WO2014089813A1 - 一种晶体管及其制造方法 - Google Patents

一种晶体管及其制造方法 Download PDF

Info

Publication number
WO2014089813A1
WO2014089813A1 PCT/CN2012/086610 CN2012086610W WO2014089813A1 WO 2014089813 A1 WO2014089813 A1 WO 2014089813A1 CN 2012086610 W CN2012086610 W CN 2012086610W WO 2014089813 A1 WO2014089813 A1 WO 2014089813A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
emitter
transistor
collector
layer
Prior art date
Application number
PCT/CN2012/086610
Other languages
English (en)
French (fr)
Inventor
吴东平
付超超
张卫
张世理
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Priority to US13/704,613 priority Critical patent/US9570595B2/en
Priority to PCT/CN2012/086610 priority patent/WO2014089813A1/zh
Publication of WO2014089813A1 publication Critical patent/WO2014089813A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7378Vertical transistors comprising lattice mismatched active layers, e.g. SiGe strained layer transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0817Emitter regions of bipolar transistors of heterojunction bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to electronic device technology, and more particularly to a transistor and a method of fabricating the same.
  • Terahertz waves In the frequency system of 0.5 to 6 terahertz (THz, ie 10 12 Hz), imaging and spectroscopy systems have important applications in the fields of safety, health, remote sensing and basic science.
  • Terahertz waves have a strong attenuation intensity in water, but have a large penetration depth to biological tissues without causing damage to biological tissues. Therefore, they are particularly suitable for safety applications involving low-risk imaging through opaque objects, such as imaging through clothing, teeth, paper, plastic and ceramic materials.
  • Terahertz waves are also ideal for hygienic applications, such as early diagnosis of skin cancer.
  • terahertz waves are also suitable for extreme broadband communications.
  • the terahertz band area has been used very rarely in daily life. This led to the emergence of the expression "THz gap", which does not accurately describe the lack of sufficient techniques to effectively bridge the ⁇ ! wave frequency below 1 THz and the light above 6 THz.
  • the frequency band between frequencies in particular, lacks the actual source of useful power levels in this particular frequency range.
  • semiconductor electronics and laser optics shrink this terahertz gap from the opposite direction.
  • SiGe HBT germanium-silicon heterojunction bipolar transistors
  • compound semiconductor HEMT devices high-electron mobility transistors
  • THz bands can be entered through passive components, such as frequency multipliers.
  • passive components such as frequency multipliers.
  • such devices generally have significant power losses, which results in power and system volume ratios that are less than practical when using these devices in practical applications. Therefore, small and efficient active THz devices are the only solution.
  • Vacuum electronics, including klystrons have been viewed as a way to bridge THz voids.
  • Such devices may be used in military and aerospace applications, but it is foreseeable that their large size, significant energy consumption and poor reliability will prevent them from penetrating into a wide range of civilian applications such as safety and health. Therefore, solid-state electronic devices based on advanced semiconductors are the only portable terahertz systems that can be used in our daily lives, especially battery-powered.
  • CMOS-based solution operating at ITHz requires a transistor with a channel length of 10 nanometers (nm). However, at this gate length, the transistor will output very low power due to quantum tunneling. With superior transconductance and noise characteristics, SiGe HBT technology is widely recognized as the most powerful and cost-effective solution for emerging high-frequency markets.
  • the basic technology of SiGe HBT is SiGe by chemical vapor deposition (CVD).
  • the most advanced SiGe HBT currently has a cutoff frequency of 0.4 THz at room temperature.
  • the ongoing European FP7 program called "DOTFIVE" including major European semiconductor companies, is attempting to introduce 0.5THz SiGe HBT technology in 2013. It is worth noting that in the DOTFIVE program, the circuit design for the complete frequency multiplier chain of 0.325 THz represents the current state of the art, but this is not only a very lossy method, but also has not yet entered the THz gap.
  • the SiGe HBT can form an ultrathin (eg, less than or equal to 10 nm) semiconductor heterojunction by an atomic layer epitaxy (ALE) method on the epitaxial metal silicide.
  • Stress Engineering can be applied to a partial or full area of the HBT to enhance lateral cavities and longitudinal electronic conduction.
  • SiGe HBTs have an inverted heterojunction structure that maximizes frequency performance by reducing parasitic effects and providing a better heat treatment budget for critical base topography control.
  • the inverted heterojunction structure can be prepared by using an ALE technique to epitaxially form an emitter region on a pre-epitaxially formed metal silicide, epitaxially forming a base region on the emitter region, and then epitaxially forming a collector region on the base region.
  • a new contact method is used to provide very low contact resistance in some or all of the HBT terminals.
  • an HBT can be fabricated using CMOS technology suitable for industrial production.
  • an HBT includes an ultra-thin single-crystal epitaxial metal silicide layer grown on a semiconductor substrate having a thickness of 10 nm or less, and a single crystal silicon emitter is formed on the metal silicide layer.
  • a base is formed on the emitter, the base has a width of about 10 nm or less; and a single crystal silicon collector is formed on the base.
  • the HBT has an inverted structure with a collector closer to the surface of the HBT.
  • the emitter is carbon doped.
  • the single crystal epitaxial metal silicide is an ultra-thin epitaxial NiSi 2 film on a Si (100) substrate.
  • the emitter and collector have a thickness of about 10 nm or less, respectively.
  • at least one of the emitter, the base and the collector is formed by at least one ALE process.
  • the base comprises silicon germanium (SiGe).
  • the HBT further includes a metal silicide contact on the emitter, the base, and the collector, respectively, and the metal silicide contact has a very low resistivity of about 45 milliohms.
  • the collector is subjected to stress treatment in the transport direction to increase electron mobility.
  • the collector is lightly doped silicon and has a metal silicide layer on the surface.
  • the base is stress treated to enhance lateral cavity and longitudinal electron conduction at the base and further deformation processing in the other direction.
  • a method of fabricating an HBT includes the steps of: epitaxially growing a single crystal metal silicide layer on a semiconductor substrate, and the metal silicide layer having a thickness of 10 nm or less; A single crystal silicon emitter is epitaxially grown on the layer; a SiGe base is epitaxially grown on the emitter; and a single crystal silicon collector is epitaxially grown on the SiGe base.
  • the metal silicide layer is NiSi 2 grown on Si (100) by a solid state reaction (SSR) process comprising sputtering a layer of Ni film approximately equal to 2 nanometers thick and rapid thermal processing.
