WO2014087460A1 - 記録再生装置 - Google Patents

記録再生装置 Download PDF

Info

Publication number
WO2014087460A1
WO2014087460A1 PCT/JP2012/081234 JP2012081234W WO2014087460A1 WO 2014087460 A1 WO2014087460 A1 WO 2014087460A1 JP 2012081234 W JP2012081234 W JP 2012081234W WO 2014087460 A1 WO2014087460 A1 WO 2014087460A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
unit
optical information
information recording
radial position
Prior art date
Application number
PCT/JP2012/081234
Other languages
English (en)
French (fr)
Inventor
山田 健一郎
愼介 尾上
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2012/081234 priority Critical patent/WO2014087460A1/ja
Publication of WO2014087460A1 publication Critical patent/WO2014087460A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0953Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for eccentricity of the disc or disc tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08564Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using galvanomirrors

Definitions

  • the present invention relates to an apparatus for recording and reproducing information from a recording medium.
  • the present invention relates to an apparatus for recording and reproducing information from a recording medium using holography.
  • signal light having page data information two-dimensionally modulated by a spatial light modulator is superimposed on reference light inside the recording medium and refracted into the recording medium by the interference fringe pattern generated at that time. This is a technique for recording information on a recording medium by causing rate modulation.
  • the hologram recorded in the recording medium acts like a diffraction grating to generate diffracted light. This diffracted light is reproduced as the same light including the recorded signal light and phase information.
  • Regenerated signal light is detected two-dimensionally at high speed using a photodetector such as a CMOS or CCD.
  • a photodetector such as a CMOS or CCD.
  • the hologram recording technology enables two-dimensional information to be recorded on and reproduced from an optical recording medium by one hologram, and moreover, a plurality of page data is overwritten at a place on the recording medium, thereby greatly Capable of recording and reproducing information with high capacity and high speed.
  • the hologram recording / reproducing apparatus attempts to increase the capacity by overwriting a plurality of page data, but in order to further increase the recording capacity, the book is recorded at high density. Therefore, the positioning accuracy of the signal light and the reference light must be improved more than before.
  • Eccentricity can be mentioned as a problem when a disc-shaped hologram recording medium is fixed by a clamp mechanism as in the configuration of Patent Document 1 which is a document relating to hologram recording.
  • the eccentricity represents a state in which the center axis of the disk does not coincide with the rotation axis of the spindle motor.
  • a spindle motor rotates and moves a disk-shaped hologram recording medium, and the spindle motor is moved in the radial direction of the disk by a thread motor to position the disk.
  • the disc positioning error due to eccentricity is caused by the sum of the displacement of the clamp center of the hologram recording medium and the displacement of the clamp receiver of the spindle shaft of the spindle motor. Both of these occur during the manufacturing process, and the amount of eccentricity varies from individual to individual.
  • the hologram recording position and the reproduction position on the disk are largely shifted between apparatuses.
  • Patent Document 2 relates to an eccentric error and a declination error that are sometimes generated when a wafer is transferred to the optical axis position of a microscope for inspection of a disk-shaped wafer as an inspection object.
  • the eccentricity error while moving the wafer from the transfer unit to the optical axis position of the microscope, the sensor detects the eccentricity error between the reference position of the stage and the center position of the wafer from the outer peripheral shape using a sensor for the shape of the peripheral edge of the wafer.
  • the deviation error the deviation error of the wafer with respect to the stage is detected from the position of a notch provided on the wafer or a straight line provided on the circumference (orientation flat) using the same sensor.
  • a correction mechanism for moving the stage from the position to a corrected position based on the eccentricity error and the deviation angle error is provided.
  • an object of the present invention is to provide a hologram recording / reproducing apparatus that realizes high-precision positioning of a hologram recording medium corresponding to high-density recording of holograms and can ensure compatibility between apparatuses for each individual.
  • FIG. 1 is a block diagram showing a hologram recording / reproducing apparatus of Example 1.
  • FIG. It is a figure explaining the recording principle of a hologram recording / reproducing apparatus. It is a figure explaining the reproduction
  • FIG. 6 is a flowchart of processing for deriving an offset amount for canceling an attachment error of the eccentricity detection sensor in the first embodiment.
  • 6 is a flowchart of processing for deriving an offset amount for canceling an attachment error of the rotation angle detection sensor in the first embodiment.
  • 6 is a flowchart of a process for deriving a gain and an offset amount for canceling a mounting error of the radial position detection sensor according to the first embodiment.
  • FIG. 3 is a block diagram illustrating a configuration of a rotation angle control circuit according to the first embodiment.
  • FIG. 3 is a block diagram illustrating a configuration of a radial position control circuit according to the first embodiment.
  • FIG. 3 is a block diagram illustrating configurations of an eccentricity control circuit and a moving stage driving circuit in the first embodiment. It is the schematic diagram which showed the positional relationship of a hologram recording medium and various sensors when there is no attachment error of an eccentricity detection sensor. It is the figure which showed the geometrical positional relationship of the reference light and signal light in case there is no attachment error of an eccentricity detection sensor in three dimensions. It is the schematic diagram which showed the positional relationship of a hologram recording medium and various sensors when there exists an attachment error of an eccentricity detection sensor. It is the figure which showed the geometric positional relationship of the reference light and signal light in case there exists an attachment error of an eccentricity detection sensor in three dimensions. FIG.
  • FIG. 3 is a diagram illustrating a positional relationship between a hologram recording medium and various sensors and an attachment position error when there is an attachment position error in Example 1. It is the figure which showed the output signal of the 1st eccentricity detection sensor at the time of adding the offset in Example 1, and changing the fixed position of an eccentricity detection sensor.
  • FIG. 6 is a diagram illustrating a relationship between an angle formed by an incident plane of reference light at the time of reproduction and an incident plane of reference light at the time of recording and a shift of the luminance gravity center position of a reproduced image. It is a figure explaining the method to derive
  • FIG. 1 is a diagram illustrating a hologram recording medium in Example 1.
  • FIG. 6 is a diagram for explaining a fixed position of each sensor in the first embodiment. It is a figure for demonstrating the signal output from the mark for angle detection in Example 1, and a rotation angle detection sensor. It is a figure for demonstrating the eccentricity detection mark in Example 1.
  • FIG. It is a figure explaining the output signal of the 1st eccentricity detection sensor in Example 1.
  • FIG. 3 is a block diagram illustrating configurations of a reference light angle control circuit and a reference light driving circuit in Embodiment 1. It is a block diagram which shows the hologram recording / reproducing apparatus of Example 2 and Example 3.
  • FIG. 12 is a flowchart of processing for canceling an attachment error of various sensors in the second embodiment. 10 is a flowchart of processing for canceling an attachment error of various sensors in Embodiment 3.
  • FIG. 1 is a block diagram showing a recording / reproducing apparatus for a hologram recording medium that records and / or reproduces digital information using holography.
  • the hologram recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90.
  • the hologram recording / reproducing apparatus 10 receives an information signal to be recorded from the external control device 91 by the input / output control circuit 90.
  • the hologram recording / reproducing device 10 transmits the reproduced information signal to the external control device 91 by the input / output control circuit 90.
  • the hologram recording medium 1 in the present embodiment has a disk shape. Furthermore, the hologram recording medium 1 in the present embodiment has two types of marks having a predetermined pattern. One is an angle detection mark, which is a mark for detecting the rotation angle of the hologram recording medium. The other is an eccentricity detection mark, which is a mark for detecting the position of the hologram recording medium. Details of these marks will be described later.
  • the hologram recording / reproducing apparatus 10 includes a pickup 11, a reproducing reference light optical system 12, a cure optical system 13, a rotation angle detection sensor 14, a first eccentricity detection sensor 15, a second eccentricity detection sensor 16, and a radial position detection.
  • the sensor 17, the spindle motor 50, the moving stage 51, and the radial direction conveyance unit 52 are provided.
  • the spindle motor 50 has a medium attaching / detaching portion (not shown) that allows the hologram recording medium 1 to be attached to and detached from the rotation axis.
  • the hologram recording medium 1 is configured to be rotatable by the spindle motor 50.
  • the hologram recording medium 1 is configured to be movable in the radial direction by the radial transport unit 52 with reference to the position of the pickup 11.
  • the moving stage 51, the rotation angle detection sensor 14, the first eccentricity detection sensor 15, and the second eccentricity detection sensor 16 are all fixed to the movable part of the radial direction conveyance part 52. Further, the spindle motor 50 is fixed to the movable part of the moving stage 51.
  • the radial transport unit 52 that can be driven in the radial direction is mounted on a predetermined base member (not shown) to which the pickup 11 is fixed.
  • the movable stage 51, the first eccentricity detection sensor 15, the second eccentricity detection sensor 16, and the rotation angle detection sensor 14 are fixed on the movable part of the radial direction conveyance unit 52.
  • a spindle motor 50 is fixed on the movable part of the moving stage 51.
  • the hologram recording medium 1 having a predetermined mark can be fixed to the rotation shaft of the spindle motor 50.
  • a predetermined base member to which the pickup 11 is fixed, a moving stage 51, a first eccentricity detection sensor 15, a second eccentricity detection sensor 16, and a rotation angle detection sensor 14 are fixed to the movable portion in the radial direction.
  • the moving stage 51 in the present embodiment is a two-axis movable stage that is orthogonal, and can move in a plane substantially parallel to the recording surface of the hologram recording medium 1.
  • one movable shaft is taken in the same direction as the transport direction of the radial transport unit 52 as the Y axis, and the other movable shaft orthogonal thereto is defined as the X axis.
  • the position where the signal light and / or reference light is irradiated is determined by the position of the pickup 11 described later, and is a position fixed to the apparatus.
  • the spindle motor 50, the movable part of the radial conveyance part 52, and the moving stage 51 function as means for changing the position on the hologram recording medium 1 to which the signal light and / or the reference light is irradiated.
  • the rotation angle detection sensor 14 detects the rotation angle of the hologram recording medium 1 using an angle detection mark provided on the hologram recording medium 1.
  • the output signal of the rotation angle detection sensor 14 is input to the rotation angle control circuit 32.
  • the rotation angle control circuit 32 When changing the rotation angle irradiated with the signal light and the reference light, the rotation angle control circuit 32 generates a drive signal based on the output signal of the rotation angle detection sensor 14 and the command signal from the controller 80 to drive the spindle.
  • the spindle motor 50 is driven via the circuit 33. Thereby, the rotation angle of the hologram recording medium 1 can be controlled.
  • the scale 18 having a predetermined pattern is fixed to the movable part of the radial direction transport part 52.
  • the radial position detection sensor 17 detects the position of the movable part of the radial direction transport part 52 using the scale 18.
  • the radial position control circuit 34 When the radial position irradiated with the signal light and the reference light is changed, the radial position control circuit 34 generates a drive signal based on the output signal of the radial position detection sensor 17 and the command signal from the controller 80, and transports in the radial direction.
  • the radial conveyance unit 52 is driven via the drive circuit 35. Thereby, the hologram recording medium 1 is conveyed in the radial direction, and the radial position irradiated with the signal light and the reference light can be controlled.
  • the first eccentricity detection sensor 15 and the second eccentricity detection sensor 16 detect the position of the hologram recording medium 1 using the eccentricity detection mark provided on the hologram recording medium 1. Output signals of the first eccentricity detection sensor 15 and the second eccentricity detection sensor 16 are input to the eccentricity compensation circuit 30.
  • the eccentricity compensation circuit 30 generates a drive signal for compensating for the eccentricity, and drives the moving stage 51 via the moving stage drive circuit 31. Details of the first eccentricity detection sensor 15, the second eccentricity detection sensor 16, and the eccentricity compensation circuit 30 will be described later. With this configuration, the hologram recording / reproducing apparatus 10 of this embodiment uses the eccentricity detection mark. It operates so that the hologram recording medium 1 is positioned as a reference.
  • the pickup 11 plays a role of irradiating the hologram recording medium 1 with reference light and signal light and recording digital information on the recording medium using holography.
  • the information signal to be recorded is sent by the controller 80 to a spatial light modulator (described later) in the pickup 11 via the signal generation circuit 81, and the signal light is modulated by the spatial light modulator.
  • the reproduction reference light optical system 12 When reproducing the information recorded on the hologram recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the hologram recording medium 1 in the direction opposite to that during recording. To do.
  • the reproduction light reproduced by the reproduction reference light is detected by a photodetector described later in the pickup 11, and the signal is reproduced by the signal processing circuit 82.
  • the reference light angle is controlled by the reference light angle control circuit 86 by driving an actuator 220 described later in the pickup 11 and an actuator 223 described later in the reproduction reference light optical system 12.
  • the reference light angle control signal generation circuit 85 generates a signal to be used for controlling the reference light angle from the output signal of at least one of the pickup 11 and the reproduction reference light optical system 12.
  • the reference light angle control circuit 86 performs control using the output signal of the reference light angle control signal generation circuit 85 in accordance with an instruction from the controller 80.
  • the irradiation time of the reference light and the signal light irradiated on the hologram recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control circuit 84 by the controller 80.
  • the cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the hologram recording medium 1.
  • Pre-curing is a pre-process for irradiating a predetermined light beam in advance before irradiating the reference light and signal light to the desired position when recording information at the desired position in the hologram recording medium 1.
  • Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the hologram recording medium 1 so that additional recording cannot be performed at the desired position.
  • the light beam used for pre-cure and post-cure is preferably incoherent light, that is, light with low coherence.
  • a predetermined light source driving current is supplied from the light source driving circuit 83 to the light sources in the pickup 11 and the cure optical system 13, and each light source can emit a light beam with a predetermined light quantity.
  • the pickup 11 and the cure optical system 13 may be simplified by combining several optical system configurations or all optical system configurations into one. Further, regarding the rotation angle detection sensor 14, the first eccentricity detection sensor 15, and the second eccentricity detection sensor 16, some or all of these sensors are integrated to form a single sensor. It doesn't matter.
  • FIG. 2 shows a recording principle in an example of a basic optical system configuration of the pickup 11 and the reproducing reference light optical system 12 in the hologram recording / reproducing apparatus 10.
  • the reproduction reference light optical system 12 includes an actuator 223 and a galvanometer mirror 224.
  • the light beam emitted from the light source 201 passes through the collimator lens 202 and enters the shutter 203.
  • the optical element 204 composed of, for example, a half-wave plate or the like, adjusts the light quantity ratio of p-polarized light and s-polarized light to a desired ratio.
  • the light beam enters a PBS (Polarization Beam Splitter) prism 205.
  • the light beam that has passed through the PBS prism 205 functions as signal light 206, and after the light beam diameter is expanded by the beam expander 208, the light beam passes through the phase mask 209, the relay lens 210, and the PBS prism 211 and passes through the spatial light modulator 212. Is incident on.
  • the signal light to which information is added by the spatial light modulator 212 reflects the PBS prism 211 and propagates through the relay lens 213 and the spatial filter 214. Thereafter, the signal light is condensed on the hologram recording medium 1 by the objective lens 215.
  • the light beam reflected by the PBS prism 205 works as reference light 207, and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 216, and then galvanically passed through the mirror 217 and the mirror 218. Incident on the mirror 219. Since the angle of the galvanometer mirror 219 can be adjusted by the actuator 220, the incident angle of the reference light incident on the hologram recording medium 1 after passing through the lens 221 and the lens 222 can be set to a desired angle. In order to set the incident angle of the reference light, an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror.
  • the signal light and the reference light are incident on the hologram recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is recorded by writing this pattern on the recording medium.
  • the incident angle of the reference light incident on the hologram recording medium 1 can be changed by the galvanometer mirror 219, recording by angle multiplexing is possible.
  • holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
  • FIG. 3 shows a reproduction principle in an example of a basic optical system configuration of the pickup 11 and the reproduction reference light optical system 12 in the hologram recording / reproduction apparatus 10.
  • the reference beam is incident on the hologram recording medium 1 as described above, and the light beam transmitted through the hologram recording medium 1 is reflected by the galvanometer mirror 224 whose angle can be adjusted by the actuator 223.
  • the reference light for reproduction is generated.
  • the reproduction light reproduced by the reproduction reference light propagates through the objective lens 215, the relay lens 213, and the spatial filter 214. Thereafter, the reproduction light passes through the PBS prism 211 and enters the photodetector 225, and the recorded signal can be reproduced.
  • the photodetector 225 for example, an image sensor such as a CMOS image sensor or a CCD image sensor can be used, but any element may be used as long as page data can be reproduced.
  • the reference light angle control signal generation circuit 85 receives an output signal of an angle detection sensor (not shown) provided in the actuator 220 as an input, detects the angle of the reference light reflected from the galvanometer mirror 219, and refers to it. A signal for use in controlling the light angle is generated.
  • the reference light angle control signal generation circuit 85 receives an output signal of an angle detection sensor (not shown) provided in the actuator 223 as an input, and reflects the reference light reflected from the galvano mirror 224. The angle is detected, and a signal for use in controlling the reference beam angle is generated.
  • an optical encoder may be used as the angle detection sensor provided in the actuator 220 and the actuator 223, for example.
  • the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle. Therefore, instead of using the angle detection sensor provided in the actuator 220, a mechanism for detecting the deviation amount of the reference light angle is separately provided in the pickup 11, and the reference light angle control signal generation circuit 85 outputs the output signal of the mechanism.
  • a configuration may be employed in which a signal used for controlling the reference light angle is generated as an input.
  • FIG. 4 (a) shows a flowchart of the setup process
  • FIG. 4 (b) shows a flowchart of the recording process
  • FIG. 4 (c) shows a flowchart of the reproduction process.
  • the hologram recording / reproducing apparatus 10 determines whether the inserted medium is a medium for recording or reproducing digital information using holography, for example.
  • the medium is determined (step S402).
  • the hologram recording / reproducing apparatus 10 reads control data provided on the hologram recording medium 1 (step S403). ), For example, information relating to the hologram recording medium 1 and information relating to various setting conditions during recording and reproduction, for example.
  • step S404 After reading the control data, various adjustments according to the control data and learning processing related to the pickup 11 (step S404) are performed. Thereby, the hologram recording / reproducing apparatus 10 completes preparation for recording or reproduction, and ends the setup process (step S405).
  • the learning process in step S404 includes a process for turning on eccentricity compensation control, which will be described later, and thereafter, the eccentricity compensation control is always turned on.
  • various sensor attachment error canceling processes which will be described later, are also performed in the learning process in step S404 in this embodiment, and the learned offset amount and gain of each sensor are always set thereafter.
  • the hologram recording / reproducing apparatus 10 receives the recording data (step S412), and sends two-dimensional data corresponding to the data to the spatial light modulator 212 in the pickup 11.
  • various recording learning processes such as optimization of the power of the light source 201 and optimization of exposure time by the shutter 203 are performed in advance so that high-quality information can be recorded on the hologram recording medium 1 (steps). S413).
  • the spindle motor 50, the radial transport unit 52, and the moving stage 51 are controlled using the rotation angle control circuit 32, the radial position control circuit 34, and the eccentricity compensation circuit 30.
  • the hologram recording medium 1 is positioned so that the light beam irradiated from the pickup 11 and the cure optical system 13 is irradiated to a predetermined position of the hologram recording medium 1.
  • the address information is reproduced to check whether the hologram recording medium 1 is positioned at the target position. If the hologram recording medium 1 is not positioned at the target position, the deviation amount from the predetermined position is calculated. Then, the positioning operation is repeated.
  • a flowchart of the seek operation in this embodiment will be described later.
  • step S415 a data recording process for recording data to be recorded as a hologram on the hologram recording medium 1 is performed. Details of the data recording process will be described later.
  • the recording process is terminated (step S416). Note that data may be verified as necessary.
  • the hologram recording / reproducing apparatus 10 first performs a seek operation (step S422), using the rotation angle control circuit 32, the radial position control circuit 34, and the eccentricity compensation circuit 30, and the pickup 11 and the reproduction.
  • the hologram recording medium 1 is positioned so that the light beam irradiated from the reference light optical system 12 is irradiated to a predetermined position of the hologram recording medium 1.
  • the address information is reproduced to check whether the hologram recording medium 1 is positioned at the target position. If the hologram recording medium 1 is not positioned at the target position, the deviation amount from the predetermined position is calculated. Then, the positioning operation is repeated.
  • step S423 information recorded on the hologram recording medium 1 is read from the two-dimensional data detected by the photodetector 225 (step S423), and reproduction data is transmitted (step S424).
  • reproduction data is transmitted (step S425).
  • FIG. 15 shows a data processing flow during recording and reproduction.
  • FIG. 15A shows the two-dimensional data on the spatial light modulator 212 after the recording data reception process S412 in the input / output control circuit 90.
  • FIG. 15B shows a recording data processing flow in the signal generation circuit 81 until conversion.
  • FIG. 15B shows the process up to reproduction data transmission processing S424 in the input / output control circuit 90 after the two-dimensional data is detected by the photodetector 225.
  • the reproduction data processing flow in the signal processing circuit 82 is shown.
  • step S8101 When data processing at the time of recording is started (step S8101), the signal generation circuit 81 receives recording data (step S8102). Subsequently, the recording data is divided into a plurality of data strings, and each data string is converted to CRC so that an error can be detected during reproduction (step S8103). Subsequently, for the purpose of making the number of on-pixels and the number of off-pixels substantially equal and preventing repetition of the same pattern, scramble is performed to add a pseudo-random data sequence to the data sequence (step S8104). Thereafter, error correction coding such as Reed-Solomon code is performed so that error correction can be performed during reproduction (step S8105).
  • error correction coding such as Reed-Solomon code
  • this data string is converted into M ⁇ N two-dimensional data, and the two-dimensional data for one page is constructed by repeating it for one page data (step S8106).
  • a marker serving as a reference in image position detection and image distortion correction during reproduction is added to the two-dimensional data configured as described above (step S8107), and the data is transferred to the spatial light modulator 212 (step S8108).
  • the data processing at the time of recording is completed. (Step S8109).
  • step S8201 When data processing at the time of reproduction is started (step S8201), reproduced image data detected by the photodetector 225 is transferred to the signal processing circuit 82 (step S8202). Subsequently, the image position is detected with reference to the marker included in the image data (step S8203), and distortion such as the tilt, magnification, and distortion of the image is corrected (step S8204). Thereafter, binarization is performed (step S8205), and the marker is removed (step S8206). Subsequently, two-dimensional data for one page is acquired (step S8207).
  • step S8208 After converting the two-dimensional data obtained in this way into a plurality of data strings, error correction processing is performed to remove the parity data string (step S8208). Next, scramble is canceled (step S8209), and error detection processing by CRC is performed (step S8210). Finally, the reproduction data generated by deleting the CRC parity is transmitted via the input / output control circuit 90 (step S8211). Thus, the data processing at the time of reproduction is completed (step S8212).
  • FIG. 16 is a block diagram of the signal generation circuit 81 of the hologram recording / reproducing apparatus 10.
  • the input / output control circuit 90 When input of recording data is started to the input / output control circuit 90, the input / output control circuit 90 notifies the controller 80 that input of recording data has started. Upon receiving this notification, the controller 80 commands the signal generation circuit 81 to record the data for one page input from the input / output control circuit 90. A processing command from the controller 80 is notified to the sub-controller 8101 in the signal generation circuit 81 via the control line 8108. Upon receiving this notification, the sub-controller 8101 controls each signal processing circuit via the control line 8108 so that the signal processing circuits are operated in parallel. First, the memory control circuit 8103 is controlled to store the recording data input from the input / output control circuit 90 via the data line 8109 in the memory 8102.
  • the CRC calculation circuit 8104 performs control to convert the recording data to CRC.
  • the scramble circuit 8105 scrambles the CRC-converted data to add a pseudo random number data sequence
  • the error correction encoding circuit 8106 performs error correction encoding to add the parity data sequence.
  • the pickup interface circuit 8107 reads out the error correction encoded data from the memory 8102 in the order of the two-dimensional data on the spatial light modulator 212, adds a reference marker at the time of reproduction, Two-dimensional data is transferred to the spatial light modulator 212.
  • FIG. 17 is a block diagram of the signal processing circuit 82 of the hologram recording / reproducing apparatus 10.
  • the controller 80 instructs the signal processing circuit 82 to reproduce the data for one page input from the pickup 11.
  • a processing command from the controller 80 is notified to the sub-controller 8201 in the signal processing circuit 82 via the control line 8211.
  • the sub-controller 8201 controls each signal processing circuit via the control line 8211 so that the signal processing circuits are operated in parallel.
  • the memory control circuit 8203 is controlled to store image data input from the pickup 11 via the pickup interface circuit 8210 via the data line 8212 in the memory 8202.
  • the image position detection circuit 8209 performs control to detect a marker from the image data stored in the memory 8202 and extract an effective data range.
  • the image distortion correction circuit 8208 performs distortion correction such as image inclination, magnification, and distortion using the detected marker, and controls to convert the image data into the expected two-dimensional data size.
  • Each bit data of a plurality of bits constituting the size-converted two-dimensional data is binarized by determining “0” or “1” in the binarization circuit 8207, and the data is arranged on the memory 8202 in the order of the output of the reproduction data Control to store.
  • the error correction circuit 8206 corrects an error included in each data string, and the scramble release circuit 8205 cancels the scramble to add the pseudo-random number data string. Check not included. Thereafter, the reproduction data is transferred from the memory 8202 to the input / output control circuit 90.
  • FIG. 18 shows the hologram recording medium 1, in which a circle R1 indicates the innermost circumference of the medium, and a circle R2 indicates the outermost circumference of the medium.
  • a point O in FIG. 18 indicates the geometric center of the hologram recording medium 1.
  • the variable r is a variable indicating the radius measured from the point O.
  • a mark is provided in the hologram recording medium 1 .
  • a region where user data is recorded as a hologram is r5 ⁇ r ⁇ r6. That is, the marks M1 and M2 are provided on the inner peripheral side with respect to an area where user data is recorded as a hologram.
  • the mark M1 is an angle detection mark
  • the mark M2 is an eccentricity detection mark.
  • FIG. 19 is a diagram for explaining the fixed positions of these sensors when the movable part of the radial direction transport part 52 is used as a reference.
  • the point xy0 indicates the drive reference position of the moving stage 51.
  • the movable stage 51 moves 0.5 mm in the plus direction from the minus movable end with respect to the X axis, and the plus direction from the minus movable end in the Y axis
  • the point moved by 0.5 mm is the point xy0. That is, when the movable part of the moving stage 51 is at the drive reference position xy0, the rotation shaft of the spindle motor 50 is positioned directly above xy0.
  • the horizontal direction is the X axis and the vertical direction is the Y axis.
  • a point P14 indicates the center of the rotation angle detection sensor 14.
  • the point P15 indicates the center of the sensor of the first eccentricity detection sensor 15
  • the point P16 indicates the center of the sensor of the second eccentricity detection sensor 16.
  • P15 and P16 exist on a circle Cxy having a radius r2 centered on the point xy0.
  • the center of the sensor indicates the center position of the light spot irradiated by the sensor, and the position of the sensor indicates the center position of the light spot of the sensor.
  • the rotation angle detection sensor 14 is provided in the region of r3 ⁇ r ⁇ r4. It is located at the center of the angle detection mark M1.
  • the first eccentricity detection sensor 15 and the second eccentricity detection sensor 16 have r1 ⁇ r ⁇ . It is located at the outer peripheral edge of the eccentricity detection mark M2 provided in the region r2.
  • FIG. 20 is a schematic diagram of the angle detection mark M1 and a signal output from the rotation angle detection sensor 14.
  • the angle detection mark M1 includes a mark Mp in which the reflection part and the non-reflection part are repeated at a predetermined period p, and a mark Mz provided only once per rotation of the medium.
  • the mark Mz is a mark for generating a Z-phase signal described later
  • the mark Mp is a mark for generating an A-phase signal and a B-phase signal described later.
  • the rotation angle detection sensor 14 emits light of a predetermined wavelength and is irradiated onto the mark Mp.
  • the rotation angle detection sensor 14 detects the rotation angle by detecting the light reflected by the mark Mp.
  • three types of signals as shown in the figure are obtained as output signals of the rotation angle detection sensor 14.
  • the A phase signal and the B phase signal are rectangular waves in which 8 periods are output while moving the period p of the mark Mp.
  • the phase of the A-phase signal and that of the B-phase signal differ by 90 degrees, and the magnitude of the phase changes depending on the moving direction of the light spot irradiated on the mark Mp.
  • the B phase signal has an output whose phase is advanced by 90 degrees with respect to the A phase signal.
  • the B-phase signal has an output delayed by 90 degrees with respect to the A-phase signal.
  • the Z-phase signal is generated from a light spot (not shown) irradiated on the mark Mz, and a pulse having the same width as the A-phase signal is output only once when the medium is rotated once.
  • the A-phase signal, B-phase signal, and Z-phase signal are in the form of a general output as an output signal of the incremental encoder.
  • the rotation angle of the medium can be obtained from these three signals.
  • the current angle is calculated by determining an angle that is 0 degrees based on the Z-phase signal and accumulating the rotation angle from the A-phase signal and the B-phase signal. Since the phase difference between the A phase signal and the B phase signal is 90 degrees, the minimum resolution of the rotation angle detection sensor 14 of this embodiment is an amount corresponding to 1 ⁇ 4 of the period of the A phase signal, and the mark Mp It becomes p / 32 in the upper distance conversion. In order to convert the distance on the mark Mp into the rotation angle, since the arc and radius of the sector are known, the center angle of the arc may be obtained by calculation.
  • the configuration of FIG. 20 is used as an explanation of the rotation angle detection sensor 14, but the present invention is not limited to this.
  • a sensor using the detection principle of an absolute encoder may be used.
  • the A-phase signal that is the output signal of the rotation angle detection sensor 14 is a logical signal (rectangular wave), but an analog signal (for example, a sine wave) that can obtain information corresponding to the angle is output. It may be a sensor.
  • the configuration of the incremental encoder shown in FIG. 20 becomes a rotary encoder when the marks Mp are arranged in a circle, but becomes a line encoder when arranged in a straight line. That is, this method can be used not only as a rotation angle but also as a sensor for measuring displacement in one direction.
  • the radial position detection sensor 17 in this embodiment is an incremental line encoder. That is, in the above description, the rotation angle detection sensor 14 is replaced with the radial position detection sensor 17, and the angle detection mark M 1 provided on the hologram recording medium 1 is fixed to the movable portion of the radial conveyance unit 52. What is necessary is just to replace with the predetermined pattern of the scale 18. Similarly, the A-phase signal, the B-phase signal, and the Z-phase signal are output from the radial position detection sensor 17.
  • the first eccentricity detection sensor 15 and the second eccentricity detection sensor 16 are of the same type as the sensors except for the mounting positions. Therefore, the first eccentricity detection sensor 15 will be described below.
  • FIG. 21 (a) is a schematic diagram of the eccentricity detection mark M2.
  • the eccentricity detection mark M2 is deposited with a metal film over the region of r1 ⁇ r ⁇ r2, and functions as a reflecting portion. That is, the shaded portion in the figure is a reflecting portion, and the other portion is a non-reflecting portion.
  • the first eccentricity detection sensor 15 emits light having a predetermined wavelength and is irradiated onto the mark M2. The first eccentricity detection sensor 15 detects the light reflected by the mark M2.
  • the sensor center of the first eccentricity detection sensor 15 is fixed at a radius r2. Therefore, when the movable part of the moving stage 51 is at the drive reference position xy0 and the hologram recording medium 1 has no eccentricity, the first eccentricity detection sensor 15 irradiates as shown in FIG. The light spot is located at the outer peripheral edge of the eccentricity detection mark M2 provided in the region of r1 ⁇ r ⁇ r2.
  • FIG. 21B is a diagram for explaining an output signal of the first eccentricity detection sensor 15.
  • the output signal from the first eccentricity detection sensor 15 is one, and a voltage corresponding to the relative positional relationship between the light spot irradiated by the first eccentricity detection sensor 15 and the eccentricity detection mark M2 is output. .
  • the light spot irradiated by the eccentricity detection sensor 15 and the outer peripheral edge of the eccentricity detection mark M2 can be displaced in the radial direction.
  • a difference between the relative positions in the radial direction between the light spot irradiated by the first eccentricity detection sensor 15 and the outer peripheral edge of the eccentricity detection mark M2 is represented by ⁇ rs.
  • the relationship between the relative position difference ⁇ rs in the radial direction and the output voltage Vs from the first eccentricity detection sensor 15 is as shown in FIG. That is, during the predetermined detection range rs_v, the output voltage Vs becomes a voltage proportional to the difference ⁇ rs in the relative position between the first eccentricity detection sensor 15 and the eccentricity detection mark M2 in the radial direction. Further, when the output voltage Vs becomes zero, the light spot irradiated by the first eccentricity detection sensor 15 is located at the outer peripheral edge of the eccentricity detection mark M2. As for the first eccentricity detection sensor 15, the direction of taking ⁇ rs is the negative direction of the X axis.
  • the first eccentricity detection sensor 15 is arranged on the X-axis in the orthogonal coordinate axis with the drive reference position xy0 as the origin.
  • the second eccentricity detection sensor 16 is arranged on the Y axis in the orthogonal coordinate axis with the drive reference position xy0 as the origin.
  • the position of the eccentricity detection mark M2 can be detected by arranging the sensors capable of detecting the relative position with the eccentricity detection mark M2 orthogonally. Further, if the moving stage 51 can be controlled so that the output voltages of both sensors become zero, hologram recording is performed so that the center of the light spot irradiated by both sensors is positioned at the edge of the eccentricity detection mark M2. The position of the medium 1 can be controlled.
  • the rotation angle detection sensor 14, the first eccentricity detection sensor 15, and the second eccentricity detection sensor 16 all irradiate the hologram recording medium 1 with a light spot as detection light for detecting a mark.
  • the wavelength of the light is preferably different from the wavelength of the reference light. Since the wavelength of the signal light and the wavelength of the reference light are the same, they may be expressed as different from the wavelength of the signal light. This is because it is known that when light having a wavelength close to that of the reference light is irradiated onto an unrecorded hologram recording medium, the reproduction quality is deteriorated when a hologram is subsequently recorded at the irradiation position. is there.
  • the detection light can be, for example, light having a wavelength of 650 nm that differs from the wavelength of the reproduction light by 100 nm or more.
  • the configuration of the rotation angle control circuit 32 of this embodiment will be described with reference to FIG.
  • the rotation angle control circuit 32 includes a rotation angle detection circuit 3201, a rotation angle offset addition circuit 3202, a rotation angle drive signal output circuit 3203, a rotation angle output control switch 3204, and a rotation angle drive determination circuit 3205.
  • the rotation angle control circuit 32 Based on the command signal from the controller 80, the rotation angle control circuit 32 adds the rotation angle offset command value Oft ⁇ from the controller 80 to the rotation angle of the hologram recording medium 1, and the angle command value Tgt ⁇ from the controller 80.
  • This control is referred to as rotation angle control in this specification.
  • the rotation angle detection circuit 3201 receives the A phase signal, the B phase signal, and the Z phase signal output from the rotation angle detection sensor 14, calculates the current rotation angle Det ⁇ 0 of the hologram recording medium 1 from the three signals, and rotates. Output to the angle offset addition circuit 3202.
  • the rotation angle offset addition circuit 3202 receives the rotation angle offset command value Oft ⁇ from the controller 80 and Det ⁇ 0 from the rotation angle detection circuit 3201 as input, and outputs the rotation angle Oft ⁇ 1 obtained by adding Offset ⁇ to Det ⁇ 0 as a rotation angle drive signal output circuit. Input to 3203.
  • the rotation angle drive signal output circuit 3203 receives the Det ⁇ 1 signal and the angle command Tgt ⁇ signal from the controller 80, and outputs a drive signal for controlling the spindle motor 50.
  • the rotation angle output control switch 3204 receives the output signal of the rotation angle drive signal output circuit 3203, and controls whether or not to output the output signal of the rotation angle drive signal output circuit 3203 according to the control signal SPON from the controller 80.
  • the rotation angle output control switch 3204 selects the terminal a and outputs the output signal of the rotation angle drive signal output circuit 3203 as an SPD signal.
  • the rotation angle output control switch 3204 selects the terminal b, outputs the reference potential as the SPD signal, and does not output the output signal of the rotation angle drive signal output circuit 3203.
  • the SPON signal is a signal for instructing on / off of the rotation angle control.
  • the rotation angle output control switch 3204 functions as a switch for switching on / off the rotation angle control.
  • the SPD signal output from the rotation angle output control switch 3204 is amplified by the spindle drive circuit 33, and the spindle motor 50 is controlled.
  • the rotation angle drive determination circuit 3205 receives the Det ⁇ 1 signal and the Tgt ⁇ signal, determines whether the rotation angle of the hologram recording medium 1 is a value near the angle command value Tgt ⁇ , and outputs it as a SPOK signal.
  • the SPOK signal is assumed to be High.
  • the rotation angle drive determination circuit 3205 has a difference between the current angle Det ⁇ 1 obtained by adding the rotation angle offset command value Oft ⁇ to the current angle Det ⁇ 0 detected by the rotation angle detection sensor 14 and the angle command value Tgt ⁇ is equal to or less than a predetermined threshold value.
  • the controller 80 can determine whether or not the rotation angle of the hologram recording medium 1 is a value near the angle command value Tgt ⁇ based on the SPOK signal. That is, the rotation angle drive determination circuit 3205 functions as a circuit that determines the convergence of the rotation angle control.
  • the configuration of the radial position control circuit 34 in the present embodiment will be described with reference to FIG.
  • the radial position control circuit 34 includes a radial position detection circuit 3401, a radial position offset addition circuit 3402, a radial position signal output amplification circuit 3403, a radial position drive signal output circuit 3404, a radial position output control switch 3405, and a radial position drive determination circuit 3406.
  • the radial position control circuit 34 adds the radial position offset command value OfR from the controller 80 to the position of the movable portion of the radial transport unit 52, and amplifies it by the radial position gain command value GainR.
  • the radial direction conveyance unit 52 is controlled so as to become the position command value TgtR from the controller 80.
  • This control is referred to as radial position control in this specification.
  • the radial position detection circuit 3401 receives the A-phase signal, the B-phase signal and the Z-phase signal output from the radial position detection sensor 17, calculates the current radial position DetR0 of the hologram recording medium 1 from the three signals, and calculates DetR0.
  • the signal is output to the radial position offset addition circuit 3402 as a signal.
  • the radial position offset addition circuit 3402 receives the radial position DetR0 and the radial position offset command value OfR from the controller 80, and inputs the rotation angle DetR1 obtained by adding OffsetR to the DetR0 as an output to the radial position signal output amplification circuit 3403.
  • the radial position signal output amplification circuit 3403 receives the radial position DetR1 and the radial position gain command value GainR from the controller 80, and inputs the radial position DetR2 obtained by amplifying DetR1 with GainR to the radial position drive signal output circuit 3404.
  • the radial position drive signal output circuit 3404 receives the DetR2 signal and the radial position command TgtR signal from the controller 80, and outputs a drive signal for controlling the radial transport unit 52.
  • the radial position output control switch 3405 receives the output signal of the radial position drive signal output circuit 3404 and controls whether to output the output signal of the radial position drive signal output circuit 3404 according to the control signal RDON from the controller 80.
  • the radial position output control switch 3405 selects the terminal a and outputs the output signal of the radial position drive signal output circuit 3404 as an RDD signal.
  • the radial position output control switch 3405 selects the terminal b, outputs the reference potential as the RDD signal, and does not output the output signal of the radial position drive signal output circuit 3404.
  • the RDON signal is a signal for instructing on / off of the radial position control.
  • the radial position output control switch 3405 functions as a switch for switching on / off the radial position control.
  • the RDD signal output from the radial position output control switch 3405 is amplified by the radial conveyance drive circuit 35, and the radial conveyance unit 52 is controlled.
  • the radial position drive determination circuit 3406 receives the DetR2 signal and the TgtR signal, determines whether the radial position of the hologram recording medium 1 is a value near the radial position command value TgtR, and outputs it as an RDOK signal. Note that when the radius position of the hologram recording medium 1 is a value in the vicinity of the radius position command value TgtR, the RDOK signal is assumed to be High.
  • the radial position drive determination circuit 3406 for example, a radial position DetR2 obtained by adding a radial position offset OfR to a current radial position DetR0 detected by the radial position detection sensor 17 and amplified by a radial position gain GainR and a radial position command. This can be realized by measuring the elapsed time after the difference from the value TgtR becomes equal to or less than a predetermined threshold, and making the determination by continuing the measurement time for a predetermined time or more.
  • the RDOK signal that is the determination result is input to the controller 80.
  • the controller 80 can determine whether or not the radial position of the hologram recording medium 1 is a value in the vicinity of the radial position command value TgtR based on the RDOK signal. That is, the radial position drive determination circuit 3406 functions as a circuit that determines the convergence of the radial position control.
  • the rotation angle drive determination circuit 3205 in this embodiment measures an elapsed time after the difference between the current angle Det ⁇ 1 obtained by adding the rotation angle offset command value Oft ⁇ and the angle command value Tgt ⁇ is equal to or less than a predetermined threshold value, and It was set as the structure which determines by measuring time continuing more than predetermined time.
  • the rotation angle drive determination circuit 3205 may have another configuration as long as it can determine whether Det ⁇ 1 is a value in the vicinity of the angle command value Tgt ⁇ . For example, if Det ⁇ 1 becomes equal to the angle command value Tgt ⁇ even once, the SPOK signal may be set to High at that time. The same applies to the radial position drive determination circuit 3406.
  • the reference light angle control circuit 86 includes a reference light angle offset addition circuit 8601, a reference light angle drive signal output unit 8602, a reference light angle output control switch 8603, and a reference light angle drive determination circuit 8604. Based on the command signal from the controller 80, the reference light angle control circuit 86 controls the galvanometer mirror 224 of the reproduction reference light optical system 12 so that the angle of the reference light becomes the angle command value Tgt ⁇ from the controller 80. This control is referred to as reference light angle control in this specification.
  • the reference light angle offset adder 8601 receives, from the reference light angle control signal generation circuit 85, the output signal Det ⁇ 0 of the reference light angle detection sensor provided in the actuator 223 and the reference light angle offset addition command value Ofk ⁇ from the controller 80.
  • the output signal Det ⁇ 1 to which the offset is added is input to the reference light angle drive signal output unit 8602.
  • the reference light angle drive signal output unit 8602 generates a drive signal for driving the galvanometer mirror 224 based on the input output signal.
  • the reference light angle output control switch 8603 receives the output signal of the reference light angle drive signal output device 8602 and controls whether or not to output the output signal of the reference light angle drive signal output device 8602 according to the control signal RAON from the controller 80. To do.
  • the reference light angle output control switch 8603 selects the terminal a and outputs the output signal of the reference light angle drive signal output unit 8602 as the RAD signal.
  • the reference light angle output control switch 8603 selects the terminal b, outputs the reference potential as the RAD signal, and does not output the output signal of the reference light angle drive signal output unit 8602.
  • the RAD signal output from the reference light angle output control switch 8603 is amplified by the reference light angle driving circuit 87, and the reference light angle is controlled.
  • the reference light angle drive determination circuit 8604 receives the Det ⁇ 1 signal and the Tgt ⁇ signal, determines whether or not the reference light angle is a value near the angle command value Tgt ⁇ , and outputs it as a RAOK signal. When the reference light angle is a value near the angle command value Tgt ⁇ , the RAON signal is assumed to be High.
  • the reference light angle drive determination circuit 8604 for example, a current reference light angle Det ⁇ 1 obtained by adding a reference light angle offset command value Of ⁇ to a current reference light angle Det ⁇ 0 detected by a reference light angle detection sensor, and a reference light angle command value Tgt ⁇ .
  • the controller 80 can determine whether or not the reference light angle is a value near the angle command value Tgt ⁇ by the RAOK signal. That is, the reference light angle drive determination circuit 8604 functions as a circuit that determines the convergence of the reference light angle control.
  • the configuration of the eccentricity compensation circuit 30 and the moving stage drive circuit 31 in the present embodiment will be described with reference to FIG.
  • the eccentricity compensation circuit 30 includes an X-axis offset adder 3001, an X-axis compensator 3002, an X-axis output control switch 3003, a Y-axis offset adder 3004, a Y-axis compensator 3005, a Y-axis output control switch 3006, and an eccentricity compensation determination. It consists of a circuit 3007.
  • the moving stage drive circuit 31 includes an X-axis drive circuit 3101 and a Y-axis drive circuit 3102.
  • the eccentricity compensation circuit 30 controls the moving stage 51 so that the hologram recording medium 1 is positioned based on the eccentricity detection mark based on the command signal XYON from the controller 80 and the offset addition command values OfX and OfY. .
  • This control is referred to as eccentricity compensation control in this specification.
  • the X-axis offset adder 3001 receives the output signal of the first eccentricity detection sensor 15 and the X-axis offset addition command value OfX from the controller 80, and the output signal to which the offset of OffX is added is the X-axis compensator 3002. Is input.
  • the X-axis compensator 3002 generates a drive signal for driving the X-axis of the moving stage 51 based on the input output signal.
  • the X-axis output control switch 3003 receives the output signal from the X-axis compensator 3002 and controls whether to output the output signal from the X-axis compensator 3002 according to the control signal XYON from the controller 80.
  • the X-axis output control switch 3003 selects the terminal a and outputs the output signal of the X-axis compensator 3002 as an XD signal.
  • the X-axis output control switch 3003 selects the terminal b, outputs the reference potential as the XD signal, and does not output the output signal of the X-axis compensator 3002.
  • the XD signal output from the X-axis output control switch 3003 is amplified by the X-axis drive circuit 3101 and the X-axis of the moving stage 51 is controlled.
  • the Y-axis offset adder 3004 receives the output signal of the second eccentricity detection sensor 15 and the Y-axis offset addition command value OfY from the controller 80, and the output signal obtained by adding the offset of OffY is the Y-axis compensator 3005. Is input.
  • the Y-axis compensator 3005 generates a drive signal for driving the Y-axis of the moving stage 51 based on the input output signal.
  • the Y-axis output control switch 3006 receives the output signal from the Y-axis compensator 3005 and controls whether to output the output signal from the Y-axis compensator 3005 according to the control signal XYON from the controller 80.
  • the Y-axis output control switch 3006 selects the terminal a and outputs the output signal of the Y-axis compensator 3005 as the YD signal.
  • the Y-axis output control switch 3006 selects the terminal b, outputs the reference potential as the YD signal, and does not output the output signal of the Y-axis compensator 3005.
  • the YD signal output from the Y-axis output control switch 3006 is amplified by the Y-axis drive circuit 3102 and the Y-axis of the moving stage 51 is controlled.
  • the eccentricity compensation determination circuit 3007 receives the output signal of the first eccentricity detection sensor 15 and the output signal of the second eccentricity detection sensor 16 and positions the hologram recording medium 1 with reference to the eccentricity detection mark. It is determined whether or not it is completed, and is output as an XYOK signal. It should be noted that the XYOK signal becomes High when the positioning of the hologram recording medium 1 with the eccentricity detection mark as a reference is completed. The XYOK signal is input to the controller 80. Therefore, the controller 80 can determine whether or not the positioning of the hologram recording medium 1 with reference to the eccentricity detection mark is completed based on the XYOK signal. That is, the eccentricity compensation determination circuit 3007 functions as a circuit that determines the convergence of the eccentricity compensation control.
  • the eccentricity compensation determination circuit 3007 is an attached circuit. Therefore, as can be seen from FIG. 12, the control system related to the eccentricity compensation circuit 30 and the moving stage drive circuit 31 includes a control system related to the X axis indicated by the broken line (A) and a control system related to the Y axis indicated by the broken line (B). being independent. That is, the eccentricity compensation circuit 30 receives the output signal of the first eccentricity detection sensor 15 and the output signal of the second eccentricity detection sensor 16, and is used for controlling the X axis of the moving stage 51.
  • the second offset is used for controlling the Y-axis of the moving stage 51. Only the output signal obtained by performing the offset addition by the Y-axis offset adder 3004 on the output signal of the core detection sensor 16 is provided.
  • the X-axis compensator 3002 performs control so that the voltage of the output signal that has been offset-added by the input X-axis offset adder 3001 becomes zero.
  • control is performed so that the voltage of the output signal that is offset-added by the input Y-axis offset adder 3004 becomes zero.
  • the case where the hologram recording medium 1 has eccentricity is a case where the geometric center of the innermost circle R1 of the medium does not coincide with O, as described with reference to FIG.
  • the movable stage 51 can control the position of the hologram recording medium 1 by performing the eccentricity compensation control using the eccentricity detection mark M1.
  • the geometric center O of the eccentricity detection mark M ⁇ b> 2 is controlled so as to coincide with the drive reference position of the moving stage 51.
  • the object of the present embodiment is to make the hologram recording medium 1 so that the signal light and / or the reference light can be irradiated to the position where the mounting position error of the first eccentricity detection sensor 15 and the second eccentricity detection sensor 16 is canceled. There is to control the position of.
  • FIG. 13A is a schematic diagram showing the positional relationship between the hologram recording medium 1 and various sensors when the positioning is controlled by a sensor at an ideal mounting position, from a direction perpendicular to the plane of the hologram recording medium 1. .
  • the point O is the geometric center of the hologram recording medium
  • the circle R2 is the outermost periphery of the hologram recording medium 1
  • the circle Cxy is the outer peripheral edge of the eccentricity detection mark M2
  • the point P15 is the first eccentricity detection sensor 15.
  • the point P16 is the sensor center of the second eccentricity detection sensor 16
  • the point P is the hologram recording position
  • the thin arrow RB schematically represents the incident direction of the reference light during reproduction
  • a thick arrow RB ′ schematically represents the incident direction of the reference light during recording
  • a thick arrow SB ′ schematically represents the incident direction of the signal light during recording.
  • the hologram recording medium has an eccentric error during reproduction, and the center point sp of the spindle axis of the spindle motor during reproduction does not coincide with the center point O of the hologram recording medium.
  • the geometricity of the eccentricity detection mark M2 is determined based on the output signals of the first eccentricity detection sensor 15 and the second eccentricity detection sensor 16 with respect to this eccentricity error.
  • the center O is controlled so as to coincide with the drive reference position of the moving stage 51.
  • FIG. 13B is a diagram showing the geometric positional relationship between the reference light and the signal light in FIG. 13A in three dimensions.
  • a point P represents a hologram recording position
  • a surface PM represents a disk plane of the hologram recording medium 1
  • a surface PB1 represents an incident plane of reference light during reproduction.
  • the incident plane PB1 of the reference light during reproduction coincides with the incident plane of the reference light and signal light during recording.
  • the hologram recording is performed by causing the signal light and the reference light to enter the hologram recording medium so as to overlap each other, thereby forming an interference fringe pattern in the recording medium and writing the pattern on the recording medium.
  • phase conjugate light that travels in the opposite direction while maintaining the same wavefront in the same optical path as the reference light at the time of recording is irradiated to the recording position, thereby reproducing the light in the direction opposite to the signal light at the time of recording. Is diffracted. That is, for reproducing the hologram, it is required to position the reference light incident plane at the time of reproduction and the reference light incident plane at the time of recording (which coincides with the signal light incident plane at the time of recording) to be the same plane. Is done.
  • FIG. 13C is a schematic diagram showing the positional relationship between the hologram recording medium 1 and various sensors when the positioning is controlled by an eccentricity detection sensor having an attachment position error from a direction perpendicular to the plane of the hologram recording medium 1. It is. The case where the first eccentricity detection sensor 15 is moved from the point P15 to the point P15 'and the second eccentricity detection sensor 16 is moved from the point P16 to the point P16' due to the attachment position error is shown. As a result, by performing eccentricity compensation control, the geometric center of the hologram recording medium 1 moves from the point O to the point O ′.
  • FIG. 13D is a diagram showing the geometric positional relationship between the reference light and the signal light in FIG. 13B in three dimensions.
  • the surface PB2 is an incident plane of the reference light at the time of recording (coincides with the incident plane of the signal light at the time of recording) with respect to the incident plane PB1 of the reference light at the time of reproduction.
  • the incident plane PB1 is shifted from the incident plane PB2 by an angle ⁇ . Therefore, in the eccentricity compensation control without correcting the mounting position error of the eccentricity detection sensor, the incident plane of the reference light at the time of reproduction and the incident plane of the reference light at the time of recording (the same as the incident plane of the signal light at the time of recording) Cannot be positioned in the same plane. As a result, the hologram reproduction quality is deteriorated due to the shift of the irradiation position of the reference light, and the transfer rate during reproduction is lowered.
  • FIG. 14A shows the positional relationship between the hologram recording medium 1 and various sensors with respect to the plane of the hologram recording medium 1 when the positioning is controlled by an eccentricity detection sensor having an attachment position error, as in FIG. It is the schematic diagram shown from the perpendicular direction. The case where the first eccentricity detection sensor 15 is moved from the point P15 to the point P15 'and the second eccentricity detection sensor 16 is moved from the point P16 to the point P16' due to the attachment position error is shown.
  • the straight line ax-x moves to the straight line ax-x '
  • the straight line ax-y moves to the straight line ax-y'.
  • the first eccentricity detection sensor 15 and the second eccentricity detection sensor 16 are arranged in a positional relationship in which the respective sensors are orthogonal to the point O which is the geometric center of the hologram recording medium 1 by 90 degrees.
  • each axis is controlled independently.
  • the orthogonal relationship between the points P15 ', O', and 16 ' is preserved even when the sensor mounting position is shifted due to the mounting position error. Therefore, the output signal of the first eccentricity detection sensor 15 is for the axis parallel to the straight line ax-x ′, and the output signal of the second eccentricity detection sensor 16 is for the axis parallel to the straight line ax-y ′.
  • the relative positional relationship with the eccentricity detection mark M2 can be controlled independently.
  • the eccentricity compensation control for canceling the mounting position error of each eccentricity detecting sensor is a hologram when there is no sensor mounting position error at the geometric center of the hologram recording medium 1 positioned at the point O ′ by the sensor mounting error.
  • the target is to move to the point O which is the geometric center of the recording medium 1.
  • such control is realized by applying offsets to the output signals of the eccentricity detection sensor 15 and the eccentricity detection sensor 16 by the X-axis offset adder 3001 and the Y-axis offset adder 3004, respectively. .
  • An output signal of the sensor when an offset is applied to the eccentricity detection sensor will be described with reference to FIG.
  • the position where the output Vs of the eccentricity detection sensor becomes zero as shown in FIG. I a position offset by an offset distance D (Oftr) on each eccentricity detection axis corresponding to the offset signal amount Ofr.
  • D offset distance
  • the output signal of the first eccentricity detection sensor 15 is an axis parallel to the straight line ax-x ′
  • the output signal of the second eccentricity detection sensor 16 is an axis parallel to the straight line ax-y ′. Can be controlled independently of each other.
  • the eccentricity detection sensor mounting error canceling offset amount derivation process described later is the distance between the straight line Ly and the straight line ax-y ′ that is parallel to the straight line ax-y ′ and passes through the point O for the first eccentricity detection sensor 15.
  • the offset signal output OfX corresponding to D (OfX) is set to a distance D (OfY) between the straight line Lx and the straight line ax-x ′ parallel to the straight line ax-x ′ and passing through the point O for the second eccentricity detection sensor 16.
  • the corresponding offset signal output OfY is derived by the eccentricity detection sensor mounting error cancel offset amount derivation process, and applied to the X axis compensator 3002 and the Y axis compensator 3005 by the X axis offset adder 3001 and the Y axis offset adder 3004. Means control.
  • the relationship of FIG. 14C is uniquely determined with respect to the hologram recording medium 1. Therefore, when the reference light angle is always offset by a predetermined amount, ⁇ can be calculated backward by calculating the deviation ⁇ IB of the luminance centroid position of the reproduced image at that time. That is, the luminance centroid calculation circuit 88 calculates the luminance centroid position deviation ⁇ IB by using the reproduced image data from the photodetector 225 in the pickup 11 as an input. Further, the luminance centroid calculation circuit 88 derives ⁇ from the characteristic of ⁇ with respect to the deviation of the luminance centroid position of the reproduced image from the controller 80 and ⁇ IB calculated previously, and outputs it to the controller 80.
  • FIG. 14A an angle ⁇ formed by the reference plane incident plane PB1 during reproduction and the reference plane incident plane PB2 during recording, which is caused by the mounting error of the eccentricity detection sensor, is geometrically shown in FIG. It is clear that it is consistent with ⁇ OPO ′ in (a).
  • FIG. 14D shows the positional relationship among the points O, P, and O ′ in FIG.
  • the coordinates at the time of recording obtained from the address information are referred to as address coordinates.
  • D (OfX) 2r ⁇ sin ( ⁇ / 2) ⁇ cos ( ⁇ / 2) (Formula 1)
  • D (OfY) 2r ⁇ sin 2 ( ⁇ / 2) (Formula 2)
  • the controller 80 derives offset addition command values OfX and OfY corresponding to D (OfX) and D (OfY) based on ⁇ input from the luminance gravity center calculation circuit 88.
  • step S403 in the setup process the type of the hologram recording medium 1 is specified from the read control data.
  • the controller 80 changes the characteristics to be used according to the specified type of the hologram recording medium 1.
  • the characteristics are stored, for example, in the manufacturing process of the hologram recording / reproducing apparatus.
  • the characteristics corresponding to the newly developed hologram recording medium are further stored, it becomes possible to cope with the new hologram recording medium. Therefore, the characteristics are preferably stored in a rewritable memory. Further, the characteristics of the new hologram recording medium can be determined by deriving offset addition command values OfX and OfY at which the luminance center-of-gravity position shift becomes zero (from step S708 in the eccentricity detection sensor mounting error cancel offset derivation process described later). Corresponding to S712).
  • the eccentricity compensation control for canceling the mounting position error of the eccentricity detection sensor in this embodiment is the radial position at the time of recording obtained from the address information of the reproduced image, the deviation of the luminance gravity center position of the reproduced image, the geometric Using Equation 1 and Equation 2 obtained from the relationship, the amount of mounting error of each eccentricity detection sensor is derived, and each offset signal amount corresponding to each amount of error is applied, so that it is positioned at point O ′ by the sensor mounting error.
  • This is realized by controlling the geometric center of the holographic recording medium 1 to a point O (position where the luminance center-of-gravity position deviation becomes zero) which is the geometric center of the holographic recording medium 1 when there is no sensor mounting position error. Control.
  • the deviation of the center of gravity of the reproduced image is used to derive the mounting error of each eccentricity detection sensor.
  • the present invention is not limited to this.
  • it may be derived using means for detecting a positional deviation of the reproduced image by providing a reference pattern for detecting the position of the reproduced image such as a sync pattern in the reproduced image. This process is referred to as various sensor mounting error cancellation process in this specification.
  • the seek process S414 in the present embodiment will be described with reference to the flowchart of FIG. Note that the same flowchart is applied to the seek processes S422, S604, S902, and S904.
  • the radius r and the rotation angle ⁇ are parameters.
  • the drive shaft having the radius r is referred to as r-axis
  • the drive shaft having the rotation angle ⁇ is referred to as ⁇ -axis.
  • the eccentricity compensation control is started by setting the XYON signal to High in the learning process step S404 performed before the seek process S414. Therefore, the eccentricity compensation control is turned on at the time when the seek process S414 is started.
  • step S501 When the seek process is started (step S501), the difference between the coordinates (r, ⁇ ) where the hologram of the target address is located and the current position is calculated, and the movement amount is calculated for the r axis and the ⁇ axis (step S502). Next, it is determined whether the movement amount of the r-axis is other than zero (step S503). If the movement amount of the r-axis is other than zero (Yes in Step S503), the radial position control is turned on by setting the RDON signal to High to start the movement of the r-axis (Step S504). After step S504, the process proceeds to step S505 described later. If the r-axis movement amount is zero (No in step S503), the process proceeds to step S505 without performing step S504.
  • step S505 it is determined whether the amount of movement of the ⁇ axis is other than zero. If the amount of movement of the ⁇ axis is other than zero (Yes in step S505), the rotation angle control is turned on by setting the SPON signal to high to start the movement of the ⁇ axis (step S506). After step S506, the process proceeds to step S507 described later. If the movement amount of the ⁇ axis is zero (No in step S505), the process proceeds to step S507 without performing step S506.
  • step S507 it is determined whether the movement is completed.
  • the movement is completed.
  • step S507 If it is determined that the movement has not been completed (No in step S507), the process returns to step S507 again. That is, if any one of the RDOK signal, the SPOK signal, and the XYOK signal is at a low level, the operation is not determined that the movement has been completed, but waits until all the above three signals simultaneously become a high level. It becomes.
  • step S509 it is determined whether or not the seek process during reproduction is performed. If it is not a seek at the time of reproduction (No in step S509), the process proceeds to step S515 to be described later, and the seek process is terminated. If it is a seek at the time of reproduction (Yes in step S509), the seek process is continued until the address information obtained by reproducing the recorded hologram is correctly positioned at the target address. This is because a seek at the time of recording results in a seek to an unrecorded portion, and address information cannot be obtained.
  • step S509 reproduction is possible by attempting to reproduce the hologram by irradiating the position on the hologram recording medium 1 positioned with a reference beam at a predetermined angle. Is determined (step S510). If the hologram is not reproducible (No in step S510), it means that positioning has not been performed correctly. Therefore, the r-axis and ⁇ -axis retry values are calculated based on the predetermined retry parameter (step S511), and the process returns to step S502. As a result, a retry seek to move to the positioned vicinity is performed. Although not shown, in the retry, not only the r-axis and ⁇ -axis retry values, but also the reference light angle is retried, and an optimum reference light angle capable of reproducing the hologram is derived.
  • step S512 the address information included in the reproduced hologram is acquired (step S512). Subsequently, it is determined whether or not the acquired address is a target address (step S513). If the acquired address is not the target address (No in step S513), it means that positioning has not been performed correctly. Therefore, the difference between the coordinates (r, ⁇ ) of the acquired address and the coordinates (r, ⁇ ) of the target address is calculated, and the process returns to step S502. As a result, a retry seek based on the address information of the hologram is performed.
  • step S513 If the acquired address is the target address (Yes in step S513), the seek process is terminated (step S515).
  • FIG. 22 shows the hologram recording position when the positioning is controlled by the radial position detection sensor 17 having an attachment position error with respect to the radius r direction extending radially through the point O which is the geometric center of the program recording medium 1.
  • 3 is a schematic diagram showing the positional relationship of various sensors from a direction perpendicular to the plane of the hologram recording medium 1.
  • FIG. For the sake of simplicity, let us consider a case in which there is no attachment error during recording and there is an attachment error only during reproduction.
  • Point PR is a reference point for positioning the Z-phase of the radial position detection sensor 17
  • point P0 is a hologram recording position recorded at the coordinates of the radius r0 at a certain rotation angle
  • point P1 is the same rotation angle as point P0. It represents the hologram recording position recorded at the coordinates of the radius r1.
  • the straight line ax-sld represents the movable axis of the movable part of the radial conveyance unit 52. When the straight line ax-sld passes through the point PR, the radial position detection sensor 17 indicates an attachment position error with respect to the Z-phase positioning reference point. It means that there is no ideal state.
  • the radial position detection sensor 17 has no attachment position error with respect to the Z-phase positioning reference point, but the ax-sld that is the coaxial axis of the movable portion of the radial transport unit 52 is in the radial direction. It shows a state where it is installed with a mounting angle error of an angle ⁇ .
  • the value of the current radial position acquired by the radial position detection sensor 17 when the seek process is performed on the hologram recorded at the point P0 is r0s.
  • the value of the current radial position acquired by the radial position detection sensor 17 when the seek process is performed on the hologram recorded at the point P1 is r1s.
  • the value of r0s is the distance between the intersection of the perpendicular line drawn from the point P0 to the straight line ax-sld and the point PR
  • the value of r1s is the value of the perpendicular line drawn from the point P1 to the straight line ax-sld.
  • Each distance between the intersection and the point PR is represented. Therefore, the relationship of Expression 3 is established with respect to the mounting angle error ⁇ of the movable shaft of the radial conveyance unit 52.
  • the mounting error is canceled by amplifying the signal output at the target radius position in the seek process as a gain. That is, by inputting an output signal amplification gain corresponding to the gain cos ( ⁇ ) derived by Expression 3 to the radial position signal output amplification circuit 3403 from the controller 80 as a radial position gain command value GainR, Ax-sld, which is coaxial with the moving part, cancels the mounting angle error of an angle ⁇ with respect to the radial direction.
  • the points P0 and P1 are sufficient for the position detection resolution of the radial position detection sensor 17 in order to derive the mounting angle error of the angle ⁇ with high accuracy.
  • the measurement is performed with the point P0 as the recording position on the inner peripheral side of the hologram recording medium 1 and the point P1 as the recording position on the outer peripheral side.
  • the radial position gain command value GainR is derived from the two points P0 and P1, but GainR may be derived based on the results of three or more measurement points. Also, a plurality of GainRs may be stored and used by switching for each radius region of the target hologram recording position.
  • the radial position detection sensor 17 has an attachment position error with respect to the Z-phase positioning reference point, and the ax-sld that is the coaxial axis of the movable part of the radial transport section 52 has an angle ⁇ with respect to the radial direction. It shows a state where it is installed with a mounting angle error.
  • the radial position detection sensor 17 is installed with an attachment position error of ⁇ r with respect to the radial direction of the hologram recording medium 1 from the Z-phase positioning reference point.
  • ⁇ r rOs / cos ( ⁇ ) ⁇ rOs (Formula 5)
  • the mounting error is canceled by applying an offset to the signal output at the target radius position in the seek process. That is, by inputting an output signal corresponding to the offset amount ⁇ r derived by Equation 5 to the radial position offset adding circuit 3402 from the controller 80 as the radial position offset command value OfR, the Z-phase positioning reference point of the radial position detection sensor 17 is obtained. Cancel the mounting position error for.
  • the radial position offset command value OfR is derived using the coordinates of the point P0 among the points P0 and P1, which are the hologram recording positions used for the expression 3 Expression.
  • the hologram recording position used for deriving 5 may use the coordinates of the point P1. Further, the coordinates of the hologram recording position different from the hologram recording position used for the derivation of Equation 3 may be used.
  • a flow in the radial position detection sensor mounting error cancel gain / offset amount derivation process for canceling the mounting error of the radial position detection sensor 17 in this embodiment will be described separately.
  • the radial position at the time of recording derived based on the address information at the time of hologram reproduction is r
  • the angle formed by the incident plane of the reference light and the incident plane of the reference light at the time of recording ⁇ , and the offset addition command values corresponding to the mounting error of the eccentricity detection sensor with respect to the direction of each detection axis of the first eccentricity detection sensor 15 and the second eccentricity detection sensor 16 are referred to as OfX and OftY, respectively.
  • step S702 When the eccentricity detection sensor mounting error cancel offset amount derivation process is started (step S701), in step S702, which is performed first, the reference light angle offset addition command value Of ⁇ is sent from the controller 80 to the reference light angle offset addition circuit 8601. Input, and apply a predetermined offset to the reference beam angle.
  • step S703 address information included in the currently reproduced hologram is acquired by seek processing, and a radial position r at the time of recording is derived.
  • step S704 the luminance center-of-gravity position shift obtained from the position and luminance of each pixel of the hologram reproduction image is acquired. Based on the disc information obtained in step S403 in the setup process, the relationship between ⁇ and the deviation of the luminance gravity center position of the reproduced image as shown in FIG. 14C is obtained. Therefore, in step S705, first, in step S704. ⁇ is derived from the obtained luminance center-of-gravity position shift. Next, OfX and OffY, which are offset addition command values of the respective eccentricity detection sensors, are derived from r, ⁇ , Expressions 1 and 2.
  • step S706 the controller 80 inputs OfX to the X-axis offset adder 3001 and OffY to the Y-axis offset adder 3004 to apply an offset to each eccentricity detection sensor.
  • step S707 it is determined whether or not the movement amount of the XY axes is other than zero. If the movement amounts of the X and Y axes are other than zero (Yes in step S707), the eccentric compensation control is turned on by starting the movement of the X and Y axes by setting the XYON signal to High (step S707). S708). If the movement amounts of the X and Y axes are zero (No in step 707), the process proceeds to S709 without performing step S708.
  • step S709 it is determined whether the movement is completed.
  • step S709 it is determined that the movement is completed when the XYOK signal is at a high level. If it is determined that the movement has not been completed (No in step S709), the process returns to step S709 again. If it is determined that the movement has been completed (Yes in step S709), the movement is terminated by setting the XYON signal to Low (step S710).
  • step S711 it is determined whether the luminance gravity center position shift of the reproduced image of the hologram is zero.
  • step S710 it is determined that the movement is completed when the IBOK signal is at a high level.
  • the IBOK signal is high when the luminance center-of-gravity position shift ⁇ IB of the reproduced image of the hologram is a value near zero.
  • differs from the characteristic regarding the deviation of the luminance center-of-gravity position of the reproduced image due to the manufacturing error of the hologram recording medium 1 and the like. Means that it cannot be derived accurately.
  • step S712 the OffsetX command value OfX and OfY retry value of each eccentricity detection sensor are calculated (step S712), and the process returns to step S708.
  • the current addition command values OfX and OfY are used as the offset amount of each eccentricity detection sensor for canceling ⁇ . Is an optimum value, and the offset addition command value of each eccentricity detection sensor is determined (step S713).
  • step S714 the value of the reference beam angle offset addition command value Of ⁇ , which was added to derive ⁇ using the luminance center-of-gravity position shift of the hologram reproduction image, is initialized, and the eccentricity detection sensor mounting error cancel offset is initialized.
  • the quantity derivation process is terminated (step S715).
  • the seek process is completed in advance at the hologram recording position, and a hologram reproduction image is obtained, and the deviation shown in FIG. Assume that the lead detection sensor mounting error cancel offset amount derivation process has been completed.
  • the rotation angle at the time of recording derived based on the address information at the time of hologram reproduction is ⁇
  • the Z-phase positioning reference point and rotation angle detection of the rotation angle detection sensor 14 are detected.
  • the angle between the attachment point of the sensor 14 and the geometric center O of the hologram recording medium 1, that is, the attachment angle error of the rotation angle detection sensor 14, is referred to as ⁇
  • the offset addition command value corresponding to ⁇ is referred to as Of ⁇ .
  • step S803 the current rotation angle is acquired using the rotation angle detection sensor.
  • step S804 first, ⁇ is calculated from the difference between ⁇ and the current rotation angle, that is, the mounting angle error of the rotation angle detection sensor 14, and then the output signal corresponding to ⁇ is determined as the rotation angle offset command value Oft ⁇ . .
  • step S805 the rotation angle offset command value Oft ⁇ determined in step S804 is input from the controller 80 to the rotation angle offset adding circuit 3202 and set.
  • the rotation angle detection sensor attachment error cancel offset amount derivation process ends (step S806).
  • step S901 When the radial position detection sensor mounting error cancel gain / offset amount derivation process is started (step S901), a seek process is performed at the radial position on the inner periphery (step S902). As described above, the seek process in step S902 is the same as the seek process in FIG. As a result of the seek process, the address information included in the hologram reproduced at the inner radial position of the seek destination is acquired (corresponding to step S511), and the radial position at the time of recording is derived from the address information (to step S512). Applicable). In step S903, the current radial position is acquired using the radial position detection sensor 17. In step S904, seek processing is performed on the outer peripheral radial position.
  • step S904 the seek process in step S904 is the same as the seek process in FIG.
  • the address information included in the reproduced hologram is acquired at the radius position of the outer circumference of the seek destination (corresponding to step S511), and the radius position at the time of recording is derived from the address information in step S905.
  • the current radial position is acquired using the position detection sensor 17.
  • seek processing is performed on the inner periphery in step S902 and on the outer periphery in step S904.
  • the processing in steps S902 and S904 may be performed in the reverse order. Further, in this embodiment, as described in the explanation of FIG.
  • the controller 80 derives the gain cos ( ⁇ ) based on Expression 3 using the two radial positions derived from the hologram reproduction image up to step S905 and the two radial positions acquired from the sensor. Further, an output signal amplification gain corresponding to the gain cos ( ⁇ ) is determined as the radial position gain command value GainR.
  • an offset amount ⁇ r is derived based on Expression 5, and an output signal corresponding to ⁇ r is determined as a radial position offset command value OfR.
  • the radial position gain command value GainR and the radial position offset command value OfR determined in step S906 are input from the controller 80 to the radial position signal output amplification circuit 3403 and the radial position offset addition circuit 3402, respectively, and set.
  • the radial position detection sensor mounting error cancel gain / offset amount derivation process ends (step S908).
  • step S601 the offset amount and the radial position detection of the first eccentricity detection sensor 15, the second eccentricity detection sensor 16, the rotation angle detection sensor 14, and the radial position detection sensor 17 are detected.
  • the gain of the sensor 17 is initialized (step S602).
  • step S603 processing for turning on the eccentricity compensation control is started.
  • step S604 seek processing is performed on the hologram position recorded on the hologram recording medium 1. As a result of step S604, the hologram can be reproduced.
  • step S605 first, an eccentricity detection sensor mounting error cancel offset amount derivation process is performed.
  • the eccentricity detection sensor mounting error cancel offset amount derivation process is performed before the other detection sensor mounting error cancellation processes. This is because if the eccentricity compensation in a state where the mounting error of the eccentricity detection sensor is canceled is not performed, the rotation angle and the radial position obtained from the subsequent rotation angle detection sensor 14 and the radial position detection sensor 17 and the address information of the hologram reproduction image This is because the error from the rotation angle and the radial position at the time of recording obtained from the above cannot be considered to be purely due to the mounting error of each sensor.
  • step S606 rotation angle detection sensor mounting error cancel offset amount derivation processing is performed. Subsequent to step S606, a radial position detection sensor attachment error cancel gain / offset amount derivation process is finally performed (step S607), and the various sensor attachment error cancellation processes are terminated (step S608).
  • the hologram can be recorded or reproduced at the position where the mounting error of various detection sensors is canceled.
  • Example 1 various sensor mounting error canceling processes are performed in a setup process in which the hologram recording medium 1 is read. However, since various sensor attachment errors are unique values that are unique to the hologram recording / reproducing apparatus, the various sensor attachment error canceling processes can be performed in advance of the setup process of the hologram recording medium 1. In the present specification, the various sensor mounting error canceling processes performed before the setup process of the hologram recording medium 1 is referred to as various sensor mounting error canceling learning.
  • various sensor attachment error cancellation learning is performed in advance, various sensor error cancellation gains / offset amounts obtained as a result of learning are stored in the storage area of the apparatus, and the hologram recording medium 1 is read.
  • the stored value is set as various sensor error cancel gain / offset amount.
  • learning values derived by various sensor mounting error cancellation learning performed in advance as learning on the hologram recording / reproducing apparatus manufacturing line are stored, and stored in the setup process of the hologram recording medium 1 by the user. This is performed when the learned value is used.
  • FIG. 24 is a block diagram showing a recording / reproducing apparatus for a hologram recording medium for recording and / or reproducing digital information using holography in the present embodiment.
  • the same number is attached
  • the difference between the first embodiment and this embodiment is that a learning value storage circuit 89 is provided.
  • the learning value storage circuit 89 inputs the offset amount and gain derived by the various sensor attachment error cancel processing in the first embodiment from the controller 80 and stores the input values.
  • the value stored in the various sensor attachment error cancel processing in this embodiment is output from the learning storage circuit 89 to the controller 80.
  • step S609 is performed instead of step S602.
  • the various sensor attachment error cancel processing in this embodiment is started (S601)
  • step S609 the first eccentricity detection sensor 15, the second eccentricity detection sensor 16, the rotation angle detection sensor 14, and the radial position detection.
  • step S603 eccentricity compensation control is started in step S603.
  • step S604 the processing after step S604 is omitted.
  • learning values in various sensor attachment error cancellation learning are set in step S609. Therefore, when step S603 ends, the various sensor attachment error cancel processing ends (step S608).
  • step S604 since the processing after step S604 is omitted, it is possible to shorten the time required for various sensor mounting error canceling processes during setup as compared with the first embodiment.
  • Example 2 the values stored in the various sensor mounting error cancel learning are set in the various sensor mounting error cancel processing. However, in the various sensor attachment error cancellation processing in the setup process of the hologram recording medium 1, the various sensor attachment error cancellation processing may be performed again using the values stored in the various sensor attachment error cancellation learning as initial values.
  • various sensor attachment error cancellation learning is performed in advance, various sensor error cancellation gains / offset amounts are stored in the storage area of the apparatus, and the learning value is initially set in the setup process in which the hologram recording medium 1 is read.
  • various new sensor error cancellation gains / offset amounts are derived again by various sensor mounting error cancellation processing.
  • adjustment starts from the initial position where the deviation between the reference light incident plane during recording and the reference light incident plane during reproduction that has already occurred due to the mounting error has already been canceled. Can do.
  • the minute change amount of the fixed position of the hologram recording medium is smaller than the mounting error of the detection sensor, the mechanical drive amount necessary for deriving the offset amount and gain of each detection sensor is small. Compared with the first embodiment, the time required for canceling various sensor mounting errors during setup can be shortened.
  • learning values derived by various sensor mounting error cancellation learning performed in advance as learning on the production line of the hologram recording / reproducing apparatus are stored, and hologram recording by the user is recorded. This is implemented when the stored learning value is used for the setup process of the medium 1.
  • a block diagram showing a recording / reproducing apparatus for a holographic recording medium for recording and / or reproducing digital information using holography in the present embodiment is the same as that in the second embodiment, and thus the description thereof is omitted.
  • step S609 is performed instead of step S602. Since the process performed in step S609 in this embodiment is the same as that in the second embodiment, the description thereof is omitted.
  • step S609 and subsequent steps the adjustment can be started from the initial position where the deviation between the incident plane of the reference light at the time of recording and the incident plane of the reference light at the time of reproduction that has already occurred due to an attachment error has already been canceled. .
  • the controller in the above embodiment for example, the rotation angle drive signal output circuit 3203, the radial position drive signal output circuit 3404, the X-axis compensator 3002, the Y-axis compensator 3005, and the reference beam angle drive signal output unit 8602 in the first embodiment.
  • a digital filter can be used. Compensation of the gain and phase by the digital filter ensures the stability of each control system.
  • the radial transport unit 52 of the first embodiment As a mechanism for controlling the light beam irradiated from the pickup 11 and the cure optical system 13 to be irradiated to a predetermined position of the hologram recording medium, for example, the radial transport unit 52 of the first embodiment is used. As described above, the hologram recording medium 1 is transported. However, the mechanism for sharing the irradiation position of the light beam is not limited to this. For example, the hologram recording medium may be fixed, and the pickup 11 and the cure optical system 13 may be transported.
  • the recording is performed by angle multiplexing by changing the incident angle of the reference beam.
  • the present invention can be similarly applied when a multiplexing method other than angle multiplexing is used.
  • the present invention can be similarly applied to the case of hologram recording without performing multiple recording.
  • the present invention is not limited to the above-described embodiments, and includes various modifications in addition to the above-described modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • Rotation angle drive determination circuit 3401 ... Radial position detection circuit 3402 ... Radial position offset addition circuit 3403 ... Radial position Signal output amplifier circuit 3404... Radial position drive signal output circuit 3 05 ... Radial position output control switch 3406 ... Radial position drive determination circuit 3001 ... X-axis offset adder 3002 ... X-axis compensator 3003 ... X-axis output control switch 3004 ... Y-axis offset adder 3005 ... Y-axis compensator 3006 ... Y Axis output control switch 3007 ... Eccentricity compensation determination circuit 3101 ... X-axis drive circuit 3102 ... Y-axis drive circuit 8601 ... Reference light angle offset addition circuit 8602 ... Reference light angle drive signal output device 8603 ... Reference light angle output control switch 8604 ... Reference light angle drive determination circuit

