面或倒 角斜面, 而光纤端面 3的纤芯端面 32为光纤切割形成的断面, 并未进行热熔 而定。这不仅使得热熔处理更加灵活,还可以保证光纤对接的最小对接面积, 在光纤对接时, 能通过光纤端面 3的纤芯端面 32进行对准, 提高纤芯 2的对准 度, 进一步地提高光的传输率。
在本发明中, 热熔处理仅对纤芯 2的包层 1的外边缘进行, 也就是只对光 纤端面 3上的包层端面 34进行热熔处理, 热熔时热源的温度不低于包层 1的材 料的熔点, 以使包层 1的外边缘带有不良特征 31的区域快速熔化; 同时, 精 确控制热熔的时间, 可以确保热熔后形成表面的形状。 该处理方法不仅使得 热熔处理的部位面积减小, 处理更加筒单, 更容易保证处理形成的光纤端面 形状, 又能有效避免纤芯 2和纤芯 2附近的端面被热熔处理, 保留原纤芯及纤 芯附近的端面切割后断面。通过该处理方法形成的光纤端面在对接的过程中 更易确保纤芯端面对齐, 保证了纤芯的可靠物理接触, 提高光纤对接传输指 标; 同时, 该处理方法中采用带有检测装置的处理装置, 使得光纤在切割后 能实时检测光纤端面的质量, 用以辅助判断直接进行热熔处理或返回重新切 割, 又能在处理过程中通过该检测装置更好地控制光纤端面与热源之间的距 离, 使得光纤端面能处在热源热熔的有效范围内, 以确保随后的热熔倒角动 作对端面有效, 从而提升了光纤端面处理的精度和效率。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求
1、 一种光纤端面处理方法, 其特征在于, 包括如下步骤:
步骤 A: 倒角热熔, 通过对切割光纤形成的光纤端面提供热源, 对所述 光纤端面的外边缘进行倒角热熔处理;
步骤 B: 端面成型, 通过光纤端部的液态光纤的表面张力作用使光纤端 面的外边缘呈弧面或倒角斜面。
2、 根据权利要求 1所述的一种光纤端面处理方法, 其特征在于, 所述步 骤 A中的倒角热熔时, 在光纤端面上以纤芯中心轴线与光纤端面的交点为圆 心,以不小于纤芯半径为半径生成分界圆,该分界圆以内的区域为第一区域, 该分界圆以外、 光纤端面的外边缘以内的区域为第二区域, 第二区域为倒角 热熔处理的区域。
3、 根据权利要求 1所述的一种光纤端面处理方法, 其特征在于, 所述步 骤 A之前还包括以下步骤:
步骤 A1 : 光纤切割, 对光纤进行切割处理形成光纤端面。
4、 根据权利要求 3所述的一种光纤端面处理方法, 其特征在于, 所述步 骤 A1之后, 所述步骤 A之前还包括以下步骤: 范围内。
5、 根据权利要求 4所述的一种光纤端面处理方法, 其特征在于, 所述步 骤 A1之后, 所述步骤 A之前还包括以下步骤:
质量检测, 对切割形成的光纤端面进行端面质量检测。
6、 根据权利要求 5所述的一种光纤端面处理方法, 其特征在于, 所述质 量检测包括: 斜度检测, 若切割后的光纤端面与纤芯的轴线之间的夹角小于 Θ, 则返 回步骤 A1 ;
不良特征检测, 在光纤端面上以纤芯中心轴线与光纤端面的交点为圆 心, 以不小于纤芯半径的尺寸为半径生成分界圆, 该分界圆以内的区域为第 一区域, 该分界圆以外、 光纤端面的外边缘以内的区域为第二区域, 所述第 二区域为倒角热熔处理的区域, 若第一区域内出现尖角、 斜角、 毛刺或裂痕 的不良特征, 则返回步骤 Al。
7、 根据权利要求 6所述的一种光纤端面处理方法, 其特征在于, 所述斜 度检测时光纤端面与纤芯的轴线之间的夹角 Θ的范围为 80。 ~ 90。。
8、 根据权利要求 1所述的一种光纤端面处理方法, 其特征在于, 所述步 骤 Β之后还包括如下步骤:
步骤 B1 : 成型端面质量检测, 对所述步骤 Β中成型后的光纤端面进行质 量检测, 在光纤端面上以纤芯中心轴线与光纤端面的交点为圆心, 以不小于 纤芯半径的尺寸为半径生成分界圆, 该分界圆以内的区域为第一区域, 该分 界圆以外、 光纤端面的外边缘以内的区域为第二区域, 若第一区域内出现尖 角、 斜角、 毛刺或裂痕的不良特征, 则返回步骤 A1 , 若仅有第二区域内出现 不良特征, 则返回步骤 Α, 否则完成处理。
9、 一种采用权利要求 1至 8任一项所述的光纤端面处理方法处理形成的 光纤端面。
10、 一种用于权利要求 1至 8任一项所述光纤端面处理方法的处理装置, 其特征在于, 包括用于热熔处理的放电装置, 以及用于检测光纤端面质量及 光纤端面与热源之间的距离的检测装置, 所述放电装置包括放电电极, 所述 检测装置包括摄像头与测距装置。
PCT/CN2012/086634 2012-12-14 2012-12-14 光纤端面处理方法、光纤端面及处理装置 WO2014089818A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2012/086634 WO2014089818A1 (zh) 2012-12-14 2012-12-14 光纤端面处理方法、光纤端面及处理装置
JP2015546800A JP6262763B2 (ja) 2012-12-14 2012-12-14 光ファイバ端面処理方法、光ファイバ端面及び処理装置
US14/651,256 US20150323741A1 (en) 2012-12-14 2012-12-14 Optical Fiber End Face Processing Method, Optical Fiber End Face and Processing Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086634 WO2014089818A1 (zh) 2012-12-14 2012-12-14 光纤端面处理方法、光纤端面及处理装置

