WO2016009546A1 - 光情報記録再生装置、光情報再生装置、および光情報再生方法 - Google Patents

光情報記録再生装置、光情報再生装置、および光情報再生方法 Download PDF

Info

Publication number
WO2016009546A1
WO2016009546A1 PCT/JP2014/069130 JP2014069130W WO2016009546A1 WO 2016009546 A1 WO2016009546 A1 WO 2016009546A1 JP 2014069130 W JP2014069130 W JP 2014069130W WO 2016009546 A1 WO2016009546 A1 WO 2016009546A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phase
intensity
reproduction
optical information
Prior art date
Application number
PCT/JP2014/069130
Other languages
English (en)
French (fr)
Inventor
誠 保坂
健 宇津木
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2014/069130 priority Critical patent/WO2016009546A1/ja
Publication of WO2016009546A1 publication Critical patent/WO2016009546A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing

Definitions

  • the present invention relates to a technique for recording or reproducing optical information.
  • the Blu-ray Disc (TM) standard using a blue-violet semiconductor laser makes it possible to commercialize an optical disc having a recording density of about 100 GB even for consumer use. In the future, it is desired to increase the capacity of optical disks exceeding 500 GB.
  • TM Blu-ray Disc
  • a high density technology by a new method different from the conventional high density technology by shortening the wavelength and increasing the NA of the objective lens is necessary.
  • Patent Document 1 JP-A-2004-272268
  • This publication describes a so-called angle multiplex recording method in which multiplex recording is performed by displaying different page data on a spatial light modulator while changing the incident angle of the reference light to the optical information recording medium.
  • this publication describes a technique for shortening the interval between adjacent holograms by condensing signal light with a lens and arranging an opening (spatial filter) in the beam waist.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-27996
  • This publication states that “a first phase modulation means for generating page data by adding phase information to each pixel of signal light during recording and a diffracted light from a hologram recording medium during reproduction are superimposed.
  • a holographic memory device provided with a light detection means 225 for detecting the interference light 231 is used.
  • the reproduced signal and the light for phase reproduction are detected by interfering multiple times with different phases, or for reproducing the signal and the phase reproduction.
  • it is difficult to calculate the phase at a high speed because it is necessary to perform processing such as giving an angular difference to the light and interfering with the light to Fourier transform the intensity distribution.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an apparatus and a method for calculating the phase of a reproduction signal at high speed.
  • a reproducing light optical system for generating reproducing light for reproducing information and an oscillator light for causing interference with the reproducing light are generated.
  • An oscillator light optical system a phase variable device that changes the phase of the reproduction light or the oscillator light, a photodetector that detects the intensity of at least one of the reproduction light or the oscillator light, the reproduction light, and the oscillator light Are interfering on the photodetector, and a signal processing circuit that calculates the phase of the reproduction light based on the detection result of the photodetector.
  • an optical information reproducing apparatus and method and an optical information recording / reproducing medium that can calculate the phase of a reproduced signal at high speed.
  • Schematic diagram of optical information recording / reproducing apparatus of the present embodiment Schematic diagram of the pickup in the optical information recording / reproducing apparatus of the present embodiment
  • Schematic diagram of the pickup in the optical information recording / reproducing apparatus of the present embodiment Schematic of the operation flow of the optical information recording / reproducing apparatus of the present embodiment
  • Schematic diagram of a signal generation circuit in the optical information recording / reproducing apparatus of the present embodiment Schematic diagram of a signal processing circuit in the optical information recording / reproducing apparatus of the present embodiment.
  • Schematic of the operation flow of the signal generation circuit and signal processing circuit of this embodiment Schematic showing the example of the phase detection method of the reproduction
  • Example Schematic diagram of the reference phase region in the page of this embodiment Schematic of amplitude distribution learning book in the optical information recording medium of the present embodiment
  • Schematic of the operation flow of phase detection of the optical information recording / reproducing apparatus of the present embodiment Schematic diagram of the pickup in the optical information recording / reproducing apparatus of the present embodiment
  • Schematic diagram of phase arrangement of optical information recording / reproducing apparatus of this embodiment Schematic diagram of the pickup in the optical information recording / reproducing apparatus of the present embodiment
  • Schematic diagram of the pickup in the optical information recording / reproducing apparatus of the present embodiment Schematic diagram of the pickup in the optical information recording / reproducing apparatus of the present embodiment
  • Schematic diagram of the operation flow of phase detection of the optical information recording / reproducing apparatus of the present embodiment Schematic diagram of phase arrangement of optical information recording / reproducing apparatus of this embodiment
  • FIG. 1 is a block diagram showing a recording / reproducing apparatus for an optical information recording medium that records and / or reproduces digital information using holography.
  • the optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 includes a pickup 11, a reproduction reference light optical system 12, a cure optical system 13, a disk rotation angle detection optical system 14, and a rotation motor 50.
  • the optical information recording medium 1 is a rotation motor. 50 can be rotated.
  • the pickup 11 plays a role of emitting reference light and signal light to the optical information recording medium 1 and recording digital information on the recording medium using holography.
  • a signal to be recorded is sent to the spatial phase modulator and the spatial light modulator in the pickup 11 by the controller 89 via the signal generation circuit 86, and the signal light is modulated by the spatial phase modulator and the spatial light modulator. .
  • the reproduction reference light optical system 12 When reproducing the information recorded on the optical information recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the optical information recording medium in a direction opposite to that during recording. Generate.
  • the reproduction light reproduced by the reproduction reference light is detected by the photodetector in the pickup 11, and the signal is reproduced by the signal processing circuit 85.
  • the signal processing circuit 85 includes, for example, an amplitude learning circuit and a phase calculation circuit, and calculates the phase of the reproduction signal by a method described later.
  • the irradiation time of the reference light and the signal light applied to the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control circuit 87 by the controller 89.
  • the cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1.
  • Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1.
  • Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
  • the disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1.
  • a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control circuit is detected by the controller 89 using the detected signal.
  • the rotation angle of the optical information recording medium 1 can be controlled via 88.
  • a predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light amount. Can do.
  • the pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and the position is controlled via the access control circuit 81.
  • the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
  • a mechanism for detecting the deviation amount of the reference beam angle is provided in the pickup 11, a servo control signal is generated by the servo signal generation circuit 83, and the deviation amount is corrected via the servo control circuit 84. It is necessary to provide a servo mechanism for this purpose in the optical information recording / reproducing apparatus 10.
  • the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining several optical system configurations or all optical system configurations into one.
  • FIG. 2 shows a recording principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10.
  • the light beam emitted from the light source 301 passes through the collimator lens 302 and enters the shutter 303.
  • the shutter 303 When the shutter 303 is open, after the light beam passes through the shutter 303, the optical ratio of the p-polarized light and the s-polarized light becomes a desired ratio by the optical element 304 composed of, for example, a half-wave plate.
  • the optical element 304 composed of, for example, a half-wave plate.
  • the light is incident on a PBS (Polarization Beam Splitter) prism 305.
  • PBS Polarization Beam Splitter
  • the light beam that has passed through the PBS prism 305 functions as signal light 306, and after the light beam diameter is expanded by the beam expander 308, it passes through the spatial phase modulator 309, the relay lens 310, and the special PBS prism 311, and passes through the spatial light.
  • the light enters the modulator 312.
  • the spatial phase modulator 309 has a function of modulating the phase distribution of the signal light
  • the spatial light modulator 312 has a function of modulating the amplitude distribution of the signal light, so that the phase and amplitude of the signal light can be multi-valued. Since the present invention focuses on the phase distribution reproduction technique, the spatial light modulator 312 is not always necessary, but because it is an effective technique even in a system that simultaneously multi-values not only the phase but also the amplitude, As an example, the spatial light modulator 312 is shown in the drawing.
  • the signal light to which information is added by the spatial phase modulator 309 and the spatial light modulator 312 reflects the special PBS prism 311 and propagates through the relay lens 313 and the spatial filter 314. Thereafter, the signal light is condensed on the optical information recording medium 1 by the objective lens 315.
  • the special PBS prism 311 is designed to reflect a part of the p-polarized light, and is necessary for phase reproduction to be described later.
  • the light beam reflected from the PBS prism 305 functions as reference light 307 and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 316 and then galvano- lated via the mirror 317 and the mirror 318. Incident on the mirror 319. Since the angle of the galvanometer mirror 319 can be adjusted by the actuator 320, the incident angle of the reference light incident on the optical information recording medium 1 after passing through the lens 321 and the lens 322 can be set to a desired angle. In order to set the incident angle of the reference light, an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror. In this specification, for example, the reference light angle is defined as a positive direction for a counterclockwise direction and a negative direction for a clockwise direction, with the direction perpendicular to the optical information recording medium being 0 degrees as shown in the figure.
  • the signal light and the reference light are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is recorded by writing this pattern on the recording medium.
  • the incident angle of the reference light incident on the optical information recording medium 1 can be changed by the galvanometer mirror 319, recording by angle multiplexing is possible.
  • holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
  • FIG. 3 shows a reproduction principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10.
  • the reference light is incident on the optical information recording medium 1 as described above, and the light beam transmitted through the optical information recording medium 1 is reflected by the galvanometer mirror 324 whose angle can be adjusted by the actuator 323. By doing so, the reproduction reference light is generated.
  • the reproduction light 336 reproduced by the reproduction reference light propagates through the objective lens 315, the relay lens 313, and the spatial filter 314. Thereafter, the reproduction light passes through the special PBS prism 311 and enters the photodetector 325.
  • the light beam transmitted through the PBS prism 305 acts as an oscillator light 326 that overlaps and interferes with the diffracted light from the optical information recording medium 1 at the time of reproduction, and after adding desired phase information by the spatial phase modulator 309, a special PBS A part of the prism reflects and enters the photodetector 325.
  • an image sensor such as a CMOS image sensor or a CCD image sensor can be used, but any element may be used as long as page data can be reproduced.
  • FIG. 4 shows an operation flow of recording and reproduction in the optical information recording / reproducing apparatus 10.
  • a flow relating to recording / reproduction using holography in particular will be described.
  • FIG. 4A shows an operation flow from the insertion of the optical information recording medium 1 into the optical information recording / reproducing apparatus 10 until the preparation for recording or reproduction is completed.
  • FIG. FIG. 4C shows an operation flow until information is recorded on the information recording medium 1, and
  • FIG. 4C shows an operation flow until the information recorded on the optical information recording medium 1 is reproduced from the ready state.
  • the optical information recording / reproducing apparatus 10 discriminates whether the inserted medium is a medium for recording or reproducing digital information using holography, for example. (402).
  • the optical information recording / reproducing apparatus 10 reads control data provided on the optical information recording medium (403). ), For example, information relating to the optical information recording medium and information relating to various setting conditions during recording and reproduction, for example.
  • step 404 After reading the control data, various adjustments according to the control data and learning processing (404) related to the pickup 11 are performed, and the optical information recording / reproducing apparatus 10 is ready for recording or reproduction (405).
  • the oscillator light and the reproduction page amplitude distribution are learned. Note that the learned oscillator light and the amplitude distribution of the reproduction page are stored in an optical information recording / reproducing apparatus, an optical information recording medium, or other storage medium.
  • the operation flow from the ready state to recording information is as follows. First, data to be recorded is received (411), and information corresponding to the data is received from the spatial light modulator in the pickup 11. To send.
  • the access control circuit 81 is controlled to position the pickup 11 and the cure optical system 13 at predetermined positions on the optical information recording medium.
  • the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
  • a predetermined region is pre-cured using the light beam emitted from the cure optical system 13 (414), and data is recorded using the reference light and signal light emitted from the pickup 11 (415).
  • post cure is performed using the light beam emitted from the cure optical system 13 (416). Data may be verified as necessary.
  • the operation flow from the ready state to the reproduction of the recorded information is as follows.
  • the access control circuit 81 is controlled, and the pickup 11 and the reproduction reference light are reproduced.
  • the position of the optical system 12 is positioned at a predetermined position on the optical information recording medium.
  • the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
  • FIG. 5 is a block diagram of the signal generation circuit 86 of the optical information recording / reproducing apparatus 10.
  • the input / output control circuit 90 When the input of user data to the output control circuit 90 is started, the input / output control circuit 90 notifies the controller 89 that the input of user data has started. In response to this notification, the controller 89 instructs the signal generation circuit 86 to record data for one page input from the input / output control circuit 90. A processing command from the controller 89 is notified to the sub-controller 501 in the signal generation circuit 86 via the control line 508. Upon receiving this notification, the sub-controller 501 controls each signal processing circuit via the control line 508 so that the signal processing circuits are operated in parallel. First, the memory control circuit 503 is controlled so that user data input from the input / output control circuit 90 via the data line 509 is stored in the memory 502.
  • the CRC calculation circuit 504 performs control to convert the user data into CRC.
  • the scramble circuit 505 scrambles the CRC-converted data by adding a pseudo-random data sequence
  • the error correction encoding circuit 506 performs error correction encoding by adding a parity data sequence.
  • the pickup interface circuit 507 is made to read out the error correction encoded data from the memory 502 in the order of the two-dimensional data on the spatial phase modulator 309 and the spatial light modulator 312 and add a reference marker for reproduction. Thereafter, the two-dimensional data is transferred to the spatial phase modulator 309 and the spatial light modulator 312 in the pickup 11.
  • FIG. 6 is a block diagram of the signal processing circuit 85 of the optical information recording / reproducing apparatus 10.
  • the controller 89 instructs the signal processing circuit 85 to reproduce the data for one page input from the pickup 11.
  • a processing command from the controller 89 is notified to the sub-controller 601 in the signal processing circuit 85 via the control line 611.
  • the sub-controller 601 controls each signal processing circuit via the control line 611 so as to operate each signal processing circuit in parallel.
  • the memory control circuit 603 is controlled to store the image data input from the pickup 11 via the pickup interface circuit 610 via the data line 612 in the memory 602.
  • the image position detection circuit 609 performs control to detect a marker from the image data stored in the memory 602 and extract an effective data range.
  • the image distortion correction circuit 608 performs distortion correction such as image inclination, magnification, and distortion, and controls to convert the image data into the expected two-dimensional data size.
  • Each bit data of a plurality of bits constituting the size-converted two-dimensional data is determined by the multi-value conversion circuit 607 as “0”, “1”, “2”, “3” in, for example, four-value recording / reproduction, Control is performed to store data on the memory 602 in the order of output of reproduction data.
  • the error correction circuit 606 corrects the error included in each data string
  • the scramble release circuit 605 releases the scramble to add the pseudo random number data string
  • the CRC calculation circuit 604 causes an error in the user data on the memory 602. Check not included. Thereafter, the user data is transferred from the memory 602 to the input / output control circuit 90.
  • FIG. 7 shows a data processing flow at the time of recording and reproduction.
  • FIG. 7A shows the data on the spatial phase modulator 309 and the spatial light modulator 312 after the recording data reception 411 in the input / output control circuit 90.
  • 7 shows a recording data processing flow in the signal generation circuit 86 until it is converted into two-dimensional data.
  • FIG. 7B shows the reproduction data in the input / output control circuit 90 after the two-dimensional data is detected by the photodetector 325.
  • the reproduction data processing flow in the signal processing circuit 85 up to transmission 424 is shown.
  • user data When user data is received (701), it is divided into a plurality of data strings and each data string is converted to CRC (702) so that error detection during reproduction can be performed, and a pseudo-random number is added to the data string for the purpose of preventing repetition of the same pattern.
  • CRC CRC
  • error correction coding 704 such as Reed-Solomon code is performed so that error correction during reproduction can be performed.
  • this data string is converted into M ⁇ N two-dimensional data, and the two-dimensional data (705) for one page is constituted by repeating the data for one page data.
  • a marker serving as a reference for image position detection and image distortion correction at the time of reproduction is added to the two-dimensional data configured as described above (706), and the data is transferred to the spatial phase modulator 309 and the spatial light modulator 312 ( 707).
  • the image data detected by the photodetector 325 is transferred to the signal processing circuit 85 (711).
  • the image position is detected based on the marker included in the image data (712), and the distortion such as the tilt, magnification, and distortion of the image is corrected (713), and then the multivalue processing (714) is performed to remove the marker. (715)
  • two-dimensional data for one page is acquired (716).
  • error correction processing (717) is performed to remove the parity data strings.
  • descrambling processing (718) is performed, CRC error detection processing (719) is performed, CRC CRC is deleted, and user data is transmitted (720) via the input / output control circuit 90.
  • the fringe scanning method that is widely used as a phase reproduction technique will be described.
  • the phase of the oscillator light is normally changed four times to 0, ⁇ / 2, ⁇ , 3 ⁇ / 2 to interfere with the reproduction light, and the interference light intensity at that time
  • the phase is calculated from the information.
  • the light intensity I of the interference light when the reproduction light Bexp (i ⁇ ) and the oscillator light Aexp (i ⁇ ) are caused to interfere coaxially is expressed by the following equation.
  • B is the amplitude of the reproduction light
  • is the phase of the reproduction light
  • A is the amplitude of the oscillator light
  • is the phase of the oscillator light
  • i is an imaginary unit.
  • phase ⁇ of the reproduction light can be calculated by the following equation.
  • I0 ⁇ I2 4ABcos ( ⁇ ) (Formula 7)
  • I1-I3 4ABsin ( ⁇ ) (Formula 8) Therefore, when cos ( ⁇ ) is + and sin ( ⁇ ) is +, 0 ⁇ ⁇ ⁇ ⁇ / 2, and when cos ( ⁇ ) is ⁇ and sin ( ⁇ ) is +, ⁇ / 2 ⁇ ⁇ ⁇ ⁇ ⁇ ,
  • cos ( ⁇ ) is ⁇ and sin ( ⁇ ) is ⁇ , ⁇ ⁇ ⁇ ⁇ 3 ⁇ / 2
  • cos ( ⁇ ) is + and sin ( ⁇ ) is ⁇ , 3 ⁇ / 2 ⁇ ⁇ ⁇ 2 ⁇ . Since the range of the light phase ⁇ can be limited, it is possible to calculate even when the phase of the reproduction light is from 0 to 2 ⁇ .
  • FIG. 8 shows a schematic diagram of a reproduction page phase detection method in this embodiment.
  • (1) only the oscillator light is incident on the photodetector 325, and the intensity distribution of the oscillator light is detected.
  • the amplitude distribution A is calculated from the 1/2 power of the intensity distribution detected by the photodetector 325.
  • the intensity distribution of the reproduction page is detected.
  • the learning page for example, a white page in which all signal light regions are displayed with the same amplitude is used.
  • the phase distributions of the white pages may all be the same phase, or may be a phase distribution that is optimal for learning and calculated in advance.
  • calculating the amplitude distribution B it is calculated from the 1/2 power of the intensity distribution detected by the photodetector 325.
  • the interference light is detected by causing the oscillator light and each reproduction page to interfere with each other on the photodetector.
  • the phase of the oscillator light or the reproduction page is changed to 0 and ⁇ / 2, and the interference light intensity of I0 shown in Expression 2 and I1 shown in Expression 3 is detected.
  • the phase ⁇ of each pixel of the reproduction page can be calculated from the detected interference light intensities I0 and I1 and the learned amplitude distribution A and amplitude distribution B by the following equation.
  • the number of detections can be reduced to two by performing learning of the amplitude distributions A and B in advance.
  • a coping method when the phase of the reproduction light is used from 0 to 2 ⁇ it can be dealt with as described above by obtaining the signs of cos ( ⁇ ) and sin ( ⁇ ) by the following equation.
  • FIG. 9 shows a schematic diagram of the reference phase region in the page in the present embodiment.
  • the reproduction page phase distribution is calculated by the above-described method, there is a problem that the zero point of the phase at the time of recording is different from that at the time of calculation.
  • a reference phase area is provided in a page, and a page format is set so that a known phase is obtained in this area.
  • the phase of the reference phase region calculated by Equation 9 is shifted from a known value, the phase of the entire region is shifted by the amount of error.
  • the unit amount error of the calculated phase may be corrected from the ratio calculation.
  • so-called oversampling detection may be performed in which the pixel pitch of the photodetector is reduced to be equal to or less than the pixel pitch of the recording signal in order to improve the positional deviation tolerance of the photodetector.
  • oversampling detection for example, various interpolation techniques may be used to perform resampling processing on a signal that matches the pixel pitch of the recording signal, and then perform calculations according to Equation 9 to Equation 11, Alternatively, the calculation described in Expression 9 to Expression 11 may be performed with the oversampled signal, and finally the resampling process may be performed.
  • FIG. 10 shows a schematic diagram of an amplitude distribution learning book in the optical information recording medium in the present embodiment.
  • An area for recording a reproduction page amplitude distribution learning book is provided at a predetermined position in the optical information recording medium. For example, a white page for learning is recorded during recording. During reproduction, the learning page is reproduced, and the amplitude distribution of the reproduction page is calculated in advance. Note that the amplitude distribution of all pages may be recorded and learned in advance in case the amplitude distribution of the reproduction page is different for each page.
  • FIG. 11 shows a schematic diagram of an operation flow of phase detection in the optical information recording / reproducing apparatus in the present embodiment.
  • phase detection by 1101, only the oscillator light is detected by the photodetector, and the amplitude distribution of the oscillator light is learned.
  • the optical information recording medium and the reference light angle are positioned at positions where the reproduction page amplitude distribution learning page can be reproduced.
  • the interference light intensities I0 and I1 expressed by the equations 2 and 3 are calculated for each page.
  • the phase distribution of each page is calculated from Equation 9 using 1105.
  • this flowchart shows an example, and the order of each process may be changed.
  • phase of the oscillator light is changed.
  • the phase of the reproduction light may be changed to detect the interference between the oscillator light and the reproduction light.
  • the phase is not limited to 0 or ⁇ / 2. Since this can be dealt with by correcting the conversion formula, any phase may be used.
  • the method according to the present embodiment has an advantage that the number of interference light detections can be reduced to two by learning the amplitude distribution in advance, so that phase calculation can be performed at a higher speed than the fringe scan method.
  • FIG. 12 shows a schematic diagram of a pickup in the optical information recording / reproducing apparatus in the present embodiment.
  • Intensity distribution B 2 or amplitude distribution B of the reproduced pages to vary with disturbance situations, such as the reference beam angle error and the wavelength error, there is always problem that does not match the time of learning.
  • the intensity distribution B 2 playback page without detected in real time by learning to reduce the influence of change due to the disturbance situation of the intensity distribution.
  • the reproduction page intensity distribution B 2 is detected by the photodetector 334.
  • the amplitude distribution B of the reproduction light it is calculated from the 1/2 power of the intensity distribution B 2 detected by the photodetector 334.
  • the intensity distribution A 2 or amplitude distribution A of the oscillator beam is calculated by learning in the same manner for example as in Example 1.
  • the interference light intensities I0 and I1 are also detected by the same method as in the first embodiment, for example.
  • the method of this embodiment has an advantage that it can cope with a change in the amplitude distribution of the reproduction page caused by various disturbances because the amplitude distribution of the reproduction page is detected in real time.
  • FIG. 13 shows a schematic diagram of the phase arrangement in the optical information recording / reproducing apparatus in the present embodiment.
  • the phase arrangement For example, only the range of 0 to ⁇ is used as the phase arrangement.
  • the interference light is detected only by I0 shown in Equation 2
  • the reproduction page phase ⁇ can be calculated by the following equation.
  • the information on A and B is acquired by the method described in the first or second embodiment, for example.
  • FIG. 14 shows a schematic diagram of a pickup in the optical information recording / reproducing apparatus in the present embodiment.
  • the signal light transmitted through the PBS prism 305 is converted into s-polarized light by the half-wave plate 331 and reflected from the PBS prism 327. Thereafter, the light is reflected from the quarter-wave plate 328 with a back reflection film, the polarized light is converted into p-polarized light, reflected by the mirror 330, and then propagates through the same path as in FIG.
