WO2014087720A1 - 通信制御装置、通信制御方法、端末装置及びプログラム - Google Patents

通信制御装置、通信制御方法、端末装置及びプログラム Download PDF

Info

Publication number
WO2014087720A1
WO2014087720A1 PCT/JP2013/076107 JP2013076107W WO2014087720A1 WO 2014087720 A1 WO2014087720 A1 WO 2014087720A1 JP 2013076107 W JP2013076107 W JP 2013076107W WO 2014087720 A1 WO2014087720 A1 WO 2014087720A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
radio resource
resource
change
inter
Prior art date
Application number
PCT/JP2013/076107
Other languages
English (en)
French (fr)
Inventor
吉澤 淳
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2014550953A priority Critical patent/JP6194896B2/ja
Priority to US14/431,494 priority patent/US9661613B2/en
Priority to CN201811209026.1A priority patent/CN109257826B/zh
Priority to EP13860983.9A priority patent/EP2930989B1/en
Priority to EP18195528.7A priority patent/EP3481122B1/en
Priority to CN201380061018.6A priority patent/CN104798424B/zh
Publication of WO2014087720A1 publication Critical patent/WO2014087720A1/ja
Priority to US15/459,469 priority patent/US10278221B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a communication control device, a communication control method, a terminal device, and a program.
  • Proximity terminal-to-terminal communication or device-device communication is a communication mode in which signals are transmitted and received directly between terminal devices, unlike a communication mode via a base station in cellular communication. Therefore, in D2D communication, it is expected that a new usage form of the terminal device will be born, which is different from conventional cellular communication. For example, information sharing by data communication between adjacent terminal devices or groups of adjacent terminal devices, distribution of information from installed terminal devices, autonomous communication between devices called MTC (Machine Type Communication), etc. Application is conceivable.
  • D2D communication may be used for data offloading in response to a significant increase in data traffic due to the recent increase in smartphones. For example, if the terminal devices are in a state suitable for D2D communication, such as when the distance between the terminal devices is small, resource consumption in the RAN (Radio Access Network) is performed by offloading data to D2D communication. In addition, the processing load can be reduced. Thus, D2D communication has utility value for both communication carriers and users. Therefore, at present, D2D communication is recognized as one of the important technical fields necessary for LTE (Long Term Evolution) even in the 3GPP (3rd Generation Partnership Project) standardization conference, and is attracting attention.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • Patent Document 1 discloses that TD-CDMA (Time Division-Code Division Multiple Access) uses P2P (Peer to Peer) between UEs (User Equipment). ) A technology for performing communication is disclosed.
  • TD-CDMA Time Division-Code Division Multiple Access
  • P2P Peer to Peer
  • a communication control apparatus comprising: a determination unit that determines a radio resource that can be used for inter-device communication in a cell; and a notification unit that notifies the terminal device located in the cell of the radio resource.
  • the notification unit notifies the change of the radio resource by paging when the radio resource is changed.
  • the radio resource before the change is not used for the inter-device communication after a predetermined timing, and the radio resource after the change is not used for the device after the predetermined timing. Used for intercommunication.
  • determining a radio resource that can be used for inter-device communication in a cell notifying the radio resource to a terminal device located in the cell, and changing the radio resource
  • a communication control method including notifying the change of the radio resource by paging is provided.
  • the radio resource is changed, the radio resource before the change is not used for the inter-device communication after a predetermined timing, and the radio resource after the change is not used for the inter-device communication after the predetermined timing. Used for.
  • a resource recognition unit that recognizes the radio resource and the recognized radio resource are used in the inter-device communication. If the radio resource change is notified by paging when the radio resource is changed, and the control unit that controls communication between the devices, the change recognition that recognizes the change of the radio resource A terminal device is provided.
  • the control unit does not use the radio resource before the change for the inter-device communication after a predetermined timing, and the radio resource after the change is not changed after the predetermined timing.
  • the inter-device communication is controlled so as to be used for the inter-device communication.
  • the computer when a radio resource that can be used for inter-device communication in a cell is determined and the radio resource is notified, the computer is recognized as a resource recognition unit that recognizes the radio resource.
  • the radio resource change is notified by paging when the radio resource is changed and the control unit that controls the inter-device communication so that the radio resource is used in the inter-device communication
  • a program for functioning as a change recognition unit that recognizes the change of the radio resource is provided.
  • the control unit does not use the radio resource before the change for the inter-device communication after a predetermined timing, and the radio resource after the change is not changed after the predetermined timing.
  • the inter-device communication is controlled so as to be used for the inter-device communication.
  • a terminal device in the idle mode of cellular communication it is possible to cause a terminal device in the idle mode of cellular communication to use radio resources that are allowed for communication between devices, and to suppress errors in communication between devices.
  • Wireless communication technology in GPP 2. Schematic configuration of radio communication system Configuration of base station 4. 4. Configuration of terminal device Flow of processing Modification 6.1. Outline 6.2. Configuration of base station 6.3. Process flow Application example 7.1. Application examples related to base stations 7.2. 7. Application examples related to terminal devices Summary
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • TDD Time Division Duplexing
  • FIG. 1 is an explanatory diagram for explaining the TDD configuration.
  • the radio frame includes 10 subframes. Each subframe is set to one of a downlink subframe (D), an uplink subframe (U), and a special subframe (S).
  • the special subframe is a subframe that is inserted between the downlink subframe and the uplink subframe in order to secure time for switching between the downlink and the uplink.
  • the TDD configuration is transmitted in the system information. More specifically, the TDD configuration is transmitted in SIB1 (System Information Block Type 1).
  • paging opportunities are defined. More specifically, a system frame number (SFN) of a radio frame to be paged and a subframe to be paged are determined.
  • SFN system frame number
  • the SFN of a radio frame for which paging for each terminal device (ie, UE) is performed is determined by the following equation.
  • UE_ID is the lower 10 bits of IMSI (International Mobile Subscriber Identity) of the terminal device (that is, UE).
  • T is a paging cycle.
  • T is a DRX (Discontinuous Reception) cycle.
  • T and nB are transmitted in SIB2 (System Information Block Type 2) of the system information.
  • T and nB are selected from the following values.
  • FIG. 2 is an explanatory diagram for explaining an example of a paging opportunity of each terminal device.
  • paging opportunities of each terminal device terminal device A and terminal device B are shown.
  • a paging opportunity may be newly added.
  • the subframe in which paging is performed is determined by the value of the parameter Ns.
  • the value of Ns is one of 1, 2, and 3.
  • FIG. 3 is an explanatory diagram for explaining an example of a subframe of a paging opportunity.
  • TDD configuration 0 is shown.
  • Ns 2
  • the subframe # 0 and the subframe # 5 which are downlink subframes, serve as paging opportunities.
  • paging can be performed in a plurality of subframes. In which subframe paging for each UE is performed depends on the UE_ID of each UE.
  • a subframe in which paging for each terminal device is performed is determined.
  • FIG. 4 is an explanatory diagram for explaining an example of information included in the paging message.
  • the paging message includes, for example, a paging record list, a system information change flag, and an earthquake / tsunami warning system (ETWS) indication flag.
  • EWS earthquake / tsunami warning system
  • the paging record is a list of up to 16 call records.
  • the paging record list includes the UE identifier (Identity) of the terminal device (ie, UE) that is the target of the call.
  • the UE identifier in the paging record list is S-TMSI (SAE-Temporary Mobile Subscriber Identity) or IMSI (International Mobile Subscriber Identity).
  • the paging record list includes information on the core network domain of the paging source. This information indicates whether the paging source core network domain is a CS (Circuit Switched) domain or a PS (Packet Switched) domain.
  • the system information change flag indicates whether or not the system information has been changed. For example, when the system information is changed, the flag is 1, and when the system information is not changed, the flag is 0.
  • the system information change flag is basically set to 1 when any of the system information is changed, but when only some exceptional information of the system information is changed. It is not 1 (that is, it remains 0).
  • the exceptional information includes, for example, information on ETWS, information on CMAS (Commercial Mobile Alert System), and the like.
  • the flag of the ETWS instruction indicates whether or not there has been an instruction of the earthquake / tsunami system.
  • FIG. 5 is an explanatory diagram for explaining an example of the operation of the terminal device for paging.
  • the terminal device in the idle mode monitors whether a P-RNTI (Paging Radio Network Temporary Identifier) exists in the PDCCH (Physical Downlink Control CHannel) in a subframe of a predetermined paging opportunity. .
  • P-RNTI Paging Radio Network Temporary Identifier
  • PDCCH Physical Downlink Control CHannel
  • the terminal device acquires the paging message.
  • the paging message includes a paging record list, a system information change flag, and an ETWS instruction flag. If there is no P-RNTI in the PDCCH, the terminal apparatus performs PDCCH monitoring again at the next paging opportunity.
  • the terminal device When the terminal device (that is, the UE) acquires the paging message, the terminal device (ie, UE) confirms whether the UE identifier (Identity) addressed to itself is present in the paging record list. When there is a UE identifier addressed to itself in the paging record list, the terminal device recognizes that there is a call from the network. In this case, the terminal device confirms whether the call source is the CS domain or the PS domain from the information of the core network domain. In addition, when there is no UE identifier addressed to itself in the paging record list, the terminal apparatus performs PDCCH monitoring again at the next paging opportunity.
  • the terminal device when the terminal device acquires the paging message, the terminal device also checks whether the system information has been changed from the system information change flag. When the system information is changed, the terminal device acquires the system information again.
  • the terminal device when the terminal device acquires the paging message, the terminal device confirms whether there is an ETWS instruction from the flag of the ETWS instruction. When there is an instruction for ETWS, the terminal device performs a predetermined operation including an emergency alarm operation.
  • the terminal device transmits the RPACH preamble by PRACH (Physical Random Access CHannel) in a random access procedure for transition from the radio resource control (RRC) idle mode (RRC idle mode) to the RRC connected mode (RRC connected mode).
  • PRACH Physical Random Access CHannel
  • the transmission timing of the PRACH preamble is designated in advance by a PRACH configuration index.
  • the PRACH configuration index specifies a radio frame in which the PRACH is located (that is, a radio frame in which the PRACH preamble can be transmitted). Specifically, the PRACH is located in each radio frame, a radio frame with an even SFN, or a radio frame with an odd SFN according to the PRACH configuration index. Thus, the PRACH exists every 10 ms or every 20 ms.
  • a radio frame in which the PRACH preamble can be transmitted.
  • the PRACH is located in each radio frame, a radio frame with an even SFN, or a radio frame with an odd SFN according to the PRACH configuration index.
  • the PRACH exists every 10 ms or every 20 ms.
  • FIG. 6 is an explanatory diagram for explaining an example of a radio frame in which the PRACH is located.
  • the PRACH timing the timing of a radio frame in which the PRACH is transmitted is shown.
  • the PRACH configuration index is 0
  • the PRACH is located in a radio frame with an even SFN. That is, there is a PRACH every 20 ms.
  • the paging cycle is 320 ms (that is, 32 radio frames)
  • the PRACH is located in 16 radio frames during one paging cycle.
  • the PRACH configuration index is 55
  • the PRACH is located in each radio frame.
  • the PRACH configuration index specifies a subframe in which the PRACH is located (that is, a subframe in which the PRACH preamble can be transmitted).
  • any one of preamble formats 0 to 4 corresponds to the PRACH configuration index.
  • the PRACH configuration index indicates an UpPTS (Uplink Pilot Time Slot) in the special subframe as a timing at which the PRACH preamble can be transmitted.
  • UpPTS Uplink Pilot Time Slot
  • FIG. 7 is an explanatory diagram for explaining an example of a subframe in which the PRACH is located.
  • TDD configuration 0 is shown.
  • the PRACH is located in the # 2 subframe in the radio frame. That is, the PRACH preamble can be transmitted in the # 2 subframe.
  • the preamble format is 4, and the PRACH is located in the UpPTS in the special subframe. That is, the PRACH preamble can be transmitted to the UpPTS.
  • the system information includes various information related to wireless communication in the cell.
  • the system information in LTE includes a master information block (Master Information Block: MIB) and various system information blocks (System Information Block: SIB).
  • MIB Master Information Block
  • SIB System Information Block
  • FIG. 8 is an explanatory diagram for explaining an example of information blocks included in the system information.
  • SIB1 of the plurality of SIBs includes information on TDD configuration.
  • SIB2 of the plurality of SIBs includes a paging cycle (or DRX cycle) T and a parameter nB for determining a paging opportunity for each terminal apparatus, and a PRACH configuration index for determining a random access timing.
  • SIB2 includes a modification period coefficient for determining the timing of changing the system information.
  • MIB and various SIBs are transmitted in each cycle.
  • the MIB is transmitted on a physical broadcast channel (PBCH) arranged at a fixed position in the frequency direction and the time direction.
  • PBCH physical broadcast channel
  • SIB1 is transmitted by radio resources at positions in the frequency direction and time direction specified by MIB.
  • the remaining SIBs are transmitted using radio resources specified by SIB1.
  • the system information is changed, it is changed at a predetermined timing. Specifically, the system information can be changed every system information change period.
  • the system information change period is obtained by multiplying the DRX cycle (that is, the paging cycle T) by the change period coefficient included in the SIB2.
  • the change of the system information is notified before the changed system information is transmitted.
  • FIG. 9 is an explanatory diagram for explaining the notification timing of system information change and the timing of system information change.
  • two change periods (N) and system change periods (N + 1) for system information are shown.
  • the change period (N) system information before change is transmitted.
  • the changed system information is transmitted by the base station in the change period (N + 1).
  • the terminal device acquires the changed information block at the timing when each information block of the system information is transmitted.
  • the terminal device uses the system information before the change until the system information after the change is acquired.
  • FIG. 10 is an explanatory diagram illustrating an example of a schematic configuration of the wireless communication system 1 according to the present embodiment.
  • the wireless communication system 1 includes a base station 100 and two or more terminal devices 200.
  • the radio communication system 1 employs LTE as a communication system for cellular communication, for example.
  • the wireless communication system 1 employs TDD.
  • the base station 100 performs wireless communication with the terminal device 200 located in the cell 10. That is, the base station 100 transmits user data or control information to the terminal device 100 on the downlink, and receives user data or control information from the terminal device 200 on the uplink.
  • the base station 100 transmits system information. More specifically, for example, the base station 100 transmits the MIB on the PBCH. Further, the base station 100 transmits SIB1 using radio resources specified by MIB, and transmits the remaining SIB using radio resources specified by SIB1.
  • the SIB1 includes information on the TDD configuration.
  • SIB2 includes a paging cycle (or DRX cycle) T and a parameter nB for determining a paging opportunity for each terminal apparatus 200, and a PRACH configuration index for determining a random access timing. Further, SIB2 includes a change period coefficient for determining the timing for changing the system information.
  • the base station 100 performs paging. More specifically, for example, the base station 100 performs paging to the UE at a timing corresponding to each UE in a paging cycle. Further, the base station 100 notifies the terminal device 200 of the presence or absence of a call to the terminal device, the presence or absence of a change in system information, etc. by paging.
  • the base station 100 performs a random access procedure with the terminal device 100. More specifically, for example, the base station 100 receives the PRACH preamble from the terminal device 200 using the PRACH.
  • the base station 100 determines radio resources that can be used for D2D communication within the cell 10. Then, the base station 100 notifies the terminal device 200 of the radio resource.
  • Terminal device 200 When the terminal device 200 is located in the cell 10 formed by the base station 100, the terminal device 200 communicates with the base station 100 by radio. That is, the terminal device 200 receives user data or control information from the base station 100 on the downlink, and transmits user data or control information to the base station 100 on the uplink.
  • the terminal device 200 receives system information transmitted by the base station 100 and acquires the system information.
  • the terminal device 200 acquires SIB1. Then, the terminal device 200 recognizes the TDD configuration from the SIB1. Then, the terminal device 200 performs reception on the downlink and transmission on the uplink according to the TDD configuration.
  • the terminal device 200 acquires SIB2. Then, the terminal device 200 recognizes the paging cycle (or DRX cycle) T and the parameter nB from the SIB2. And the terminal device 200 specifies the subframe which is a paging opportunity of an own apparatus from the paging cycle T and the parameter nB, and receives a paging message by the said subframe.
  • the terminal device 200 recognizes the PRACH timing from the SIB2.
  • the terminal device 200 transmits a PRACH preamble on the PRACH when transitioning from the radio resource control (RRC) idle mode to the RRC connection mode.
  • RRC radio resource control
  • the terminal device 200 performs D2D communication with another terminal device 200.
  • the terminal device 200 performs D2D communication using the radio resource notified by the base station 100.
  • the terminal device 200A and the terminal device 200B perform D2D communication.
  • D2D communication is performed according to OFDM (Orthogonal Frequency-Division Multiplexing).
  • FIG. 11 is a block diagram illustrating an example of the configuration of the base station 100 according to the present embodiment.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a control unit 150.
  • the antenna unit 110 receives a radio signal and outputs the received radio signal to the radio communication unit 120.
  • the antenna unit 110 transmits the transmission signal output from the wireless communication unit 120.
  • the wireless communication unit 120 performs wireless communication with the terminal device 200 located in the cell 10.
  • the network communication unit 130 communicates with other communication nodes.
  • the network communication unit 130 communicates with other base stations 100, MME (Mobility Management Entity), and the like.
  • MME Mobility Management Entity
  • the storage unit 140 stores a program and data for the operation of the base station 100.
  • the control unit 150 provides various functions of the base station 100.
  • the control unit 150 includes a D2D resource determination unit 151, a D2D resource notification unit 153, and a D2D resource change notification unit 155.
  • the D2D resource determination unit 151 determines radio resources that can be used for D2D communication within the cell 10.
  • the D2D resource determination unit 151 uses a radio resource (hereinafter referred to as “a”) that can be used for D2D communication in the cell 10 based on information on a specific radio resource used by the terminal device 200 in the radio resource control idle mode. Called "D2D resource"). More specifically, for example, the D2D resource determination unit 151 determines any radio resource excluding the specific radio resource as the D2D resource. Hereinafter, a specific example of the specific radio resource will be described.
  • radio resource for paging includes a radio resource for paging. That is, the D2D resource is a radio resource excluding a paging radio resource.
  • the above-described radio resource for paging is a radio resource used for paging for all the terminal devices 200 located in the cell 10.
  • the parameter Ns for determining the subframe to be paged is 2, any one of the terminal devices 200 in the subframe # 0 and the subframe # 5. Paging can be performed. Therefore, the D2D resource determination unit 151 determines one of the radio resources of the subframes excluding the # 0 subframe and the # 5 subframe as the D2D resource.
  • the terminal device 200 does not perform the D2D communication with the paging radio resource. As a result, it is possible to prevent the terminal device 200 from receiving a paging message due to D2D communication.
  • the radio resource for paging may be a radio resource used for paging for the terminal device 200 that performs D2D communication in the cell 10. That is, the D2D resource determination unit 151 may determine any radio resource other than the radio resource used for paging for the terminal device 200 that performs D2D communication as the D2D resource.
  • the base station 100 recognizes the terminal device 200 that performs D2D communication.
  • the terminal device 200 that performs D2D communication notifies the base station 100 when performing D2D communication
  • the D2D resource determination unit 151 recognizes the terminal device 200 that performs D2D communication.
  • the D2D resource determination unit 151 calculates a paging opportunity for each terminal device 200 that performs D2D communication.
  • the D2D resource determination unit 151 may determine any radio resource excluding the radio resource of the paging opportunity as the D2D resource.
  • FIG. 12 is an explanatory diagram for explaining an example of a radio resource that is not recognized as a D2D resource (a radio resource for paging for the terminal device 200 that performs D2D communication).
  • a radio resource for paging for the terminal device 200 that performs D2D communication a radio resource for paging for the terminal device 200 that performs D2D communication.
  • the D2D resource determination unit 151 determines any of the radio resources excluding the radio resources of these paging opportunities as the D2D resource. Determine as.
  • radio resources of radio frames excluding limited radio frames can be determined as D2D resources.
  • radio resource for random access is a random access procedure for transition to a connection mode of radio resource control. Includes radio resources used in That is, the D2D resource is a resource excluding radio resources used in the random access procedure.
  • the radio resource used in the random access procedure is a radio resource of a physical random access channel (Physical Random Access Channel: PRACH). That is, the D2D resource is a radio resource other than the PRACH radio resource.
  • PRACH Physical Random Access Channel
  • FIG. 13 is an explanatory diagram for explaining an example of radio resources (PRACH radio resources) that are not recognized as D2D resources.
  • PRACH radio resources PRACH radio resources
  • FIG. 12 similarly to FIG. 6, the PRACH timing when the PRACH configuration index is 0 is shown in the time direction.
  • the PRACH is located in a radio frame having an even number of SFNs.
  • the D2D resource determining unit 151 determines any one of the radio resources excluding these PRACH radio resources as the D2D resource.
  • any radio resource of a radio frame having an odd SFN can be determined as the D2D resource.
  • PRACH configuration index when the PRACH configuration index is 0, PRACH exists in the subframe # 2. Therefore, any radio resource in a subframe other than the # 2 subframe in the radio frame having an even SFN may be determined as the D2D resource.
  • the terminal device 200 does not perform D2D communication with the radio resource used in the random access procedure. As a result, it is possible to prevent the terminal device 200 from performing the random access procedure by D2D communication. Further, as described above, if the D2D resource used in the random access procedure is a PRACH radio resource, it is possible to prevent the terminal apparatus 200 from being unable to transmit the PRACH preamble by D2D communication.
  • the radio resource used in the random access procedure may be a radio resource selected in advance as a radio resource used in the random access procedure by the terminal device 200 that performs D2D communication. . That is, when a radio resource to be used in the random access procedure other than PRACH is selected in advance, the D2D resource determination unit 151 sets any one of the radio resources excluding the preselected radio resource as the D2D resource. You may decide.
  • the random access procedure includes transmission of a random access response on PDSCH (Physical Downlink Shared CHannel) by the base station 100, transmission of CRI (Contention Resolution Identity), and the like in addition to transmission of the PRACH preamble by the terminal device 200.
  • PDSCH Physical Downlink Shared CHannel
  • CRI Contention Resolution Identity
  • the terminal device 200 does not perform the D2D communication for any radio resource for the random access procedure. As a result, it is possible to prevent the terminal device 200 from performing any part of the random access procedure by D2D communication. As another viewpoint, the terminal device 200 can perform D2D communication without affecting the random access procedure until a series of random access procedures is completed.
  • any radio resource excluding a specific radio resource for example, a paging radio resource, a random access procedure radio resource, etc.
  • a specific radio resource for example, a paging radio resource, a random access procedure radio resource, etc.
  • the terminal device 200 can perform D2D communication without affecting the cellular communication of the terminal device 200 when in the idle mode.
  • the D2D resource determined as described above is particularly effective.
  • the MTC is autonomous communication between devices.
  • a device that is a measuring instrument transmits measurement data to a nearby device, and the nearby device aggregates the measured data.
  • the size of data to be transmitted is small, the frequency of data transmission is low, and a data transmission delay is allowed.
  • the device is required to have low cost and low power consumption.
  • the communication circuit is shared between the cellular communication and the D2D communication, and the D2D communication is performed when the device is in the idle mode of the cellular communication. Therefore, when the terminal apparatus 200 is an apparatus that performs MTC, the D2D resource determined as described above is particularly effective.
  • the D2D resource determination unit 151 determines a radio resource of any subframe that does not include the specific radio resource as a radio resource that can be used for D2D communication.
  • the specific radio resource as a radio resource that can be used for D2D communication.
  • FIG. 14 is an explanatory diagram for explaining an example of the determined D2D resource.
  • a radio frame number and a subframe number are shown as the determined D2D resource.
  • the radio resources of subframes with subframe numbers 3, 4, 7, 8, or 9 in radio frames with non-even SFN (ie, radio frames with odd SFN) are D2D. Determined as a resource.
  • the PRACH configuration index is 0, the PRACH is present in a radio frame having an even SFN. Therefore, since the D2D resource as shown in FIG. 14 is a radio resource of a radio frame having an odd SFN, the P2CH radio resource is not included. Therefore, D2D communication using the D2D resource does not prevent transmission of the PRACH preamble.
  • the paging opportunities may be the subframe # 0 and the subframe # 5. Therefore, the D2D resource as shown in FIG. 14 does not include the subframe of # 0 and the subframe of # 5, and therefore does not include the radio resource of the subframe of the paging opportunity. Therefore, the D2D communication using the D2D resource does not prevent the paging message from being received.
  • the radio resource in units of subframes as the D2D resource, it becomes possible to indicate the D2D resource as simple information. Therefore, radio resources used when notifying the terminal apparatus 100 of D2D resources can be suppressed. In addition, since the D2D resource can be easily determined, the process for determining the D2D resource can be further simplified. Further, since radio resources that can be used in cellular communication and radio resources that are used in D2D communication are separated on the time axis, it is possible to share a communication circuit (for example, an RF circuit) between cellular communication and D2D communication. Become.
  • a communication circuit for example, an RF circuit
  • the determined D2D resource is used for D2D communication by the terminal device 200 in the radio resource control idle mode, and is not used for D2D communication by the terminal device 200 in the connection mode of radio resource control.
  • the terminal device 200 in the connection mode may receive a downlink signal addressed to itself in any subframe. Therefore, when D2D communication is performed, the terminal device 200 may fail to receive the downlink signal. obtain. Therefore, only the terminal device 200 in the idle mode performs D2D communication using the D2D resource, thereby suppressing the possibility that the D2D communication hinders the cellular communication.
  • the D2D resource determination unit 151 changes the D2D resource as necessary. That is, the D2D resource determination unit 151 determines a new D2D resource as necessary. For example, when the specific radio resource (for example, radio resource for paging, radio resource for random access procedure, etc.) is changed, the D2D resource determination unit 151 determines a new D2D resource.
  • the specific radio resource for example, radio resource for paging, radio resource for random access procedure, etc.
  • the D2D resource before the change is not used for D2D communication after a predetermined timing
  • the D2D resource after the change is D2D after the predetermined timing. Used for communication.
  • the terminal device 200A and the terminal device 200B perform D2D communication
  • one of the terminal device 200A and the terminal device 200B does not use the D2D resource before the change, and the other does not use the D2D resource after the change.
  • errors in D2D communication can be suppressed by switching the D2D resources used before and after the predetermined timing. That is, it is possible to avoid the occurrence of an error in D2D communication by using different D2D resources between the terminal devices 200 that perform D2D communication.
  • the D2D resource notification unit 153 notifies the terminal device 200 located in the cell 10 of the D2D resource.
  • the D2D resource notification unit 153 notifies the D2D resource in the system information of the cell 10. More specifically, for example, the D2D resource notification unit 153 generates an SIB including information on the determined D2D resource. Then, the D2D resource notification unit 153 causes the wireless communication unit 120 to transmit the SIB using the radio resource for transmitting the SIB.
  • the D2D resource notification unit 153 transmits the changed D2D resource. More specifically, for example, as shown in FIG. 9, the D2D resource notification unit 153 causes the wireless communication unit 120 to transmit the system information before the change in the system information change period (N), and System information after the change is transmitted in the change period (N + 1).
  • the D2D resource after being changed can be used after the timing at which the SIB including the D2D resource is first received in the change period (N + 1) of the system information by notifying the D2D resource as the system information. . Further, the D2D resource before the change is not used after the timing. Therefore, since the D2D resource used before and after the timing is switched, an error in D2D communication can be suppressed.
  • the D2D resource is any radio resource excluding the specific radio resource (for example, a radio resource for paging, a radio resource for random access procedure, etc.).
  • wireless resource is changed with the change of system information (For example, paging period T, parameter nB, PRACH configuration index, etc.). Therefore, if the D2D resource is transmitted in the system information, the changed D2D resource can be notified in a timely manner.
  • D2D resource change notification unit 155 When the D2D resource is changed, the D2D resource change notification unit 155 notifies the change of the D2D resource by paging.
  • the change of the D2D resource is notified by paging, so that even the terminal device 200 in the idle mode can know the D2D resource. Therefore, it is possible to cause the terminal device 200 in the idle mode to use radio resources permitted for D2D communication.
  • the D2D resource change notification unit 155 notifies the change of the D2D resource by paging as the change of the system information. More specifically, for example, the D2D resource change notification unit 155 sets the system information change flag in the paging message as shown in FIG. 4 to 1, and causes the wireless communication unit 120 to transmit the paging message. To notify the change of the D2D resource. For example, as illustrated in FIG. 9, the D2D resource change notification unit 155 causes the wireless communication unit 120 to transmit the paging message during the system information change period (N). Then, in the system information change period (N + 1), the changed system information including the changed D2D resource information is transmitted.
  • the D2D resource notification unit 155 may notify the change of the D2D resource by paging as a change different from the change of the system information, and may not notify the change of the D2D resource by the paging as a change of the system information.
  • a specific example of this point will be described with reference to FIG.
  • FIG. 15 is an explanatory diagram for explaining an example of information included in the paging message according to the present embodiment.
  • the paging message includes, for example, a paging record list, a system information change flag, and an ETWS instruction flag.
  • the paging message further includes a D2D resource change flag.
  • the D2D resource change notification unit 155 notifies the terminal device 200 that there is a change in the D2D resource by setting the D2D resource change flag to 1 when the D2D resource is changed. Further, when the D2D resource change notification unit 155 does not change the D2D resource change flag, the D2D resource change notification unit 155 sets the D2D resource change flag to 0 to notify the terminal device 200 that there is no change in the D2D resource.
  • the D2D resource change notification unit 155 determines a system information change flag based on whether or not system information other than the D2D resource information has been changed. That is, the system information change flag does not change depending on whether the D2D resource is changed.
  • FIG. 16 is a block diagram illustrating an example of the configuration of the terminal device 200 according to the present embodiment.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a control unit 240.
  • the antenna unit 210 receives a radio signal and outputs the received radio signal to the radio communication unit 220.
  • the antenna unit 210 transmits the transmission signal output from the wireless communication unit 220.
  • the wireless communication unit 220 performs wireless communication with the base station 100 of the cell 10 when the terminal device 200 is located in the cell 10.
  • the storage unit 230 stores a program and data for the operation of the terminal device 200.
  • the control unit 240 provides various functions of the terminal device 200.
  • the control unit 240 includes a D2D resource recognition unit 241, a D2D resource change recognition unit 243, and a D2D communication control unit 245.
  • D2D resource recognition unit 241 When the D2D resource is determined and the D2D resource is notified, the D2D resource recognition unit 241 recognizes the D2D resource.
  • the D2D resource is notified in the system information.
  • the wireless communication unit 220 receives an SIB including information on the D2D resource
  • the D2D resource recognition unit 241 recognizes the D2D resource from the SIB.
  • the D2D resource change recognition unit 243 recognizes the change of the D2D resource when the change of the D2D resource is notified by paging when the D2D resource is changed.
  • the change of the D2D resource is notified by paging as the change of the system information.
  • the system information before the change is transmitted in the system information change period (N), and the system information after the change is transmitted in the system information change period (N + 1).
  • the wireless communication unit 220 receives the paging message in the system information change period (N).
  • the D2D resource change recognition unit 243 recognizes the change of the system information from the system information change flag in the paging message. This operation is as described with reference to FIG.
  • the wireless communication unit 220 receives the SIB including the D2D resource information in the system information change period (N + 1).
  • the D2D resource change recognition unit 243 acquires D2D resource information from the SIB, and recognizes the change of the D2D resource.
  • the change of the D2D resource is notified by paging as a change different from the change of the system information, and may not be notified by the paging as a change of the system information.
  • the D2D resource change recognition unit 243 determines from the D2D resource change flag in the paging message. A change in the D2D resource may be recognized.
  • this operation will be described with reference to FIG.
  • FIG. 17 is an explanatory diagram for explaining an example of the operation of the terminal device for paging according to the present embodiment.
  • the terminal device in the idle mode monitors whether the P-RNTI exists in the PDCCH in a subframe of a predetermined paging opportunity.
  • the D2D resource change recognition unit 243 acquires the paging message.
  • the paging message includes a paging record list, a system information change flag, an ETWS instruction flag, and a D2D resource change flag.
  • the D2D resource change recognition unit 243 performs PDCCH monitoring again at the next paging opportunity.
  • the D2D resource change recognition unit 243 acquires the paging message, the D2D resource change recognition unit 243 confirms whether or not the D2D resource has been changed from the D2D resource change flag.
  • the D2D communication control unit 245 controls D2D communication by the terminal device 200.
  • the D2D communication control unit 245 controls the D2D communication so that the recognized D2D resource is used in the D2D communication. More specifically, for example, the D2D communication control unit 245 causes the wireless communication unit 220 to perform D2D communication using the D2D resource recognized by the D2D resource recognition unit 241.
  • the D2D communication control unit 245 when the D2D resource is changed, the D2D communication control unit 245 does not use the D2D resource before the change for the D2D communication after the predetermined timing, and the D2D resource after the change is not changed to the predetermined value.
  • the D2D communication is controlled so as to be used for the D2D communication after the timing. More specifically, for example, the D2D resource is notified in the system information.
  • the D2D resource change recognition unit 243 recognizes the change of the D2D resource.
  • the D2D communication control unit 245 causes the wireless communication unit 220 to perform D2D communication using the D2D resource before the change until the change of the D2D resource is recognized, and the change of the D2D resource is recognized. Later, the wireless communication unit 220 is caused to perform D2D communication using the changed D2D resource.
  • the D2D communication control unit 245 performs D2D communication using the D2D resource when the terminal device 200 is in the RRC idle mode, and performs the D2D resource when the terminal device 200 is in the RRC connection mode. Is not used to perform D2D communication.
  • FIG. 18 is a flowchart illustrating an example of a schematic flow of communication control processing on the base station side according to the present embodiment.
  • step S401 the D2D resource determination unit 151 determines radio resources (that is, D2D resources) that can be used for D2D communication within the cell 10.
  • step S500 the D2D resource determination unit 151 executes a D2D resource change determination process.
  • step S403 if it is determined in the D2D resource change determination process that the D2D resource is to be changed, the process proceeds to step S405. Otherwise, the process proceeds to step S409.
  • step S405 the D2D resource determination unit 151 determines a new D2D resource.
  • step S407 the D2D resource change notification unit 155 notifies the change of the D2D resource by paging.
  • step S409 the D2D resource notification unit 153 notifies the terminal device 200 located in the cell 10 of the D2D resource. Then, the process returns to step S500.
  • FIG. 19 is a flowchart illustrating an example of a schematic flow of a D2D resource change determination process according to the present embodiment.
  • step S501 the D2D resource determination unit 151 determines whether the paging opportunity is changed. For example, the D2D resource determination unit 151 determines whether the paging opportunity is changed based on whether the paging cycle T and the parameter nB are changed. If the paging opportunity is changed, the process proceeds to step S507. Otherwise, the process proceeds to step S503.
  • step S503 the D2D resource determination unit 151 determines whether the random access opportunity (for example, the PRACH timing) is changed. For example, the D2D resource determination unit 151 determines whether the PRACH timing is changed based on whether the PRACH configuration index is changed. If the random access opportunity is changed, the process proceeds to step S507. Otherwise, the process proceeds to step S505.
  • the random access opportunity for example, the PRACH timing
  • the process proceeds to step S507. Otherwise, the process proceeds to step S505.
  • step S505 the D2D resource determination unit 151 determines to change the D2D resource. Then, the process ends.
  • step S507 the D2D resource determination unit 151 determines that the D2D resource is not changed. Then, the process ends.
  • FIG. 20 is a flowchart showing an example of a schematic flow of the communication control processing on the base station side according to the present embodiment.
  • step S601 the D2D resource recognition unit 241 recognizes the D2D resource.
  • the D2D resource recognition unit 241 recognizes a D2D resource from an SIB that includes information on the D2D resource.
  • step S603 the D2D communication control unit 245 controls D2D communication by the terminal device 200. More specifically, for example, the D2D communication control unit 245 controls the D2D communication so that the recognized D2D resource is used in the D2D communication.
  • step S605 the D2D resource change recognition unit 243 determines whether the D2D resource has been changed. More specifically, for example, it is determined whether the D2D resource has been changed from the system information change flag in the paging message and the D2D resource information in any SIB. If the D2D resource has been changed, the process returns to step S601. Otherwise, the process returns to step S603.
  • the D2D resource is determined to be common to the terminal device 200 located in the cell 10.
  • the D2D resource is determined for each group of D2D communication. Such determination of D2D resources for each group may provide several advantages as follows.
  • radio resources that may be used for D2D communication may vary depending on the D2D group.
  • the radio resource for paging may vary depending on the D2D group. Therefore, when radio resources for D2D communication are determined for each D2D group, radio resources to be excluded can be reduced. As a result, more radio resources are determined as D2D resources for each group of D2D communication, and the more radio resources can be used.
  • FIG. 21 is an explanatory diagram for explaining an example of interference between groups in D2D communication.
  • the terminal device 200A and the terminal device 200B perform D2D communication. That is, the terminal device 200A and the terminal device 200B form a D2D communication group.
  • the terminal device 200C and the terminal device 200D also perform D2D communication. That is, the terminal device 200C and the terminal device 200D also form a D2D communication group.
  • the group of the terminal device 200A and the terminal device 200B and the group of the terminal device 200C and the terminal device 200D are located in the vicinity. Thus, interference can occur between these groups.
  • interference may occur between D2D communication groups. Therefore, it is possible to suppress interference between D2D communication groups by determining, for each D2D communication group, radio resources that can be used for D2D communication so that D2D resources do not overlap between D2D communication groups. it can.
  • the D2D resource determination unit 151 determines radio resources (that is, D2D resources) that can be used for D2D communication for each group of D2D communication.
  • the D2D resource determination unit 151 determines the D2D resource so that the D2D resource does not overlap between the D2D communication groups. More specifically, for example, the D2D resource determination unit 151 determines the D2D resource so that the D2D resource does not overlap between any groups of the D2D communication.
  • the D2D resource determination unit 151 determines the D2D resource so that the D2D resource does not overlap between any groups of the D2D communication.
  • FIG. 22 is an explanatory diagram for describing an example of D2D resources determined for each group of D2D communication.
  • D2D resources for each group when there are three groups of D2D communication (group A, group B, and group C) are shown.
  • group A, group B, and group C D2D resources for each group when there are three groups of D2D communication
  • group A group A, group B, and group C
  • a radio frame number and a subframe number are shown as the D2D resource.
  • the radio resources of subframes with subframe numbers 3 or 4 in radio frames whose SFN is not even are determined as D2D resources of group A. Is done.
  • the radio resources of the subframes having subframe numbers 7 or 8 in the radio frames whose SFN is not even are determined as the D2D resources of the group B.
  • a radio resource of a subframe having a subframe number of 9 in a radio frame whose SFN is not even is determined as a D2D resource of group C.
  • the D2D resource determination unit 151 sets the D2D resource so that the D2D resource does not overlap between the first group of D2D communication and the second group of D2D communication located in the vicinity of the first group. May be determined. That is, the D2D resource does not overlap between any group of D2D communication, and when the group of D2D communication is located near each other, the D2D resource does not need to overlap between these groups.
  • the D2D resource determination unit 151 recognizes a D2D communication group located in the vicinity. For example, group A and group B are recognized. Thereafter, the D2D resource determining unit 151 determines the D2D resources of each of the group A and the group B so that the D2D resources do not overlap between the group A and the group B.
  • the D2D resource determination unit 151 can recognize a D2D communication group located in the vicinity as follows, for example. First, the D2D resource determination unit 151 estimates the distance between the base station 100 and the terminal apparatus 200 from the timing advance value for the terminal apparatus 200, and determines the terminal apparatus 200 from the base station 100 based on the antenna reception result. Estimate the direction. Then, the D2D resource determination unit 151 recognizes a group including the terminal device 200 having the distance and the direction close to each other as a D2D communication group located in the vicinity.
  • the D2D resource notification unit 153 notifies the D2D resource determined for each group of D2D communication. More specifically, for example, the D2D resource notification unit 153 generates an SIB including information on D2D resources determined for each group of D2D communication as illustrated in FIG. Then, the D2D resource notification unit 153 causes the wireless communication unit 120 to transmit the SIB using the radio resource for transmitting the SIB.
  • FIG. 23 is a flowchart showing an example of a schematic flow of communication control processing on the base station side according to a modification of the present embodiment.
  • step S701 the D2D resource determination unit 151 determines radio resources (that is, D2D resources) that can be used for D2D communication for each group of D2D communication.
  • radio resources that is, D2D resources
  • step S500 the D2D resource determination unit 151 executes a D2D resource change determination process. If it is determined in step S703 that the D2D resource is changed in the D2D resource change determination process, the process proceeds to step S705. Otherwise, the process proceeds to step S709.
  • step S705 the D2D resource determination unit 151 determines a new D2D resource for each group of D2D communication.
  • step S707 the D2D resource change notification unit 155 notifies the change of the D2D resource by paging.
  • step S709 the D2D resource notification unit 153 notifies the terminal device 200 located in the cell 10 of the D2D resource for each group. Then, the process returns to step S500.
  • the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function.
  • a main body also referred to as a base station apparatus
  • RRHs Remote Radio Heads
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • the terminal device 200 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 24 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 24, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. 24 shows an example in which the eNB 800 has a plurality of antennas 810, the eNB 800 may have a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 24, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • the wireless communication interface 825 includes a plurality of RF circuits 827 as illustrated in FIG. 24, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
  • 24 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • FIG. 25 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 25, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Note that although FIG. 25 illustrates an example in which the eNB 830 includes a plurality of antennas 840, the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 24 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • 25 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 25, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
  • FIG. 25 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
  • the D2D resource determination unit, the D2D resource notification unit, and the D2D resource change notification unit described with reference to FIG. 11 include the radio communication interface 825 and the radio communication interface 855 and / or The wireless communication interface 863 may be implemented. Further, at least a part of these functions may be implemented in the controller 821 and the controller 851.
  • FIG. 26 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 26 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. 26 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies power to each block of the smartphone 900 illustrated in FIG. 26 via a power supply line partially illustrated by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the D2D resource recognition unit 241, the D2D resource change recognition unit 243, and the D2D communication control unit 245 described with reference to FIG. 16 may be implemented in the wireless communication interface 912. In addition, at least a part of these functions may be implemented in the processor 901 or the auxiliary controller 919.
  • FIG. 27 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation apparatus 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 27 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. 27 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 27 through a power supply line partially shown by a broken line in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the D2D resource recognition unit 241, the D2D resource change recognition unit 243, and the D2D communication control unit 245 described with reference to FIG. 16 may be implemented in the wireless communication interface 933. Further, at least a part of these functions may be implemented in the processor 921.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942.
  • vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • radio resources that is, D2D resources
  • the D2D resource is notified to the terminal device 200 located in the cell 10.
  • the change of the D2D resource is notified by paging.
  • the D2D source is changed, the D2D resource before the change is not used for the D2D communication after the predetermined timing, and the D2D resource after the change is used for the D2D communication after the predetermined timing.
  • the change of the D2D resource is notified by paging, so that even the terminal device 200 in the idle mode can know the D2D resource. Therefore, it is possible to cause the terminal device 200 in the idle mode to use radio resources permitted for D2D communication.
  • the error in D2D communication can be suppressed by switching the D2D resource used before and after a predetermined timing. That is, it is possible to avoid the occurrence of an error in D2D communication by using different D2D resources between the terminal devices 200 that perform D2D communication. That is, it is possible to cause the terminal device in the idle mode of cellular communication to use the radio resource permitted for D2D communication, and to suppress errors in D2D communication.
  • the D2D resource is notified in the system information of the cell 10.
  • the changed D2D resource can be used after the timing when the SIB including the D2D resource is first received in the change period (N + 1) of the system information. Further, the D2D resource before the change is not used after the timing. Therefore, since the D2D resource used before and after the timing is switched, an error in D2D communication can be suppressed.
  • the D2D resource is any radio resource excluding the specific radio resource (for example, a paging radio resource, a random access procedure radio resource, etc.).
  • wireless resource is changed with the change of system information (For example, paging period T, parameter nB, PRACH configuration index, etc.). Therefore, if the D2D resource is transmitted in the system information, the changed D2D resource can be notified in a timely manner.
  • a radio resource that can be used for D2D communication in the cell 10 (hereinafter referred to as “D2D resource”). ) Is determined. More specifically, for example, any radio resource excluding the specific radio resource is determined as the D2D resource.
  • the D2D resource determined as described above is particularly effective.
  • the MTC is autonomous communication between devices.
  • a device that is a measuring instrument transmits measurement data to a nearby device, and the nearby device aggregates the measured data.
  • the size of data to be transmitted is small, the frequency of data transmission is low, and a data transmission delay is allowed.
  • the device is required to have low cost and low power consumption.
  • the communication circuit is shared between the cellular communication and the D2D communication, and the D2D communication is performed when the device is in the idle mode of the cellular communication. Therefore, when the terminal apparatus 200 is an apparatus that performs MTC, the D2D resource determined as described above is particularly effective.
  • the specific radio resource includes a paging radio resource.
  • the terminal device 200 does not perform the D2D communication with the paging radio resource. As a result, it is possible to prevent the terminal device 200 from receiving a paging message due to D2D communication.
  • the radio resource for paging may be a radio resource used for paging for the terminal device 200 that performs D2D communication in the cell 10.
  • the specific radio resource includes a radio resource used in a random access procedure for transition to a connection mode of radio resource control.
  • the terminal device 200 does not perform D2D communication with the radio resource used in the random access procedure. As a result, it is possible to prevent the terminal device 200 from performing the random access procedure by D2D communication.
  • the radio resource used in the random access procedure is a PRACH radio resource.
  • the radio resource used in the random access procedure may be a radio resource selected in advance as a radio resource used in the random access procedure by the terminal device 200 that performs D2D communication. .
  • the terminal device 200 does not perform the D2D communication for any radio resource for the random access procedure. As a result, it is possible to prevent the terminal device 200 from performing any part of the random access procedure by D2D communication. As another viewpoint, the terminal device 200 can perform D2D communication without affecting the random access procedure until a series of random access procedures is completed.
  • a radio resource of any subframe that does not include the specific radio resource is determined as a radio resource that can be used for D2D communication.
  • the determined D2D resource is used for D2D communication by the terminal device 200 in the radio resource control idle mode and is not used for D2D communication by the terminal device 200 in the connection mode of radio resource control.
  • the terminal device 200 in the connection mode may receive a downlink signal addressed to itself in any subframe. Therefore, when D2D communication is performed, the terminal device 200 may fail to receive the downlink signal. obtain. Therefore, only the terminal device 200 in the idle mode performs D2D communication using the D2D resource, thereby suppressing the possibility that the D2D communication hinders the cellular communication.
  • a change in D2D resource is notified by paging as a change in system information.
  • the change of the D2D resource is notified by paging as a change different from the change of the system information, and may not be notified by the paging as a change of the system information.
  • the D2D resource is determined for each group of D2D communication. Then, the D2D resource determined for each group of D2D communication is notified.
  • radio resources that can be used for D2D communication may be different depending on the D2D group. For example, since the paging opportunity varies depending on the terminal device 200, the radio resource for paging may vary depending on the D2D group. Therefore, when radio resources for D2D communication are determined for each D2D group, radio resources to be excluded can be reduced. As a result, more radio resources are determined as D2D resources for each group of D2D communication, and the more radio resources can be used.
  • the D2D resource is determined so that the D2D resource does not overlap between the groups of D2D communication.
  • the D2D resources may be determined so that the D2D resources do not overlap between the first group of D2D communication and the second group of D2D communication located in the vicinity of the first group.
  • the D2D resource may be notified by signaling to an individual terminal device (by the D2D resource notification unit).
  • the D2D resource before the change is not used for the D2D communication after the predetermined timing
  • the D2D resource after the change is used for the D2D communication after the predetermined timing.
  • the predetermined timing may be a system information change timing.
  • the predetermined timing may be a start time of a designated SFN radio frame.
  • the duplex method adopted is TDD
  • the present disclosure is not limited to this.
  • the duplex method employed may be FDD.
  • the D2D resource determination, notification, and change notification can be performed in the same manner as TDD.
  • D2D communication is performed according to OFDM
  • the present disclosure is not limited to this.
  • Another multiplexing scheme may be used for D2D communication.
  • the present disclosure is not limited to this.
  • the present disclosure can also be applied in a wireless communication system in which MTC is not performed. That is, the terminal device may be a device that performs MTC, or may be a terminal device that does not perform MTC.
  • the present disclosure may be applied to a general terminal device that conforms to LTE.
  • processing steps in the communication control processing of this specification do not necessarily have to be executed in time series in the order described in the flowchart.
  • the processing steps in the communication control process may be executed in an order different from the order described in the flowchart, or may be executed in parallel.
  • a determination unit that determines radio resources that can be used for communication between devices in a cell; A notification unit for notifying the radio resource to a terminal device located in the cell; With The notification unit notifies the change of the radio resource by paging when the radio resource is changed, When the radio resource is changed, the radio resource before the change is not used for the inter-device communication after a predetermined timing, and the radio resource after the change is used for the inter-device communication after the predetermined timing. Used in the Communication control device.
  • the said control part is a communication control apparatus as described in said (1) which notifies the said radio
  • the said control part is a communication control apparatus as described in said (1) which notifies the said radio
  • the determining unit determines the radio resource that can be used for the inter-device communication based on information on a specific radio resource used by a terminal device in an idle mode of radio resource control, (1) to (3 The communication control device according to any one of the above. (5) The communication control device according to (4), wherein the determination unit determines any one of the radio resources excluding the specific radio resource as the radio resource that can be used for the inter-device communication.
  • the communication control device determines a radio resource of any subframe that does not include the specific radio resource as the radio resource that can be used for the inter-device communication.
  • the specific radio resource includes a paging radio resource.
  • the radio resource for paging is a radio resource used for paging for a terminal device that performs communication between the devices.
  • the specific radio resource includes a radio resource used in a random access procedure for transition to a connection mode of radio resource control. .
  • the communication control device according to (9), wherein the radio resource used in the random access procedure is a radio resource of a physical random access channel.
  • the radio resource used in the random access procedure is a radio resource selected in advance as a radio resource used in the random access procedure by a terminal device that performs communication between the devices. Communication control device.
  • the determination unit determines the radio resources that can be used for the inter-device communication for each group of the inter-device communication, The notifying unit notifies the radio resource determined for each group of the inter-device communication; The communication control device according to any one of (1) to (11).
  • the said determination part determines the said radio
  • the determination unit may use a radio resource that can be used for the inter-device communication between the first group for the inter-device communication and the second group for the inter-device communication located in the vicinity of the first group.
  • the communication control device according to (13), wherein the radio resource that can be used for the inter-device communication is determined so that there is no duplication.
  • the said control part is a communication control apparatus as described in said (2) which notifies the said change of the said radio
  • the notification unit notifies the change of the radio resource that can be used for the inter-device communication by paging as a change different from the change of the system information, and the change of the radio resource is changed by the change of the system information
  • the communication control device according to (2) which is not notified by paging.
  • the radio resource that can be used for the inter-device communication is used for the inter-device communication by a terminal device in an idle mode of radio resource control, and is not used for the inter-device communication by a terminal device in a connection mode of radio resource control, (1) The communication control device according to any one of (16).
  • a resource recognition unit that recognizes the radio resource
  • a control unit for controlling the inter-device communication so that the recognized radio resource is used in the inter-device communication;
  • the radio resource is changed, when the change of the radio resource is notified by paging, a change recognition unit that recognizes the change of the radio resource;
  • the control unit when the radio resource is changed, the radio resource before the change is not used for the inter-device communication after a predetermined timing, and the radio resource after the change is not changed after the predetermined timing. Controlling the inter-device communication to be used for inter-device communication; Terminal device.
  • wireless communication system 10 cell 100 base station 110 antenna unit 120 wireless communication unit 130 network communication unit 140 storage unit 150 control unit 151 D2D resource determination unit 153 D2D resource notification unit 155 D2D resource change notification unit 200 terminal device 210 antenna unit 220 wireless Communication unit 230 Storage unit 240 Control unit 241 D2D resource recognition unit 243 D2D resource change recognition unit 245 D2D communication control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

【課題】セルラー通信のアイドルモードの端末装置に、装置間通信に認められる無線リソースを使用させ、装置間通信でのエラーを抑制することを可能にする。 【解決手段】セル内での装置間通信に使用可能な無線リソースを決定する決定部と、上記セル内に位置する端末装置に上記無線リソースを通知する通知部と、を備える通信制御装置が提供される。上記通知部は、上記無線リソースが変更される場合に、上記無線リソースの変更をページングにより通知する。また、上記無線リソースが変更される場合に、変更前の上記無線リソースは、所定のタイミング以降に上記装置間通信に使用されず、変更後の上記無線リソースは、上記所定のタイミング以降に上記装置間通信に使用される。

Description

通信制御装置、通信制御方法、端末装置及びプログラム
 本開示は、通信制御装置、通信制御方法、端末装置及びプログラムに関する。
 近接端末間通信、又はデバイス-デバイス間通信(D2D通信)は、セルラー通信における基地局を経由する通信形態とは異なり、端末装置同士が信号を直接送受する通信形態である。そのため、D2D通信では、従来のセルラー通信とは異なる、端末装置の新しい利用形態が生まれてくることが期待される。例えば、近接する端末装置間若しくは近接する端末装置のグループ内におけるデータ通信による情報共有、設置された端末装置からの情報の頒布、MTC(Machine Type Communication)と呼ばれる機器間の自律通信など、様々な応用が考えられる。
 また、近年のスマートフォンの増加による、データトラフィックの著しい増加に対して、D2D通信をデータのオフローディングに活用することも考えられる。例えば、端末装置間の距離が小さい場合のように、端末装置同士がD2D通信に適している状態であれば、データをD2D通信にオフローディングすることにより、RAN(Radio Access Network)におけるリソースの消費及び処理の負荷を抑えることができる。このように、D2D通信は、通信事業者及びユーザの双方にとって利用価値がある。そのため、現在、D2D通信は、3GPP(3rd Generation Partnership Project)標準化会議においても、LTE(Long Term Evolution)に必要な重要な技術領域の1つとして認識され、注目されている。
 例えば、セルラー通信の通信方式と同一の通信方式によりD2D通信に関する技術として、特許文献1には、TD-CDMA(Time Division - Code Division Multiple Access)によりUE(User Equipment)間でP2P(Peer to Peer)通信を行う技術が開示されている。
特表2007-512755号公報
 しかし、上記特許文献1の技術によれば、無線リソースがUEに割り当てられるものの、UEに割り当てられるリソースが変更される場合に、UEがどのように当該変更を認識するか不明である。例えば、上記特許文献1の技術によれば、UEがセルにおいて接続状態であることが前提となっているので、UEがアイドルモードである場合には、UEにより無線リソースの変更が認識されることは保証されない。その結果、UEは、D2D通信に認められていない無線リソースを使用してD2D通信を行い得る。また、UEが、割り当てられた無線リソースを認識して使用するとしても、当該UEのD2D通信の相手側のUEは、まだ、上記無線リソースを認識して使用していない可能性がある。その結果、これらのUE間でのD2D通信にエラーが生じ得る。
 そこで、セルラー通信のアイドルモードの端末装置に、装置間通信に認められる無線リソースを使用させ、装置間通信でのエラーを抑制することを可能にする仕組みが提供されることが望ましい。
 本開示によれば、セル内での装置間通信に使用可能な無線リソースを決定する決定部と、上記セル内に位置する端末装置に上記無線リソースを通知する通知部と、を備える通信制御装置が提供される。上記通知部は、上記無線リソースが変更される場合に、上記無線リソースの変更をページングにより通知する。また、上記無線リソースが変更される場合に、変更前の上記無線リソースは、所定のタイミング以降に上記装置間通信に使用されず、変更後の上記無線リソースは、上記所定のタイミング以降に上記装置間通信に使用される。
 また、本開示によれば、セル内での装置間通信に使用可能な無線リソースを決定することと、上記セル内に位置する端末装置に上記無線リソースを通知することと、上記無線リソースが変更される場合に、上記無線リソースの変更をページングにより通知することと、を含む通信制御方法が提供される。上記無線リソースが変更される場合に、変更前の上記無線リソースは、所定のタイミング以降に上記装置間通信に使用されず、変更後の上記無線リソースは、上記所定のタイミング以降に上記装置間通信に使用される。
 また、本開示によれば、
セル内での装置間通信に使用可能な無線リソースが決定され、当該無線リソースが通知されると、当該無線リソースを認識するリソース認識部と、認識される上記無線リソースが上記装置間通信で使用されるように、当該装置間通信を制御する制御部と、上記無線リソースが変更される場合に、上記無線リソースの変更がページングにより通知されると、当該無線リソースの当該変更を認識する変更認識部と、を備える端末装置が提供される。上記制御部は、上記無線リソースが変更される場合に、変更前の上記無線リソースが所定のタイミング以降に上記装置間通信に使用されず、変更後の上記無線リソースが上記所定のタイミング以降に上記装置間通信に使用されるように、上記装置間通信を制御する。
 また、本開示によれば、コンピュータを、セル内での装置間通信に使用可能な無線リソースが決定され、当該無線リソースが通知されると、当該無線リソースを認識するリソース認識部と、認識される上記無線リソースが上記装置間通信で使用されるように、当該装置間通信を制御する制御部と、上記無線リソースが変更される場合に、上記無線リソースの変更がページングにより通知されると、当該無線リソースの当該変更を認識する変更認識部と、として機能させるためのプログラムが提供される。上記制御部は、上記無線リソースが変更される場合に、変更前の上記無線リソースが所定のタイミング以降に上記装置間通信に使用されず、変更後の上記無線リソースが上記所定のタイミング以降に上記装置間通信に使用されるように、上記装置間通信を制御する。
 以上説明したように本開示によれば、セルラー通信のアイドルモードにある端末装置に、装置間通信に認められる無線リソースを使用させ、装置間通信でのエラーを抑制することが可能となる。
TDDコンフィギュレーションを説明するための説明図である。 各端末装置のページング機会の例を説明するための説明図である。 ページング機会のサブフレームの例を説明するための説明図である。 ページングメッセージに含まれる情報の例を説明するための説明図である。 ページングについての端末装置の動作の例を説明するための説明図である。 PRACHが位置する無線フレームの一例を説明するための説明図である。 PRACHが位置するサブフレームの一例を説明するための説明図である。 システム情報に含まれる情報ブロックの一例を説明するための説明図である。 システム情報の変更の通知のタイミングとシステム情報の変更のタイミングとを説明するための説明図である。 一実施形態に係る無線通信システム1の概略的な構成の一例を示す説明図である。 一実施形態に係る基地局の構成の一例を示すブロック図である。 D2Dリソースとして認められない無線リソース(D2D通信を行う端末装置200についてのページング用の無線リソース)の例を説明するための説明図である。 D2Dリソースとして認められない無線リソース(PRACHの無線リソース)の例を説明するための説明図である。 決定されるD2Dリソースの一例を説明するための説明図である。 一実施形態に係るページングメッセージに含まれる情報の一例を説明するための説明図である。 一実施形態に係る端末装置の構成の一例を示すブロック図である。 一実施形態に係るページングについての端末装置の動作の例を説明するための説明図である。 一実施形態に係る基地局側の通信制御処理の概略的な流れの一例を示すフローチャートである。 一実施形態に係るD2Dリソース変更判定処理の概略的な流れの一例を示すフローチャートである。 一実施形態に係る基地局側の通信制御処理の概略的な流れの一例を示すフローチャートである。 D2D通信のグループ間での干渉の一例を説明するための説明図である。 D2D通信のグループごとに決定されるD2Dリソースの一例を説明するための説明図である。 一実施形態の変形例に係る基地局側の通信制御処理の概略的な流れの一例を示すフローチャートである。 本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。 本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。 本開示に係る技術が適用され得るスマートフォンの概略的な構成の一例を示すブロック図である。 本開示に係る技術が適用され得るカーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.3GPPにおける無線通信の技術
 2.無線通信システムの概略的な構成
 3.基地局の構成
 4.端末装置の構成
 5.処理の流れ
 6.変形例
  6.1.概要
  6.2.基地局の構成
  6.3.処理の流れ
 7.応用例
  7.1.基地局に関する応用例
  7.2.端末装置に関する応用例
 8.まとめ
 <<1.3GPPにおける無線通信の技術>>
 まず、図1~図9を参照して、3GPPにおける無線通信の技術を説明する。
 (TDD)
 LTEでは、複信方式として、FDD(Frequency Division Duplex)又はTDD(Time Division Duplexing)が採用される。FDDでは、ダウンリンク送信とアップリンク送信とで別々の周波数帯域が使用される。また、TDDでは、ダウンリンク送信とアップリンク送信とで同じ周波数帯域が使用されるが、ダウンリンク送信とアップリンク送信とは別々の時間に行われる。
 例えば、LTEでは、10msの各無線フレーム(Radio Frame)の中に10のサブフレームが含まれる。そして、TDDにおける無線フレームのコンフィギュレーション(Configuration)として、♯0~♯6の7つのTDDコンフィギュレーションが定められている。以下、この点について図1を参照して具体例を説明する。
 図1は、TDDコンフィギュレーションを説明するための説明図である。図1を参照すると、コンフィギュレーション0~6の7つのTDDコンフィギュレーションが示されている。上述したように、無線フレームは、10のサブフレームを含む。そして、各サブフレームは、ダウンリンクサブフレーム(D)、アップリンクサブフレーム(U)及びスペシャルサブフレーム(S)のいずれかに設定される。スペシャルサブフレームは、ダウンリンクとアップリンクとの切り替えのための時間を確保するために、ダウンリンクサブフレームとアップリンクサブフレームとの間に挿入されるサブフレームである。
 なお、TDDコンフィギュレーションは、システム情報(System Information)の中で送信される。より具体的には、TDDコンフィギュレーションは、SIB1(System Information Block Type 1)の中で送信される。
 (ページング)
 -ページング機会(Paging Occasion)
 図2及び図3を参照して、LTEにおけるページング機会を説明する。
 LTEでは、ページング機会が定められている。より具体的には、ページングが行われる無線フレームのシステムフレーム番号(SFN)、及びページングが行われるサブフレームが、定められている。
 各端末装置(即ち、UE)についてのページングが行われる無線フレームのSFNは、以下の式で定められる。
Figure JPOXMLDOC01-appb-M000001
 UE_IDは、端末装置(即ち、UE)のIMSI(International Mobile Subscriber Identity)の下10ビットである。また、Tは、ページング周期である。換言すると、Tは、DRX(Discontinuous Reception)サイクルである。また、Nは、TとnBのうちの小さい方の値である。即ち、N=Min(T,nB)である。T及びnBは、システム情報のうちのSIB2(System Information Block Type 2)の中で送信される。
 また、T及びnBは、以下の値から選択される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 以上のように、各端末装置についてのページングが行われる無線フレームが定められる。以下、図2を参照して、各端末装置のページング機会の具体例を説明する。
 図2は、各端末装置のページング機会の例を説明するための説明図である。図2を参照すると、各端末装置(端末装置A、端末装置B)のページング機会が示されている。このように、例えば、各ページング周期には、各端末装置(端末装置A、端末装置B)についてのページング機会が存在する。また、例えば、別の端末装置が加わると、ページング機会が新たに追加され得る。
 また、LTEでは、パラメータNsの値により、ページングが行われるサブフレームが決まる。例えば、TDD及びFDDの両方で、Nsの値は、1、2及び3のいずれかである。
 例えば、TDDでは、Ns=1の場合には、♯0のサブフレームにページングが行われ得る。また、Ns=2の場合には、♯0のサブフレーム及び♯5のサブフレームにページングが行われ得る。Ns=3の場合には、♯0のサブフレーム、♯5のサブフレーム及び♯6のサブフレームにページングが行われ得る。以下、この点について図3を参照して具体的に説明する。
 図3は、ページング機会のサブフレームの例を説明するための説明図である。図3を参照すると、TDDコンフィギュレーション0が示されている。例えば、Ns=2の場合には、このように、ダウンリンクサブフレームである♯0のサブフレーム及び♯5のサブフレームがページング機会になる。
 また、FDDでは、Ns=1の場合には♯9のサブフレームに、Ns=2の場合には♯4のサブフレーム及び♯9のサブフレームに、Ns=3の場合には♯0のサブフレーム、♯4のサブフレーム、♯5のサブフレーム及び♯9のサブフレームに、ページングが行われ得る。
 なお、上述したようにNs=2およびNs=3の場合には、複数のサブフレームでページングが行われ得る。各UEについてのページングがいずれのサブフレームで行われるかは、各UEのUE_IDに依存する。
 以上のように、各端末装置についてのページングが行われるサブフレームが定められる。
 -ページングメッセージ
 次に、図4を参照して、ページングメッセージの具体的な内容を説明する。
 図4は、ページングメッセージに含まれる情報の例を説明するための説明図である。図4を参照すると、ページングメッセージには、例えば、ページングレコードリスト、システム情報変更のフラグ、及び地震津波警報システム(Earthquake and Tsunami Warning System:ETWS)指示(Indication)のフラグが含まれる。
 ページングレコードは、最大16個の呼出し記録のリストである。ページングレコードリスト内には、呼出しの対象である端末装置(即ち、UE)のUE識別子(Identity)が含まれる。ページングレコードリスト内のUE識別子は、S-TMSI(SAE - Temporary Mobile Subscriber Identity)、又はIMSI(International Mobile Subscriber Identity)である。また、ページングレコードリスト内には、ページング元のコアネットワークドメインの情報が含まれる。当該情報は、ページング元のコアネットワークドメインがCS(Circuit Switched)ドメインであるか、又はPS(Packet Switched)ドメインであるかを示す。
 システム情報変更のフラグは、システム情報の変更があったか否かを示す。例えば、システム情報の変更がある場合には、当該フラグは1となり、システム情報の変更がない場合には、当該フラグは0となる。なお、システム情報変更のフラグは、基本的には、いずれかのシステム情報が変更された場合に1となるが、システム情報のうちの一部の例外的な情報のみが変更された場合には1とならない(つまり0のままである)。当該例外的な情報は、例えば、ETWSに関する情報、CMAS(Commercial Mobile Alert System)に関する情報等を含む。
 また、ETWS指示のフラグは、地震津波システムの指示があったか否かを示す。
 -ページングについての端末装置の動作
 次に、図5を参照して、ページングについての端末装置の動作を説明する。
 図5は、ページングについての端末装置の動作の例を説明するための説明図である。図5を参照すると、まず、アイドルモードである端末装置は、所定のページング機会のサブフレーム内のPDCCH(Physical Downlink Control CHannel)にP-RNTI(Paging Radio Network Temporary Identifier)が存在するかどうかモニタリングする。
 ページング機会のサブフレーム内のPDCCH内にP-RNTIがある場合に、当該サブフレーム内にはページングメッセージが含まれる。よって、端末装置は、当該ページングメッセージを取得する。上述したように、当該ページングメッセージには、ページングレコードリスト、システム情報変更のフラグ、及びETWS指示のフラグが含まれる。なお、PDCCH内にP-RNTIがない場合には、端末装置は、次のページング機会にPDCCHのモニタリングを再度行う。
 端末装置(即ち、UE)は、ページングメッセージを取得すると、ページングレコードリスト内に自装置宛のUE識別子(Identity)が存在するかを確認する。ページングレコードリスト内に自装置宛のUE識別子がある場合には、端末装置は、ネットワークからの呼出しがあったことを認識する。その場合に、端末装置は、コアネットワークドメインの情報から、呼出し元がCSドメインか又はPSドメインかを確認する。なお、ページングレコードリスト内に自装置宛のUE識別子がない場合には、端末装置は、次のページング機会にPDCCHのモニタリングを再度行う。
 また、端末装置は、ページングメッセージを取得すると、システム情報変更のフラグから、システム情報の変更があったか否かも確認する。システム情報の変更があった場合には、端末装置はシステム情報を再度取得する。
 また、端末装置は、ページングメッセージを取得すると、ETWS指示のフラグから、ETWSの指示があったかを確認する。ETWSの指示があった場合には、端末装置は、緊急アラームの動作を含む所定の動作を行う。
 (ランダムアクセス)
 次に、図6及び図7を参照して、ランダムアクセスのタイミングを説明する。
 端末装置は、無線リソース制御(RRC)のアイドルモード(RRC Idle mode)からRRCの接続モード(RRC Connected mode)へ遷移するためのランダムアクセス手続きで、PRACH(Physical Random Access CHannel)でRPACHプリアンブルを送信する。LTEでは、PRACHプリアンブルの送信タイミング(即ち、PRACHのタイミング)は、PRACHコンフィギュレーションインデックス(PRACH Configuration Index)により予め指定される。
 第1に、PRACHコンフィギュレーションインデックスは、PRACHが位置する無線フレーム(即ち、PRACHプリアンブルが送信され得る無線フレーム)を指定する。具体的には、PRACHコンフィギュレーションインデックスに応じて、各無線フレーム、SFNが偶数である無線フレーム、又はSFNが奇数である無線フレームに、PRACHが位置する。このように、PRACHは、10msごとに、又は20msごとに存在する。以下、この点について図6を参照して具体例を説明する。
 図6は、PRACHが位置する無線フレームの一例を説明するための説明図である。図6を参照すると、PRACHのタイミングとして、PRACHが送信される無線フレームのタイミングが示されている。例えば、PRACHコンフィギュレーションインデックスが0である場合に、SFNが偶数である無線フレームにPRACHが位置する。即ち、20msごとにPRACHが存在する。図6に示されるように、例えば、ページング周期が320ms(即ち、32の無線フレーム)である場合には、1ページング周期の間に、16の無線フレームにPRACHが位置する。
 また、別の具体例として、例えば、PRACHコンフィギュレーションインデックスが55である場合に、各無線フレームにPRACHが位置する。
 第2に、PRACHコンフィギュレーションインデックスは、PRACHが位置するサブフレーム(即ち、PRACHプリアンブルが送信され得るサブフレーム)を指定する。例えば、PRACHコンフィギュレーションインデックスには、プリアンブルフォーマット0~4のいずれか1つが対応する。例えば、プリアンブルフォーマット0~3では、PRACHコンフィギュレーションインデックスにより、PRACHプリアンブルが送信可能なサブフレームの組合せが指示される。また、TDDのプリアンブルフォーマット4では、PRACHコンフィギュレーションインデックスにより、スペシャルサブフレーム内のUpPTS(Uplink Pilot Time Slot)が、PRACHプリアンブルが送信可能なタイミングとして指示される。以下、PRACHが位置するサブフレームについて図7を参照して具体例を説明する。
 図7は、PRACHが位置するサブフレームの一例を説明するための説明図である。図7を参照すると、TDDコンフィギュレーション0が示されている。例えば、このようにTDDコンフィギュレーションがコンフィギュレーション0であり、且つPRACHコンフィギュレーションインデックスが0である場合に、無線フレームの中の♯2のサブフレームにPRACHが位置する。即ち、♯2のサブフレームに、PRACHプリアンブルが送信され得る。
 また、別の具体例として、例えば、PRACHコンフィギュレーションインデックスが55である場合に、プリアンブルフォーマットは4であり、スペシャルサブフレーム内のUpPTSにPRACHが位置する。即ち、UpPTSに、PRACHプリアンブルが送信され得る。
 なお、例えば、MTCを行う端末装置であったとしても、オペレーティングシステムあるいはアプリケーションソフトウェア等の要請により、任意のタイミングで基地局と接続しようとすることが想定される。即ち、MTCを行う端末装置も、PRACHプリアンブルを送信することが想定される。
 (システム情報)
 -システム情報の内容
 システム情報は、セルにおける無線通信に関する様々な情報を含む。例えば、LTEにおけるシステム情報は、マスタ情報ブロック(Master Information Block:MIB)及び各種システム情報ブロック(System Information Block:SIB)を含む。以下、この点について図8を参照して具体例を説明する。
 図8は、システム情報に含まれる情報ブロックの一例を説明するための説明図である。図8を参照すると、システム情報として、1つのMIB及び複数のSIBが示されている。具体的な例として、例えば、複数のSIBのうちのSIB1は、TDDコンフィギュレーションの情報を含む。また、複数のSIBのうちのSIB2は、各端末装置のページング機会を決めるためのページング周期(又はDRXサイクル)T及びパラメータnBと、ランダムアクセスのタイミングを決めるためのPRACHコンフィギュレーションインデックスとを含む。さらに、SIB2は、システム情報の変更のタイミングを決めるための変更期間係数(modification period coefficient)を含む。
 なお、MIB及び各種SIBは、それぞれの周期で送信される。また、MIBは、周波数方向及び時間方向における固定的な位置に配置される物理報知チャネル(Physical Broadcast CHannel:PBCH)上で送信される。また、SIB1は、MIBで指定される、周波数方向及び時間方向における位置の無線リソースで送信される。また、残りのSIBは、SIB1により指定される無線リソースで送信される。
 -システム情報の変更
 システム情報は、変更される場合に、予め定められたタイミングで変更される。具体的には、システム情報は、システム情報変更期間ごとに変更され得る。当該システム情報変更期間は、DRXサイクル(即ち、ページング周期T)を、SIB2に含まれる変更期間係数で乗算したものである。また、システム情報が変更される場合には、変更後のシステム情報が送信される前に、システム情報の変更が通知される。以下、システム情報の変更の通知のタイミング及びシステム情報の変更のタイミングを、図9を参照して具体的な内容を説明する。
 図9は、システム情報の変更の通知のタイミングとシステム情報の変更のタイミングとを説明するための説明図である。図9を参照すると、システム情報についての2つの変更期間(N)及びシステム変更期間(N+1)が示されている。例えば、システム情報が変更される場合に、変更期間(N)で、ページングによりシステム情報の変更が端末装置に通知される。また、変更期間(N)では、変更前のシステム情報が送信される。そして、変更期間(N)でシステム情報の変更が通知された後に、変更期間(N+1)で、変更後のシステム情報が基地局により送信される。そして、端末装置は、変更期間(N+1)になるとすぐに、システム情報の各情報ブロックが送信されるタイミングで変更後の情報ブロックを取得する。なお、端末装置は、変更後のシステム情報を取得するまで、変更前のシステム情報を使用する。
 <<2.無線通信システムの概略的な構成>>
 続いて、図10を参照して、本開示の実施形態に係る無線通信システム1の概略的な構成を説明する。図10は、本実施形態に係る無線通信システム1の概略的な構成の一例を示す説明図である。図10を参照すると、無線通信システム1は、基地局100及び2つ以上の端末装置200を含む。無線通信システム1は、例えば、セルラー通信の通信方式としてLTEを採用する。また、一例として、当該無線通信システム1では、TDDが採用される。
 (基地局100)
 基地局100は、セル10内に位置する端末装置200と無線通信する。即ち、基地局100は、ダウンリンクで、ユーザデータ又は制御情報を端末装置100へ送信し、アップリンクで、ユーザデータ又は制御情報を端末装置200から受信する。
 また、例えば、基地局100は、システム情報を送信する。より具体的には、例えば、基地局100は、MIBをPBCH上で送信する。また、基地局100は、MIBで指定される無線リソースでSIB1を送信し、SIB1で指定される無線リソースで残りのSIBを送信する。一例として、上述したように、SIB1は、TDDコンフィギュレーションの情報が含む。また、SIB2は、各端末装置200のページング機会を決めるためのページング周期(又はDRXサイクル)T及びパラメータnBと、ランダムアクセスのタイミングを決めるためのPRACHコンフィギュレーションインデックスとを含む。さらに、SIB2は、システム情報の変更のタイミングを決めるための変更期間係数を含む。
 また、例えば、基地局100は、ページングを行う。より具体的には、例えば、基地局100は、ページング周期で、各UEに応じたタイミングでUEへのページングを行う。また、基地局100は、ページングにより、端末装置への呼出しの有無、システム情報の変更の有無等を端末装置200に通知する。
 また、例えば、基地局100は、端末装置100とランダムアクセスの手続きを行う。より具体的には、例えば、基地局100は、PRACHで、端末装置200からのPRACHプリアンブルを受信する。
 また、とりわけ本実施形態では、基地局100は、セル10内でのD2D通信に使用可能な無線リソースを決定する。そして、基地局100は、当該無線リソースを端末装置200に通知する。
 (端末装置200)
 端末装置200は、基地局100により形成されるセル10内に位置する場合に、基地局100と無線通信する。即ち、端末装置200は、ダウンリンクで、ユーザデータ又は制御情報を基地局100から受信し、アップリンクで、ユーザデータ又は制御情報を基地局100へ送信する。
 また、例えば、端末装置200は、基地局100により送信されるシステム情報を受信し、当該システム情報を取得する。
 具体的には、例えば、端末装置200は、SIB1を取得する。すると、端末装置200は、SIB1からTDDコンフィギュレーションを認識する。そして、端末装置200は、当該TDDコンフィギュレーションに従って、ダウンリンクでの受信及びアップリンクでの送信を行う。
 また、例えば、端末装置200は、SIB2を取得する。そして、端末装置200は、SIB2から、ページング周期(又はDRXサイクル)T及びパラメータnBを認識する。そして、端末装置200は、ページング周期T及びパラメータnBから、自装置のページング機会であるサブフレームを特定し、当該サブフレームでページングメッセージを受信する。
 また、例えば、端末装置200は、SIB2から、PRACHのタイミングを認識する。そして、端末装置200は、無線リソース制御(RRC)のアイドルモードからRRCの接続モードへ遷移する際に、PRACH上でPRACHプリアンブルを送信する。
 また、とりわけ本実施形態では、端末装置200は、別の端末装置200とのD2D通信を行う。例えば、端末装置200は、基地局100により通知される無線リソースを使用して、D2D通信を行う。図10を再び参照すると、例えば、端末装置200A及び端末装置200Bが、D2D通信を行う。一例として、D2D通信は、OFDM(Orthogonal Frequency-Division Multiplexing)に従って行われる。
 以上、図10を参照して本開示の実施形態に係る無線通信システム1の構成の一例を説明した。本実施形態では、セルラー通信のアイドルモードの端末装置200に、D2D通信に認められる無線リソースを使用させ、装置間通信でのエラーを抑制することを可能にする。以降、<<2.基地局の構成>>、<<4.端末装置の構成>>、<<5.処理の流れ>>及び<<6.変形例>>において、その具体的な内容を説明する。
 <<3.基地局の構成>>
 続いて、図11~図15を参照して、本実施形態に係る基地局100の構成の一例を説明する。図11は、本実施形態に係る基地局100の構成の一例を示すブロック図である。図11を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び制御部150を備える。
 (アンテナ部110)
 アンテナ部110は、無線信号を受信し、受信された無線信号を無線通信部120へ出力する。また、アンテナ部110は、無線通信部120により出力された送信信号を送信する。
 (無線通信部120)
 無線通信部120は、セル10内に位置する端末装置200と無線通信する。
 (ネットワーク通信部130)
 ネットワーク通信部130は、他の通信ノードと通信する。例えば、ネットワーク通信部130は、他の基地局100、MME(Mobility Management Entity)等と通信する。
 (記憶部140)
 記憶部140は、基地局100の動作のためのプログラム及びデータを記憶する。
 (制御部150)
 制御部150は、基地局100の様々な機能を提供する。制御部150は、D2Dリソース決定部151、D2Dリソース通知部153及びD2Dリソース変更通知部155を含む。
 (D2Dリソース決定部151)
 D2Dリソース決定部151は、セル10内でのD2D通信に使用可能な無線リソースを決定する。
 例えば、D2Dリソース決定部151は、無線リソース制御のアイドルモードの端末装置200により使用される特定の無線リソースの情報に基づいて、セル10内でのD2D通信に使用可能な無線リソース(以下、「D2Dリソース」と呼ぶ)を決定する。より具体的には、例えば、D2Dリソース決定部151は、上記特定の無線リソースを除くいずれかの無線リソースを、上記D2Dリソースとして決定する。以下、上記特定の無線リソースの具体例を説明する。
 -除外すべき特定の無線リソースの第1の例:ページング用の無線リソース
 第1の例として、上記特定の無線リソースは、ページング用の無線リソースを含む。即ち、D2Dリソースは、ページング用の無線リソースを除く無線リソースである。
 一例として、ページング用の上記無線リソースは、セル10内に位置する全ての端末装置200についてのページングに用いられる無線リソースである。例えば、上述した図3に示されるように、ページングが行われるサブフレームを決定するためのパラメータNsが2である場合に、♯0のサブフレーム及び♯5のサブフレームにいずれかの端末装置200についてのページングが行われ得る。よって、D2Dリソース決定部151は、♯0のサブフレーム及び♯5のサブフレームを除くサブフレームのいずれかの無線リソースを、D2Dリソースとして決定する。
 このように、ページング用の無線リソースをD2Dリソースとして決定しないことにより、端末装置200は、ページング用の無線リソースでD2D通信を行わない。その結果、D2D通信により端末装置200がページングメッセージを受信できなくなってしまうことを防ぐことができる。
 なお、別の例として、ページング用の上記無線リソースは、セル10内でのD2D通信を行う端末装置200についてのページングに用いられる無線リソースであってもよい。即ち、D2Dリソース決定部151は、D2D通信を行う端末装置200についてのページングに用いられる無線リソースを除くいずれかの無線リソースを、D2Dリソースとして決定してもよい。
 この場合に、例えば、まず、基地局100は、D2D通信を行う端末装置200を認識する。例えば、D2D通信を行う端末装置200は、D2D通信を行う際に基地局100への通知を行い、D2Dリソース決定部151は、D2D通信を行う端末装置200を認識する。そして、D2Dリソース決定部151は、D2D通信を行う各端末装置200についてのページング機会を算出する。そして、D2Dリソース決定部151は、当該ページング機会の無線リソースを除くいずれかの無線リソースを、D2Dリソースとして決定してもよい。以下、この点について図12を参照して具体例を説明する。
 図12は、D2Dリソースとして認められない無線リソース(D2D通信を行う端末装置200についてのページング用の無線リソース)の例を説明するための説明図である。図12を参照すると、時間方向において、図10に示されるようにD2D通信を行う端末装置200A及び端末装置200Bのページング機会が示されている。このように、例えばセル10において端末装置200A及び端末装置200BのみがD2D通信を行なっている場合に、D2Dリソース決定部151は、これらのページング機会の無線リソースを除くいずれかの無線リソースをD2Dリソースとして決定する。具体的には、例えば、限られた無線フレームを除く無線フレームの無線リソースが、D2Dリソースとして決定され得る。
 このように、全てのページング用の無線リソースではなく、D2D通信を実際に行う端末装置200についてのページング用の無線リソースのみが、D2Dリソースの対象外であれば、より多くの無線リソースがD2Dリソースとして認められ得る。その結果、より多くのトラフィックについてのオフローディングが実現され得る。即ち、RANにおける無線リソースの消費及び処理の負荷を抑えることができる。
 -除外すべき特定の無線リソースの第2の例:ランダムアクセス用の無線リソース
 また、第2の例として、上記特定の無線リソースは、無線リソース制御の接続モードへの遷移のためのランダムアクセス手続きで使用される無線リソースを含む。即ち、D2Dリソースは、ランダムアクセス手続きで使用される無線リソースを除くリソースである。
 一例として、当該ランダムアクセス手続きで使用される当該無線リソースは、物理ランダムアクセスチャネル(Physical Random Access CHannel:PRACH)の無線リソースである。即ち、D2Dリソースは、PRACHの無線リソース以外の無線リソースである。以下、この点について、図13を参照して具体例を説明する。
 図13は、D2Dリソースとして認められない無線リソース(PRACHの無線リソース)の例を説明するための説明図である。図12を参照すると、図6と同様に、時間方向において、PRACHコンフィギュレーションインデックスが0である場合のPRACHのタイミングが示されている。例えばこのように、SFNが偶数である無線フレームにPRACHが位置する。このようにPRACHが配置される場合に、D2Dリソース決定部151は、これらのPRACHの無線リソースを除くいずれかの無線リソースをD2Dリソースとして決定する。具体的には、例えば、SFNが奇数である無線フレームのいずれかの無線リソースが、D2Dリソースとして決定され得る。なお、図7に示されるように、PRACHコンフィギュレーションインデックスが0である場合には、♯2のサブフレームにPRACHが存在する。そのため、SFNが偶数である無線フレームの中の、♯2のサブフレーム以外のサブフレームのいずれかの無線リソースも、D2Dリソースとして決定されてもよい。
 このように、ランダムアクセス手続きで使用される無線リソースをD2Dリソースとして決定しないことにより、端末装置200は、ランダムアクセス手続きで使用される無線リソースでD2D通信を行わない。その結果、D2D通信により端末装置200がランダムアクセス手続きを行えなくなることを防ぐことができる。また、上述したように、ランダムアクセス手続きで使用される無線リソースをD2Dリソースが、PRACHの無線リソースであれば、D2D通信により端末装置200がPRACHプリアンブルを送信できなくなることを防ぐことができる。
 なお、別の例として、当該ランダムアクセス手続きで使用される当該無線リソースは、D2D通信を行う端末装置200によりランダムアクセス手続きで使用される無線リソースとして、予め選択された無線リソースであってもよい。即ち、PRACH以外にランダムアクセス手続きで使用される無線リソースが予め選択されている場合には、D2Dリソース決定部151は、予め選択された当該無線リソースを除くいずれかの無線リソースを、D2Dリソースとして決定してもよい。なお、ランダムアクセス手続きは、端末装置200によるPRACHプリアンブルの送信の他に、基地局100によるPDSCH(Physical Downlink Shared CHannel)でのランダムアクセスレスポンスの送信、CRI(Contention Resolution Identity)の送信等を含む。
 このように、PRACHの無線リソース以外のランダムアクセス手続き用の無線リソースも、D2Dリソースの対象外であれば、端末装置200は、ランダムアクセス手続き用のいずれの無線リソースもD2D通信を行わない。その結果、D2D通信により端末装置200がランダムアクセス手続きのいずれかの部分を行えなくなることを防ぐことができる。また、別の観点として、端末装置200は、一連のランダムアクセス手続きが完了するまで、ランダムアクセス手続きに影響を与えることなくD2D通信を行うことができる。
 以上のように、例えば、無線リソース制御のアイドルモードの端末装置200により使用される特定の無線リソース(例えば、ページング用の無線リソース、ランダムアクセス手続き用の無線リソース等)を除くいずれかの無線リソースが、D2Dリソースとして決定される。これにより、端末装置200は、アイドルモードである際に、自装置のセルラー通信に影響を及ぼすことなくD2D通信を行うことが可能になる。
 また、D2D通信が、MTCに用いられる場合に、上述したように決定されるD2Dリソースは、特に有効である。当該MTCは、装置間の自律的な通信である。MTCの一例として、計測器である装置が、計測データを近傍の装置へ送信し、当該近傍の装置が、計測データを集計する。このようなMTCでは、送信されるデータのサイズは小さく、データの送信頻度は低く、データの送信遅延は許容される。また、装置には低コスト及び低消費電力が求められる。そのため、MTCに用いられる装置では、セルラー通信とD2D通信とで通信回路が共有され、装置がセルラー通信のアイドルモードである場合に、D2D通信が行われることが望ましい。よって、端末装置200がMTCを行う装置である場合に、上述したように決定されるD2Dリソースは特に有効である。
 -決定されるD2Dリソースの具体例
 例えば、D2Dリソース決定部151は、上記特定の無線リソースを含まないいずれかのサブフレームの無線リソースを、D2D通信に使用可能な無線リソースとして決定する。以下、この点について図14を参照して具体例を説明する。
 図14は、決定されるD2Dリソースの一例を説明するための説明図である。図14を参照すると、決定されるD2Dリソースとして、無線フレーム番号及びサブフレーム番号が示されている。この例では、SFNが偶数ではない無線フレーム(即ち、SFNが奇数である無線フレーム)の中の、サブフレーム番号がそれぞれ3、4、7、8又は9であるサブフレームの無線リソースが、D2Dリソースとして決定される。
 図13に示されるようにPRACHコンフィギュレーションインデックスが0である場合には、PRACHは、SFNが偶数である無線フレームに存在する。そのため、図14に示されるようなD2Dリソースは、SFNが奇数である無線フレームの無線リソースであるので、PRACHの無線リソースを含まない。よって、当該D2DリソースでのD2D通信は、PRACHプリアンブルの送信を妨げない。
 また、図3に示されるように、TDDコンフィギュレーションがコンフィギュレーション0であり、パラメータNs=2である場合には、ページング機会は、♯0のサブフレーム及び♯5のサブフレームであり得る。そのため、図14に示されるようなD2Dリソースは、♯0のサブフレーム及び♯5のサブフレームを含まないので、ページング機会のサブフレームの無線リソースを含まない。よって、当該D2DリソースでのD2D通信は、ページングメッセージの受信を妨げない。
 このように、サブフレーム単位での無線リソースをD2Dリソースとして決定することにより、D2Dリソースを単純な情報として示すことが可能になる。よって、D2Dリソースを端末装置100に通知する際に使用する無線リソースを抑えることができる。また、容易にD2Dリソースを決定できるので、D2Dリソースの決定のための処理をより簡略化することができる。さらに、セルラー通信で使用され得る無線リソースとD2D通信で使用される無線リソースとが時間軸で切り分けられるので、通信回路(例えば、RF回路)をセルラー通信とD2D通信とで共有することが可能になる。
 なお、例えば、決定されるD2Dリソースは、無線リソース制御のアイドルモードの端末装置200によりD2D通信に使用され、無線リソース制御の接続モードの端末装置200によりD2D通信に使用されない。一般的に、接続モードの端末装置200は、いずれのサブフレームでも自装置宛のダウンリンク信号を受信する可能性があるので、D2D通信を行うと、当該ダウンリンク信号を受信し損ねることもあり得る。そのため、アイドルモードの端末装置200のみがD2Dリソースを使用してD2D通信を行うことにより、D2D通信がセルラー通信を妨げる可能性を抑制することができる。
 -D2Dリソースの変更
 また、D2Dリソース決定部151は、必要に応じてD2Dリソースを変更する。即ち、D2Dリソース決定部151は、必要に応じて新たなD2Dリソースを決定する。例えば、上記特定の無線リソース(例えば、ページング用の無線リソース、ランダムアクセス手続き用の無線リソース等)が変更される場合に、D2Dリソース決定部151は、新たなD2Dリソースを決定する。
 そして、とりわけ本実施形態では、D2Dソースが変更される場合に、変更前のD2Dリソースは、所定のタイミング以降にD2D通信に使用されず、変更後のD2Dリソースは、上記所定のタイミング以降にD2D通信に使用される。例えば、端末装置200A及び端末装置200BがD2D通信を行う場合に、端末装置200A及び端末装置200Bの一方が変更前のD2Dリソースを使用し、他方が変更後のD2Dリソースを使用することはない。
 このように、所定のタイミングの前後で使用されるD2Dリソースが切り替わることにより、D2D通信でのエラーを抑制することができる。即ち、D2D通信を行う端末装置200間で異なるD2Dリソースが使用されることにより、D2D通信でのエラーが発生することを回避することができる。
 (D2Dリソース通知部153)
 D2Dリソース通知部153は、セル10内に位置する端末装置200にD2Dリソースを通知する。
 例えば、D2Dリソース通知部153は、D2Dリソースを、セル10のシステム情報の中で通知する。より具体的には、例えば、D2Dリソース通知部153は、決定されたD2Dリソースの情報を含むSIBを生成する。そして、D2Dリソース通知部153は、無線通信部120に、当該SIBの送信のための無線リソースを使用して当該SIBを送信させる。
 また、例えば、D2Dリソースが変更された場合(即ち、新たなD2Dリソースが決定された場合)に、D2Dリソース通知部153は、変更後のD2Dリソースを送信する。より具体的には、例えば、D2Dリソース通知部153は、図9に示されるように、無線通信部120に、システム情報の変更期間(N)において変更前のシステム情報を送信させ、システム情報の変更期間(N+1)において変更後のシステム情報を送信させる。
 このように、D2Dリソースがシステム情報として通知されることにより、システム情報の変更期間(N+1)で、D2Dリソースを含むSIBが最初に受信されるタイミング以降に、変更後のD2Dリソースが使用され得る。また、当該タイミング以降には、変更前のD2Dリソースが使用されない。よって、上記タイミングの前後で使用されるD2Dリソースが切り替わるので、D2D通信でのエラーを抑制することができる。
 また、上述したように、例えば、D2Dリソースは、上記特定の無線リソース(例えば、ページング用の無線リソース、ランダムアクセス手続き用の無線リソース等)を除くいずれかの無線リソースである。そして、当該特定の無線リソースは、システム情報(例えば、ページング周期T及びパラメータnB、PRACHコンフィギュレーションインデックス、等)の変更に伴い変更される。よって、D2Dリソースがシステム情報の中で送信されれば、変更されたD2Dリソースを適時通知することができる。
 (D2Dリソース変更通知部155)
 D2Dリソース変更通知部155は、D2Dリソースが変更される場合に、D2Dリソースの変更をページングにより通知する。
 このように、D2Dリソースの変更がページングにより通知されることで、アイドルモードの端末装置200であっても、D2Dリソースを知ることができる。よって、アイドルモードの端末装置200に、D2D通信に認められる無線リソースを使用させることが可能になる。
 例えば、D2Dリソース変更通知部155は、D2Dリソースの変更を、システム情報の変更としてページングにより通知する。より具体的には、例えば、D2Dリソース変更通知部155は、図4に示されるようなページングメッセージの中のシステム情報変更のフラグを1にし、無線通信部120に、当該ページングメッセージを送信させることにより、D2Dリソースの変更を通知する。例えば、D2Dリソース変更通知部155は、図9に示されるように、無線通信部120に、システム情報の変更期間(N)において上記ページングメッセージを送信させる。そして、システム情報の変更期間(N+1)において、変更後のD2Dリソースの情報を含む変更後のシステム情報が送信される。
 これにより、既存のページングメッセージを変更することなく、D2Dリソースの変更を通知することが可能になる。
 なお、D2Dリソース通知部155は、D2Dリソースの変更を、システム情報の変更とは別の変更としてページングにより通知し、D2Dリソースの変更を、システム情報の変更としてページングにより通知しなくてもよい。以下、この点について図15を参照して具体例を説明する。
 図15は、本実施形態に係るページングメッセージに含まれる情報の一例を説明するための説明図である。図15を参照すると、図4に示される例と同様に、ページングメッセージには、例えば、ページングレコードリスト、システム情報変更のフラグ、及びETWS指示のフラグが含まれる。そして、ページングメッセージには、さらにD2Dリソース変更のフラグが含まれる。
 D2Dリソース変更通知部155は、D2Dリソースが変更される場合に、D2Dリソース変更のフラグを1にすることにより、D2Dリソースの変更があることを端末装置200に通知する。また、D2Dリソース変更通知部155は、D2Dリソースが変更されない場合に、D2Dリソース変更のフラグを0にすることにより、D2Dリソースの変更がないことを端末装置200に通知する。なお、D2Dリソース変更通知部155は、D2Dリソースの情報以外のシステム情報の変更の有無に基づいて、システム情報変更のフラグを決める。即ち、D2Dリソースが変更されたか否かによって、システム情報変更のフラグは変わることはない。
 これにより、D2Dリソースの変更を端末装置200に通知しつつ、システム情報の変更が通知される頻度を抑えることができる。よって、D2D通信を行わない端末装置200が、必要もなく、システム情報のうちのどの部分が変わったかを探すことを、防ぐことができる。
 <<4.端末装置の構成>>
 続いて、図16及び図17を参照して、本実施形態に係る端末装置200の構成の一例を説明する。図16は、本実施形態に係る端末装置200の構成の一例を示すブロック図である。図16を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び制御部240を備える。
 (アンテナ部210)
 アンテナ部210は、無線信号を受信し、受信された無線信号を無線通信部220へ出力する。また、アンテナ部210は、無線通信部220により出力された送信信号を送信する。
 (無線通信部220)
 無線通信部220は、端末装置200がセル10内に位置する場合に、セル10の基地局100と無線通信する。
 (記憶部230)
 記憶部230は、端末装置200の動作のためのプログラム及びデータを記憶する。
 (制御部240)
 制御部240は、端末装置200の様々な機能を提供する。制御部240は、D2Dリソース認識部241、D2Dリソース変更認識部243及びD2D通信制御部245を含む。
 (D2Dリソース認識部241)
 D2Dリソース認識部241は、D2Dリソースが決定され、当該D2Dリソースが通知されると、当該D2Dリソースを認識する。
 より具体的には、例えば、D2Dリソースは、システム情報の中で通知される。この場合に、無線通信部220が、D2Dリソースの情報を含むSIBを受信すると、D2Dリソース認識部241は、当該SIBからD2Dリソースを認識する。
 (D2Dリソース変更認識部243)
 D2Dリソース変更認識部243は、D2Dリソースが変更される場合に、D2Dリソースの変更がページングにより通知されると、D2Dリソースの変更を認識する。
 より具体的には、例えば、上述したように、D2Dリソースの変更は、システム情報の変更としてページングにより通知される。また、図9に示されるように、システム情報の変更期間(N)において、変更前のシステム情報が送信され、システム情報の変更期間(N+1)において、変更後のシステム情報が送信される。この場合に、無線通信部220が、システム情報の変更期間(N)においてページングメッセージを受信する。すると、D2Dリソース変更認識部243は、ページングメッセージの中のシステム情報変更のフラグから、システム情報の変更を認識する。この動作は、図5を参照して説明したとおりである。そして、無線通信部220が、システム情報の変更期間(N+1)において、D2Dリソースの情報を含むSIBを受信する。すると、D2Dリソース変更認識部243は、当該SIBから、D2Dリソースの情報を取得し、D2Dリソースの変更を認識する。
 なお、D2Dリソースの変更は、システム情報の変更とは別の変更としてページングにより通知され、システム情報の変更としてページングにより通知されなくてもよい。この場合に、システム情報の変更期間(N)において、図14に示されるようなページングメッセージが送信されると、D2Dリソース変更認識部243は、当該ページングメッセージの中のD2Dリソース変更のフラグから、D2Dリソースの変更を認識してもよい。以下、図17を参照してこの動作を説明する。
 図17は、本実施形態に係るページングについての端末装置の動作の例を説明するための説明図である。図17を参照すると、まず、アイドルモードである端末装置は、所定のページング機会のサブフレーム内のPDCCHにP-RNTIが存在するかどうかモニタリングする。
 ページング機会のサブフレーム内のPDCCH内にP-RNTIがある場合に、当該サブフレーム内にはページングメッセージが含まれる。よって、D2Dリソース変更認識部243は、当該ページングメッセージを取得する。当該ページングメッセージには、ページングレコードリスト、システム情報変更のフラグ、ETWS指示のフラグ、及びD2Dリソース変更のフラグが含まれる。なお、PDCCH内にP-RNTIがない場合には、D2Dリソース変更認識部243は、次のページング機会にPDCCHのモニタリングを再度行う。
 そして、D2Dリソース変更認識部243は、ページングメッセージを取得すると、D2Dリソース変更のフラグから、D2Dリソースの変更があったか否かを確認する。
 (D2D通信制御部245)
 D2D通信制御部245は、端末装置200によるD2D通信を制御する。
 とりわけ本実施形態では、D2D通信制御部245は、認識されるD2DリソースがD2D通信で使用されるように、D2D通信を制御する。より具体的には、例えば、D2D通信制御部245は、無線通信部220に、D2Dリソース認識部241により認識されるD2Dリソースを使用してD2D通信を行わせる。
 さらに、本実施形態では、D2D通信制御部245は、D2Dリソースが変更される場合に、変更前のD2Dリソースが所定のタイミング以降にD2D通信に使用されず、変更後のD2Dリソースが上記所定のタイミング以降にD2D通信に使用されるように、D2D通信を制御する。より具体的には、例えば、D2Dリソースは、システム情報の中で通知される。また、D2Dリソースが変更されると、上述したように、D2Dリソース変更認識部243がD2Dリソースの変更が認識する。この場合に、D2D通信制御部245は、D2Dリソースの変更が認識されるまで、無線通信部220に、変更前のD2Dリソースを使用してD2D通信を行わせ、D2Dリソースの変更が認識された後には、無線通信部220に、変更後のD2Dリソースを使用してD2D通信を行わせる。
 また、例えば、D2D通信制御部245は、端末装置200がRRCアイドルモードである場合に、上記D2Dリソースを使用してD2D通信を行い、端末装置200がRRC接続モードである場合に、上記D2Dリソースを使用してD2D通信を行わない。
 <<5.処理の流れ>>
 続いて、図18~図20を参照して、本実施形態に係る通信制御処理の例を説明する。
 (基地局側の通信制御処理)
 図18は、本実施形態に係る基地局側の通信制御処理の概略的な流れの一例を示すフローチャートである。
 ステップS401で、D2Dリソース決定部151は、セル10内でのD2D通信に使用可能な無線リソース(即ち、D2Dリソース)を決定する。
 ステップS500で、D2Dリソース決定部151は、D2Dリソース変更判定処理を実行する。そして、ステップS403において、D2Dリソース変更判定処理でD2Dリソースを変更すると判定された場合には、処理はステップS405へ進む。そうでなければ、処理はステプS409へ進む。
 ステップS405で、D2Dリソース決定部151は、新たなD2Dリソースを決定する。
 ステップS407で、D2Dリソース変更通知部155は、D2Dリソースの変更をページングにより通知する。
 ステップS409で、D2Dリソース通知部153は、セル10内に位置する端末装置200にD2Dリソースを通知する。そして、処理はステップS500へ戻る。
 -D2Dリソース変更判定処理
 図19は、本実施形態に係るD2Dリソース変更判定処理の概略的な流れの一例を示すフローチャートである。
 ステップS501で、D2Dリソース決定部151は、ページング機会が変更されるかを判定する。例えば、D2Dリソース決定部151は、ページング周期T及びパラメータnBが変更されるかに基づいて、ページング機会が変更されるかを判定する。ページング機会が変更される場合には、処理はステップS507へ進む。そうでなければ、処理はステップS503へ進む。
 ステップS503で、D2Dリソース決定部151は、ランダムアクセスの機会(例えば、PRACHのタイミング)が変更されるかを判定する。例えば、D2Dリソース決定部151は、PRACHコンフィギュレーションインデックスが変更されるかに基づいて、PRACHのタイミングが変更されるかを判定する。ランダムアクセスアクセスの機会が変更される場合には、処理はステップS507へ進む。そうでなければ、処理はステップS505へ進む。
 ステップS505で、D2Dリソース決定部151は、D2Dリソースを変更すると判定する。そして、処理は終了する。
 ステップS507で、D2Dリソース決定部151は、D2Dリソースを変更しないと判定する。そして、処理は終了する。
 (端末装置側の通信制御処理)
 図20は、本実施形態に係る基地局側の通信制御処理の概略的な流れの一例を示すフローチャートである。
 ステップS601で、D2Dリソース認識部241は、D2Dリソースを認識する。例えば、D2Dリソース認識部241は、D2Dリソースの情報を含むSIBから、D2Dリソースを認識する。
 ステップS603で、D2D通信制御部245は、端末装置200によるD2D通信を制御する。より具体的には、例えば、D2D通信制御部245は、認識されたD2DリソースがD2D通信で使用されるように、D2D通信を制御する。
 ステップS605で、D2Dリソース変更認識部243は、D2Dリソースが変更されたかを判定する。より具体的には、例えば、ページングメッセージの中のシステム情報変更のフラグ、及び、いずれかのSIBの中のD2Dリソースの情報から、D2Dリソースが変更されたかを判定する。D2Dリソースが変更されていれば、処理はステップS601へ戻る。そうでなければ、処理はステップS603へ戻る。
 <<6.変形例>>
 続いて、図21~図23を参照して、本実施形態の変形例を説明する。
 <6.1.概要>
 まず、図21を参照して、本実施形態に係る基地局100の変形例の概要を説明する。
 上述した実施形態では、D2Dリソースは、セル10内に位置する端末装置200に共通のものとして決定される。一方、本実施形態の変形例では、D2Dリソースは、D2D通信のグループごとに決定される。このようなグループごとのD2Dリソースの決定は、以下のようにいくつかの利点をもたらし得る。
 まず、第1に、D2D通信のグループにおいてより多くの無線リソースをD2D通信に使用させることが可能になる。より具体的には、D2D通信に使用してもよい無線リソースは、D2Dグループによって異なり得る。例えば、ページング機会は端末装置200によって異なるので、ページング用の無線リソースは、D2Dグループによって異なり得る。よって、D2DグループごとにD2D通信用の無線リソースが決定される場合には、除外すべき無線リソースがより少なくなり得る。その結果、D2D通信の各グループについてより多くの無線リソースがD2Dリソースとして決定され、当該より多くの無線リソースが使用され得る。
 また、第2に、D2D通信のグループ間でD2Dリソースが重複しないようにD2Dリソースを決定することにより、D2D通信のグループ間での干渉を抑制することができる。以下、この点について図21を参照して具体例を説明する。
 図21は、D2D通信のグループ間での干渉の一例を説明するための説明図である。図21を参照すると、無線通信システム1において、端末装置200A及び端末装置200Bが、D2D通信を行う。即ち、端末装置200A及び端末装置200BがD2D通信のグループを形成する。また、端末装置200C及び端末装置200Dも、D2D通信を行う。即ち、端末装置200C及び端末装置200DもD2D通信のグループを形成する。そして、この例では、端末装置200A及び端末装置200Bのグループと、端末装置200C及び端末装置200Dのグループとは、近傍に位置する。よって、これらのグループ間では干渉が生じ得る。
 このように、D2D通信のグループ間では干渉が生じ得る。よって、D2D通信のグループ間でD2Dリソースが重複しないように、D2D通信に使用可能な無線リソースを、D2D通信のグループごとに決定することにより、D2D通信のグループ間での干渉を抑制することができる。
 <6.2.基地局の構成>
 まず、図22を参照して、本本実施形態の変形例に係る基地局100の構成の一例を説明する。ここでは、上述した本実施形態に係る基地局100の構成の一例との相違点又は当該一例からの変更点のみを説明する。
 (D2Dリソース決定部151)
 D2Dリソース決定部151は、D2D通信に使用可能な無線リソース(即ち、D2Dリソース)を、D2D通信のグループごとに決定する。
 例えば、D2Dリソース決定部151は、D2D通信のグループ間でD2Dリソースが重複しないように、D2Dリソースを決定する。より具体的には、例えば、D2Dリソース決定部151は、D2D通信のいずれのグループ間でもD2Dリソースが重複しないように、D2Dリソースを決定する。以下、この点について、図22を参照して具体例を説明する。
 図22は、D2D通信のグループごとに決定されるD2Dリソースの一例を説明するための説明図である。図22を参照すると、D2D通信の3つのグループが(グループA、グループB及びグループC)がある場合における、グループごとのD2Dリソースが示されている。また、図14の例と同様に、D2Dリソースとして、無線フレーム番号及びサブフレーム番号が示されている。この例では、SFNが偶数ではない無線フレーム(即ち、SFNが奇数である無線フレーム)の中の、サブフレーム番号がそれぞれ3又は4であるサブフレームの無線リソースが、グループAのD2Dリソースとして決定される。また、SFNが偶数ではない無線フレームの中の、サブフレーム番号がそれぞれ7又は8であるサブフレームの無線リソースが、グループBのD2Dリソースとして決定される。また、SFNが偶数ではない無線フレームの中の、サブフレーム番号が9であるサブフレームの無線リソースが、グループCのD2Dリソースとして決定される。
 このように、D2D通信のグループ間でD2Dリソースが重複しないようにD2Dリソースが決定されることにより、上述したように、D2D通信のグループ間での干渉を抑制することができる。
 なお、D2Dリソース決定部151は、D2D通信の第1のグループと、当該第1のグループの近傍に位置するD2D通信の第2のグループとの間で、D2Dリソースが重複しないように、D2Dリソースを決定してもよい。即ち、D2D通信のいずれのグループ間でも、D2Dリソースが重複しないのではなく、D2D通信のグループが互いに近傍に位置する場合に、これらのグループ間でD2Dリソースが重複しなくてもよい。
 具体的には、例えば、D2Dリソース決定部151は、近傍に位置するD2D通信のグループを認識する。例えば、グループA及びグループBが認識される。その後、D2Dリソース決定部151は、グループAとグループBとの間でD2Dリソースが重複しないように、グループA及びグループBの各々のD2Dリソースを決定する。
 これにより、D2D通信のグループ間での干渉を抑制することができる。また、近傍に位置しないD2D通信のグループ間では、同じ無線リソースが使用され得るので、より多くの無線リソースがD2D通信で使用され得る。
 なお、D2Dリソース決定部151は、例えば以下のように近傍に位置するD2D通信のグループを認識し得る。まず、D2Dリソース決定部151は、端末装置200についてのタイミンアドバンス値から、基地局100と端末装置200との間の距離を推定し、アンテナの受信結果から、基地局100からの端末装置200の方向を推定する。そして、D2Dリソース決定部151は、上記距離と上記方向が近い端末装置200を含むグループを、近傍に位置するD2D通信のグループとして認識する。
 (D2Dリソース通知部153)
 D2Dリソース通知部153は、D2D通信のグループごとに決定されるD2Dリソースを通知する。より具体的には、例えば、D2Dリソース通知部153は、図22に示されるような、D2D通信のグループごとに決定されたD2Dリソースの情報を含むSIBを生成する。そして、D2Dリソース通知部153は、無線通信部120に、当該SIBの送信のための無線リソースを使用して当該SIBを送信させる。
 <6.3.処理の流れ>
 次に、図23を参照して、本実施形態の変形例に係る通信制御処理の例を説明する。なお、端末装置側の通信制御処理は、上述した本実施形態に係る通信制御処理と変形例に係る通信制御処理との間に差異はない。よって、ここでは、基地局側の通信制御処理のみを説明する。
 図23は、本実施形態の変形例に係る基地局側の通信制御処理の概略的な流れの一例を示すフローチャートである。
 ステップS701で、D2Dリソース決定部151は、D2D通信に使用可能な無線リソース(即ち、D2Dリソース)を、D2D通信のグループごとに決定する。
 ステップS500で、D2Dリソース決定部151は、D2Dリソース変更判定処理を実行する。そして、ステップS703において、D2Dリソース変更判定処理でD2Dリソースを変更すると判定された場合には、処理はステップS705へ進む。そうでなければ、処理はステプS709へ進む。
 ステップS705で、D2Dリソース決定部151は、D2D通信のグループごとに新たなD2Dリソースを決定する。
 ステップS707で、D2Dリソース変更通知部155は、D2Dリソースの変更をページングにより通知する。
 ステップS709で、D2Dリソース通知部153は、セル10内に位置する端末装置200に、グループごとのD2Dリソースを通知する。そして、処理はステップS500へ戻る。
 <<7.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
 <4.1.基地局に関する応用例>
 (第1の応用例)
 図24は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図24に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図24にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図24に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図24に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図24には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 (第2の応用例)
 図25は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図25に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図25にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図24を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図24を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図25に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図25には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図25に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図25には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図24及び図25に示したeNB800及びeNB830において、図11を参照して説明したD2Dリソース決定部、D2Dリソース通知部及びD2Dリソース変更通知部は、無線通信インタフェース825並びに無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。また、これら機能の少なくとも一部は、コントローラ821及びコントローラ851において実装されてもよい。
 <4.2.端末装置に関する応用例>
 (第1の応用例)
 図26は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図26に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図26には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図26に示したように複数のアンテナ916を有してもよい。なお、図26にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図26に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図26に示したスマートフォン900において、図16を参照して説明したD2Dリソース認識部241、D2Dリソース変更認識部243及びD2D通信制御部245は、無線通信インタフェース912において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。
 (第2の応用例)
 図27は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図27に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図27には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図27に示したように複数のアンテナ937を有してもよい。なお、図27にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図27に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図27に示したカーナビゲーション装置920において、図16を参照して説明したD2Dリソース認識部241、D2Dリソース変更認識部243及びD2D通信制御部245は、無線通信インタフェース933において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ921において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <<8.まとめ>>
 ここまで、図1~図23を用いて、本開示の実施形態に係る通信装置及び各処理を説明した。本開示に係る実施形態によれば、セル10内でのD2D通信に使用可能な無線リソース(即ち、D2Dリソース)が決定される。そして、セル10内に位置する端末装置200にD2Dリソースが通知される。また、D2Dリソースが変更される場合に、D2Dリソースの変更がページングにより通知される。また、D2Dソースが変更される場合に、変更前のD2Dリソースは、所定のタイミング以降にD2D通信に使用されず、変更後のD2Dリソースは、上記所定のタイミング以降にD2D通信に使用される。
 このように、D2Dリソースの変更がページングにより通知されることで、アイドルモードの端末装置200であっても、D2Dリソースを知ることができる。よって、アイドルモードの端末装置200に、D2D通信に認められる無線リソースを使用させることが可能になる。また、所定のタイミングの前後で使用されるD2Dリソースが切り替わることにより、D2D通信でのエラーを抑制することができる。即ち、D2D通信を行う端末装置200間で異なるD2Dリソースが使用されることにより、D2D通信でのエラーが発生することを回避することができる。即ち、セルラー通信のアイドルモードの端末装置に、D2D通信に認められる無線リソースを使用させ、D2D通信でのエラーを抑制することが可能になる。
 また、例えば、D2Dリソースは、セル10のシステム情報の中で通知される。
 これにより、システム情報の変更期間(N+1)で、D2Dリソースを含むSIBが最初に受信されるタイミング以降に、変更後のD2Dリソースが使用され得る。また、当該タイミング以降には、変更前のD2Dリソースが使用されない。よって、上記タイミングの前後で使用されるD2Dリソースが切り替わるので、D2D通信でのエラーを抑制することができる。
 また、例えば、D2Dリソースは、上記特定の無線リソース(例えば、ページング用の無線リソース、ランダムアクセス手続き用の無線リソース等)を除くいずれかの無線リソースである。そして、当該特定の無線リソースは、システム情報(例えば、ページング周期T及びパラメータnB、PRACHコンフィギュレーションインデックス、等)の変更に伴い変更される。よって、D2Dリソースがシステム情報の中で送信されれば、変更されたD2Dリソースを適時通知することができる。
 また、例えば、無線リソース制御のアイドルモードの端末装置200により使用される特定の無線リソースの情報に基づいて、セル10内でのD2D通信に使用可能な無線リソース(以下、「D2Dリソース」と呼ぶ)が決定される。より具体的には、例えば、上記特定の無線リソースを除くいずれかの無線リソースが、上記D2Dリソースとして決定される。
 これにより、端末装置200は、アイドルモードである際に、自装置のセルラー通信に影響を及ぼすことなくD2D通信を行うことが可能になる。
 また、D2D通信が、MTCに用いられる場合に、上述したように決定されるD2Dリソースは、特に有効である。当該MTCは、装置間の自律的な通信である。MTCの一例として、計測器である装置が、計測データを近傍の装置へ送信し、当該近傍の装置が、計測データを集計する。このようなMTCでは、送信されるデータのサイズは小さく、データの送信頻度は低く、データの送信遅延は許容される。また、装置には低コスト及び低消費電力が求められる。そのため、MTCに用いられる装置では、セルラー通信とD2D通信とで通信回路が共有され、装置がセルラー通信のアイドルモードである場合に、D2D通信が行われることが望ましい。よって、端末装置200がMTCを行う装置である場合に、上述したように決定されるD2Dリソースは特に有効である。
 また、例えば、上記特定の無線リソースは、ページング用の無線リソースを含む。
 このように、ページング用の無線リソースをD2Dリソースとして決定しないことにより、端末装置200は、ページング用の無線リソースでD2D通信を行わない。その結果、D2D通信により端末装置200がページングメッセージを受信できなくなってしまうことを防ぐことができる。
 また、ページング用の上記無線リソースは、セル10内でのD2D通信を行う端末装置200についてのページングに用いられる無線リソースであってもよい。
 このように、全てのページング用の無線リソースではなく、D2D通信を実際に行う端末装置200についてのページング用の無線リソースのみが、D2Dリソースの対象外であれば、より多くの無線リソースがD2Dリソースとして認められ得る。その結果、より多くのトラフィックについてのオフローディングが実現され得る。即ち、RANにおける無線リソースの消費及び処理の負荷を抑えることができる。
 また、例えば、上記特定の無線リソースは、無線リソース制御の接続モードへの遷移のためのランダムアクセス手続きで使用される無線リソースを含む。
 このように、ランダムアクセス手続きで使用される無線リソースをD2Dリソースとして決定しないことにより、端末装置200は、ランダムアクセス手続きで使用される無線リソースでD2D通信を行わない。その結果、D2D通信により端末装置200がランダムアクセス手続きを行えなくなることを防ぐことができる。
 また、一例として、上記ランダムアクセス手続きで使用される当該無線リソースは、PRACHの無線リソースである。
 これにより、D2D通信により端末装置200がPRACHプリアンブルを送信できなくなることを防ぐことができる。
 また、別の例として、上記ランダムアクセス手続きで使用される当該無線リソースは、D2D通信を行う端末装置200によりランダムアクセス手続きで使用される無線リソースとして、予め選択された無線リソースであってもよい。
 このように、PRACHの無線リソース以外のランダムアクセス手続き用の無線リソースも、D2Dリソースの対象外であれば、端末装置200は、ランダムアクセス手続き用のいずれの無線リソースもD2D通信を行わない。その結果、D2D通信により端末装置200がランダムアクセス手続きのいずれかの部分を行えなくなることを防ぐことができる。また、別の観点として、端末装置200は、一連のランダムアクセス手続きが完了するまで、ランダムアクセス手続きに影響を与えることなくD2D通信を行うことができる。
 また、例えば、上記特定の無線リソースを含まないいずれかのサブフレームの無線リソースが、D2D通信に使用可能な無線リソースとして決定される。
 これにより、D2Dリソースを単純な情報として示すことが可能になる。よって、D2Dリソースを端末装置100に通知する際に使用する無線リソースを抑えることができる。また、容易にD2Dリソースを決定できるので、D2Dリソースの決定のための処理をより簡略化することができる。さらに、セルラー通信で使用され得る無線リソースとD2D通信で使用される無線リソースとが時間軸で切り分けられるので、通信回路(例えば、RF回路)をセルラー通信とD2D通信とで共有することが可能になる。
 また、例えば、決定されるD2Dリソースは、無線リソース制御のアイドルモードの端末装置200によりD2D通信に使用され、無線リソース制御の接続モードの端末装置200によりD2D通信に使用されない。
 一般的に、接続モードの端末装置200は、いずれのサブフレームでも自装置宛のダウンリンク信号を受信する可能性があるので、D2D通信を行うと、当該ダウンリンク信号を受信し損ねることもあり得る。そのため、アイドルモードの端末装置200のみがD2Dリソースを使用してD2D通信を行うことにより、D2D通信がセルラー通信を妨げる可能性を抑制することができる。
 また、例えば、D2Dリソースの変更は、システム情報の変更としてページングにより通知される。
 これにより、既存のページングメッセージを変更することなく、D2Dリソースの変更を通知することが可能になる。
 また、D2Dリソースの変更は、システム情報の変更とは別の変更としてページングにより通知され、システム情報の変更としてページングにより通知されなくてもよい。
 これにより、D2Dリソースの変更を端末装置200に通知しつつ、システム情報の変更が通知される頻度を抑えることができる。よって、D2D通信を行わない端末装置200が、必要もなく、システム情報のうちのどの部分が変わったかを探すことを、防ぐことができる。
 また、例えば、本開示に係る実施形態の変形例によれば、D2Dリソースは、D2D通信のグループごとに決定される。そして、D2D通信のグループごとに決定されるD2Dリソースが通知される。
 これにより、D2D通信のグループにおいてより多くの無線リソースをD2D通信に使用させることが可能になる。より具体的には、D2D通信に使用しても問題ない無線リソースは、D2Dグループによって異なり得る。例えば、ページング機会は端末装置200によって異なるので、ページング用の無線リソースは、D2Dグループによって異なり得る。よって、D2DグループごとにD2D通信用の無線リソースが決定される場合には、除外すべき無線リソースがより少なくなり得る。その結果、D2D通信の各グループについてより多くの無線リソースがD2Dリソースとして決定され、当該より多くの無線リソースが使用され得る。
 また、例えば、D2D通信のグループ間でD2Dリソースが重複しないように、D2Dリソースが決定される。
 これにより、D2D通信のグループ間での干渉を抑制することができる。
 また、D2D通信の第1のグループと、当該第1のグループの近傍に位置するD2D通信の第2のグループとの間で、D2Dリソースが重複しないように、D2Dリソースが決定されてもよい。
 これにより、D2D通信のグループ間での干渉を抑制することができる。また、近傍に位置しないD2D通信のグループ間では、同じ無線リソースが使用され得るので、より多くの無線リソースがD2D通信で使用され得る。
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、D2Dリソースがセルのシステム情報の中で通知される例を説明したが、本開示はこれに限定されない。例えば、D2Dリソースは、(D2Dリソース通知部によって)個別の端末装置へのシグナリングにより通知されてもよい。そして、D2Dソースが変更される場合に、変更前のD2Dリソースは、所定のタイミング以降にD2D通信に使用されず、変更後のD2Dリソースは、上記所定のタイミング以降にD2D通信に使用されてもよい。一例として、当該所定のタイミングは、システム情報の変更のタイミングであってもよい。また、別の例として、当該所定のタイミングは、指定されるSFNの無線フレームの開始時点であってもよい。
 また、採用される複信方式がTDDである例を説明したが、本開示はこれに限定されない。例えば、採用される複信方式はFDDであってもよい。この場合にも、TDDと同様にD2Dリソースの決定、通知及び変更通知が行われ得る。
 また、D2D通信がOFDMに従って行われる例を説明したが、本開示はこれに限定されない。D2D通信に別の多重化方式が用いられてもよい。
 また、端末装置がMTCを行う例を説明したが、当然ながら本開示はこれに限定されない。本開示は、MTCが行われない無線通信システムにおいても適用され得る。即ち、端末装置は、MTCを行う装置であってもよく、又はMTCを行わない端末装置であってもよい。例えば、本開示は、LTEに準拠する一般的な端末装置に適用されてもよい。
 また、本明細書の通信制御処理における処理ステップは、必ずしもフローチャートに記載された順序に沿って時系列に実行されなくてよい。例えば、通信制御処理における処理ステップは、フローチャートとして記載した順序と異なる順序で実行されても、並列的に実行されてもよい。
 また、通信制御装置又は端末装置に内蔵されるCPU、ROM及びRAM等のハードウェアに、上記通信制御装置又は端末装置の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、当該コンピュータプログラムを記憶させた記憶媒体も提供される。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 セル内での装置間通信に使用可能な無線リソースを決定する決定部と、
 前記セル内に位置する端末装置に前記無線リソースを通知する通知部と、
を備え、
 前記通知部は、前記無線リソースが変更される場合に、前記無線リソースの変更をページングにより通知し、
 前記無線リソースが変更される場合に、変更前の前記無線リソースは、所定のタイミング以降に前記装置間通信に使用されず、変更後の前記無線リソースは、前記所定のタイミング以降に前記装置間通信に使用される、
通信制御装置。
(2)
 前記通知部は、前記装置間通信に使用可能な前記無線リソースを、前記セルのシステム情報の中で通知する、前記(1)に記載の通信制御装置。
(3)
 前記通知部は、前記装置間通信に使用可能な前記無線リソースを、個別の端末装置へのシグナリングにより通知する、前記(1)に記載の通信制御装置。
(4)
 前記決定部は、無線リソース制御のアイドルモードの端末装置により使用される特定の無線リソースの情報に基づいて、前記装置間通信に使用可能な前記無線リソースを決定する、前記(1)~(3)のいずれか1項に記載の通信制御装置。
(5)
 前記決定部は、前記特定の無線リソースを除くいずれかの無線リソースを、前記装置間通信に使用可能な前記無線リソースとして決定する、前記(4)に記載の通信制御装置。
(6)
 前記決定部は、前記特定の無線リソースを含まないいずれかのサブフレームの無線リソースを、前記装置間通信に使用可能な前記無線リソースとして決定する、前記(5)に記載の通信制御装置。
(7)
 前記特定の無線リソースは、ページング用の無線リソースを含む、前記(4)~(6)のいずれか1項に記載の通信制御装置。
(8)
 ページング用の前記無線リソースは、前記装置間通信を行う端末装置についてのページングに用いられる無線リソースである、前記(7)に記載の通信制御装置。
(9)
 前記特定の無線リソースは、無線リソース制御の接続モードへの遷移のためのランダムアクセス手続きで使用される無線リソースを含む、前記(4)~(8)のいずれか1項に記載の通信制御装置。
(10)
 前記ランダムアクセス手続きで使用される前記無線リソースは、物理ランダムアクセスチャネルの無線リソースである、前記(9)に記載の通信制御装置。
(11)
 前記ランダムアクセス手続きで使用される前記無線リソースは、前記装置間通信を行う端末装置により前記ランダムアクセス手続きで使用される無線リソースとして、予め選択された無線リソースである、前記(9)に記載の通信制御装置。
(12)
 前記決定部は、前記装置間通信に使用可能な前記無線リソースを、前記装置間通信のグループごとに決定し、
 前記通知部は、前記装置間通信のグループごとに決定される前記無線リソースを通知する、
前記(1)~(11)のいずれか1項に記載の通信制御装置。
(13)
 前記決定部は、前記装置間通信のグループ間で前記装置間通信に使用可能な無線リソースが重複しないように、前記装置間通信に使用可能な前記無線リソースを決定する、前記(12)に記載の通信制御装置。
(14)
 前記決定部は、前記装置間通信の第1のグループと、当該第1のグループの近傍に位置する前記装置間通信の第2のグループとの間で、前記装置間通信に使用可能な無線リソースが重複しないように、前記装置間通信に使用可能な前記無線リソースを決定する、前記(13)に記載の通信制御装置。
(15)
 前記通知部は、前記装置間通信に使用可能な前記無線リソースの前記変更を、前記システム情報の変更としてページングにより通知する、前記(2)に記載の通信制御装置。
(16)
 前記通知部は、前記装置間通信に使用可能な前記無線リソースの前記変更を、前記システム情報の変更とは別の変更としてページングにより通知し、前記無線リソースの前記変更を、前記システム情報の変更としてページングにより通知しない、前記(2)に記載の通信制御装置。
(17)
 前記装置間通信に使用可能な前記無線リソースは、無線リソース制御のアイドルモードの端末装置により前記装置間通信に使用され、無線リソース制御の接続モードの端末装置により前記装置間通信に使用されない、前記(1)~(16)のいずれか1項に記載の通信制御装置。
(18)
 セル内での装置間通信に使用可能な無線リソースを決定することと、
 前記セル内に位置する端末装置に前記無線リソースを通知することと、
 前記無線リソースが変更される場合に、前記無線リソースの変更をページングにより通知することと、
を含み、
 前記無線リソースが変更される場合に、変更前の前記無線リソースは、所定のタイミング以降に前記装置間通信に使用されず、変更後の前記無線リソースは、前記所定のタイミング以降に前記装置間通信に使用される、
通信制御方法。
(19)
 セル内での装置間通信に使用可能な無線リソースが決定され、当該無線リソースが通知されると、当該無線リソースを認識するリソース認識部と、
 認識される前記無線リソースが前記装置間通信で使用されるように、当該装置間通信を制御する制御部と、
 前記無線リソースが変更される場合に、前記無線リソースの変更がページングにより通知されると、当該無線リソースの当該変更を認識する変更認識部と、
を備え、
 前記制御部は、前記無線リソースが変更される場合に、変更前の前記無線リソースが所定のタイミング以降に前記装置間通信に使用されず、変更後の前記無線リソースが前記所定のタイミング以降に前記装置間通信に使用されるように、前記装置間通信を制御する、
端末装置。
(20)
 コンピュータを、
 セル内での装置間通信に使用可能な無線リソースが決定され、当該無線リソースが通知されると、当該無線リソースを認識するリソース認識部と、
 認識される前記無線リソースが前記装置間通信で使用されるように、当該装置間通信を制御する制御部と、
 前記無線リソースが変更される場合に、前記無線リソースの変更がページングにより通知されると、当該無線リソースの当該変更を認識する変更認識部と、
として機能させ、
 前記制御部は、前記無線リソースが変更される場合に、変更前の前記無線リソースが所定のタイミング以降に前記装置間通信に使用されず、変更後の前記無線リソースが前記所定のタイミング以降に前記装置間通信に使用されるように、前記装置間通信を制御する、
プログラム。
 1    無線通信システム
 10   セル
 100  基地局
 110  アンテナ部
 120  無線通信部
 130  ネットワーク通信部
 140  記憶部
 150  制御部
 151  D2Dリソース決定部
 153  D2Dリソース通知部
 155  D2Dリソース変更通知部
 200  端末装置
 210  アンテナ部
 220  無線通信部
 230  記憶部
 240  制御部
 241  D2Dリソース認識部
 243  D2Dリソース変更認識部
 245  D2D通信制御部

Claims (20)

  1.  セル内での装置間通信に使用可能な無線リソースを決定する決定部と、
     前記セル内に位置する端末装置に前記無線リソースを通知する通知部と、
    を備え、
     前記通知部は、前記無線リソースが変更される場合に、前記無線リソースの変更をページングにより通知し、
     前記無線リソースが変更される場合に、変更前の前記無線リソースは、所定のタイミング以降に前記装置間通信に使用されず、変更後の前記無線リソースは、前記所定のタイミング以降に前記装置間通信に使用される、
    通信制御装置。
  2.  前記通知部は、前記装置間通信に使用可能な前記無線リソースを、前記セルのシステム情報の中で通知する、請求項1に記載の通信制御装置。
  3.  前記通知部は、前記装置間通信に使用可能な前記無線リソースを、個別の端末装置へのシグナリングにより通知する、請求項1に記載の通信制御装置。
  4.  前記決定部は、無線リソース制御のアイドルモードの端末装置により使用される特定の無線リソースの情報に基づいて、前記装置間通信に使用可能な前記無線リソースを決定する、請求項1に記載の通信制御装置。
  5.  前記決定部は、前記特定の無線リソースを除くいずれかの無線リソースを、前記装置間通信に使用可能な前記無線リソースとして決定する、請求項4に記載の通信制御装置。
  6.  前記決定部は、前記特定の無線リソースを含まないいずれかのサブフレームの無線リソースを、前記装置間通信に使用可能な前記無線リソースとして決定する、請求項5に記載の通信制御装置。
  7.  前記特定の無線リソースは、ページング用の無線リソースを含む、請求項4に記載の通信制御装置。
  8.  ページング用の前記無線リソースは、前記装置間通信を行う端末装置についてのページングに用いられる無線リソースである、請求項7に記載の通信制御装置。
  9.  前記特定の無線リソースは、無線リソース制御の接続モードへの遷移のためのランダムアクセス手続きで使用される無線リソースを含む、請求項4に記載の通信制御装置。
  10.  前記ランダムアクセス手続きで使用される前記無線リソースは、物理ランダムアクセスチャネルの無線リソースである、請求項9に記載の通信制御装置。
  11.  前記ランダムアクセス手続きで使用される前記無線リソースは、前記装置間通信を行う端末装置により前記ランダムアクセス手続きで使用される無線リソースとして、予め選択された無線リソースである、請求項9に記載の通信制御装置。
  12.  前記決定部は、前記装置間通信に使用可能な前記無線リソースを、前記装置間通信のグループごとに決定し、
     前記通知部は、前記装置間通信のグループごとに決定される前記無線リソースを通知する、
    請求項1に記載の通信制御装置。
  13.  前記決定部は、前記装置間通信のグループ間で前記装置間通信に使用可能な無線リソースが重複しないように、前記装置間通信に使用可能な前記無線リソースを決定する、請求項12に記載の通信制御装置。
  14.  前記決定部は、前記装置間通信の第1のグループと、当該第1のグループの近傍に位置する前記装置間通信の第2のグループとの間で、前記装置間通信に使用可能な無線リソースが重複しないように、前記装置間通信に使用可能な前記無線リソースを決定する、請求項13に記載の通信制御装置。
  15.  前記通知部は、前記装置間通信に使用可能な前記無線リソースの前記変更を、前記システム情報の変更としてページングにより通知する、請求項2に記載の通信制御装置。
  16.  前記通知部は、前記装置間通信に使用可能な前記無線リソースの前記変更を、前記システム情報の変更とは別の変更としてページングにより通知し、前記無線リソースの前記変更を、前記システム情報の変更としてページングにより通知しない、請求項2に記載の通信制御装置。
  17.  前記装置間通信に使用可能な前記無線リソースは、無線リソース制御のアイドルモードの端末装置により前記装置間通信に使用され、無線リソース制御の接続モードの端末装置により前記装置間通信に使用されない、請求項1に記載の通信制御装置。
  18.  セル内での装置間通信に使用可能な無線リソースを決定することと、
     前記セル内に位置する端末装置に前記無線リソースを通知することと、
     前記無線リソースが変更される場合に、前記無線リソースの変更をページングにより通知することと、
    を含み、
     前記無線リソースが変更される場合に、変更前の前記無線リソースは、所定のタイミング以降に前記装置間通信に使用されず、変更後の前記無線リソースは、前記所定のタイミング以降に前記装置間通信に使用される、
    通信制御方法。
  19.  セル内での装置間通信に使用可能な無線リソースが決定され、当該無線リソースが通知されると、当該無線リソースを認識するリソース認識部と、
     認識される前記無線リソースが前記装置間通信で使用されるように、当該装置間通信を制御する制御部と、
     前記無線リソースが変更される場合に、前記無線リソースの変更がページングにより通知されると、当該無線リソースの当該変更を認識する変更認識部と、
    を備え、
     前記制御部は、前記無線リソースが変更される場合に、変更前の前記無線リソースが所定のタイミング以降に前記装置間通信に使用されず、変更後の前記無線リソースが前記所定のタイミング以降に前記装置間通信に使用されるように、前記装置間通信を制御する、
    端末装置。
  20.  コンピュータを、
     セル内での装置間通信に使用可能な無線リソースが決定され、当該無線リソースが通知されると、当該無線リソースを認識するリソース認識部と、
     認識される前記無線リソースが前記装置間通信で使用されるように、当該装置間通信を制御する制御部と、
     前記無線リソースが変更される場合に、前記無線リソースの変更がページングにより通知されると、当該無線リソースの当該変更を認識する変更認識部と、
    として機能させ、
     前記制御部は、前記無線リソースが変更される場合に、変更前の前記無線リソースが所定のタイミング以降に前記装置間通信に使用されず、変更後の前記無線リソースが前記所定のタイミング以降に前記装置間通信に使用されるように、前記装置間通信を制御する、
    プログラム。
PCT/JP2013/076107 2012-12-05 2013-09-26 通信制御装置、通信制御方法、端末装置及びプログラム WO2014087720A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014550953A JP6194896B2 (ja) 2012-12-05 2013-09-26 通信制御装置、通信制御方法、端末装置及びプログラム
US14/431,494 US9661613B2 (en) 2012-12-05 2013-09-26 Communication control device, communication control method, terminal device, and program
CN201811209026.1A CN109257826B (zh) 2012-12-05 2013-09-26 通信控制装置、通信控制方法和终端装置
EP13860983.9A EP2930989B1 (en) 2012-12-05 2013-09-26 Communication control method, terminal, radio communication system and program
EP18195528.7A EP3481122B1 (en) 2012-12-05 2013-09-26 Communication control device, terminal device, corresponding communication control methods and non-transitory computer-readable storage medium
CN201380061018.6A CN104798424B (zh) 2012-12-05 2013-09-26 通信控制装置、通信控制方法、终端装置
US15/459,469 US10278221B2 (en) 2012-12-05 2017-03-15 Communication control device, communication control method, terminal device, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012266331 2012-12-05
JP2012-266331 2012-12-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/431,494 A-371-Of-International US9661613B2 (en) 2012-12-05 2013-09-26 Communication control device, communication control method, terminal device, and program
US15/459,469 Continuation US10278221B2 (en) 2012-12-05 2017-03-15 Communication control device, communication control method, terminal device, and program

Publications (1)

Publication Number Publication Date
WO2014087720A1 true WO2014087720A1 (ja) 2014-06-12

Family

ID=50883150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076107 WO2014087720A1 (ja) 2012-12-05 2013-09-26 通信制御装置、通信制御方法、端末装置及びプログラム

Country Status (5)

Country Link
US (2) US9661613B2 (ja)
EP (2) EP2930989B1 (ja)
JP (1) JP6194896B2 (ja)
CN (2) CN104798424B (ja)
WO (1) WO2014087720A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017099A1 (en) * 2014-07-30 2016-02-04 Sony Corporation Device
WO2016021702A1 (ja) * 2014-08-08 2016-02-11 京セラ株式会社 ユーザ端末
WO2016035150A1 (ja) * 2014-09-02 2016-03-10 富士通株式会社 無線通信方法、無線通信システム、基地局および端末
WO2018047401A1 (ja) * 2016-09-09 2018-03-15 日本電気株式会社 無線通信のための装置、方法、及びプログラムを格納した非一時的なコンピュータ可読媒体
JP2018050101A (ja) * 2016-09-20 2018-03-29 サクサ株式会社 通信システム及び通信用プログラム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104798424B (zh) * 2012-12-05 2018-11-13 索尼公司 通信控制装置、通信控制方法、终端装置
US9900810B2 (en) * 2013-10-03 2018-02-20 Lg Electronics Inc. Method and apparatus for handling radio resources for device-to-device operation in wireless communication system
CN105556873B (zh) * 2013-10-10 2019-02-22 Lg电子株式会社 在无线通信系统中管理上行链路传输资源的方法及其装置
WO2015063105A1 (en) * 2013-10-31 2015-05-07 Sony Corporation Communications system, communications device and method of communicating
US11076417B2 (en) * 2014-07-31 2021-07-27 Microsoft Technology Licensing, Llc Downlink transmission scheduling for user equipments enabling device-to-device communications
CN106558210B (zh) * 2015-09-25 2021-02-12 中兴通讯股份有限公司 车联网信息传输方法及装置
US9980105B2 (en) * 2015-09-25 2018-05-22 Intel IP Corporation Mobile communications device and a method for controlling a mobile communications device
CN106685608B (zh) 2015-11-05 2020-03-24 电信科学技术研究院 一种车路协同通信系统的资源调度方法、装置及节点
WO2018128576A1 (en) * 2017-01-03 2018-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, and method performed therein for handling communication in a wireless communication network
US20220225447A1 (en) * 2019-05-13 2022-07-14 Telefonaktiebolaget Lm Ericsson (Publ) Handling of Radio Resource Between Terminal Devices
CN113973377A (zh) * 2020-07-23 2022-01-25 维沃移动通信有限公司 业务传输资源的更新方法、终端及网络侧设备
CN115606280A (zh) * 2020-07-29 2023-01-13 Oppo广东移动通信有限公司(Cn) 通信方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203680A (ja) * 2000-01-21 2001-07-27 Advanced Mobile Telecommunications Security Technology Research Lab Co Ltd ダイナミックセキュアグループ移動通信方式
JP2007512755A (ja) 2003-11-28 2007-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ P2p使用可能システムにおいてシステム容量を増加する方法及び装置
WO2008069245A1 (ja) * 2006-12-07 2008-06-12 Mitsubishi Electric Corporation 無線通信システム、無線端末局、無線基地局および無線通信方法
WO2010047166A1 (ja) * 2008-10-22 2010-04-29 シャープ株式会社 通信システム及び移動局装置
WO2011135794A1 (ja) * 2010-04-27 2011-11-03 パナソニック株式会社 通信方法、通信システム及び通信デバイス並びに管理ノード
WO2012063792A1 (ja) * 2010-11-08 2012-05-18 株式会社エヌ・ティ・ティ・ドコモ 通知方法、ユーザ端末及び無線基地局
WO2012093583A1 (ja) * 2011-01-07 2012-07-12 三菱電機株式会社 通信システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2381416A (en) * 2001-10-24 2003-04-30 Ipwireless Inc Allocation of resources in a packet based radio communications system employing shared channels for data transfer
KR100550787B1 (ko) * 2002-12-02 2006-02-08 엘지전자 주식회사 이동 통신 시스템에서 호 제어 프로세서의 자원 관리 방법
US8457049B2 (en) * 2008-09-19 2013-06-04 Interdigital Patent Holdings, Inc. Method and apparatus for handling system information change
CN102246575A (zh) * 2008-10-29 2011-11-16 诺基亚公司 用于针对无线通信系统中设备对设备通信的动态通信资源分配的装置和方法
WO2010082084A1 (en) * 2009-01-16 2010-07-22 Nokia Corporation Apparatus and method ofscheduling resources for device-to-device communications
US8666403B2 (en) * 2009-10-23 2014-03-04 Nokia Solutions And Networks Oy Systems, methods, and apparatuses for facilitating device-to-device connection establishment
JP5240222B2 (ja) 2010-03-26 2013-07-17 株式会社デンソー ヘッドアップディスプレイ装置
CN103843444A (zh) * 2011-05-25 2014-06-04 美国博通公司 用于d2d通信的资源分配
JP5998220B2 (ja) * 2011-09-09 2016-09-28 インターデイジタル パテント ホールディングス インコーポレイテッド ローカライズドアプリケーションにアクセスするための方法および装置
US9277539B2 (en) * 2011-10-26 2016-03-01 Lg Electronics Inc. Method for performing inter-cell device-to-device (D2D) communication in wireless communication system and device therefor
JP2015504631A (ja) * 2011-11-14 2015-02-12 京セラ株式会社 マクロセル通信リソースを使用する端末間サウンディング参照信号の送信
GB2497752B (en) * 2011-12-19 2014-08-06 Broadcom Corp Apparatus and methods for supporting device-to-device discovery in cellular communications
US9084241B2 (en) * 2012-05-21 2015-07-14 Qualcomm Incorporated Methods and apparatus for determining available resources for D2D communications
US9019913B2 (en) * 2012-05-21 2015-04-28 Qualcomm Incorporated Methods and apparatus for providing D2D system information to a UE served by a home evolved Node-B
CN104798424B (zh) * 2012-12-05 2018-11-13 索尼公司 通信控制装置、通信控制方法、终端装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203680A (ja) * 2000-01-21 2001-07-27 Advanced Mobile Telecommunications Security Technology Research Lab Co Ltd ダイナミックセキュアグループ移動通信方式
JP2007512755A (ja) 2003-11-28 2007-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ P2p使用可能システムにおいてシステム容量を増加する方法及び装置
WO2008069245A1 (ja) * 2006-12-07 2008-06-12 Mitsubishi Electric Corporation 無線通信システム、無線端末局、無線基地局および無線通信方法
WO2010047166A1 (ja) * 2008-10-22 2010-04-29 シャープ株式会社 通信システム及び移動局装置
WO2011135794A1 (ja) * 2010-04-27 2011-11-03 パナソニック株式会社 通信方法、通信システム及び通信デバイス並びに管理ノード
WO2012063792A1 (ja) * 2010-11-08 2012-05-18 株式会社エヌ・ティ・ティ・ドコモ 通知方法、ユーザ端末及び無線基地局
WO2012093583A1 (ja) * 2011-01-07 2012-07-12 三菱電機株式会社 通信システム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017099A1 (en) * 2014-07-30 2016-02-04 Sony Corporation Device
JP2016032252A (ja) * 2014-07-30 2016-03-07 ソニー株式会社 装置
TWI697248B (zh) * 2014-07-30 2020-06-21 日商新力股份有限公司 裝置
US10517086B2 (en) 2014-07-30 2019-12-24 Sony Corporation Device and associated methodology for management of resource pools of resources used in device-to-device communications
US10021678B2 (en) 2014-07-30 2018-07-10 Sony Corporation Device and associated methodology for management of resource pools of resources used in device-to-device communications
RU2678829C2 (ru) * 2014-07-30 2019-02-04 Сони Корпорейшн Устройство
WO2016021702A1 (ja) * 2014-08-08 2016-02-11 京セラ株式会社 ユーザ端末
WO2016035150A1 (ja) * 2014-09-02 2016-03-10 富士通株式会社 無線通信方法、無線通信システム、基地局および端末
JPWO2016035150A1 (ja) * 2014-09-02 2017-06-15 富士通株式会社 無線通信方法、無線通信システム、基地局および端末
JPWO2018047401A1 (ja) * 2016-09-09 2019-06-24 日本電気株式会社 無線通信のための装置、方法、及びプログラム
WO2018047401A1 (ja) * 2016-09-09 2018-03-15 日本電気株式会社 無線通信のための装置、方法、及びプログラムを格納した非一時的なコンピュータ可読媒体
US10897784B2 (en) 2016-09-09 2021-01-19 Nec Corporation Apparatus and method for wireless communication, and non-transitory computer readable medium storing program
JP7010227B2 (ja) 2016-09-09 2022-01-26 日本電気株式会社 無線通信のための装置、方法、及びプログラム
JP2018050101A (ja) * 2016-09-20 2018-03-29 サクサ株式会社 通信システム及び通信用プログラム

Also Published As

Publication number Publication date
US10278221B2 (en) 2019-04-30
CN109257826A (zh) 2019-01-22
JPWO2014087720A1 (ja) 2017-01-05
CN104798424B (zh) 2018-11-13
EP3481122A1 (en) 2019-05-08
JP6194896B2 (ja) 2017-09-13
US20150230226A1 (en) 2015-08-13
EP2930989A1 (en) 2015-10-14
EP3481122B1 (en) 2021-03-31
EP2930989A4 (en) 2016-07-06
US20170196035A1 (en) 2017-07-06
EP2930989B1 (en) 2018-11-07
CN109257826B (zh) 2023-09-01
US9661613B2 (en) 2017-05-23
CN104798424A (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
JP6194896B2 (ja) 通信制御装置、通信制御方法、端末装置及びプログラム
US10687304B2 (en) Terminal device, wireless communication device, wireless communication method, and computer program
US20200275500A1 (en) Device and method
JP6311515B2 (ja) 装置
US20200092705A1 (en) Communication control device, communication control method, terminal device, and information processing device
US9622282B2 (en) Communication control device, communication control method, and terminal device
WO2016092959A1 (ja) 装置
US9807665B2 (en) Communication control device, communication control method, and terminal device
JP2018102011A (ja) 装置
US12028830B2 (en) Terminal device, wireless communication device, wireless communication method, and computer program
WO2016092953A1 (ja) 装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14431494

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014550953

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013860983

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE