WO2014087719A1 - 通信制御装置、プログラム及び通信制御方法 - Google Patents

通信制御装置、プログラム及び通信制御方法 Download PDF

Info

Publication number
WO2014087719A1
WO2014087719A1 PCT/JP2013/076104 JP2013076104W WO2014087719A1 WO 2014087719 A1 WO2014087719 A1 WO 2014087719A1 JP 2013076104 W JP2013076104 W JP 2013076104W WO 2014087719 A1 WO2014087719 A1 WO 2014087719A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
terminal device
wireless communication
communication
base station
Prior art date
Application number
PCT/JP2013/076104
Other languages
English (en)
French (fr)
Inventor
吉澤 淳
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/430,126 priority Critical patent/US9461899B2/en
Priority to JP2014550952A priority patent/JP6197798B2/ja
Priority to EP16194609.0A priority patent/EP3139673B1/en
Priority to CN201380061720.2A priority patent/CN104854928B/zh
Priority to EP13860185.1A priority patent/EP2928241B1/en
Publication of WO2014087719A1 publication Critical patent/WO2014087719A1/ja
Priority to US15/245,737 priority patent/US10536916B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to a communication control device, a program, and a communication control method.
  • Proximity terminal-to-terminal communication or device-device communication is a communication mode in which signals are transmitted and received directly between terminal devices, unlike a communication mode via a base station in cellular communication. Therefore, in D2D communication, it is expected that a new usage form of the terminal device will be born, which is different from conventional cellular communication. For example, information sharing by data communication between adjacent terminal devices or groups of adjacent terminal devices, information distribution from installed terminal devices, autonomous communication between devices called M2M (Machine to Machine), etc. Application is conceivable.
  • D2D communication may be used for data offloading in response to a significant increase in data traffic due to the recent increase in smartphones. For example, in recent years, the need for transmission / reception of streaming data of moving images has increased rapidly. However, in general, since moving images have a large amount of data, there is a problem that many resources are consumed in a RAN (Radio Access Network). Therefore, if the terminal devices are in a state suitable for D2D communication, such as when the distance between the terminal devices is small, resource consumption and processing in the RAN can be reduced by offloading moving image data to D2D communication. The load can be suppressed. Thus, D2D communication has utility value for both communication carriers and users. Therefore, at present, D2D communication is recognized as one of the important technical fields necessary for LTE (Long Term Evolution) even in the 3GPP (3rd Generation Partnership Project) standardization conference, and is attracting attention.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • a communication method such as Bluetooth (registered trademark) or WiFi (registered trademark) is adopted for D2D communication, and the communication method and WCDMA (Wideband Code Division Multiple) are adopted. Access) (registered trademark), LTE, and other cellular communication methods have been combined.
  • the same communication method as the communication method of cellular communication for example, LTE
  • D2D communication if cellular communication and D2D communication are not appropriately harmonized, there is a problem in signal transmission / reception in D2D communication. Can occur. Specifically, for example, since the distance between the terminal devices in the D2D communication is smaller than the distance between the base station and the terminal device, the propagation delay in the D2D communication is larger than the propagation delay in the cellular communication. Get smaller. Therefore, if the terminal device does not transmit the D2D communication signal in consideration of the transmission / reception timing in the cellular communication, the D2D communication signal may not be properly received.
  • LTE long term evolution
  • an acquisition unit that acquires a reception timing for the second wireless communication device to receive a downlink signal from a base station that wirelessly communicates with the first wireless communication device or the second wireless communication device.
  • a determination unit that determines a transmission timing for the second wireless communication device to transmit to the first wireless communication device in inter-device communication based on the reception timing.
  • the determined transmission timing is a timing later than the timing at which the second radio communication apparatus transmits an uplink signal.
  • the reception timing for the second wireless communication device to receive a downlink signal from a base station that wirelessly communicates the computer with the first wireless communication device or the second wireless communication device. Based on the reception timing, and a determination unit that determines a transmission timing for the second wireless communication device to transmit to the first wireless communication device in inter-device communication. A program is provided. The determined transmission timing is a timing later than the timing at which the second radio communication apparatus transmits an uplink signal.
  • the reception timing for the second wireless communication device to receive a downlink signal from a base station that wirelessly communicates with the first wireless communication device or the second wireless communication device is acquired. And determining a transmission timing for the second wireless communication device to transmit to the first wireless communication device in inter-device communication based on the reception timing.
  • the determined transmission timing is a timing later than the timing at which the second radio communication apparatus transmits an uplink signal.
  • FIG. 8 is an explanatory diagram for explaining an example of a wireless communication system that is a premise of the description of FIGS. 2 to 7; It is explanatory drawing for demonstrating the downlink signal transmitted by the radio
  • FIG. 1 is an explanatory diagram for explaining an example of a wireless communication system which is a premise for the explanation of FIGS.
  • a terminal device 10 and a base station 20 are shown.
  • the terminal device 10 is called UE (User Equipment), and the base station 20 is called eNB (Evolved Node B).
  • a cell 21 formed by the base station 20 is also shown.
  • wireless communication is performed between each terminal apparatus 10 and the base station 20 as cellular communication.
  • wireless communication is performed between the terminal devices 10 as D2D communication.
  • the terminal device 10A and the terminal device 10B perform D2D communication.
  • the terminal device 10A is located farther from the base station 20 than the terminal device 10B. That is, the distance between the terminal device 10A and the base station 20 is longer than the distance between the terminal device 10B and the base station 20.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 2 is an explanatory diagram for explaining a downlink signal transmitted by wireless communication according to LTE.
  • a downlink signal transmitted in one subframe in wireless communication according to LTE is shown.
  • 14 OFDM symbols are included in one subframe.
  • one subframe includes two slots, and there are seven OFDM symbols in one slot.
  • Each OFDM symbol includes a cyclic prefix (CP) at the beginning.
  • CP cyclic prefix
  • CP is a guard interval for removing intersymbol interference that the delayed wave of the OFDM symbol has on the next OFDM symbol.
  • the CP is generated, for example, by copying a signal for a predetermined time at the end of the OFDM symbol.
  • the terminal device that receives the OFDM symbol ignores the CP signal in the OFDM symbol and demodulates the remaining signal in the OFDM symbol.
  • the cyclic prefix also contributes to elimination of intersubcarrier interference.
  • the OFDM symbol length is about 66.67 microseconds.
  • the length of the cyclic prefix included at the beginning of each symbol is about 4.687 microseconds.
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • SC-FDMA symbols are transmitted in the time direction.
  • the SC-FDMA symbol also includes a CP like the OFDM symbol.
  • the base station 20 transmits a downlink signal simultaneously with a certain frame timing. That is, the base station 20 transmits a downlink signal to each terminal apparatus 10 at the same timing. This is because, in the base station 20, resource blocks for transmitting data addressed to each terminal apparatus 10 are signal-processed in parallel at the same frame timing, and these are simultaneously transmitted from the antenna after amplification.
  • the terminal apparatus 10 receives the downlink signal after a propagation delay corresponding to the distance between the terminal apparatus 10 and the base station 20 instead of the frame timing. A specific example of this point will be described with reference to FIGS.
  • FIG. 3 is an explanatory diagram for schematically explaining an example of timing at which the terminal apparatus receives a downlink signal.
  • the timing at which the base station 20 transmits a downlink signal to each of the terminal device 10A and the terminal device 10B in a subframe is illustrated.
  • the base station 20 transmits a downlink signal simultaneously with a certain frame timing.
  • FIG. 3 also shows the timing at which each of the terminal device 10A and the terminal device 10B receives a downlink signal. In this way, the terminal device 10A and the terminal device 10B start to receive the downlink signal with a delay from the frame timing.
  • FIG. 4 is an explanatory diagram for explaining in detail an example of timing at which the terminal apparatus receives a downlink signal.
  • the timing at which each of the terminal device 10A and the terminal device 10B illustrated in FIG. 3 receives a downlink signal is illustrated in more detail.
  • the terminal device 10A is further away from the base station 20 than the terminal device 10B. Therefore, the propagation delay PD (B ⁇ T A ) in the path from the base station 20 to the terminal device 10A is larger than the propagation delay PD (B ⁇ T B ) in the path from the base station 20 to the terminal device 10B. That is, PD (B ⁇ T A )> PD (B ⁇ T B ).
  • the timing at which the terminal device 10A starts to receive the downlink signal is later than the timing at which the terminal device 10B starts to receive the downlink signal.
  • the reception timing of the downlink signal of the terminal device 10 is determined according to where the terminal device 10 is in the cell 21.
  • the base station 20 receives uplink signals simultaneously at a certain frame timing. That is, the base station 20 receives the uplink signal from each terminal apparatus 10 at the same timing.
  • the terminal apparatus 10 starts transmitting an uplink signal prior to the frame timing in consideration of the propagation delay according to the distance between the terminal apparatus 10 and the base station 20 instead of the frame timing.
  • a specific example of this point will be described with reference to FIGS.
  • FIG. 5 is an explanatory diagram for schematically explaining an example of timing at which the terminal device transmits an uplink signal.
  • the timing at which the base station 20 receives uplink signals from each of the terminal device 10A and the terminal device 10B in a subframe is shown.
  • the base station 20 receives uplink signals simultaneously at a certain frame timing.
  • FIG. 5 also shows the timing at which each of the terminal device 10A and the terminal device 10B transmits an uplink signal. In this way, the terminal device 10A and the terminal device 10B start transmitting an uplink signal prior to the frame timing.
  • FIG. 6 is an explanatory diagram for explaining in detail an example of timing at which the terminal apparatus transmits an uplink signal.
  • the timing at which each of the terminal device 10A and the terminal device 10B shown in FIG. 5 receives an uplink signal is shown in more detail.
  • the terminal device 10A is further away from the base station 20 than the terminal device 10B. Therefore, the propagation delay PD (T A ⁇ B) of the path from the terminal apparatus 10A to the base station 20 is larger than the propagation delay PD (T B ⁇ B) of the path from the terminal apparatus 10B to the base station 20. That is, the PD (T A ⁇ B)> PD (T B ⁇ B).
  • the timing at which the terminal device 10A starts to transmit an uplink signal is earlier than the timing at which the terminal device 10B starts to transmit an uplink signal.
  • the transmission timing of the uplink signal of the terminal device 10 is determined according to where the terminal device 10 is in the cell 21.
  • timing advance the technology in which the terminal apparatus 10 transmits the uplink signal so that the uplink signals from the terminal apparatuses 10 arrive at the base station 20 at the same time.
  • TA timing advance
  • FIG. 7 is an explanatory diagram for explaining timing advance.
  • the transmission timing of the uplink signal of the terminal device 10A and the transmission timing of the downlink signal of the terminal device 10A are shown.
  • the transmission timing of the uplink signal precedes the frame timing by the propagation delay PD (T A ⁇ B) and the same time.
  • the reception timing of the downlink signal is later than the frame timing by the propagation delay PD (B ⁇ T A ).
  • the terminal device 10 since the terminal device 10 receives the downlink signal, the terminal device 10 knows the timing for receiving the downlink signal. Further, the terminal apparatus 10 receives a timing advance value (TA value) from the base station as information for determining the timing for transmitting the uplink signal. The initial value of the TA value is notified to the terminal device 10 by a random access response at the time of random access, for example. The terminal device 10 determines a timing preceding the timing for transmitting the downlink signal by a time corresponding to the TA value as a timing for transmitting the uplink signal. That is, the time corresponding to the TA value corresponds to approximately twice the propagation delay between the terminal device 10 and the base station.
  • TA value timing advance value
  • the terminal device 10 located at the cell edge of the cell 21 is given a TA value corresponding to a longer time than the terminal device 10 located closer to the center of the cell.
  • the TA value in LTE is an 11-bit value from 0 to 1282.
  • the increment of the TA value for adjusting the transmission timing is about 0.52 microseconds. Therefore, the transmission timing of the terminal device 10 can be adjusted up to a maximum of 0.67 milliseconds.
  • FIG. 8 is an explanatory diagram for describing a first example in the case of applying signal transmission / reception timing in cellular communication to D2D communication.
  • the terminal device 10B is a transmission-side device for D2D communication
  • the terminal device 10A is a reception-side device for D2D communication.
  • the transmission timing for the base station 20 to transmit the downlink signal and the reception timing for the terminal apparatus 10A to receive the downlink signal are shown. These timings are as described with reference to FIG.
  • the transmission timing at which the terminal device 10B transmits the D2D communication signal and the reception timing at which the terminal device 10A actually receives the D2D communication signal are also shown.
  • the transmission timing at which the terminal device 10B transmits the D2D communication signal is the same as the transmission timing at which the terminal device 10B transmits the uplink signal.
  • the reception imming at which the terminal device 10A actually receives the D2D communication signal is delayed by a propagation delay PD (T A ⁇ T B ) from the transmission timing at which the terminal device 10B transmits the D2D communication signal.
  • the propagation delay PD T A ⁇ T B
  • FIG. 9 is an explanatory diagram for explaining a second example in the case of applying signal transmission / reception timing in cellular communication to D2D communication.
  • the terminal device 10A is a transmission-side device for D2D communication
  • the terminal device 10B is a reception-side device for D2D communication.
  • the transmission timing for the base station 20 to transmit the downlink signal and the reception timing for the terminal device 10B to receive the downlink signal are shown. These timings are as described with reference to FIG.
  • the transmission timing at which the terminal device 10A transmits the D2D communication signal and the reception timing at which the terminal device 10B actually receives the D2D communication signal are also shown.
  • the transmission timing at which the terminal apparatus 10A transmits the D2D communication signal is the same as the transmission timing at which the terminal apparatus 10A transmits the uplink signal.
  • the reception imming at which the terminal device 10B actually receives the D2D communication signal is delayed by a propagation delay PD (T B ⁇ T A ) from the transmission timing at which the terminal device 10A transmits the D2D communication signal.
  • the propagation delay PD T B ⁇ T A
  • the adjustment range of the uplink transmission timing by the TA (that is, the time corresponding to the TA value) is large, the part other than the CP of the D2D communication signal is demodulated. And the D2D communication signal is not properly received. Since D2D communication is assumed to be frequently used mainly at a cell edge away from the base station 20, it is assumed that the TA value for the terminal device 10 that performs D2D communication is a relatively large value. Therefore, the D2D communication signal may not be demodulated properly.
  • the terminal device 10A and the terminal device 10B exist at the cell edge of a cell having a radius of 1 kilometer.
  • the propagation delay in the path from the base station 20 to the terminal device 10 is about 3.33 microseconds. Therefore, if the distance between the terminal devices 10 is ignored, the shift in reception timing between the terminal devices 10 is about 6.66 microseconds.
  • the length of CP is 4.687 microseconds. Therefore, since the reception timing shift exceeds the CP length, the D2D communication signal is not properly received.
  • the distance between the terminal device 10 and the base station 20 is 1 kilometer, but if the distance is shorter, the D2D communication signal can be appropriately received.
  • the propagation delay is 2.33 microseconds. In this case, the shift in reception timing is about 4.66 microseconds. Therefore, considering that the cyclic prefix is 4.687 microseconds, the propagation delay allowed for D2D communication is 0.021 microseconds. The propagation delay corresponds to a distance of 6.3 meters.
  • the D2D communication can be greatly affected by the movement of the terminal device 10, a slight change in the propagation delay due to the change in the propagation path, and the like. Therefore, it is considered that stable communication is not guaranteed.
  • D2D communication in which the same communication method as the communication method of cellular communication is adopted. More specifically, it is possible to relax or eliminate restrictions on D2D communication such as the distance between the terminal device 10 that performs D2D communication and the base station 20 and the distance between the terminal devices 10 that perform D2D communication. To do.
  • FIG. 10 is an explanatory diagram illustrating an example of a schematic configuration of the wireless communication system 1 according to the present embodiment.
  • the wireless communication system 1 includes a terminal device 100 and a base station 200.
  • the radio communication system 1 employs LTE as a communication system for cellular communication, for example.
  • the terminal device 100 When the terminal device 100 is located in the cell 21 formed by the base station 200, the terminal device 100 performs radio communication with the base station 200. That is, the terminal apparatus 100 receives a downlink signal transmitted from the base station 200 and transmits an uplink signal to the base station 200. For example, the terminal apparatus 100 receives a downlink signal according to OFDM and transmits an uplink signal according to SC-FDMA.
  • the terminal device 100 performs D2D communication with another terminal device 100.
  • the terminal device 100 transmits a signal according to a predetermined wireless communication method, and receives the signal according to the predetermined wireless communication method.
  • the predetermined radio communication scheme is a radio communication scheme used by the base station 200 for transmitting a downlink signal, for example. That is, the predetermined wireless communication method is OFDM. That is, the terminal apparatus 100 transmits and receives signals according to OFDM in D2D communication.
  • the base station 200 performs radio communication with the terminal device 100 located in the cell 21. That is, the base station 200 transmits a downlink signal to the terminal device 100 and receives an uplink signal from the terminal device 100. For example, the base station 200 transmits a downlink signal according to OFDM and receives an uplink signal according to SC-FDMA.
  • FIG. 11 is a block diagram illustrating an example of a configuration of the terminal device 100 according to the present embodiment.
  • the terminal device 100 includes an antenna unit 110, a wireless communication unit 120, a storage unit 130, and a control unit 140.
  • the antenna unit 110 receives a radio signal and outputs the received radio signal to the radio communication unit 120.
  • the antenna unit 110 transmits the transmission signal output from the wireless communication unit 120.
  • the wireless communication unit 120 performs wireless communication with other devices.
  • the radio communication unit 120 performs radio communication with the base station 200 when the terminal device 100 is located in the cell 21 formed by the base station 200. That is, the radio communication unit 120 receives a downlink signal transmitted from the base station 200 and transmits an uplink signal to the base station 200.
  • the radio communication unit 120 receives a downlink signal according to OFDM and transmits an uplink signal according to SC-FDMA.
  • the wireless communication unit 120 performs D2D communication with the other terminal device 100.
  • the wireless communication unit 120 transmits a signal according to a predetermined wireless communication method and receives a signal according to the predetermined wireless communication method.
  • the predetermined radio communication scheme is a radio communication scheme used by the base station 200 for transmitting a downlink signal, for example. That is, the predetermined wireless communication method is OFDM.
  • the wireless communication unit 120 transmits and receives signals according to OFDM in D2D communication.
  • the storage unit 130 stores a program and data for the operation of the terminal device 100.
  • Control unit 140 The control unit 140 provides various functions of the terminal device 100.
  • the control unit 140 includes an information acquisition unit 141 and a transmission timing determination unit 143.
  • the information acquisition unit 141 is a reception timing (hereinafter referred to as “downlink”) for the terminal device 100 (wireless communication unit 120) to receive a downlink signal from the base station 200 that wirelessly communicates with the terminal device 100 or another terminal device 100. Called “reception timing”).
  • the terminal device 100 and another terminal device 100 are located in the same cell 21, and the base station 200 is a base station of the cell 21. That is, the terminal device 100 and another terminal device 100 receive a downlink signal from the same base station 200.
  • the information acquisition part 141 acquires the downlink reception timing for the terminal device 100 (wireless communication part 120) to receive the downlink signal from the base station 200.
  • the information acquisition unit 141 acquires the downlink reception timing from the detection result of the downlink signal by the wireless communication unit 120.
  • the information acquisition unit 141 uses timing advance information (TA information) for determining a timing (hereinafter, uplink transmission timing) for the terminal device 100 (the radio communication unit 120) to transmit an uplink signal. Get more.
  • the TA information is, for example, a TA value.
  • the information acquisition unit 141 is notified of the TA by the random access response via the wireless communication unit 120. Get the value.
  • the information acquisition unit 141 may further acquire TA information for determining timing for transmitting another uplink signal from another terminal apparatus 100 (that is, uplink transmission timing of another terminal apparatus 100). Good.
  • the base station 200 may acquire the TA value of the other terminal device 100 and transmit the TA value to the terminal device 100. Then, when the wireless communication unit 120 receives the TA value of the other terminal device 100, the information acquisition unit 141 may acquire the TA value of the other terminal device 100.
  • the transmission timing determination unit 143 determines a transmission timing for the terminal device 100 to transmit a signal.
  • the transmission timing determination unit 143 determines a transmission timing (hereinafter referred to as “uplink transmission timing”) for the terminal device 100 (wireless communication unit 120) to transmit an uplink signal to the base station 200. More specifically, for example, the transmission timing determination unit 143 determines a timing preceding the downlink reception timing by the time corresponding to the acquired TA value as the uplink transmission timing. Then, the transmission timing determination unit 143 causes the radio communication unit 120 to transmit an uplink signal at the determined uplink transmission timing.
  • uplink transmission timing a transmission timing for the terminal device 100 (wireless communication unit 120) to transmit an uplink signal to the base station 200. More specifically, for example, the transmission timing determination unit 143 determines a timing preceding the downlink reception timing by the time corresponding to the acquired TA value as the uplink transmission timing. Then, the transmission timing determination unit 143 causes the radio communication unit 120 to transmit an uplink signal at the determined uplink transmission timing.
  • the transmission timing determination unit 143 performs transmission for the terminal device 100 (wireless communication unit 120) to transmit to another terminal device 100 through D2D communication based on the acquired downlink reception timing.
  • the timing (hereinafter referred to as “D2D transmission timing”) is determined.
  • the determined D2D transmission timing is a timing later than the timing at which the terminal apparatus 100 (wireless communication unit 120) transmits the uplink signal (that is, the uplink transmission timing).
  • the D2D communication signal is much earlier than the downlink reception timing of the D2D communication reception side device. It reaches the receiving device. Therefore, depending on the distance between the base station 200 and the receiving side apparatus and the transmitting side apparatus and the distance between the receiving side apparatus and the transmitting side apparatus, portions other than the CP in the D2D communication signal are not demodulated. there is a possibility.
  • the D2D transmission timing is later than the uplink transmission timing as in the present embodiment, the counterpart D2D reception timing and the downlink reception timing become closer. Therefore, the possibility that the D2D communication signal is appropriately received increases. In other words, restrictions for appropriate reception of the D2D communication signal (for example, the distance between the base station 200 and the reception side device and the transmission side device, and the distance between the reception side device and the transmission side device). It becomes possible to loosen. As a result, offloading can be performed more effectively, which can greatly contribute to an increase in system capacity.