  • An actuator 329 is attached to the quarter-wave plate 328 with a back reflection film, and the optical path length can be adjusted. At the time of reproduction, the actuator 329 adjusts the optical path length so that the zero point of the phase of the oscillator light and the reproduction page coincide.
  • the reference phase region shown in FIG. 9 is recorded with phase 0, and the interference light intensity when the phase of the spatial phase modulator 309 is 0 and the interference light intensity in the reference phase region of the reproduction signal is maximum.
  • it is realized by adjusting the position of the actuator 329 so as to take a value.
  • FIG. 15 shows another schematic diagram of the pickup in the optical information recording / reproducing apparatus in the present embodiment.
  • the zero point correction of the phase of the oscillator light and the reproduction page is corrected by the optical path length of the oscillator light, but in the configuration of FIG. 15, it is realized by the phase correction of the reproduction page.
  • the reference light reflected from the PBS prism 305 is reflected from the PBS prism 327 and reflected from the quarter-wave plate 328 with a back reflection film, and the polarized light is converted into p-polarized light and transmitted through the PBS prism 327. Thereafter, the light is reflected by the mirror 330, adjusted to a desired polarization direction by the polarization direction conversion element 316, and then propagates through a path similar to that in FIG. At this time, as in the case of FIG. 14, for example, the actuator 329 performs the zero point correction of the phases of the oscillator light and the reproduction page.
  • the quarter-wave plate with the back reflecting film shown in FIGS. 14 and 15 may use two elements of a quarter-wave plate and a mirror, and may be realized by another configuration having the same effect. It doesn't matter. 14 and 15 show the configuration in which the zero point correction of the phase of the reproduction page is performed by making the optical path length of the oscillator light or the reference light variable. However, both the optical path lengths of the oscillator light and the reference light are changed. It may be adjusted to be variable. By moving the optical path lengths of the oscillator light and the reference light in the same direction, it is possible to reduce the change sensitivity of the relative optical path length difference with respect to the amount of movement of the actuator, and to adjust with high accuracy.
  • the zero point adjustment of the phase may be performed by using the spatial phase modulator 309.
  • the phase modulator 309 for recording phase distribution modulation to adjust the zero point of the phase, new parts such as an actuator are not necessary, and the number of parts can be reduced.
  • FIG. 16 shows a schematic diagram of an operation flow of phase detection in the optical information recording / reproducing apparatus in the present embodiment.
  • phase detection only the oscillator light is detected by the photodetector at 1101, and the amplitude distribution of the oscillator light is learned.
  • step 1602 the optical information recording medium and the reference light angle are positioned at positions where the reproduction page amplitude distribution learning page can be reproduced.
  • step 1603 only the learning page is detected by the photodetector, and the amplitude distribution of the reproduction page is learned.
  • the zero point of the phase of the oscillator light and the reproduction page is corrected.
  • phase arrangement range of 0 to 2 ⁇ When using a phase arrangement range of 0 to 2 ⁇ , cos ( ⁇ ) and cos ( ⁇ ) have the same value, and therefore it is necessary to detect the interference light twice for the separation of + ⁇ or ⁇ .
  • the method of this embodiment has an advantage that high-speed reproduction can be performed because the phase arrangement is limited to the range from 0 to ⁇ , and the detection of interference light can be reduced to one time.
  • the phase arrangement 0 to ⁇ is shown, but the phase ⁇ may be calculated from arcsin by limiting to the range of ⁇ / 2 to ⁇ / 2.
  • FIG. 17 shows a schematic diagram of the phase arrangement in the optical information recording / reproducing apparatus in the present embodiment.
  • the phase absolute value is different between the + region and the ⁇ region.
  • the phase of the playback page is calculated from Expression 12 after performing the zero point correction of the phase by the method described in the third embodiment.
  • the phase is arranged so that the phase absolute value is different between the + region and the ⁇ region as shown in FIG. 17, the error amount is the smallest. It is possible to cope with this by determining that the recording phase code is used.
  • the number of detection times of interference light can be reduced to 1 while using the recording phase in the range of 0 to 2 ⁇ , so that it is faster than the case of detecting interference light twice. There is an advantage that reproduction is possible.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • an optical information reproducing apparatus that reproduces information modulated using the phase of light
  • an oscillator optical optical system that generates an oscillator light for interference with the reproduced light, the reproduced light, and / or the A phase variable device that changes the phase of the oscillator light
  • a photodetector that detects the intensity of the reproduction light and the oscillator light
  • interference optics that causes the reproduction light and the oscillator light to interfere at substantially the same angle on the photodetector.
  • An optical information reproducing apparatus comprising: a system; a phase calculating circuit that calculates a phase of the reproduction light; and a signal processing circuit that processes a phase signal of the reproduction light output from the phase calculation circuit .
  • the photodetector detects the intensity A 2 of the oscillator light and the intensity B 2 of the reproduction light in advance, and the phase variable unit includes the reproduction light.
  • the phase of the oscillator light is changed twice as ⁇ 0 and ⁇ 1 with respect to a certain reference, and the photodetector detects the intensity I0 and the phase ⁇ 1 when the interference light is acquired in the phase ⁇ 0 state by the phase variable device.
  • An optical information reproducing apparatus characterized in that the intensity I1 obtained in the state is acquired, and the phase calculation circuit calculates the phase of the reproduction light from information of A 2 , B 2 , I0 and I1.
  • the photodetector detects the intensity A 2 of the oscillator light and the intensity B 2 of the reproduced light in advance, and the phase variable unit reproduces the reproduced light.
  • the phase of the oscillator light is changed twice to 0 and ⁇ / 2 with respect to a reference, and the photodetector detects the intensity I0 and the phase when the interference light is acquired in the phase 0 state by the phase variable device.
  • an optical information reproducing apparatus As a modification 4, an optical information reproducing apparatus according to Modification 1, a reproduction light detector that detects the intensity B 2 of the reproducing light, an optical system for irradiating a part of the reproduction light on the regeneration photodetector
  • the photodetector detects the intensity A 2 of the oscillator light in advance, and the phase variable device changes the phase of the reproduction light or the oscillator light twice, 0 and ⁇ / 2 with respect to a reference, and
  • the photodetector acquires the intensity I0 when the interference light is acquired in the phase 0 state by the phase variable device and the intensity I1 when acquired in the phase ⁇ / 2 state, and the phase calculation circuit reproduces
  • the optical information reproducing device described in the modified example 1 in the case where information modulated by limiting the light phase to a range from 0 to ⁇ with respect to a certain reference is reproduced,
  • An optical information reproducing apparatus characterized by being calculated by the following calculation.
  • the phase variable unit sets the phase of the reproduction light or the oscillator light to 0 with respect to a certain reference, and the photodetector detects the intensity I1 when the interference light is acquired in the state of phase ⁇ / 2 by the phase variable unit.
  • an optical information recording / reproducing apparatus that records and reproduces information modulated using the phase of light
  • a light source that generates recording light
  • a signal processing circuit that calculates a recording phase from the recording information
  • a phase modulator that modulates the phase of the recording light
  • an optical system that records the phase of the recording light on an optical information recording medium, the phase modulator being a region whose phase is + with respect to a reference at the time of recording
  • the modulation is performed so that the absolute value of the phase is different in a region where the phase is ⁇ .
  • the absolute value of the phase is different between the region where the phase of the light is + and the region of the phase-with respect to a certain reference.
  • the phase variable unit sets the phase of the reproduction light or the oscillator light to 0 with respect to a certain reference, and the photodetector detects the interference light with the phase variable of phase 0.
  • the phase varying device uses the phase of the reproduction light or the oscillator light by ⁇ /
  • the phase varying device changes the phase of the reproduction light or the oscillator light twice to 0 and ⁇ / 2 with respect to a certain reference to detect the light detection.
  • the phase acquisition circuit acquires the intensity I0 when the interference light is acquired in the phase 0 state and the intensity I1 when the interference light is acquired in the phase ⁇ / 2 state, and the phase calculation circuit Using the intensity A 2 of the oscillator light acquired by learning in advance and the intensity B 2 of the reproduction light acquired in advance or in real time, the phase ⁇ is calculated as I0-A 2 -B 2 and I1-A 2 -B 2 .
  • an optical information recording / reproducing apparatus for recording / reproducing information modulated using the phase of light
  • a light source for generating recording light
  • a signal processing circuit for calculating a recording phase from the recording information
  • the recording A phase modulator that modulates the phase of light and an optical system that records the phase of the recording light on an optical information recording medium, and for correcting the zero point of the phase during reproduction in the phase modulator during recording
  • the zero point of the phase output from the phase calculating circuit is obtained by reproducing a known reference phase with a reproduced phase value and a known phase value.
  • An optical information reproducing apparatus comprising: a zero point correction circuit for correcting from difference value information.
  • the photodetector acquires the intensity I of the interference light while changing the phase by the phase varying device, and the phase varying device
  • An optical information reproducing apparatus characterized in that a phase when the light intensity I is maximum is a zero point of the phase.
  • the optical information recording has a region for recording / reproducing a signal for phase zero point correction Reproduction medium.
  • an oscillator light generation step for generating an oscillator light for interference with the reproduction light, the reproduction light and / or the A phase variable step for changing the phase of the oscillator light, a light detection step for detecting the intensity of the reproduction light and the oscillator light, and an interference step for causing the reproduction light and the oscillator light to interfere at substantially the same angle in the light detection step;
  • a phase calculating step for calculating the phase of the reproduced light from the intensity of the reproduced light and the oscillator light and the intensity of the reproduced light detected by a photodetector and the interference light of the oscillator light; and output in the phase calculating step
  • a signal processing step for processing a phase signal of the reproduced light.
  • an optical information recording / reproducing method for recording / reproducing information modulated using the phase of light a step of generating recording light, a signal processing step of calculating a recording phase from the recording information, and the recording
  • a phase modulation step for modulating the phase of the light and a step for recording the phase of the recording light on an optical information recording medium
  • the phase modulation step includes a region whose phase is + with respect to a reference at the time of recording.
  • an optical information recording / reproducing method for recording / reproducing information modulated using the phase of light a step of generating recording light, a signal processing step of calculating a recording phase from the recording information, and the recording
  • An optical information recording / reproducing method characterized in that a signal obtained by modulating a reference phase is recorded as the information.
  • a step of generating recording light, a phase modulation step of modulating the phase of the recording light, and the recording Recording a phase of light on an optical information recording medium, generating an oscillator light for causing interference with the reproduction light, a phase variable step for changing the phase of the reproduction light or the oscillator light, the reproduction light or the A light detection step for detecting the intensity of at least one of the oscillator lights, and an interference step for causing the reproduction light and the oscillator light to interfere with each other in the light detection step.
  • the phase modulation step is performed with respect to a reference phase during recording.
  • the recording light is modulated so that the absolute value of the phase is different between the positive phase region and the negative phase region.
  • the holographic memory is described as an example, but the present invention is not limited to the holographic memory, and can be widely applied to various technologies for performing phase reproduction.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • Optical information recording medium 10: Optical information recording / reproducing apparatus, 11: Pickup, 12 ... Reference light optical system for reproduction, 13 ... Disc Cure optical system, 14 ... Optical system for detecting disk rotation angle, 81 ... Access control circuit, 82... Light source drive circuit, 83... Servo signal generation circuit, 84 ... Servo control circuit, 85 ... Signal processing circuit, 86 ... Signal generation circuit, 87 ... Shutter control circuit, 88 ... Disc rotation motor control circuit, 89 ... Controller, 90 ... Input / output control circuit, 91 ... External control device, 301 ... Light source, 302 ... Collimating lens, 303 ... Shutter, 304 ...

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

 位相を利用した記録情報の再生時において、高速に再生信号の位相を算出可能な装置及びその方法を提供すること。 光の位相を利用して変調された情報を再生する光情報再生装置において、情報を再生するための再生光を生成する再生光光学系と、前記再生光と干渉させる為のオシレータ光を生成するオシレータ光光学系と、前記再生光または前記オシレータ光の位相を変える位相可変器と、前記再生光または前記オシレータ光のうち少なくとも一方の強度を検出する光検出器と、前記再生光および前記オシレータ光を前記光検出器上で干渉させる干渉光学系と、前記光検出器の検出結果に基づいて前記再生光の位相を算出する信号処理回路と、を備える。

Description

光情報記録再生装置、光情報再生装置、および光情報再生方法
 本発明は、光情報を記録または再生する技術に関する。
 現在、青紫色半導体レーザを用いたBlu-ray Disc(TM)規格により、民生用においても100GB程度の記録密度を持つ光ディスクの商品化が可能となっている。今後は、光ディスクにおいても500GBを超える大容量化が望まれる。しかしながら、このような高密度を光ディスクで実現するためには、従来の短波長化と対物レンズ高NA化による高密度化技術とは異なる新しい方式による高密度化技術が必要である。
 次世代のストレージ技術に関する研究が行われる中、ホログラフィを利用してデジタル情報を記録するホログラム記録技術が注目を集めている。ホログラム記録技術として、例えば特開2004-272268号公報(特許文献1)がある。本公報には、参照光の光情報記録媒体への入射角度を変えながら異なるページデータを空間光変調器に表示して多重記録を行う、所謂角度多重記録方式が記載されている。さらに本公報には、信号光をレンズで集光してそのビームウエストに開口(空間フィルタ)を配することにより、隣接するホログラムの間隔を短くする技術が記載されている。
 また、ホログラム記録において、位相を利用して信号を多値化する記録再生技術として、たとえば特開2012-27996号公報(特許文献2)がある。本公報には、「記録時において信号光の各画素に位相情報を付加してページデータを生成するための第1の位相変調手段と、再生時においてホログラム記録媒体からの回折光と重ね合わせて干渉させるオシレーター光208を生成するためのオシレーター光生成手段と、前記オシレーター光208に位相情報を付加する第2の位相変調手段と、前記オシレーター光208とホログラム記録媒体からの回折光とが重ね合わさった干渉光231を検出する光検出手段225とを備えたホログラフィックメモリ装置を用いる。」と記載されている。
特開2004-272268号公報 特開2012-27996号公報
 ところで、光の位相を利用して変調された情報を再生する光情報再生装置においては、再生信号と位相再生用の光を位相を変えて複数回干渉させ検出する、或いは再生信号と位相再生用の光に角度差を与えて干渉し強度分布をフーリエ変換する等の処理が必要であり、高速な位相の算出が難しいという課題がある。
 本発明は上記問題を鑑みなされたものであり、高速に再生信号の位相を算出可能な装置とその方法を提供することを目的とする。
 上記課題は、例えば以下の構成により解決される。光の位相を利用して変調された情報を再生する光情報再生装置において、情報を再生するための再生光を生成する再生光光学系と、前記再生光と干渉させる為のオシレータ光を生成するオシレータ光光学系と、前記再生光または前記オシレータ光の位相を変える位相可変器と、前記再生光または前記オシレータ光のうち少なくとも一方の強度を検出する光検出器と、前記再生光および前記オシレータ光を前記光検出器上で干渉させる干渉光学系と、前記光検出器の検出結果に基づいて前記再生光の位相を算出する信号処理回路と、を備える。
 本発明によれば、高速に再生信号の位相を算出可能な光情報再生装置とその方法、及び光情報記録再生媒体を提供することができる。
本実施例の光情報記録再生装置の概略図 本実施例の光情報記録再生装置内のピックアップの概略図 本実施例の光情報記録再生装置内のピックアップの概略図 本実施例の光情報記録再生装置の動作フローの概略図 本実施例の光情報記録再生装置内の信号生成回路の概略図 本実施例の光情報記録再生装置内の信号処理回路の概略図 本実施例の信号生成回路及び信号処理回路の動作フローの概略図 本実施例の再生ページの位相検出方法の例を表す概略図 本実施例のページ内の基準位相領域の概略図 本実施例の光情報記録媒体中の振幅分布学習用ブックの概略図 本実施例の光情報記録再生装置の位相検出の動作フローの概略図 本実施例の光情報記録再生装置内のピックアップの概略図 本実施例の光情報記録再生装置の位相配置の概略図 本実施例の光情報記録再生装置内のピックアップの概略図 本実施例の光情報記録再生装置内のピックアップの概略図 本実施例の光情報記録再生装置の位相検出の動作フローの概略図 本実施例の光情報記録再生装置の位相配置の概略図
 以下、本発明の実施例について図面を用いて説明する。
 本発明における第1の実施例について図1から図11を用いて説明する。
 図1はホログラフィを利用してデジタル情報を記録及び/または再生する光情報記録媒体の記録再生装置を示すブロック図である。
 光情報記録再生装置10は、入出力制御回路90を介して外部制御装置91と接続されている。記録する場合には、光情報記録再生装置10は外部制御装置91から記録する情報信号を入出力制御回路90により受信する。再生する場合には、光情報記録再生装置10は再生した情報信号を入出力制御回路90により外部制御装置91に送信する。
 光情報記録再生装置10は、ピックアップ11、再生用参照光光学系12、キュア光学系13、ディスク回転角度検出用光学系14、及び回転モータ50を備えており、光情報記録媒体1は回転モータ50によって回転可能な構成となっている。
 ピックアップ11は、参照光と信号光を光情報記録媒体1に出射してホログラフィを利用してデジタル情報を記録媒体に記録する役割を果たす。この際、記録する信号はコントローラ89によって信号生成回路86を介してピックアップ11内の空間位相変調器及び空間光変調器に送り込まれ、信号光は空間位相変調器及び空間光変調器によって変調される。
 光情報記録媒体1に記録した情報を再生する場合は、ピックアップ11から出射された参照光を記録時とは逆の向きに光情報記録媒体に入射させる光波を再生用参照光光学系12にて生成する。再生用参照光によって再生される再生光をピックアップ11内の光検出器によって検出し、信号処理回路85によって信号を再生する。信号処理回路85は、例えば振幅学習回路、位相算出回路を含み、後述する方法にて再生信号の位相を算出する。
 光情報記録媒体1に照射する参照光と信号光の照射時間は、ピックアップ11内のシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することで調整できる。
 キュア光学系13は、光情報記録媒体1のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、光情報記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、光情報記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。
 ディスク回転角度検出用光学系14は、光情報記録媒体1の回転角度を検出するために用いられる。光情報記録媒体1を所定の回転角度に調整する場合は、ディスク回転角度検出用光学系14によって回転角度に応じた信号を検出し、検出された信号を用いてコントローラ89によってディスク回転モータ制御回路88を介して光情報記録媒体1の回転角度を制御する事が出来る。
 光源駆動回路82からは所定の光源駆動電流がピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。
 また、ピックアップ11及びディスクキュア光学系13は、光情報記録媒体1の半径方向に位置をスライドできる機構が設けられており、アクセス制御回路81を介して位置制御がおこなわれる。
 ところで、ホログラフィの角度多重の原理を利用した記録技術は、参照光角度のずれに対する許容誤差が極めて小さくなる傾向がある。
 従って、ピックアップ11内に、参照光角度のずれ量を検出する機構を設けて、サーボ信号生成回路83にてサーボ制御用の信号を生成し、サーボ制御回路84を介して該ずれ量を補正するためのサーボ機構を光情報記録再生装置10内に備えることが必要となる。
 また、ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。
 図2は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における記録原理を示したものである。光源301を出射した光ビームはコリメートレンズ302を透過し、シャッタ303に入射する。シャッタ303が開いている時は、光ビームはシャッタ303を通過した後、例えば2分の1波長板などで構成される光学素子304によってp偏光とs偏光の光量比が所望の比になるようになど偏光方向が制御された後、PBS(Polarization Beam Splitter)プリズム305に入射する。
 PBSプリズム305を透過した光ビームは、信号光306として働き、ビームエキスパンダ308によって光ビーム径が拡大された後、空間位相変調器309、リレーレンズ310、特殊PBSプリズム311を透過して空間光変調器312に入射する。
 空間位相変調器309は信号光の位相分布を、空間光変調器312は信号光の振幅分布を変調する機能があり、信号光の位相及び振幅を多値化することが可能となる。なお、本発明は位相分布の再生技術に主眼を置いているため、空間光変調器312は必ずしも必要では無いが、位相だけでなく振幅を同時に多値化するシステムにおいても有効な技術の為、一例として本図面には空間光変調器312を記載した。
 空間位相変調器309及び空間光変調器312によって情報が付加された信号光は、特殊PBSプリズム311を反射し、リレーレンズ313ならびに空間フィルタ314を伝播する。その後、信号光は対物レンズ315によって光情報記録媒体1に集光する。なお、特殊PBSプリズム311は、p偏光の一部を反射するように設計したものであり、後述する位相再生の為必要となる。
 一方、PBSプリズム305を反射した光ビームは参照光307として働き、偏光方向変換素子316によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー317ならびにミラー318を経由してガルバノミラー319に入射する。ガルバノミラー319はアクチュエータ320によって角度を調整可能のため、レンズ321とレンズ322を通過した後に光情報記録媒体1に入射する参照光の入射角度を、所望の角度に設定することができる。なお、参照光の入射角度を設定するために、ガルバノミラーに代えて、参照光の波面を変換する素子を用いても構わない。本明細書では、参照光角度は、例えば図示するように光情報記録媒体に垂直な方向を0度として、反時計回りを+方向、時計回りを-方向と定義する。
 このように信号光と参照光とを光情報記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。また、ガルバノミラー319によって光情報記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。
 以降、同じ領域に参照光角度を変えて記録されたホログラムにおいて、1つ1つの参照光角度に対応したホログラムをページと呼び、同領域に角度多重されたページの集合をブックと呼ぶことにする。
 図3は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における再生原理を示したものである。記録した情報を再生する場合は、前述したように参照光を光情報記録媒体1に入射し、光情報記録媒体1を透過した光ビームを、アクチュエータ323によって角度調整可能なガルバノミラー324にて反射させることで、その再生用参照光を生成する。
 この再生用参照光によって再生された再生光336は、対物レンズ315、リレーレンズ313ならびに空間フィルタ314を伝播する。その後、再生光は特殊PBSプリズム311を透過して光検出器325に入射する。
 一方、PBSプリズム305を透過した光ビームは再生時には光情報記録媒体1からの回折光と重ね合わせて干渉させるオシレータ光326として働き、空間位相変調器309により所望の位相情報を付加後、特殊PBSプリズムを一部が反射し、光検出器325に入射する。
 光検出器325としては例えばCMOSイメージセンサーやCCDイメージセンサーなどの撮像素子を用いることができるが、ページデータを再生可能であれば、どのような素子であっても構わない。
 図4は、光情報記録再生装置10における記録、再生の動作フローを示したものである。ここでは、特にホログラフィを利用した記録再生に関するフローを説明する。
 図4(a)は、光情報記録再生装置10に光情報記録媒体1を挿入した後、記録または再生の準備が完了するまでの動作フローを示し、図4(b)は準備完了状態から光情報記録媒体1に情報を記録するまでの動作フロー、図4(c)は準備完了状態から光情報記録媒体1に記録した情報を再生するまでの動作フローを示したものである。
 図4(a)に示すように媒体を挿入すると(401)、光情報記録再生装置10は、例えば挿入された媒体がホログラフィを利用してデジタル情報を記録または再生する媒体であるかどうかディスク判別を行う(402)。
 ディスク判別の結果、ホログラフィを利用してデジタル情報を記録または再生する光情報記録媒体であると判断されると、光情報記録再生装置10は光情報記録媒体に設けられたコントロールデータを読み出し(403)、例えば光情報記録媒体に関する情報や、例えば記録や再生時における各種設定条件に関する情報を取得する。
 コントロールデータの読み出し後は、コントロールデータに応じた各種調整やピックアップ11に関わる学習処理(404)を行い、光情報記録再生装置10は、記録または再生の準備が完了する(405)。再生時においては、例えばステップ404において、オシレータ光及び再生ページの振幅分布を学習する。なお、学習した前記オシレータ光及び再生ページの振幅分布は、光情報記録再生装置、光情報記録媒体或いはその他保存媒体に保存しておく。
 準備完了状態から情報を記録するまでの動作フローは図4(b)に示すように、まず記録するデータを受信して(411)、該データに応じた情報をピックアップ11内の空間光変調器に送り込む。
 その後、光情報記録媒体に高品質の情報を記録できるように、必要に応じて例えば光源301のパワー最適化やシャッタ303による露光時間の最適化等の各種記録用学習処理を事前に行う(412)。
 その後、シーク動作(413)ではアクセス制御回路81を制御して、ピックアップ11ならびにキュア光学系13の位置を光情報記録媒体の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。
 その後、キュア光学系13から出射する光ビームを用いて所定の領域をプリキュアし(414)、ピックアップ11から出射する参照光と信号光を用いてデータを記録する(415)。
 データを記録した後は、キュア光学系13から出射する光ビームを用いてポストキュアを行う(416)。必要に応じてデータをベリファイしても構わない。
 準備完了状態から記録された情報を再生するまでの動作フローは図4(c)に示すように、まずシーク動作(421)で、アクセス制御回路81を制御して、ピックアップ11ならびに再生用参照光光学系12の位置を光情報記録媒体の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。
 その後、ピックアップ11から参照光を出射し、光情報記録媒体に記録された情報を読み出し(422)、再生データを送信する(413)。
 図5は、光情報記録再生装置10の信号生成回路86のブロック図である。
 出力制御回路90にユーザデータの入力が開始されると、入出力制御回路90はコントローラ89にユーザデータの入力が開始されたことを通知する。コントローラ89は本通知を受け、信号生成回路86に入出力制御回路90から入力される1ページ分のデータを記録処理するよう命ずる。コントローラ89からの処理命令は制御用ライン508を経由し、信号生成回路86内サブコントローラ501に通知される。本通知を受け、サブコントローラ501は各信号処理回路を並列に動作させるよう制御用ライン508を介して各信号処理回路の制御を行う。先ずメモリ制御回路503に、データライン509を介して入出力制御回路90から入力されるユーザデータをメモリ502に格納するよう制御する。メモリ502に格納したユーザデータが、ある一定量に達すると、CRC演算回路504でユーザデータをCRC化する制御を行う。次にCRC化したデータに、スクランブル回路505で擬似乱数データ列を加えるスクランブル化を施し、誤り訂正符号化回路506でパリティデータ列を加える誤り訂正符号化する制御を行う。最後にピックアップインターフェース回路507にメモリ502から誤り訂正符号化したデータを空間位相変調器309及び空間光変調器312上の2次元データの並び順で読み出させ、再生時に基準となるマーカーを付加した後、ピックアップ11内の空間位相変調器309及び空間光変調器312に2次元データを転送する。
 図6は、光情報記録再生装置10の信号処理回路85のブロック図である。
 コントローラ89はピックアップ11内の光検出器325が画像データを検出すると、信号処理回路85にピックアップ11から入力される1ページ分のデータを再生処理するよう命ずる。コントローラ89からの処理命令は制御用ライン611を経由し、信号処理回路85内サブコントローラ601に通知される。本通知を受け、サブコントローラ601は各信号処理回路を並列に動作させるよう制御用ライン611を介して各信号処理回路の制御を行う。先ず、メモリ制御回路603に、データライン612を介して、ピックアップ11からピックアップインターフェース回路610を経由して入力される画像データをメモリ602に格納するよう制御する。メモリ602に格納されたデータがある一定量に達すると、画像位置検出回路609でメモリ602に格納された画像データ内からマーカーを検出して有効データ範囲を抽出する制御を行う。次に検出されたマーカーを用いて画像歪み補正回路608で、画像の傾き・倍率・ディストーションなどの歪み補正を行い、画像データを期待される2次元データのサイズに変換する制御する。サイズ変換された2次元データを構成する複数ビットの各ビットデータを、多値化回路607において例えば4値の記録再生では“0”、“1”、“2”、“3”を判定し、メモリ602上に再生データの出力の並びでデータを格納する制御を行う。次に誤り訂正回路606で各データ列に含まれる誤りを訂正し、スクランブル解除回路605で擬似乱数データ列を加えるスクランブルを解除した後、CRC演算回路604でメモリ602上のユーザデータ内に誤りが含まれない確認を行う。その後、入出力制御回路90にメモリ602からユーザデータを転送する。
 図7は、記録、再生時のデータ処理フローを示したものであり、図7(a)は、入出力制御回路90において記録データ受信411後、空間位相変調器309及び空間光変調器312上の2次元データに変換するまでの信号生成回路86での記録データ処理フローを示しており、図7(b)は光検出器325で2次元データを検出後、入出力制御回路90における再生データ送信424までの信号処理回路85での再生データ処理フローを示している。
 図7(a)を用いて記録時のデータ処理について説明する。ユーザデータを受信(701)すると、複数のデータ列に分割、再生時エラー検出が行えるように各データ列をCRC化(702)し、同一パターンの繰り返しを防ぐことを目的にデータ列に擬似乱数データ列を加えるスクランブル(703)を施した後、再生時エラー訂正が行えるようにリード・ソロモン符号等の誤り訂正符号化(704)を行う。次にこのデータ列をM×Nの2次元データに変換し、それを1ページデータ分繰返すことで1ページ分の2次元データ(705)を構成する。このように構成した2次元データに対して再生時の画像位置検出や画像歪補正での基準となるマーカーを付加(706)し、空間位相変調器309及び空間光変調器312にデータを転送(707)する。
 次に図7(b)を用いて再生時のデータ処理フローについて説明する。光検出器325で検出された画像データが信号処理回路85に転送(711)される。この画像データに含まれるマーカーを基準に画像位置を検出(712)し、画像の傾き・倍率・ディストーションなどの歪みを補正(713)した後、多値化処理(714)を行い、マーカーを除去(715)することで1ページ分の2次元データを取得(716)する。このようにして得られた2次元データを複数のデータ列に変換した後、誤り訂正処理(717)を行い、パリティデータ列を取り除く。次にスクランブル解除処理(718)を施し、CRCによる誤り検出処理(719)を行ってCRCパリティを削除した後にユーザデータを入出力制御回路90経由で送信(720)する。
 ここで、ホログラフィックメモリにおいて高速に位相を再生する技術について詳細に説明する。
 まず、位相再生技術として広く利用されているフリンジスキャン法について説明する。フリンジスキャン法では、再生光の位相を算出する為に、オシレータ光の位相を0、π/2、π、3π/2と通常4回変化させて再生光と干渉させ、そのときの干渉光強度の情報から位相を算出する。
 再生光Bexp(iδ)とオシレータ光Aexp(iθ)を同軸で干渉させた場合の干渉光の光強度Iは下式で表される。なお、Bは再生光の振幅、δは再生光の位相、Aはオシレータ光の振幅、θはオシレータ光の位相、iは虚数単位である。
 I=|Aexp(iθ)+Bexp(iδ)|
  =A+B+2ABcos(δ-θ)   ・・・(式1)
θ=0の場合の干渉光強度をI0、θ=π/2の場合の干渉光強度をI1、θ=πの場合の干渉光強度をI2、θ=3π/2の場合の干渉光強度をI3とすると、それぞれ下式で表される。なお、簡単の為、再生光とオシレータ光の位相のゼロ点ずれは無いものとして説明する。
 I0=A+B+2ABcos(δ) ・・・(式2)
 I1=A+B+2ABsin(δ) ・・・(式3)
 I2=A+B-2ABcos(δ) ・・・(式4)
 I3=A+B-2ABsin(δ) ・・・(式5)
ゆえに、再生光の位相δは下式で算出することが可能である。
 δ=arctan{(I1-I3)/(I0-I2)}・・・(式6)
なお、tan(θ)とtan(θ±π)は同一値となる為、再生光の位相が0~2πまで利用されている場合は、式6だけでは位相の判別が出来ないが、cos(δ)とsin(δ)の符号から、再生光の位相の範囲を限定することが可能である。すなわち、振幅A及びBの符号は+である為、I0-I2の符号とcos(δ)の符号は下式より同一であり、I1-I3とsin(δ)の符号は下式より同一である。
 I0-I2=4ABcos(δ)・・・(式7)
 I1-I3=4ABsin(δ)・・・(式8)
よって、cos(δ)が+かつsin(δ)が+の場合は0≦δ≦π/2、cos(δ)が-かつsin(δ)が+の場合はπ/2≦δ≦π、cos(δ)が-かつsin(δ)が-の場合はπ≦δ≦3π/2、cos(δ)が+かつsin(δ)が-の場合は3π/2≦δ≦2πと、再生光の位相δの範囲を限定できる為、再生光の位相が0から2πまで利用されている場合でも、算出することが可能である。
 しかし、フリンジスキャン法では、式2から式5に示した通り4回の干渉光の検出が必要であるが、高速に位相を算出するには極力検出回数を減らす必要がある。
 続いて、本実施例における振幅分布の学習による検出回数を低減した位相算出方法について説明する。
 図8は、本実施例における再生ページの位相検出方法の概略図を示す。まず、(1)に示すようにオシレータ光のみを光検出器325に入射させ、オシレータ光の強度分布を検出する。振幅分布Aを算出する場合は、光検出器325で検出した強度分布の1/2乗から算出する。
 同様に(2)に示すように、再生ページの振幅分布を学習する為に、予め記録しておいた学習用ページのみを光検出器325に入射させ、再生ページの強度分布を検出する。学習用ページとしては、例えば、信号光領域を全て同一振幅で表示させたホワイトページを使用する。ホワイトページの位相分布は、全て同一位相としても良いし、予め算出した学習用に最適な位相分布としても構わない。振幅分布Bを算出する場合は、光検出器325で検出した強度分布の1/2乗から算出する。
 続いて(3)に示すように、オシレータ光と各再生ページを光検出器上で干渉させて干渉光を検出する。このとき、オシレータ光或いは再生ページの位相を0及びπ/2と変化させ、式2に示すI0及び式3に示すI1の干渉光強度を検出する。このとき、再生ページの各ピクセルの位相δは、検出した干渉光強度I0及びI1と学習した振幅分布A及び振幅分布Bの情報から、下式で算出することが出来る。
 δ=arctan{(I1-A-B)/(I0-A-B)}・・・(式9)
本実施例により、振幅分布A及びBの学習を事前に行うことにより、検出回数を2回に低減することが可能となる。なお、再生光の位相が0から2πまで利用されている場合の、対処方法としては、下式によりcos(δ)及びsin(δ)の符号を求めることで、前述の通り対応可能である。
 2ABcos(δ)=I0-A-B ・・・(式10)
 2ABsin(δ)=I1-A-B ・・・(式11)
 図9に、本実施例におけるページ内の基準位相領域の概略図を示す。再生ページの位相分布を上述の方法にて算出した際に、記録時と算出時の位相のゼロ点がずれる課題がある。本課題に対処する為には、例えばページ内に基準位相領域を設け、本領域では既知の位相となるようなページフォーマットとする。式9で算出した基準位相領域の位相が既知の値とずれている場合は、誤差量分だけ、全領域の位相をシフトする。また、基準位相領域に、複数の異なる位相値を持たせたフォーマットとして、算出位相の単位量誤差の補正を比率計算から行っても構わない。
 また、例えば光検出器の位置ずれ耐性を向上する為、光検出器のピクセルピッチを記録信号のピクセルピッチ以下に縮小化する所謂オーバーサンプリング検出をしても構わない。オーバーサンプリング検出を行う場合は、例えば各種補間技術を用いて、記録信号のピクセルピッチと一致する信号にリサンプリング処理を行った後に、式9から式11に記載の計算を行っても良いし、或いはオーバーサンプリングした信号のまま式9から式11に記載の計算を行い、最後にリサンプリング処理を行っても構わない。
 図10に、本実施例における光情報記録媒体中の振幅分布学習用ブックの概略図を示す。光情報記録媒体中の所定の位置に、再生ページの振幅分布学習用ブックを記録する領域を設け、例えば記録時は学習用のホワイトページを記録する。再生時は、本学習用ページを再生し、再生ページの振幅分布を予め算出しておく。なお、再生ページの振幅分布が、ページ毎に異なる場合に備えて、全ページの振幅分布を予め記録し、学習しておいても構わない。
 図11は、本実施例における光情報記録再生装置内の位相検出の動作フローの概略図を示す。位相検出時は、1101により、オシレータ光のみを光検出器で検出し、オシレータ光の振幅分布を学習する。続いて1102により、再生ページの振幅分布学習用ページが再生可能な位置に光情報記録媒体及び参照光角度を位置づける。続いて1103により、学習用ページのみを光検出器で検出し、再生ページの振幅分布を学習する。続いて1104により、各ページで式2及び式3で表される干渉光強度I0及びI1を算出する。最後に1105により、式9から各ページの位相分布を算出する。なお、本フローチャートは一例を示したものであり、各処理の順番が前後しても構わない。
 なお、本実施例中ではオシレータ光の位相を変える例を示したが、再生光の位相を変えてオシレータ光と再生光を干渉させて検出しても構わない。また、I0及びI1を検出する場合は、位相を0及びπ/2と変化させる例について記載したが、位相0或いはπ/2に限定されるものではなく、異なる位相であれば式9記載の換算式を修正することで対応可能である為、任意の位相で構わない。
 本実施例の方法では、事前に振幅分布を学習することで、干渉光の検出回数を2回に低減可能な為、フリンジスキャン法に比べて高速な位相算出が可能であるという利点がある。
 以下の説明において、本実施例と説明が共通する部分は、説明を省略する。
 本発明における第2の実施例について図12を用いて説明する。
 図12は、本実施例における光情報記録再生装置内のピックアップの概略図を示す。再生ページの強度分布B或いは振幅分布Bは、参照光角度誤差や波長誤差等の外乱状況によって変化する為、必ずしも学習時と一致しない課題がある。本課題に対処するため、例えば再生ページの強度分布Bを学習では無くリアルタイムに検出し、強度分布の外乱状況による変化の影響を低減する。
 すなわち、再生ページの一部をビームスプリッタ332で反射させ、レンズ333により平行光とし、光検出器334で再生ページの強度分布Bを検出する。再生光の振幅分布Bを算出する場合は、光検出器334で検出した強度分布Bの1/2乗から算出する。
 一方、オシレータ光の強度分布A或いは振幅分布Aは例えば実施例1と同様の方法にて学習にて算出する。また、干渉光強度I0及びI1も例えば実施例1と同様の方法にて検出する。位相算出時は、実施例1の式9を用いて算出することが可能であり、その他の方法は、実施例1記載の方法に準ずる。
 本実施例の方法では、リアルタイムに再生ページの振幅分布を検出する為、各種外乱により生じる再生ページの振幅分布の変化に対処可能という利点がある。
 本発明における第3の実施例について図13から図16を用いて説明する。
 図13は、本実施例における光情報記録再生装置内の位相配置の概略図を示す。位相配置は、例えば0からπの範囲のみを使用する。このとき、干渉光の検出は式2に示すI0のみを検出すれば、下式により再生ページの位相δを算出可能である。このとき、A及びBの情報は、例えば実施例1或いは2に記載の方法により取得する。
 δ=arccos{(I0-A-B)/2AB} ・・・(式12)
このとき、オシレータ光とページの位相のゼロ点が図13に示すようにずれている場合がある為、後述するように補正する必要がある。
 図14は、本実施例における光情報記録再生装置内のピックアップの概略図を示す。PBSプリズム305を透過した信号光は、1/2波長板331により偏光がs偏光に変換され、PBSプリズム327を反射する。その後、裏面反射膜付き1/4波長板328を反射し、偏光がp偏光に変換され、ミラー330を反射し、その後は図3と同様の経路を伝播する。裏面反射膜付き1/4波長板328には、アクチュエータ329が取り付けられており、光路長の調整が可能な構成となっている。再生時においては、本アクチュエータ329により、オシレータ光と再生ページの位相のゼロ点が一致するように光路長を調整する。これは、例えば図9記載の基準位相領域を位相0で記録する構成としておき、空間位相変調器309の位相を0にした場合のオシレータ光と、再生信号の基準位相領域の干渉光強度が最大値を取るようにアクチュエータ329の位置を調整することで、例えば実現する。
 図15は、本実施例における光情報記録再生装置内のピックアップの別の概略図を示す。図14の構成では、オシレータ光と再生ページの位相のゼロ点補正をオシレータ光の光路長により補正するが、図15の構成では、再生ページの位相補正により実現する。
 PBSプリズム305を反射した参照光はPBSプリズム327を反射し裏面反射膜付き1/4波長板328を反射し、偏光がp偏光に変換されPBSプリズム327を透過する。その後、ミラー330を反射し、偏光方向変換素子316により所望の偏光方向に調整した後、図3と同様の経路を伝播する。このとき、例えば図14の場合と同様に、オシレータ光と再生ページの位相のゼロ点補正をアクチュエータ329により行う。
 なお、図14、図15に示した裏面反射膜付き1/4波長板は、1/4波長板及びミラーの2素子を用いても構わないし、同一の効果を有する他の構成で実現しても構わない。また、図14及び図15では、オシレータ光或いは参照光の光路長を可変にすることにより再生ページの位相のゼロ点補正を行う構成を示したが、オシレータ光及び参照光の光路長の両方を可変にして調整しても構わない。オシレータ光及び参照光の光路長を同方向に移動することで、相対的な光路長差のアクチュエータ移動量に対する変化感度を低減でき、高精度に調整することが可能である。また、アクチュエータ329による位相のゼロ点調整を行う例を示したが、空間位相変調器309を用いて位相のゼロ点調整を行っても構わない。記録位相分布変調用の位相変調器309を位相のゼロ点調整に用いることで、アクチュエータ等の新たな部品が必要無くなり、部品点数の低減が可能である。
 図16は、本実施例における光情報記録再生装置内の位相検出の動作フローの概略図を示す。位相検出時は、1101により光検出器にてオシレータ光のみを検出し、オシレータ光の振幅分布を学習する。続いて1602により、再生ページの振幅分布学習用ページが再生可能な位置に光情報記録媒体及び参照光角度を位置づける。続いて1603により、学習用ページのみを光検出器で検出し、再生ページの振幅分布を学習する。続いて1604により、オシレータ光と再生ページの位相のゼロ点補正を行う。続いて1605により、式2で表される干渉光強度I0を各ページで算出する。最後に1606により、式12から各ページの位相分布を算出する。なお、本フローチャートはフローの一例を示したものであり、各ステップの順番が前後しても構わない。
 位相配置0から2πの範囲を使用する場合には、cos(δ)とcos(-δ)は同一値となる為、+δか-δかの切り分けの為に干渉光を2回検出する必要があるが、本実施例の方法では、位相配置を0からπの領域に制限する為、干渉光の検出を1回に低減することが可能な為、高速再生ができるという利点がある。なお、本実施例では位相配置0からπの例を示したが、-π/2からπ/2の範囲に限定しarcsinから位相δを算出しても構わない。
 本発明における第4の実施例について図17を用いて説明する。
 図17は、本実施例における光情報記録再生装置内の位相配置の概略図を示す。例えば、位相が+領域と-の領域で、位相絶対値が異なるように配置する。
 位相算出時は、実施例3に記載の方法にて、位相のゼロ点補正を行った上で、式12から再生ページの位相を算出する。ここで、式12では+δか-δかの判断が出来ないが、図17に示すように位相が+領域と-領域で位相絶対値が異なるように配置している為、最も誤差量が小さい記録位相の符号であると判断することで、対応することが可能である。
 なお、本実施例では位相が+の領域と-の領域で位相の絶対値を変える例を示したが、位相が-π/2からπ/2の領域とπ/2から3π/2の領域でY軸対称とならいない配置として、配置して下式を用いて算出しても構わない。
 δ=arcsin{(I1-A-B)/2AB} ・・・(式13)
なお、本配置は、位相ゼロ点を-π/2或いはπ/2シフトした際に、位相絶対値が異なるように配置した場合と等価である。
 本実施例の方法では、記録位相を0から2πの範囲まで使用しつつも、干渉光の検出回数を1回に低減することが可能な為、干渉光を2回検出する場合に比べて高速再生ができるという利点がある。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 具体的な変形例としては以下の例が挙げられる。
 変形例1として、光の位相を利用して変調された情報を再生する光情報再生装置において、再生光と干渉させる為のオシレータ光を生成するオシレータ光光学系と、該再生光及び/或いは該オシレータ光の位相を変える位相可変器と、該再生光及び該オシレータ光の強度を検出する光検出器と、該再生光及び該オシレータ光を該光検出器上で略同一角度で干渉させる干渉光学系と、該再生光の位相を算出する位相算出回路と、該位相算出回路から出力される該再生光の位相の信号を処理する信号処理回路と、を備えることを特徴とする光情報再生装置。
 変形例2として、変形例1に記載の光情報再生装置において、前記光検出器は、事前にオシレータ光の強度A及び再生光の強度Bを検出し、前記位相可変器は、再生光或いはオシレータ光の位相をある基準に対してθ0及びθ1と2回変化させ、前記光検出器は、前記干渉光を該位相可変器で位相θ0の状態で取得した際の強度I0及び位相θ1の状態で取得した際の強度I1を取得し、前記位相算出回路は、再生光の位相をA、B、I0及びI1の情報から算出することを特徴とする光情報再生装置。
 変形例3として、変形例1に記載の光情報再生装置において、前記光検出器は、事前にオシレータ光の強度A及び再生光の強度Bを検出し、前記位相可変器は、再生光或いはオシレータ光の位相をある基準に対して0及びπ/2と2回変化させ、前記光検出器は、前記干渉光を該位相可変器で位相0の状態で取得した際の強度I0及び位相π/2の状態で取得した際の強度I1を取得し、前記位相算出回路は、再生光の位相δをδ=arctan{(I1-A-B)/(I0-A-B)}の計算により算出することを特徴とする光情報再生装置。
 変形例4として、変形例1に記載の光情報再生装置において、再生光の強度Bを検出する再生光検出器と、該再生光検出器上に再生光の一部を照射する光学系と、前記光検出器は、事前にオシレータ光の強度Aを検出し、前記位相可変器は、再生光或いはオシレータ光の位相をある基準に対して0及びπ/2と2回変化させ、前記光検出器は、前記干渉光を該位相可変器で位相0の状態で取得した際の強度I0及び位相π/2の状態で取得した際の強度I1を取得し、前記位相算出回路は、再生光の位相δをδ=arctan{(I1-A-B)/(I0-A-B)}の計算により算出することを特徴とする光情報再生装置。
 変形例5として、変形例1に記載の光情報再生装置において、光の位相がある基準に対して0からπの範囲に限定し変調された情報を再生する場合において、前記位相可変器は、再生光或いはオシレータ光の位相をある基準に対して0として、前記光検出器は、前記干渉光を該位相可変器で位相0の状態で取得した際の強度I0を取得し、前記位相算出回路は、再生光の位相δを、事前に学習で取得したオシレータ光の強度A及び事前学習或いはリアルタイムに取得した再生光の強度Bを用いて、δ=arccos{(I0-A-B)/2AB}の計算により算出することを特徴とする光情報再生装置。
 変形例6として、変形例1に記載の光情報再生装置において、光の位相がある基準に対して-π/2からπ/2の範囲に限定し変調された情報を再生する場合において、前記位相可変器は、再生光或いはオシレータ光の位相をある基準に対して0として、前記光検出器は、前記干渉光を該位相可変器で位相π/2の状態で取得した際の強度I1を取得し、
前記位相算出回路は、再生光の位相δを、事前に学習で取得したオシレータ光の強度A及び事前学習或いはリアルタイムに取得した再生光の強度Bを用いて、δ=arcsin{(I1-A-B)/2AB}の計算により算出することを特徴とする光情報再生装置。
 変形例7として、光の位相を利用して変調された情報を記録再生する光情報記録再生装置において、記録光を生成する光源と、記録情報から記録位相を算出する信号処理回路と、
該記録光の位相を変調する位相変調器と、該記録光の位相を光情報記録媒体に記録する光学系と、を備え、該位相変調器は記録時にある基準に対して位相が+の領域と位相が-の領域で、位相の絶対値が異なる値となるように変調することを特徴とする光情報記録再生装置。
 変形例8として、変形例1に記載の光情報再生装置において、光の位相がある基準に対して位相が+の領域と位相が-の領域で、位相の絶対値が異なる値となるように変調された情報を再生する場合において、前記位相可変器は、再生光或いはオシレータ光の位相をある基準に対して0として、前記光検出器は、前記干渉光を該位相可変器で位相0の状態で取得した際の強度I0を取得し、前記位相算出回路は、再生光の位相δを、事前に学習で取得したオシレータ光の強度A及び事前学習或いはリアルタイムに取得した再生光の強度Bを用いて、δ=arccos{(I0-A-B)/2AB}の計算により算出し、位相の符号が+か-かの判断を、変調信号に対して誤差が最小の信号がある方の符号であると判断することを特徴とする光情報再生装置。
 変形例9として、変形例1に記載の光情報再生装置において、光の位相がある基準に対してπ/2或いは-π/2シフトした位相を0と補正した場合に、位相が+の領域と位相が-の領域で、位相の絶対値が異なる値となるように変調された情報を再生する場合において、前記位相可変器は、再生光或いはオシレータ光の位相をある基準に対してπ/2或いは-π/2シフトした位相を0として、前記光検出器は、前記干渉光を該位相可変器で位相0の状態で取得した際の強度I0を取得し、前記位相算出回路は、再生光の位相δを、事前に学習で取得したオシレータ光の強度A及び事前学習或いはリアルタイムに取得した再生光の強度Bを用いて、δ=arccos{(I0-A-B)/2AB}の計算により算出し、位相の符号が+か-かの判断を、変調信号に対して誤差が最小の信号がある方の符号であると判断した後、位相のπ/2或いは-π/2のシフトを元に戻すよう補正する事を特徴とする光情報再生装置。
 変形例10として、変形例1に記載の光情報再生装置において、前記位相可変器は、再生光或いはオシレータ光の位相をある基準に対して0及びπ/2と2回変化させ、前記光検出器は、前記干渉光を該位相可変器で位相0の状態で取得した際の強度I0及び位相π/2の状態で取得した際の強度I1を取得し、前記位相算出回路は、再生光の位相δを、事前に学習で取得したオシレータ光の強度A及び事前学習或いはリアルタイムに取得した再生光の強度Bを用いて、I0-A-B及びI1-A-Bの計算結果から再生光の位相範囲を限定することを特徴とする光情報再生装置。
 変形例11として、光の位相を利用して変調された情報を記録再生する光情報記録再生装置において、記録光を生成する光源と、記録情報から記録位相を算出する信号処理回路と、該記録光の位相を変調する位相変調器と、該記録光の位相を光情報記録媒体に記録する光学系と、を備え、記録時において、該位相変調器に再生時に位相のゼロ点を補正する為の情報として、ある基準位相を変調した信号を記録することを特徴とする光情報記録再生装置。
 変形例12として、変形例1に記載の光情報再生装置において、前記位相算出回路から出力された位相のゼロ点を、既知の基準位相を再生した際の再生位相値と既知の位相値との差分値の情報から補正するゼロ点補正回路を備えることを特徴とする光情報再生装置。
 変形例13として、変形例1に記載の光情報再生装置において、前記光検出器は、前記位相可変器で位相を変えながら前記干渉光の強度Iを取得し、該位相可変器は、該干渉光強度Iが最大となるときの位相を位相のゼロ点であるとすることを特徴とする光情報再生装置。
 変形例14として、光の位相を利用して変調された情報を記録再生する光情報記録再生媒体において、位相のゼロ点補正用の信号を記録再生する領域を備えることを特徴とする光情報記録再生媒体。
 変形例15として、光の位相を利用して変調された情報を再生する光情報再生方法において、再生光と干渉させる為のオシレータ光を生成するオシレータ光生成工程と、該再生光及び/或いは該オシレータ光の位相を変える位相可変工程と、該再生光及び該オシレータ光の強度を検出する光検出工程と、該再生光及び該オシレータ光を該光検出工程で略同一角度で干渉させる干渉工程と、該再生光及び該オシレータ光の強度と、光検出器で検出する該再生光及び該オシレータ光の干渉光の強度から該再生光の位相を算出する位相算出工程と、該位相算出工程で出力される該再生光の位相の信号を処理する信号処理工程と、を備えることを特徴とする光情報再生方法。
 変形例16として、光の位相を利用して変調された情報を記録再生する光情報記録再生方法において、記録光を生成する工程と、記録情報から記録位相を算出する信号処理工程と、該記録光の位相を変調する位相変調工程と、該記録光の位相を光情報記録媒体に記録する工程と、を備え、該位相変調工程は記録時にある基準に対して位相が+の領域と位相が-の領域で、位相の絶対値が異なる値となるように変調することを特徴とする光情報記録再生方法。
 変形例17として、光の位相を利用して変調された情報を記録再生する光情報記録再生方法において、記録光を生成する工程と、記録情報から記録位相を算出する信号処理工程と、該記録光の位相を変調する位相変調工程と、該記録光の位相を光情報記録媒体に記録する光学系と、を備え、記録時において、該位相変調工程に再生時に位相のゼロ点を補正する為の情報として、ある基準位相を変調した信号を記録することを特徴とする光情報記録再生方法。
 変形例18として、光の位相を利用して変調された情報を記録再生する光情報記録再生方法において、記録光を生成するステップと、前記記録光の位相を変調する位相変調ステップと、前記記録光の位相を光情報記録媒体に記録するステップと、再生光と干渉させる為のオシレータ光を生成するステップと、前記再生光または前記オシレータ光の位相を変える位相可変ステップと、前記再生光または前記オシレータ光のうち少なくとも一方の強度を検出する光検出ステップと、前記再生光および前記オシレータ光を前記光検出ステップで干渉させる干渉ステップと、を備え、前記位相変調ステップは記録時に基準位相に対して位相が+の領域と位相が-の領域で、位相の絶対値が異なる値となるように、前記記録光を変調することを特徴とする光情報記録再生方法。
 また、本明細書では、例としてホログラフィックメモリについて記載したが、本発明はホログラフィックメモリに限定されるものでは無く、位相再生を行う各種技術に広く適用可能である。
 なお、本明細書中では、説明の都合上、位相を0から2πで表現した場合と、-πからπで表現した場合があるが、位相は2π加算毎に同一値となる周期性があるため、両表現に違いは無く、あくまで説明の都合上、表現を変えたに過ぎない。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1・・・光情報記録媒体、
10・・・光情報記録再生装置、11・・・ピックアップ、
12・・・再生用参照光光学系、13・・・ディスクCure光学系、
14・・・ディスク回転角度検出用光学系、81・・・アクセス制御回路、
82・・・光源駆動回路、83・・・サーボ信号生成回路、
84・・・サーボ制御回路、85・・・信号処理回路、86・・・信号生成回路、
87・・・シャッタ制御回路、88・・・ディスク回転モータ制御回路、
89・・・コントローラ、90…入出力制御回路、91…外部制御装置、
301・・・光源、302・・・コリメートレンズ、303・・・シャッタ、
304・・・1/2波長板、305・・・PBSプリズム、306・・・信号光、
307・・・参照光、308・・・ビームエキスパンダ、309・・・空間位相変調器、
310・・・リレーレンズ、311・・・特殊PBSプリズム、312・・・空間光変調器、
313・・・リレーレンズ、314・・・空間フィルタ、315・・・対物レンズ、
316・・・偏光方向変換素子、317・・・ミラー、318・・・ミラー、319・・・ミラー、
320・・・アクチュエータ、321・・・レンズ、322・・・レンズ、
323・・・アクチュエータ、324・・・ミラー、325・・・光検出器、
326・・・オシレータ光、327・・・PBSプリズム、
328・・・1/4波長板(裏面反射膜付)、329・・・アクチュエータ、
330・・・ミラー、331・・・1/2波長板、332・・・ビームスプリッタープリズム、
333・・・レンズ、334・・・光検出器、336・・・再生光

Claims (19)

  1.  光の位相を利用して変調された情報を再生する光情報再生装置において、
     情報を再生するための再生光を生成する再生光光学系と、
     前記再生光と干渉させる為のオシレータ光を生成するオシレータ光光学系と、
     前記再生光または前記オシレータ光の位相を変える位相可変器と、
     前記再生光または前記オシレータ光のうち少なくとも一方の強度を検出する光検出器と、
     前記再生光および前記オシレータ光を前記光検出器上で干渉させる干渉光学系と、
     前記光検出器の検出結果に基づいて前記再生光の位相を算出する信号処理回路と、
    を備えることを特徴とする光情報再生装置。
  2.  請求項1に記載の光情報再生装置において、
     前記光検出器は、前記オシレータ光の強度Aおよび前記再生光の強度Bを検出し、
     前記位相可変器は、前記再生光または前記オシレータ光の位相を、基準位相に対して位相θ0及び位相θ1に変化させ、
     前記光検出器は、前記位相θ0の状態の前記干渉光の強度I0、および、前記位相θ1の状態の前記干渉光の強度I1を取得し、
     前記信号処理回路は、前記再生光の位相を前記オシレータ光の強度A、前記再生光の強度B、前記干渉光の強度I0およびI1から算出することを特徴とする光情報再生装置。
  3.  請求項2に記載の光情報再生装置において、
     前記位相θ0は0、前記位相θ1はπ/2、とすると、
     前記信号処理回路は、前記再生光の位相δを、
     δ=arctan{(I1-A-B)/(I0-A-B)}
    の計算により算出することを特徴とする光情報再生装置。
  4.  請求項2に記載の光情報再生装置であって、
     前記光検出器は、前記情報を再生する前に前記オシレータ光の強度Aおよび前記再生光の強度Bを検出する、
    ことを特徴とする光情報再生装置。
  5.  請求項1に記載の光情報再生装置において、
     前記再生光の強度Bを検出する再生光検出器と、
     前記再生光検出器上に前記再生光の一部を照射する光学系と、
    を備え、
     前記光検出器は、前記オシレータ光の強度Aを検出し、
     前記位相可変器は、前記再生光または前記オシレータ光の位相を、基準位相に対して0及びπ/2に変化させ、
     前記光検出器は、前記位相0の状態の前記干渉光の強度I0、および、前記位相π/2の状態の前記干渉光の強度I1を取得し、
     前記信号処理回路は、再生光の位相δを
     δ=arctan{(I1-A-B)/(I0-A-B)}
    の計算により算出することを特徴とする光情報再生装置。
  6.  請求項5に記載の光情報再生装置であって、
     前記光検出器は、前記情報を再生する前に前記オシレータ光の強度Aを検出し、
     前記再生光検出器は、前記情報の再生時に前記再生光の強度Bを検出する、
    ことを特徴とする光情報再生装置。
  7.  請求項1に記載の光情報再生装置において、
     前記光の位相が基準位相に対して0からπの範囲で変調された情報を再生する場合、
     前記位相可変器は、前記再生光または前記オシレータ光の位相を前記基準位相に対して0とし、
     前記光検出器は、前記位相0の状態の前記干渉光の強度I0を取得し、前記情報を再生する前に前記オシレータ光の強度Aを検出し、前記情報の再生時に前記強度Bを検出し、
     前記信号処理回路は、再生光の位相δを、前記検出したオシレータ光の強度Aおよび再生光の強度Bを用いて、
     δ=arccos{(I0-A-B)/2AB}
    の計算により算出することを特徴とする光情報再生装置。
  8.  請求項1に記載の光情報再生装置において、
     光の位相が基準位相に対して-π/2からπ/2の範囲で変調された情報を再生する場合、
     前記位相可変器は、前記再生光または前記オシレータ光の位相を前記基準位相に対して0とし、
     前記光検出器は、前記位相π/2の状態の前記干渉光の強度I1を取得し、前記情報を再生する前に前記オシレータ光の強度Aを検出し、前記情報の再生時に前記強度Bを検出し、
     前記信号処理回路は、再生光の位相δを、前記検出したオシレータ光の強度A再生光の強度Bを用いて、
     δ=arcsin{(I1-A-B)/2AB}
    の計算により算出することを特徴とする光情報再生装置。
  9.  請求項1に記載の光情報再生装置において、
     前記光の位相が基準位相に対して位相が+の領域と位相が-の領域で、位相の絶対値が異なる値となるように変調された情報を再生する場合、
     前記位相可変器は、再生光またはオシレータ光の位相を前記基準位相に対して0とし、
     前記光検出器は、前記位相0の状態の強度I0を取得し、前記情報を再生する前に前記オシレータ光の強度Aを検出し、前記情報の再生時に前記強度Bを検出し、
     前記信号処理回路は、再生光の位相δを、前記検出したオシレータ光の強度Aおよび再生光の強度Bを用いて、
     δ=arccos{(I0-A-B)/2AB}
    の計算により算出し、前記再生光の位相δの符号が+か-かの判断を、前記情報を変調した信号に対して誤差が最小の信号がある方の符号であると判断することを特徴とする光情報再生装置。
  10.  請求項9に記載の光情報再生装置において、
     前記光の位相が基準位相に対してπ/2或いは-π/2シフトした位相を0とした場合に、
     前記位相可変器は、再生光またはオシレータ光の位相を前記基準位相に対してπ/2または-π/2シフトした位相を0とし、
     前記再生光の位相δの符号が+か-かの判断を、前記情報を変調した信号に対して誤差が最小の信号がある方の符号であると判断した後、前記光の位相のπ/2または-π/2のシフトを元に戻すよう補正することを特徴とする光情報再生装置。
  11.  光の位相を利用して変調された情報を記録再生する光情報記録再生装置において、
     記録光を生成する光源と、
     前記記録光の位相を変調する位相変調器と、
     前記記録光の位相を光情報記録媒体に記録する光学系と、
     再生光と干渉させる為のオシレータ光を生成するオシレータ光光学系と、
     前記再生光または前記オシレータ光の位相を変える位相可変器と、
     前記再生光または前記オシレータ光のうち少なくとも一方の強度を検出する光検出器と、
     前記再生光および前記オシレータ光を前記光検出器上で干渉させる干渉光学系と、
    を備え、前記位相変調器は記録時に基準位相に対して位相が+の領域と位相が-の領域で、位相の絶対値が異なる値となるように、前記記録光を変調することを特徴とする光情報記録再生装置。
  12.  光の位相を利用して変調された情報を再生する光情報再生方法において、
     情報を再生するための再生光を生成する再生光生成ステップと、
     前記再生光と干渉させる為のオシレータ光を生成するオシレータ光生成ステップと、
     前記再生光または前記オシレータ光の位相を変える位相可変ステップと、
     前記再生光または前記オシレータ光のうち少なくとも一方の強度を検出する光検出ステップと、
     前記再生光および前記オシレータ光を干渉させる干渉光生成ステップと、
     前記光検出ステップの検出結果に基づいて前記再生光の位相を算出する信号処理ステップと、
    を備えることを特徴とする光情報再生方法。
  13.  請求項12に記載の光情報再生方法において、
     前記位相可変ステップでは、前記再生光または前記オシレータ光の位相を、基準位相に対して位相θ0及び位相θ1に変化させ、
     前記光検出ステップでは、前記位相θ0の状態の前記干渉光の強度I0、および、前記位相θ1の状態の前記干渉光の強度I1を取得し、前記情報を再生する前に前記オシレータ光の強度Aおよび前記再生光の強度Bを検出し、
     前記信号処理ステップでは、前記再生光の位相を前記オシレータ光の強度A、前記再生光の強度B、前記干渉光の強度I0およびI1から算出することを特徴とする光情報再生方法。
  14.  請求項13に記載の光情報再生方法において、
     前記位相θ0は0、前記位相θ1はπ/2、とすると、
     前記信号処理ステップは、前記再生光の位相δを、
     δ=arctan{(I1-A-B)/(I0-A-B)}
    の計算により算出することを特徴とする光情報再生方法。
  15.  請求項12に記載の光情報再生方法において、
     前記情報の再生時に前記再生光の強度Bを検出する再生光検出ステップと、
    を備え、
     前記位相可変ステップは、前記再生光または前記オシレータ光の位相を、基準位相に対して0及びπ/2に変化させ、
     前記光検出ステップは、前記位相0の状態の前記干渉光の強度I0、および、前記位相π/2の状態の前記干渉光の強度I1を取得し前記情報を再生する前に前記オシレータ光の強度Aを検出し、
     前記信号処理ステップでは、再生光の位相δを
     δ=arctan{(I1-A-B)/(I0-A-B)}
    の計算により算出することを特徴とする光情報再生方法。
  16.  請求項12に記載の光情報再生方法において、
     前記光の位相が基準位相に対して0からπの範囲で変調された情報を再生する場合、
     前記位相可変ステップでは、前記再生光または前記オシレータ光の位相を前記基準位相に対して0とし、
     前記光検出ステップでは、前記位相0の状態の前記干渉光の強度I0を取得し、前記情報を再生する前に前記オシレータ光の強度Aを検出し、前記情報の再生時に前記強度Bを検出し、
     前記信号処理ステップは、再生光の位相δを、前記検出したオシレータ光の強度Aおよび再生光の強度Bを用いて、
     δ=arccos{(I0-A-B)/2AB}
    の計算により算出することを特徴とする光情報再生方法。
  17.  請求項12に記載の光情報再生方法において、
     前記光の位相が基準位相に対して位相が+の領域と位相が-の領域で、位相の絶対値が異なる値となるように変調された情報を再生する場合、
     前記位相可変ステップでは、再生光またはオシレータ光の位相を前記基準位相に対して0とし、
     前記光検出ステップでは、前記位相0の状態の強度I0を取得し、前記情報を再生する前に前記オシレータ光の強度Aを検出し、前記情報の再生時に前記強度Bを検出し、
     前記信号処理ステップでは、再生光の位相δを、前記検出したオシレータ光の強度Aおよび再生光の強度Bを用いて、
     δ=arccos{(I0-A-B)/2AB}
    の計算により算出し、前記再生光の位相δの符号が+か-かの判断を、前記情報を変調した信号に対して誤差が最小の信号がある方の符号であると判断することを特徴とする光情報再生方法。
  18.  請求項1に記載の光情報再生装置において、
     前記位相可変器は、前記再生光または前記オシレータ光の位相を、基準位相に対して0及びπ/2に変化させ、
     前記光検出器は、前記位相0の状態の前記干渉光の強度I0、前記位相π/2の状態の前記干渉光の強度I1を取得し、情報再生前、あるいは情報再生時に前記オシレータ光の強度Aおよび前記再生光の強度Bを取得し、
     前記信号処理回路は、再生光の位相δの範囲を、
     (I0-A-B)の符号が+かつ(I1-A-B)の符号が+の場合は、0≦δ≦π/2に、
     (I0-A-B)の符号が-かつ(I1-A-B)の符号が+の場合は、π/2≦δ≦πに、
     (I0-A-B)の符号が-かつ(I1-A-B)の符号が-の場合は、π≦δ≦3π/2に、
     (I0-A-B)の符号が+かつ(I1-A-B)の符号が-の場合は、3π/2≦δ≦2πに、
    限定することを特徴とする光情報再生装置。
  19.  請求項12に記載の光情報再生方法において、
     前記位相可変ステップは、前記再生光または前記オシレータ光の位相を、基準位相に対して0及びπ/2に変化させ、
     前記光検出ステップは、前記位相0の状態の前記干渉光の強度I0、前記位相π/2の状態の前記干渉光の強度I1を取得し、情報再生前、あるいは情報再生時に前記オシレータ光の強度Aおよび前記再生光の強度Bを取得し、
     前記信号処理ステップは、再生光の位相δの範囲を、
     (I0-A-B)の符号が+かつ(I1-A-B)の符号が+の場合は、0≦δ≦π/2に、
     (I0-A-B)の符号が-かつ(I1-A-B)の符号が+の場合は、π/2≦δ≦πに、
     (I0-A-B)の符号が-かつ(I1-A-B)の符号が-の場合は、π≦δ≦3π/2に、
     (I0-A-B)の符号が+かつ(I1-A-B)の符号が-の場合は、3π/2≦δ≦2πに、
    限定することを特徴とする光情報再生方法。
PCT/JP2014/069130 2014-07-18 2014-07-18 光情報記録再生装置、光情報再生装置、および光情報再生方法 WO2016009546A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069130 WO2016009546A1 (ja) 2014-07-18 2014-07-18 光情報記録再生装置、光情報再生装置、および光情報再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069130 WO2016009546A1 (ja) 2014-07-18 2014-07-18 光情報記録再生装置、光情報再生装置、および光情報再生方法

Publications (1)

Publication Number Publication Date
WO2016009546A1 true WO2016009546A1 (ja) 2016-01-21

Family

ID=55078063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069130 WO2016009546A1 (ja) 2014-07-18 2014-07-18 光情報記録再生装置、光情報再生装置、および光情報再生方法

Country Status (1)

Country Link
WO (1) WO2016009546A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090112A (ja) * 2000-09-21 2002-03-27 Nikon Corp 干渉測定装置、干渉測定方法、及び光学素子の表面加工方法
JP2010151590A (ja) * 2008-12-25 2010-07-08 Nikon Corp 画像縮小方法及び画像縮小用プログラム
JP2012027996A (ja) * 2010-07-28 2012-02-09 Hitachi Consumer Electronics Co Ltd 光情報記録再生装置及び再生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090112A (ja) * 2000-09-21 2002-03-27 Nikon Corp 干渉測定装置、干渉測定方法、及び光学素子の表面加工方法
JP2010151590A (ja) * 2008-12-25 2010-07-08 Nikon Corp 画像縮小方法及び画像縮小用プログラム
JP2012027996A (ja) * 2010-07-28 2012-02-09 Hitachi Consumer Electronics Co Ltd 光情報記録再生装置及び再生装置

Similar Documents

Publication Publication Date Title
JP5802616B2 (ja) 光情報記録再生装置および光情報記録再生方法
WO2015114743A1 (ja) 光情報装置、光情報処理方法
JP5753768B2 (ja) 光情報記録装置、光情報再生装置、光情報記録再生装置、光情報記録方法、光情報再生方法および光情報記録再生方法
JP5183667B2 (ja) 再生装置および再生方法
JP5677272B2 (ja) 光情報記録再生装置、光情報再生装置、光情報記録再生方法および光情報再生方法
JP2014026706A (ja) ホログラフィックメモリ装置および参照光入射角度調整方法
JP2014010859A (ja) 光情報記録再生方法、及び装置
JP5868494B2 (ja) 光情報記録再生装置、および光情報記録再生方法、および再生装置
JP5993956B2 (ja) 光情報記録再生装置および光情報記録再生方法
US9373352B2 (en) Optical information reproduction apparatus and optical information reproduction method
WO2016009546A1 (ja) 光情報記録再生装置、光情報再生装置、および光情報再生方法
WO2015011744A1 (ja) 光情報記録装置、光情報再生装置、光情報記録方法および再生位置ずれ検出方法
WO2016194155A1 (ja) ホログラフィックメモリ装置、及び光情報検出方法
WO2015162653A1 (ja) 光情報装置および光情報処理方法
WO2016163312A1 (ja) 光情報再生装置及び光情報再生方法
WO2015083246A1 (ja) 光情報再生装置及び光情報再生方法
JP6078634B2 (ja) 光情報再生装置および光情報記録再生装置
JP2015082327A (ja) 光情報再生装置、光情報再生方法および光情報記録方法
JP2015060613A (ja) 光情報記録装置および光情報記録方法
WO2014167620A1 (ja) 光情報再生装置及び光情報再生方法
WO2016020994A1 (ja) 光情報記録装置および光情報再生装置
JP2014203484A (ja) 光情報記録再生装置、および光情報記録再生方法
WO2020008496A1 (ja) ホログラム記録装置、ホログラム再生装置、ホログラム記録方法、及びホログラム再生方法
WO2017094130A1 (ja) 光情報記録再生装置および光情報記録再生方法
WO2015033456A1 (ja) 光情報記録装置、光情報再生装置、光情報記録方法および光情報再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14897604

Country of ref document: EP

Kind code of ref document: A1