Landscapes

  • Holo Graphy (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 ホログラム記録媒体に対する好適な記録再生の実現。 光情報記録媒体の情報の記録および/または再生を行う光情報記録再生装置であって、前記光情報記録媒体から得られる2次元の再生像を検出する光検出器と、前記光情報記録媒体を回転させる媒体回転部と、前記光情報記録媒体と略平行な平面内を移動可能な可動部を有する面内移動部と、前記光情報記録媒体に設けられた偏芯検出用マークを用いて前記光情報記録媒体の前記面内移動部の可動軸ごとの位置を検出する偏芯検出部と、前記偏芯検出部の出力信号に基づき前記面内移動部を制御する偏芯補償部と、前記光検出器が検出した前記2次元の再生像の情報に基づいて導出されたオフセット量を前記偏芯検出部の出力信号に対して加算するオフセット加算部と、を備える。

Description

記録再生装置
 本発明は、記録媒体から情報を記録再生する装置に関する。特に、ホログラフィを用いて記録媒体から情報を記録再生する装置に関する。
 現在、青紫色半導体レーザを用いた、Blu-ray Disc(BD)規格などにより、民生用において100GBの光ディスクが商品化されている。今後は光ディスクの長期保存性の強みを活かし、アーカイブストレージの記録媒体としてさらなる大容量化が望まれる。次世代の大容量ストレージ技術として、ホログラフィを利用してデジタル情報を記録するホログラム記録技術が注目を集めている。
 ホログラム記録技術は、空間光変調器により2次元的に変調されたページデータの情報を有する信号光を、記録媒体の内部で参照光と重ね合わせ、その時に生じる干渉縞パターンによって記録媒体内に屈折率変調を生じさせることで情報を記録媒体に記録する技術である。
 情報の再生時には、記録時に用いた参照光を記録媒体に照射すると、記録媒体中に記録されているホログラムが回折格子のように作用して回折光を生じる。この回折光が記録した信号光と位相情報を含めて同一の光として再生される。
 再生された信号光は、CMOSやCCDなどの光検出器を用いて2次元的に高速に検出される。このようにホログラム記録技術は、1つのホログラムによって2次元的な情報を光記録媒体に記録、再生することを可能とし、さらに記録媒体のある場所に複数のページデータを重ね書きすることで、大容量かつ高速な情報の記録再生を果たすことができる。
特許4963509号 特開2000-74850号公報
 ところで、ホログラム記録媒体を例に取ると、ホログラム記録再生装置は複数のページデータを重ね書くことで大容量化を図っているが、更なる記録容量の増加の為にはブックを高密度記録する必要があり、信号光および参照光の位置決め精度を従来以上に高めなくてはならない。
 ホログラム記録に関する文献である特許文献1における構成のように円盤状のホログラム記録媒体をクランプ機構で固定する場合の問題として偏芯が挙げられる。ここで偏芯とは、ディスクの中心軸とスピンドルモータの回転軸が一致しない状態を表す。
 特許文献1では円盤状のホログラム記録媒体をスピンドルモータが回転移動し、さらにスレッドモータによりディスクの半径方向へスピンドルモータを移動することでディスクの位置決めを行っている。偏芯によるディスク位置決め誤差はホログラム記録媒体のクランプ中心ずれとスピンドルモータの回転軸のクランプ受けの位置ずれの和により生じる。これらはともに製造過程により生じ、その偏芯量は個体ごとにばらつく。異なる個体での互換記録および再生を鑑みると、ディスク上のホログラム記録位置と再生位置が装置間で大きくずれてしまう問題がある。
 前記ホログラムの高密度化を狙う場合、これまでの記録密度では許容されていた偏芯量は、位置決め許容量のマージン減少に伴い無視できなくなり、結果ホログラムの再生品質の低下につながる(再生が不可能になる)。したがって、ディスク上の位置決め精度を向上する為には、偏芯量を最小に補正する必要がある。
 一方、特許文献2では被検査物である円盤状のウエハを検査の為、顕微鏡の光軸位置へウエハを受け渡す際に時に生じる偏芯誤差と偏角誤差に関するものである。偏芯誤差については受け渡し部から顕微鏡の光軸位置にウエハを移動する間に、ウエハの周縁部の形状をセンサで外周形状からステージの基準位置と前記ウエハの中心位置との偏芯誤差を検出する。偏角誤差については同じくセンサを用いて前記ウエハに設けた切り欠け(ノッチ)または周上に設けた直線(オリエンテーションフラット)の位置から前記ステージに対する前記ウエハの偏角誤差を検出し、所定の座標位置から偏芯誤差及び偏角誤差に基づいた補正後の位置にステージを移動する補正機構を有している。
 しかし、特許文献2のようにセンサを用いた補正機構の場合、センサの取付け位置の誤差により、補正機構で目標とする位置自体が偏芯誤差をもつことで理想的な補正目標の位置と不一致となる。ホログラムにおける前記高密度記録の実現の為、僅かな位置決め許容量も許されない場合、補正に用いるセンサの取付け位置の誤差はホログラムの再生品質の低下につながる。
 従ってセンサの取付け位置の誤差を考慮していない従来技術では、ホログラムの高密度記録を実現できない。
 そこで、本発明の目的は、ホログラムの高密度記録に対応したホログラム記録媒体の高精度位置決めを実現し、個体ごとの装置間の互換性の確保が可能なホログラム記録再生装置を提供することにある。
 上記課題は、例えば請求項の範囲に記載の発明により解決される。
 本発明によれば、ホログラム記録媒体に対して最適な位置決めを実現することができる。
実施例1のホログラム記録再生装置を示すブロック図である。 ホログラム記録再生装置の記録原理を説明する図である。 ホログラム記録再生装置の再生原理を説明する図である。 ホログラム記録再生装置における記録または再生の準備が完了するまでのフローチャートである。 ホログラム記録再生装置における記録処理のフローチャートである。 ホログラム記録再生装置における再生処理のフローチャートである。 実施例1におけるシーク処理のフローチャートである。 実施例1における各種センサの取付け誤差をキャンセルする処理のフローチャートである。 実施例1における偏芯検出センサの取付け誤差をキャンセルするオフセット量を導出する処理のフローチャートである。 実施例1における回転角度検出センサの取付け誤差をキャンセルするオフセット量を導出する処理のフローチャートである。 実施例1における半径位置検出センサの取付け誤差をキャンセルするゲインおよびオフセット量を導出する処理のフローチャートである。 実施例1における回転角度制御回路の構成を示すブロック図である。 実施例1における半径位置制御回路の構成を示すブロック図である。 実施例1における偏芯制御回路および移動ステージ駆動回路の構成を示すブロック図である。 偏芯検出センサの取付け誤差がない場合のホログラム記録媒体と各種センサの位置関係を示した模式図である。 偏芯検出センサの取付け誤差がない場合の参照光と信号光の幾何的な位置関係を三次元で示した図である。 偏芯検出センサの取付け誤差がある場合のホログラム記録媒体と各種センサの位置関係を示した模式図である。 偏芯検出センサの取付け誤差がある場合の参照光と信号光の幾何的な位置関係を三次元で示した図である。 実施例1における取付け位置誤差がある場合のホログラム記録媒体と各種センサの位置関係および取付け位置誤差を示した図である。 実施例1におけるオフセットを加算して偏芯検出センサの固定位置を変更した場合の第一の偏芯検出センサの出力信号を示した図である。 再生時の参照光の入射平面と記録時の参照光の入射平面がなす角度と再生像の輝度重心位置のずれの関係を示した図である。 実施例1における偏芯検出センサの取付け誤差量を導出する方法を説明した図である。 記録時のデータ処理のフローチャートである。 再生時のデータ処理のフローチャートである。 ホログラム記録再生装置内の信号生成回路のブロック図である。 ホログラム記録再生装置内の信号処理回路のブロック図である。 実施例1におけるホログラム記録媒体を説明する図である。 実施例1における各センサの固定位置を説明するための図である。 実施例1における角度検出用マークと、回転角度検出センサから出力される信号を説明するための図である。 実施例1における偏芯検出用マークを説明するための図である。 実施例1における第一の偏芯検出センサの出力信号を説明する図である。 半径位置検出センサが取付け位置誤差をもたない場合のホログラム記録位置と各種センサの位置関係を説明するための図である。 半径位置検出センサが取付け位置誤差をもつ場合のホログラム記録位置と各種センサの位置関係を説明するための図である。 実施例1における参照光角度制御回路および参照光駆動回路の構成を示すブロック図である。 実施例2および実施例3のホログラム記録再生装置を示すブロック図である。 実施例2における各種センサの取付け誤差をキャンセルする処理のフローチャートである。 実施例3における各種センサの取付け誤差をキャンセルする処理のフローチャートである。
 以下、発明の実施例について図面を用いて説明する。
 本発明の実施形態を添付図面にしたがって説明する。図1はホログラフィを利用してデジタル情報を記録及び/または再生するホログラム記録媒体の記録再生装置を示すブロック図である。
 ホログラム記録再生装置10は、入出力制御回路90を介して外部制御装置91と接続されている。ホログラム記録媒体1に情報を記録する場合には、ホログラム記録再生装置10は外部制御装置91から記録する情報信号を入出力制御回路90により受信する。ホログラム記録媒体1から情報を再生する場合には、ホログラム記録再生装置10は再生した情報信号を入出力制御回路90により外部制御装置91に送信する。
 本実施例におけるホログラム記録媒体1は、円盤状である。更に、本実施例におけるホログラム記録媒体1は、所定パターンのマークを2種類、有している。1つは角度検出用マークであり、ホログラム記録媒体の回転角度を検出するためのマークである。もう1つは偏芯検出用マークであり、前記ホログラム記録媒体の位置を検出するためのマークである。これらのマークの詳細については後述する。
 ホログラム記録再生装置10は、ピックアップ11、再生用参照光光学系12、キュア光学系13、回転角度検出センサ14、第一の偏芯検出センサ15、第二の偏芯検出センサ16、半径位置検出センサ17及びスピンドルモータ50、移動ステージ51、半径方向搬送部52を備えている。
 スピンドルモータ50は、その回転軸に対してホログラム記録媒体1を着脱可能な媒体着脱部(図示しない)を有しており、ホログラム記録媒体1はスピンドルモータ50によって回転可能な構成となっている。同時にホログラム記録媒体1は半径方向搬送部52によって、ピックアップ11の位置を基準として、半径方向に移動可能な構成となっている。
 移動ステージ51及び回転角度検出センサ14及び第一の偏芯検出センサ15及び第二の偏芯検出センサ16は、いずれも、半径方向搬送部52の可動部に固定されている。更にスピンドルモータ50は、移動ステージ51の可動部に固定されている。
 この結果、ピックアップ11が固定された所定のベース部材(図示しない)に対して、半径方向に駆動可能な半径方向搬送部52が搭載される。半径方向搬送部52の可動部の上に、移動ステージ51及び第一の偏芯検出センサ15及び第二の偏芯検出センサ16及び回転角度検出センサ14が固定される。移動ステージ51の可動部の上に、スピンドルモータ50が固定される。スピンドルモータ50の回転軸に、所定のマークを有するホログラム記録媒体1が固定可能である。
 可動部に着目して機構的な搭載順序を記載すれば、次のようになる。すなわち、ピックアップ11が固定された所定のベース部材、可動部に移動ステージ51及び第一の偏芯検出センサ15及び第二の偏芯検出センサ16及び回転角度検出センサ14が固定された半径方向搬送部52、スピンドルモータ50、所定のマークを有するホログラム記録媒体1の順に搭載した機構である。
 本実施例における移動ステージ51は、直行する2軸の可動ステージであり、ホログラム記録媒体1の記録面と略平行な平面内を移動可能である。本実施例においては、一方の可動軸を半径方向搬送部52の搬送方向と同一方向に取ってY軸とし、それと直交する他方の可動軸をX軸とする。
 信号光及び/または参照光が照射される位置は後述するピックアップ11の位置によって決まり、装置に固定された位置である。本実施例においては、スピンドルモータ50及び半径方向搬送部52の可動部及び移動ステージ51が、信号光及び/または参照光が照射されるホログラム記録媒体1上の位置を変更する手段として機能する。
 回転角度検出センサ14は、ホログラム記録媒体1に設けられた角度検出用マークを用いて、ホログラム記録媒体1の回転角度を検出する。回転角度検出センサ14の出力信号は回転角度制御回路32に入力される。信号光及び参照光の照射される回転角度を変更する場合には、回転角度制御回路32が回転角度検出センサ14の出力信号及びコントローラ80からの指令信号に基づいて駆動信号を生成し、スピンドル駆動回路33を介してスピンドルモータ50を駆動する。これにより、ホログラム記録媒体1の回転角度を制御する事が出来る。
 また、半径方向搬送部52の可動部には、所定パターンを有するスケール18が固定されている。半径位置検出センサ17は、スケール18を用いて半径方向搬送部52の可動部の位置を検出する。信号光及び参照光の照射される半径位置を変更する場合は、半径位置制御回路34が半径位置検出センサ17の出力信号及びコントローラ80からの指令信号に基づいて駆動信号を生成し、半径方向搬送駆動回路35を介して半径方向搬送部52を駆動する。これにより、ホログラム記録媒体1が半径方向に搬送され、信号光及び参照光の照射される半径位置を制御する事が出来る。
 第一の偏芯検出センサ15及び第二の偏芯検出センサ16は、ホログラム記録媒体1に設けられた偏芯検出用マークを用いて、ホログラム記録媒体1の位置を検出する。第一の偏芯検出センサ15及び第二の偏芯検出センサ16の出力信号は偏芯補償回路30に入力される。偏芯補償回路30は偏芯を補償するための駆動信号を生成し、移動ステージ駆動回路31を介して移動ステージ51を駆動する。第一の偏芯検出センサ15及び第二の偏芯検出センサ16及び偏芯補償回路30の詳細は後述するが、この構成により本実施例のホログラム記録再生装置10は、偏芯検出用マークを基準としてホログラム記録媒体1の位置決めが行われるように動作する。
 ピックアップ11は、参照光と信号光をホログラム記録媒体1に照射してホログラフィを利用してデジタル情報を記録媒体に記録する役割を果たす。この際、記録する情報信号はコントローラ80によって信号生成回路81を介してピックアップ11内の後述する空間光変調器に送られ、信号光は空間光変調器によって変調される。
 ホログラム記録媒体1に記録した情報を再生する場合は、ピックアップ11から出射された参照光を記録時とは逆の向きにホログラム記録媒体1に入射させる光波を再生用参照光光学系12にて生成する。再生用参照光によって再生される再生光をピックアップ11内の後述する光検出器によって検出し、信号処理回路82によって信号を再生する。
 更に、参照光の角度は、参照光角度制御回路86により、ピックアップ11内の後述するアクチュエータ220及び再生用参照光光学系12内の後述するアクチュエータ223を駆動することで制御される。参照光角度制御信号生成回路85ではピックアップ11及び再生用参照光光学系12の少なくとも一方の出力信号から参照光角度の制御に用いるための信号を生成する。参照光角度制御回路86は、コントローラ80からの指示に従って参照光角度制御信号生成回路85の出力信号を用いて制御を行う。
 ホログラム記録媒体1に照射する参照光と信号光の照射時間は、ピックアップ11内のシャッタの開閉時間をコントローラ80によってシャッタ制御回路84を介して制御することで調整できる。
 キュア光学系13は、ホログラム記録媒体1のプリキュア及びポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、ホログラム記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、ホログラム記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。プリキュア及びポストキュアに用いる光ビームは、インコヒーレントな光、即ち可干渉性(コヒーレンス)の低い光である必要があることが好ましい。
 光源駆動回路83からは所定の光源駆動電流がピックアップ11、キュア光学系13内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。
 また、ピックアップ11、キュア光学系13は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。また、回転角度検出センサ14、第一の偏芯検出センサ15、第二の偏芯検出センサ16に関して、このうちのいくつかのセンサまたは全てのセンサを一体化し、単一のセンサとして構成しても構わない。
 図2は、ホログラム記録再生装置10におけるピックアップ11及び再生用参照光光学系12の、基本的な光学系構成の一例における記録原理を示したものである。再生用参照光光学系12は、アクチュエータ223とガルバノミラー224から成る。
 光源201を出射した光ビームはコリメートレンズ202を透過し、シャッタ203に入射する。シャッタ203が開いている時は、光ビームはシャッタ203を通過した後、例えば2分の1波長板などで構成される光学素子204によってp偏光とs偏光の光量比が所望の比になるようになど偏光方向が制御された後、PBS(Polarization Beam Splitter)プリズム205に入射する。
 PBSプリズム205を透過した光ビームは、信号光206として働き、ビームエキスパンダ208によって光ビーム径が拡大された後、位相マスク209、リレーレンズ210、PBSプリズム211を透過して空間光変調器212に入射する。
 空間光変調器212によって情報が付加された信号光は、PBSプリズム211を反射し、リレーレンズ213ならびに空間フィルタ214を伝播する。その後、信号光は対物レンズ215によってホログラム記録媒体1に集光する。
 一方、PBSプリズム205を反射した光ビームは参照光207として働き、偏光方向変換素子216によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー217ならびにミラー218を経由してガルバノミラー219に入射する。ガルバノミラー219はアクチュエータ220によって角度を調整可能のため、レンズ221とレンズ222を通過した後にホログラム記録媒体1に入射する参照光の入射角度を、所望の角度に設定することができる。なお、参照光の入射角度を設定するために、ガルバノミラーに代えて、参照光の波面を変換する素子を用いても構わない。
 このように信号光と参照光とをホログラム記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。また、ガルバノミラー219によってホログラム記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。
 以降、同じ領域に参照光角度を変えて記録されたホログラムにおいて、1つ1つの参照光角度に対応したホログラムをページと呼び、同領域に角度多重されたページの集合をブックと呼ぶことにする。
 図3は、ホログラム記録再生装置10におけるピックアップ11及び再生用参照光光学系12の、基本的な光学系構成の一例における再生原理を示したものである。記録した情報を再生する場合は、前述したように参照光をホログラム記録媒体1に入射し、ホログラム記録媒体1を透過した光ビームを、アクチュエータ223によって角度調整可能なガルバノミラー224にて反射させることで、その再生用参照光を生成する。
 この再生用参照光によって再生された再生光は、対物レンズ215、リレーレンズ213ならびに空間フィルタ214を伝播する。その後、再生光はPBSプリズム211を透過して光検出器225に入射し、記録した信号を再生することができる。光検出器225としては例えばCMOSイメージセンサーやCCDイメージセンサーなどの撮像素子を用いることができるが、ページデータを再生可能であれば、どのような素子であっても構わない。
 なお本実施例において、参照光角度制御信号生成回路85はアクチュエータ220に備え付けられた角度検出センサ(図示しない)の出力信号を入力として、ガルバノミラー219を反射した参照光の角度を検出し、参照光角度の制御に用いるための信号を生成する。同様に再生用参照光光学系12に関しては、参照光角度制御信号生成回路85はアクチュエータ223に備え付けられた角度検出センサ(図示しない)の出力信号を入力として、ガルバノミラー224を反射した参照光の角度を検出し、参照光角度の制御に用いるための信号を生成する。アクチュエータ220及びアクチュエータ223に備え付けられた角度検出センサは、例えば、光学式エンコーダを用いることができる。
 ところで、ホログラフィの角度多重の原理を利用した記録技術は、参照光角度のずれに対する許容誤差が極めて小さくなる傾向がある。そのため、アクチュエータ220に備え付けられた角度検出センサを用いずに、ピックアップ11内に参照光角度のずれ量を検出する機構を別に設けて、参照光角度制御信号生成回路85が該機構の出力信号を入力として参照光角度の制御に用いるための信号を生成する構成としても構わない。
 図4(a)は、セットアップ処理のフローチャートを示し、図4(b)は記録処理のフローチャート、図4(c)は再生処理のフローチャートを示したものである。
 図4(a)に示すようにセットアップ処理を開始すると(ステップS401)、ホログラム記録再生装置10は、例えば挿入された媒体がホログラフィを利用してデジタル情報を記録または再生する媒体であるかどうかを判別する、媒体判別を行う(ステップS402)。
 媒体判別の結果、ホログラフィを利用してデジタル情報を記録または再生するホログラム記録媒体1であると判断されると、ホログラム記録再生装置10はホログラム記録媒体1に設けられたコントロールデータを読み出し(ステップS403)、例えばホログラム記録媒体1に関する情報や、例えば記録や再生時における各種設定条件に関する情報を取得する。
 ここで、ホログラム記録媒体1がディスクカートリッジに1枚あるいは複数枚で格納されており、ホログラム記録媒体1に関するコントロールデータがディスクカートリッジに記録されている場合、コントロールデータはディスクカートリッジから取得するものとする。
 コントロールデータの読み出し後は、コントロールデータに応じた各種調整やピックアップ11に関わる学習処理(ステップS404)を行う。これによりホログラム記録再生装置10は記録または再生の準備が完了し、セットアップ処理を終了する(ステップS405)。
 なお本実施例においては、ステップS404の学習処理は後述する偏芯補償制御をオンする処理を含み、以降、偏芯補償制御は常時オンされているものとする。また、後述する各種センサ取付け誤差キャンセル処理も本実施例においてはステップS404における学習処理で実施され、学習した各センサのオフセット量およびゲインが、以降常時設定されているものとする。
 次に、準備完了状態から情報を記録するまでの処理について、図4(b)のフローチャートを用いて説明する。記録処理を開始すると(ステップS411)、ホログラム記録再生装置10は記録データを受信して(ステップS412)、該データに応じた2次元データをピックアップ11内の空間光変調器212に送る。
 その後、ホログラム記録媒体1に高品質の情報を記録できるように、必要に応じて例えば光源201のパワー最適化やシャッタ203による露光時間の最適化等の各種記録用学習処理を事前に行う(ステップS413)。
 その後、シーク動作(ステップS414)では回転角度制御回路32及び半径位置制御回路34及び偏芯補償回路30を用いて、スピンドルモータ50及び半径方向搬送部52及び移動ステージ51を制御する。これによってピックアップ11ならびにキュア光学系13から照射される光ビームがホログラム記録媒体1の所定の位置に照射されるように、ホログラム記録媒体1を位置決めする。ホログラム記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置決めされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置決めする動作を繰り返す。本実施例におけるシーク動作のフローチャートについては後述する。
 その後、記録するデータをホログラム記録媒体1にホログラムとして記録するデータ記録処理を行う(ステップS415)。このデータ記録処理の詳細については、後述する。データ記録処理が完了すると、記録処理を終了する(ステップS416)。なお、必要に応じてデータをベリファイしても構わない。
 準備完了状態から記録された情報を再生するまでの処理にについて、図4(c)のフローチャートを用いて説明する。再生処理を開始すると(ステップS421)、ホログラム記録再生装置10はまずシーク動作(ステップS422)で、回転角度制御回路32及び半径位置制御回路34及び偏芯補償回路30を用いて、ピックアップ11ならびに再生用参照光光学系12から照射される光ビームがホログラム記録媒体1の所定の位置に照射されるように、ホログラム記録媒体1を位置決めする。ホログラム記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置決めされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置決めする動作を繰り返す。
 その後、ピックアップ11から参照光を出射し、光検出器225で検出した2次元データからホログラム記録媒体1に記録された情報を読み出し(ステップS423)、再生データを送信する(ステップS424)。再生データの送信が完了すると、再生処理を終了する(ステップS425)。
 図15は、記録、再生時のデータ処理フローを示したものであり、図15(a)は、入出力制御回路90において記録データ受信処理S412後、空間光変調器212上の2次元データに変換するまでの信号生成回路81での記録データ処理フローを示しており、図15(b)は光検出器225で2次元データを検出後、入出力制御回路90における再生データ送信処理S424までの信号処理回路82での再生データ処理フローを示している。
 図15(a)を用いて、記録時のデータ処理フローについて説明する。記録時のデータ処理を開始すると(ステップS8101)、信号生成回路81は記録データを受信する(ステップS8102)。続いて、記録データを複数のデータ列に分割し、再生時にエラー検出が行えるように各データ列に対しCRC化する(ステップS8103)。続いて、オンピクセル数とオフピクセル数をほぼ等しくすることと、同一パターンの繰り返しを防ぐこととを目的に、データ列に擬似乱数データ列を加えるスクランブル化を施す(ステップS8104)。その後、再生時にエラー訂正が行えるようにリード・ソロモン符号等の誤り訂正符号化を行う(ステップS8105)。次にこのデータ列をM×Nの2次元データに変換し、それを1ページデータ分繰返すことで1ページ分の2次元データを構成する(ステップS8106)。このように構成した2次元データに対して再生時の画像位置検出や画像歪補正での基準となるマーカーを付加し(ステップS8107)、空間光変調器212にデータを転送する(ステップS8108)。以上により、記録時のデータ処理が完了する。(ステップS8109)。
 次に図15(b)を用いて、再生時のデータ処理フローについて説明する。再生時のデータ処理を開始すると(ステップS8201)、光検出器225で検出された再生画像データを信号処理回路82に転送する(ステップS8202)。続いて、この画像データに含まれるマーカーを基準に画像位置を検出し(ステップS8203)、更に、画像の傾き・倍率・ディストーションなどの歪みを補正する(ステップS8204)。その後、2値化を行い(ステップS8205)、マーカーを除去(ステップS8206)する。続いて、1ページ分の2次元データを取得する(ステップS8207)。このようにして得られた2次元データを複数のデータ列に変換した後、誤り訂正処理を行い、パリティデータ列を取り除く(ステップS8208)。次にスクランブルを解除し(ステップS8209)、CRCによる誤り検出処理を行う(ステップS8210)。最後に、CRCパリティを削除して生成される再生データを入出力制御回路90経由で送信する(ステップS8211)。以上により、再生時のデータ処理が完了する(ステップS8212)。
 図16は、ホログラム記録再生装置10の信号生成回路81のブロック図である。
 入出力制御回路90に記録データの入力が開始されると、入出力制御回路90はコントローラ80に記録データの入力が開始されたことを通知する。コントローラ80は本通知を受け、信号生成回路81に入出力制御回路90から入力される1ページ分のデータを記録処理するよう命ずる。コントローラ80からの処理命令は制御用ライン8108を経由し、信号生成回路81内サブコントローラ8101に通知される。本通知を受け、サブコントローラ8101は各信号処理回路を並列に動作させるよう制御用ライン8108を介して各信号処理回路の制御を行う。先ずメモリ制御回路8103に、データライン8109を介して入出力制御回路90から入力される記録データをメモリ8102に格納するよう制御する。メモリ8102に格納した記録データが、ある一定量に達すると、CRC演算回路8104で記録データをCRC化する制御を行う。次にCRC化したデータに、スクランブル回路8105で擬似乱数データ列を加えるスクランブル化を施し、誤り訂正符号化回路8106でパリティデータ列を加える誤り訂正符号化する制御を行う。最後にピックアップインターフェース回路8107にメモリ8102から誤り訂正符号化したデータを空間光変調器212上の2次元データの並び順で読み出させ、再生時に基準となるマーカーを付加した後、ピックアップ11内の空間光変調器212に2次元データを転送する。
 図17は、ホログラム記録再生装置10の信号処理回路82のブロック図である。
 コントローラ80はピックアップ11内の光検出器225が画像データを検出すると、信号処理回路82にピックアップ11から入力される1ページ分のデータを再生処理するよう命ずる。コントローラ80からの処理命令は制御用ライン8211を経由し、信号処理回路82内サブコントローラ8201に通知される。本通知を受け、サブコントローラ8201は各信号処理回路を並列に動作させるよう制御用ライン8211を介して各信号処理回路の制御を行う。先ず、メモリ制御回路8203に、データライン8212を介して、ピックアップ11からピックアップインターフェース回路8210を経由して入力される画像データをメモリ8202に格納するよう制御する。メモリ8202に格納されたデータがある一定量に達すると、画像位置検出回路8209でメモリ8202に格納された画像データ内からマーカーを検出して有効データ範囲を抽出する制御を行う。次に検出されたマーカーを用いて画像歪み補正回路8208で、画像の傾き・倍率・ディストーションなどの歪み補正を行い、画像データを期待される2次元データのサイズに変換する制御する。サイズ変換された2次元データを構成する複数ビットの各ビットデータを、2値化回路8207において“0”、“1”判定して2値化し、メモリ8202上に再生データの出力の並びでデータを格納する制御を行う。次に誤り訂正回路8206で各データ列に含まれる誤りを訂正し、スクランブル解除回路8205で擬似乱数データ列を加えるスクランブルを解除した後、CRC演算回路8204でメモリ8202上の再生データ内に誤りが含まれない確認を行う。その後、入出力制御回路90にメモリ8202から再生データを転送する。
 次に、本実施例のホログラム記録媒体1に設けられた2種類のマークについて、図18を用いて説明する。図18はホログラム記録媒体1を示しており、円R1は媒体の最内周を、円R2は媒体の最外周を示している。図18における点Oはホログラム記録媒体1の幾何学的な中心を示している。また以降の説明においては、変数rを、点Oから測った半径を示す変数とする。
 図18に示されるように、ホログラム記録媒体1の内周側の領域には、r1≦r≦r2の領域にM2で示す所定マークが、また、r3≦r≦r4の領域にM1で示す所定マークが設けられている。また、ホログラム記録媒体1においてユーザデータをホログラムとして記録する領域は、r5≦r≦r6である。即ち、マークM1及びM2は、ユーザデータをホログラムとして記録する領域よりも内周側に設けられている。
 マークM1は角度検出用マークであり、マークM2は偏芯検出用マークである。次に、図19を用いて、これら2つのマークを検出するセンサの固定位置について説明する。
 図1で説明したように、移動ステージ51及び回転角度検出センサ14、第一の偏芯検出センサ15、第二の偏芯検出センサ16は、いずれも半径方向搬送部52の可動部に固定されている。図19は半径方向搬送部52の可動部を基準とした場合の、これら各センサの固定位置を説明するための図である。
 点xy0は、移動ステージ51の駆動基準位置を示している。例えば移動ステージ51のX方向及びY方向の可動範囲がともに±1mmであるとき、X軸に関してマイナス方向の可動端からプラス方向に0.5mm移動し、Y軸に関してマイナス方向の可動端からプラス方向に0.5mm移動した点が点xy0である。即ち、移動ステージ51の可動部が駆動基準位置xy0にあるとき、xy0の真上にスピンドルモータ50の回転軸が位置するものとする。
 図19中に図示しているように、図の横方向がX軸、縦方向がY軸となる。点P14は回転角度検出センサ14のセンサの中心を示している。同様に、点P15は第一の偏芯検出センサ15のセンサの中心を、点P16は第二の偏芯検出センサ16のセンサの中心を示している。P15及びP16は点xy0を中心とする半径r2の円Cxy上に存在する。ここで本実施例において、センサの中心とはセンサが照射する光スポットの中心位置を示すものとし、センサの位置とはセンサの光スポットの中心位置を示すものとする。
 図19及び図18より、移動ステージ51の可動部が駆動基準位置xy0にあり、かつホログラム記録媒体1に偏芯がないとき、回転角度検出センサ14はr3≦r≦r4の領域に設けられた角度検出用マークM1の中心に位置する。また移動ステージ51の可動部が駆動基準位置xy0にあり、かつホログラム記録媒体1に偏芯がないとき、第一の偏芯検出センサ15及び第二の偏芯検出センサ16は、r1≦r≦r2の領域に設けられた偏芯検出用マークM2の外周の縁に位置する。
 続いて、各マークの特徴と、各センサから出力される信号について説明する。
 図20は、角度検出用マークM1の模式図と、回転角度検出センサ14から出力される信号を示す図である。図20に示すように角度検出用マークM1は、反射部と非反射部が所定の周期pで繰り返されるマークMpと、媒体の一回転に一回だけ設けられているマークMzから成る。マークMzは後述するZ相信号を生成するためのマークであり、マークMpは後述するA相信号及びB相信号を生成するためのマークである。
 図20で模式的に示したように、回転角度検出センサ14からは所定の波長の光が照射され、マークMp上に照射される。回転角度検出センサ14はマークMpで反射された光を検出することで、回転角度を検出する。回転角度検出センサ14からマークMpに照射された光スポットが図の右方向に進んだ場合には、回転角度検出センサ14の出力信号として図に示すような3種類の信号が得られる。A相信号及びB相信号はマークMpの周期pを移動する間に8周期が出力される矩形波である。A相信号とB相信号は位相が90度異なり、更にマークMpに照射された光スポットの移動方向によって位相の大小が変化する。即ち、マークMpに照射された光スポットが図20の右方向に進んだ場合にはA相信号に対してB相信号の方が90度だけ位相の進んだ出力となる。逆に、マークMpに照射された光スポットが図20の左方向に進んだ場合には、A相信号に対してB相信号の方が90度だけ位相の遅れた出力となる。更に、Z相信号はマークMzに照射された光スポット(図示しない)から生成され、媒体を一回転させた場合に一回だけ、A相信号と同一の幅のパルスを出力する。
 このA相信号及びB相信号、Z相信号はインクリメンタル型エンコーダの出力信号として一般的な出力の形式であり、本実施例の構成ではこれらの3つの信号から媒体の回転角度を得ることができる。一例として、Z相信号によって0度となる角度を決定し、A相信号とB相信号とから、回転角度の増減を積み上げていくことにより、現在の角度が演算される。なおA相信号とB相信号の位相差が90度であるため、本実施例の回転角度検出センサ14の最小分解能は、A相信号の周期の1/4に相当する量であり、マークMp上の距離換算でp/32となる。マークMp上の距離を回転角度に換算するには、扇形における円弧と半径が既知であるので、円弧の中心角を計算により求めればよい。
 なおここでは回転角度検出センサ14の説明として図20の構成としたが、本発明はこれに限られるものではない。たとえば、アブソリュート型エンコーダの検出原理を用いたセンサであってもよい。または、回転角度検出センサ14の出力信号であるA相信号などはロジカルな信号(矩形波)であるとしたが、角度に相当する情報を得ることができるアナログ信号(例えば正弦波)を出力するセンサであってもよい。
 なお図20で示したインクリメンタル型エンコーダの構成は、マークMpが円形状に並べばロータリエンコーダとなるが、一直線に並べばラインエンコーダとなる。即ちこの方式は、回転角度だけでなく、一方向の変位を計測するセンサとしても使用可能である。本実施例における半径位置検出センサ17は、インクリメンタル型のラインエンコーダである。即ち、以上の説明において、回転角度検出センサ14を半径位置検出センサ17に置き換え、更に、ホログラム記録媒体1に設けられた角度検出用マークM1を、半径方向搬送部52の可動部に固定されたスケール18の所定パターンに置き換えればよい。半径位置検出センサ17からの同様に、A相信号、B相信号、Z相信号が出力される。
 続いて、偏芯検出用マークM2の特徴と、第一の偏芯検出センサ15及び第二の偏芯検出センサ16のから出力される信号について説明する。第一の偏芯検出センサ15と第二の偏芯検出センサ16は取付け位置が異なるだけでセンサとしては同一種類のものである。そのため以下では第一の偏芯検出センサ15に関して説明する。
 図21(a)は、偏芯検出用マークM2の模式図である。偏芯検出用マークM2はr1≦r≦r2の領域に渡って金属の膜が蒸着され、反射部として機能する。即ち、図中の斜線部が反射部、そうでない箇所が非反射部である。また第一の偏芯検出センサ15からは所定の波長の光が照射され、マークM2上に照射される。第一の偏芯検出センサ15はマークM2で反射された光を検出する。
 第一の偏芯検出センサ15のセンサ中心は半径r2の位置に固定されている。そのため、移動ステージ51の可動部が駆動基準位置xy0にあり、かつホログラム記録媒体1に偏芯がない場合には、図21(a)に示すように第一の偏芯検出センサ15の照射する光スポットは、r1≦r≦r2の領域に設けられた偏芯検出用マークM2の外周の縁に位置する。
 図21(b)は第一の偏芯検出センサ15の出力信号を説明する図である。第一の偏芯検出センサ15からの出力信号は1つであり、第一の偏芯検出センサ15が照射する光スポットと偏芯検出用マークM2との相対位置関係に応じた電圧を出力する。
 移動ステージ51の可動部が駆動基準位置xy0にない場合、またはホログラム記録媒体1に偏芯が存在する場合には、図21(b)の(1)や(3)に示すように、第一の偏芯検出センサ15の照射する光スポットと、偏芯検出用マークM2の外周の縁は半径方向にずれ得る。第一の偏芯検出センサ15の照射する光スポットと、偏芯検出用マークM2の外周の縁の、半径方向の相対位置の差をΔrsで表す。Δrsが存在する場合には、偏芯検出用マークM2に反射して第一の偏芯検出センサ15に戻ってくる光の光量が変化する。これを検出することで、第一の偏芯検出センサ15が照射する光スポットと偏芯検出用マークM2との相対位置関係に応じた電圧を出力するセンサを実現できる。
 半径方向の相対位置の差Δrsと、第一の偏芯検出センサ15からの出力電圧Vsの関係は、図21(b)のようになる。即ち、所定の検出範囲rs_vの間において、出力電圧Vsは第一の偏芯検出センサ15と偏芯検出用マークM2の半径方向の相対位置の差Δrsに比例した電圧となる。また、出力電圧Vsがゼロとなるとき、第一の偏芯検出センサ15の照射する光スポットは、偏芯検出用マークM2の外周の縁に位置する。なお、第一の偏芯検出センサ15に関しては、Δrsを取る方向はX軸の負方向である。
 図19で図示されているように、第一の偏芯検出センサ15は駆動基準位置xy0を原点とする直交座標軸においてX軸上に配置されている。また第二の偏芯検出センサ16は駆動基準位置xy0を原点とする直交座標軸においてY軸上に配置されている。偏芯検出用マークM2との相対位置を検出可能なセンサを直交して配置することにより、偏芯検出用マークM2の位置を検出することができる。更に、両方のセンサの出力電圧をゼロになるように移動ステージ51を制御することができれば、両方のセンサが照射する光スポットの中心が偏芯検出用マークM2の縁に位置するようにホログラム記録媒体1の位置を制御することができることになる。
 なお回転角度検出センサ14及び第一の偏芯検出センサ15及び第二の偏芯検出センサ16はいずれもマークを検出するための検出光として光スポットをホログラム記録媒体1に照射するが、この検出光の波長は、参照光の波長とは異なることが好ましい。なお、信号光の波長と参照光の波長は同一であるので、信号光の波長と異なると表現しても良い。これは、参照光の波長と近い波長の光が未記録のホログラム記録媒体に照射されると、その後にその照射位置にホログラムを記録した場合の再生品質が劣化することが知られているためである。例えば信号光の波長及び再生光の波長がともに405nmである場合、検出光としては例えば、再生光の波長と100nm以上異なる、波長650nmの光を用いることができる。
 続いて、本実施例の各制御回路の構成について説明する。
 本実施例の回転角度制御回路32の構成について、図10を用いて説明する。回転角度制御回路32は、回転角度検出回路3201、回転角度オフセット加算回路3202、回転角度駆動信号出力回路3203、回転角度出力制御スイッチ3204、回転角度駆動判定回路3205から成る。回転角度制御回路32はコントローラ80からの指令信号に基づいて、ホログラム記録媒体1の回転角度を、コントローラ80からの回転角度オフセット指令値Oftθを加算した上で、コントローラ80からの角度指令値Tgtθとなるようにスピンドルモータ50を制御する。この制御のことを本明細書では回転角度制御と称する。
 回転角度検出回路3201は、回転角度検出センサ14の出力するA相信号及びB相信号及びZ相信号を入力とし、上記3つの信号から現在のホログラム記録媒体1の回転角度Detθ0を演算し、回転角度オフセット加算回路3202に出力する。回転角度オフセット加算回路3202はコントローラ80からの回転角度オフセット指令値Oftθと回転角度検出回路3201からのDetθ0を入力として、Detθ0にOftθをオフセット加算させた回転角度Oftθ1を出力として回転角度駆動信号出力回路3203に入力する。回転角度駆動信号出力回路3203は、Detθ1信号と、コントローラ80からの角度指令Tgtθ信号を入力とし、スピンドルモータ50を制御するための駆動信号を出力する。
 回転角度出力制御スイッチ3204は回転角度駆動信号出力回路3203の出力信号を入力とし、コントローラ80からの制御信号SPONに従い、回転角度駆動信号出力回路3203の出力信号を出力するかどうかを制御する。SPON信号がHighのときは、回転角度出力制御スイッチ3204は端子aを選択し、回転角度駆動信号出力回路3203の出力信号をSPD信号として出力する。一方、SPON信号がLowのときは、回転角度出力制御スイッチ3204は端子bを選択し、基準電位をSPD信号として出力し、回転角度駆動信号出力回路3203の出力信号を出力しない。この結果、SPON信号は回転角度制御のオン・オフを指示する信号となる。また回転角度出力制御スイッチ3204は、回転角度制御のオン・オフを切り替えるスイッチとして機能する。回転角度出力制御スイッチ3204から出力されたSPD信号はスピンドル駆動回路33によって増幅され、スピンドルモータ50が制御される。
 回転角度駆動判定回路3205はDetθ1信号とTgtθ信号を入力とし、ホログラム記録媒体1の回転角度が角度指令値Tgtθ近傍の値である否かを判定し、SPOK信号として出力する。なお、ホログラム記録媒体1の回転角度が角度指令値Tgtθ近傍の値である場合に、SPOK信号はHighとなるものとする。回転角度駆動判定回路3205は例えば、回転角度検出センサ14によって検出された現在角度Detθ0に回転角度オフセット指令値Oftθが加算された現在角度Detθ1と角度指令値Tgtθとの差分が所定の閾値以下となってからの経過時間を計測し、その計測時間が所定時間以上続くことで判定を行う回路とすることで実現できる。判定結果であるSPOK信号はコントローラ80へと入力される。そのためコントローラ80はSPOK信号によって、ホログラム記録媒体1の回転角度が角度指令値Tgtθ近傍の値であるか否かを判定可能である。即ち回転角度駆動判定回路3205は、回転角度制御の収束を判定する回路として機能する。
 本実施例における半径位置制御回路34の構成について、図11を用いて説明する。半径位置制御回路34は、半径位置検出回路3401、半径位置オフセット加算回路3402、半径位置信号出力増幅回路3403、半径位置駆動信号出力回路3404、半径位置出力制御スイッチ3405、半径位置駆動判定回路3406から成る。半径位置制御回路34はコントローラ80からの指令信号に基づいて、半径方向搬送部52の可動部の位置に、コントローラ80からの半径位置オフセット指令値OftRを加算し、半径位置ゲイン指令値GainRにより増幅した上で、コントローラ80からの位置指令値TgtRとなるように半径方向搬送部52を制御する。この制御のことを本明細書では半径位置制御と称する。
 半径位置検出回路3401は、半径位置検出センサ17の出力するA相信号及びB相信号及びZ相信号を入力とし、上記3つの信号から現在のホログラム記録媒体1の半径位置DetR0を演算してDetR0信号として半径位置オフセット加算回路3402に出力する。半径位置オフセット加算回路3402は半径位置DetR0とコントローラ80からの半径位置オフセット指令値OftRを入力とし、DetR0にOftRをオフセット加算させた回転角度DetR1を出力として半径位置信号出力増幅回路3403に入力する。半径位置信号出力増幅回路3403は半径位置DetR1とコントローラ80からの半径位置ゲイン指令値GainRを入力とし、DetR1をGainRで増幅させた半径位置DetR2を半径位置駆動信号出力回路3404に入力する。半径位置駆動信号出力回路3404は、DetR2信号と、コントローラ80からの半径位置指令TgtR信号を入力とし、半径方向搬送部52を制御するための駆動信号を出力する。
 半径位置出力制御スイッチ3405は半径位置駆動信号出力回路3404の出力信号を入力とし、コントローラ80からの制御信号RDONに従い、半径位置駆動信号出力回路3404の出力信号を出力するかどうかを制御する。RDON信号がHighのときは、半径位置出力制御スイッチ3405は端子aを選択し、半径位置駆動信号出力回路3404の出力信号をRDD信号として出力する。一方、RDON信号がLowのときは、半径位置出力制御スイッチ3405は端子bを選択し、基準電位をRDD信号として出力し、半径位置駆動信号出力回路3404の出力信号を出力しない。この結果、RDON信号は半径位置制御のオン・オフを指示する信号となる。また半径位置出力制御スイッチ3405は、半径位置制御のオン・オフを切り替えるスイッチとして機能する。半径位置出力制御スイッチ3405から出力されたRDD信号は半径方向搬送駆動回路35によって増幅され、半径方向搬送部52が制御される。
 半径位置駆動判定回路3406はDetR2信号とTgtR信号を入力とし、ホログラム記録媒体1の半径位置が半径位置指令値TgtR近傍の値であるか否かを判定し、RDOK信号として出力する。なお、ホログラム記録媒体1の半径位置が半径位置指令値TgtR近傍の値である場合に、RDOK信号はHighとなるものとする。半径位置駆動判定回路3406は例えば、半径位置検出センサ17によって検出された現在の半径位置DetR0に半径位置オフセットOftRを加算した半径位置DetR1を、半径位置ゲインGainRで増幅した半径位置DetR2と半径位置指令値TgtRとの差分が所定の閾値以下となってからの経過時間を計測し、その計測時間が所定時間以上続くことで判定を行う回路とすることで実現できる。判定結果であるRDOK信号はコントローラ80へと入力される。そのためコントローラ80はRDOK信号によって、ホログラム記録媒体1の半径位置が半径位置指令値TgtR近傍の値であるか否かを判定可能である。即ち半径位置駆動判定回路3406は、半径位置制御の収束を判定する回路として機能する。
 なお本実施例における回転角度駆動判定回路3205は、回転角度オフセット指令値Oftθを加算した現在角度Detθ1と角度指令値Tgtθとの差分が所定の閾値以下となってからの経過時間を計測し、その計測時間が所定時間以上続くことで判定を行う構成とした。しかし、回転角度駆動判定回路3205はDetθ1が角度指令値Tgtθ近傍の値であるか否かを判定できれば、別の構成であってもよい。例えば、Detθ1が一度でも角度指令値Tgtθと等しくなったら、その時点でSPOK信号をHighにする構成としてもよい。半径位置駆動判定回路3406についても同様である。
 本実施例の参照光角度制御回路86の構成について、図23を用いて説明する。参照光角度制御回路86は、参照光角度オフセット加算回路8601、参照光角度駆動信号出力器8602、参照光角度出力制御スイッチ8603、参照光角度駆動判定回路8604から成る。参照光角度制御回路86はコントローラ80からの指令信号に基づいて、参照光の角度がコントローラ80からの角度指令値Tgtκとなるように再生用参照光光学系12のガルバノミラー224を制御する。この制御のことを本明細書では参照光角度制御と称する。
 参照光角度オフセット加算器8601には参照光角度制御信号生成回路85からアクチュエータ223に備え付けた参照光角度検出センサの出力信号Detκ0とコントローラ80から参照光角度オフセット加算指令値Oftκが入力され、Oftκ分のオフセットが加算された出力信号Detκ1が参照光角度駆動信号出力器8602に入力される。参照光角度駆動信号出力器8602は入力された出力信号をもとにガルバノミラー224を駆動する為の駆動信号を生成する。参照光角度出力制御スイッチ8603は参照光角度駆動信号出力器8602の出力信号を入力とし、コントローラ80からの制御信号RAONに従い、参照光角度駆動信号出力器8602の出力信号を出力するかどうかを制御する。RAON信号がHighのときは、参照光角度出力制御スイッチ8603は端子aを選択し、参照光角度駆動信号出力器8602の出力信号をRAD信号として出力する。一方、RAON信号がLowのときは、参照光角度出力制御スイッチ8603は端子bを選択し、基準電位をRAD信号として出力し、参照光角度駆動信号出力器8602の出力信号を出力しない。参照光角度出力制御スイッチ8603から出力されたRAD信号は参照光角度駆動回路87によって増幅され、参照光角度が制御される。