Publications (1)

Publication Number Publication Date
WO2014089818A1 true WO2014089818A1 (zh) 2014-06-19

Family

ID=50933727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086634 WO2014089818A1 (zh) 2012-12-14 2012-12-14 光纤端面处理方法、光纤端面及处理装置

Country Status (3)

Country Link
US (1) US20150323741A1 (zh)
JP (1) JP6262763B2 (zh)
WO (1) WO2014089818A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016200518A1 (en) * 2015-06-12 2016-12-15 3M Innovative Properties Company Optical fiber with thin film coating and connector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220353A (ja) * 1995-02-14 1996-08-30 Japan Aviation Electron Ind Ltd 光ファイバのデッドエンドの端末処理方法とその構造
JPH09318825A (ja) * 1996-05-28 1997-12-12 Hitachi Cable Ltd 光ファイバの無反射終端部及び光モジュール
CN2525539Y (zh) * 2002-03-11 2002-12-11 中国科学院大连化学物理研究所 光纤端面处理装置
CN1542476A (zh) * 2003-08-14 2004-11-03 中国科学院长春光学精密机械与物理研 一种光纤端面成型方法及其使用的光纤熔接机
CN102346275A (zh) * 2011-11-08 2012-02-08 江苏宇特光电科技有限公司 一种光纤端面处理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800264B2 (ja) * 1997-05-28 2006-07-26 住友電気工業株式会社 光ファイバ端面加工方法およびその装置、光コネクタの組立方法
JP2004061672A (ja) * 2002-07-25 2004-02-26 Totoku Electric Co Ltd 光ファイバの端面加工方法、光ファイバおよび光ファイバの端面加工装置
JP3965477B2 (ja) * 2004-02-23 2007-08-29 Juki株式会社 光ファイバーと光学レンズとの接続方法及び接続装置
DE202007010785U1 (de) * 2007-08-03 2007-09-27 CCS Technology, Inc., Wilmington Vorrichtung zum Verspleißen von Lichtwellenleitern
JP5401197B2 (ja) * 2009-07-30 2014-01-29 株式会社フジクラ 光コネクタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220353A (ja) * 1995-02-14 1996-08-30 Japan Aviation Electron Ind Ltd 光ファイバのデッドエンドの端末処理方法とその構造
JPH09318825A (ja) * 1996-05-28 1997-12-12 Hitachi Cable Ltd 光ファイバの無反射終端部及び光モジュール
CN2525539Y (zh) * 2002-03-11 2002-12-11 中国科学院大连化学物理研究所 光纤端面处理装置
CN1542476A (zh) * 2003-08-14 2004-11-03 中国科学院长春光学精密机械与物理研 一种光纤端面成型方法及其使用的光纤熔接机
CN102346275A (zh) * 2011-11-08 2012-02-08 江苏宇特光电科技有限公司 一种光纤端面处理方法

Also Published As

Publication number Publication date
JP2016503905A (ja) 2016-02-08
JP6262763B2 (ja) 2018-01-17
US20150323741A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
US6822190B2 (en) Optical fiber or waveguide lens
JP4502323B2 (ja) 光学装置
CN109031527B (zh) 一种高功率光纤端帽及其制造方法
US10422961B2 (en) Fiber array formed using laser bonded optical fibers
US20180136396A1 (en) Optical fiber assemblies and methods for forming same
CN107984303B (zh) 等厚离轴非球面反射镜的加工方法
WO2012050055A1 (ja) 光ファイバ融着接続方法
CN102169209A (zh) 光子晶体光纤低损耗熔接及端面处理方法
US9915791B2 (en) Method of laser polishing a connectorized optical fiber and a connectorized optical fiber formed in accordance therewith
US11054574B2 (en) Methods of singulating optical waveguide sheets to form optical waveguide substrates
JPWO2014050467A1 (ja) 切削工具及び切削方法
CN104656191A (zh) 一种提高熔接后光纤抗拉强度的工艺方法
CN102346275A (zh) 一种光纤端面处理方法
WO2014089818A1 (zh) 光纤端面处理方法、光纤端面及处理装置
TWI594832B (zh) Laser processing method
CN111908777B (zh) 一种应用于光器件的基板及其制备方法
WO2015031333A1 (en) Making fiber axicon tapers for fusion splicers
CN101299088A (zh) 光器件及曝光装置
CN212569203U (zh) 一种应用于光器件的基板
CN112987199B (zh) 一种高功率激光合束及激光合束的生产方法
CN107918171B (zh) 一种大模场保偏光纤切割方法
JPH07218757A (ja) 石英系ガラス導波路素子と光ファイバとの融着接続方法
WO2023096776A2 (en) Laser cutting methods for multi-layered glass assemblies having an electrically conductive layer
JP2004347797A (ja) 光ファイバ中間被覆除去方法および光ファイバカプラ製造方法ならびに装置
CN117182331A (zh) 一种加工倒角的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546800

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14651256

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12889827

Country of ref document: EP

Kind code of ref document: A1