  • SSR solid state reaction
  • the emitter is grown using an ALE process and in situ carbon doping during the ALE process.
  • photons emitted from a laser source are used in the ALE process to help release hydrogen atoms from the surface of the substrate.
  • both the silicon emitter layer and the SiGe base layer are strain treated, and the SiGe base layer is strain treated in a plurality of directions.
  • mechanical stress is applied to the collector layer from the top surface of the HBT due to the inverted structure.
  • FIG. 1 is a schematic cross-sectional view of a SiGe HBT device in accordance with one embodiment
  • FIG. 2 is a flow chart of a method of fabricating a SiGe HBT device in accordance with one embodiment
  • 3a to 3h are cross-sectional schematic views corresponding to respective steps of a method of fabricating a SiGe HBT device according to an embodiment
  • 4A is a transmission electron microscope (TEM) image of a 6 nm thick epitaxial NiSi 2 grown on Si (100) using an SSR, in accordance with one embodiment.
  • TEM transmission electron microscope
  • 4B is a RHEED image of epitaxial Si grown by 10 nm thick on NiSi 2 using molecular beam epitaxy.
  • FIG. 5 is a schematic diagram showing the relationship between the operating frequency (f T ) of the SiGe HBT optimized for large implantation operations and the collector current density Jc according to an embodiment.
  • a novel "inverted" silicon germanium heterojunction bipolar transistor (SiGe HBT) device capable of penetrating from the microwave direction into the THz gap.
  • SiGe HBT silicon germanium heterojunction bipolar transistor
  • a revolutionary innovation by using thin-film technology and related materials, device structures and process technology, such as using a solid state reaction on Si (the SSR) epitaxial growth of NiSi 2, and atomic layer epitaxy grown on Si, NiSi 2, prepared SiGe HBT, the HBT device can operate in the terahertz gap band.
  • 1 is a schematic cross-sectional view of an inverted HBT 100 in accordance with one embodiment of the present invention. As shown in FIG.
  • the inverted HBT 100 includes an epitaxial layer 110 on a semiconductor (e.g., silicon) substrate 101, an emitter 120 on the epitaxial layer 110, a base 130 on the emitter 120, and a base. Collector 140 on the pole layer. Therefore, the order of the emitter 120, the base 130, and the collector 140 in the inverted HBT 100 is reversed from that in the conventional bipolar transistor.
  • One advantage of this arrangement is that the emitter terminal in the conventional bipolar transistor is not grounded in the collector-emitter (CE) structure.
  • CE collector-emitter
  • the emitter in the HBT 100 of this embodiment is close to the substrate 101. Low potential area.
  • epitaxial layer 110 comprises a single crystal silicide formed during hetero-phase epitaxial growth, the emitter comprising epitaxially grown silicon. In a modified embodiment, the emitter comprises carbon doped silicon
  • the carbon-doped silicon has a larger band gap than silicon (Si), enabling more enhanced carrier injection.
  • the epitaxial silicon emitter can provide good high frequency performance due to the formation of a good base of heteroepitaxial silicon (Si) or silicon germanium (SiGe) thereon.
  • the base is prepared by an atomic layer epitaxy (ALE) method, and its width w can be very thin so that the base transfer time does not significantly limit the performance of the HBT.
  • ALE atomic layer epitaxy
  • Such an "inverted bipolar" structure allows for simple doping optimization of the collector so that a special heterojunction structure can be formed, allowing the device to operate at higher current densities to achieve higher frequency limits. .
  • epitaxial layer 110 comprises an epitaxial metal silicide having a sheet resistance of about 50 ohms/square to minimize carrier transit time and series resistance and improve thermal management.
  • the base layer comprises Si or SiGe. A higher operating frequency can be obtained by forming a base having SiGe.
  • a silicon base is also possible, the following discussion will focus primarily on the HBT 100 having a SiGe base layer, and the HGe 100 will be replaced by a SiGe HBT 100 below.
  • the base layer uses stress engineering to enhance the conduction of lateral and longitudinal electrons in the substrate.
  • pressure is applied in the other direction in addition to the stress-treated SiGe layer to more greatly improve the performance of the device.
  • Well-developed stress techniques such as heterojunction epitaxial processing and silicon nitride stretching and compressive stress, have been widely used in state-of-the-art complementary metal oxide semiconductor (CMOS) technology, as well as in the discussion of the present invention. Stress application.
  • CMOS complementary metal oxide semiconductor
  • the base 130 of the SiGe HBT 100 includes an extrinsic base region 130a and an intrinsic base region 130b.
  • the intrinsic base region has a thickness of about 10 nm or less.
  • the emitter strip 120 is made very narrow (for example, about 20 nm or narrower), and the HBT 100 can have multiple emitter strips. To optimize performance.
  • the emitter is patterned using electron beam lithography or immersion lithography to achieve high resolution.
  • the collector comprises silicon and is subjected to a stress treatment.
  • the collector is lightly doped silicon and has a metal silicide layer on the upper surface and is stress treated in the transport direction to increase electron mobility.
  • the inverted collector region structure of the inverting surface 102 facilitates the application and control of stress.
  • the silicide contact region 150 on top of the collector may be as large as the collector to minimize contact resistance.
  • the SiGe HBT 100 also includes a low resistivity contact region 150 at its terminals.
  • the emitter and base having a low contact resistance e.g., less than 10- 8 Qcm 2
  • a collector electrode having a low Schottky barrier (the SBH) e.g., about 0.1 eV
  • Nickel-silicon (NiSi) contact region e.g., nickel-silicon (NiSi) contact region.
  • advanced ALE and epitaxial silicide techniques are used to fabricate high performance HBTs operating at frequencies above ITHz. At such high frequencies, special care should be taken to minimize all parasitic components, both internal and external, which would otherwise adversely affect the active device.
  • ALE atomic layer of ALE ensures that the atoms in one layer are eventually deposited in the correct lattice position during low temperature deposition. Therefore, ALE does not require an additional high temperature step compared to conventional chemical vapor deposition (CVD) which requires very high deposition temperatures. Compared to molecular beam epitaxy (MBE), which also achieves atomic-level deposition control, ALE facilitates obtaining a narrow distribution profile that is highly desirable in practical terahertz components.
  • ultra high vacuum (UHV) ALE is used to grow carbon doped silicon (represented by Si(C)) emitter, germanium silicon base, and silicon collector.
  • FIG. 2 is a flow diagram of a SiGe HBT fabrication process 200 in accordance with one embodiment of the present invention.
  • Figures 3a through 3h are cross-sectional views corresponding to the steps in the SiGe HBT fabrication process 200.
  • a semiconductor substrate 301 is provided (step 201).
  • the semiconductor substrate 101 may be a silicon substrate Or a silicon-on-insulator (SOI) substrate.
  • SOI silicon-on-insulator
  • a single crystal metal silicide layer 110 is grown on a semiconductor substrate by a different shield epitaxial process (step 210).
  • the epitaxial silicide layer U0 replaces the thickly doped silicon layer which is conventionally used as a sub-collector, and has a thin layer of electricity of 50 ⁇ or less suitable for terahertz frequency operation. Since the silicide layer can be very thin ( ⁇ i0nm), the parasitic edge capacitance connected to any sidewall of the sub-emitter is greatly reduced.
  • the epitaxial silicide layer 110 is an ultra-thin NiSi 2 film grown on a silicon substrate 100 using a solid state reaction (SSR) process.
  • SSR solid state reaction
  • the SSR process first deposits a layer of Ni film about 2 nanometers thick by sputtering, followed by a brief heat treatment at a temperature of about 700 °C.
  • the thickness of the 6 nm thick epitaxial NiSi 2 film grown on Si (100) is uniform and has a sharp interface and a smooth surface at the atomic layer level.
  • the film has a very low resistivity, for example, 45 ⁇ - « ⁇ , or a sheet resistance of about 75 ⁇ per unit area.
  • a carbon doped silicon (Si(C)) emitter 120 and a SiGe base 130 are successively formed on the epitaxial silicide layer 110 using an ALE process (corresponding to steps 220 and 230, respectively).
  • ALE process thickness and composition control of single atomic layer accuracy can be achieved, and different chemicals and materials can be processed quickly.
  • the emitter 120 is doped in situ to achieve a steep impurity profile at the atomic layer level.
  • ALE process having a single atomic layer generally depends on the ability to control the loop processing two precursor, to form A x B y type binary compounds, such as III-V or group II-VI semiconductors.
  • a key feature of the ALE process 230 is self-limiting, which is achieved by a chemisorption process at temperatures below 400 ° C in an ultra high vacuum (UHV) environment. In this way, at most one of the components A or B can be grown in each cycle regardless of the length of the growth cycle.
  • the recycling treatment can be achieved by using silicon dichloride (Si 2 Cl 6 ) and hexahydrosilane (Si 2 H 6 ).
  • Si 2 Cl 6 silicon dichloride
  • Si 2 H 6 hexahydrosilane
  • the ALE of the silicon germanium alloy in the base 130 is expected to be more difficult because the hafnium precursor such as germanium methane (GeH 4 ) or hexahydroquinone (Ge 2 H 6 ) tends to be lower.
  • Decomposition at Temperature In order to achieve self-limiting growth at the atomic level, it is necessary to carry out the growth process at a low temperature.
  • One of the challenges of low temperature growth is the desorption of hydrogen atoms from the growing silicon surface, leaving a depression for subsequent silicon adsorption and deposition. Using light or plasma can help release hydrogen atoms, from! 3 ⁇ 4 realization of silicon atomic layer epitaxy.
  • the process 200 further includes: performing appropriate stress treatment on the Si emitter 120 (step 225) and the SiGe base 130 (step 235) to shorten the transit time and achieve a working frequency (fT) greater than L. 1 Terahertz SiGe HBT Period
  • the combined carrier mobility introduced by the introduction of uniaxial and biaxial stresses in the heterojunction structure and the operating frequency of the device affected by carrier mobility can be increased in a star-shaped manner.
  • Heterojunction epitaxial growth and external strain layer deposition are achieved. As well, it is well known that heterojunction facilitates carrier injection and carrier transport as well as successful application in CMOS technology. Stress treatment of strained layers can provide greater freedom for current-carrying mobility enhancement
  • the silicon layer 140 is formed by a heterojunction epitaxial process (step 240).
  • the emitter 120, the base 1 30 and the collector 140 are respectively in-situ, N-type, P-type and N-type in situ during the ALE process. Doping.
  • the bias voltage (V BE ) between the base and the emitter is positive
  • the bias voltage (V BC ) between the base and the collector is negative.
  • the emitter 120, the base 1 30 and the collector are shown.
  • an emitter 120 is patterned and etched to form an emitter 120, a base 130, and a collector 140.
  • an insulating dielectric layer 103 is deposited, then planarized, and then a contact is formed in the insulating dielectric layer 103. hole.
  • Contact holes _60 are used to subsequently form contact regions on the emitter, base and collector.
  • a nickel suicide (NiSi) connection can be formed using a conventional self-aligned CMOS process.
  • CMOS process no additional lithography maskBF
  • Ultra-low contact resistance between emitter and base eg, less than 10–cm 2
  • metal semiconductor contact impurity separation developed in CMOS research (DS: The dopant segregation technology
  • the collector's metal-semiconductor contact can achieve a very low specific barrier height (SBH) (for example, about 0.1 eV). This will further improve the frequency performance of the SiGe HBT 100.
  • SBH specific barrier height
  • the SiGe HBT passes through the atomic layer.
  • Epitaxial (ALE) formation specifically, an ultrathin (eg, less than 10 nm) semiconductor heterojunction is formed on the epitaxial metal silicide field. Stress technology is applied to some or all of the HBT regions to simultaneously enhance lateral hole and longitudinal electron conduction.
  • SiGe HBT has an inverted heterojunction structure and provides for reduced parasitic effects and critical key topography and distribution control. Better thermal budget for maximum frequency performance. New contact strategy to achieve very low contact resistance in some or all of the HBT terminals. Therefore, good inverted SiGe that works in the terahertz band HBT can be fabricated by a semiconductor-based process using ALE to form Si, SiGe, and carbon-doped ⁇ Si (C) structures on a single-crystal silicide film. Alternatively, partial beam epitaxy (MBE) can also be used for semiconductor growth. The surface and interfacial properties obtained by epitaxial NiSi 2 films are important for promoting epitaxy on various Si or SiGe films.
  • the Reflection High-Energy Electron Diffraction (“RHEED”) image in Figure 4B is shown that ⁇ ⁇ nano-thick epitaxial Si can be grown on epitaxial NiSi 2 film at 380BF although there is no elaborate surface treatment, The quality of the long surface has been reasonable.
  • 5 is a graph showing device structure simulation results optimized for large injection operating conditions based on an embodiment of the present invention: a graph of the relationship between the operating frequency (f T ) of the SiGe HBT and the collector current density Jc.
  • the performance advantages of SiGe HBT are mainly due to the small band gap of SiGe and the acceleration of the longitudinal electric field of the carrier caused by the band gap gradient.
  • the key performance enhancement factor for CMOS below 90 nm is the lateral field mobility enhancement achieved by stress engineering.
  • the combination of bandgap engineering and mobility engineering further improves the performance of the HBT.
  • additional stress processing can be used to improve lateral hole mobility, thereby reducing the base resistance that limits the maximum operating frequency of the SiGe HBT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bipolar Transistors (AREA)

Abstract

提供一种晶体管(100)及其制造方法。晶体管(100)具有倒置异质结结构,其中,在形成基极(130)层和集电极(140)层之前形成发射极(120)层。这种倒置的异质结结构,可以采用ALE工艺通过在预先形成的外延单晶金属硅化物(110)上形成发射极(120)层,在发射极(120)层上形成基极(130)层,在基极(130)层上形成集电极(140)层制备得到。通过为关键的基区形貌和掺杂分布控制提供更好的热预算,可以获得更高的截止频率(fT);通过最小化集电区和基区的接触面积,可以显著减少寄生电容、提高最高振荡频率(fmax)。这样可以显著提高晶体管的频率特性。

Description

说 明 书
一种晶体管及其制造方法 技术领域
本发明涉及电子器件技术, 特别涉及一种晶体管及其制造方法。
背景技术
在 0.5至 6太赫兹 (THz, 即 1012赫兹) 频率体系, 成像和光谱系统在 安全、 卫生、 遥感和基础科学等领域具有重要的应用。 太赫兹波在水中具有 很强的衰减强度, 但对生物组织具有较大的穿透深度, 而不会对生物组织造 成损害。 因此, 他们特别适合于涉及透过不透明的物体进行低风险成像的安 全应用, 比如透过衣服、 牙齿、 纸张、 塑料和陶瓷材料的成像。 太赫兹波在 卫生应用中也非常理想, 比如皮肤癌的早期诊断。 因此, 近来已经对许多涉 及安全、 医药、 生物分析、 用于环境监测的遥感和减轻自然灾害的社会基础 应用进行了广泛地研究。 凭借其高频率, 太赫兹波也同样适用于极限宽带通 信。
然而, 到目前为止, 太赫兹频段区域在日常中的应用却非常少。 这就导 致了 "太赫兹空隙" (THz gap )这一表述的出现, 它不精确地描述了缺乏足 够的技术, 来有效地弥合低于 1 THz的^!波频率和高于 6 THz的光频率之间 的频段,特别是,在这个特定的频率范围内缺乏具有有用功率水平的实际源。 现在,半导体电子和激光光学元件从各自相反的方向来缩小这个太赫兹空隙。 先进的半导体技术, 包括硅-互补金属氧化物半导体(Silicon-CMOS ) 、 锗硅 异质结双极型晶体管 (SiGe HBT)和化合物半导体 HEMT器件(高电子迁移率 晶体管) , 极大地促进了毫米波技术的发展。 然而, 通过最强大的和具有成 本效益的 SiGe HBT技术预计可达到的频率在目前约为 0.5THz。在光学领域, 依靠从良好定义的电子态转换的现代固态激光器, 在打破 6 THz壁垒时, 遇 到了严重的挑战, 因为这样的频率的光能量等于室温下热波动的能量, 即 kT=26毫电子伏特 (meV ) 。 目前, 可以通过无源器件, 比如频率乘法器, 进入 THz频段。 然而, 这 样的器件普遍具有显著的功率损耗, 这导致在实际应用中使用这些器件时功 率和系统体积比将不切实际的小。 因此, 小而高效的有源 THz器件是唯一的 解决办法。 真空电子器件, 包括速调管, 已被视为一种用于弥合 THz空隙的 方式。 这种器件或许可以应用到军事和航空航天领域, 但可以预见, 其大尺 寸、 显著的能量消耗和糟糕的可靠性, 将阻碍它们向安全卫生等广阔的民用 领域渗透。 因此, 基于先进半导体的固态电子器件是唯一能用于我们日常生 活的, 特别是使用电池供电的便携式太赫兹系统。
在 ITHz运行的基于 CMOS的解决方案需要具有 10纳米 (nm ) 沟道长 度的晶体管。 然而, 在这个栅极长度, 由于量子隧道效应, 晶体管会输出非 常低的功率。凭借优越的跨导和噪声特性, SiGe HBT技术被普遍认为给新兴 的高频率市场提供了最强大的和具有成本效益的解决方案。 目前, SiGe HBT 的基础技术是通过化学气相沉积 (CVD ) 的 SiGe。 目前最先进的 SiGe HBT 在室温下具有 0.4 THz的截止频率。正在进行的名为 "DOTFIVE"的欧洲 FP7 计划, 包括主要的欧洲半导体企业,试图在 2013年推出 0.5THz的 SiGe HBT 技术。 值得注意是, 在 DOTFIVE计划中, 用于 0.325 THz的完整的频率乘 法器链的电路设计代表了目前的最高发展水平, 但这不但是一个非常有损耗 的方法, 也还未能进入 THz空隙。
发明内容
在一个实施例中, SiGe HBT 可以在外延的金属硅化物上通过原子层外 延(ALE )法形成超薄(例如, 小于或者等于 10nm )半导体的异质结。 应力 工程可以应用于 HBT部分区域或全部区域上,用来提高横向空穴和纵向电子 导电。 SiGe HBT具有倒置异质结结构, 并通过减少寄生效应、 并为关键的基 区形貌控制提供更好的热处理预算, 从而得到最大化的频率性能。 可以通过 采用 ALE技术, 在预先外延形成的金属硅化物上外延形成发射区、在发射区 上外延形成基区, 然后在基区上外延形成集电区, 来制备得到倒置异质结结 构。采用新的接触方式, 以在某些或所有的 HBT引出端中提供极低的接触电 阻。
SiGe HBT可以采用适合于工业化生产的 CMOS技术制备。 在一个实施例中, 一个 HBT 包括生长在半导体衬底上的超薄单晶外延 金属硅化物层, 其厚度为 10 nm或更薄, 在该金属硅化物层上形成单晶硅发 射极, 在发射极上形成基极, 基极具有约 10nm或更小的宽度; 并在基极上 形成单晶硅集电极。 该 HBT具有集电极更靠近 HBT表面的倒置结构。 在进一步的实施例中, 发射极是碳掺杂的。 在进一步的实施例中, 单晶外延金属硅化物是在 Si ( 100 )衬底上的超 薄外延 NiSi2膜。 在进一步的实施例中,发射极和集电极分别具有约 10nm或更薄的厚度。 在进一步的实施例中, 发射极、 基极和集电极中的至少一个通过至少一 个 ALE过程形成。 在进一步的实施例中, 基极包括锗化硅(SiGe ) 。 HBT进一步包括在发射极、 基极和集电极上分别具有金属硅化物接触, 并且金属硅化物接触具有非常低的约 45毫欧 ·厘米的电阻率。 在进一步的实施例中, 集电极在传输方向上进行应力处理以提高电子迁 移率。
在进一步的实施例中, 集电极为轻掺杂的硅且在表面有金属硅化物层。 在进一步的实施例中, 基极进行应力处理, 以增强在基极的横向空穴和 纵向电子传导, 并在另外一个方向上进行进一步的形变处理。
在一个实施例中, 一种 HBT 的制造方法包含以下步驟: 在半导体衬底 上外延生长单晶金属硅化物层,且该金属硅化物层具有 10nm或更薄的厚度; 在所述金属硅化物层上外延生长单晶硅发射极; 在发射极上外延生长 SiGe 基极; 在 SiGe基极上外延生长单晶硅集电极。
在进一步的实施例中, 金属硅化物层是通过固态反应 (SSR ) 过程生长 在 Si ( 100 )上的 NiSi2, 该方法包括溅射沉积一层约等于 2纳米厚的 Ni膜和 快速热处理。
在进一步的实施例中, 发射极使用 ALE过程生长, 并在 ALE过程中进 行原位碳掺杂。
在进一步的实施例中,在 ALE过程中使用从激光源发出的光子, 帮助从 衬底表面释放氢原子。
在进一步的实施例中, 硅发射极层与 SiGe基极层均进行了应变处理, 并且 SiGe基极层在多个方向上进行了应变处理。 在进一步的实施例中, 由于倒置结构,机械应力从 HBT顶部表面施加到 集电极层上。
附图说明
图 1是根据一个实施例的 SiGe HBT器件的横截面示意图;
图 2是根据一个实施例的 SiGe HBT器件制备方法的流程图;
图 3a至 3h是根据一个实施例的 SiGe HBT器件制备方法各步驟对应的 横截面示意图; 图 4A是根据一个实施例的使用 SSR在 Si (100)上生长 6nm厚的外延 NiSi2的透射型电子显微镜(TEM ) 图像。
图 4B是使用分子束外延在 NiSi2上生长 10nm厚的外延 Si 的 RHEED图 像。
图 5是根椐一个实施例的为大注入工作优化的 SiGe HBT的工作频率( fT ) 与集电极电流密度 Jc之间关系的仿真结杲示意图。
具体实施方式
根据本发明的一个实施例, 提供了一种新型、 能够从微波方向渗透到太 赫兹空隙( THz gap )频段工作的 "倒置 "锗硅异质结双极型晶体管( SiGe HBT ) 器件。 通过采用与材料、 工艺技术和器件结构有关的革命性薄膜技术创新, 比如, 在 Si上采用固态反应 (SSR )外延生长 NiSi2以及在 NiSi2上采用原子 层外延法生长 Si等, 进行制备 SiGe HBT, 该 HBT器件能工作在太赫兹空 隙频段中。 图 1是根据本发明一个实施例的倒置 HBT 100的横截面示意图。 如图 1 所示, 该倒置 HBT 100包含位于半导体(如, 硅)衬底 101上的外延层 110、 位于外延层 110上的发射极 120、位于发射极 120上的基极 130、和位于基极 层上的集电极 140。 因此, 倒置 HBT 100中的发射极 120、 基极 130和集电 极 140的顺序与传统的双极型晶体管中的顺序是相反的。 这种布局的一个好 处是, 与传统的双极型晶体管中发射极引出端在集电极-发射极(CE ) 结构 中接地不一样,本实施例 HBT 100中的发射极靠近衬底 101中的低电势区域。 另一方面, 集电极接近 HBT 100的顶部或表面 102, 因此, 集电极更接近或 直接和与 HBT相连的电路金属层(图中未示出)接触, 并且易于从器件顶部 接入。 其结果是, 使得寄生效应的影响 (特别是, 集电极 - 基极电容 Cbc ) 显著减少, 从而能实现在性能上的增益。 在一个实施例中, 外延层 110包含异相外延生长过程中所形成的单晶硅 化物, 发射极包含外延生长硅。 在改进的实施例中, 发射极包含碳掺杂硅
( Si(C) ) , 该碳掺杂硅具有比硅(Si ) 更大的能带隙, 可以实现更加增强的 载流子注入。 由于能够在其上形成良好的异质外延硅(Si )或锗化硅(SiGe ) 的基极, 外延硅发射极能够带来良好的高频性能。 在一个实施例中, 基极通 过原子层外延(ALE ) 方法制备, 其宽度 w可以非常薄, 从而使基极传输时 间不会显著地限制 HBT的性能。 这样的 "倒置双极型 "结构能够允许对集电极进行简单的掺杂优化, 以便 可以形成特殊的异质结结构, 使器件能在更高的电流密度下工作, 以达到更 高的频率极限。 此外, 该倒置结构能够大大简化对在太赫兹频段工作很重要 的形变的施加。 在一个实施例中, 外延层 110包含外延金属硅化物, 该金属硅化物具有 约 50欧姆 /方块的薄层电阻, 以便使载流子渡越时间和串联电阻最小化, 并 改善散热管理。 在一个实施例中, 基极层包含 Si 或 SiGe。 通过形成具有 SiGe的基极 可以获得更高的工作频率。 虽然硅基极也是可行的, 但是下面的讨论将主要 集中在具有 SiGe基极层的 HBT 100, 并且下面以 SiGe HBT 100代替 HBT 100。在一个实施例中,基极层采用应力工程增强基底中横向空穴和纵向电子 的传导。 在一个实施例中, 除了采用进行应力处理的 SiGe层之外, 在另外一 个方向施加压力, 以便更大幅度地改善器件的性能。 已经发展成熟的应力技 术, 比如异质结外延处理和氮化硅拉伸及压缩应力, 已被广泛应用在最先进 的互补金属氧化物半导体 (CMOS ) 技术中, 同样也可用于本发明讨论的应 力应用中。
在一个实施例中, SiGe HBT 100的基极 130包含非本征基极区 130a和 本征基极区 130b。在一个实施例中,本征基极区的厚度约为 10nm或者更薄。 为了避免如此薄的本征基极区而导致的不必要的高电阻, 发射极条带 120被 做得非常狭窄(比如, 约 20纳米或更窄), HBT 100可以具有多个发射极条 带以优化性能。 在一个实施例中, 发射极使用电子束光刻或者浸润式光刻技 术进行图案化, 以获得高分辨率。
在一个实施例中, 集电极包含硅, 并进行了应力处理。 在一个实施例中, 集电极为轻掺杂的硅且在上表面有金属硅化物层, 并在传输方向上进行了应 力处理, 以提高电子迁移率。 倒置的接近表面 102的集电极区域结构方便进 行应力的施加和控制。 在一个实施例中, 在集电极顶部的硅化物接触区 150 的尺寸可以与集电极一样大, 以便使接触电阻最小化。 在一个实施例中, SiGe HBT 100还包含在其引出端的低电阻率接触区 150。例如,可以是在发射极和基极具有极低接触电阻(例如,低于 10—8Qcm2 ) , 和在集电极具有极低肖特基势垒(SBH ) (例如, 约为 0.1 eV )的镍硅(NiSi ) 接触区。
在一个实施例中 ,采用先进的 ALE和外延硅化物技术制造工作频率超过 ITHz的高性能 HBT。 在如此高的频率下, 应特别注意使所有包括内部的和 外部的的寄生元件最小化,如果不是这样的话,将给有源器件带来不利影响。
每次沉积一个原子层的 ALE处理,确保在低温沉积过程中一层中的原子 最终沉积在正确的晶格位置。 因此, 与需要非常高沉积温度的传统化学气相 沉积(CVD )相比, ALE不需要额外的高温步驟。 与也能达到原子级沉积控 制的分子束外延(MBE )相比, ALE有利于获得在实际太赫兹元件中非常期 望实现的狭窄的分布形貌。 在一个实施例中, 超高真空(UHV ) ALE用于生 长碳掺杂硅(以 Si(C)表示 )发射极、 锗硅基极和硅集电极。
图 2是根据本发明的一个实施例的 SiGe HBT制备过程 200的流程图。 图 3a至 3h是 SiGe HBT制备过程 200中各步驟对应的横截面图。 如图 2和 3a所示, 提供半导体衬底 301 (步驟 201 ) 。 半导体衬底 101可以是硅衬底 或绝缘体上硅(SOI )衬底。 如图 2和 3b所示, 通过异盾结外延工艺在半导体衬底上生长单晶金属 硅化物层 110 (步骤 210 )。 该外延硅化物层 U0取代传统上使用的厚的做为 子集电极的高掺杂硅层,具有适合于太赫兹频率工作的 50Ω以下的薄层电^。 由于硅化物层可以非常薄 (≤i0nm ) , 因此与子发射极的任何侧壁相连的寄 生边缘电容会大大减小„
在一个实施例中, 外延硅化层 110是采用固态反应 (SSR ) 工艺生长在 硅衬底 100上的超薄 NiSi2薄膜。在一个实施例中, SSR过程首先以溅射方式 沉积一层约 2纳米厚的 Ni膜, 接着在约 700°C温度下进行简短热处理。 如图 4A所示, 在 Si(100)上生长的 6纳米厚的外延 NiSi2膜的厚度是均匀的, 并在 原子层级别具有尖锐的界面和光滑的表面。此外,该膜具有非常低的电阻率, 例如, 45μΩ-«η, 或约单位面积 75Ω的薄层电阻。 如图 2和 3c所示, 碳掺杂硅( Si(C) )发射极 120和 SiGe基极 130采用 ALE工艺被连续地形成在外延硅化物层 110上(分别对应步驟 220和 230 ) 。 在 ALE工艺中, 可以实现单原子层精度的厚度和成分控制, 不同的化学物质 和材料也能迅速地进行处理。 发射极 120进行原位掺杂, 以实现原子层级别 的陡峭的杂质分布。具有单原子层控制能力的 ALE工艺通常依赖于两个前驱 体的循环处理, 以形成 AxBy型二元化合物, 如 III-V或 II-VI族半导体。 ALE 工艺 230的关键特征是自限制性, 该特性通过在超高真空 (UHV )环境, 低 于 400°C的温度下的化学吸附过程实现。 以这种方式, 可以在每个周期中生 长出成分 A或 B中的至多一个单层, 且与生长周期的长度无关。 对于单元素 的硅膜的生长, 循环处理可以通过使用六氯化二硅 (Si2Cl6 ) 和六氢化二硅 ( Si2H6 )实现。然 这个过程并不是真正的自限制, 因为在 40CTC以上 Si2H6 很容易分解。 就这一点而言, 基极 130中锗硅合金的 ALE预期会更加困难, 因为诸如锗甲烷 (GeH4 ) 或六氢化二锗 (Ge2H6 ) 的锗前驱体易于在更低的 温度下分解 为了实现原子层级别的自限制生长, 需要在低的温度下进行生 长工艺。 低温生长的一个挑战是从正在生长的硅表面进行氢原子的脱附, 为 后续的硅吸附和沉积留有佘地。 使用光予或等离子体可以帮助释放氢原子, 从! ¾实现硅原子层外延。 为了避免等离子体诱导损伤, 可以采用光子方法进 行 Si和 S【Ge的外延 以实现单原子层控制。 带有外部激光源的當规超高真 空 ALE或 ALD系统可以用于实现本发明的 ALE工艺。 如图 2所示,过程 200进一步包括:对 Si发射极 120 (步骤 225 )和 SiGe 基极 130 (步骤 235 )进行适当的应力处理、 以缩短渡越时间、 实现工作频車 (fT ) 大于 L 1 太赫兹的 SiGe HBT„ 通过在异质结结构中引入单轴和双轴应 力的组合 载流子迁移率以及受载流子迁移率影响的器件的工作频率可以星 着地增加。 这可以通过内在的异质结外延生长和外在的应变层沉积来实现。 同祥地, 众所周知, 异质结有利于载流子的注入和载流子的输运 正如在 CMOS技术中的成功应用一样, 使用应变层进行应力处理可以为载流予迁移 率增强提供更大的自由度
如图 2和 M所示, 硅层 140通过异质结外延工艺形成(步驟 240 ) 。 为 了保持不同层之间陡峭的掺杂分布, 并以形成一个 NPN HBT为例 , 在 ALE 工艺过程中发射极 120, 基极 1 30和集电极 140分别进行 N型、 P型和 N型 原位掺杂。 对于根椐- -个实施例的 NPN HBT, 在正常工作期间, 基极和发射 极之间的偏压 (VBE )是正的, 基极和集电极之间的偏压 (VBC ) 是负的 如图 2、 3e至 3f所示, 在步驟 145中对发射极 120、 基极 1 30和集电极
140进行图案化和蚀刻, 以形成发射极. 120、基极 130和集电极 140, 如图 3g 所示, 淀积绝缘介电层 103, 然后平坦化, 接着在绝缘介电层 103 内形成接 触孔。 接触孔 _60用于随后在发射极、 基极和集电极上形成接触区。
如图 2和 31Ί所示 在发射极、基极和集电极上形成接触区(步骤 250 )。 在一个实施例中, 可以采用传统的自对准 CMOS工艺形成硅化镍 ( NiSi )接 触区、 无需额外的光刻掩模„ 发射极和基极之间具有超低的接触电阻(例如、 低于 10— cm2 ) , 采用在 CMOS研究中开发的金属 半导体接触杂质分离 ( DS : dopant segregation )技术, 集电极的金属半导体接触可以达到非常低 的 特基势垒高度 ( SBH ) (例如, 约为 0.1 eV )。 这将进一步提高 SiGe HBT 100的频率性能。到 前为止,在传统的 HBT研究中电接触区很少受到关注。 考虑到 HBT的结构约克条件及其相关工艺,通常的重掺杂技术和具有低接触 电阻的适当金属选择不容易实现, 因此, 对于 THz器件、 接触区成为一个重 要问题。 为了减小所有三个引出端的接触电阻, 可以采周诸如杂质分离的技 术来改变金属硅化场和半导体.之间的肖特基势垒高度。 因此, SiGe HBT通过原子层外延( ALE )形成, 具体地说, 在外延金属 硅化场上形成超薄 (倒如, 小于 10纳米) 半导体异质结。 在 HBT—些或所 有区域上施加应力技术, 使得横向空穴和纵向电子传导能力同时增强。 SiGe HBT具有倒置异质结结构, 并通过减少寄生效应及为关键的基区形貌和分布 控制提供更好的热预算, 获得最大化的频率性能。 采用新的接触策略, 以在 某些或所有的 HBT引出端中得到极低的接触电阻。 因此, 能在太赫兹频段工作的良好的倒置 SiGe HBT可以采用基于半导 体的工艺来制作、 采用 ALE工艺在单晶硅化物膜上形成 Si、 SiGe和碳摻杂 珪 Si ( C ) 结构。 或者, 分予束外延(MBE ) 也可用于半导体的生长。 外延 NiSi2膜所获得的表面与界面性能对促进各种 Si或 SiGe膜上的外延很重要 例如, 如图 4B 中的反射高能电子衍射 (Reflection High-Energy Electron Diffraction , 简称 " RHEED" ) 图像显示, ί θ纳米厚的外延 Si可以在 380Ό 下在外延 NiSi2膜上生长得到„ 虽然没有作精心的表面处理, 生长表面的质 量已经比较合理。 图 5是基于本发明一个实施例的为大注入工作条件优化的器件结构仿真 结果: SiGe HBT的工作频率 (fT ) 与集电极电流密度 Jc之间关系的曲线图。 SiGe HBT的性能优势主要来自于 SiGe较小的能带隙以及能带隙梯度导 致的载流子纵向电场加速。 但是, 对基极电阻很重要的纵向电子迁移率和横 向空穴迁移率, 仅有极小的改进。 另一方面, 在 CMOS技术里, 90纳米以 下 CMOS的关键性能增强因子是通过应力工程实现的横向场迁移率增强。在 一个实施例中 能带隙工程和迁移率工程相结合 进一步改善 HBT的性能。 例如, 额外的应力处理可用于改善横向空穴迁移率,从而减小限制 SiGe HBT 最大工作频率的基极电阻。

Claims

权 利 要 求 书
1. 一种晶体管, 其特征在于, 包含:
位于半导体衬底上超薄单晶外延金属硅化物层; 形成在所述金属硅化物层上的单晶硅发射极;
形成在所述发射极上的基极; 和形成在所述基极上的单晶硅集电极; 其中, 所述晶体管具有集电极更靠近晶体管表面的倒置结构。
2. 根据权利要求 1所述的晶体管, 其特征在于, 所述单晶外延金属硅 化物是位于 Si衬底上的超薄外延 NiSi2膜。
3. 根据权利要求 1 所述的晶体管, 其特征在于, 所述超薄单晶外延金 属硅化物层厚度小于或者等于 10纳米,所述基极具有小于或者等于 10纳米 的宽度。
4. 根据权利要求 1所述的晶体管, 其特征在于, 所述发射极是碳掺杂 的。
5. 根据权利要求 1所述的晶体管, 其特征在于, 所述发射极和所述集 电极的厚度均小于或者等于 10纳米。
6. 根据权利要求 1 所述的晶体管, 其特征在于, 所述发射极、 所述基 极和所述集电极中至少一个通过至少一个 ALE工艺形成。
7. 根据权利要求 1 所述的晶体管, 其特征在于, 所述基极包含锗化硅 SiGe。
8. 根据权利要求 1 所述的晶体管, 进一步在所述发射极、 所述基极和 所述集电极上分别包含金属硅化物接触区;所述金属硅化物接触区具有非常 低的 45微欧姆 ·厘米的电阻率。
9. 根据权利要求 1 所述的晶体管, 其特征在于, 所述集电极在载流子 输运方向进行应变处理。
10. 根据权利要求 1所述的晶体管, 其特征在于, 所述集电极为轻掺杂 的硅且在上表面有金属硅化物层。
11. 根据权利要求 1所述的晶体管, 其特征在于, 所述基极进行应变处 理。
12. 根据权利要求 11 所述的晶体管, 其特征在于, 所述基极进一步在 一个额外的方向进行应变处理。
13. 一种晶体管的制造方法, 其特征在于, 包含以下步驟:
在半导体衬底上外延生长单晶金属硅化物层;
在所述金属硅化物层上外延生长单晶硅发射极;
在所述发射极上外延生长基极; 在所述基极上外延生长单晶硅集电极。
14. 根据权利要求 13所述晶体管的制造方法, 其特征在于, 所述金属 硅化物层是采用固态反应 SSR工艺生长在 Si上的 NiSi2膜。
15. 根据权利要求 14所述晶体管的制造方法, 其特征在于, 所述 SSR 处理包含以下子步驟: 溅射沉积厚度小于或者等于 2纳米的 Ni膜; 热处理。
16. 根据权利要求 13 所述晶体管的制造方法, 其特征在于, 所述发射 极通过 ALE工艺生长。
17. 根据权利要求 16所述晶体管的制造方法, 其特征在于, 所述发射 极在 ALE工艺过程中进行原位碳掺杂。
18. 根据权利要求 16所述晶体管的制造方法, 其特征在于, 在 ALE工 艺过程中, 采用从激光源发出的光子帮助释放衬底表面的氢原子。
19. 根据权利要求 16 所述晶体管的制造方法, 其特征在于, 进一步包 含以下步驟: 对 Si发射极层进行应变处理。
20. 根据权利要求 16 所述晶体管的制造方法, 其特征在于, 进一步包 含以下步驟: 对 SiGe基极层在多个方向进行应变处理。
21. 根据权利要求 16 所述晶体管的制造方法, 其特征在于, 进一步包 含以下步驟: 对集电极层从所述晶体管的顶部表面施加机械应力。
PCT/CN2012/086610 2012-12-14 2012-12-14 一种晶体管及其制造方法 WO2014089813A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/704,613 US9570595B2 (en) 2012-12-14 2012-12-14 Transistor and method of making
PCT/CN2012/086610 WO2014089813A1 (zh) 2012-12-14 2012-12-14 一种晶体管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086610 WO2014089813A1 (zh) 2012-12-14 2012-12-14 一种晶体管及其制造方法

Publications (1)

Publication Number Publication Date
WO2014089813A1 true WO2014089813A1 (zh) 2014-06-19

Family

ID=50933723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086610 WO2014089813A1 (zh) 2012-12-14 2012-12-14 一种晶体管及其制造方法

Country Status (2)

Country Link
US (1) US9570595B2 (zh)
WO (1) WO2014089813A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106486329A (zh) * 2015-08-25 2017-03-08 清华大学 太赫兹反射速调管及微米太赫兹反射速调管阵列

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10109724B2 (en) 2017-02-22 2018-10-23 Qualcomm Incorporated Heterojunction bipolar transistor unit cell and power stage for a power amplifier
US10600894B2 (en) * 2018-07-03 2020-03-24 Qualcomm Incorporated Bipolar junction transistor and method of fabricating the same
US11018188B2 (en) * 2019-06-03 2021-05-25 International Business Machines Corporation Three-dimensional stackable multi-layer cross-point memory with bipolar junction transistor selectors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0082325A2 (en) * 1981-11-27 1983-06-29 Hitachi, Ltd. Semiconductor device comprising a metallic conductor
US4492971A (en) * 1980-06-05 1985-01-08 At&T Bell Laboratories Metal silicide-silicon heterostructures
US20010048117A1 (en) * 2000-05-25 2001-12-06 Tetsuya Uemura Differential negative resistance element and process for fabricating the same
US20040094809A1 (en) * 2002-11-20 2004-05-20 Agere Systems, Inc. Process for semiconductor device fabrication in which an insulating layer is formed over a semiconductor substrate
CN1763968A (zh) * 2004-09-01 2006-04-26 国际商业机器公司 双极型器件以及增加其中电荷载流子迁移率的方法
CN1875461A (zh) * 2003-10-10 2006-12-06 应用材料股份有限公司 选择性沉积重掺杂外延硅锗的方法
CN101162730A (zh) * 2007-11-13 2008-04-16 清华大学 多晶收集区倒置结构SiGe异质结晶体管
CN102246284A (zh) * 2008-10-21 2011-11-16 日本电气株式会社 双极晶体管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717681A (en) * 1986-05-19 1988-01-05 Texas Instruments Incorporated Method of making a heterojunction bipolar transistor with SIPOS
JP2921889B2 (ja) * 1989-11-27 1999-07-19 株式会社東芝 半導体装置の製造方法
US6316795B1 (en) * 2000-04-03 2001-11-13 Hrl Laboratories, Llc Silicon-carbon emitter for silicon-germanium heterojunction bipolar transistors
US20080050883A1 (en) * 2006-08-25 2008-02-28 Atmel Corporation Hetrojunction bipolar transistor (hbt) with periodic multilayer base
US7666749B2 (en) * 2006-11-30 2010-02-23 Electronics And Telecommunications Research Institute SiGe semiconductor device and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492971A (en) * 1980-06-05 1985-01-08 At&T Bell Laboratories Metal silicide-silicon heterostructures
EP0082325A2 (en) * 1981-11-27 1983-06-29 Hitachi, Ltd. Semiconductor device comprising a metallic conductor
US20010048117A1 (en) * 2000-05-25 2001-12-06 Tetsuya Uemura Differential negative resistance element and process for fabricating the same
US20040094809A1 (en) * 2002-11-20 2004-05-20 Agere Systems, Inc. Process for semiconductor device fabrication in which an insulating layer is formed over a semiconductor substrate
CN1875461A (zh) * 2003-10-10 2006-12-06 应用材料股份有限公司 选择性沉积重掺杂外延硅锗的方法
CN1763968A (zh) * 2004-09-01 2006-04-26 国际商业机器公司 双极型器件以及增加其中电荷载流子迁移率的方法
CN101162730A (zh) * 2007-11-13 2008-04-16 清华大学 多晶收集区倒置结构SiGe异质结晶体管
CN102246284A (zh) * 2008-10-21 2011-11-16 日本电气株式会社 双极晶体管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106486329A (zh) * 2015-08-25 2017-03-08 清华大学 太赫兹反射速调管及微米太赫兹反射速调管阵列

Also Published As

Publication number Publication date
US9570595B2 (en) 2017-02-14
US20160190293A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
Zhou et al. A review of the most recent progresses of state-of-art gallium oxide power devices
CN104393039B (zh) InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法
WO2008024587A2 (en) A heterojunction bipolar transistor (hbt) with periodic multi layer base
CN102709320B (zh) 纵向导通的GaN基MISFET 器件及其制作方法
JP6882503B2 (ja) 高ブレークダウン電圧の窒化ガリウム系高電子移動度トランジスタおよびその形成方法
CN102184956A (zh) 纵向导通的GaN增强型MISFET器件及其制作方法
CN110571275A (zh) 氧化镓mosfet的制备方法
WO2014089813A1 (zh) 一种晶体管及其制造方法
CN113471284A (zh) N极性GaN晶体管结构的制备方法和半导体结构
CN111384171B (zh) 高沟道迁移率垂直型umosfet器件及其制备方法
US10388751B2 (en) Semiconductor device and method for forming n-type conductive channel in diamond using heterojunction
CN106783997B (zh) 一种高迁移率晶体管及其制备方法
KR101172857B1 (ko) 인헨스먼트 노멀리 오프 질화물 반도체 소자 및 그 제조방법
TWI230420B (en) Transistor, wafer, method for producing transistor, method for producing wafer, and method for forming semiconductor layer
JPH11312686A (ja) 半導体装置とその製造方法
CN113394096B (zh) Hemt器件及其自隔离方法、制作方法
CN213212169U (zh) 一种半导体器件的外延结构及半导体器件
CN103474457B (zh) 异质结双极型晶体管及其制作方法
CN109904227B (zh) 低功函数导电栅极的金刚石基场效应晶体管及其制备方法
CN114334651A (zh) 一种基于超薄氮化镓自支撑衬底的hemt制备方法
CN103000674B (zh) 一种晶体管及其制造方法
TWI728151B (zh) 半導體層疊膜的製造方法及半導體層疊膜
CN106783613B (zh) 一种iii-v族半导体moshemt器件及其制备方法
KR100839752B1 (ko) 자기정렬 에피성장층을 채널로 이용하는 반도체 소자구조의 제조방법
Giannazzo et al. Hot electron transistors with graphene base for THz electronics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13704613

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889835

Country of ref document: EP

Kind code of ref document: A1