  • the transmission timing determination unit 143 determines D2D transmission timing based on the downlink reception timing of the terminal device 100 and the TA information of the terminal device 100.
  • the TA information is, for example, a TA value. Since the TA information (for example, TA value) is an existing parameter notified to the terminal device 100 at the time of random access, the base station 200 does not need to transmit a new control signal.
  • the determined D2D transmission timing is a timing before the downlink reception timing.
  • the transmission timing determination unit 143 multiplies the time corresponding to the TA value of the terminal device 100 by a coefficient P (0 ⁇ P ⁇ 1). Then, the transmission timing determination unit 143 determines a timing preceding the downlink reception timing by the time of the multiplication result as the D2D transmission timing. Then, the transmission timing determination unit 143 causes the wireless communication unit 120 to transmit the D2D communication signal at the determined D2D transmission timing.
  • the D2D transmission timing being too late, the period during which the D2D communication signal is actually received by the counterpart device does not fit within the period for the counterpart device to receive the downlink signal. It can be avoided.
  • the determined D2D transmission timing is a timing after the timing at which the base station 200 transmits a downlink signal (hereinafter referred to as “downlink transmission timing”).
  • the downlink transmission timing is a timing that precedes the downlink reception timing by half the time corresponding to the TA information of the terminal device 100.
  • the transmission timing determination unit 143 multiplies the time corresponding to the TA value of the terminal device 100 by a coefficient P (0 ⁇ P ⁇ 1/2). Then, the transmission timing determination unit 143 determines a timing preceding the downlink reception timing by the time of the multiplication result as the D2D transmission timing.
  • the D2D transmission timing is after the downlink transmission timing of the base station. Since the downlink reception timing of the counterpart device is at least later than the downlink transmission timing, the counterpart D2D transmission timing and the downlink reception timing are closer. Therefore, there is a higher possibility that the D2D communication signal is properly received. In other words, restrictions for appropriate reception of the D2D communication signal (for example, the distance between the base station 200 and the reception side device and the transmission side device, and the distance between the reception side device and the transmission side device). It becomes possible to loosen.
  • the determined D2D transmission timing is timing for the base station 200 to transmit a downlink signal (that is, downlink transmission timing).
  • the downlink transmission timing is a timing that precedes the downlink reception timing by half the time corresponding to the TA information of the terminal device 100.
  • the transmission timing determination unit 143 multiplies the time corresponding to the TA value of the terminal device 100 by a coefficient 1/2. Then, the transmission timing determination unit 143 determines a timing preceding the downlink reception timing by the time of the multiplication result as the D2D transmission timing.
  • the D2D transmission timing between the terminal devices 100 becomes almost constant. That is, variations in the D2D transmission timing by the terminal device 100 are reduced regardless of the position of each terminal device 100 in the cell 21, the frequency band used for D2D communication, and the duplex method (for example, the FDD method or the TDD method). .
  • FIG. 12 is a first explanatory diagram for describing a first example of D2D transmission timing according to the present embodiment.
  • the terminal device 100B is a transmission-side device for D2D communication
  • the terminal device 100A is a reception-side device for D2D communication.
  • the downlink transmission timing for the base station 200 to transmit the downlink signal and the downlink reception timing for the terminal device 100A to receive the downlink signal are shown. This is the same as the example shown in FIG.
  • the D2D transmission timing at which the terminal device 100B transmits the D2D communication signal and the D2D reception timing at which the terminal device 100A actually receives the D2D communication signal are also shown.
  • the D2D transmission timing of the terminal device 100B is substantially the same as the downlink transmission timing of the base station 200.
  • the reception timing deviation shown in FIG. 12 that is, the deviation between the downlink reception timing and the D2D reception timing in the terminal device 100A
  • the shift in the reception timing is smaller than the CP length, and the terminal device 100A can appropriately receive the D2D communication signal.
  • FIG. 13 is a second explanatory diagram for describing a first example of D2D transmission timing according to the present embodiment.
  • the terminal device 100A is a transmission-side device for D2D communication
  • the terminal device 100B is a reception-side device for D2D communication.
  • downlink transmission timing for the base station 200 to transmit a downlink signal and downlink reception timing for the terminal device 100B to receive the downlink signal are shown. This is the same as the example shown in FIG.
  • the D2D transmission timing at which the terminal device 100A transmits a D2D communication signal and the D2D reception timing at which the terminal device 100B actually receives the D2D communication signal are also shown.
  • the D2D transmission timing of the terminal device 100A is substantially the same as the downlink transmission timing of the base station 200.
  • the reception timing deviation shown in FIG. 12 that is, the deviation between the downlink reception timing and the D2D reception timing in the terminal device 100B
  • the shift in the reception timing is smaller than the length of the CP, and the terminal device 100B can appropriately receive the D2D communication signal.
  • the determined D2D transmission timing is a reception timing (that is, downlink reception timing) for the terminal device 100 to receive a downlink signal. That is, the transmission timing determination unit 143 determines the acquired downlink reception timing as the D2D transmission timing. Then, the transmission timing determination unit 143 causes the wireless communication unit 120 to transmit the D2D communication signal at the determined D2D transmission timing.
  • the terminal device 100 (for example, the terminal device 100A and the terminal device 100B) that performs D2D communication is located nearby. That is, the distance between the terminal devices 100 is small. Therefore, the difference between the downlink reception timing of the transmission side apparatus of D2D communication and the downlink reception timing of the reception side is small. Furthermore, the propagation delay from the transmission side apparatus to the reception side apparatus in D2D communication is small. Therefore, if a transmission side device (for example, terminal device 100A) of D2D communication transmits a D2D communication signal at its own downlink reception timing, the reception side device (for example, terminal device 100B) has its own downlink reception timing. The D2D communication signal can be received at a timing close to.
  • the possibility that the D2D communication signal is appropriately received increases.
  • restrictions for appropriate reception of the D2D communication signal for example, the distance between the base station 200 and the reception side device and the transmission side device, and the distance between the reception side device and the transmission side device. It becomes possible to loosen.
  • the terminal device 100 can perform D2D at an appropriate D2D transmission timing.
  • a communication signal can be transmitted.
  • FIG. 14 is a first explanatory diagram for explaining a second example of the D2D transmission timing according to the present embodiment.
  • the terminal device 100B is a transmission-side device for D2D communication
  • the terminal device 100A is a reception-side device for D2D communication.
  • downlink transmission timing for the base station 200 to transmit a downlink signal and downlink reception timing for the terminal device 100A to receive the downlink signal are shown. This is the same as the example shown in FIGS.
  • the D2D transmission timing at which the terminal device 100B transmits the D2D communication signal and the D2D reception timing at which the terminal device 100A actually receives the D2D communication signal are also shown.
  • the D2D transmission timing of the terminal device 100B is the same as the downlink reception timing of the terminal device 100B.
  • the reception timing deviation shown in FIG. 14 that is, the deviation between the downlink reception timing and the D2D reception timing in the terminal device 100A
  • the shift in the reception timing is smaller than the CP length, and the terminal device 100A can appropriately receive the D2D communication signal.
  • FIG. 15 is a second explanatory diagram for describing a second example of the D2D transmission timing according to the present embodiment.
  • the terminal device 100A is a transmission-side device for D2D communication
  • the terminal device 100B is a reception-side device for D2D communication.
  • the downlink transmission timing for the base station 200 to transmit the downlink signal and the downlink reception timing for the terminal device 100B to receive the downlink signal are shown. This is the same as the example shown in FIG.
  • D2D transmission timing at which the terminal device 100A transmits a D2D communication signal and D2D reception timing at which the terminal device 100B actually receives the D2D communication signal are also shown.
  • the D2D transmission timing of the terminal device 100A is the same as the downlink reception timing of the terminal device 100A.
  • the reception timing deviation shown in FIG. 15 (that is, the deviation between the downlink reception timing and the D2D reception timing in the terminal device 100B) is smaller than the reception timing deviation shown in FIG. .
  • the D2D reception timing is slightly later than the downlink reception timing. Therefore, if the reception period of the downlink signal is set to be slightly longer than the OFDM symbol length, terminal apparatus 100B can appropriately receive the D2D communication signal.
  • the D2D transmission timing described above may be applied when a predetermined condition is satisfied.
  • TAG time advance group
  • reception side device for example, the terminal device 100B
  • TAG time advance group
  • the TAG of the transmission side device and the TAG of the reception side device are the same means that the TA value of the transmission side device is the same as the TA value of the reception side device. Therefore, if the TAG of the transmission side device and the TAG of the reception side device are the same, the downlink reception timing of the transmission side device and the downlink reception timing of the reception side device are equivalent. Therefore, the downlink reception timing and the D2D reception timing can be closer in the reception side apparatus.
  • the D2D transmission timing may be individually adjusted by the offset value of the transmission timing.
  • Such a determination as to whether or not the TAGs are the same and the adjustment based on the offset value of the transmission timing are performed by the base station 200.
  • the base station 200 notifies the terminal device 100 that performs D2D communication.
  • the transmission timing determination unit 143 is based on the downlink reception timing of the terminal device 100, the TA information of the terminal device 100, and the TA information of another terminal device 100. , D2D transmission timing is determined.
  • the determined D2D transmission timing is the timing at which another terminal apparatus 100 (that is, a receiving-side terminal apparatus for D2D communication) receives a downlink signal from the base station 200 (that is, another terminal apparatus 100 has Downlink reception timing).
  • the downlink reception timing of another terminal apparatus 100 is the TA information of the other terminal apparatus 100 with respect to the timing for the base station 200 to transmit a downlink signal (that is, downlink transmission timing). The timing is delayed by half the time corresponding to.
  • the transmission timing determination unit 143 multiplies the time corresponding to the TA value of the terminal device 100 by a factor 1/2. Then, the transmission timing determination unit 143 calculates the timing preceding the downlink transmission timing by the time of the multiplication result as the downlink transmission timing of the base station 200. Further, the transmission timing determination unit 143 determines the timing delayed by half the time corresponding to the TA information of the other terminal device 100 from the calculated downlink transmission timing. Calculated as downlink reception timing. The half time corresponds to a propagation delay from the base station 200 to the other terminal device 100. And the transmission timing determination part 143 determines the said downlink reception timing of said another terminal device 100 as D2D transmission timing of the terminal device 100. FIG. Then, the transmission timing determination unit 143 causes the wireless communication unit 120 to transmit the D2D communication signal at the determined D2D transmission timing.
  • the terminal device 100 (for example, the terminal device 100A and the terminal device 100B) that performs D2D communication is located nearby. That is, the distance between the terminal devices 100 is small. Therefore, in D2D communication, the propagation delay from the transmission side device to the reception side device is small. Therefore, if a transmitting side device (for example, the terminal device 100A) of D2D communication transmits a D2D communication signal at the downlink reception timing of the receiving side device (for example, the terminal device 100B), the receiving side device has its own downtime. The D2D communication signal can be received at a timing close to the link reception timing. Therefore, the possibility that the D2D communication signal is appropriately received increases. In other words, restrictions for appropriate reception of the D2D communication signal (for example, the distance between the base station 200 and the reception side device and the transmission side device, and the distance between the reception side device and the transmission side device). It becomes possible to loosen.
  • FIG. 16 is a first explanatory diagram for describing a third example of the D2D transmission timing according to the present embodiment.
  • the terminal device 100B is a transmission-side device for D2D communication
  • the terminal device 100A is a reception-side device for D2D communication.
  • downlink transmission timing for the base station 200 to transmit a downlink signal and downlink reception timing for the terminal device 100A to receive the downlink signal are shown. This is the same as the example shown in FIGS. 8, 12, and 14.
  • the D2D transmission timing at which the terminal device 100B transmits the D2D communication signal and the D2D reception timing at which the terminal device 100A actually receives the D2D communication signal are also shown.
  • the D2D transmission timing of the terminal device 100B is substantially the same as the downlink reception timing of the terminal device 100A.
  • the reception timing deviation shown in FIG. 16 (that is, the deviation between the downlink reception timing and the D2D reception timing in the terminal device 100A) is smaller than the reception timing deviation shown in FIG. .
  • the D2D reception timing is slightly later than the downlink reception timing. Therefore, if the downlink signal reception period is set to be slightly longer than the OFDM symbol length, terminal apparatus 100A can appropriately receive the D2D communication signal.
  • FIG. 17 is a second explanatory diagram for describing a third example of the D2D transmission timing according to the present embodiment.
  • the terminal device 100A is a transmission-side device for D2D communication
  • the terminal device 100B is a reception-side device for D2D communication.
  • downlink transmission timing for the base station 200 to transmit a downlink signal and downlink reception timing for the terminal device 100B to receive the downlink signal are shown. This is the same as the example shown in FIG.
  • the D2D transmission timing at which the terminal device 100A transmits the D2D communication signal and the D2D reception timing at which the terminal device 100B actually receives the D2D communication signal are also shown.
  • the D2D transmission timing of the terminal device 100A is substantially the same as the downlink reception timing of the terminal device 100B.
  • the reception timing deviation shown in FIG. 17 (that is, the deviation between the downlink reception timing and the D2D reception timing in the terminal device 100B) is smaller than the reception timing deviation shown in FIG. .
  • the D2D reception timing is slightly later than the downlink reception timing. Therefore, if the reception period of the downlink signal is set to be slightly longer than the OFDM symbol length, terminal apparatus 100B can appropriately receive the D2D communication signal.
  • FIG. 18 is an explanatory diagram for describing a first case in which a terminal device performs D2D communication with two or more other terminal devices.
  • the terminal device 100B performs D2D communication with both the terminal device 100A and the terminal device 100C.
  • the terminal device 100B is connected to the content distribution server via the base station 200, and transfers content to the terminal device 100A and the terminal device 100C.
  • FIG. 19 is an explanatory diagram for explaining a second case in which the terminal device performs D2D communication with two or more other terminal devices.
  • the terminal device 100A and the terminal device 100C further perform D2D communication with each other.
  • the terminal device 100A, the terminal device 100B, and the terminal device 100C perform intra-group communication.
  • the D2D transmission timing described above is applied rather than the third example of the D2D transmission timing described above is applied. It is preferable to apply the first example or the second example. This is because, in the above-described third example of D2D transmission timing, the TA value of the communication partner of D2D communication is acquired, so the TA value that the base station 200 should notify increases, processing and communication increase, and complexity It is because it becomes.
  • FIG. 20 is a sequence diagram illustrating an example of a schematic flow of a communication control process according to the present embodiment.
  • step S401 the control unit 140 of the terminal device 100A causes the wireless communication unit 120 to transmit a start request for D2D communication. Then, the base station 200 receives the start request.
  • step S403 the base station 200 performs paging.
  • the paging information indicating D2D communication is transmitted.
  • the terminal device 100B is called by the paging.
  • step S405 the terminal device 100B and the base station 200 perform a random access procedure.
  • the control unit 140 of the terminal device 100B causes the wireless communication unit 120 to transmit a random access request.
  • the base station 200 transmits a random access response in response to the random access request.
  • the base station 200 notifies the terminal device 100B of the TA value of the terminal device 100B.
  • the transmission timing determination unit 143 of the terminal device 100A determines the D2D transmission timing based on the downlink reception timing of the terminal device 100A and the TA value acquired in advance. For example, as in the above-described first example of the D2D transmission timing, the downlink transmission timing of the base station 200 calculated from the downlink reception timing and the TA value is determined as the D2D transmission timing of the terminal device 100A.
  • step S409 the transmission timing determination unit 143 of the terminal device 100B determines the D2D transmission timing based on the downlink reception timing of the terminal device 100B and the TA value acquired in the random access procedure. For example, as in the first example of the D2D transmission timing described above, the downlink transmission timing of the base station 200 calculated from the downlink reception timing and the TA value is determined as the D2D transmission timing of the terminal device 100B.
  • step S411 and step S413, the base station 200 instructs the terminal device 100A and the terminal device 100B to transmit a pilot signal in D2D communication and to measure a pilot signal in D2D communication.
  • step S415 the control unit 140 of the terminal device 100A causes the wireless communication unit 120 to transmit a pilot signal. And the radio
  • step S417 the control unit 140 of the terminal device 100B causes the wireless communication unit 120 to transmit a pilot signal. Then, the radio communication unit 120 of the terminal device 100A receives the pilot signal, and the control unit 140 of the terminal device 100A performs measurement on the pilot signal.
  • step S419 and step S421 the terminal device 100A and the terminal device 100B report the measurement result of the pilot signal to the base station 200 via the wireless communication unit 120.
  • step S423 the base station 200 determines whether to permit D2D communication based on the reported measurement result. For example, the base station 200 determines that the D2D communication is permitted when the communication quality of the D2D communication satisfies a predetermined quality requirement.
  • step S425 and step S427 the base station 200 notifies the terminal device 100A and the terminal device 100B of permission of D2D communication. Thereafter, D2D communication is started between the terminal device 100A and the terminal device 100B.
  • the base station 200 notifies the TA value of the terminal device 100B to the terminal device 100A before step S407, and before the step S409. In addition, the TA value of the terminal device 100A is notified to the terminal device 100B.
  • FIG. 21 is an explanatory diagram for describing a first example of a cell when a terminal device performing D2D communication is located in a separate cell.
  • adjacent cells 21A and 20B are shown.
  • the base station 200A of the cell 21A and the terminal device 100A located in the cell 21A are shown.
  • a base station 200B of the cell 21B and a terminal device 100B located in the cell 21B are shown.
  • the terminal device 100 that performs D2D communication is located in each of the two cells 21 adjacent to each other.
  • FIG. 22 is an explanatory diagram for describing a second example of a cell when a terminal device that performs D2D communication is located in a separate cell.
  • a macro cell 23 and a small cell 25 overlapping with the macro cell 23 are shown.
  • the base station 203 of the macro cell 23 and the terminal device 100A located in the macro cell 23 are shown.
  • the base station 205 of the small cell 25 and the terminal device 100B located in the small cell 25 are shown.
  • the terminal device 100 that performs D2D communication is located in each of the macro cell 23 and the small cell 25.
  • the determination method when the transmission / reception timing is synchronized between the two cells is slightly different from the determination method when the transmission / reception timing is not synchronized between the two cells. Each case will be described.
  • the downlink transmission timing by the base station 200 is the same between the cells 21.
  • D2D transmission timing can be determined similarly to the case where the two terminal devices 100 which perform D2D communication are located in the same cell.
  • the D2D transmission timing can be determined as in the first to third examples of the D2D transmission timing described above.
  • the terminal device 100A determines the downlink reception timing of the terminal device 100A, the TA information of the terminal device 100A, and another terminal device. Based on the 100B TA information, the D2D transmission timing is determined.
  • the TA information of the terminal device 100A is the TA information of the terminal device 100A in the cell 21A where the terminal device 100 is located.
  • the TA information of the terminal device 100B is the TA information of the terminal device 100B in the cell 21B where the terminal device 100B is located.
  • the base station 200B transmits the TA information of the terminal device 100B to the base station 200A, and the base station 200A transmits the TA information of the terminal device 100B to the terminal device 100A. Then, the terminal device 100A (information acquisition unit 141) acquires the TA information of the terminal device 100B.
  • the terminal device 100A performs D2D based on the downlink reception timing of the terminal device 100A and the TA information of the terminal device 100A. Determine the transmission timing.
  • the terminal device 100A and the terminal device 100B that perform D2D communication are located in different cells, the downlink reception timing of the terminal device 100A and the TA information of the terminal device 100A are as follows.
  • the downlink reception timing of the terminal device 100A is a reception timing for the terminal device 100A to receive a downlink signal (that is, a downlink signal of the cell 21B) from the base station 200B wirelessly communicating with the terminal device 100B. is there. Therefore, the information acquisition unit 141 of the terminal device 100A causes the radio communication unit 120 to receive the downlink signal (eg, primary synchronization signal, secondary synchronization signal, etc.) of the cell 21B and acquire the reception timing of the downlink signal. To do.
  • a downlink signal that is, a downlink signal of the cell 21B
  • the information acquisition unit 141 of the terminal device 100A causes the radio communication unit 120 to receive the downlink signal (eg, primary synchronization signal, secondary synchronization signal, etc.) of the cell 21B and acquire the reception timing of the downlink signal.
  • the TA information of the terminal device 100A is TA information for determining the timing for the terminal device 100A to transmit an uplink signal to the base station 200B (that is, TA information of the terminal device 100A in the cell 21B). is there. Therefore, the information acquisition unit 141 acquires the TA information of the terminal device 100A in the cell 21B by causing the terminal device 100A to perform random access in the cell 21B.
  • the terminal device 100A can calculate the timing for the base station 200B to transmit a downlink signal, for example. it can. That is, the terminal device 100A can calculate the downlink transmission timing in the cell 21B in which the terminal device 100B that is the counterpart device for D2D communication is located.
  • the information acquisition unit 141 uses the TA information of the terminal device 100B in the cell 21B as an alternative to the TA information of the terminal device 100A in the cell 21B. May be obtained and used.
  • the base station 200B may transmit the TA information of the terminal device 100B to the base station 200A, and the base station 200A may transmit the TA information of the terminal device 100B to the terminal device 100A.
  • the terminal device 100A determines the D2D transmission timing based on the downlink reception timing of the terminal device 100A.
  • the downlink reception timing of the terminal device 100A is as follows.
  • the downlink reception timing of the terminal device 100A is a reception timing for the terminal device 100A to receive the downlink signal of the cell 21B.
  • the terminal device 100A can know the reception timing for the terminal device 100A to receive the downlink signal from the base station 21B. That is, the terminal device 100A can calculate the downlink transmission timing in the cell 21B in which the terminal device 100B that is the counterpart device for D2D communication is located.
  • the terminal device 100A has the downlink reception timing of the terminal device 100A, the TA information of the terminal device 100A, and the terminal device 100B.
  • the D2D transmission timing is determined based on the TA information.
  • the terminal device 100A and the terminal device 100B that perform D2D communication are located in different cells, the downlink reception timing of the terminal device 100A, the TA information of the terminal device 100A, and the TA information of the terminal device 100B are as follows: become that way.
  • the downlink reception timing of the terminal device 100A is a reception timing for the terminal device 100A to receive the downlink signal of the cell 21B, as in the first example of the D2D transmission timing described above.
  • the TA information of the terminal device 100A is also the TA information of the terminal device 100A in the cell 21B, as in the first example of the D2D transmission timing described above.
  • the TA information of the terminal device 100B is TA information for determining the timing for the terminal device 100B to transmit an uplink signal to the base station 200B (that is, TA information of the terminal device 100B in the cell 21B). is there. Therefore, the base station 200B transmits the TA information of the terminal device 100B to the base station 200A, and the base station 200A transmits the TA information of the terminal device 100B to the terminal device 100A. And the information acquisition part 141 acquires the said TA information of the terminal device 100B.
  • the terminal device 100A is, for example, the terminal device 100B that is a counterpart device for D2D communication. Can receive the downlink signal from the base station 200B. That is, the terminal device 100A can calculate the timing at which the terminal device 100B receives the downlink signal of the cell 21B.
  • FIG. 23 is a sequence diagram illustrating a first example of a schematic flow of communication control processing according to a modification of the present embodiment.
  • step S501 the control unit 140 of the terminal device 100A causes the wireless communication unit 120 to transmit a start request for D2D communication. Then, the base station 200A receives the start request. In step S503, the base station 200A transfers the start request to the base station 200B.
  • step S505 the base station 200A transmits inter-cell synchronization information indicating whether or not the cell 21A and the cell 21B are synchronized to the terminal device 100A.
  • the inter-cell synchronization information indicates that the cell 21A and the cell 21B are synchronized.
  • the terminal device 100A knows that the cell 21A and the cell 21B are synchronized.
  • synchronization information between cells is acquired in step S505, but acquisition of synchronization information between cells is not limited to this example.
  • the synchronization information between cells may be notified in advance to the terminal device 100 by system information, or may be separately notified in advance by signaling from the base station 200 to the terminal device 100. Further, when all or some of the cells in the system are synchronized, information regarding the presence or absence of synchronization between cells may be stored in the terminal device 100.
  • step S507 the base station 200B performs paging.
  • the paging information indicating D2D communication is transmitted.
  • the terminal device 100B is called by the paging.
  • step S509 the terminal device 100B and the base station 200B perform a random access procedure.
  • the control unit 140 of the terminal device 100B causes the wireless communication unit 120 to transmit a random access request.
  • the base station 200B transmits a random access response in response to the random access request.
  • the base station 200B notifies the terminal device 100B of the TA value of the terminal device 100B.
  • the TA value is the TA value of the terminal device 100B in the cell 21B.
  • step S511 the transmission timing determination unit 143 of the terminal device 100A is based on the downlink reception timing of the terminal device 100A in the cell 21A and the TA value acquired in advance (TA value of the terminal device 100A in the cell 21A). , D2D transmission timing is determined. For example, as in the above-described first example of the D2D transmission timing, the downlink transmission timing of the base station 200A calculated from the downlink reception timing and the TA value is determined as the D2D transmission timing of the terminal device 100A.
  • the transmission timing determination unit 143 of the terminal device 100B determines the downlink reception timing of the terminal device 100B in the cell 21B, the TA value acquired in the random access procedure (TA value of the terminal device 100B in the cell 21B), and Based on the above, the D2D transmission timing is determined. For example, as in the above-described first example of the D2D transmission timing, the downlink transmission timing of the base station 200B calculated from the downlink reception timing and the TA value is determined as the D2D transmission timing of the terminal device 100B.
  • step S515 the base station 200A instructs the terminal device 100A to transmit a pilot signal in D2D communication and to measure a pilot signal in D2D communication.
  • step S517 the base station 200B instructs the terminal device 100B to transmit a pilot signal in D2D communication and to measure a pilot signal in D2D communication.
  • step S519 the control unit 140 of the terminal device 100A causes the wireless communication unit 120 to transmit a pilot signal. And the radio
  • step S521 the control unit 140 of the terminal device 100B causes the wireless communication unit 120 to transmit a pilot signal. Then, the radio communication unit 120 of the terminal device 100A receives the pilot signal, and the control unit 140 of the terminal device 100A performs measurement on the pilot signal.
  • step S523 the terminal device 100B reports the measurement result of the pilot signal to the base station 200B via the wireless communication unit 120.
  • step S525 the terminal device 100A reports the measurement result of the pilot signal to the base station 200A via the wireless communication unit 120.
  • step S527 the base station 200A and the base station 200B determine whether to permit D2D communication based on the reported measurement result. For example, the base station 200A and the base station 200B determine that the D2D communication is permitted when the communication quality of the D2D communication satisfies a predetermined quality requirement.
  • step S529 the base station 200A notifies the terminal device 100A of permission of D2D communication.
  • step S531 the base station 200B notifies the terminal device 100B of permission of D2D communication. Thereafter, D2D communication is started between the terminal device 100A and the terminal device 100B.
  • the base station 200A notifies the terminal device 100A of the TA value of the terminal device 100B in the cell 21B before step S511. Further, the base station 200B notifies the terminal device 100B of the TA value of the terminal device 100A in the cell 21A before step S513.
  • FIG. 24 is a sequence diagram illustrating a second example of a schematic flow of a communication control process according to a modification of the present embodiment.
  • step S551 which is the difference between the first example of the schematic flow of the communication control process shown in FIG. 23 and the second example of the schematic flow of the communication control process shown in FIG. Only S553, S555, S557, and S559 will be described.
  • step S551 the base station 200A transmits inter-cell synchronization information indicating whether or not the cell 21A and the cell 21B are synchronized to the terminal device 100A.
  • the inter-cell synchronization information indicates that the cell 21A and the cell 21B are not synchronized.
  • the terminal device 100A knows that the cell 21A and the cell 21B are not synchronized.
  • synchronization information between cells is acquired in step S551, but acquisition of synchronization information between cells is not limited to this example.
  • the synchronization information between cells may be notified in advance to the terminal device 100 by system information, or may be separately notified in advance by signaling from the base station 200 to the terminal device 100. Further, when all or some of the cells in the system are synchronized, information regarding the presence or absence of synchronization between cells may be stored in the terminal device 100.
  • step S553 the terminal device 100A and the base station 200B perform a random access procedure.
  • the control unit 140 of the terminal device 100A causes the wireless communication unit 120 to transmit a random access request.
  • the base station 200B transmits a random access response in response to the random access request.
  • the base station 200B notifies the terminal device 100A of the TA value of the terminal device 100A in the random access response.
  • the TA value is the TA value of the terminal device 100A in the cell 21B.
  • step S555 the terminal device 100B and the base station 200A perform a random access procedure.
  • the control unit 140 of the terminal device 100B causes the wireless communication unit 120 to transmit a random access request.
  • the base station 200A transmits a random access response in response to the random access request.
  • the base station 200A notifies the terminal device 100B of the TA value of the terminal device 100B in the random access response.
  • the TA value is the TA value of the terminal device 100B in the cell 21A.
  • step S557 the transmission timing determination unit 143 of the terminal device 100A is based on the downlink reception timing of the terminal device 100A in the cell 21B and the TA value acquired in the random access procedure (TA value of the terminal device 100A in the cell 21B).
  • the D2D transmission timing is determined. For example, as in the first example of the D2D transmission timing described above, the downlink transmission timing of the base station 200B calculated from the downlink reception timing and the TA value is determined as the D2D transmission timing of the terminal device 100A.
  • step S559 the transmission timing determination unit 143 of the terminal device 100B, the downlink reception timing of the terminal device 100B in the cell 21A, the TA value acquired in the random access procedure (TA value of the terminal device 100B in the cell 21A), and Based on the above, the D2D transmission timing is determined.
  • the downlink transmission timing of the base station 200A calculated from the downlink reception timing and the TA value is determined as the D2D transmission timing of the terminal device 100B.
  • base station 200A notifies terminal device 100A of the TA value of terminal device 100B in cell 21B before step S557. Further, the base station 200B notifies the terminal device 100B of the TA value of the terminal device 100A in the cell 21A before step S559.
  • the terminal device 100 is realized as a mobile terminal such as a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. May be.
  • the terminal device 100 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • the terminal device 100 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • the base station 200 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 200 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • the base station 200 may include a main body (also referred to as a base station apparatus) that controls wireless communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body.
  • RRHs Remote Radio Heads
  • the various types of terminals described above may operate as the base station 200 by temporarily or semi-permanently executing the base station function.
  • FIG. 25 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG.
  • FIG. 25 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914.
  • the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 25 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies power to each block of the smartphone 900 illustrated in FIG. 25 via a power supply line partially illustrated by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the information acquisition unit 141 and the transmission timing determination unit 143 described with reference to FIG. 11 may be implemented in the wireless communication interface 912. In addition, at least a part of these functions may be implemented in the processor 901 or the auxiliary controller 919.
  • FIG. 26 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation apparatus 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 26 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. FIG. 26 shows an example in which the car navigation apparatus 920 includes a plurality of antennas 937. However, the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 26 through a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942.
  • vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • FIG. 27 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 27, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Note that although FIG. 27 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as shown in FIG. 27, and the plurality of BB processors 826 may correspond to a plurality of frequency bands used by the eNB 800, for example.
  • the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 27, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
  • 27 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • FIG. 28 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 28, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Note that although FIG. 28 illustrates an example in which the eNB 830 includes a plurality of antennas 840, the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 27 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • 28 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as illustrated in FIG. 28, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. 28 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • the base station 200 determines the D2D transmission timing of the terminal device 100 instead of the terminal device 100, and the transmission timing is determined as the terminal device. 100 may be notified. That is, the information acquisition unit 141 and the transmission timing determination unit 143 described using FIG. 11 may be provided by the base station 200 instead of being provided by the terminal device 100. In this case, in the eNB 800 and the eNB 830 illustrated in FIG. 27 and FIG. 28, the information acquisition unit 141 and the transmission timing determination unit 143 described with reference to FIG. 11 include the radio communication interface 825, the radio communication interface 855, and / or the radio communication. It may be implemented in interface 863. Further, at least a part of these functions may be implemented in the controller 821 and the controller 851.
  • the reception timing at which the terminal device 100 receives a downlink signal from the base station 200 that performs radio communication with the terminal device 100 or another terminal device 100 (that is, the downlink reception timing). Is acquired. Further, based on the acquired reception timing, a transmission timing (that is, D2D transmission timing) for the terminal device 100 to transmit to another terminal device 100 through D2D communication is determined. The determined D2D transmission timing is a timing later than the timing for transmitting the uplink signal by the terminal device 100 (that is, the uplink transmission timing).
  • the D2D communication signal reaches the reception side device much earlier than the downlink reception timing of the D2D communication reception side device. Resulting in. Therefore, depending on the distance between the base station 200 and the receiving side apparatus and the transmitting side apparatus and the distance between the receiving side apparatus and the transmitting side apparatus, portions other than the CP in the D2D communication signal are not demodulated. there is a possibility.
  • the D2D transmission timing is later than the uplink transmission timing as in the present embodiment, the counterpart D2D reception timing and the downlink reception timing become closer. Therefore, the possibility that the D2D communication signal is appropriately received increases. In other words, restrictions for appropriate reception of the D2D communication signal (for example, the distance between the base station 200 and the reception side device and the transmission side device, and the distance between the reception side device and the transmission side device). It becomes possible to loosen. As a result, offloading can be performed more effectively, which can greatly contribute to an increase in system capacity.
  • TA information for determining a timing for transmitting the uplink signal by the terminal device 100 is further acquired.
  • the D2D transmission timing is determined based on the downlink reception timing of the terminal device 100 and the TA information of the terminal device 100.
  • TA information (for example, TA value) is an existing parameter that is notified to the terminal device 100 during random access, so the base station 200 does not need to transmit a new control signal.
  • the determined D2D transmission timing is a timing before the downlink reception timing.
  • the D2D transmission timing being too late, the period during which the D2D communication signal is actually received by the counterpart device does not fit within the period for the counterpart device to receive the downlink signal. It can be avoided.
  • the determined D2D transmission timing is a timing after the timing at which the base station 200 transmits a downlink signal (hereinafter referred to as “downlink transmission timing”).
  • the downlink transmission timing is a timing that precedes the downlink reception timing by half the time corresponding to the TA information of the terminal device 100.
  • the D2D transmission timing is after the downlink transmission timing of the base station. Since the downlink reception timing of the counterpart device is at least later than the downlink transmission timing, the counterpart D2D transmission timing and the downlink reception timing are closer. Therefore, there is a higher possibility that the D2D communication signal is properly received. In other words, restrictions for appropriate reception of the D2D communication signal (for example, the distance between the base station 200 and the reception side device and the transmission side device, and the distance between the reception side device and the transmission side device). It becomes possible to loosen.
  • the determined D2D transmission timing is timing for the base station 200 to transmit a downlink signal (that is, downlink transmission timing).
  • the D2D transmission timing between the terminal devices 100 becomes almost constant. That is, variations in the D2D transmission timing by the terminal device 100 are reduced regardless of the position of each terminal device 100 in the cell 21, the frequency band used for D2D communication, and the duplex method (for example, the FDD method or the TDD method). .
  • the determined D2D transmission timing is a reception timing (that is, downlink reception timing) for the terminal device 100 to receive a downlink signal.
  • the terminal device 100 (for example, the terminal device 100A and the terminal device 100B) that performs D2D communication is located nearby. That is, the distance between the terminal devices 100 is small. Therefore, the difference between the downlink reception timing of the transmission side apparatus of D2D communication and the downlink reception timing of the reception side is small. Furthermore, the propagation delay from the transmission side apparatus to the reception side apparatus in D2D communication is small. Therefore, if a transmission side device (for example, terminal device 100A) of D2D communication transmits a D2D communication signal at its own downlink reception timing, the reception side device (for example, terminal device 100B) has its own downlink reception timing. The D2D communication signal can be received at a timing close to.
  • the possibility that the D2D communication signal is appropriately received increases.
  • restrictions for appropriate reception of the D2D communication signal for example, the distance between the base station 200 and the reception side device and the transmission side device, and the distance between the reception side device and the transmission side device. It becomes possible to loosen.
  • the terminal device 100 can perform D2D at an appropriate D2D transmission timing.
  • a communication signal can be transmitted.
  • TA information for determining a timing for transmitting an uplink signal from another terminal apparatus 100 is as follows. Further acquired. Based on the downlink reception timing of the terminal device 100, the TA information of the terminal device 100, and the TA information of another terminal device 100, the D2D transmission timing is determined.
  • the determined D2D transmission timing is a timing at which another terminal apparatus 100 (that is, a receiving terminal apparatus for D2D communication) receives a downlink signal from the base station 200 (that is, a D2D communication timing).
  • the downlink reception timing of another terminal apparatus 100 is the TA information of the other terminal apparatus 100 with respect to the timing for the base station 200 to transmit a downlink signal (that is, downlink transmission timing). The timing is delayed by half the time corresponding to.
  • the terminal device 100 (for example, the terminal device 100A and the terminal device 100B) that performs D2D communication is located nearby. That is, the distance between the terminal devices 100 is small. Therefore, in D2D communication, the propagation delay from the transmission side device to the reception side device is small. Therefore, if a transmitting side device (for example, the terminal device 100A) of D2D communication transmits a D2D communication signal at the downlink reception timing of the receiving side device (for example, the terminal device 100B), the receiving side device has its own downtime. The D2D communication signal can be received at a timing close to the link reception timing. Therefore, the possibility that the D2D communication signal is appropriately received increases. In other words, restrictions for appropriate reception of the D2D communication signal (for example, the distance between the base station 200 and the reception side device and the transmission side device, and the distance between the reception side device and the transmission side device). It becomes possible to loosen.
  • a device configuring a part of the base station may determine the D2D transmission timing of the terminal device.
  • the information acquisition unit and the transmission timing determination unit included in the terminal device may be included in the base station (or the above-described device constituting a part thereof). Then, the base station may notify the terminal device of the D2D transmission timing.
  • processing steps in the communication control processing of this specification do not necessarily have to be executed in time series in the order described in the flowchart.
  • processing steps in the Tsushin control process may be executed in a different order from the order described as the flowchart, or may be executed in parallel.
  • a computer program for causing hardware such as a CPU, ROM, and RAM incorporated in a communication control device (for example, a terminal device) to perform the same functions as the components of the communication control device.
  • a storage medium storing the computer program is also provided.
  • An acquisition unit that acquires a reception timing for the second wireless communication device to receive a downlink signal from a base station that wirelessly communicates with the first wireless communication device or the second wireless communication device;
  • a determination unit that determines a transmission timing for the second wireless communication apparatus to transmit to the first wireless communication apparatus based on the reception timing; With The transmission timing to be determined is a timing later than the timing for the second wireless communication apparatus to transmit an uplink signal.
  • Communication control device (2)
  • the acquisition unit further acquires first timing advance information for determining the timing for the second wireless communication apparatus to transmit an uplink signal, The determination unit determines the transmission timing based on the reception timing and the first timing advance information.
  • the communication control device according to (1).
  • the communication control device wherein the determined transmission timing is a timing before the reception timing.
  • the communication control device according to (2) or (3), wherein the determined transmission timing is a timing after a timing for the base station to transmit a downlink signal.
  • the communication control device (4), wherein the determined transmission timing is a timing for the base station to transmit a downlink signal.
  • the timing at which the base station transmits a downlink signal is a timing that precedes the reception timing by a half of a time corresponding to the first timing advance information, (4) or The communication control device according to (5).
  • the communication control device according to (1), wherein the determined transmission timing is the reception timing.
  • the acquisition unit further acquires second timing advance information for determining a timing for the first wireless communication apparatus to transmit an uplink signal, The determination unit determines the transmission timing based on the reception timing, the first timing advance information, and the second timing advance information.
  • the communication control device according to (2).
  • the communication control device wherein the determined transmission timing is a timing for the first wireless communication device to receive a downlink signal from the base station.
  • the timing for the first wireless communication apparatus to receive the downlink signal is a time corresponding to the second timing advance information with respect to the timing for the base station to transmit the downlink signal.
  • the first wireless communication device and the second wireless communication device are located in the same cell,
  • the base station is a base station of the same cell;
  • the communication control apparatus according to any one of (1) to (10).
  • the first wireless communication device is located in a first cell;
  • the second wireless communication device is located in a second cell different from the first cell;
  • the base station is either one of the first cell or the second cell,
  • the communication control apparatus according to any one of (1) to (10).
  • the first wireless communication device and the second wireless communication device transmit signals according to a predetermined wireless communication method and receive signals according to the predetermined wireless communication method in inter-device communication.
  • the communication control apparatus according to any one of (12).
  • the communication control apparatus according to (13), wherein the predetermined wireless communication method is a wireless communication method used by a base station for transmitting a downlink signal.
  • the predetermined wireless communication method is an orthogonal frequency division multiplexing method.
  • the wireless communication device according to any one of (1) to (15), wherein the communication control device is the second wireless communication device.
  • the communication control device is a device that constitutes a part of the base station.
  • Computer An acquisition unit that acquires a reception timing for the second wireless communication device to receive a downlink signal from a base station that wirelessly communicates with the first wireless communication device or the second wireless communication device;
  • a determination unit that determines a transmission timing for the second wireless communication apparatus to transmit to the first wireless communication apparatus based on the reception timing; Function as The transmission timing to be determined is a timing later than the timing for the second wireless communication apparatus to transmit an uplink signal. program.
  • terminal device 10 terminal device 20 base station 21 cell 23 macro cell 25 small cell 100 terminal device 110 antenna unit 120 wireless communication unit 130 storage unit 140 control unit 141 information acquisition unit 143 transmission timing determination unit 200 base station

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】セルラー通信の通信方式と同じ通信方式が採用されるD2D通信において信号が適切に受信される可能性を高めることを可能にする。 【解決手段】第1の無線通信装置又は第2の無線通信装置と無線通信する基地局からのダウンリンク信号を前記第2の無線通信装置が受信するための受信タイミングを取得する取得部と、前記受信タイミングに基づいて、装置間通信で前記第2の無線通信装置が前記第1の無線通信装置へ送信するための送信タイミングを決定する決定部と、を備える通信制御装置が提供される。決定される前記送信タイミングは、アップリンク信号を前記第2の無線通信装置が送信するためのタイミングよりも後のタイミングである。

Description

通信制御装置、プログラム及び通信制御方法
 本開示は、通信制御装置、プログラム及び通信制御方法に関する。
 近接端末間通信、又はデバイス-デバイス間通信(D2D通信)は、セルラー通信における基地局を経由する通信形態とは異なり、端末装置同士が信号を直接送受する通信形態である。そのため、D2D通信では、従来のセルラー通信とは異なる、端末装置の新しい利用形態が生まれてくることが期待される。例えば、近接する端末装置間若しくは近接する端末装置のグループ内におけるデータ通信による情報共有、設置された端末装置からの情報の頒布、M2M(Machine to Machine)と呼ばれる機器間の自律通信など、様々な応用が考えられる。
 また、近年のスマートフォンの増加による、データトラフィックの著しい増加に対して、D2D通信をデータのオフローディングに活用することも考えられる。例えば、近年、動画像のストリーミングデータの送受信に対するニーズが急速に高まっている。しかし、一般に、動画像はデータ量が多いので、RAN(Radio Access Network)において多くのリソースを消費するという問題がある。したがって、端末装置間の距離が小さい場合のように、端末装置同士がD2D通信に適している状態であれば、動画像データをD2D通信にオフローディングすることにより、RANにおけるリソースの消費及び処理の負荷を抑えることができる。このように、D2D通信は、通信事業者及びユーザの双方にとって利用価値がある。そのため、現在、D2D通信は、3GPP(3rd Generation Partnership Project)標準化会議においても、LTE(Long Term Evolution)に必要な重要な技術領域の1つとして認識され、注目されている。
 従来、例えば以下の特許文献に開示されているように、D2D通信には、Bluetooth(登録商標)、WiFi(登録商標)等の通信方式を採用し、当該通信方式と、WCDMA(Wideband Code Division Multiple Access)(登録商標)、LTE等のセルラー通信の通信方式とを組み合わせる例はあった。
特開2010-279042号公報
 しかし、セルラー通信の通信方式(例えば、LTE)と同一の通信方式がD2D通信に採用される場合、セルラー通信とD2D通信とが適切に調和されていなければ、D2D通信において信号の送受信に支障が生じ得る。具体的には、例えば、D2D通信の際の端末装置間の距離は、基地局と端末装置との間の距離よりも小さいので、D2D通信での伝搬遅延は、セルラー通信での伝搬遅延よりも小さくなる。そのため、端末装置が、セルラー通信における送受信のタイミングを考慮してD2D通信の信号を送信しなければ、D2D通信の信号は、適切に受信されない可能性がある。
 そこで、セルラー通信の通信方式と同じ通信方式が採用されるD2D通信において信号が適切に受信される可能性を高めることを可能にする仕組みが提供されることが望ましい。
 本開示によれば、第1の無線通信装置又は第2の無線通信装置と無線通信する基地局からのダウンリンク信号を前記第2の無線通信装置が受信するための受信タイミングを取得する取得部と、前記受信タイミングに基づいて、装置間通信で前記第2の無線通信装置が前記第1の無線通信装置へ送信するための送信タイミングを決定する決定部と、を備える通信制御装置が提供される。決定される前記送信タイミングは、アップリンク信号を前記第2の無線通信装置が送信するためのタイミングよりも後のタイミングである。
 また、本開示によれば、コンピュータを、第1の無線通信装置又は第2の無線通信装置と無線通信する基地局からのダウンリンク信号を前記第2の無線通信装置が受信するための受信タイミングを取得する取得部と、前記受信タイミングに基づいて、装置間通信で前記第2の無線通信装置が前記第1の無線通信装置へ送信するための送信タイミングを決定する決定部と、として機能させるためのプログラムが提供される。決定される前記送信タイミングは、アップリンク信号を前記第2の無線通信装置が送信するためのタイミングよりも後のタイミングである。
 また、本開示によれば、第1の無線通信装置又は第2の無線通信装置と無線通信する基地局からのダウンリンク信号を前記第2の無線通信装置が受信するための受信タイミングを取得することと、前記受信タイミングに基づいて、装置間通信で前記第2の無線通信装置が前記第1の無線通信装置へ送信するための送信タイミングを決定することと、を含む通信制御方法が提供される。決定される前記送信タイミングは、アップリンク信号を前記第2の無線通信装置が送信するためのタイミングよりも後のタイミングである。
 以上説明したように本開示によれば、セルラー通信の通信方式と同じ通信方式が採用されるD2D通信において信号が適切に受信される可能性を高めることが可能となる。
図2~図7の説明の前提となる無線通信システムの例を説明するための説明図である。 LTEに従った無線通信で送信されるダウンリンク信号を説明するための説明図である。 端末装置がダウンリンク信号を受信するタイミングの例を概略的に説明するための説明図である。 端末装置がダウンリンク信号を受信するタイミングの例を詳細に説明するための説明図である。 端末装置がアップリンク信号を送信するタイミングの例を概略的に説明するための説明図である。 端末装置がアップリンク信号を送信するタイミングの例を詳細に説明するための説明図である。 タイミングアドバンスを説明するための説明図である。 セルラー通信における信号の送受信のタイミングをD2D通信に適用する場合の第1の例を説明するための説明図である。 セルラー通信における信号の送受信のタイミングをD2D通信に適用する場合の第2の例を説明するための説明図である。 一実施形態に係る無線通信システムの概略的な構成の一例を示す説明図である。 一実施形態に係る端末装置の構成の一例を示すブロック図である。 一実施形態に係るD2D送信タイミングの第1の例を説明するための第1の説明図である。 一実施形態に係るD2D送信タイミングの第1の例を説明するための第2の説明図である。 一実施形態に係るD2D送信タイミングの第2の例を説明するための第1の説明図である。 一実施形態に係るD2D送信タイミングの第2の例を説明するための第2の説明図である。 一実施形態に係るD2D送信タイミングの第3の例を説明するための第1の説明図である。 一実施形態に係るD2D送信タイミングの第3の例を説明するための第2の説明図である。 端末装置が2つ以上の別の端末装置とD2D通信を行う第1のケースを説明するための説明図である。 端末装置が2つ以上の別の端末装置とD2D通信を行う第2のケースを説明するための説明図である。 一実施形態に係る通信制御処理の概略的な流れの一例を示すシーケンス図である。 D2D通信を行う端末装置が別々のセル内に位置する場合の当該セルの第1の例を説明するための説明図である。 D2D通信を行う端末装置が別々のセル内に位置する場合の当該セルの第2の例を説明するための説明図である。 一実施形態の変形例に係る通信制御処理の概略的な流れの第1の例を示すシーケンス図である。 一実施形態の変形例に係る通信制御処理の概略的な流れの第2の例を示すシーケンス図である。 本開示に係る技術が適用され得るスマートフォンの概略的な構成の一例を示すブロック図である。 本開示に係る技術が適用され得るカーナビゲーション装置の概略的な構成の一例を示すブロック図である。 本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。 本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.はじめに
  1.1.セルラー通信方式における信号の送受信のタイミング
  1.2.D2D通信における技術的課題
 2.無線通信システムの概略的な構成
 3.端末装置の構成
 4.処理の流れ
 5.変形例
 6.はじめに
  6.1.端末装置に関する応用例
  6.2.基地局に関する応用例
 7.まとめ
 <<1.はじめに>>
 まず、図1~図9を参照して、セルラー通信方式における信号の送受信のタイミング、及びD2D通信における技術的課題を説明する。
 <1.1.セルラー通信方式における信号の送受信のタイミング>
 図1~7を参照して、セルラー通信方式における信号の送受信のタイミングを説明する。ここでは、一例として、LTEにおける信号の送受信のタイミングを説明する。
 (無線通信システムの構成)
 図1は、図2~図7の説明の前提となる無線通信システムの例を説明するための説明図である。図1を参照すると、端末装置10及び基地局20が示されている。端末装置10は、UE(User Equipment)と呼ばれ、基地局20は、eNB(Evolved Node B)と呼ばれる。また、基地局20により形成されるセル21も示されている。このような無線通信システムでは、セルラー通信として、各端末装置10と基地局20との間で無線通信が行われる。また、D2D通信として、端末装置10間で無線通信が行われる。例えば、端末装置10Aと端末装置10Bは、D2D通信を行う。
 また、この例では、端末装置10Aは、端末装置10Bよりも基地局20から遠くに位置する。即ち、端末装置10Aと基地局20との間の距離は、端末装置10Bと基地局20との距離よりも長い。
 (LTEにおける信号)
 -ダウンリンク
 LTEでは、ダウンリンクにおいてOFDM(Orthogonal Frequency Division Multiplexing)が採用される。そして、無線通信の時間の単位であるサブフレームごとに、14個のOFDMシンボルが送信される。以下、この点について、図2を参照して具体例を説明する。
 図2は、LTEに従った無線通信で送信されるダウンリンク信号を説明するための説明図である。図2を参照すると、LTEに従った無線通信で1サブフレームで送信されるダウンリンク信号が示されている。LTEでは、通常、1サブフレームには、14個のOFDMシンボルが含まれる。換言すると、1サブフレームは2スロットを含み、1スロットには7個のOFDMシンボルがある。また、各OFDMシンボルは、先頭にサイクリックプレフィクス(Cyclic Prefix:CP)を含む。
 CPは、OFDMシンボルの遅延波が次のOFDMシンボルに及ぼすシンボル間干渉を除去するためのガード区間である。CPは、例えば、OFDMシンボルのうちの最後尾の所定時間分の信号をコピーすることにより生成される。OFDMシンボルを受信する端末装置は、OFDMシンボルのうちのCPの信号を無視し、OFDMシンボルの残りの信号を復調する。なお、サイクリックプレフィクスは、サブキャリア間干渉の除去にも寄与する。
 なお、ノーマルサイクリックプリフィックス場合、OFDMシンボル長は、約66.67マイクロ秒である。また、各シンボルの先頭に含まれるサイクリックプリフィックスの長さは、約4.687マイクロ秒である。
 -アップリンク
 一方、LTEでは、アップリンクにおいてSC-FDMA(Single Carrier Frequency Division Multiple Access)が採用される。そして、時間方向においてSC-FDMAシンボルが送信される。当該SC-FDMAシンボルも、OFDMシンボルと同様にCPを含む。
 (信号の送受信のタイミング)
 -ダウンリンク
 LTEのダウンリンクでは、基地局20は、あるフレームタイミングで同時にダウンリンク信号を送信する。即ち、基地局20は、各端末装置10へのダウンリンク信号を同じタイミングで送信する。これは、基地局20では、各端末装置10宛のデータを送信するためのリソースブロックが、同じフレームタイミングで並列に信号処理され、これらが増幅後に一斉にアンテナから送出されるためである。
 一方、端末装置10は、当該フレームタイミングではなく、端末装置10と基地局20との間の距離に応じた伝搬遅延の後に、ダウンリンク信号を受信する。この点について図3及び図4を参照して具体例を説明する。
 図3は、端末装置がダウンリンク信号を受信するタイミングの例を概略的に説明するための説明図である。図3を参照すると、基地局20がサブフレームで端末装置10A及び端末装置10Bのそれぞれにダウンリンク信号を送信するタイミングが示されている。このように、基地局20は、あるフレームタイミングで同時にダウンリンク信号を送信する。また、図3には、端末装置10A及び端末装置10Bのそれぞれがダウンリンク信号を受信するタイミングも示されている。このように、端末装置10A及び端末装置10Bは、フレームタイミングよりも遅れてダウンリンク信号を受信し始める。
 図4は、端末装置がダウンリンク信号を受信するタイミングの例を詳細に説明するための説明図である。図4を参照すると、図3に示された端末装置10A及び端末装置10Bのそれぞれがダウンリンク信号を受信するタイミングがより詳細に示されている。この例では、図1に示されるように、端末装置10Aは、端末装置10Bよりも基地局20からより離れている。そのため、基地局20から端末装置10Aへのパスでの伝搬遅延PD(B→T)は、基地局20から端末装置10Bへのパスでの伝搬遅延PD(B→T)よりも大きい。即ち、PD(B→T)>PD(B→T)である。よって、端末装置10Aがダウンリンク信号を受信し始めるタイミングは、端末装置10Bがダウンリンク信号を受信し始めるタイミングよりも遅くなる。このように、端末装置10のダウンリンク信号の受信タイミングは、端末装置10がセル21内のどの位置にいるかに応じて決まる。
 -アップリンク
 LTEのアップリンクでは、基地局20は、あるフレームタイミングで同時にアップリンク信号を受信する。即ち、基地局20は、各端末装置10からのアップリンク信号を同じタイミングで受信する。
 一方、端末装置10は、当該フレームタイミングではなく、端末装置10と基地局20との間の距離に応じた伝搬遅延を考慮して、フレームタイミングに先行してアップリンク信号を送信し始める。この点について図5及び図6を参照して具体例を説明する。
 図5は、端末装置がアップリンク信号を送信するタイミングの例を概略的に説明するための説明図である。図5を参照すると、基地局20がサブフレームで端末装置10A及び端末装置10Bのそれぞれからのアップリンク信号を受信するタイミングが示されている。このように、基地局20は、あるフレームタイミングで同時にアップリンク信号を受信する。また、図5には、端末装置10A及び端末装置10Bのそれぞれがアップリンク信号を送信するタイミングも示されている。このように、端末装置10A及び端末装置10Bは、フレームタイミングに先行してアップリンク信号を送信し始める。
 図6は、端末装置がアップリンク信号を送信するタイミングの例を詳細に説明するための説明図である。図6を参照すると、図5に示された端末装置10A及び端末装置10Bのそれぞれがアップリンク信号を受信するタイミングがより詳細に示されている。この例では、図1に示されるように、端末装置10Aは、端末装置10Bよりも基地局20からより離れている。そのため、端末装置10Aから基地局20へのパスの伝搬遅延PD(T→B)は、端末装置10Bから基地局20へのパスでの伝搬遅延PD(T→B)よりも大きい。即ち、PD(T→B)>PD(T→B)である。よって、端末装置10Aがアップリンク信号を送信し始めるタイミングは、端末装置10Bがアップリンク信号を送信し始めるタイミングよりも早くなる。このように、端末装置10のアップリンク信号の送信タイミングは、端末装置10がセル21内のどの位置にいるかに応じて決まる。
 このように、各端末装置10からのアップリンク信号が基地局20で同時に到着するように、端末装置10がアップリンク信号を送信する技術は、タイミングアドバンス(Timing Advance:TA)と呼ばれる。以下、この点について、図7を参照してより詳細な内容を説明する。
 図7は、タイミングアドバンスを説明するための説明図である。図7を参照すると、端末装置10Aのアップリンク信号の送信タイミングと、端末装置10Aのダウンリンク信号の送信タイミングとが、示されている。このように、アップリンク信号の送信タイミングは、伝搬遅延PD(T→B)と同じ時間だけフレームタイミングに対して先行する。また、ダウンリンク信号の受信タイミングは、伝搬遅延PD(B→T)だけフレームタイミングよりも遅い。また、通常、伝搬遅延PD(T→B)と伝搬遅延PD(B→T)とは等しい。即ち、PD(T→B)=PD(B→T)である。よって、端末装置100Aは、ダウンリンク信号を受信するためのタイミングに対して、伝搬遅延PD(B→T)(又は、伝搬遅延PD(T→B))の2倍の時間だけ先行して、アップリンク信号を送信する。
 なお、端末装置10は、ダウンリンク信号を受信するので、ダウンリンク信号を受信するためのタイミングを知っている。また、端末装置10は、アップリンク信号を送信するタイミングを決定するための情報としてタイミングアドバンス値(TA値)を基地局から受信する。TA値の初期値は、例えば、ランダムアクセスの際のランダムアクセスレスポンスで、端末装置10に通知される。端末装置10は、ダウンリンク信号を送信するためのタイミングに対して、TA値に対応する時間だけ先行するタイミングを、アップリンク信号を送信するためのタイミングとして決定する。即ち、当該TA値に対応する時間は、端末装置10と基地局との間の伝搬遅延の概ね2倍に相当する。例えば、セル21のセルエッジに位置する端末装置10は、セルの中心のより近くに位置する端末装置10よりも、長い時間に対応するTA値を与えられる。LTEにおけるTA値は、0から1282までの11bitの値である。また、送信タイミングを調整するための、TA値の刻み幅は、約0.52マイクロ秒である。したがって、端末装置10の送信タイミングは、最大0.67ミリ秒まで調整され得る。
 <1.2.技術的課題>
 上述したようにセルラー通信における信号の送受信が行われる。一方、端末装置10間でのD2D通信に、セルラー通信における信号の送受信のタイミングをそのまま適用することは望ましくない。以下、この点について図8及び図9を参照して具体例を説明する。この例では、D2D通信にOFDMが採用される。
 図8は、セルラー通信における信号の送受信のタイミングをD2D通信に適用する場合の第1の例を説明するための説明図である。図8の例では、端末装置10BがD2D通信の送信側装置であり、端末装置10AがD2D通信の受信側装置である。図8を参照すると、基地局20がダウンリンク信号を送信するための送信タイミング、及び、端末装置10Aが当該ダウンリンク信号を受信するための受信タイミングが、示されている。これらのタイミングについては、図4を参照して説明したとおりである。
 さらに図8を参照すると、D2D通信において、端末装置10BがD2D通信信号を送信する送信タイミング、及び、端末装置10Aが当該D2D通信信号を実際に受信する受信タイミングも、示されている。この例では、セルラー通信における送受信のタイミングがそのまま適用されるので、端末装置10BがD2D通信信号を送信する送信タイミングは、端末装置10Bがアップリンク信号を送信するための送信タイミングと同じである。そして、端末装置10AがD2D通信信号を実際に受信する受信イミングは、端末装置10BがD2D通信信号を送信する送信タイミングよりも、伝搬遅延PD(T→T)分だけ遅れる。ただし、D2D通信の際には端末装置10Aと端末装置10Bとの間の距離は小さいので、上記伝搬遅延PD(T→T)は非常に小さくなる。
 結果として、図8に示されるように、端末装置10Aが当該ダウンリンク信号を受信するための受信タイミングと、端末装置10Aが当該D2D通信信号を実際に受信する受信タイミングとの間に、大きなズレが生じてしまう。そして、端末装置10Aがダウンリンク信号を受信するための受信タイミング以降の信号が端末装置10Aによって復調される場合に、D2D通信信号の一部は復調されない。当該一部には、CPのみではなく、CP以外の信号も含まれる。よって、信号が適切に受信されない。
 図9は、セルラー通信における信号の送受信のタイミングをD2D通信に適用する場合の第2の例を説明するための説明図である。図9の例では、端末装置10AがD2D通信の送信側装置であり、端末装置10BがD2D通信の受信側装置である。図9を参照すると、基地局20がダウンリンク信号を送信するための送信タイミング、及び、端末装置10Bが当該ダウンリンク信号を受信するための受信タイミングが、示されている。これらのタイミングについては、図4を参照して説明したとおりである。
 さらに図9を参照すると、D2D通信において、端末装置10AがD2D通信信号を送信する送信タイミング、及び、端末装置10Bが当該D2D通信信号を実際に受信する受信タイミングも、示されている。この例では、セルラー通信における送受信のタイミングがそのまま適用されるので、端末装置10AがD2D通信信号を送信する送信タイミングは、端末装置10Aがアップリンク信号を送信するための送信タイミングと同じである。そして、端末装置10BがD2D通信信号を実際に受信する受信イミングは、端末装置10AがD2D通信信号を送信する送信タイミングよりも、伝搬遅延PD(T→T)分だけ遅れる。ただし、D2D通信の際には端末装置10Aと端末装置10Bとの距離は離れていないので、上記伝搬遅延PD(T→T)は非常に小さくなる。
 結果として、図9に示されるように、端末装置10Bが当該ダウンリンク信号を受信するための受信タイミングと、端末装置10Bが当該D2D通信信号を実際に受信する受信タイミングとの間に、大きなズレが生じてしまう。そして、端末装置10Bがダウンリンク信号を受信するための受信タイミング以降の信号が端末装置10Aによって復調される場合に、D2D通信信号の一部は復調されない。当該一部には、CPのみではなく、CP以外の信号も含まれる。よって、信号が適切に受信されない。
 以上、図8及び図9を参照して説明したように、TAによるアップリンク送信タイミングの調整幅(即ち、TA値に対応する時間)が大きい場合に、D2D通信信号のCP以外の部分が復調されず、D2D通信信号が適切に受信されない。D2D通信は、主として基地局20から離れたセルエッジで多用されると想定されるので、D2D通信を行う端末装置10についてのTA値は比較的大きい値になることが想定される。したがって、D2D通信信号は、適切に復調されない可能性がある。
 上述した課題をより詳細な数値を用いて説明する。例えば、端末装置10A及び端末装置10Bが、半径1キロメートルのセルのセルエッジに存在するものとする。この場合には、基地局20から端末装置10までのパスでの伝搬遅延が、は、約3.33マイクロ秒である。よって、端末装置10間の距離を無視すれば、端末装置10間における受信タイミングのずれは、約6.66マイクロ秒となる。一方、CPの長さは、4.687マイクロ秒である。よって、受信タイミングのずれがCPの長さを超えるので、D2D通信信号は適切に受信されない。
 上述した例では、端末装置10と基地局20との間の距離が1キロメートルであるが、当該距離がより短ければ、D2D通信信号が適切に受信され得る。例えば、端末装置10と基地局20との間の距離が700メートルであれば、伝搬遅延は、2.33マイクロ秒である。この場合に、受信タイミングのずれは、約4.66マイクロ秒である。よって、サイクリックプレフィクスが4.687マイクロ秒の長さであることを考慮すると、D2D通信に許容される伝搬遅延は、0.021マイクロ秒である。当該伝搬遅延は、6.3メートルの距離に対応する。しかしながら、当該伝搬遅延又は距離の制約の下では、端末装置10の移動、伝搬路の変化によるわずかな伝搬遅延の変化等によって、D2D通信に大きな影響が生じ得る。よって、安定した通信が保証されないと考えられる。
 このように基地局20との通信に最適化された送受信タイミングが端末装置10において用いられる場合に、D2D通信が可能であるか否かは、端末装置10と基地局20と間の距離、及び、D2D通信を行う端末装置10間の距離に依存する。即ち、D2D通信に大きな制約が与えられてしまう。
 そこで、本実施形態では、セルラー通信の通信方式と同じ通信方式が採用されるD2D通信において信号が適切に受信される可能性を高めることを可能にする。より具体的には、D2D通信を行う端末装置10と基地局20と間の距離、D2D通信を行う端末装置10間の距離等の、D2D通信における制約を、緩めること、又はなくすことを可能にする。
 <<2.無線通信システムの概略的な構成>>
 続いて、図10を参照して、本開示の実施形態に係る無線通信システム1の概略的な構成を説明する。図10は、本実施形態に係る無線通信システム1の概略的な構成の一例を示す説明図である。図10を参照すると、無線通信システム1は、端末装置100及び基地局200を含む。無線通信システム1は、例えば、セルラー通信の通信方式としてLTEを採用する。
 端末装置100は、基地局200により形成されるセル21内に位置する場合に、基地局200と無線通信する。即ち、端末装置100は、基地局200により送信されるダウンリンク信号を受信し、基地局200へのアップリンク信号を送信する。例えば、端末装置100は、OFDMに従ってダウンリンク信号を受信し、SC-FDMAに従ってアップリンク信号を送信する。
 また、端末装置100は、別の端末装置100とのD2D通信を行う。例えば、端末装置100は、D2D通信において、所定の無線通信方式に従って信号を送信し、当該所定の無線通信方式に従って信号を受信する。また、当該所定の無線通信方式は、例えば、ダウンリンク信号の送信のために基地局200により用いられる無線通信方式である。即ち、上記所定の無線通信方式は、OFDMである。即ち、端末装置100は、D2D通信において、OFDMに従って信号を送受信する。
 基地局200は、セル21内に位置する端末装置100と無線通信する。即ち、基地局200は、端末装置100へのダウンリンク信号を送信し、端末装置100からのアップリンク信号を受信する。例えば、基地局200は、OFDMに従ってダウンリンク信号を送信し、SC-FDMAに従ってアップリンク信号を受信する。
 <<3.端末装置の構成>>
 続いて、図11~図19を参照して、本実施形態に係る端末装置100の構成の一例を説明する。図11は、本実施形態に係る端末装置100の構成の一例を示すブロック図である。図11を参照すると、端末装置100は、アンテナ部110、無線通信部120、記憶部130及び制御部140を備える。
 (アンテナ部110)
 アンテナ部110は、無線信号を受信し、受信された無線信号を無線通信部120へ出力する。また、アンテナ部110は、無線通信部120により出力された送信信号を送信する。
 (無線通信部120)
 無線通信部120は、他の装置と無線通信する。例えば、無線通信部120は、基地局200により形成されるセル21内に端末装置100が位置する場合に、基地局200と無線通信する。即ち、無線通信部120は、基地局200により送信されるダウンリンク信号を受信し、基地局200へのアップリンク信号を送信する。例えば、無線通信部120は、OFDMに従ってダウンリンク信号を受信し、SC-FDMAに従ってアップリンク信号を送信する。
 とりわけ本実施形態では、無線通信部120は、他の端末装置100とD2D通信を行う。例えば、無線通信部120は、D2D通信において、所定の無線通信方式に従って信号を送信し、当該所定の無線通信方式に従って信号を受信する。また、当該所定の無線通信方式は、例えば、ダウンリンク信号の送信のために基地局200により用いられる無線通信方式である。即ち、上記所定の無線通信方式は、OFDMである。無線通信部120は、D2D通信において、OFDMに従って信号を送受信する。
 (記憶部130)
 記憶部130は、端末装置100の動作のためのプログラム及びデータを記憶する。
 (制御部140)
 制御部140は、端末装置100の様々な機能を提供する。制御部140は、情報取得部141及び送信タイミング決定部143を備える。
 (情報取得部141)
 情報取得部141は、端末装置100又は別の端末装置100と無線通信する基地局200からのダウンリンク信号を端末装置100(無線通信部120)が受信するための受信タイミング(以下、「ダウンリンク受信タイミング」と呼ぶ)を取得する。例えば、端末装置100及び別の端末装置100は、同一のセル21内に位置し、基地局200は、当該セル21の基地局である。即ち、端末装置100及び別の端末装置100は、同じ基地局200からのダウンリンク信号を受信する。そして、情報取得部141は、基地局200からのダウンリンク信号を端末装置100(無線通信部120)が受信するためのダウンリンク受信タイミングを取得する。例えば、情報取得部141は、無線通信部120によるダウンリンク信号の検出結果から、上記ダウンリンク受信タイミングを取得する。
 また、例えば、情報取得部141は、アップリンク信号を端末装置100(無線通信部120)が送信するためのタイミング(以下、アップリンク送信タイミング)を決定するためのタイミングアドバンス情報(TA情報)をさらに取得する。当該TA情報は、例えば、TA値である。上述したように、TA値は、ランダムアクセスの際のランダムアクセスレスポンスで、端末装置100に通知されるので、情報取得部141は、無線通信部120を介して、ランダムアクセスレスポンスで通知されるTA値を取得する。
 なお、情報取得部141は、アップリンク信号を別の端末装置100が送信するためのタイミング(即ち、別の端末装置100のアップリンク送信タイミング)を決定するためのTA情報をさらに取得してもよい。この場合に、例えば、基地局200は、上記別の端末装置100のTA値を取得し、当該TA値を端末装置100に送信してもよい。そして、無線通信部120が、上記別の端末装置100のTA値を受信すると、情報取得部141は、上記別の端末装置100の当該TA値を取得してもよい。
 (送信タイミング決定部143)
 送信タイミング決定部143は、端末装置100が信号を送信するための送信タイミングを決定する。
 例えば、送信タイミング決定部143は、基地局200へのアップリンク信号を端末装置100(無線通信部120)が送信するための送信タイミング(以下、「アップリンク送信タイミング」と呼ぶ)を決定する。より具体的には、例えば、送信タイミング決定部143は、取得されたTA値に対応する時間だけダウンリンク受信タイミングに対して先行するタイミングを、上記アップリンク送信タイミングとして決定する。そして、送信タイミング決定部143は、無線通信部120に、決定されたアップリンク送信タイミングでアップリンク信号を送信させる。
 また、とりわけ本実施形態では、送信タイミング決定部143は、取得されたダウンリンク受信タイミングに基づいて、D2D通信で端末装置100(無線通信部120)が別の端末装置100へ送信するための送信タイミング(以下、「D2D送信タイミング」と呼ぶ)を決定する。そして、決定される上記D2D送信タイミングは、アップリンク信号を端末装置100(無線通信部120)が送信するためのタイミング(即ち、アップリンク送信タイミング)よりも後のタイミングである。
 上述したように、D2D通信の送信側装置のD2D送信タイミングが、アップリンク送信タイミングと同じである場合には、D2D通信信号は、D2D通信の受信側装置のダウンリンク受信タイミングよりもかなり早く当該受信側装置に到達してしまう。そのため、基地局200と受信側装置及び送信側装置との間の距離、並びに、受信側装置と送信側装置との間の距離によっては、D2D通信信号のうちのCP以外の部分も復調されなくなる可能性がある。
 一方、本実施形態のように、D2D送信タイミングがアップリンク送信タイミングよりも後のタイミングであれば、相手側のD2D受信タイミングとダウンリンク受信タイミングとがより近くなる。よって、D2D通信信号が適切に受信される可能性が高くなる。換言すると、D2D通信信号の適切な受信のための制約(例えば、基地局200と受信側装置及び送信側装置との間の距離、並びに、受信側装置と送信側装置との間の距離)を緩めることが可能になる。その結果、オフローディングをより効果的に行うことが可能になり、システム容量の増加に大きく貢献し得る。
 以下、決定されるD2D送信タイミングのより具体的な例を説明する。
 -D2D送信タイミングの第1の例
 第1の例として、送信タイミング決定部143は、端末装置100のダウンリンク受信タイミング及び端末装置100のTA情報に基づいて、D2D送信タイミングを決定する。上述したように、当該TA情報は、例えばTA値である。TA情報(例えば、TA値)は、ランダムアクセスの際に端末装置100に通知される既存のパラメータであるので、基地局200が新たな制御信号を送信する必要がない。
 例えば、決定されるD2D送信タイミングは、ダウンリンク受信タイミングよりも前のタイミングである。例えば、送信タイミング決定部143は、端末装置100のTA値に対応する時間に係数P(0<P<1)を乗算する。そして、送信タイミング決定部143は、乗算結果の時間だけダウンリンク受信タイミングに対して先行するタイミングを、D2D送信タイミングとして決定する。そして、送信タイミング決定部143は、無線通信部120に、決定されたD2D送信タイミングでD2D通信信号を送信させる。
 これにより、D2D送信タイミングが遅すぎることに起因して、相手側装置でD2D通信信号が実際に受信される期間が、相手側装置がダウンリンク信号を受信するための期間に収まらなくなることを、回避することができる。
 また、例えば、決定されるD2D送信タイミングは、ダウンリンク信号を基地局200が送信するためのタイミング(以下、「ダウンリンク送信タイミング」と呼ぶ)以降のタイミングである。例えば、当該ダウンリンク送信タイミングは、ダウンリンク受信タイミングに対して、端末装置100のTA情報に対応する時間の半分の時間だけ先行するタイミングである。
 具体的には、例えば、送信タイミング決定部143は、端末装置100のTA値に対応する時間に係数P(0<P≦1/2)を乗算する。そして、送信タイミング決定部143は、乗算結果の時間だけダウンリンク受信タイミングに対して先行するタイミングを、D2D送信タイミングとして決定する。
 これにより、D2D送信タイミングは、基地局のダウンリンク送信タイミング以降になる。相手側装置のダウンリンク受信タイミングは、少なくとも上記ダウンリンク送信タイミングよりも後であるので、相手側のD2D送信タイミングとダウンリンク受信タイミングとがさらに近くなる。よって、D2D通信信号が適切に受信される可能性がより高くなる。換言すると、D2D通信信号の適切な受信のための制約(例えば、基地局200と受信側装置及び送信側装置との間の距離、並びに、受信側装置と送信側装置との間の距離)を緩めることが可能になる。
 また、具体的な一例として、決定されるD2D送信タイミングは、ダウンリンク信号を基地局200が送信するためのタイミング(即ち、ダウンリンク送信タイミング)である。上述したように、例えば、当該ダウンリンク送信タイミングは、ダウンリンク受信タイミングに対して、端末装置100のTA情報に対応する時間の半分の時間だけ先行するタイミングである。例えば、送信タイミング決定部143は、端末装置100のTA値に対応する時間に係数1/2を乗算する。そして、送信タイミング決定部143は、乗算結果の時間だけダウンリンク受信タイミングに対して先行するタイミングを、D2D送信タイミングとして決定する。
 これにより、端末装置100間でD2D送信タイミングがほぼ一定になる。即ち、セル21内での各端末装置100の位置、D2D通信に用いられる周波数帯域、複信方式(例えば、FDD方式又はTDD方式)によらず、端末装置100によるD2D送信タイミングのばらつきが小さくなる。
 以下、図12及び図13を参照して、具体例を説明する。
 図12は、本実施形態に係るD2D送信タイミングの第1の例を説明するための第1の説明図である。図12の例では、端末装置100BがD2D通信の送信側装置であり、端末装置100AがD2D通信の受信側装置である。図12を参照すると、基地局200がダウンリンク信号を送信するためのダウンリンク送信タイミング、及び、端末装置100Aが当該ダウンリンク信号を受信するためのダウンリンク受信タイミングが、示されている。この点については、図8に示される例と同様である。
 さらに図12を参照すると、D2D通信において、端末装置100BがD2D通信信号を送信するD2D送信タイミング、及び、端末装置100Aが当該D2D通信信号を実際に受信するD2D受信タイミングも、示されている。この例では、端末装置100BのD2D送信タイミングは、基地局200のダウンリンク送信タイミングとほぼ同じである。その結果、図12に示される受信タイミングのズレ(即ち、端末装置100Aにおけるダウンリンク受信タイミングとD2D受信タイミングとの間のズレ)は、図8に示される受信タイミングのズレよりも小さくなっている。その結果、当該受信タイミングのズレは、CPの長さよりも小さく、端末装置100Aは、D2D通信信号を適切に受信することができる。
 図13は、本実施形態に係るD2D送信タイミングの第1の例を説明するための第2の説明図である。図13の例では、端末装置100AがD2D通信の送信側装置であり、端末装置100BがD2D通信の受信側装置である。図13を参照すると、基地局200がダウンリンク信号を送信するためのダウンリンク送信タイミング、及び、端末装置100Bが当該ダウンリンク信号を受信するためのダウンリンク受信タイミングが、示されている。この点については、図9に示される例と同様である。
 さらに図13を参照すると、D2D通信において、端末装置100AがD2D通信信号を送信するD2D送信タイミング、及び、端末装置100Bが当該D2D通信信号を実際に受信するD2D受信タイミングも、示されている。この例では、端末装置100AのD2D送信タイミングは、基地局200のダウンリンク送信タイミングとほぼ同じである。その結果、図12に示される受信タイミングのズレ(即ち、端末装置100Bにおけるダウンリンク受信タイミングとD2D受信タイミングとの間のズレ)は、図9に示される受信タイミングのズレよりも小さくなっている。その結果、当該受信タイミングのズレは、CPの長さよりも小さく、端末装置100Bは、D2D通信信号を適切に受信することができる。
 -D2D送信タイミングの第2の例
 第2の例として、決定されるD2D送信タイミングは、ダウンリンク信号を端末装置100が受信するための受信タイミング(即ち、ダウンリンク受信タイミング)である。即ち、送信タイミング決定部143は、取得されるダウンリンク受信タイミングを、D2D送信タイミングとして決定する。そして、送信タイミング決定部143は、無線通信部120に、決定されたD2D送信タイミングでD2D通信信号を送信させる。
 一般的に、D2D通信を行う端末装置100(例えば、端末装置100A及び端末装置100B)は、近くに位置する。即ち、当該端末装置100間の距離は小さい。そのため、D2D通信の送信側装置のダウンリンク受信タイミングと、受信側のダウンリンク受信タイミングとの間の差は、小さい。さらに、D2D通信において送信側装置から受信側装置までの伝搬遅延は小さい。よって、D2D通信の送信側装置(例えば、端末装置100A)が、自らのダウンリンク受信タイミングでD2D通信信号を送信すれば、受信側装置(例えば、端末装置100B)は、自らのダウンリンク受信タイミングに近いタイミングで、D2D通信信号を受信できる。よって、D2D通信信号が適切に受信される可能性が高くなる。換言すると、D2D通信信号の適切な受信のための制約(例えば、基地局200と受信側装置及び送信側装置との間の距離、並びに、受信側装置と送信側装置との間の距離)を緩めることが可能になる。
 また、この場合には、受信タイミング以外の情報は不要である。よって、TA値を未だ取得していない場合(例えば、端末装置100が、ランダムアクセを行なっておらず、アイドル状態である場合)であっても、端末装置100は、適切なD2D送信タイミングでD2D通信信号を送信することが可能になる。
 以下、図14及び図15を参照して、具体例を説明する。
 図14は、本実施形態に係るD2D送信タイミングの第2の例を説明するための第1の説明図である。図14の例では、端末装置100BがD2D通信の送信側装置であり、端末装置100AがD2D通信の受信側装置である。図14を参照すると、基地局200がダウンリンク信号を送信するためのダウンリンク送信タイミング、及び、端末装置100Aが当該ダウンリンク信号を受信するためのダウンリンク受信タイミングが、示されている。この点については、図8及び図12に示される例と同様である。
 さらに図14を参照すると、D2D通信において、端末装置100BがD2D通信信号を送信するD2D送信タイミング、及び、端末装置100Aが当該D2D通信信号を実際に受信するD2D受信タイミングも、示されている。この例では、端末装置100BのD2D送信タイミングは、端末装置100Bのダウンリンク受信タイミングと同じである。その結果、図14に示される受信タイミングのズレ(即ち、端末装置100Aにおけるダウンリンク受信タイミングとD2D受信タイミングとの間のズレ)は、図8に示される受信タイミングのズレよりも小さくなっている。その結果、当該受信タイミングのズレは、CPの長さよりも小さく、端末装置100Aは、D2D通信信号を適切に受信することができる。
 図15は、本実施形態に係るD2D送信タイミングの第2の例を説明するための第2の説明図である。図15の例では、端末装置100AがD2D通信の送信側装置であり、端末装置100BがD2D通信の受信側装置である。図15を参照すると、基地局200がダウンリンク信号を送信するためのダウンリンク送信タイミング、及び、端末装置100Bが当該ダウンリンク信号を受信するためのダウンリンク受信タイミングが、示されている。この点については、図9に示される例と同様である。
 さらに図15を参照すると、D2D通信において、端末装置100AがD2D通信信号を送信するD2D送信タイミング、及び、端末装置100Bが当該D2D通信信号を実際に受信するD2D受信タイミングも、示されている。この例では、端末装置100AのD2D送信タイミングは、端末装置100Aのダウンリンク受信タイミングと同じである。その結果、図15に示される受信タイミングのズレ(即ち、端末装置100Bにおけるダウンリンク受信タイミングとD2D受信タイミングとの間のズレ)は、図9に示される受信タイミングのズレよりも小さくなっている。そして、この例では、当該D2D受信タイミングは、ダウンリンク受信タイミングよりも少し後である。よって、ダウンリンク信号の受信期間がOFDMシンボル長よりも少しだけ長くなるように設定されていれば、端末装置100Bは、D2D通信信号を適切に受信することができる。
 なお、上述したD2D送信タイミングは、所定の条件が満たされる場合に適用されてもよい。例えば、送信側装置(例えば、端末装置100A)のタイムアドバンスグループ(TAG)と、受信側装置(例えば、端末装置100B)のTAGとが、同一である場合に、上述したD2D送信タイミングが適用されてもよい。
 送信側装置のTAGと受信側装置のTAGが同一ということは、送信側装置のTA値と受信側装置のTA値とが同等であることを意味する。よって、送信側装置のTAGと受信側装置のTAGが同一であれば、送信側装置のダウンリンク受信タイミングと受信側装置のダウンリンク受信タイミングとが同等になる。よって、受信側装置においてダウンリンク受信タイミングとD2D受信タイミングとがより近くなり得る。
 また、D2D通信を行う2つの端末装置のTAGが同一でない場合には、送信タイミングのオフセット値により、D2D送信タイミングが個別に調整されてもよい。
 このような、TAGが同一か否かの判定、及び送信タイミングのオフセット値による調整は、基地局200により行われる。そして、例えば、基地局200は、D2D通信を行う端末装置100に通知する。
 -D2D送信タイミングの第3の例
 第3の例として、送信タイミング決定部143は、端末装置100のダウンリンク受信タイミング、端末装置100のTA情報、及び別の端末装置100のTA情報に基づいて、D2D送信タイミングを決定する。
 例えば、決定されるD2D送信タイミングは、基地局200からのダウンリンク信号を別の端末装置100(即ち、D2D通信の受信側端末装置)が受信するためのタイミング(即ち、別の端末装置100のダウンリンク受信タイミング)である。例えば、別の端末装置100の当該ダウンリンク受信タイミングは、ダウンリンク信号を基地局200が送信するためのタイミング(即ち、ダウンリンク送信タイミング)に対して、上記別の端末装置100の上記TA情報に対応する時間の半分の時間だけ遅れたタイミングである。
 具体的には、例えば、送信タイミング決定部143は、端末装置100のTA値に対応する時間に係数1/2を乗算する。そして、送信タイミング決定部143は、乗算結果の時間だけダウンリンク送信タイミングに対して先行するタイミングを、基地局200のダウンリンク送信タイミングとして算出する。さらに、送信タイミング決定部143は、算出されたダウンリンク送信タイミングに対して、上記別の端末装置100のTA情報に対応する時間の半分の時間だけ遅れたタイミングを、上記別の端末装置100のダウンリンク受信タイミングとして算出する。当該半分の時間は、基地局200から上記別の端末装置100までの伝搬遅延に相当する。そして、送信タイミング決定部143は、上記別の端末装置100の上記ダウンリンク受信タイミングを、端末装置100のD2D送信タイミングとして決定する。そして、送信タイミング決定部143は、無線通信部120に、決定されたD2D送信タイミングでD2D通信信号を送信させる。
 一般的に、D2D通信を行う端末装置100(例えば、端末装置100A及び端末装置100B)は、近くに位置する。即ち、当該端末装置100間の距離は小さい。そのため、D2D通信において送信側装置から受信側装置までの伝搬遅延は小さい。よって、D2D通信の送信側装置(例えば、端末装置100A)が、受信側装置(例えば、端末装置100B)のダウンリンク受信タイミングでD2D通信信号を送信すれば、当該受信側装置は、自らのダウンリンク受信タイミングに近いタイミングで、D2D通信信号を受信できる。よって、D2D通信信号が適切に受信される可能性が高くなる。換言すると、D2D通信信号の適切な受信のための制約(例えば、基地局200と受信側装置及び送信側装置との間の距離、並びに、受信側装置と送信側装置との間の距離)を緩めることが可能になる。
 以下、図16及び図17を参照して、具体例を説明する。
 図16は、本実施形態に係るD2D送信タイミングの第3の例を説明するための第1の説明図である。図16の例では、端末装置100BがD2D通信の送信側装置であり、端末装置100AがD2D通信の受信側装置である。図16を参照すると、基地局200がダウンリンク信号を送信するためのダウンリンク送信タイミング、及び、端末装置100Aが当該ダウンリンク信号を受信するためのダウンリンク受信タイミングが、示されている。この点については、図8、図12及び図14に示される例と同様である。
 さらに図16を参照すると、D2D通信において、端末装置100BがD2D通信信号を送信するD2D送信タイミング、及び、端末装置100Aが当該D2D通信信号を実際に受信するD2D受信タイミングも、示されている。この例では、端末装置100BのD2D送信タイミングは、端末装置100Aのダウンリンク受信タイミングとほぼ同じである。その結果、図16に示される受信タイミングのズレ(即ち、端末装置100Aにおけるダウンリンク受信タイミングとD2D受信タイミングとの間のズレ)は、図8に示される受信タイミングのズレよりも小さくなっている。そして、この例では、当該D2D受信タイミングは、ダウンリンク受信タイミングよりも少し後である。よって、ダウンリンク信号の受信期間がOFDMシンボル長よりも少しだけ長くなるように設定されていれば、端末装置100Aは、D2D通信信号を適切に受信することができる。
 図17は、本実施形態に係るD2D送信タイミングの第3の例を説明するための第2の説明図である。図17の例では、端末装置100AがD2D通信の送信側装置であり、端末装置100BがD2D通信の受信側装置である。図17を参照すると、基地局200がダウンリンク信号を送信するためのダウンリンク送信タイミング、及び、端末装置100Bが当該ダウンリンク信号を受信するためのダウンリンク受信タイミングが、示されている。この点については、図9に示される例と同様である。
 さらに図17を参照すると、D2D通信において、端末装置100AがD2D通信信号を送信するD2D送信タイミング、及び、端末装置100Bが当該D2D通信信号を実際に受信するD2D受信タイミングも、示されている。この例では、端末装置100AのD2D送信タイミングは、端末装置100Bのダウンリンク受信タイミングとほぼ同じである。その結果、図17に示される受信タイミングのズレ(即ち、端末装置100Bにおけるダウンリンク受信タイミングとD2D受信タイミングとの間のズレ)は、図9に示される受信タイミングのズレよりも小さくなっている。そして、この例では、当該D2D受信タイミングは、ダウンリンク受信タイミングよりも少し後である。よって、ダウンリンク信号の受信期間がOFDMシンボル長よりも少しだけ長くなるように設定されていれば、端末装置100Bは、D2D通信信号を適切に受信することができる。
 -1対多のD2D通信の場合
 ここで、図18及び図19を参照して、端末装置100が2つ以上の別の端末装置100とD2D通信を行うケースのD2D送信タイミングを説明する。
 図18は、端末装置が2つ以上の別の端末装置とD2D通信を行う第1のケースを説明するための説明図である。図18を参照すると、端末装置100Bが、端末装置100A及び端末装置100Cの両方とD2D通信を行う。このようなケースの一例として、端末装置100Bは、基地局200を介してコンテンツ配信サーバに接続され、端末装置100A及び端末装置100Cにコンテンツを転送する。
 図19は、端末装置が2つ以上の別の端末装置とD2D通信を行う第2のケースを説明するための説明図である。図19を参照すると、図18のケースにおいて、さらに端末装置100A及び端末装置100Cが、互いにD2D通信を行う。このようなケースの一例として、端末装置100A、端末装置100B及び端末装置100Cがグループ内通信を行う。
 以上のように、端末装置100が2つ以上の別の端末装置100とD2D通信を行う場合には、上述したD2D送信タイミングの第3の例が適用されるよりも、上述したD2D送信タイミングの第1の例又は第2の例が適用される方が、好ましい。なぜならば、上述したD2D送信タイミングの第3の例では、D2D通信の通信相手のTA値を取得するので、基地局200が通知すべきTA値が増加し、処理及び通信が、増加し、複雑化するからである。
 <<4.処理の流れ>>
 続いて、図20を参照して、本実施形態に係る通信制御処理の一例を説明する。図20は、本実施形態に係る通信制御処理の概略的な流れの一例を示すシーケンス図である。
 ステップS401で、端末装置100Aの制御部140は、無線通信部120に、D2D通信の開始リクエストを送信させる。そして、基地局200が、当該開始リクエストを受信する。
 次に、ステップS403で、基地局200は、ページングを行う。当該ページングでは、D2D通信を示す情報が送信される。端末装置100Bは、当該ページングにより呼び出される。
 そして、ステップS405で、端末装置100B及び基地局200は、ランダムアクセスの手続きを行う。当該ランダムアクセスの手続きの中で、端末装置100Bの制御部140は、無線通信部120に、ランダムアクセスリクエストを送信させる。また、基地局200は、当該ランダムアクセスリクエストに応じて、ランダムアクセスレスポンスを送信する。基地局200は、当該ランダムアクセスレスポンスにおいて、端末装置100BのTA値を端末装置100Bに通知する。
 ステップS407で、端末装置100Aの送信タイミング決定部143は、端末装置100Aのダウンリンク受信タイミングと、予め取得しているTA値とに基づいて、D2D送信タイミングを決定する。例えば、上述したD2D送信タイミングの第1の例のように、ダウンリンク受信タイミング及びTA値から算出される基地局200のダウンリンク送信タイミングが、端末装置100AのD2D送信タイミングとして決定される。
 また、ステップS409で、端末装置100Bの送信タイミング決定部143は、端末装置100Bのダウンリンク受信タイミングと、ランダムアクセス手続きで取得したTA値とに基づいて、D2D送信タイミングを決定する。例えば、上述したD2D送信タイミングの第1の例のように、ダウンリンク受信タイミング及びTA値から算出される基地局200のダウンリンク送信タイミングが、端末装置100BのD2D送信タイミングとして決定される。
 ステップS411及びステップS413で、基地局200は、端末装置100A及び端末装置100Bに、D2D通信でのパイロット信号の送信と、D2D通信でのパイロット信号についての測定とを指示する。
 ステップS415で、端末装置100Aの制御部140は、無線通信部120に、パイロット信号を送信させる。そして、端末装置100Bの無線通信部120は、当該パイロット信号を受信し、端末装置100Bの制御部140は、パイロット信号についての測定を行う。
 また、ステップS417で、端末装置100Bの制御部140は、無線通信部120に、パイロット信号を送信させる。そして、端末装置100Aの無線通信部120は、当該パイロット信号を受信し、端末装置100Aの制御部140は、パイロット信号についての測定を行う。
 また、ステップS419及びステップS421で、端末装置100A及び端末装置100Bは、無線通信部120を介して、パイロット信号についての測定結果を基地局200に報告する。
 また、ステップS423で、基地局200は、報告された測定結果に基づいて、D2D通信を許可するかを判定する。例えば、基地局200は、D2D通信の通信品質が所定の品質要件を満たす場合に、D2D通信を許可すると判定する。
 また、ステップS425及びステップS427で、基地局200は、端末装置100A及び端末装置100Bに、D2D通信の許可を通知する。その後、端末装置100Aと端末装置100Bとの間でのD2D通信が開始される。
 以上、本実施形態に係る通信制御処理の一例を説明した。なお、上述したD2D送信タイミングの第3の例が用いられる場合には、基地局200は、ステップS407よりも前に、端末装置100BのTA値を端末装置100Aに通知し、ステップS409よりも前に、端末装置100AのTA値を端末装置100Bに通知する。
 <<5.変形例>>
 続いて、図21~図24を参照して、本実施形態の変形例を説明する。
 上述した本実施形態では、D2D通信を行う2つの端末装置100(例えば、端末装置100Aと端末装置100B)が同一のセル内に位置する例を説明した。そこで、本実施形態の変形例として、D2D通信を行う2つの端末装置100が別々のセル内に位置する例を説明する。
 (D2D通信を行う端末装置が位置するセルの例)
 まず、前提となるセルの具体例を図21及び図22を参照して説明する。
 図21は、D2D通信を行う端末装置が別々のセル内に位置する場合の当該セルの第1の例を説明するための説明図である。図21を参照すると、隣接するセル21A及び20Bが示されている。また、セル21Aの基地局200A、及び、セル21Aに位置する端末装置100Aが、示されている。また、セル21Bの基地局200B、及び、セル21Bに位置する端末装置100Bが、示されている。例えばこのように、互いに隣接する2つのセル21の各々に、D2D通信を行う端末装置100が位置する。
 図22は、D2D通信を行う端末装置が別々のセル内に位置する場合の当該セルの第2の例を説明するための説明図である。図22を参照すると、マクロセル23と、マクロセル23と重複するスモールセル25とが、示されている。また、マクロセル23の基地局203、及び、マクロセル23内に位置する端末装置100Aが示されている。また、スモールセル25の基地局205、及び、スモールセル25内に位置する端末装置100Bが示されている。例えばこのように、マクロセル23及びスモールセル25の各々に、D2D通信を行う端末装置100が位置する。
 以上の例のように、D2D通信を行う2つの端末装置100が別々のセル内に位置する場合にも、適切なD2D送信タイミングが決定され得る。以降では、図21の例を前提として、本実施形態の変形例を説明するが、当該説明は、図22の例にも同様に適用され得る。
 なお、2つのセルの間で送受信のタイミングが同期している場合の決定手法と、2つのセル間で送受信のタイミングが同期していない場合の決定手法とは、少し異なるので、これらの2つのケースの各々を説明する。
 (セル間同期がある場合)
 セル間同期がある場合には、セル21間で基地局200によるダウンリンク送信タイミングが同じである。そして、D2D通信を行う2つの端末装置100が同一のセルに位置する場合と同様に、D2D送信タイミングが決定され得る。例えば、上述したD2D送信タイミングの第1~第3の例のように、D2D送信タイミングが決定され得る。
 なお、D2D送信タイミングの第3の例では、上述したように、端末装置100A(送信タイミング決定部143)は、端末装置100Aのダウンリンク受信タイミング、端末装置100AのTA情報、及び別の端末装置100BのTA情報に基づいて、D2D送信タイミングを決定する。端末装置100AのTA情報は、端末装置100が位置するセル21Aにおける端末装置100AのTA情報である。一方、D2D通信を行う端末装置100A及び端末装置100Bが別々のセル内に位置する場合には、端末装置100BのTA情報は、端末装置100Bが位置するセル21Bにおける端末装置100BのTA情報である。そのため、基地局200Bは、端末装置100Bの上記TA情報を基地局200Aへ送信し、基地局200Aは、端末装置100Bの当該TA情報を端末装置100Aへ送信する。そして、端末装置100A(情報取得部141)は、端末装置100Bの当該TA情報を取得する。
 (セル間同期がない場合)
 セル間同期がない場合には、セル21間で基地局200によるダウンリンク送信タイミングが異なる。そのため、D2D通信を行う2つの端末装置100が同一のセルに位置する場合と比べて、以下の点が異なる。
 -D2D送信タイミングの第1の例
 D2D送信タイミングの第1の例では、上述したように、端末装置100Aは、端末装置100Aのダウンリンク受信タイミング、及び端末装置100AのTA情報に基づいて、D2D送信タイミングを決定する。D2D通信を行う端末装置100A及び端末装置100Bが別々のセル内に位置する場合には、端末装置100Aの上記ダウンリンク受信タイミング、及び、端末装置100AのTA情報は、以下のようになる。
 まず、端末装置100Aの上記ダウンリンク受信タイミングは、端末装置100Bと無線通信する基地局200Bからのダウンリンク信号(即ち、セル21Bのダウンリンク信号)を端末装置100Aが受信するための受信タイミングである。そのため、端末装置100Aの情報取得部141は、無線通信部120に、セル21Bのダウンリンク信号(例えば、プライマリ同期信号、セカンダリ同期信号、等)を受信させ、当該ダウンリンク信号の受信タイミングを取得する。
 また、端末装置100AのTA情報は、基地局200Bへのアップリンク信号を端末装置100Aが送信するためのタイミングを決定するためのTA情報(即ち、セル21Bでの端末装置100AのTA情報)である。そのため、情報取得部141は、端末装置100Aに、セル21Bでのランダムアクセスを行わせることにより、セル21Bでの端末装置100AのTA情報を取得する。
 このような、端末装置100Aの上記ダウンリンク受信タイミング、及び端末装置100AのTA情報によれば、端末装置100Aは、例えば、基地局200Bがダウンリンク信号を送信するためのタイミングを算出することができる。即ち、端末装置100Aは、D2D通信の相手側装置である端末装置100Bが位置するセル21Bでのダウンリンク送信タイミングを算出することができる。
 なお、端末装置100Aと端末装置100Bとが近くに位置することを前提として、情報取得部141は、セル21Bでの端末装置100AのTA情報の代替として、セル21Bでの端末装置100BのTA情報を取得し、用いてもよい。この場合に、基地局200Bは、端末装置100Bの上記TA情報を基地局200Aへ送信し、基地局200Aは、端末装置100Bの当該TA情報を端末装置100Aへ送信してもよい。
 -D2D送信タイミングの第2の例
 D2D送信タイミングの第2の例では、上述したように、端末装置100Aは、端末装置100Aのダウンリンク受信タイミングに基づいて、D2D送信タイミングを決定する。D2D通信を行う端末装置100A及び端末装置100Bが別々のセル内に位置する場合には、端末装置100Aの上記ダウンリンク受信タイミングは、以下のようになる。
 上述したD2D送信タイミングの第1の例と同様に、端末装置100Aの上記ダウンリンク受信タイミングは、セル21Bのダウンリンク信号を端末装置100Aが受信するための受信タイミングである。
 このような、端末装置100Aの上記ダウンリンク受信タイミングによれば、端末装置100Aは、基地局21Bからのダウンリンク信号を端末装置100Aが受信するための受信タイミングを知ることができる。即ち、端末装置100Aは、D2D通信の相手側装置である端末装置100Bが位置するセル21Bでのダウンリンク送信タイミングを算出することができる。
 -D2D送信タイミングの第3の例
 D2D送信タイミングの第3の例では、上述したように、端末装置100Aは、端末装置100Aのダウンリンク受信タイミング、端末装置100AのTA情報、及び端末装置100BのTA情報に基づいて、D2D送信タイミングを決定する。D2D通信を行う端末装置100A及び端末装置100Bが別々のセル内に位置する場合には、端末装置100Aの上記ダウンリンク受信タイミング、端末装置100AのTA情報、及び端末装置100BのTA情報は、以下のようになる。
 まず、端末装置100Aの上記ダウンリンク受信タイミングは、上述したD2D送信タイミングの第1の例と同様に、セル21Bのダウンリンク信号を端末装置100Aが受信するための受信タイミングである。また、端末装置100AのTA情報も、上述したD2D送信タイミングの第1の例と同様に、セル21Bでの端末装置100AのTA情報である。
 また、端末装置100BのTA情報は、基地局200Bへのアップリンク信号を端末装置100Bが送信するためのタイミングを決定するためのTA情報(即ち、セル21Bでの端末装置100BのTA情報)である。そのため、基地局200Bは、端末装置100Bの上記TA情報を基地局200Aへ送信し、基地局200Aは、端末装置100Bの当該TA情報を端末装置100Aへ送信する。そして、情報取得部141は、端末装置100Bの当該TA情報を取得する。
 このような、端末装置100Aの上記ダウンリンク受信タイミング、端末装置100AのTA情報、及び端末装置100BのTA情報によれば、端末装置100Aは、例えば、D2D通信の相手側装置である端末装置100Bが基地局200Bからのダウンリンク信号を受信するタイミングを算出することができる。即ち、端末装置100Aは、端末装置100Bがセル21Bのダウンリンク信号を受信するタイミングを算出することができる。
 (処理の流れ)
 次に、図23及び図24を参照して、本実施形態の変形例に係る通信制御処理の一例を説明する。
 -セル間同期がある場合
 図23は、本実施形態の変形例に係る通信制御処理の概略的な流れの第1の例を示すシーケンス図である。
 ステップS501で、端末装置100Aの制御部140は、無線通信部120に、D2D通信の開始リクエストを送信させる。そして、基地局200Aが、当該開始リクエストを受信する。そして、ステップS503で、基地局200Aは、当該開始リクエストを基地局200Bに転送する。
 ステップS505で、基地局200Aは、端末装置100Aに、セル21Aとセル21Bとが同期しているか否かを示すセル間同期情報を送信する。この例では、セル間同期情報は、セル21Aとセル21Bとが同期していることを示す。これにより、端末装置100Aは、セル21Aとセル21Bとが同期していることを知る。この例では、セル間の同期情報がステップS505で取得されているが、セル間の同期情報の取得は、この例に限られない。セル間の同期情報は、システム情報によって端末装置100に予め通知されてもよく、又は、基地局200から端末装置100へのシグナリングにより予め別途通知されてもよい。また、システムにおける全セル又は一部のセルが同期している場合に、セル間の同期の有無に関する情報が、端末装置100に記憶されてもよい。
 ステップS507で、基地局200Bは、ページングを行う。当該ページングでは、D2D通信を示す情報が送信される。端末装置100Bは、当該ページングにより呼び出される。
 そして、ステップS509で、端末装置100B及び基地局200Bは、ランダムアクセスの手続きを行う。当該ランダムアクセスの手続きの中で、端末装置100Bの制御部140は、無線通信部120に、ランダムアクセスリクエストを送信させる。また、基地局200Bは、当該ランダムアクセスリクエストに応じて、ランダムアクセスレスポンスを送信する。基地局200Bは、当該ランダムアクセスレスポンスにおいて、端末装置100BのTA値を端末装置100Bに通知する。当該TA値は、セル21Bにおける端末装置100BのTA値である。
 ステップS511で、端末装置100Aの送信タイミング決定部143は、セル21Aにおける端末装置100Aのダウンリンク受信タイミングと、予め取得しているTA値(セル21Aにおける端末装置100AのTA値)とに基づいて、D2D送信タイミングを決定する。例えば、上述したD2D送信タイミングの第1の例のように、ダウンリンク受信タイミング及びTA値から算出される、基地局200Aのダウンリンク送信タイミングが、端末装置100AのD2D送信タイミングとして決定される。
 また、ステップS513で、端末装置100Bの送信タイミング決定部143は、セル21Bにおける端末装置100Bのダウンリンク受信タイミングと、ランダムアクセス手続きで取得したTA値(セル21Bにおける端末装置100BのTA値)とに基づいて、D2D送信タイミングを決定する。例えば、上述したD2D送信タイミングの第1の例のように、ダウンリンク受信タイミング及びTA値から算出される、基地局200Bのダウンリンク送信タイミングが、端末装置100BのD2D送信タイミングとして決定される。
 ステップS515で、基地局200Aは、端末装置100Aに、D2D通信でのパイロット信号の送信と、D2D通信でのパイロット信号についての測定とを指示する。
 また、ステップS517で、基地局200Bは、端末装置100Bに、D2D通信でのパイロット信号の送信と、D2D通信でのパイロット信号についての測定とを指示する。
 ステップS519で、端末装置100Aの制御部140は、無線通信部120に、パイロット信号を送信させる。そして、端末装置100Bの無線通信部120は、当該パイロット信号を受信し、端末装置100Bの制御部140は、パイロット信号についての測定を行う。
 また、ステップS521で、端末装置100Bの制御部140は、無線通信部120に、パイロット信号を送信させる。そして、端末装置100Aの無線通信部120は、当該パイロット信号を受信し、端末装置100Aの制御部140は、パイロット信号についての測定を行う。
 ステップS523で、端末装置100Bは、無線通信部120を介して、パイロット信号についての測定結果を基地局200Bに報告する。
 また、ステップS525で、端末装置100Aは、無線通信部120を介して、パイロット信号についての測定結果を基地局200Aに報告する。
 ステップS527で、基地局200A及び基地局200Bは、報告された測定結果に基づいて、D2D通信を許可するかを判定する。例えば、基地局200A及び基地局200Bは、D2D通信の通信品質が所定の品質要件を満たす場合に、D2D通信を許可すると判定する。
 また、ステップS529で、基地局200Aは、端末装置100Aに、D2D通信の許可を通知する。また、ステップS531で、基地局200Bは、端末装置100Bに、D2D通信の許可を通知する。その後、端末装置100Aと端末装置100Bとの間でのD2D通信が開始される。
 以上、本実施形態の変形例に係る通信制御処理の第1の例を説明した。なお、上述したD2D送信タイミングの第3の例が用いられる場合には、基地局200Aは、ステップS511よりも前に、セル21Bにおける端末装置100BのTA値を端末装置100Aに通知する。また、基地局200Bは、ステップS513よりも前に、セル21Aにおける端末装置100AのTA値を端末装置100Bに通知する。
 -セル間同期がない場合
 図24は、本実施形態の変形例に係る通信制御処理の概略的な流れの第2の例を示すシーケンス図である。ここでは、図23に示される通信制御処理の概略的な流れの第1の例と、図24に示される通信制御処理の概略的な流れの第2の例との差分である、ステップS551、S553、S555、S557及びS559のみを説明する。
 ステップS551で、基地局200Aは、端末装置100Aに、セル21Aとセル21Bとが同期しているか否かを示すセル間同期情報を送信する。この例では、セル間同期情報は、セル21Aとセル21Bとが同期していないことを示す。これにより、端末装置100Aは、セル21Aとセル21Bとが同期していないことを知る。この例では、セル間の同期情報がステップS551で取得されているが、セル間の同期情報の取得は、この例に限られない。セル間の同期情報は、システム情報によって端末装置100に予め通知されてもよく、又は、基地局200から端末装置100へのシグナリングにより予め別途通知されてもよい。また、システムにおける全セル又は一部のセルが同期している場合に、セル間の同期の有無に関する情報が、端末装置100に記憶されてもよい。
 ステップS553で、端末装置100A及び基地局200Bは、ランダムアクセスの手続きを行う。当該ランダムアクセスの手続きの中で、端末装置100Aの制御部140は、無線通信部120に、ランダムアクセスリクエストを送信させる。また、基地局200Bは、当該ランダムアクセスリクエストに応じて、ランダムアクセスレスポンスを送信する。基地局200Bは、当該ランダムアクセスレスポンスにおいて、端末装置100AのTA値を端末装置100Aに通知する。当該TA値は、セル21Bにおける端末装置100AのTA値である。
 ステップS555で、端末装置100B及び基地局200Aは、ランダムアクセスの手続きを行う。当該ランダムアクセスの手続きの中で、端末装置100Bの制御部140は、無線通信部120に、ランダムアクセスリクエストを送信させる。また、基地局200Aは、当該ランダムアクセスリクエストに応じて、ランダムアクセスレスポンスを送信する。基地局200Aは、当該ランダムアクセスレスポンスにおいて、端末装置100BのTA値を端末装置100Bに通知する。当該TA値は、セル21Aにおける端末装置100BのTA値である。
 ステップS557で、端末装置100Aの送信タイミング決定部143は、セル21Bにおける端末装置100Aのダウンリンク受信タイミングと、ランダムアクセス手続きで取得したTA値(セル21Bにおける端末装置100AのTA値)とに基づいて、D2D送信タイミングを決定する。例えば、上述したD2D送信タイミングの第1の例のように、ダウンリンク受信タイミング及びTA値から算出される、基地局200Bのダウンリンク送信タイミングが、端末装置100AのD2D送信タイミングとして決定される。
 また、ステップS559で、端末装置100Bの送信タイミング決定部143は、セル21Aにおける端末装置100Bのダウンリンク受信タイミングと、ランダムアクセス手続きで取得したTA値(セル21Aにおける端末装置100BのTA値)とに基づいて、D2D送信タイミングを決定する。例えば、上述したD2D送信タイミングの第1の例のように、ダウンリンク受信タイミング及びTA値から算出される、基地局200Aのダウンリンク送信タイミングが、端末装置100BのD2D送信タイミングとして決定される。
 以上、本実施形態の変形例に係る通信制御処理の第2の例を説明した。なお、上述したD2D送信タイミングの第3の例が用いられる場合には、基地局200Aは、ステップS557よりも前に、セル21Bにおける端末装置100BのTA値を端末装置100Aに通知する。また、基地局200Bは、ステップS559よりも前に、セル21Aにおける端末装置100AのTA値を端末装置100Bに通知する。
 <<6.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、端末装置100は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置100は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置100は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
 また、例えば、基地局200は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局200は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局200は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、上述した様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局200として動作してもよい。
 <6.1.端末装置に関する応用例>
 (第1の応用例)
 図25は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図25に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図25には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図25に示したように複数のアンテナ916を有してもよい。なお、図25にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図25に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図25に示したスマートフォン900において、図11を用いて説明した情報取得部141及び送信タイミング決定部143は、無線通信インタフェース912において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。
 (第2の応用例)
 図26は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図26に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図26には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図26に示したように複数のアンテナ937を有してもよい。なお、図26にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図26に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図26に示したカーナビゲーション装置920において、図11を用いて説明した情報取得部141及び送信タイミング決定部143は、無線通信インタフェース933において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ921において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <6.2.基地局に関する応用例>
 (第1の応用例)
 図27は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図27に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図27にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図27に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図27に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図27には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 (第2の応用例)
 図28は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図28に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図28にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図27を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図27を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図28に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図28には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図28に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図28には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 なお、端末装置100が自装置のD2D送信タイミングを決定する例を説明したが、基地局200が、端末装置100の代わりに、端末装置100のD2D送信タイミングを決定し、当該送信タイミングを端末装置100に通知してもよい。即ち、図11を用いて説明した情報取得部141及び送信タイミング決定部143は、端末装置100により備えられる代わりに、基地局200により備えられてもよい。この場合に、図27及び図28に示したeNB800及びeNB830において、図11を用いて説明した情報取得部141及び送信タイミング決定部143は、無線通信インタフェース825並びに無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。また、これら機能の少なくとも一部は、コントローラ821及びコントローラ851において実装されてもよい。
 <<7.まとめ>>
 ここまで、図1~図24を用いて、本開示の実施形態に係る通信装置及び各処理を説明した。本開示に係る実施形態によれば、端末装置100又は別の端末装置100と無線通信する基地局200からのダウンリンク信号を端末装置100が受信するための受信タイミング(即ち、ダウンリンク受信タイミング)が、取得される。また、取得された上記受信タイミングに基づいて、D2D通信で端末装置100が別の端末装置100へ送信するための送信タイミング(即ち、D2D送信タイミング)が決定される。そして、決定される上記D2D送信タイミングは、アップリンク信号を端末装置100が送信するためのタイミング(即ち、アップリンク送信タイミング)よりも後のタイミングである。
 D2D通信の送信側装置のD2D送信タイミングが、アップリンク送信タイミングと同じである場合には、D2D通信信号は、D2D通信の受信側装置のダウンリンク受信タイミングよりもかなり早く当該受信側装置に到達してしまう。そのため、基地局200と受信側装置及び送信側装置との間の距離、並びに、受信側装置と送信側装置との間の距離によっては、D2D通信信号のうちのCP以外の部分も復調されなくなる可能性がある。
 一方、本実施形態のように、D2D送信タイミングがアップリンク送信タイミングよりも後のタイミングであれば、相手側のD2D受信タイミングとダウンリンク受信タイミングとがより近くなる。よって、D2D通信信号が適切に受信される可能性が高くなる。換言すると、D2D通信信号の適切な受信のための制約(例えば、基地局200と受信側装置及び送信側装置との間の距離、並びに、受信側装置と送信側装置との間の距離)を緩めることが可能になる。その結果、オフローディングをより効果的に行うことが可能になり、システム容量の増加に大きく貢献し得る。
 また、例えば、アップリンク信号を端末装置100が送信するためのタイミング(即ち、アップリンク送信タイミング)を決定するためのTA情報が、さらに取得される。そして、D2D送信タイミングの第1の例として、端末装置100のダウンリンク受信タイミング及び端末装置100のTA情報に基づいて、D2D送信タイミングが決定される。
 TA情報(例えば、TA値)は、ランダムアクセスの際に端末装置100に通知される既存のパラメータであるので、基地局200が新たな制御信号を送信する必要がない。
 また、例えば、決定されるD2D送信タイミングは、ダウンリンク受信タイミングよりも前のタイミングである。
 これにより、D2D送信タイミングが遅すぎることに起因して、相手側装置でD2D通信信号が実際に受信される期間が、相手側装置がダウンリンク信号を受信するための期間に収まらなくなることを、回避することができる。
 また、例えば、決定されるD2D送信タイミングは、ダウンリンク信号を基地局200が送信するためのタイミング(以下、「ダウンリンク送信タイミング」と呼ぶ)以降のタイミングである。例えば、当該ダウンリンク送信タイミングは、ダウンリンク受信タイミングに対して、端末装置100のTA情報に対応する時間の半分の時間だけ先行するタイミングである。
 これにより、D2D送信タイミングは、基地局のダウンリンク送信タイミング以降になる。相手側装置のダウンリンク受信タイミングは、少なくとも上記ダウンリンク送信タイミングよりも後であるので、相手側のD2D送信タイミングとダウンリンク受信タイミングとがさらに近くなる。よって、D2D通信信号が適切に受信される可能性がより高くなる。換言すると、D2D通信信号の適切な受信のための制約(例えば、基地局200と受信側装置及び送信側装置との間の距離、並びに、受信側装置と送信側装置との間の距離)を緩めることが可能になる。
 また、具体的な一例として、決定されるD2D送信タイミングは、ダウンリンク信号を基地局200が送信するためのタイミング(即ち、ダウンリンク送信タイミング)である。
 これにより、端末装置100間でD2D送信タイミングがほぼ一定になる。即ち、セル21内での各端末装置100の位置、D2D通信に用いられる周波数帯域、複信方式(例えば、FDD方式又はTDD方式)によらず、端末装置100によるD2D送信タイミングのばらつきが小さくなる。
 また、D2D送信タイミングの第2の例として、決定されるD2D送信タイミングは、ダウンリンク信号を端末装置100が受信するための受信タイミング(即ち、ダウンリンク受信タイミング)である。
 一般的に、D2D通信を行う端末装置100(例えば、端末装置100A及び端末装置100B)は、近くに位置する。即ち、当該端末装置100間の距離は小さい。そのため、D2D通信の送信側装置のダウンリンク受信タイミングと、受信側のダウンリンク受信タイミングとの間の差は、小さい。さらに、D2D通信において送信側装置から受信側装置までの伝搬遅延は小さい。よって、D2D通信の送信側装置(例えば、端末装置100A)が、自らのダウンリンク受信タイミングでD2D通信信号を送信すれば、受信側装置(例えば、端末装置100B)は、自らのダウンリンク受信タイミングに近いタイミングで、D2D通信信号を受信できる。よって、D2D通信信号が適切に受信される可能性が高くなる。換言すると、D2D通信信号の適切な受信のための制約(例えば、基地局200と受信側装置及び送信側装置との間の距離、並びに、受信側装置と送信側装置との間の距離)を緩めることが可能になる。
 また、この場合には、受信タイミング以外の情報は不要である。よって、TA値を未だ取得していない場合(例えば、端末装置100が、ランダムアクセを行なっておらず、アイドル状態である場合)であっても、端末装置100は、適切なD2D送信タイミングでD2D通信信号を送信することが可能になる。
 また、D2D送信タイミングの第3の例として、アップリンク信号を別の端末装置100が送信するためのタイミング(即ち、別の端末装置100のアップリンク送信タイミング)を決定するためのTA情報が、さらに取得される。端末装置100のダウンリンク受信タイミング、端末装置100のTA情報、及び別の端末装置100のTA情報に基づいて、D2D送信タイミングが、決定される。
 さらに具体的には、例えば、決定されるD2D送信タイミングは、基地局200からのダウンリンク信号を別の端末装置100(即ち、D2D通信の受信側端末装置)が受信するためのタイミング(即ち、別の端末装置100のダウンリンク受信タイミング)である。例えば、別の端末装置100の当該ダウンリンク受信タイミングは、ダウンリンク信号を基地局200が送信するためのタイミング(即ち、ダウンリンク送信タイミング)に対して、上記別の端末装置100の上記TA情報に対応する時間の半分の時間だけ遅れたタイミングである。
 一般的に、D2D通信を行う端末装置100(例えば、端末装置100A及び端末装置100B)は、近くに位置する。即ち、当該端末装置100間の距離は小さい。そのため、D2D通信において送信側装置から受信側装置までの伝搬遅延は小さい。よって、D2D通信の送信側装置(例えば、端末装置100A)が、受信側装置(例えば、端末装置100B)のダウンリンク受信タイミングでD2D通信信号を送信すれば、当該受信側装置は、自らのダウンリンク受信タイミングに近いタイミングで、D2D通信信号を受信できる。よって、D2D通信信号が適切に受信される可能性が高くなる。換言すると、D2D通信信号の適切な受信のための制約(例えば、基地局200と受信側装置及び送信側装置との間の距離、並びに、受信側装置と送信側装置との間の距離)を緩めることが可能になる。
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、端末装置が自装置のD2D送信タイミングを決定する例を説明したが、本開示はこれに限定されない。例えば、応用例においても説明したように、基地局の一部を構成する装置が端末装置のD2D送信タイミングを決定してもよい。例えば、説明された例では端末装置に備えられる情報取得部及び送信タイミング決定部は、基地局(又は、その一部を構成する上記装置)に備えられてもよい。そして、基地局が、端末装置にD2D送信タイミングを通知してもよい。
 また、本明細書の通信制御処理における処理ステップは、必ずしもフローチャートに記載された順序に沿って時系列に実行されなくてよい。例えば、津新制御処理における処理ステップは、フローチャートとして記載した順序と異なる順序で実行されても、並列的に実行されてもよい。
 また、通信制御装置(例えば、端末装置)に内蔵されるCPU、ROM及びRAM等のハードウェアに、上記通信制御装置の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、当該コンピュータプログラムを記憶させた記憶媒体も提供される。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 第1の無線通信装置又は第2の無線通信装置と無線通信する基地局からのダウンリンク信号を前記第2の無線通信装置が受信するための受信タイミングを取得する取得部と、
 前記受信タイミングに基づいて、装置間通信で前記第2の無線通信装置が前記第1の無線通信装置へ送信するための送信タイミングを決定する決定部と、
を備え、
 決定される前記送信タイミングは、アップリンク信号を前記第2の無線通信装置が送信するためのタイミングよりも後のタイミングである、
通信制御装置。
(2)
 前記取得部は、アップリンク信号を前記第2の無線通信装置が送信するための前記タイミングを決定するための第1のタイミングアドバンス情報をさらに取得し、
 前記決定部は、前記受信タイミング及び前記前記第1のタイミングアドバンス情報に基づいて、前記送信タイミングを決定する、
前記(1)に記載の通信制御装置。
(3)
 決定される前記送信タイミングは、前記受信タイミングよりも前のタイミングである、前記(2)に記載の通信制御装置。
(4)
 決定される前記送信タイミングは、ダウンリンク信号を前記基地局が送信するためのタイミング以降のタイミングである、前記(2)又は(3)に記載の通信制御装置。
(5)
 決定される前記送信タイミングは、ダウンリンク信号を前記基地局が送信するためのタイミングである、前記(4)に記載の通信制御装置。
(6)
 ダウンリンク信号を前記基地局が送信するための前記タイミングは、前記受信タイミングに対して、前記第1のタイミングアドバンス情報に対応する時間の半分の時間だけ先行するタイミングである、前記(4)又は(5)に記載の通信制御装置。
(7)
 決定される前記送信タイミングは、前記受信タイミングである、前記(1)に記載の通信制御装置。
(8)
 前記取得部は、アップリンク信号を前記第1の無線通信装置が送信するためのタイミングを決定するための第2のタイミングアドバンス情報をさらに取得し、
 前記決定部は、前記受信タイミング、前記第1のタイミングアドバンス情報及び前記前記第2のタイミングアドバンス情報に基づいて、前記送信タイミングを決定する、
前記(2)に記載の通信制御装置。
(9)
 決定される前記送信タイミングは、前記基地局からのダウンリンク信号を前記第1の無線通信装置が受信するためのタイミングである、前記(8)に記載の通信制御装置。
(10)
 前記ダウンリンク信号を前記第1の無線通信装置が受信するための前記タイミングは、ダウンリンク信号を前記基地局が送信するためのタイミングに対して、前記第2のタイミングアドバンス情報に対応する時間の半分の時間だけ遅れたタイミングである、前記(9)に記載の通信制御装置。
(11)
 前記第1の無線通信装置及び前記第2の無線通信装置は、同一のセルに位置し、
 前記基地局は、前記同一のセルの基地局である、
前記(1)~(10)のいずれか1項に記載の通信制御装置。
(12)
 前記第1の無線通信装置は、第1のセルに位置し、
 前記第2の無線通信装置は、第1のセルと異なる第2のセルに位置し、
 前記基地局は、前記第1のセル又は前記第2のセルのいずれか一方の基地局である、
前記(1)~(10)のいずれか1項に記載の通信制御装置。
(13)
 前記第1の無線通信装置及び前記第2の無線通信装置は、装置間通信において、所定の無線通信方式に従って信号を送信し、当該所定の無線通信方式に従って信号を受信する、前記(1)~(12)のいずれか1項に記載の通信制御装置。
(14)
 前記所定の無線通信方式は、ダウンリンク信号の送信のために基地局により用いられる無線通信方式である、前記(13)に記載の通信制御装置。
(15)
 前記所定の無線通信方式は、直交周波数分割多重方式である、前記(14)に記載の通信制御装置。
(16)
 前記通信制御装置は、前記第2の無線通信装置である、前記(1)~(15)のいずれか1項に記載の無線通信装置。
(17)
 前記通信制御装置は、前記基地局の一部を構成する装置である、前記(1)~(15)のいずれか1項に記載の無線通信装置。
(18)
 コンピュータを、
 第1の無線通信装置又は第2の無線通信装置と無線通信する基地局からのダウンリンク信号を前記第2の無線通信装置が受信するための受信タイミングを取得する取得部と、
 前記受信タイミングに基づいて、装置間通信で前記第2の無線通信装置が前記第1の無線通信装置へ送信するための送信タイミングを決定する決定部と、
として機能させ、
 決定される前記送信タイミングは、アップリンク信号を前記第2の無線通信装置が送信するためのタイミングよりも後のタイミングである、
プログラム。
(19)
 第1の無線通信装置又は第2の無線通信装置と無線通信する基地局からのダウンリンク信号を前記第2の無線通信装置が受信するための受信タイミングを取得することと、
 前記受信タイミングに基づいて、装置間通信で前記第2の無線通信装置が前記第1の無線通信装置へ送信するための送信タイミングを決定することと、
を含み、
 決定される前記送信タイミングは、アップリンク信号を前記第2の無線通信装置が送信するためのタイミングよりも後のタイミングである、
通信制御方法。
 10   端末装置
 20   基地局
 21   セル
 23   マクロセル
 25   スモールセル
 100  端末装置
 110  アンテナ部
 120  無線通信部
 130  記憶部
 140  制御部
 141  情報取得部
 143  送信タイミング決定部
 200  基地局

Claims (19)

  1.  第1の無線通信装置又は第2の無線通信装置と無線通信する基地局からのダウンリンク信号を前記第2の無線通信装置が受信するための受信タイミングを取得する取得部と、
     前記受信タイミングに基づいて、装置間通信で前記第2の無線通信装置が前記第1の無線通信装置へ送信するための送信タイミングを決定する決定部と、
    を備え、
     決定される前記送信タイミングは、アップリンク信号を前記第2の無線通信装置が送信するためのタイミングよりも後のタイミングである、
    通信制御装置。
  2.  前記取得部は、アップリンク信号を前記第2の無線通信装置が送信するための前記タイミングを決定するための第1のタイミングアドバンス情報をさらに取得し、
     前記決定部は、前記受信タイミング及び前記前記第1のタイミングアドバンス情報に基づいて、前記送信タイミングを決定する、
    請求項1に記載の通信制御装置。
  3.  決定される前記送信タイミングは、前記受信タイミングよりも前のタイミングである、請求項2に記載の通信制御装置。
  4.  決定される前記送信タイミングは、ダウンリンク信号を前記基地局が送信するためのタイミング以降のタイミングである、請求項2に記載の通信制御装置。
  5.  決定される前記送信タイミングは、ダウンリンク信号を前記基地局が送信するためのタイミングである、請求項4に記載の通信制御装置。
  6.  ダウンリンク信号を前記基地局が送信するための前記タイミングは、前記受信タイミングに対して、前記第1のタイミングアドバンス情報に対応する時間の半分の時間だけ先行するタイミングである、請求項4に記載の通信制御装置。
  7.  決定される前記送信タイミングは、前記受信タイミングである、請求項1に記載の通信制御装置。
  8.  前記取得部は、アップリンク信号を前記第1の無線通信装置が送信するためのタイミングを決定するための第2のタイミングアドバンス情報をさらに取得し、
     前記決定部は、前記受信タイミング、前記第1のタイミングアドバンス情報及び前記前記第2のタイミングアドバンス情報に基づいて、前記送信タイミングを決定する、
    請求項2に記載の通信制御装置。
  9.  決定される前記送信タイミングは、前記基地局からのダウンリンク信号を前記第1の無線通信装置が受信するためのタイミングである、請求項8に記載の通信制御装置。
  10.  前記ダウンリンク信号を前記第1の無線通信装置が受信するための前記タイミングは、ダウンリンク信号を前記基地局が送信するためのタイミングに対して、前記第2のタイミングアドバンス情報に対応する時間の半分の時間だけ遅れたタイミングである、請求項9に記載の通信制御装置。
  11.  前記第1の無線通信装置及び前記第2の無線通信装置は、同一のセルに位置し、
     前記基地局は、前記同一のセルの基地局である、
    請求項1に記載の通信制御装置。
  12.  前記第1の無線通信装置は、第1のセルに位置し、
     前記第2の無線通信装置は、第1のセルと異なる第2のセルに位置し、
     前記基地局は、前記第1のセル又は前記第2のセルのいずれか一方の基地局である、
    請求項1に記載の通信制御装置。
  13.  前記第1の無線通信装置及び前記第2の無線通信装置は、装置間通信において、所定の無線通信方式に従って信号を送信し、当該所定の無線通信方式に従って信号を受信する、請求項1に記載の通信制御装置。
  14.  前記所定の無線通信方式は、ダウンリンク信号の送信のために基地局により用いられる無線通信方式である、請求項13に記載の通信制御装置。
  15.  前記所定の無線通信方式は、直交周波数分割多重方式である、請求項14に記載の通信制御装置。
  16.  前記通信制御装置は、前記第2の無線通信装置である、請求項1に記載の無線通信装置。
  17.  前記通信制御装置は、前記基地局の一部を構成する装置である、請求項1に記載の無線通信装置。
  18.  コンピュータを、
     第1の無線通信装置又は第2の無線通信装置と無線通信する基地局からのダウンリンク信号を前記第2の無線通信装置が受信するための受信タイミングを取得する取得部と、
     前記受信タイミングに基づいて、装置間通信で前記第2の無線通信装置が前記第1の無線通信装置へ送信するための送信タイミングを決定する決定部と、
    として機能させ、
     決定される前記送信タイミングは、アップリンク信号を前記第2の無線通信装置が送信するためのタイミングよりも後のタイミングである、
    プログラム。
  19.  第1の無線通信装置又は第2の無線通信装置と無線通信する基地局からのダウンリンク信号を前記第2の無線通信装置が受信するための受信タイミングを取得することと、
     前記受信タイミングに基づいて、装置間通信で前記第2の無線通信装置が前記第1の無線通信装置へ送信するための送信タイミングを決定することと、
    を含み、
     決定される前記送信タイミングは、アップリンク信号を前記第2の無線通信装置が送信するためのタイミングよりも後のタイミングである、
    通信制御方法。
PCT/JP2013/076104 2012-12-03 2013-09-26 通信制御装置、プログラム及び通信制御方法 WO2014087719A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/430,126 US9461899B2 (en) 2012-12-03 2013-09-26 Communication control device, program, and communication control method
JP2014550952A JP6197798B2 (ja) 2012-12-03 2013-09-26 通信制御装置、プログラム及び通信制御方法
EP16194609.0A EP3139673B1 (en) 2012-12-03 2013-09-26 Communication control device, program, and communication control method
CN201380061720.2A CN104854928B (zh) 2012-12-03 2013-09-26 通信控制设备,程序和通信控制方法
EP13860185.1A EP2928241B1 (en) 2012-12-03 2013-09-26 Communication control device, program, and communication control method
US15/245,737 US10536916B2 (en) 2012-12-03 2016-08-24 Communication control device, program, and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012264137 2012-12-03
JP2012-264137 2012-12-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/430,126 A-371-Of-International US9461899B2 (en) 2012-12-03 2013-09-26 Communication control device, program, and communication control method
US15/245,737 Continuation US10536916B2 (en) 2012-12-03 2016-08-24 Communication control device, program, and communication control method

Publications (1)

Publication Number Publication Date
WO2014087719A1 true WO2014087719A1 (ja) 2014-06-12

Family

ID=50883149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076104 WO2014087719A1 (ja) 2012-12-03 2013-09-26 通信制御装置、プログラム及び通信制御方法

Country Status (5)

Country Link
US (2) US9461899B2 (ja)
EP (2) EP2928241B1 (ja)
JP (2) JP6197798B2 (ja)
CN (1) CN104854928B (ja)
WO (1) WO2014087719A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502818A (ja) * 2012-12-09 2016-01-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてカバレッジ外部端末間の直接通信のための同期獲得方法及びそのための装置
WO2016015350A1 (en) * 2014-08-01 2016-02-04 Panasonic Intellectual Property Corporation Of America Transmission timing control for d2d communication
JP2016127384A (ja) * 2014-12-26 2016-07-11 株式会社Nttドコモ 分散アンテナ装置及び干渉制御方法
JP2017523712A (ja) * 2014-08-07 2017-08-17 インテル アイピー コーポレーション セル横断的なデバイス相互間(d2d)検出に向けたd2d同期信号伝送のためのリソース割り当て及びue挙動
JP2017530634A (ja) * 2014-09-25 2017-10-12 インテル コーポレイション D2d通信のためのデータ送信パターンの構成
JP6280296B1 (ja) * 2015-02-26 2018-02-14 クアルコム,インコーポレイテッド 機会的ロケーション予測サーバ仲介式ピアツーピアオフローディング
RU2751539C2 (ru) * 2018-05-28 2021-07-14 Сан Пэтент Траст Управление таймингом передачи для связи d2d

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2748647C2 (ru) * 2013-04-10 2021-05-28 Телефонактиеболагет Л М Эрикссон (Пабл) Оборудование пользователя и способ осуществления и обеспечения связи типа "устройство-устройство" (d2d) в сети радиосвязи
WO2016018069A1 (ko) * 2014-07-29 2016-02-04 엘지전자 주식회사 무선 통신 시스템에서 d2d 통신을 위한 제어 정보 송신 방법 및 이를 위한 장치
EP3445100B1 (en) * 2016-05-03 2020-02-12 Huawei Technologies Co., Ltd. Signal transmission method, device, and system
KR102525770B1 (ko) * 2016-06-15 2023-04-26 삼성전자주식회사 무선 통신 시스템에서 단말의 측위를 위한 장치 및 방법
US10236933B2 (en) * 2016-10-07 2019-03-19 Qualcomm Incorporated Timing offset compensation for inter-link interference cancellation
US20240147395A1 (en) * 2019-10-18 2024-05-02 Telefonaktiebolaget Lm Ericsson (Publ) A Network Node, a First Wireless Device, a Second Wireless Device and Methods Therein for Enabling a Timing Reference
US11523358B2 (en) * 2019-11-01 2022-12-06 Qualcomm Incorporated Methods and apparatus for timing advance in new radio and sidelink communications
EP4179801A4 (en) * 2020-07-13 2024-08-14 Samsung Electronics Co Ltd METHOD AND DEVICE FOR DETERMINING TIME INFORMATION
CN114816128A (zh) * 2022-05-30 2022-07-29 武汉华星光电半导体显示技术有限公司 显示装置及其驱动方法、主动笔

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522534A (ja) * 2003-03-07 2006-09-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信でのピア・ツー・ピア通信に伴うアップリンク同期を維持するための方法およびシステム
WO2010108549A1 (en) * 2009-03-27 2010-09-30 Nokia Siemens Networks Oy Apparatus, method and article of manufacture
JP2010279042A (ja) 2010-06-07 2010-12-09 Sony Corp 情報処理装置および方法、並びにプログラム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3821290B2 (ja) * 2002-11-05 2006-09-13 ソニー株式会社 情報処理装置および情報処理方法、並びにプログラム
CN1521967A (zh) * 2003-02-11 2004-08-18 北京三星通信技术研究有限公司 时分复用移动通信系统终端到终端直接通信的同步方法
CN1536925A (zh) * 2003-04-11 2004-10-13 �ʼҷ����ֵ��ӹɷ����޹�˾ 在tdd cdma通信体系中支持p2p通信的方法和装置
CN102090132A (zh) * 2008-05-15 2011-06-08 诺基亚公司 用于提供对设备到设备通信的协调的方法,设备和计算机程序产品
US8761099B2 (en) * 2009-01-16 2014-06-24 Nokia Corporation Apparatus and method of scheduling resources for device-to-device communications
US9485069B2 (en) * 2010-04-15 2016-11-01 Qualcomm Incorporated Transmission and reception of proximity detection signal for peer discovery
US8504052B2 (en) * 2010-05-06 2013-08-06 Nokia Corporation Measurements and fast power adjustments in D2D communications
US8705421B2 (en) * 2011-04-22 2014-04-22 Qualcomm Incorporated Methods and apparatus for timing synchronization for peer to peer devices operating in WWAN spectrum
WO2013075340A1 (en) * 2011-11-25 2013-05-30 Renesas Mobile Corporation Radio resource sharing and contention scheme for device-to-device communication in white space spectrum bands
WO2013123674A1 (en) * 2012-02-24 2013-08-29 Renesas Mobile Corporation A method, an apparatus and a computer program product for wireless device-to-device network
US9014113B2 (en) * 2012-09-21 2015-04-21 Blackberry Limited User equipment architecture for inter-device communication in wireless communication systems
WO2014050887A1 (ja) * 2012-09-27 2014-04-03 京セラ株式会社 移動通信システム、ユーザ端末、基地局及びプロセッサ
WO2014063747A1 (en) * 2012-10-26 2014-05-01 Nokia Solutions And Networks Oy Configuration of handovers in communication systems
CN105594277B (zh) * 2013-10-03 2019-03-08 Lg电子株式会社 无线通信系统中使用用于d2d操作的资源的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522534A (ja) * 2003-03-07 2006-09-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信でのピア・ツー・ピア通信に伴うアップリンク同期を維持するための方法およびシステム
WO2010108549A1 (en) * 2009-03-27 2010-09-30 Nokia Siemens Networks Oy Apparatus, method and article of manufacture
JP2010279042A (ja) 2010-06-07 2010-12-09 Sony Corp 情報処理装置および方法、並びにプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2928241A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503636A (ja) * 2012-12-09 2016-02-04 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてカバレッジ内部端末とカバレッジ外部端末間の直接通信のための同期獲得方法及びそのための装置
US9615343B2 (en) 2012-12-09 2017-04-04 Lg Electronics Inc. Method for obtaining synchronization for device-to-device communication between user equipment inside coverage area and user equipment outside of coverage area in wireless communication system, and apparatus for same
JP2016502818A (ja) * 2012-12-09 2016-01-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてカバレッジ外部端末間の直接通信のための同期獲得方法及びそのための装置
US10104628B2 (en) 2012-12-09 2018-10-16 Lg Electronics Inc. Method for obtaining synchronization for device-to-device communication between user equipment inside coverage area and user equipment outside of coverage area in wireless communication system, and apparatus for same
US10187863B2 (en) 2014-08-01 2019-01-22 Sun Patent Trust Transmission timing control for D2D communication
WO2016015350A1 (en) * 2014-08-01 2016-02-04 Panasonic Intellectual Property Corporation Of America Transmission timing control for d2d communication
US11310755B2 (en) 2014-08-01 2022-04-19 Sun Patent Trust Transmission timing control for D2D communication
US10708873B2 (en) 2014-08-01 2020-07-07 Sun Patent Trust Transmission timing control for D2D communication
RU2658663C1 (ru) * 2014-08-01 2018-06-22 Сан Пэтент Траст Управление таймингом передачи для связи d2d
JP2017523712A (ja) * 2014-08-07 2017-08-17 インテル アイピー コーポレーション セル横断的なデバイス相互間(d2d)検出に向けたd2d同期信号伝送のためのリソース割り当て及びue挙動
JP2017530634A (ja) * 2014-09-25 2017-10-12 インテル コーポレイション D2d通信のためのデータ送信パターンの構成
US10791551B2 (en) 2014-09-25 2020-09-29 Apple Inc. Construction of transmission patterns for D2D communication
JP2016127384A (ja) * 2014-12-26 2016-07-11 株式会社Nttドコモ 分散アンテナ装置及び干渉制御方法
JP6280296B1 (ja) * 2015-02-26 2018-02-14 クアルコム,インコーポレイテッド 機会的ロケーション予測サーバ仲介式ピアツーピアオフローディング
RU2751539C2 (ru) * 2018-05-28 2021-07-14 Сан Пэтент Траст Управление таймингом передачи для связи d2d

Also Published As

Publication number Publication date
US10536916B2 (en) 2020-01-14
JPWO2014087719A1 (ja) 2017-01-05
EP2928241B1 (en) 2021-05-05
US20150256429A1 (en) 2015-09-10
CN104854928A (zh) 2015-08-19
EP2928241A1 (en) 2015-10-07
EP3139673A1 (en) 2017-03-08
EP3139673B1 (en) 2018-11-14
EP2928241A4 (en) 2016-07-27
JP6197798B2 (ja) 2017-09-20
JP2017220944A (ja) 2017-12-14
JP6432655B2 (ja) 2018-12-05
US20160366661A1 (en) 2016-12-15
CN104854928B (zh) 2018-09-28
US9461899B2 (en) 2016-10-04

Similar Documents

Publication Publication Date Title
JP6432655B2 (ja) 通信装置、通信方法、及び通信システム
JP6631668B2 (ja) 車両および端末装置
CN105993201B (zh) 一种通信装置及方法
WO2014087720A1 (ja) 通信制御装置、通信制御方法、端末装置及びプログラム
WO2015045556A1 (ja) 通信制御装置、通信制御方法、端末装置及び情報処理装置
WO2015040942A1 (ja) 通信制御装置及び通信制御方法
JP2016032204A (ja) 装置及び方法
US10433320B2 (en) Switching and synchronization device
JP6265204B2 (ja) 通信制御装置、通信制御方法及び端末装置
WO2018128029A1 (ja) 端末装置、基地局装置、方法及び記録媒体
CN116647316A (zh) 通信控制装置、通信控制方法和终端装置
JP2019208278A (ja) 基地局装置、ユーザ装置、基地局装置の制御方法及びユーザ装置の制御方法
US10512086B2 (en) Transmission of discovery signal in small cells while in off state
US10028256B2 (en) Apparatus
WO2016092953A1 (ja) 装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860185

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14430126

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014550952

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013860185

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE