WO2014087762A1 - Vertical-movement device and small-form-factor manufacturing device - Google Patents

Vertical-movement device and small-form-factor manufacturing device Download PDF

Info

Publication number
WO2014087762A1
WO2014087762A1 PCT/JP2013/079254 JP2013079254W WO2014087762A1 WO 2014087762 A1 WO2014087762 A1 WO 2014087762A1 JP 2013079254 W JP2013079254 W JP 2013079254W WO 2014087762 A1 WO2014087762 A1 WO 2014087762A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
lifting device
substrate
processing substrate
positioning center
Prior art date
Application number
PCT/JP2013/079254
Other languages
French (fr)
Japanese (ja)
Inventor
義久 扇子
史朗 原
ソマワン クンプアン
翔 武内
土井 幹夫
成雄 荒崎
幸弘 杉山
晃一 服部
Original Assignee
リソテックジャパン株式会社
独立行政法人産業技術総合研究所
株式会社パルサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リソテックジャパン株式会社, 独立行政法人産業技術総合研究所, 株式会社パルサ filed Critical リソテックジャパン株式会社
Priority to JP2014550989A priority Critical patent/JP6180433B2/en
Publication of WO2014087762A1 publication Critical patent/WO2014087762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present invention particularly relates to an elevating device and a small-sized manufacturing apparatus suitable for application when delivering a small-diameter semiconductor wafer having a diameter of 20 mm or less.
  • various processes such as resist coating, exposure, development, and etching are performed on a semiconductor wafer having a large diameter (for example, 8 inches, 12 inches, etc.).
  • the semiconductor wafer is delivered by the transfer robot.
  • the semiconductor wafer held by the pair of left and right arms of the transfer robot is received by being pushed up from below by the lifting device.
  • an elevating device conventionally, three or more (for example, three) elevating rod-like pin members are arranged on the circumference at equal angular intervals (for example, 120 ° intervals).
  • the lifting device is configured such that the upper surface of the pin member contacts the lower surface of the semiconductor wafer to horizontally support the semiconductor wafer.
  • the semiconductor manufacturing plant requires a large amount of construction investment and operation costs, so that it is difficult for SMEs to enter.
  • the semiconductor wafer has a small diameter (for example, a diameter of 20 mm or less), it is smaller and lighter than a large-diameter semiconductor wafer used in conventional semiconductor manufacturing technology. Therefore, when the conventional lifting device as described above is applied as it is, when the semiconductor wafer is received by the lifting device from the transfer robot, the semiconductor wafer is flipped by the lifting device due to the impact force acting on the semiconductor wafer from the lifting device, There has been a problem that misalignment may occur, leading to a mistake in receiving a semiconductor wafer.
  • An object of the present invention is to provide an elevating apparatus and a small manufacturing apparatus that can reduce receiving errors even with a small-diameter semiconductor wafer by devising the shape of the pin member.
  • the lifting device of the present invention is a lifting device that supports a processing substrate so as to be lifted up and down while being positioned at a predetermined position, and has a circumference around a predetermined positioning center.
  • a guide portion that is integrally formed with the support portion and guides the processing substrate so that the center of the processing substrate approaches the positioning center by contacting the side surface of the processing substrate.
  • each of the pin members has a substantially plate shape, and the pin members are arranged radially so that the lateral end face of the plate portion faces the positioning center.
  • the plate-like portion has a portion in which the substrate support portion is formed in a thin plate shape and is thicker than the substrate support portion.
  • the guide portion is formed in a tapered shape so as to protrude upward from the substrate support portion and to face the positioning center side.
  • the processing substrate preferably has a diameter of 20 mm or less.
  • a small-sized manufacturing apparatus includes the lifting device according to the present invention.
  • the processing substrate when the processing substrate is received from the transfer robot by the lifting device, the processing substrate is restrained from being flipped by the lifting device, and the processing substrate is fixed on the lifting device by the guide portions of the plurality of pin members. It can be easily positioned by guiding the position. Therefore, even if the processing substrate is a small-diameter semiconductor wafer, it is possible to reduce the receiving error.
  • each pin member by arranging each pin member radially so that the side surface of the plate-shaped portion faces the positioning center, even when the substrate support portion is formed in a plate shape, the processing substrate can be stabilized. Can be supported.
  • the in-plane heat distribution of the processed substrate can be made uniform, and contamination can be prevented from adhering.
  • a portion formed thicker than the substrate support portion it is possible to prevent a processing substrate from being poorly conveyed due to deformation due to baking heat.
  • the positioning operation of the semiconductor wafer can be performed smoothly.
  • the present invention it is possible to reduce receiving errors even when the diameter of the processing substrate is 20 mm or less.
  • Embodiment 1 is a conceptual perspective view showing an overall configuration of a small semiconductor manufacturing apparatus according to Embodiment 1 of the present invention. It is a notional top view which shows the structure of the resist coating apparatus which concerns on Embodiment 1 of this invention. It is a longitudinal cross-sectional view which shows the state which the pin member raised most of the raising / lowering apparatus which concerns on Embodiment 1 of this invention. It is a longitudinal cross-sectional view which shows the state which the pin member fell most of the raising / lowering apparatus which concerns on Embodiment 1 of this invention.
  • Embodiments of the present invention will be described below.
  • Embodiment 1 of the Invention 1 to 4 show a first embodiment of the present invention.
  • a small semiconductor manufacturing apparatus (corresponding to a “small manufacturing apparatus” of the present invention) 100 accommodates a resist coating apparatus 110 as a processing chamber and an apparatus front chamber 120 as shown in FIG. To do.
  • the resist coating apparatus 110 and the apparatus front chamber 120 are configured to be separable.
  • the resist coating apparatus 110 receives a semiconductor wafer (corresponding to the “processing substrate” of the present invention) from the apparatus front chamber 120 via a wafer transfer port (not shown). Then, a known resist film forming process is performed on the semiconductor wafer. A detailed description of the resist coating apparatus 110 will be omitted.
  • a semiconductor wafer having a small diameter of 20 mm or less for example, 12.5 ⁇ 0.2 mm is used.
  • the apparatus front chamber 120 is a room for taking out a semiconductor wafer accommodated in a wafer transfer container (not shown) and transferring it to the resist coating apparatus 110.
  • the top plate 120 a of the apparatus front chamber 120 has a container mounting table 121 for mounting a wafer transfer container, a pressing lever 122 for pressing and fixing the mounted wafer transfer container from above, and a small semiconductor manufacturing apparatus 100.
  • An operation panel 124 having operation buttons and the like for performing operations is provided.
  • the front chamber 120 of the apparatus includes a transfer robot (not shown) for loading a semiconductor wafer taken out from the wafer transfer container into the resist coating apparatus 110.
  • a transfer unit 210, a HMDS (hexamethyldisilazane) processing unit 220, and a coater cup are provided in one resist coating apparatus 110 (for example, 30 cm long and 30 cm wide).
  • the unit 230, the resist nozzle 240, the EBR (Edge Bead Removal) nozzle 250, the bake processing unit 260, and the like are accommodated.
  • the transfer unit 210 receives a semiconductor wafer from the transfer robot (not shown), and sequentially transfers the semiconductor wafer to the HMDS processing unit 220, the coater unit 230, and the bake processing unit 260.
  • the main body 211 of the transport unit 210 includes a pair of openable and closable hands 212a and 212b.
  • Arc-shaped wafer mounting portions 213a and 213b are formed at the tip portions of the hand portions 212a and 212b so as to face each other.
  • the semiconductor wafer is placed so that the outer edge portion comes into contact with these wafer placement portions 212a and 212b.
  • the transport unit 210 can rotate the main body portion 211 and extend and contract the hand portions 212a and 212b by a mechanism (not shown).
  • the HMDS processing unit 220 is a mechanism for performing HMDS processing (that is, processing for replacing the OH groups on the surface of the semiconductor wafer with HMDS in order to improve the adhesion between the photoresist and the semiconductor wafer).
  • the HMDS processing unit 220 includes a hot plate 221 and a lifting device 223.
  • the elevating device 223 supports the semiconductor wafer 300 transported to the HMDS processing unit 220 so as to be movable up and down.
  • the lifting device 223 places the semiconductor wafer 300 on the hot plate 221 in a positioned state.
  • the elevating device 223 has four elevating and lowering pin members 222 (222a to 222d in FIG. 2) arranged at equal angular intervals (90 ° intervals) on a circumference centered on a predetermined positioning center CT1. )have.
  • each pin member 222 As shown in FIGS. 3 and 4, the lower portion 226 has a columnar shape, and the upper portion 227 has a substantially plate shape.
  • Each pin member 222 is formed integrally with the substrate support portion 224 that contacts the outer peripheral portion of the lower surface 301 of the semiconductor wafer 300 and supports the semiconductor wafer 300 substantially horizontally.
  • a guide portion 225 that guides the semiconductor wafer 300 so that the center of the semiconductor wafer 300 approaches the positioning center CT1.
  • the plate-like upper portions 227 are arranged radially so that the side surfaces thereof face the positioning center CT1.
  • the substrate support portion 224 is formed in a thin plate shape (for example, a plate shape having a thickness of 0.1 to 1 mm), and the guide portion 225 is thicker than the substrate support portion 224 (for example, a thickness of 0.1 mm). 5 to 2 mm plate-shaped). Further, as shown in FIGS. 3 and 4, the guide portion 225 protrudes upward from the substrate support portion 224 and is formed in a tapered shape so as to face the positioning center CT1 side. A chamfered portion 228 for positioning the rotational position of the pin member 222 is formed in a flat shape on the lowermost side surface of the lower portion 226.
  • the coater cup unit 230 is a mechanism for performing formation of a resist film on the semiconductor wafer 300, EBR processing, back surface cleaning processing, and the like.
  • the coater cup unit 230 includes a turntable 231 for holding and rotating the semiconductor wafer 300.
  • the resist nozzle 240 is a nozzle for supplying a photoresist solution to the rotating semiconductor wafer 300 in the resist film forming process.
  • the resist nozzle 240 rotates and moves the nozzle port 241 above the center of the semiconductor wafer 300 placed on the turntable 231, and drops the photoresist solution onto the semiconductor wafer 300. .
  • the EBR nozzle 250 is a nozzle for supplying a resist solution to the peripheral portion of the semiconductor wafer 300 in an EBR step (that is, a step of removing the resist film formed on the peripheral portion of the semiconductor wafer 300).
  • the EBR nozzle 250 rotates and moves the nozzle port 251 above the peripheral edge of the semiconductor wafer 300 placed on the turntable 231 to drop the resist solution.
  • the baking processing unit 260 is a mechanism for heating the semiconductor wafer 300 in order to solidify the photoresist film.
  • the bake processing unit 260 includes a hot plate 261 and an elevating device 263.
  • the lifting device 263 has the same configuration as the lifting device 223 described above. That is, the elevating device 263 includes four elevating and lowering pin members 262a to 262d arranged at equal angular intervals (90 ° intervals) in order to place the semiconductor wafer 300 at a predetermined position on the hot plate 261. (See FIG. 2).
  • the transfer unit 210 receives the semiconductor wafer 300 from the transfer robot (not shown), loads it into the resist coating apparatus 110, supplies it to the HMDS processing unit 220, and moves it up and down by the lifting device 223.
  • the semiconductor wafer 300 is placed on the plate 221.
  • the main body part 211 of the transfer unit 210 is rotated to a position facing the hot plate 221, The hand portions 212 a and 212 b are advanced to the hot plate 221.
  • the pin members 222a to 222d are lifted and the semiconductor wafer 300 is lifted from below by the lifting device 223 to be separated from the hand portions 212a and 212b (see FIG. 3A). Subsequently, the hand portions 212a and 212b are opened and then retracted. Thereafter, the mounting pins 222a to 222d are moved down to the position where they are accommodated in the hot plate 221, thereby placing the semiconductor wafer 300 on the hot plate 221 (see FIG. 3B).
  • each pin member 222 (222a to 222d in FIG. 2) is in contact with the outer peripheral portion of the lower surface 301 of the semiconductor wafer 300 to support the semiconductor wafer 300 substantially horizontally, and this substrate support.
  • a guide portion 225 is formed integrally with the portion 224 and guides the semiconductor wafer 300 so that the center approaches the positioning center CT1 by contacting the side surface 302 of the semiconductor wafer 300. For this reason, even when the semiconductor wafer 300 has a small diameter of 20 mm or less, when the semiconductor wafer 300 is received by the lifting device 223 from the transfer robot, the semiconductor wafer 300 is affected by the impact force acting on the semiconductor wafer 300 from the lifting device 223.
  • the semiconductor wafer 300 is prevented from being flipped by the lifting device 223, and the semiconductor wafer 300 is brought to a predetermined position on the lifting device 223 by the guide portions 225 of the plurality of pin members 222. It can be easily positioned by guiding.
  • the guide portion 225 protrudes upward from the substrate support portion 224 and is tapered toward the positioning center CT1, the positioning operation of the semiconductor wafer 300 can be performed smoothly. Therefore, even if the semiconductor wafer 300 has a small diameter, it is possible to reduce the receiving error.
  • the semiconductor wafer 300 When the semiconductor wafer 300 is received by the lifting device 223 from the transfer robot, if the semiconductor wafer 300 is not displaced, that is, if the center of the conductor wafer 300 substantially coincides with the positioning center CT1, the semiconductor wafer 300 is positioned at a predetermined position without being guided by the guide portion 225.
  • the process proceeds to the second step, where the HMDS processing unit 220 performs HMDS processing on the semiconductor wafer 300.
  • the process proceeds to the third step, where the transfer unit 210 transfers the semiconductor wafer 300 from the HMDS processing unit 220 to the coater cup unit 230.
  • the process proceeds to the fourth step, and in the coater cup unit 230, the semiconductor wafer 300 is subjected to resist film formation, EBR processing, back surface cleaning processing, and the like.
  • the process proceeds to the fifth step, and the semiconductor wafer 300 is transferred from the coater cup unit 230 to the bake processing unit 260 by the transfer unit 210 in the same manner as the first step described above. Then, the semiconductor wafer 300 is placed on the hot plate 261 by the lifting device 263.
  • the process proceeds to the sixth step, and the baking processing unit 260 heats the semiconductor wafer 300 on the hot plate 261 to solidify the photoresist film.
  • the process proceeds to the seventh step, where the transfer unit 210 delivers the semiconductor wafer 300 to the transfer robot (not shown) and carries it out to the apparatus front chamber 120.
  • the resist coating operation can be performed with a high yield while reducing the receiving mistake of the semiconductor wafer 300.
  • each pin member 222 (222a to 222d in FIG. 2) of the lifting device 223 has a small contact area with the semiconductor wafer 300 because the substrate support 224 is formed in a thin plate shape, and the substrate.
  • the support portion 224 contacts the outer peripheral portion of the lower surface 301 of the semiconductor wafer 300, the in-plane heat distribution of the semiconductor wafer 300 can be made uniform, and contamination can be prevented from adhering.
  • the guide part 225 has a portion formed in a plate shape thicker than the substrate support part 224, the bending rigidity of the guide part 225 is improved and the conveyance failure of the semiconductor wafer 300 due to deformation due to the heat of baking is reduced. Can be prevented.
  • the pin member 222 can ensure the bending rigidity of the entire pin member 222 with this guide portion 225. Therefore, it is possible to reduce the contact area with the semiconductor wafer 300 by making the substrate support portion 224 thinner. The same applies to the pin members 262a to 262d of the lifting device 263.
  • the semiconductor wafer 300 can be stably supported.
  • the semiconductor manufacturing apparatus using the semiconductor wafer 300 has been described as an example.
  • the present invention is applicable to other types of substrates (for example, an insulating substrate such as a sapphire substrate, an aluminum substrate, etc.
  • the present invention can also be applied to a manufacturing apparatus for manufacturing a device from a non-disk-shaped (for example, rectangular) processing substrate.
  • the guide portion 225 is formed in a tapered shape.
  • the guide portion 225 is not necessarily formed in a tapered shape.
  • the present invention is applied to the semiconductor wafer 300 having a small diameter.
  • the present invention is similarly applied to a semiconductor wafer having a large diameter such as 8 inches or 12 inches. be able to.
  • Embodiment 1 described above the case where the present invention is applied to the resist coating apparatus 110 has been described as an example, but the present invention can also be applied to other manufacturing apparatuses such as a developing apparatus. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

[Problem] To reduce missed handoff receptions in a vertical-movement device used when transferring small-diameter semiconductor wafers. [Solution] This vertical-movement device has three or more vertically movable pin members laid out in a circle centered on a prescribed positioning center point. Each of said pin members has the following: a substrate-supporting part that makes contact with the bottom surface of a semiconductor wafer and supports said semiconductor wafer in a substantially horizontal orientation; and a guide part that is formed integrally with the substrate-supporting part, makes contact with a side surface of the semiconductor wafer, and guides the semiconductor wafer such that the center thereof approaches the abovementioned positioning center point.

Description

昇降装置および小型製造装置Lifting device and small manufacturing device
 本発明は、特に、直径が20mm以下の小口径の半導体ウェハを受け渡す際に適用するのに好適な昇降装置および小型製造装置に関するものである。 The present invention particularly relates to an elevating device and a small-sized manufacturing apparatus suitable for application when delivering a small-diameter semiconductor wafer having a diameter of 20 mm or less.
 半導体製造技術においては、大口径(例えば、直径8インチ、12インチ等)の半導体ウェハに対して、レジストの塗布、露光、現像、エッチング加工など各種の処理が行われる。そして、ある処理が終わって次の処理に移行する際には、搬送ロボットで半導体ウェハを受け渡す。このとき、搬送ロボットの左右一対のアームが保持している半導体ウェハを昇降装置で下から押し上げる形で受け取る場合がある。 In the semiconductor manufacturing technology, various processes such as resist coating, exposure, development, and etching are performed on a semiconductor wafer having a large diameter (for example, 8 inches, 12 inches, etc.). When a certain process is finished and the process proceeds to the next process, the semiconductor wafer is delivered by the transfer robot. At this time, there is a case where the semiconductor wafer held by the pair of left and right arms of the transfer robot is received by being pushed up from below by the lifting device.
 このような昇降装置としては、従来、3つ以上(例えば、3つ)の昇降自在の棒状のピン部材が円周上に等角度間隔(例えば、120°間隔)で配置されたものが多用されている(例えば、特許文献1参照)。この昇降装置は、ピン部材の上面が半導体ウェハの下面に接触して半導体ウェハを水平に支持するように構成されている。 As such an elevating device, conventionally, three or more (for example, three) elevating rod-like pin members are arranged on the circumference at equal angular intervals (for example, 120 ° intervals). (For example, refer to Patent Document 1). The lifting device is configured such that the upper surface of the pin member contacts the lower surface of the semiconductor wafer to horizontally support the semiconductor wafer.
特開2011-71294号公報JP 2011-71294 A
 近年、半導体デバイスの多品種少量生産に対する要望が高まっている。また、研究開発等において半導体デバイスを試作する場合には、半導体デバイスを1個或いは数個単位で製造することが望まれる。 In recent years, there has been a growing demand for high-mix low-volume production of semiconductor devices. In addition, when a semiconductor device is prototyped in research and development, it is desired to manufacture one or several semiconductor devices.
 さらに、大規模な工場で同一品種の製品を大量に製造する場合、市場の需要変動に合わせて生産量を調整することが非常に困難となる。少量の生産では、工場の運営コストに見合う利益を確保できないからである。 Furthermore, when manufacturing a large quantity of products of the same product type in a large-scale factory, it becomes very difficult to adjust the production volume according to fluctuations in market demand. This is because a small amount of production cannot secure a profit commensurate with the operating cost of the factory.
 加えて、半導体製造工場は、高額の建設投資や運営費用が必要であるため、中小企業が参入し難いという欠点もある。 In addition, the semiconductor manufacturing plant requires a large amount of construction investment and operation costs, so that it is difficult for SMEs to enter.
 以上のような理由から、小規模な製造工場等で、小口径の半導体ウェハや小型の製造装置を用いて、半導体デバイスの多品種少量生産を安価に行うための技術が望まれる。 For the above reasons, a technique for inexpensively producing a large variety of semiconductor devices in small quantities using a small-diameter semiconductor wafer or a small manufacturing apparatus is desired in a small manufacturing factory or the like.
 しかしながら、半導体ウェハが小口径(例えば、直径20mm以下)である場合、従来の半導体製造技術で用いられる大口径の半導体ウェハに比べて小型で軽量である。そのため、上述したような従来の昇降装置をそのまま適用すると、搬送ロボットから半導体ウェハを昇降装置で受け取る際に、昇降装置から半導体ウェハに作用する衝撃力により、半導体ウェハが昇降装置によって弾かれたり、位置ずれを起こしたりして、半導体ウェハの受取ミスにつながる恐れがあるという課題があった。 However, when the semiconductor wafer has a small diameter (for example, a diameter of 20 mm or less), it is smaller and lighter than a large-diameter semiconductor wafer used in conventional semiconductor manufacturing technology. Therefore, when the conventional lifting device as described above is applied as it is, when the semiconductor wafer is received by the lifting device from the transfer robot, the semiconductor wafer is flipped by the lifting device due to the impact force acting on the semiconductor wafer from the lifting device, There has been a problem that misalignment may occur, leading to a mistake in receiving a semiconductor wafer.
 本発明は、ピン部材の形状に工夫を凝らすことにより、小口径の半導体ウェハであっても受取ミスを低減することが可能な昇降装置および小型製造装置を提供することを目的とする。 An object of the present invention is to provide an elevating apparatus and a small manufacturing apparatus that can reduce receiving errors even with a small-diameter semiconductor wafer by devising the shape of the pin member.
 かかる目的を達成するために、本発明の昇降装置は、処理基板を、所定の位置に位置決めされた状態で、昇降自在に支持する昇降装置であって、所定の位置決め中心を中心とする円周上に配置された3つ以上の昇降自在のピン部材を有し、前記各ピン部材はそれぞれ、前記処理基板の下面に接触して当該処理基板をほぼ水平に支持する基板支持部と、この基板支持部と一体に形成され、前記処理基板の側面に接触して当該処理基板をその中心が前記位置決め中心に近付くように案内するガイド部とを有することを特徴とする。 In order to achieve such an object, the lifting device of the present invention is a lifting device that supports a processing substrate so as to be lifted up and down while being positioned at a predetermined position, and has a circumference around a predetermined positioning center. There are three or more vertically movable pin members disposed on the substrate, and each of the pin members is in contact with the lower surface of the processing substrate to support the processing substrate substantially horizontally, and the substrate. And a guide portion that is integrally formed with the support portion and guides the processing substrate so that the center of the processing substrate approaches the positioning center by contacting the side surface of the processing substrate.
 本発明において、前記各ピン部材はそれぞれ少なくとも上部がほぼ板状を呈しており、前記板状の部分の横側端面が前記位置決め中心に対向するように、放射状に配置されていることが望ましい。 In the present invention, it is desirable that at least the upper part of each of the pin members has a substantially plate shape, and the pin members are arranged radially so that the lateral end face of the plate portion faces the positioning center.
 本発明において、該板状の部分は、前記基板支持部が薄板状に形成されているとともに、該基板支持部より厚く形成された部分を有していることが望ましい。 In the present invention, it is desirable that the plate-like portion has a portion in which the substrate support portion is formed in a thin plate shape and is thicker than the substrate support portion.
 本発明において、前記ガイド部は、前記基板支持部より上方へ突出し、前記位置決め中心側を向く形でテーパ状に形成されていることが望ましい。 In the present invention, it is desirable that the guide portion is formed in a tapered shape so as to protrude upward from the substrate support portion and to face the positioning center side.
 本発明において、前記処理基板は、直径が20mm以下であることが望ましい。 In the present invention, the processing substrate preferably has a diameter of 20 mm or less.
 本発明の小型製造装置は、上記本発明の昇降装置を備えていることを特徴とする。 A small-sized manufacturing apparatus according to the present invention includes the lifting device according to the present invention.
 本発明によれば、搬送ロボットから処理基板を昇降装置で受け取る際に、処理基板が昇降装置によって弾かれる事態を抑制するとともに、複数のピン部材のガイド部で処理基板を昇降装置上の所定の位置に案内して容易に位置決めすることができる。したがって、処理基板が小口径の半導体ウェハであっても、その受取ミスを低減することが可能となる。 According to the present invention, when the processing substrate is received from the transfer robot by the lifting device, the processing substrate is restrained from being flipped by the lifting device, and the processing substrate is fixed on the lifting device by the guide portions of the plurality of pin members. It can be easily positioned by guiding the position. Therefore, even if the processing substrate is a small-diameter semiconductor wafer, it is possible to reduce the receiving error.
 本発明において、各ピン部材を、前記板状の部分の側面が前記位置決め中心に対向するように放射状に配置することにより、基板支持部を板状に形成した場合でも、処理基板を安定して支持することができる。 In the present invention, by arranging each pin member radially so that the side surface of the plate-shaped portion faces the positioning center, even when the substrate support portion is formed in a plate shape, the processing substrate can be stabilized. Can be supported.
 本発明において、基板支持部を薄板状に形成することにより、処理基板の面内熱分布を均一にすることができるとともに、コンタミネーションの付着を防ぐことができる。また、基板支持部より厚く形成された部分を設けることにより、ベークの熱による変形に伴う処理基板の搬送不良を防止することができる。 In the present invention, by forming the substrate support portion in a thin plate shape, the in-plane heat distribution of the processed substrate can be made uniform, and contamination can be prevented from adhering. In addition, by providing a portion formed thicker than the substrate support portion, it is possible to prevent a processing substrate from being poorly conveyed due to deformation due to baking heat.
 本発明において、ガイド部をテーパ状にすることにより、半導体ウェハの位置決め動作を円滑に行うことができる。 In the present invention, by positioning the guide portion in a tapered shape, the positioning operation of the semiconductor wafer can be performed smoothly.
 本発明によれば、処理基板の径が20mm以下の場合であっても、受取ミスを低減することが可能となる。 According to the present invention, it is possible to reduce receiving errors even when the diameter of the processing substrate is 20 mm or less.
本発明の実施の形態1に係る小型半導体製造装置の全体構成を示す概念的斜視図である。1 is a conceptual perspective view showing an overall configuration of a small semiconductor manufacturing apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係るレジスト塗布装置の構成を示す概念的平面図である。It is a notional top view which shows the structure of the resist coating apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る昇降装置の、ピン部材が最も上昇した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which the pin member raised most of the raising / lowering apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る昇降装置の、ピン部材が最も下降した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which the pin member fell most of the raising / lowering apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る昇降装置のピン部材を示す図であって、(a)はその正面図、(b)はその左側面図、(c)はその右側面図、(d)はその拡大平面図である。It is a figure which shows the pin member of the raising / lowering apparatus which concerns on Embodiment 1 of this invention, Comprising: (a) is the front view, (b) is the left view, (c) is the right view, (d) Is an enlarged plan view thereof.
 以下、本発明の実施の形態について説明する。
[発明の実施の形態1]
 図1乃至図4には、本発明の実施の形態1を示す。
Embodiments of the present invention will be described below.
Embodiment 1 of the Invention
1 to 4 show a first embodiment of the present invention.
 実施の形態1に係る小型半導体製造装置(本発明の「小型製造装置」に相当する)100は、図1に示すように、処理室としてのレジスト塗布装置110と、装置前室120とを収容する。レジスト塗布装置110と装置前室120とは、分離可能に構成されている。 A small semiconductor manufacturing apparatus (corresponding to a “small manufacturing apparatus” of the present invention) 100 according to the first embodiment accommodates a resist coating apparatus 110 as a processing chamber and an apparatus front chamber 120 as shown in FIG. To do. The resist coating apparatus 110 and the apparatus front chamber 120 are configured to be separable.
 レジスト塗布装置110は、図示しないウェハ搬送口を介して装置前室120から半導体ウェハ(本発明の「処理基板」に相当する)を受け取る。そして、この半導体ウェハに対して、公知のレジスト膜形成処理を行う。レジスト塗布装置110についての詳細な説明は、省略する。この実施の形態1では、半導体ウェハとして、直径が20mm以下(例えば12.5±0.2mm)の小径のものを使用する。 The resist coating apparatus 110 receives a semiconductor wafer (corresponding to the “processing substrate” of the present invention) from the apparatus front chamber 120 via a wafer transfer port (not shown). Then, a known resist film forming process is performed on the semiconductor wafer. A detailed description of the resist coating apparatus 110 will be omitted. In the first embodiment, a semiconductor wafer having a small diameter of 20 mm or less (for example, 12.5 ± 0.2 mm) is used.
 一方、装置前室120は、ウェハ搬送容器(図示せず)に収容された半導体ウェハを取り出して、レジスト塗布装置110に搬送するための部屋である。装置前室120の天板120aには、ウェハ搬送容器を載置するための容器載置台121と、載置されたウェハ搬送容器を上方から押圧固定する押さえレバー122と、小型半導体製造装置100の操作を行うための操作釦等を備えた操作パネル124が設けられている。また、装置前室120は、ウェハ搬送容器から下方に取り出した半導体ウェハをレジスト塗布装置110に搬入するための搬送ロボット(図示せず)を備えている。 On the other hand, the apparatus front chamber 120 is a room for taking out a semiconductor wafer accommodated in a wafer transfer container (not shown) and transferring it to the resist coating apparatus 110. The top plate 120 a of the apparatus front chamber 120 has a container mounting table 121 for mounting a wafer transfer container, a pressing lever 122 for pressing and fixing the mounted wafer transfer container from above, and a small semiconductor manufacturing apparatus 100. An operation panel 124 having operation buttons and the like for performing operations is provided. Further, the front chamber 120 of the apparatus includes a transfer robot (not shown) for loading a semiconductor wafer taken out from the wafer transfer container into the resist coating apparatus 110.
 図2に示すように、この実施の形態1では、1台のレジスト塗布装置110(例えば縦30cm、横30cm)の内部に、搬送ユニット210、HMDS(ヘキサメチルジシラザン)処理ユニット220、コーターカップ部230、レジストノズル240、EBR(Edge Bead Removal)ノズル250、ベーク処理ユニット260等が収容されている。 As shown in FIG. 2, in the first embodiment, a transfer unit 210, a HMDS (hexamethyldisilazane) processing unit 220, and a coater cup are provided in one resist coating apparatus 110 (for example, 30 cm long and 30 cm wide). The unit 230, the resist nozzle 240, the EBR (Edge Bead Removal) nozzle 250, the bake processing unit 260, and the like are accommodated.
 搬送ユニット210は、半導体ウェハを上述の搬送ロボット(図示せず)から受け取っ、HMDS処理ユニット220、コーター部230、ベーク処理ユニット260に順次搬送する。搬送ユニット210の本体部211は、一対の開閉自在のハンド部212a,212bを備えている。ハンド部212a,212bの先端部分には、円弧状のウェハ載置部213a,213bが、互いに対向するように形成されている。半導体ウェハは、これらウェハ載置部212a,212bに外縁部が当接するように、載置される。搬送ユニット210は、図示しない機構により、本体部211を回転させることができると共に、ハンド部212a,212bを伸縮させることができる。 The transfer unit 210 receives a semiconductor wafer from the transfer robot (not shown), and sequentially transfers the semiconductor wafer to the HMDS processing unit 220, the coater unit 230, and the bake processing unit 260. The main body 211 of the transport unit 210 includes a pair of openable and closable hands 212a and 212b. Arc-shaped wafer mounting portions 213a and 213b are formed at the tip portions of the hand portions 212a and 212b so as to face each other. The semiconductor wafer is placed so that the outer edge portion comes into contact with these wafer placement portions 212a and 212b. The transport unit 210 can rotate the main body portion 211 and extend and contract the hand portions 212a and 212b by a mechanism (not shown).
 HMDS処理ユニット220は、HMDS処理(すなわち、フォトレジストと半導体ウェハとの密着性を向上させるために、半導体ウェハ表面のOH基をHMDSで置換する処理)を行うための機構である。HMDS処理ユニット220は、ホットプレート221と、昇降装置223とを備えている。 The HMDS processing unit 220 is a mechanism for performing HMDS processing (that is, processing for replacing the OH groups on the surface of the semiconductor wafer with HMDS in order to improve the adhesion between the photoresist and the semiconductor wafer). The HMDS processing unit 220 includes a hot plate 221 and a lifting device 223.
 昇降装置223は、図2および図3に示すように、HMDS処理ユニット220に搬送された半導体ウェハ300を、昇降自在に支持する。この昇降装置223は、半導体ウェハ300を、ホットプレート221上に、位置決めされた状態で載置する。このために、昇降装置223は、所定の位置決め中心CT1を中心とする円周上に等角度間隔(90°間隔)で配置された、4つの昇降自在のピン部材222(図2では222a~222d)を有している。 As shown in FIGS. 2 and 3, the elevating device 223 supports the semiconductor wafer 300 transported to the HMDS processing unit 220 so as to be movable up and down. The lifting device 223 places the semiconductor wafer 300 on the hot plate 221 in a positioned state. For this purpose, the elevating device 223 has four elevating and lowering pin members 222 (222a to 222d in FIG. 2) arranged at equal angular intervals (90 ° intervals) on a circumference centered on a predetermined positioning center CT1. )have.
 各ピン部材222は、それぞれ、図3および図4に示すように、下部226が円柱状を呈しているとともに、上部227がほぼ板状を呈している。各ピン部材222は、半導体ウェハ300の下面301の外周部に接触して半導体ウェハ300をほぼ水平に支持する基板支持部224と、この基板支持部224と一体に形成され、半導体ウェハ300の側面302に接触して半導体ウェハ300をその中心が位置決め中心CT1に近付くように案内するガイド部225とを有している。 In each pin member 222, as shown in FIGS. 3 and 4, the lower portion 226 has a columnar shape, and the upper portion 227 has a substantially plate shape. Each pin member 222 is formed integrally with the substrate support portion 224 that contacts the outer peripheral portion of the lower surface 301 of the semiconductor wafer 300 and supports the semiconductor wafer 300 substantially horizontally. And a guide portion 225 that guides the semiconductor wafer 300 so that the center of the semiconductor wafer 300 approaches the positioning center CT1.
 板状の上部227は、図2および図3に示すように、その側面が位置決め中心CT1に対向するように、放射状に配置されている。 As shown in FIGS. 2 and 3, the plate-like upper portions 227 are arranged radially so that the side surfaces thereof face the positioning center CT1.
 ここで、基板支持部224は薄板状(例えば、厚さ0.1~1mmの板状)に形成されているとともに、ガイド部225は基板支持部224より厚い板状(例えば、厚さ0.5~2mmの板状)に形成された部分を有している。また、ガイド部225は、図3および図4に示すように、基板支持部224より上方へ突出し、位置決め中心CT1側を向く形でテーパ状に形成されている。なお、下部226の最下端側面には、ピン部材222の回転位置を位置決めするための面取り部228が平面状に形成されている。 Here, the substrate support portion 224 is formed in a thin plate shape (for example, a plate shape having a thickness of 0.1 to 1 mm), and the guide portion 225 is thicker than the substrate support portion 224 (for example, a thickness of 0.1 mm). 5 to 2 mm plate-shaped). Further, as shown in FIGS. 3 and 4, the guide portion 225 protrudes upward from the substrate support portion 224 and is formed in a tapered shape so as to face the positioning center CT1 side. A chamfered portion 228 for positioning the rotational position of the pin member 222 is formed in a flat shape on the lowermost side surface of the lower portion 226.
 コーターカップ部230は、半導体ウェハ300に対するレジスト膜の形成や、EBR処理、裏面洗浄処理等を行うための機構である。コーターカップ部230は、半導体ウェハ300を保持して回転させるための回転台231を備えている。 The coater cup unit 230 is a mechanism for performing formation of a resist film on the semiconductor wafer 300, EBR processing, back surface cleaning processing, and the like. The coater cup unit 230 includes a turntable 231 for holding and rotating the semiconductor wafer 300.
 レジストノズル240は、レジスト膜形成工程において、回転する半導体ウェハ300に、フォトレジスト液を供給するためのノズルである。フォトレジストを供給する際、レジストノズル240は、回転台231に載置された半導体ウェハ300の中心部上方までノズル口241を回転移動させて、この半導体ウェハ300上に、フォトレジスト液を滴下する。 The resist nozzle 240 is a nozzle for supplying a photoresist solution to the rotating semiconductor wafer 300 in the resist film forming process. When supplying the photoresist, the resist nozzle 240 rotates and moves the nozzle port 241 above the center of the semiconductor wafer 300 placed on the turntable 231, and drops the photoresist solution onto the semiconductor wafer 300. .
 EBRノズル250は、EBR工程(すなわち、半導体ウェハ300の周縁部に形成されたレジスト膜を除去する工程)において、半導体ウェハ300の周縁部にレジスト溶解液を供給するためのノズルである。EBR工程に際して、EBRノズル250は、回転台231に載置された半導体ウェハ300の周縁部上方までノズル口251を回転移動させて、レジスト溶液を滴下する。 The EBR nozzle 250 is a nozzle for supplying a resist solution to the peripheral portion of the semiconductor wafer 300 in an EBR step (that is, a step of removing the resist film formed on the peripheral portion of the semiconductor wafer 300). In the EBR process, the EBR nozzle 250 rotates and moves the nozzle port 251 above the peripheral edge of the semiconductor wafer 300 placed on the turntable 231 to drop the resist solution.
 ベーク処理ユニット260は、フォトレジスト膜を固化するために半導体ウェハ300を加熱する機構である。ベーク処理ユニット260は、ホットプレート261と、昇降装置263とを備えている。この昇降装置263は、上述した昇降装置223と同様の構成を有している。すなわち、昇降装置263は、半導体ウェハ300を、ホットプレート261上の所定位置に載置するために、等角度間隔(90°間隔)で配置された、4つの昇降自在のピン部材262a~262dを有している(図2参照)。 The baking processing unit 260 is a mechanism for heating the semiconductor wafer 300 in order to solidify the photoresist film. The bake processing unit 260 includes a hot plate 261 and an elevating device 263. The lifting device 263 has the same configuration as the lifting device 223 described above. That is, the elevating device 263 includes four elevating and lowering pin members 262a to 262d arranged at equal angular intervals (90 ° intervals) in order to place the semiconductor wafer 300 at a predetermined position on the hot plate 261. (See FIG. 2).
 次に、このレジスト塗布装置110において、半導体ウェハ300にレジストを塗布する動作について説明する。 Next, the operation of applying a resist to the semiconductor wafer 300 in the resist coating apparatus 110 will be described.
 まず、第1工程で、搬送ユニット210により、上述の搬送ロボット(図示せず)から半導体ウェハ300を受け取ってレジスト塗布装置110へ搬入し、HMDS処理ユニット220に供給し、昇降装置223により、ホットプレート221上に半導体ウェハ300を載置する。それには、ハンド部212a,212bのウェハ載置部213a,213b上に半導体ウェハ300を載置した状態で、搬送ユニット210の本体部211を、ホットプレート221に対向する位置まで回転させ、さらに、ハンド部212a,212bをホットプレート221上まで前進させる。そして、ピン部材222a~222dを上昇させて半導体ウェハ300を昇降装置223で下から持ち上げることにより、ハンド部212a,212bから離間させる(図3(a)参照)。続いて、このハンド部212a,212bを開いた後、後退させる。その後、ホットプレート221内に収容される位置まで、載置ピン222a~222dを下降させることにより、ホットプレート221上に半導体ウェハ300が載置される(図3(b)参照)。 First, in the first step, the transfer unit 210 receives the semiconductor wafer 300 from the transfer robot (not shown), loads it into the resist coating apparatus 110, supplies it to the HMDS processing unit 220, and moves it up and down by the lifting device 223. The semiconductor wafer 300 is placed on the plate 221. For this purpose, with the semiconductor wafer 300 placed on the wafer placement parts 213a and 213b of the hand parts 212a and 212b, the main body part 211 of the transfer unit 210 is rotated to a position facing the hot plate 221, The hand portions 212 a and 212 b are advanced to the hot plate 221. Then, the pin members 222a to 222d are lifted and the semiconductor wafer 300 is lifted from below by the lifting device 223 to be separated from the hand portions 212a and 212b (see FIG. 3A). Subsequently, the hand portions 212a and 212b are opened and then retracted. Thereafter, the mounting pins 222a to 222d are moved down to the position where they are accommodated in the hot plate 221, thereby placing the semiconductor wafer 300 on the hot plate 221 (see FIG. 3B).
 上述したとおり、各ピン部材222(図2では222a~222d)はそれぞれ、半導体ウェハ300の下面301の外周部に接触して半導体ウェハ300をほぼ水平に支持する基板支持部224と、この基板支持部224と一体に形成されて、半導体ウェハ300の側面302に接触して半導体ウェハ300をその中心が位置決め中心CT1に近付くように案内するガイド部225とを有している。このため、半導体ウェハ300が直径20mm以下の小径のものであっても、搬送ロボットから半導体ウェハ300を昇降装置223で受け取る際に、昇降装置223から半導体ウェハ300に作用する衝撃力により、半導体ウェハ300が昇降装置223によって弾かれたり、位置ずれを起こしたりして、半導体ウェハ300の受取ミスにつながる恐れは無い。すなわち、この実施の形態1によれば、半導体ウェハ300が昇降装置223によって弾かれる事態を抑制するとともに、複数のピン部材222のガイド部225で半導体ウェハ300を昇降装置223上の所定の位置に案内して容易に位置決めすることができる。しかも、ガイド部225は、基板支持部224より上方へ突出し、位置決め中心CT1側を向く形でテーパ状に形成されているため、半導体ウェハ300の位置決め動作を円滑に行うことができる。したがって、半導体ウェハ300が小口径のものであっても、その受取ミスを低減することが可能となる。なお、搬送ロボットから半導体ウェハ300を昇降装置223で受け取る際に、半導体ウェハ300が位置ずれを起こさなかった場合、つまり、導体ウェハ300の中心が位置決め中心CT1にほぼ一致した場合には、半導体ウェハ300は、ガイド部225に案内されることなく所定の位置に位置決めされる。 As described above, each pin member 222 (222a to 222d in FIG. 2) is in contact with the outer peripheral portion of the lower surface 301 of the semiconductor wafer 300 to support the semiconductor wafer 300 substantially horizontally, and this substrate support. A guide portion 225 is formed integrally with the portion 224 and guides the semiconductor wafer 300 so that the center approaches the positioning center CT1 by contacting the side surface 302 of the semiconductor wafer 300. For this reason, even when the semiconductor wafer 300 has a small diameter of 20 mm or less, when the semiconductor wafer 300 is received by the lifting device 223 from the transfer robot, the semiconductor wafer 300 is affected by the impact force acting on the semiconductor wafer 300 from the lifting device 223. There is no possibility that 300 may be repelled by the elevating device 223 or misaligned, leading to a mistake in receiving the semiconductor wafer 300. That is, according to the first embodiment, the semiconductor wafer 300 is prevented from being flipped by the lifting device 223, and the semiconductor wafer 300 is brought to a predetermined position on the lifting device 223 by the guide portions 225 of the plurality of pin members 222. It can be easily positioned by guiding. In addition, since the guide portion 225 protrudes upward from the substrate support portion 224 and is tapered toward the positioning center CT1, the positioning operation of the semiconductor wafer 300 can be performed smoothly. Therefore, even if the semiconductor wafer 300 has a small diameter, it is possible to reduce the receiving error. When the semiconductor wafer 300 is received by the lifting device 223 from the transfer robot, if the semiconductor wafer 300 is not displaced, that is, if the center of the conductor wafer 300 substantially coincides with the positioning center CT1, the semiconductor wafer 300 is positioned at a predetermined position without being guided by the guide portion 225.
 次に、第2工程に移行し、HMDS処理ユニット220において、半導体ウェハ300に対してHMDS処理を行う。 Next, the process proceeds to the second step, where the HMDS processing unit 220 performs HMDS processing on the semiconductor wafer 300.
 その後、第3工程に移行し、搬送ユニット210により、半導体ウェハ300をHMDS処理ユニット220からコーターカップ部230へ搬送する。 Thereafter, the process proceeds to the third step, where the transfer unit 210 transfers the semiconductor wafer 300 from the HMDS processing unit 220 to the coater cup unit 230.
 次いで、第4工程に移行し、コーターカップ部230において、半導体ウェハ300に対して、レジスト膜の形成、EBR処理、裏面洗浄処理等を行う。 Next, the process proceeds to the fourth step, and in the coater cup unit 230, the semiconductor wafer 300 is subjected to resist film formation, EBR processing, back surface cleaning processing, and the like.
 次に、第5工程に移行し、上述した第1工程と同様にして、搬送ユニット210により、半導体ウェハ300を、コーターカップ部230からベーク処理ユニット260へ搬送する。そして、昇降装置263により、ホットプレート261上に、半導体ウェハ300が載置される。 Next, the process proceeds to the fifth step, and the semiconductor wafer 300 is transferred from the coater cup unit 230 to the bake processing unit 260 by the transfer unit 210 in the same manner as the first step described above. Then, the semiconductor wafer 300 is placed on the hot plate 261 by the lifting device 263.
 このときも、第1工程と同様の理由により、搬送ロボットから半導体ウェハ300を昇降装置263で受け取る際に、半導体ウェハ300が小口径のものであっても、その受取ミスを低減することが可能である。 At this time, for the same reason as in the first step, even when the semiconductor wafer 300 is received by the lifting device 263 from the transfer robot, even if the semiconductor wafer 300 has a small diameter, the receiving mistake can be reduced. It is.
 その後、第6工程に移行し、ベーク処理ユニット260において、ホットプレート261上の半導体ウェハ300に対して、フォトレジスト膜を固化するために加熱する。 Then, the process proceeds to the sixth step, and the baking processing unit 260 heats the semiconductor wafer 300 on the hot plate 261 to solidify the photoresist film.
 最後に、第7工程に移行し、搬送ユニット210により、上述の搬送ロボット(図示せず)に半導体ウェハ300を受け渡して装置前室120へ搬出する。 Finally, the process proceeds to the seventh step, where the transfer unit 210 delivers the semiconductor wafer 300 to the transfer robot (not shown) and carries it out to the apparatus front chamber 120.
 ここで、半導体ウェハ300にレジストを塗布する動作が終了する。 Here, the operation of applying the resist to the semiconductor wafer 300 is completed.
 このように、この実施の形態1によれば、第1工程および第5工程において、半導体ウェハ300の受取ミスを低減しつつ、レジスト塗布動作を歩留まりよく実行することができる。 As described above, according to the first embodiment, in the first step and the fifth step, the resist coating operation can be performed with a high yield while reducing the receiving mistake of the semiconductor wafer 300.
 また、昇降装置223の各ピン部材222(図2では222a~222d)が、基板支持部224が薄板状に形成されているために、半導体ウェハ300との接触面積が小さいこと、及び、この基板支持部224が半導体ウェハ300の下面301の外周部に接触することにより、半導体ウェハ300の面内熱分布を均一にできるとともに、コンタミネーションの付着を防ぐことができる。一方、ガイド部225は基板支持部224より厚い板状に形成された部分を有しているので、ガイド部225の曲げ剛性が向上し、ベークの熱による変形に伴う半導体ウェハ300の搬送不良を防止することができる。しかも、ピン部材222は、基板支持部224にガイド部225が一体に形成されているので、このガイド部225でピン部材222全体の曲げ剛性を確保することができる。したがって、基板支持部224を薄くして半導体ウェハ300との接触面積を小さくすることが可能となる。このことは、昇降装置263のピン部材262a~262dについても、同様である。 Further, each pin member 222 (222a to 222d in FIG. 2) of the lifting device 223 has a small contact area with the semiconductor wafer 300 because the substrate support 224 is formed in a thin plate shape, and the substrate. When the support portion 224 contacts the outer peripheral portion of the lower surface 301 of the semiconductor wafer 300, the in-plane heat distribution of the semiconductor wafer 300 can be made uniform, and contamination can be prevented from adhering. On the other hand, since the guide part 225 has a portion formed in a plate shape thicker than the substrate support part 224, the bending rigidity of the guide part 225 is improved and the conveyance failure of the semiconductor wafer 300 due to deformation due to the heat of baking is reduced. Can be prevented. In addition, since the guide member 225 is integrally formed with the substrate support portion 224, the pin member 222 can ensure the bending rigidity of the entire pin member 222 with this guide portion 225. Therefore, it is possible to reduce the contact area with the semiconductor wafer 300 by making the substrate support portion 224 thinner. The same applies to the pin members 262a to 262d of the lifting device 263.
 さらに、各ピン部材222を、基板支持部224の側面が位置決め中心CT1に対向するように、放射状に配置したので、半導体ウェハ300を安定して支持することができる。
[発明のその他の実施の形態]
 なお、上述した実施の形態1では、半導体ウェハ300を用いる半導体製造装置を例に採って説明したが、本発明は、他の種類の基板(例えば、サファイア基板等の絶縁性基板や、アルミニウム基板等の導電性基板)や、非円盤形状(例えば、矩形)の処理基板からデバイスを製造する製造装置にも適用することができる。
Furthermore, since the pin members 222 are arranged radially such that the side surface of the substrate support portion 224 faces the positioning center CT1, the semiconductor wafer 300 can be stably supported.
[Other Embodiments of the Invention]
In the first embodiment described above, the semiconductor manufacturing apparatus using the semiconductor wafer 300 has been described as an example. However, the present invention is applicable to other types of substrates (for example, an insulating substrate such as a sapphire substrate, an aluminum substrate, etc. The present invention can also be applied to a manufacturing apparatus for manufacturing a device from a non-disk-shaped (for example, rectangular) processing substrate.
 また、上述した実施の形態1では、ガイド部225がテーパ状に形成されている場合について説明した。しかし、半導体ウェハ300の側面302に接触して半導体ウェハ300をその中心が位置決め中心CT1に近付くように案内することができる限り、ガイド部225は必ずしもテーパ状に形成する必要はない。 In the first embodiment described above, the case where the guide portion 225 is formed in a tapered shape has been described. However, as long as the semiconductor wafer 300 can be guided so as to come into contact with the side surface 302 of the semiconductor wafer 300 and the center of the semiconductor wafer 300 approaches the positioning center CT1, the guide portion 225 is not necessarily formed in a tapered shape.
 さらに、上述した実施の形態1では、本発明を小口径の半導体ウェハ300に適用した場合について説明したが、8インチや12インチ等の大口径の半導体ウェハ等にも本発明を同様に適用することができる。 Further, in the above-described first embodiment, the case where the present invention is applied to the semiconductor wafer 300 having a small diameter has been described. However, the present invention is similarly applied to a semiconductor wafer having a large diameter such as 8 inches or 12 inches. be able to.
 加えて、上述した実施の形態1では、本発明をレジスト塗布装置110に適用した場合を例に採って説明したが、本発明を、例えば現像装置等の他の製造装置に適用することも可能である。 In addition, in Embodiment 1 described above, the case where the present invention is applied to the resist coating apparatus 110 has been described as an example, but the present invention can also be applied to other manufacturing apparatuses such as a developing apparatus. It is.
 100 小型半導体製造装置(小型製造装置)
 110 レジスト塗布装置
 120 装置前室
 210 搬送ユニット
 220 HMDS処理ユニット
 221 ホットプレート
 222 ピン部材
 223 昇降装置
 224 基板支持部
 225 ガイド部
 226 下部
 227 上部
 230 コーターカップ部
 240 レジストノズル
 250 EBRノズル
 260 ベーク処理ユニット
 261 ホットプレート
 263 昇降装置
 300 半導体ウェハ(処理基板)
 301 下面
 302 側面
 CT1 位置決め中心
100 Small semiconductor manufacturing equipment (small manufacturing equipment)
DESCRIPTION OF SYMBOLS 110 Resist coating device 120 Apparatus front chamber 210 Conveyance unit 220 HMDS processing unit 221 Hot plate 222 Pin member 223 Lifting device 224 Substrate support part 225 Guide part 226 Lower part 227 Upper part 230 Coater cup part 240 Resist nozzle 250 EBR nozzle 260 Bake processing unit 261 Hot plate 263 Lifting device 300 Semiconductor wafer (processing substrate)
301 Bottom surface 302 Side surface CT1 Positioning center

Claims (6)

  1.  処理基板を、所定の位置に位置決めされた状態で、昇降自在に支持する昇降装置であって、
     所定の位置決め中心を中心とする円周上に配置された3つ以上の昇降自在のピン部材を有し、
     前記各ピン部材はそれぞれ、前記処理基板の下面に接触して当該処理基板をほぼ水平に支持する基板支持部と、この基板支持部と一体に形成され、前記処理基板の側面に接触して当該処理基板をその中心が前記位置決め中心に近付くように案内するガイド部とを有することを特徴とする昇降装置。
    A lifting device that supports the processing substrate so as to be lifted and lowered in a state where the processing substrate is positioned at a predetermined position,
    Having three or more freely elevating pin members arranged on a circumference centered on a predetermined positioning center;
    Each of the pin members is formed integrally with a substrate support portion that contacts the lower surface of the processing substrate and supports the processing substrate substantially horizontally, and is in contact with the side surface of the processing substrate. An elevating apparatus comprising: a guide portion that guides a processing substrate so that a center thereof approaches the positioning center.
  2.  前記各ピン部材はそれぞれ少なくとも上部がほぼ板状を呈しており、
     該板状の部分の横側端面が前記位置決め中心に対向するように、放射状に配置されている、
     ことを特徴とする請求項1に記載の昇降装置。
    Each of the pin members has a substantially plate shape at least at the top,
    It is arranged radially so that the lateral end face of the plate-like part faces the positioning center,
    The elevating device according to claim 1.
  3.  該板状の部分は、前記基板支持部が薄板状に形成されているとともに、該基板支持部より厚く形成された部分を有していることを特徴とする請求項2に記載の昇降装置。 The lifting device according to claim 2, wherein the plate-like portion has a portion in which the substrate support portion is formed in a thin plate shape and is thicker than the substrate support portion.
  4.  前記ガイド部は、前記基板支持部より上方へ突出し、前記位置決め中心側を向く形でテーパ状に形成されていることを特徴とする請求項1乃至3のいずれかに記載の昇降装置。 The lifting device according to any one of claims 1 to 3, wherein the guide portion projects upward from the substrate support portion and is tapered so as to face the positioning center.
  5.  前記処理基板は、直径が20mm以下であることを特徴とする請求項1に記載の昇降装置。 The lifting device according to claim 1, wherein the processing substrate has a diameter of 20 mm or less.
  6.  請求項1に記載の昇降装置を備えていることを特徴とする小型製造装置。 A small manufacturing apparatus comprising the lifting device according to claim 1.
PCT/JP2013/079254 2012-12-04 2013-10-29 Vertical-movement device and small-form-factor manufacturing device WO2014087762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014550989A JP6180433B2 (en) 2012-12-04 2013-10-29 Lifting device and small manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-265079 2012-12-04
JP2012265079 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014087762A1 true WO2014087762A1 (en) 2014-06-12

Family

ID=50883189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079254 WO2014087762A1 (en) 2012-12-04 2013-10-29 Vertical-movement device and small-form-factor manufacturing device

Country Status (2)

Country Link
JP (1) JP6180433B2 (en)
WO (1) WO2014087762A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167541A (en) * 1990-10-31 1992-06-15 Fujitsu Ltd Positioning method for substrate and device thereof
JPH11274124A (en) * 1998-03-26 1999-10-08 Shibaura Mechatronics Corp Spin processor
JP2004200666A (en) * 2002-12-03 2004-07-15 Tokyo Electron Ltd Method and apparatus for treating substrate
JP2011071294A (en) * 2009-09-25 2011-04-07 Tokyo Electron Ltd Electrostatic attraction member, mechanism for holding the same, transport module, device for manufacturing semiconductor, and transport method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186074A (en) * 1994-12-28 1996-07-16 Hitachi Ltd Sputtering device
JP5006053B2 (en) * 2005-04-19 2012-08-22 株式会社荏原製作所 Substrate processing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167541A (en) * 1990-10-31 1992-06-15 Fujitsu Ltd Positioning method for substrate and device thereof
JPH11274124A (en) * 1998-03-26 1999-10-08 Shibaura Mechatronics Corp Spin processor
JP2004200666A (en) * 2002-12-03 2004-07-15 Tokyo Electron Ltd Method and apparatus for treating substrate
JP2011071294A (en) * 2009-09-25 2011-04-07 Tokyo Electron Ltd Electrostatic attraction member, mechanism for holding the same, transport module, device for manufacturing semiconductor, and transport method

Also Published As

Publication number Publication date
JP6180433B2 (en) 2017-08-16
JPWO2014087762A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
US7836845B2 (en) Substrate carrying and processing apparatus
TWI384576B (en) Apparatus for processing a substrate
JP5161335B2 (en) Substrate transport apparatus and substrate processing apparatus provided with the same
TWI470722B (en) Substrate carrying mechanism, substrate processing apparatus, and semiconductor device manufacturing method
TW201814813A (en) Posture changing device
JP4279102B2 (en) Substrate processing apparatus and substrate processing method
JP3649048B2 (en) Resist coating / developing apparatus, and substrate heating processing apparatus and substrate transfer apparatus used therefor
KR101478856B1 (en) Substrate processing system
WO2014087762A1 (en) Vertical-movement device and small-form-factor manufacturing device
KR101706735B1 (en) Transfer unit, apparatus for treating substrate including the same and method for treating substrate
JP5704261B2 (en) Substrate transfer system and substrate transfer method
KR101452543B1 (en) Substrate processing system
TWI673815B (en) Substrate processing system, substrate transfer device, and transfer method
JP5731838B2 (en) Tray-type substrate transfer system, film forming method, and electronic device manufacturing method
KR20170055141A (en) Substrate disposition apparatus and substrate disposition method
TWI719532B (en) Substrate arrangement apparatus and substrate arrangement method
KR20210118950A (en) Automated batch production thin film deposition system and method of use thereof
JP2885502B2 (en) Heat treatment equipment
JP2630366B2 (en) Loading / unloading method and loading / unloading device for plate-like body
CN103165503A (en) Warping sheet tool and warping sheet tool using method and warping sheet connection device of warping sheet tool
KR101100833B1 (en) Appatus and method for processing substrate
JP6404828B2 (en) Processing chamber having small rotating arm and small manufacturing apparatus
JP2001168167A (en) Treating system and method
TWI830346B (en) Manufacturing methods and programs for substrate processing devices and semiconductor devices
KR102204884B1 (en) Transfer robot and Apparatus for treating substrate with the robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860326

Country of ref document: EP

Kind code of ref document: A1