 参照光角度駆動判定回路8604はDetκ1信号とTgtκ信号を入力とし、参照光角度が角度指令値Tgtκ近傍の値である否かを判定し、RAOK信号として出力する。なお、参照光角度が角度指令値Tgtκ近傍の値である場合に、RAON信号はHighとなるものとする。参照光角度駆動判定回路8604は例えば、参照光角度検出センサによって検出された現在の参照光角度Detκ0に参照光角度オフセット指令値Oftκが加算された現在の参照光角度Detκ1と参照光角度指令値Tgtκとの差分が所定の閾値以下となってからの経過時間を計測し、その計測時間が所定時間以上続くことで判定を行う回路とすることで実現できる。判定結果であるRAOK信号はコントローラ80へと入力される。そのためコントローラ80はRAOK信号によって、参照光角度が角度指令値Tgtκ近傍の値であるか否かを判定可能である。即ち参照光角度駆動判定回路8604は、参照光角度制御の収束を判定する回路として機能する。
 本実施例における偏芯補償回路30及び移動ステージ駆動回路31の構成について、図12を用いて説明する。偏芯補償回路30はX軸オフセット加算器3001、X軸補償器3002、X軸出力制御スイッチ3003、Y軸オフセット加算器3004、Y軸補償器3005、Y軸出力制御スイッチ3006、偏芯補償判定回路3007から成る。また、移動ステージ駆動回路31はX軸駆動回路3101とY軸駆動回路3102から成る。偏芯補償回路30はコントローラ80からの指令信号XYONとオフセット加算指令値OftXおよびOftYに基づいて、偏芯検出用マークを基準としてホログラム記録媒体1の位置決めが行われるように移動ステージ51を制御する。この制御のことを本明細書では偏芯補償制御と称する。
 X軸オフセット加算器3001には第一の偏芯検出センサ15の出力信号とコントローラ80からX軸オフセット加算指令値OftXが入力され、OftX分のオフセットが加算された出力信号がX軸補償器3002に入力される。X軸補償器3002は入力された出力信号を基に移動ステージ51のX軸を駆動するための駆動信号を生成する。X軸出力制御スイッチ3003はX軸補償器3002の出力信号を入力とし、コントローラ80からの制御信号XYONに従い、X軸補償器3002の出力信号を出力するかどうかを制御する。XYON信号がHighのときは、X軸出力制御スイッチ3003は端子aを選択し、X軸補償器3002の出力信号をXD信号として出力する。一方、XYON信号がLowのときは、X軸出力制御スイッチ3003は端子bを選択し、基準電位をXD信号として出力し、X軸補償器3002の出力信号を出力しない。X軸出力制御スイッチ3003から出力されたXD信号はX軸駆動回路3101によって増幅され、移動ステージ51のX軸が制御される。
 Y軸オフセット加算器3004には第二の偏芯検出センサ15の出力信号とコントローラ80からY軸オフセット加算指令値OftYが入力され、OftY分のオフセットが加算された出力信号がY軸補償器3005に入力される。Y軸補償器3005は入力された出力信号を基に移動ステージ51のY軸を駆動するための駆動信号を生成する。Y軸出力制御スイッチ3006はY軸補償器3005の出力信号を入力とし、コントローラ80からの制御信号XYONに従い、Y軸補償器3005の出力信号を出力するかどうかを制御する。XYON信号がHighのときは、Y軸出力制御スイッチ3006は端子aを選択し、Y軸補償器3005の出力信号をYD信号として出力する。一方、XYON信号がLowのときは、Y軸出力制御スイッチ3006は端子bを選択し、基準電位をYD信号として出力し、Y軸補償器3005の出力信号を出力しない。Y軸出力制御スイッチ3006から出力されたYD信号はY軸駆動回路3102によって増幅され、移動ステージ51のY軸が制御される。
 偏芯補償判定回路3007は第一の偏芯検出センサ15の出力信号及び第二の偏芯検出センサ16の出力信号を入力とし、偏芯検出用マークを基準としたホログラム記録媒体1の位置決めが完了したかどうかを判定し、XYOK信号として出力する。なお、偏芯検出用マークを基準としたホログラム記録媒体1の位置決めが完了した場合に、XYOK信号はHighとなるものとする。XYOK信号はコントローラ80へと入力される。そのためコントローラ80はXYOK信号によって、偏芯検出用マークを基準としたホログラム記録媒体1の位置決めが完了したか否かを判定可能である。即ち偏芯補償判定回路3007は、偏芯補償制御の収束を判定する回路として機能する。
 ここで、X軸補償器3002及びY軸補償器3005において行われる制御について説明する。偏芯補償判定回路3007は付属的な回路である。そのため図12からわかるように、偏芯補償回路30及び移動ステージ駆動回路31に関わる制御系は、破線(A)で示すX軸に関する制御系と、破線(B)で示すY軸に関する制御系が独立している。即ち、偏芯補償回路30には第一の偏芯検出センサ15の出力信号及び第二の偏芯検出センサ16の出力信号が入力されるが、移動ステージ51のX軸の制御に用いられるのは第一の偏芯検出センサ15の出力信号にX軸オフセット加算器3001でオフセット加算を行った出力信号のみであり、同様に移動ステージ51のY軸の制御に用いられるのは第二の偏芯検出センサ16の出力信号にY軸オフセット加算器3004でオフセット加算を行った出力信号のみである。
 X軸補償器3002においては、入力されるX軸オフセット加算器3001でオフセット加算を行った出力信号の電圧がゼロとなるように制御を行う。Y軸補償器3005においては、入力されるY軸オフセット加算器3004でオフセット加算を行った出力信号の電圧がゼロとなるように制御を行う。これらは一般的なフィードバック制御であり、X軸補償器3002やY軸補償器3005は、一例として一般的なCPUによって実現できる。
 図21や図19を用いて説明したように、第一の偏芯検出センサ15の出力電圧及び第二の偏芯検出センサ16の出力電圧をともにゼロとすることは、両方のセンサが照射する光スポットの中心が偏芯検出用マークM2の縁に位置するようにホログラム記録媒体1の位置を制御していることと等価である。
 ホログラム記録媒体1に偏芯がある場合とは、図18を用いて説明をすれば、媒体の最内周の円R1の幾何学的な中心がOと一致しない場合である。ホログラム記録媒体1にかかる偏芯がある場合であっても、偏芯検出用マークM1を用いて偏芯補償制御を行うことで、移動ステージ51がホログラム記録媒体1の位置を制御することができる。具体的には、偏芯検出用マークM2の幾何学的な中心Oが、移動ステージ51の駆動基準位置に一致するように制御される。しかし、本実施例の目的は第一の偏芯検出センサ15および第二の偏芯検出センサ16の取付け位置誤差をキャンセルした位置に信号光および/または参照光が照射できるようにホログラム記録媒体1の位置を制御することにある。
 ここで、偏芯誤差の補正に用いるセンサの取付け位置の誤差が存在する場合の課題を、図13を用いて説明する。ここでは簡単の為、記録時には偏芯誤差がない状態で記録され、再生時にのみ偏芯誤差が存在した場合を考える。図13(a)は理想的な取付け位置におけるセンサによって位置決め制御される場合のホログラム記録媒体1と各種センサの位置関係をホログラム記録媒体1の平面に対して垂直な方向から示した模式図である。点Oはホログラム記録媒体の幾何学中心を、円R2はホログラム記録媒体1の最外周を、円Cxyは偏芯検出用マークM2の外周の縁を、点P15は第一の偏芯検出センサ15のセンサ中心を、点P16は第二の偏芯検出センサ16のセンサ中心を、点Pはホログラムの記録位置を、細い矢印RBは再生時の参照光の入射方向を模式的に表したもの、太い矢印RB’は記録時の参照光の入射方向を模式的に表したもの、太い矢印SB’は記録時の信号光の入射方向を模式図的に表したものである。ここで、再生時においてホログラム記録媒体は偏芯誤差をもっており、再生時のスピンドルモータの回転軸の中心点spはホログラム記録媒体の中心点Oと一致しない。前記のように偏芯補償制御では、この偏芯誤差に対して第一の偏芯検出センサ15と第二の偏芯検出センサ16の出力信号を基に偏芯検出用マークM2の幾何学的な中心Oが、移動ステージ51の駆動基準位置に一致するように制御される。図13(b)は、図13(a)における参照光と信号光の幾何的な位置関係を三次元で示した図である。点Pはホログラムの記録位置を、面PMはホログラム記録媒体1のディスク平面を、面PB1は再生時の参照光の入射平面をそれぞれ表したものである。図13(a)のように偏芯検出センサの取付け位置ばらつきがない場合、再生時の参照光の入射平面PB1が記録時の参照光および信号光の入射面と一致していることが分かる。ここで、ホログラムの記録は信号光と参照光とをホログラム記録媒体において互いに重ねあうように入射させることで、記録媒体内に干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで行う。これに対して、再生時には記録時の参照光と同じ光路で同一の波面を保ったまま逆方向に進む位相共役光が記録位置に照射されることで記録時の信号光と逆方向に再生光が回折される。すなわち、ホログラムの再生には再生時の参照光の入射平面と記録時の参照光の入射平面(記録時の信号光の入射平面と一致する)とが同一平面となるように位置決めすることが要求される。
 図13(c)は取付け位置誤差をもつ偏芯検出センサによって位置決め制御される場合のホログラム記録媒体1と各種センサの位置関係をホログラム記録媒体1の平面に対して垂直な方向から示した模式図である。取付け位置誤差により第一の偏芯検出センサ15は点P15から点P15’に、第二の偏芯検出センサ16は点P16から点P16’に移動した場合を示している。この結果、偏芯補償制御を行うことで、ホログラム記録媒体1の幾何学中心は点Oから点O’に、移動する。円R2、円Cxyについても偏芯検出センサが取付け位置誤差をもつ場合の偏芯補償制御による円の移動位置を「’(ダッシュ)」を付けて図示している。図13(d)は、図13(b)における参照光と信号光の幾何的な位置関係を三次元で示した図である。再生時の参照光の入射平面PB1に対して、面PB2は記録時の参照光の入射平面(記録時の信号光の入射平面と一致する)である。偏芯検出センサが取付け位置誤差をもつ場合であっても、再生用参照光光学系12の位置は変わらないので再生時の参照光の入射方向RBは図13(b)における位置と変わらない。一方で、入射平面PB1は入射平面PB2に対して角度ΔΦだけずれをもつ。したがって、偏芯検出センサの取付け位置誤差を補正しないままの偏芯補償制御では再生時の参照光の入射平面と記録時の参照光の入射平面(記録時の信号光の入射平面と一致する)が同一平面になるよう位置決めすることができない。この結果、参照光の照射位置がずれることによるホログラム再生品質の劣化や再生時の転送レートの低下を招く。
 続いて、図14を用いて本実施例における偏芯検出センサの取付け位置誤差をキャンセルする偏芯補償制御について説明する。図14(a)は図13(c)と同じく、取付け位置誤差をもつ偏芯検出センサによって位置決め制御される場合のホログラム記録媒体1と各種センサの位置関係をホログラム記録媒体1の平面に対して垂直な方向から示した模式図である。取付け位置誤差により第一の偏芯検出センサ15が点P15から点P15’に、第二の偏芯検出センサ16が点P16から点P16’に移動した場合を示している。今、点Oと点P16をともに通る直線ax-yに対して平行な軸をY軸、点Oと点P15をともに通る直線ax-xに対して平行な軸をX軸とする。偏芯補償制御を行うことで、直線ax-xは直線ax-x’に、直線ax-yは直線ax-y’に移動する。本実施例における第一の偏芯検出センサ15と第二の偏芯検出センサ16はそれぞれのセンサをホログラム記録媒体1の幾何学中心である点Oに対して90度直行した位置関係に配置することで、各軸を独立して制御している。偏芯補償制御における幾何的な位置関係から明らかなように、取付け位置誤差によってセンサの取付け位置がずれた場合においても点P15’と点O’と点16’の直交関係は保存されている。そのため第一の偏芯検出センサ15の出力信号については直線ax-x’に平行な軸、第二の偏芯検出センサ16の出力信号については直線ax-y’ に平行な軸のそれぞれに対して独立に偏芯検出用マークM2との相対位置関係を制御できる。本実施例における各偏芯検出センサの取付け位置誤差をキャンセルする偏芯補償制御はセンサ取付け誤差によって点O’に位置づけされたホログラム記録媒体1の幾何学中心をセンサ取付け位置誤差がない場合のホログラム記録媒体1の幾何学中心である点Oに移動することを目標とする。本実施例では、かかる制御を偏芯検出センサ15および偏芯検出センサ16の各出力信号に対して、それぞれX軸オフセット加算器3001およびY軸オフセット加算器3004によりオフセットを印加することで実現する。偏芯検出センサにオフセットを印加した際のセンサの出力信号について図14(b)を用いて説明する。所望のオフセット信号量Oftrをコントローラ80よりX軸オフセット加算器3001またはY軸オフセット加算器3004に入力することで、図14(b)のように、偏芯検出センサの出力Vsがゼロとなる位置はオフセット信号量Oftrに対応した各偏芯検出軸におけるオフセット距離D(Oftr)だけオフセットした位置になる。前記のように、第一の偏芯検出センサ15の出力信号については直線ax-x’に平行な軸、第二の偏芯検出センサ16の出力信号については直線ax-y’ に平行な軸のそれぞれに対して独立に制御できる。そのため、後述する偏芯検出センサ取付け誤差キャンセルオフセット量導出処理とは、第一の偏芯検出センサ15については直線ax-y’に平行かつ点Oを通る直線Lyと直線ax-y’の距離D(OftX)に対応したオフセット信号出力OftXを、第二の偏芯検出センサ16については直線ax-x’に並行かつ点Oを通る直線Lxと直線ax-x’の距離D(OftY)に対応したオフセット信号出力OftYを、偏芯検出センサ取付け誤差キャンセルオフセット量導出処理で導出し、X軸オフセット加算器3001およびY軸オフセット加算器3004によりX軸補償器3002およびY軸補償器3005に印加する制御を意味する。
 次に各偏芯検出軸の方向に対する偏芯検出センサの取付け誤差を表す距離D(Oftr)を導出する方法について説明する。今、シーク処理が適切に完了し、記録されたホログラムの再生像が光検出器225より得られる場合を考える。ホログラムの多重方向の参照光角度を最適位置から所定の値だけオフセットをもたせた状態で、再生時の参照光の入射平面PB1と記録時の参照光の入射平面PB2がなす角度ΔΦを変化させながら再生像の各ピクセルの位置と輝度から得られる輝度重心位置のずれをプロットすると図14(c)に示すような関係が得られることが分かっている。また、参照光角度のオフセット量が一定であればホログラム記録媒体1に対して図14(c)の関係は一意に決まる。そのため、参照光角度を常に決まった所定量だけオフセットさせる場合、そのときの再生像の輝度重心位置のずれΔIBを計算することでΔΦを逆算することが可能である。すなわち、輝度重心計算回路88はピックアップ11内の光検出器225からの再生画像データを入力として輝度重心位置ずれΔIBを計算する。さらに輝度重心計算回路88はコントローラ80からの再生像の輝度重心位置のずれに対するΔΦの特性と、先に計算したΔIBからΔΦを導出し、コントローラ80へ出力する。
 ここで、図14(a)において、偏芯検出センサの取付け誤差により生じる、再生時の参照光の入射平面PB1と記録時の参照光の入射平面PB2がなす角度ΔΦは幾何学的に図14(a)における∠OPO’と一致することは明らかである。図14(d)は図14(a)における点O、点P、点O’の位置関係を表した図である。ここで三角形OPO’はシーク処理が適切に完了し、ホログラム再生像が得られていることからOP=O’Pの二等辺三角形である。また、現在位置決めして再生しているホログラムに含まれるアドレス情報を取得することで、フォーマットから記録時の半径位置r分かり、OP=O’P=rの関係が得られる。本実施例ではこのようにアドレス情報から得られる記録時の座標をアドレスの座標と称する。
 点直線Oから直線OPに下ろした垂線と直線OPの交点を点A、点Pから直線OO’に下ろした垂線と直線OO’の交点を点Bとすると、三角形OPBと三角形O’OAの相似関係を利用することで、D(OftX)およびD(OftY)は次の式1および式2の関係が成り立つ。
D(OftX)=2r×sin(Φ/2)×cos(Φ/2)       (式1)
       D(OftY)=2r×sin(Φ/2) (式2)
 再生像の輝度重心位置のずれと幾何的関係による式1および式2を利用することで、各偏芯検出軸の方向に対する偏芯検出センサの取付け誤差D(OftX)およびD(OftY)が導出される。コントローラ80では輝度重心計算回路88から入力されたΔΦに基づき、D(OftX)およびD(OftY)に対応したオフセット加算指令値OftXおよびOftYを導出する。
 なお、図14(c)で示したΔΦと再生像の輝度重心位置のずれの関係はホログラム記録媒体1の特性によって変化する。そこで、図4(a)におけるセットアップ処理におけるステップS403で得られるディスク情報を基にΔΦと再生像の輝度重心位置のずれに関する特性は変更することができるものとする 。例えば、セットアップ処理におけるステップS403では読み出したコントロールデータからホログラム記録媒体1の種類を特定する。コントローラ80は特定したホログラム記録媒体1の種類に応じて使用する特性を変更する。特性は、例えばホログラム記録再生装置の製造工程において記憶される。また、新たに開発されるホログラム記録媒体に応じた特性をさらに記憶させていくことで、新規ホログラム記録媒体に対する対応が可能になるため、特性は書き換え型のメモリに記憶されることが望ましい。また、新規ホログラム記録媒体に対する特性は輝度重心位置ずれがゼロとなるオフセット加算指令値OftXおよびOftYを導出することで決定できる(後述する偏芯検出センサ取付け誤差キャンセルオフセット量導出処理におけるステップS708からステップS712に該当)。
 図14(c)で示したΔΦと再生像の輝度重心位置のずれの関係は(式1)および(式2)を用いることで輝度重心位置ずれに対するオフセット加算指令値OftXおよびOftYとの特性であるとも考えられる。
 以上、本実施例における偏芯検出センサの取付け位置誤差をキャンセルする偏芯補償制御とは、再生像のアドレス情報から得られる記録時の半径位置、再生像の輝度重心位置のずれ、幾何学的関係から得られる式1および式2を用いて、各偏芯検出センサの取付け誤差量を導出し、各誤差量に対応した各オフセット信号量を印加することでセンサ取付け誤差によって点O’に位置づけされたホログラム記録媒体1の幾何学中心をセンサ取付け位置誤差がない場合のホログラム記録媒体1の幾何学中心である点O(輝度重心位置ずれがゼロとなる位置)に制御することで実現される制御である。また、本実施例では再生像の輝度重心位置のずれを利用して各偏芯検出センサの取付け誤差を導出したが、本発明はこれに限られるものではない。例えば、再生像中にシンクパターンのような再生像の位置を検出する基準パターンを設けて再生像の位置ずれを検出する手段を利用して導出してもよい。この処理のことを本明細書では各種センサ取付け誤差キャンセル処理と称する。
 続いて本実施例におけるシーク処理S414について、図5のフローチャートを用いて説明する。なお、シーク処理S422、S604、S902およびS904に関しても同一のフローチャートである。ここで、本実施例のようにホログラム記録媒体1が円盤状である場合のシークにおいては、半径r及び回転角θがパラメータとなる。以降、半径rの駆動軸をr軸、回転角θの駆動軸をθ軸と称する。
 なお本実施例においては、シーク処理S414より以前に行われる学習処理ステップS404においてXYON信号をHighとすることで偏芯補償制御が開始されている。そのため、シーク処理S414を開始する時点で偏芯補償制御はオンされた状態である。
 シーク処理を開始すると(ステップS501)、目標アドレスのホログラムが位置する座標(r、θ)と現在位置との差分を計算して、r軸及びθ軸について移動量を計算する(ステップS502)。次に、r軸の移動量がゼロ以外であるかを判断する(ステップS503)。r軸の移動量がゼロ以外であれば(ステップS503にてYesの場合)、RDON信号をHighにすることで半径位置制御をオンにしてr軸の移動を開始する(ステップS504)。ステップS504に続いては、後述するステップS505に移行する。またr軸の移動量がゼロであれば(ステップS503にてNoの場合)、ステップS504を行わずにステップS505に移行する。
 ステップS505においては、θ軸の移動量がゼロ以外であるかを判断する。θ軸の移動量がゼロ以外であれば(ステップS505にてYesの場合)、SPON信号をHighにすることで回転角度制御をオンにしてθ軸の移動を開始する(ステップS506)。ステップS506に続いては、後述するステップS507に移行する。またθ軸の移動量がゼロであれば(ステップS505にてNoの場合)、ステップS506を行わずにステップS507に移行する。
 ステップS507においては、移動が完了したかの判定を行う。ここで、RDOK信号及びSPOK信号及びXYOK信号がすべてHighレベルであることをもって、移動が完了したと判定する。
 移動が完了していないと判定された場合(ステップS507でNoの場合)には、再びステップS507に戻る。即ち、RDOK信号及びSPOK信号及びXYOK信号のうちのいずれか1つでもLowレベルであれば、移動が完了したとは判定せずに、上記3つの信号全てが同時にHighレベルとなるまで待機する動作となる。
 次に、再生時のシーク処理であるかを判断する(ステップS509)。再生時のシークでない場合(ステップS509でNoの場合)、後述するステップS515に進み、シーク処理を終了する。再生時のシークである場合は(ステップS509でYesの場合)、記録されたホログラムを再生して得られるアドレス情報で目標アドレスに正しく位置決めされるまでシーク処理を続行する。これは、記録時のシークでは未記録部へのシークとなり、アドレス情報が得られないためである。
 再生時のシークである場合は(ステップS509でYesの場合)、位置付けされたホログラム記録媒体1上の位置に所定の角度で参照光を照射することでホログラムの再生を試みて、再生可能であるか否かを判断する(ステップS510)。ホログラムが再生可能ではない場合(ステップS510にてNoの場合)には、位置決めが正確に行えなかったことを意味する。そのため、所定のリトライパラメータに基づいて、r軸及びθ軸リトライ値を計算し(ステップS511)、ステップS502に戻る。これにより、位置決めした近傍に移動するリトライのシークが行われる。なお、図示しないがリトライではr軸及びθ軸リトライ値だけでなく参照光角度についてもリトライを行い、ホログラムの再生が可能である最適な参照光角度を導出するものとする。
 ホログラムが再生可能であった場合(ステップS510にてYesの場合)、再生されたホログラムに含まれるアドレス情報を取得する(ステップS512)。続いて、取得したアドレスが目標アドレスであるか否かを判断する(ステップS513)。取得したアドレスが目標アドレスでなかった場合(ステップS513にてNoの場合)には、位置決めが正確に行えなかったことを意味する。そのため、取得したアドレスの座標(r、θ)と目標アドレスの座標(r、θ)の差分を計算し、ステップS502に戻る。これにより、ホログラムのアドレス情報に基づいたリトライのシークが行われる。
 取得したアドレスが目標アドレスである場合(ステップS513にてYesの場合)、シーク処理を終了する(ステップS515)。
 続いて、本実施例における半径位置検出センサ17の取付け誤差をキャンセルする半径位置検出センサ取付け誤差キャンセルゲイン/オフセット量導出の概念について図22を用いて説明する。図22はログラム記録媒体1の幾何学的な中心である点Oを通り放射方向に伸びる半径r方向に対して取付け位置誤差をもつ半径位置検出センサ17によって位置決め制御される場合のホログラム記録位置と各種センサの位置関係をホログラム記録媒体1の平面に対して垂直な方向から示した模式図である。ここでは簡単の為、記録時には取付け誤差がない状態で記録され、再生時にのみ取付け誤差が存在した場合を考える。点PRは半径位置検出センサ17のZ相の位置決めの基準点を、点P0はある回転角で半径r0のアドレスの座標に記録されたホログラム記録位置を、点P1は点P0と同じ回転角で半径r1の座標に記録されたホログラム記録位置を表す。また、直線ax-sldは半径方向搬送部52の可動部の可動軸を表し、点PRを直線ax-sldが通る場合、半径位置検出センサ17はZ相の位置決めの基準点について取付け位置誤差をもたない理想的な状態であることを意味する。図22(a)は半径位置検出センサ17がZ相の位置決め基準点について取付け位置誤差をもたないが、半径方向搬送部52の可動部の可同軸であるax-sldが半径方向に対して角度ΔΩの取付け角度誤差をもって設置された様子を表している。点P0に記録されたホログラムへシーク処理した際に半径位置検出センサ17により取得される現在半径位置の値をr0sとする。同様に、点P1に記録されたホログラムへシーク処理した際に半径位置検出センサ17により取得される現在半径位置の値をr1sとする。幾何学的位置関係よりr0sの値は点P0より直線ax-sldに下ろした垂線の交点と点PRの間の距離を、同様にr1sの値は点P1より直線ax-sldに下ろした垂線の交点と点PRの間の距離をそれぞれ表す。よって半径方向搬送部52の可動軸の取付け角度誤差ΔΩについて式3の関係が成り立つ。
cos(ΔΩ)=(r1s-rOs)/(r1-rO)  (式3)
 式3の関係式は言い換えれば、ホログラム記録時に基準とした半径方向軸(本実施例においてはホログラム記録媒体1の幾何学的な中心である点Oを通り放射方向に伸びる半径方向軸に一致する)における座標スケールに対する半径方向搬送部52の可動部の可動軸であるax-sld軸(半径位置検出センサ17により検出される半径方向軸)の座標スケールの比を表している。この関係を利用し、シーク処理における目標半径位置の信号出力に対し、ゲインとして増幅させることで取付け誤差をキャンセルする。すなわち、半径位置信号出力増幅回路3403に式3で導出されるゲインcos(ΔΩ)に相当する出力信号増幅ゲインを半径位置ゲイン指令値GainRとしてコントローラ80から入力することで、半径方向搬送部52の稼動部の可同軸であるax-sldが半径方向に対して角度ΔΩの取付け角度誤差をキャンセルする。ここで、式3からゲインを導出することを鑑みると、高精度に角度ΔΩの取付け角度誤差を導出するためには、半径位置検出センサ17の位置検出分解能に対して点P0と点P1は十分離れた半径位置で測定することが望ましい。例えば、点P0をホログラム記録媒体1の内周側の記録位置、点P1を外周側の記録位置として測定を実施する。また、本実施例では点P0と点P1の2点から半径位置ゲイン指令値GainRを導出したが、GainRは3点以上の測定点の結果に基づいて導出しても構わない。また、GainRを複数個記憶し、目標とするホログラム記録位置の半径領域ごとに切り替えて使用しても構わない。
 次に図22(b)を用いて半径位置検出センサ17のZ相の位置決め基準点に対する取付け位置誤差を導出する方法を説明する。図22(b)は半径位置検出センサ17がZ相の位置決め基準点について取付け位置誤差をもち、かつ半径方向搬送部52の可動部の可同軸であるax-sldが半径方向に対して角度ΔΩの取付け角度誤差をもって設置された様子を表している。半径位置検出センサ17はZ相の位置決め基準点からホログラム記録媒体1の半径方向に対してΔrだけ取付け位置誤差をもって設置されている。この結果、点PRは点PR’に、ax-sldはax-sld’に移動する。この場合もax-sld’とホログラム記録時に基準とした半径方向軸の角度関係は図22(a)と変わらないので式3の関係は図22(b)においても成立する。また、幾何学的位置関係よりΔrについて式4の関係が成り立つ。
cos(ΔΩ)=rOs/(rOs+Δr)       (式4)
 この式4を変形すると、半径位置検出センサ17の取付け誤差Δrは式5で表される。
Δr=rOs/cos(ΔΩ)-rOs       (式5)
 この関係を利用し、シーク処理における目標半径位置の信号出力に対し、オフセットを印加させることで取付け誤差をキャンセルする。すなわち、半径位置オフセット加算回路3402に式5で導出されるオフセット量Δrに相当する出力信号を半径位置オフセット指令値OftRとしてコントローラ80から入力することで半径位置検出センサ17のZ相の位置決め基準点に対する取付け位置誤差をキャンセルする。
 本実施例の式5では半径位置オフセット指令値OftRの導出において、式3の導出に利用したホログラム記録位置である点P0と点P1のうち、点P0の座標を利用して求めたが、式5の導出に使用するホログラム記録位置は点P1の座標を利用しても構わない。また、式3の導出に利用したホログラム記録位置とは異なるホログラム記録位置の座標を利用しても構わない。なお、本実施例における半径位置検出センサ17の取付け誤差をキャンセルする半径位置検出センサ取付け誤差キャンセルゲイン/オフセット量導出処理におけるフローについては別途記述する。
 次に図7を用いて本実施例における第一の偏芯検出センサ15および第二の偏芯検出センサ16の取付け誤差をキャンセルする処理フローについて説明する。この処理のことを本明細書では偏芯検出センサ取付け誤差キャンセルオフセット量導出処理と称する。
 なお、本実施例における偏芯検出センサ取付け誤差キャンセルオフセット量導出処理の際には、事前にホログラム記録位置にシーク処理が完了し、ホログラム再生像が得られているものとする。
 また、図7の説明において簡単の為に以降、ホログラム再生時のアドレス情報を基に導出される記録時の半径位置をr、参照光の入射平面と記録時の参照光の入射平面がなす角度をΔΦ、第一の偏芯検出センサ15および第二の偏芯検出センサ16の各検出軸の方向に対する偏芯検出センサの取付け誤差に対応したオフセット加算指令値をそれぞれOftXおよびOftYと称する。
 偏芯検出センサ取付け誤差キャンセルオフセット量導出処理を開始すると(ステップS701)、最初に実施されるステップS702では、コントローラ80から参照光角度オフセット加算回路8601に対して参照光角度オフセット加算指令値Oftκが入力され、参照光角度に所定のオフセットを印加する。ステップS703ではシーク処理によって現在再生しているホログラムに含まれるアドレス情報が取得され、記録時の半径位置rが導出される。
 続いてステップS704ではホログラム再生像の各ピクセルの位置と輝度から得られる輝度重心位置ずれを取得する。セットアップ処理におけるステップS403で得られるディスク情報を基に、図14(c)に示すようなΔΦと再生像の輝度重心位置のずれの関係が得られることから、ステップS705では、まずステップS704で得られた輝度重心位置ずれからΔΦを導出する。次に、r、ΔΦ、式1および式2から各偏芯検出センサのオフセット加算指令値であるOftXおよびOftYを導出する。
 ステップS706ではコントローラ80からOftXをX軸オフセット加算器3001にOftYをY軸オフセット加算器3004に入力することで各偏芯検出センサにオフセットを印加する。次に、XY軸の移動量がゼロ以外であるかを判断する(ステップS707)。XおよびY軸の移動量がゼロ以外であれば(ステップS707にてYesの場合)、XYON信号をHighにすることで偏芯補償制御をオンにしてXおよびY軸の移動を開始する(ステップS708)。XおよびY軸の移動量がゼロであれば(ステップ707にてNoの場合)、ステップS708を行わずにS709に移行する。
 続いてステップS709では、移動が完了したかの判定を行う。ここで、ステップS709ではXYOK信号がHighレベルであることをもって、移動が完了したと判断する。移動が完了していないと判断された場合(ステップS709でNoの場合)には、再びステップS709に戻る。移動が完了したと判断された場合(ステップS709にてYesの場合)、XYON信号をLowとすることで移動を終了する(ステップS710)。
 続いてステップS711では、ホログラムの再生像の輝度重心位置ずれがゼロになっているかの判定を行う。ここで、ステップS710ではIBOK信号がHighレベルであることをもって、移動が完了したと判断する。なお、IBOK信号とはホログラムの再生像の輝度重心位置ずれΔIBがゼロ近傍の値である場合に、IBOK信号はHighとなるものとする。再生像の輝度重心ずれがゼロでないと判断された場合(ステップS711でNoの場合)には、ホログラム記録媒体1の製造誤差等によりΔΦと再生像の輝度重心位置のずれに関する特性が異なり、ΔΦが正確に導出できていないことを意味する。そのため、所定のリトライパラメータに基づいて各偏芯検出センサのオフセット加算指令値であるOftXおよびOftYリトライ値を計算し(ステップS712)、ステップS708に戻る。再生像の輝度重心ずれがゼロであると判断された場合(ステップS711でYesの場合)、ΔΦをキャンセルするための各偏芯検出センサのオフセット量として、現在の加算指令値であるOftXおよびOftYが最適値であることを意味し、各偏芯検出センサのオフセット加算指令値が確定する(ステップS713)。
 続いてステップS714ではホログラム再生像の輝度重心位置ずれを用いてΔΦを導出する為に加算していた、参照光角度オフセット加算指令値Oftκの値を初期化して、偏芯検出センサ取付け誤差キャンセルオフセット量導出処理を終了する(ステップS715)。
 次に図8を用いて本実施例における回転角度検出センサ14の取付け誤差をキャンセルする処理フローについて説明する。この処理のことを本明細書では回転角度検出センサ取付け誤差キャンセルオフセット量導出処理と称する。
 なお、本実施例における回転角度検出センサ取付け誤差キャンセルオフセット量導出処理の際には、事前にホログラム記録位置にシーク処理が完了し、ホログラム再生像が得られており、かつ図7に示した偏芯検出センサ取付け誤差キャンセルオフセット量導出処理が完了しているものとする。
 また、図8の説明において簡単の為に以降、ホログラム再生時のアドレス情報を基に導出される記録時の回転角度をθ、回転角度検出センサ14のZ相の位置決めの基準点と回転角度検出センサ14の取付け点がホログラム記録媒体1の幾何学的中心Oとなす角度、すなわち回転角度検出センサ14の取付け角度誤差をΔθ、Δθに対応したオフセット加算指令値をOftθと称する。回転角度検出センサ取付け誤差キャンセルオフセット量導出処理を開始すると(ステップS801)、最初に実施されるステップS802ではシーク処理によって現在再生しているホログラムに含まれるアドレス情報が取得され、記録時の回転角度θが導出される。次にステップS803では回転角度検出センサ14を用いて現在の回転角度を取得する。ステップS804では、まずθと現在の回転角度の差分、すなわち回転角度検出センサ14の取付け角度誤差をΔθを算出して、次にΔθに相当する出力信号が回転角度オフセット指令値Oftθとして確定される。ステップS805では、ステップS804で確定した回転角度オフセット指令値Oftθをコントローラ80から回転角度オフセット加算回路3202に入力され、設定される。ステップS805における設定が終了すると、回転角度検出センサ取付け誤差キャンセルオフセット量導出処理は終了する(ステップS806)。
 次に図9を用いて本実施例における半径位置検出センサ17の取付け誤差をキャンセルする処理フローについて説明する。この処理のことを本明細書では半径位置検出センサ取付け誤差キャンセルゲイン/オフセット量導出処理と称する。
 半径位置検出センサ取付け誤差キャンセルゲイン/オフセット量導出処理を開始すると(ステップS901)、内周の半径位置にシーク処理を実施する(ステップS902)。先に述べたようステップS902シーク処理は図5におけるシーク処理と同じである。シーク処理の結果、シークした先の内周の半径位置において再生されたホログラムに含まれるアドレス情報が取得され(ステップS511に該当)、アドレス情報から記録時の半径位置が導出される(ステップS512に該当)。ステップS903においては半径位置検出センサ17を用いて現在の半径位置を取得する。続いてはステップS904で外周の半径位置にシーク処理を実施する。ステップS902と同じくステップS904におけるシーク処理は図5におけるシーク処理と同じである。シーク処理の結果、シークした先の外周の半径位置において再生されたホログラムに含まれるアドレス情報が取得され(ステップS511に該当)、アドレス情報から記録時の半径位置が導出されるステップS905においては半径位置検出センサ17を用いて現在の半径位置を取得する。本実施例においてはステップS902において内周に、ステップS904において外周にシーク処理を行ったが、ステップS902とステップS904の処理は逆の順に実施しても構わない。また、本実施例では図22の説明において記述したように式3におけるcos(ΔΩ)を高精度に導出する為に内周と外周のホログラム記録位置の情報を利用したが、2点以上のホログラム記録位置の情報を利用できれば、シークするホログラムの半径位置は内周および外周でなくとも構わない。ステップS906では、ステップS905までにおいてホログラム再生像から導出した2点の各半径位置およびセンサより取得した2点の各半径位置を用いて、コントローラ80において式3に基づきゲインcos(ΔΩ)を導出し、さらにゲインcos(ΔΩ)に相当する出力信号増幅ゲインを半径位置ゲイン指令値GainRとして確定する。また、式5に基づきオフセット量Δrを導出し、Δrに相当する出力信号を半径位置オフセット指令値OftRとして確定する。ステップS907では、ステップS906で確定した半径位置ゲイン指令値GainRおよび半径位置オフセット指令値OftRをコントローラ80からそれぞれ半径位置信号出力増幅回路3403および半径位置オフセット加算回路3402に入力し、設定する。ステップS907における設定が終了すると、半径位置検出センサ取付け誤差キャンセルゲイン/オフセット量導出処理を終了する(ステップS908)。
 次に図6を用いて各種センサ取付け誤差キャンセル処理フローについて説明する。前記のように本処理はセットアップ処理のステップS404における学習処理において実施する。各種センサ取付け誤差キャンセル処理を開始すると(ステップS601)、第一の偏芯検出センサ15、第二の偏芯検出センサ16、回転角度検出センサ14および半径位置検出センサ17のオフセット量および半径位置検出センサ17のゲインを初期化する(ステップS602)。続いてステップS603では偏芯補償制御をオンする処理を開始する。ステップS604では、ホログラム記録媒体1に記録されたホログラム位置にシーク処理を行う。ステップS604の結果、ホログラムの再生が可能となる。続くステップS605では、まず偏芯検出センサ取付け誤差キャンセルオフセット量導出処理を実施する。
 本実施例では偏芯検出センサ取付け誤差キャンセルオフセット量導出処理を他の検出センサの取付け誤差キャンセル処理よりも先に実施する。これは偏芯検出センサの取付け誤差をキャンセルした状態の偏芯補償を実施しないと、以降の回転角度検出センサ14と半径位置検出センサ17から得られる回転角度および半径位置とホログラム再生像のアドレス情報から得られる記録時の回転角度および半径位置との誤差は純粋に各センサの取付け誤差に依るものと考えられないからである。
 次に、ステップS606では回転角度検出センサ取付け誤差キャンセルオフセット量導出処理を実施する。ステップS606に続き、最後に半径位置検出センサ取り付け誤差キャンセルゲイン/オフセット量導出処理が実施され(ステップS607)、各種センサ取付け誤差キャンセル処理を終了する(ステップS608)。
 以上の動作により、各種検出センサの取付け誤差をキャンセルした位置にホログラムの記録もしくは再生を行うことができる。その結果、個体ごとの装置間の互換性の確保が可能なホログラム記録再生装置を提供できる。
 実施例1においては、各種センサ取付け誤差キャンセル処理はホログラム記録媒体1を読み込んだセットアップ処理において実施するものとした。しかし、各種センサ取付け誤差はホログラム記録再生装置固有で不変な値であるので、各種センサ取付け誤差キャンセル処理はホログラム記録媒体1のセットアップ処理の事前に実施することも可能である。本明細書ではホログラム記録媒体1のセットアップ処理の事前に実施する各種センサ取付け誤差キャンセル処理のことを各種センサ取付け誤差キャンセル学習と称する。
 本実施例は、事前に各種センサ取付け誤差キャンセル学習を実施し、学習の結果得られた各種センサ誤差キャンセルゲイン/オフセット量を当該装置の記憶領域に記憶し、ホログラム記録媒体1を読み込むセットアップ処理における各種センサ取付け誤差キャンセル処理において、記憶した値を各種センサ誤差キャンセルゲイン/オフセット量として設定する場合の実施例である。以降、実施例1との差異を説明する。
 まず、本実施例において事前に各種センサ取付け誤差キャンセル学習の学習値をセットアップ時の各種センサ取付け誤差キャンセル処理において設定する理由を説明する。前記のように、各種センサ取付け誤差はホログラム記録再生装置固有で不変な値である。よって事前に学習を実施し、その学習結果である、輝度重心位置ずれがゼロとなる第一の偏芯検出センサ15および第二の偏芯検出センサ16のオフセット指令値OftXおよびOftY、回転角度検出センサ14で検出した回転角度と前記ホログラム再生像のアドレス情報を基に導出した記録時の回転角度の差分がゼロとなるオフセット指令値Oftθ、半径位置検出センサ17で検出した半径位置と前記ホログラム再生像のアドレス情報を基に導出した記録時の半径位置の差分がゼロとなるオフセット指令値OftRおよびゲイン指令値GainRを記憶しておけば各種センサ取付け誤差が起因の公差はキャンセルすることが可能である。これにより実施例1の各種センサ取付け誤差キャンセル処理におけるステップS605以降の各駆動処理に要する時間が短縮される為、実施例1と比較して各種センサ取付け誤差キャンセル処理に要する時間を短縮することができる。
 本実施例は、例えばホログラム記録再生装置の製造ライン上における学習として事前に実施される各種センサ取付け誤差キャンセル学習によって導出された学習値を記憶し、ユーザーによるホログラム記録媒体1のセットアップ処理に、記憶された学習値を利用するという場合に実施される。
 図24は本実施例においてホログラフィを利用してデジタル情報を記録及び/または再生するホログラム記録媒体の記録再生装置を示すブロック図である。なお、実施例1のブロック図である図1と共通の構成要素については同一の番号を付し、説明を省略する。
 実施例1と本実施例との差異は、学習値記憶回路89を有する点である。学習値記憶回路89は、実施例1における各種センサ取付け誤差キャンセル処理により導出したオフセット量およびゲインをコントローラ80から入力し、その入力値を記憶する。また、本実施例における各種センサ取付け誤差キャンセル処理において記憶している値を学習記憶回路89からコントローラ80に出力する。
 ここで、図25を用いて本実施例における各種センサ取付け誤差キャンセル処理フローについて説明する。ここで、実施例1のフローチャートである図5と同一の処理内容であるステップに関しては同一の番号を付し、処理内容の説明を省略する。本処理はセットアップ処理のステップS404における学習処理において実施する。ただし、本実施例においては前提として、事前に実施例1における各種センサ取付け誤差キャンセル処理(各種センサ取付け誤差キャンセル学習)が実施されており、学習値記憶回路89にはその際に得られた各種センサの取付け誤差キャンセルゲインおよびオフセット量が事前に記憶されているものとする。
 実施例1のフローチャートである図6との差異は、2点である。1点目はステップS602に代わり新たなステップS609が実施されている点である。本実施例における各種センサ取付け誤差キャンセル処理が開始されると(S601)、続くステップS609では第一の偏芯検出センサ15、第二の偏芯検出センサ16、回転角度検出センサ14および半径位置検出センサ17の各オフセット量および半径位置検出センサ17のゲインとして学習値記憶回路89に記憶されている事前の学習値をコントローラ80から各オフセット加算回路および信号出力増幅回路に入力する。その後、ステップS603において偏芯補償制御を開始する。
 2点目はステップS604以降の処理が省略されている点である。本実施例における各種センサ取付け誤差キャンセル処理ではステップS609において各種センサ取付け誤差キャンセル学習での学習値を設定する。そのため、ステップS603が終了すると各種センサ取付け誤差キャンセル処理は終了する(ステップS608)。
 結果として、ステップS604以降の処理が省略されている分、実施例1と比較してセットアップ時にかかる各種センサ取付け誤差キャンセル処理に要する時間を短縮することができる。
 実施例2においては、各種センサ取付け誤差キャンセル処理は各種センサ取付け誤差キャンセル学習で記憶した値を設定した。しかし、ホログラム記録媒体1のセットアップ処理における各種センサ取付け誤差キャンセル処理では各種センサ取付け誤差キャンセル学習で記憶した値を初期値として、再度各種センサ取付け誤差キャンセル処理を行ってもよい。
 本実施例は、事前に各種センサ取付け誤差キャンセル学習を実施し、当該装置の記憶領域に各種センサ誤差キャンセルゲイン/オフセット量を記憶し、かつホログラム記録媒体1を読み込んだセットアップ処理において学習値を初期値としながら、再度各種センサ取付け誤差キャンセル処理で新しい各種センサ誤差キャンセルゲイン/オフセット量を導出する場合の実施例である。以降、実施例1との差異を説明する。
 まず、本実施例において事前に各種センサ取付け誤差キャンセル学習を実施し、かつセットアップ時にも再度各種センサ誤差キャンセルゲイン/オフセット量を導出する理由を説明する。実施例2のように、事前に学習を実施し、その学習結果を記憶しておけば各種センサ取付け誤差が起因の公差はキャンセルすることが可能である。しかし、記録時と再生時の公差の原因は各種センサ取付け誤差取付け誤差のみではない。例えば、ホログラム記録媒体の固定位置はクランプ機構で固定をする度に微小変化する為、ホログラム記録媒体1の固定ごとに偏芯誤差量は変化してしまう。これら微小変化はホログラムの再生時において取付け誤差の場合と同様、記録時の参照光の入射平面と再生時の参照光の入射平面のずれとして影響を与える。記録密度の増加に伴う公差マージンの低下を鑑みると、このような微小変化についても改めて各種センサ取付け誤差キャンセル処理を実施した上で、キャンセルすることが望ましい。
 本実施例の各種センサ取付け誤差キャンセル処理では既に取付け誤差が起因で生じる記録時の参照光の入射平面と再生時の参照光の入射平面のずれが既にキャンセルされた初期位置から調整が開始することができる。一般的に、検出センサの取付け誤差に比較して、ホログラム記録媒体の固定位置の微小変化量はより小さいため、各検出センサのオフセット量およびゲインを導出する為に必要なメカ的な駆動量が減少し、実施例1と比較してセットアップ時にかかる各種センサ取付け誤差キャンセル処理に要する時間を短縮することができる。
 本実施例は、実施例2と同じように、例えばホログラム記録再生装置の製造ライン上における学習として事前に実施される各種センサ取付け誤差キャンセル学習によって導出された学習値を記憶し、ユーザーによるホログラム記録媒体1のセットアップ処理に、記憶された学習値を利用するという場合に実施される。
 本実施例におけるホログラフィを利用してデジタル情報を記録及び/または再生するホログラム記録媒体の記録再生装置を示すブロック図は実施例2と同様である為、説明を省略する。
 図26を用いて本実施例における各種センサ取付け誤差キャンセル処理フローについて説明する。ここで、実施例1のフローチャートである図5と同一の処理内容であるステップに関しては同一の番号を付し、処理内容の説明を省略する。本処理はステップS404における学習処理の際に実施される。ただし、本実施例においては前提として、事前に実施例1における各種センサ取付け誤差キャンセル処理(各種センサ取付け誤差キャンセル学習)が実施されており、学習値記憶回路89にはその際に得られた各種センサの取付け誤差キャンセルゲインおよびオフセット量が事前に記憶されているものとする。
 実施例1のフローチャートである図6との差異は、ステップS602に代わり新たなステップS609を実施する点である。本実施例におけるステップS609で実施する処理は実施例2と同様である為、説明を省略する。ステップS609によりステップS605以降の処理では既に取付け誤差が起因で生じる記録時の参照光の入射平面と再生時の参照光の入射平面のずれが既にキャンセルされた初期位置から調整が開始することができる。
 その結果として、実施例1と比較してセットアップ時にかかる各種センサ取付け誤差キャンセル処理に要する時間を短縮することができる。
 以上の実施例における制御器、例えば実施例1における回転角度駆動信号出力回路3203、半径位置駆動信号出力回路3404、X軸補償器3002、Y軸補償器3005、参照光角度駆動信号出力器8602は、例えばデジタルフィルタにより構成できる。デジタルフィルタによりゲインと位相の補償が行われることで、各制御系の安定性が確保される。
 なお以上の実施例では、ピックアップ11ならびにキュア光学系13から照射される光ビームがホログラム記録媒体の所定の位置に照射されるように制御する機構として、例えば実施例1における半径方向搬送部52のように、ホログラム記録媒体1を搬送する構成とした。しかし光ビームの照射位置を兼行するための機構としては、これに限定されるものではない。例えば、ホログラム記録媒体は固定されており、ピックアップ11やキュア光学系13を搬送する構成であってもよい。
 以上の実施例では参照光の入射角度を変化させて角度多重による記録を行う構成としたが、角度多重以外の多重方法を用いた場合にも、本発明は同様に適用可能である。更に、多重記録を行わないホログラム記録の場合にも、本発明は同様に適用可能である。
 なお、本発明は上記した実施例に限定されるものではなく、また上述した変形例の他にも様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1…ホログラム記録媒体
10…ホログラム記録再生装置
11…ピックアップ
14…回転角度検出センサ
15…第一の偏芯検出センサ
16…第二の偏芯検出センサ
17…半径位置検出センサ
30…偏芯補償回路
32…回転角度制御回路
34…半径位置制御回路
50…スピンドルモータ
51…移動ステージ
52…半径方向搬送部
80…コントローラ
86…参照光角度制御回路
88…輝度重心計算回路
89…学習値記憶回路
3201…回転角度検出回路
3202…回転角度オフセット加算回路
3203…回転角度駆動信号出力回路
3204…回転角度出力制御スイッチ
3205…回転角度駆動判定回路
3401…半径位置検出回路
3402…半径位置オフセット加算回路
3403…半径位置信号出力増幅回路
3404…半径位置駆動信号出力回路
3405…半径位置出力制御スイッチ
3406…半径位置駆動判定回路
3001…X軸オフセット加算器
3002…X軸補償器
3003…X軸出力制御スイッチ
3004…Y軸オフセット加算器
3005…Y軸補償器
3006…Y軸出力制御スイッチ
3007…偏芯補償判定回路
3101…X軸駆動回路
3102…Y軸駆動回路
8601…参照光角度オフセット加算回路
8602…参照光角度駆動信号出力器
8603…参照光角度出力制御スイッチ
8604…参照光角度駆動判定回路

Claims (13)

  1.  光情報記録媒体の情報の記録および/または再生を行う光情報記録再生装置であって、
     前記光情報記録媒体から得られる2次元の再生像を検出する光検出器と、
     前記光情報記録媒体を回転させる媒体回転部と、
     前記光情報記録媒体と略平行な平面内を移動可能な可動部を有する面内移動部と、
     前記光情報記録媒体に設けられた偏芯検出用マークを用いて前記光情報記録媒体の前記面内移動部の可動軸ごとの位置を検出する偏芯検出部と、
     前記偏芯検出部の出力信号に基づき前記面内移動部を制御する偏芯補償部と、
     前記光検出器が検出した前記2次元の再生像の情報に基づいて導出されたオフセット量を前記偏芯検出部の出力信号に対して加算するオフセット加算部と、
     を備えることを特徴とする光情報記録再生装置。
  2.  請求項1に記載の光情報記録再生装置であって、
     前記2次元の再生像の情報とは、再生像の輝度重心ずれに関する情報であり、
     前記偏芯補償部は、前記光検出器が検出した前記再生像の輝度重心ずれに関する情報に基づいて導出された前記可動軸ごとのオフセット量を前記偏芯検出部の出力信号に対して加算することを特徴とする光情報記録再生装置。
  3.  請求項1に記載の光情報記録再生装置であって、
     前記オフセット加算部の前記可動軸ごとの前記オフセット量を記憶するオフセット学習値記憶部とを備え、
     前記オフセット学習値記憶部に記憶された可動軸ごとのオフセット学習値が前記光検出器において受光されたホログラム再生像の輝度重心ずれがゼロとなるような値であり、
     前記光情報記録媒体の挿入時に、前記オフセット学習値記憶部に記憶された前記オフセット学習値が読み出され、該読み出されたオフセット学習値が前記面内オフセット加算部に設定されることを特徴とする光情報記録再生装置。
  4.  請求項1に記載の光情報記録再生装置であって、
     前記オフセット加算部の前記可動軸ごとの前記オフセット量を記憶するオフセット学習値記憶部を備え、
     前記光情報記録媒体の挿入時に、前記オフセット学習値記憶部に記憶された可動軸ごとのオフセット学習値が読み出され、該読み出されたオフセット学習値が前記オフセット量を導出する際の初期値として、前記オフセット加算部に設定することを特徴とする光情報記録再生装置。
  5.  請求項1に記載の光情報記録再生装置であって、
     前記光情報記録媒体には信号光と参照光を用いて情報が記録され、
     前記参照光の角度を変更する参照光角度変更部と、
     前記参照光の角度を検出する参照光角度制御信号生成部と、
     前記参照光の角度を制御する参照光角度制御部とを備え、
     前記参照光角度制御部は、前記参照光角度制御信号生成部の出力信号に対して所定の参照光角度オフセット量を印加する参照光角度オフセット加算部を備え、
     前記光検出器において受光されたホログラム再生像の輝度重心位置ずれを導出する輝度重心計算部とを備え、
     前記輝度重心位置ずれがゼロとなるよう前記オフセット加算部の前記可動軸ごとの前記面内オフセット量を導出することを特徴とする光情報記録再生装置。
  6.  請求項5に記載の光情報記録再生装置であって、
     前記光情報記録媒体に記録されているコントロールデータを再生するコントロールデータ再生部を備え、
     前記輝度重心位置ずれが所定の値になるよう前記オフセット量を制御する際に、前記コントロールデータとして記録されている輝度重心位置ずれに対する前記オフセット加算部の前記可動軸ごとの前記オフセット量の特性を利用することを特徴とする光情報記録再生装置。
  7.  請求項1に記載の光情報記録再生装置であって、
     前記2次元の再生像に再生像の位置を検出する位置基準パターンが備えられており、
     前記光検出器は、前記位置基準パターンに基づいて前記再生像の位置ずれに関する情報を検出し、
     前記偏芯補償部は、前記光検出器が検出した前記位置ずれに関する情報に基づいて導出された前記可動軸ごとのオフセット量を前記偏芯検出部の出力信号に対して加算することを特徴とする光情報記録再生装置。
  8.  請求項1に記載の光情報記録再生装置であって、
     前記光情報記録媒体に設けられた角度検出用マークを用いて前記光情報記録媒体の回転角度を検出する回転角度検出部と、
     前記回転角度検出部の出力信号に対して所定の回転角度オフセット量を印加する回転角度オフセット加算部と、を備え、
     前記回転角度検出部で検出した回転角度と前記2次元の再生像のアドレス情報を基に導出した記録時の回転角度の差分がゼロとなるよう、前記回転角度オフセット量が導出されることを特徴とする光情報記録再生装置。
  9.  請求項1に記載の光情報記録再生装置であって、
     前記光情報記録媒体に設けられた角度検出用マークを用いて前記光情報記録媒体の回転角度を検出する回転角度検出部と、
     前記回転角度検出部の出力信号に対して所定の回転角度オフセット量を印加する回転角度オフセット加算部と、
     前記回転角度オフセット加算部のオフセット量を記憶する回転角度オフセット学習値記憶部と、を備え、
     前記回転角度オフセット学習値記憶部に記憶された回転角度オフセット学習値は、前記回転角度検出部で検出した回転角度と前記ホログラム再生像のアドレス情報を基に導出した記録時の回転角度の差分がゼロとなるオフセット量であり、
     前記光情報記録媒体の挿入時に、前記回転角度オフセット学習値記憶部に記憶された前記回転角度オフセット学習値が読み出され、該読み出された回転角度オフセット学習値が前記回転角度オフセット加算部に設定されることを特徴とする光情報記録再生装置。
  10.  請求項8に記載の光情報記録再生装置であって、
     前記回転角度オフセット加算部の前記回転角度オフセット量を記憶する回転角度オフセット学習値記憶部を備え、
     前記ホログラム記録媒体の挿入時に、前記回転角度オフセット学習値記憶部に記憶された回転角度オフセット学習値が読み出され、該読み出された回転角度オフセット学習値が前記回転角度オフセット量を導出する際の初期値として、前記回転角度オフセット加算部に設定されることを特徴とするホログラム記録再生装置。
  11.  請求項1に記載の光情報記録再生装置であって、
     前記光情報記録媒体の半径方向に前記光情報記録媒体を移動させる半径方向搬送部と、
     前記半径方向搬送部を制御する半径位置制御部と、
     前記半径方向搬送部の可動部に設けられたスケールを用いて前記半径方向搬送部の位置を検出する半径位置検出部と、
     前記半径位置検出部の出力信号に対して所定の半径位置オフセット量を印加する半径位置オフセット加算部と、
     前記半径位置オフセット加算部の出力信号に対して所定のゲインで出力信号を増幅する半径位置信号出力増幅部と、を備え、
     前記半径位置検出部で検出した半径位置と前記ホログラム再生像のアドレス情報を基に導出した記録時の半径位置の差分がゼロとなるよう、前記半径位置オフセット量および前記ゲインが導出されることを特徴とする光情報記録再生装置。
  12.  請求項3に記載の光情報記録再生装置であって、
     前記光情報記録媒体の半径方向に前記光情報記録媒体を移動させる半径方向搬送部と、
     前記半径方向搬送部を制御する半径位置制御部と、
     前記半径方向搬送部の可動部に設けられたスケールを用いて前記半径方向搬送部の位置を検出する半径位置検出部と、
     前記半径位置制御部とは、前記半径位置検出部の出力信号に対して所定の半径位置オフセット量を印加する半径位置オフセット加算部と、
     前記半径位置オフセット加算部の出力信号に対して所定のゲインで出力信号を増幅する半径位置信号出力増幅部と、
     前記半径位置オフセット加算部の前記半径位置オフセット量を記憶する半径位置オフセット学習値記憶部と、
     前記半径位置信号出力増幅部の前記ゲインを記憶するゲイン学習値記憶部と、を備え、
     前記半径位置オフセット学習値記憶部および前記ゲイン学習値記憶部に記憶された半径位置オフセット学習値とゲイン学習値が、前記半径位置検出部で検出した半径位置と前記ホログラム再生像のアドレス情報を基に導出した記録時の半径位置の差分がゼロとなるような、オフセット量およびゲインであり、
     前記光情報記録媒体の挿入時に、前記半径位置オフセット学習値記憶部および前記ゲイン学習値記憶部に記憶された前記半径位置オフセット学習値および前記ゲイン学習値が読み出され、該読み出された半径位置オフセット学習値およびゲイン学習値が前記半径位置オフセット加算部および前記半径位置信号出力増幅部に設定されることを特徴とする光情報記録再生装置。
  13.  請求項11に記載の光情報記録再生装置であって、
     前記半径位置オフセット加算部の前記半径位置オフセット量を記憶する半径位置オフセット学習値記憶部と、
     前記半径位置信号出力増幅部の前記ゲインを記憶するゲイン学習値記憶部と、を備え、
     前記光情報記録媒体の挿入時に、前記半径位置オフセット学習値記憶部および前記ゲイン学習値記憶部に記憶された半径位置オフセット学習値および前記ゲイン学習値を読み出し、該読み出された半径位置オフセット学習値およびゲイン学習値が、前記半径位置オフセット量および前記ゲインを導出する際の初期値として、前記半径位置オフセット加算部および前記半径位置信号出力増幅部に設定されることを特徴とする光情報記録再生装置。
PCT/JP2012/081234 2012-12-03 2012-12-03 記録再生装置 WO2014087460A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081234 WO2014087460A1 (ja) 2012-12-03 2012-12-03 記録再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081234 WO2014087460A1 (ja) 2012-12-03 2012-12-03 記録再生装置

Publications (1)

Publication Number Publication Date
WO2014087460A1 true WO2014087460A1 (ja) 2014-06-12

Family

ID=50882913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081234 WO2014087460A1 (ja) 2012-12-03 2012-12-03 記録再生装置

Country Status (1)

Country Link
WO (1) WO2014087460A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169354A (ja) * 1982-03-31 1983-10-05 Hitachi Ltd 情報記録円板
JPS6157084A (ja) * 1984-08-28 1986-03-22 Fuji Photo Film Co Ltd トラツキング・サ−ボ方法
JPS61107569A (ja) * 1984-10-30 1986-05-26 Arupain Kk 芯振れ調整装置
JPH04176028A (ja) * 1990-11-07 1992-06-23 Funai Denki Kenkyusho:Kk ディスクの偏心ずれ吸収装置
JPH06215382A (ja) * 1993-01-20 1994-08-05 Ricoh Co Ltd 光ディスク及びそのトラッキングサーボ安定化装置
JP2006251340A (ja) * 2005-03-10 2006-09-21 Alps Electric Co Ltd ホログラムを用いた記録媒体再生装置及び角度ずれ調整方法
WO2008044295A1 (fr) * 2006-10-11 2008-04-17 Pioneer Corporation Support d'enregistrement d'hologramme et dispositif d'hologramme
JP2011118993A (ja) * 2009-12-04 2011-06-16 Sony Corp 記録装置、制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169354A (ja) * 1982-03-31 1983-10-05 Hitachi Ltd 情報記録円板
JPS6157084A (ja) * 1984-08-28 1986-03-22 Fuji Photo Film Co Ltd トラツキング・サ−ボ方法
JPS61107569A (ja) * 1984-10-30 1986-05-26 Arupain Kk 芯振れ調整装置
JPH04176028A (ja) * 1990-11-07 1992-06-23 Funai Denki Kenkyusho:Kk ディスクの偏心ずれ吸収装置
JPH06215382A (ja) * 1993-01-20 1994-08-05 Ricoh Co Ltd 光ディスク及びそのトラッキングサーボ安定化装置
JP2006251340A (ja) * 2005-03-10 2006-09-21 Alps Electric Co Ltd ホログラムを用いた記録媒体再生装置及び角度ずれ調整方法
WO2008044295A1 (fr) * 2006-10-11 2008-04-17 Pioneer Corporation Support d'enregistrement d'hologramme et dispositif d'hologramme
JP2011118993A (ja) * 2009-12-04 2011-06-16 Sony Corp 記録装置、制御方法

Similar Documents

Publication Publication Date Title
JP5753768B2 (ja) 光情報記録装置、光情報再生装置、光情報記録再生装置、光情報記録方法、光情報再生方法および光情報記録再生方法
US8830809B2 (en) Optical information recording device
US9081364B2 (en) Optical information recording/reproducing apparatus, optical information recording/reproducing method, and optical information recording medium
JP6093778B2 (ja) 記録再生装置及び記録媒体
WO2014199504A1 (ja) 光情報記録再生装置、及び調整方法
JP6078636B2 (ja) ホログラム記録再生装置及びホログラム再生方法
US20160049170A1 (en) Optical information recording and reconstructing device
JP2014026706A (ja) ホログラフィックメモリ装置および参照光入射角度調整方法
WO2014087460A1 (ja) 記録再生装置
JP5993956B2 (ja) 光情報記録再生装置および光情報記録再生方法
JP2016091572A (ja) ホログラム再生装置、ホログラム再生方法
JP4934655B2 (ja) 情報記録再生装置、光情報記録媒体の製造装置、及び光情報記録媒体。
CN102623020B (zh) 单比特体全息记录和读出中的伺服结构
US9190097B2 (en) Optical information recording/reproducing device and optical information recording/reproducing method
JP2014026707A (ja) 光情報記録再生装置および光情報記録媒体
WO2014097412A1 (ja) 光情報再生装置、及び光情報再生方法
WO2014049695A1 (ja) 光情報記録媒体、光情報記録再生方法および光情報記録再生装置
WO2014083944A1 (ja) ホログラム記録及び/又は再生装置
WO2016163312A1 (ja) 光情報再生装置及び光情報再生方法
JP2016009508A (ja) 光情報再生装置、光情報再生方法
WO2016072004A1 (ja) ホログラム記録再生装置
WO2016009546A1 (ja) 光情報記録再生装置、光情報再生装置、および光情報再生方法
JP2009230816A (ja) 光ディスク装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP