WO2015033456A1 - 光情報記録装置、光情報再生装置、光情報記録方法および光情報再生方法 - Google Patents

光情報記録装置、光情報再生装置、光情報記録方法および光情報再生方法 Download PDF

Info

Publication number
WO2015033456A1
WO2015033456A1 PCT/JP2013/074178 JP2013074178W WO2015033456A1 WO 2015033456 A1 WO2015033456 A1 WO 2015033456A1 JP 2013074178 W JP2013074178 W JP 2013074178W WO 2015033456 A1 WO2015033456 A1 WO 2015033456A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical information
angle
signal light
light
information recording
Prior art date
Application number
PCT/JP2013/074178
Other languages
English (en)
French (fr)
Inventor
利樹 石井
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2013/074178 priority Critical patent/WO2015033456A1/ja
Publication of WO2015033456A1 publication Critical patent/WO2015033456A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/30Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique discrete holograms only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08564Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using galvanomirrors

Definitions

  • the present invention relates to an apparatus and method for recording or reproducing information from an optical information recording medium using holography.
  • M / # as an index indicating the recording density that can be recorded on the recording medium.
  • M / # the more holograms with large refractive index modulation can be multiplexed, so that the capacity can be increased.
  • M / # It is important to consume # uniformly in volume.
  • Patent Document 1 As a technology for consuming M / # uniformly.
  • Patent Document 1 when information is recorded or reproduced using a short stack, a page included in one book is divided into units called a short stack of a predetermined number of pages, and the short stack changes each time. It describes that the position of the optical information recording medium is changed. However, if a large-capacity recording is to be realized, an optical information recording medium having a large volume is required, so that the inertia of the optical information recording medium increases and it takes time to change the position of the optical information recording medium. It will be. Therefore, the technique of Patent Document 1 has a problem that it is difficult to improve the data transfer speed.
  • an object of the present invention is to provide an optical information recording / reproducing apparatus, an optical information reproducing apparatus, an optical information recording / reproducing method, and an optical information reproducing method capable of improving the data transfer rate.
  • an optical information recording / reproducing apparatus an optical information reproducing apparatus, an optical information recording / reproducing method, and an optical information reproducing method capable of improving the data transfer rate.
  • FIG. 1 Schematic showing that the same effect as a short stack is achieved by changing the angle of the signal light
  • Block diagram showing an embodiment of an optical information recording / reproducing apparatus Schematic showing the structure of the pickup in the optical information recording / reproducing apparatus in Example 1.
  • FIG. Schematic showing the structure of the pickup in the optical information recording / reproducing apparatus in Example 1.
  • Flow chart representing an embodiment of operation of optical information recording / reproducing apparatus Flow chart representing an embodiment of operation of optical information recording / reproducing apparatus
  • Flow chart representing an embodiment of operation of optical information recording / reproducing apparatus Flow chart representing an embodiment of operation of optical information recording / reproducing apparatus
  • the block diagram showing the Example of the signal generation circuit in an optical information recording / reproducing apparatus The block diagram showing the Example of the signal processing circuit in an optical information recording / reproducing apparatus
  • a flowchart showing an embodiment of an operation flow of a signal generation circuit and a signal processing circuit A flowchart showing an embodiment of an operation flow of a signal generation circuit and a signal processing circuit Schematic showing the relationship between the change in the angle of signal light and the change in position Schematic showing the effect of equalizing M / # consumption by a short stack Flowchart showing the operation of the recording / reproducing process in the first embodiment.
  • FIG. Schematic diagram showing page layout in short stack Schematic diagram showing an example of management information
  • FIG. 2 is a block diagram showing a recording / reproducing apparatus of an optical information recording medium for recording and / or reproducing digital information using holography.
  • the optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 includes a pickup 11, a reproduction reference light optical system 12, a cure optical system 13, a disk rotation angle detection optical system 14, and a rotation motor 50.
  • the optical information recording medium 1 is a rotation motor. 50 can be rotated.
  • the pickup 11 plays a role of emitting reference light and signal light to the optical information recording medium 1 and recording digital information on the recording medium using holography.
  • the information signal to be recorded is sent by the controller 89 to the spatial light modulator in the pickup 11 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator.
  • the reproduction reference light optical system 12 When reproducing the information recorded on the optical information recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the optical information recording medium in a direction opposite to that during recording. Generate. Reproduction light reproduced by the reproduction reference light is detected by a photodetector (to be described later) in the pickup 11, and a signal is reproduced by the signal processing circuit 85.
  • the irradiation time of the reference light and the signal light applied to the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control circuit 87 by the controller 89.
  • the cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1.
  • Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1.
  • Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
  • the disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1.
  • a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control circuit is detected by the controller 89 using the detected signal.
  • the rotation angle of the optical information recording medium 1 can be controlled via 88.
  • a predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light amount. Can do.
  • the pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and the position is controlled via the access control circuit 81.
  • the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
  • a mechanism for detecting the deviation amount of the reference beam angle is provided in the pickup 11, a servo control signal is generated by the servo signal generation circuit 83, and the deviation amount is corrected via the servo control circuit 84.
  • the reference beam angle is controlled with high accuracy.
  • the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining several optical system configurations or all optical system configurations into one.
  • FIG. 3 shows a recording principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10.
  • a light beam emitted from an external resonator type wavelength tunable laser 301 as an example of a light source enters a shutter 303.
  • the shutter 303 When the shutter 303 is open, after the light beam passes through the shutter 303, the optical ratio of the p-polarized light and the s-polarized light becomes a desired ratio by the optical element 304 composed of, for example, a half-wave plate.
  • the optical element 304 composed of, for example, a half-wave plate.
  • the light is incident on a PBS (Polarization Beam Splitter) prism 305.
  • PBS Polarization Beam Splitter
  • the light beam that has passed through the PBS prism 305 functions as signal light 306, and after the light beam diameter is expanded by the beam expander 308, the light beam passes through the phase mask 309, the relay lens 310, and the PBS prism 311 and passes through the spatial light modulator 312. Is incident on.
  • the signal light to which information is added by the spatial light modulator 312 reflects the PBS prism 311 and propagates through the relay lens 313 and the spatial filter 314. Thereafter, the signal light is reflected by the galvanometer mirror 330 and then condensed on the optical information recording medium 1 by the objective lens 315.
  • the angle of the galvanometer mirror 330 can be adjusted by an actuator 331. The operation and control method of the galvanometer mirror 330 will be described later.
  • the light beam reflected from the PBS prism 305 functions as reference light 307 and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 316, and then passes through the mirror 317 and the mirror 318 to be galvano. Incident on the mirror 319. Since the angle of the galvanometer mirror 319 can be adjusted by the actuator 320, the incident angle of the reference light that enters the optical information recording medium 1 after passing through the lens 321 and the lens 322 can be set to a desired angle.
  • the signal light and the reference light are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is recorded by writing this pattern on the recording medium.
  • the incident angle of the reference light incident on the optical information recording medium 1 can be changed by the galvanometer mirror 319, recording by angle multiplexing is possible.
  • holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
  • FIG. 4 shows a reproduction principle in an example of a basic optical system configuration of the pickup 11 in the optical information recording / reproducing apparatus 10.
  • the reference light is incident on the optical information recording medium 1 as described above, and the light beam transmitted through the optical information recording medium 1 is reflected by the galvanometer mirror 324 whose angle can be adjusted by the actuator 323. By doing so, the reproduction reference light is generated.
  • the reproduction light reproduced by the reproduction reference light propagates through the objective lens 315, the galvanometer mirror 330, the relay lens 313, and the spatial filter 314. Thereafter, the reproduction light passes through the PBS prism 311 and enters the photodetector 325, and the recorded signal can be reproduced.
  • the photodetector 325 for example, an image sensor such as a CMOS image sensor or a CCD image sensor can be used. However, any element may be used as long as page data can be reproduced.
  • FIG. 5 (a), 5 (b), and 5 (c) show the operation flow of recording and reproduction in the optical information recording / reproducing apparatus 10.
  • FIG. Here, a flow relating to recording / reproduction using holography in particular will be described.
  • FIG. 5A shows an operation flow from when the optical information recording medium 1 is inserted into the optical information recording / reproducing apparatus 10 until preparation for recording or reproduction is completed
  • FIG. FIG. 5C shows an operation flow until information is recorded on the information recording medium 1
  • FIG. 5C shows an operation flow until the information recorded on the optical information recording medium 1 is reproduced from the ready state.
  • the optical information recording / reproducing apparatus 10 discriminates whether or not the inserted medium is a medium for recording or reproducing digital information using holography, for example. (502).
  • the optical information recording / reproducing apparatus 10 reads control data provided on the optical information recording medium (503). ), For example, information relating to the optical information recording medium and information relating to various setting conditions during recording and reproduction, for example.
  • the operation flow from the ready state to recording information is as follows. First, data to be recorded is received (511), and information corresponding to the data is received from the spatial light modulator in the pickup 11. 312 is sent.
  • the access control circuit 81 is controlled to position the pickup 11 and the cure optical system 13 at predetermined positions on the optical information recording medium.
  • a predetermined area is pre-cured using the light beam emitted from the cure optical system 13 (514), and data is recorded using the reference light and signal light emitted from the pickup 11 (515).
  • post cure is performed using the light beam emitted from the cure optical system 13 (516). Data may be verified as necessary.
  • the operation flow from the ready state to the reproduction of recorded information is as follows. First, in the seek operation (521), the access control circuit 81 is controlled, and the pickup 11 and the reproduction reference light are reproduced. The position of the optical system 12 is positioned at a predetermined position on the optical information recording medium.
  • This embodiment is implemented in the data recording 515 or the data reproduction 522 in the above operation.
  • FIG. 8A and 8B show the data processing flow during recording and reproduction.
  • FIG. 8A shows the spatial light modulation after the recording data reception 511 in the input / output control circuit 90.
  • 8 shows a recording data processing flow in the signal generation circuit 86 until conversion into two-dimensional data on the detector 312.
  • FIG. 8B shows the input / output control circuit 90 after the two-dimensional data is detected by the photodetector 325.
  • 7 shows a reproduction data processing flow in the signal processing circuit 85 up to reproduction data transmission 523 in FIG.
  • each data string is converted to CRC (802) so that error detection at the time of reproduction can be performed.
  • the data string is scrambled (803) to add a pseudo-random data string, and then error correction coding (804) such as Reed-Solomon code is performed so that error correction can be performed during reproduction.
  • error correction coding 804 such as Reed-Solomon code is performed so that error correction can be performed during reproduction.
  • this data string is converted into two-dimensional data of M ⁇ N, and the two-dimensional data (805) for one page is configured by repeating this data for one page of data.
  • a marker serving as a reference for image position detection and image distortion correction during reproduction is added to the two-dimensional data configured as described above (806), and the data is transferred to the spatial light modulator 312 (807).
  • Image data detected by the photodetector 325 is transferred to the signal processing circuit 85 (811).
  • Image position is detected based on the marker included in the image data (812), distortion such as image tilt, magnification, and distortion is corrected (813), and then binarization processing (814) is performed to remove the marker.
  • binarization processing 814
  • two-dimensional data for one page is acquired (816).
  • error correction processing 817
  • descrambling processing 818
  • CRC error detection processing (819) is performed
  • CRC CRC is deleted
  • user data is transmitted (820) via the input / output control circuit 90.
  • FIG. 6 is a block diagram of the signal generation circuit 86 of the optical information recording / reproducing apparatus 10.
  • the input / output control circuit 90 When the input of user data is started to the input / output control circuit 90, the input / output control circuit 90 notifies the controller 89 that the input of user data has started. In response to this notification, the controller 89 instructs the signal generation circuit 86 to record data for one page input from the input / output control circuit 90. A processing command from the controller 89 is notified to the sub-controller 601 in the signal generation circuit 86 via the control line 608. Upon receiving this notification, the sub-controller 601 controls each signal processing circuit via the control line 608 so that each signal processing circuit operates in parallel. First, the memory control circuit 603 is controlled to store user data input from the input / output control circuit 90 via the data line 609 in the memory 602.
  • the CRC calculation circuit 604 performs control to convert the user data into CRC.
  • the CRC-converted data is scrambled by adding a pseudo-random data sequence by the scramble circuit 605, and the error correction encoding circuit 606 performs error correction encoding by adding the parity data sequence.
  • the pickup interface circuit 607 reads out the error correction encoded data from the memory 602 in the arrangement order of the two-dimensional data on the spatial light modulator 312 and adds a reference marker at the time of reproduction. The two-dimensional data is transferred to the spatial light modulator 312.
  • FIG. 7 is a block diagram of the signal processing circuit 85 of the optical information recording / reproducing apparatus 10.
  • the controller 89 instructs the signal processing circuit 85 to reproduce the data for one page input from the pickup 11.
  • a processing command from the controller 89 is notified to the sub-controller 701 in the signal processing circuit 85 via the control line 711.
  • the sub-controller 701 controls each signal processing circuit via the control line 711 so that the signal processing circuits are operated in parallel.
  • the memory control circuit 703 is controlled to store the image data input from the pickup 11 via the pickup interface circuit 710 via the data line 712 in the memory 702.
  • the image position detection circuit 709 performs control to detect a marker from the image data stored in the memory 702 and extract an effective data range.
  • the image distortion correction circuit 708 performs distortion correction such as image inclination, magnification, and distortion using the detected marker, and controls to convert the image data into the expected two-dimensional data size.
  • Each bit data of a plurality of bits constituting the size-converted two-dimensional data is binarized by the binarization circuit 707 to determine “0” or “1”, and the data is arranged on the memory 702 in the order of the output of the reproduction data Control to store.
  • the error correction circuit 706 corrects an error included in each data string, and the scramble release circuit 705 cancels the scramble to add the pseudo random number data string, and then the CRC calculation circuit 704 detects an error in the user data on the memory 702. Check not included. Thereafter, user data is transferred from the memory 702 to the input / output control circuit 90.
  • FIG. 1 a method for producing the same effect as the short stack at high speed by changing the angle of the signal light will be described with reference to FIG.
  • FIG. 3 the signal light reflected by the spatial light modulator 312 is illustrated as being reflected by the PBS prism 311, but is omitted in FIG. 1 for the sake of clarity.
  • the signal light is reflected by the galvanometer mirror 330, but for the sake of clarity, in FIG. 1, the galvanometer mirror 330 is illustrated so that the angle changes through the galvanometer mirror 330.
  • FIG. 3 the signal light reflected by the spatial light modulator 312 is illustrated as being reflected by the PBS prism 311, but is omitted in FIG. 1 for the sake of clarity.
  • the signal light is reflected by the galvanometer mirror 330, but for the sake of clarity, in FIG. 1, the galvanometer mirror 330 is illustrated so that the angle changes through the galvanometer mirror 330.
  • the spatial light modulator 312 illustrates a state in which light emitted from the spatial light modulator 312 is diffracted using each pixel as a point light source.
  • the diffracted light is converted into parallel light by a lens that passes through the relay lens 313, passes through the polytopic filter 314, and then becomes a point light source again through a lens that passes through the relay lens 313.
  • Near the galvanometer mirror 330 an image plane is formed, and the diffracted light becomes parallel light by the objective lens 315 and overlaps in the optical information recording medium 1.
  • the spatial light modulator 312 is generally composed of several million pixels or more, but FIG. 1 shows two peripheral pixels and one central pixel as representatives.
  • FIG. 1 shows the case of recording, in the case of reproduction, the spatial light modulator 312 is used as the light detector 325, and the same applies if the traveling direction of the signal light is considered in reverse.
  • FIG. 9 shows the relationship between the change in the angle of each pixel of the signal light and the change in the position of the signal light in the optical information recording medium 1.
  • a reference state light emitted from a certain pixel enters the objective lens vertically, changes its angle by the objective lens, and is collected on the Fourier plane in the optical information recording medium 1 located at the focal length f.
  • This change amount x becomes the position change amount of the signal light in the optical information recording medium 1.
  • the galvanometer mirror 330 is desirably arranged in the vicinity of the image plane of the signal light because of the relationship between the angle and the position change, but the arrangement of the galvanometer mirror is not limited to the image plane, and the same may be applied even if it is arranged at a position other than the image plane. The effect of can be produced. Moreover, although it demonstrated as satisfying a sine condition, it is not limited to this, If this invention understands the relationship between an angle change and a position change, this invention can be implemented.
  • FIG. 16 schematically shows the page layout in the short stack.
  • FIG. 16A shows a page layout when the short stack is not used. Assuming that one book is composed of 100 pages, all pages are recorded at the same position in each book.
  • FIG. 16B shows a page layout when a short stack is used. If divided into 20 pages of short stacks, the number of short stacks is 5. For example, a short stack is recorded while shifting the position by 1/5 of the book layout interval.
  • FIG. 10 schematically shows the effect of equalizing M / # consumption by a short stack.
  • FIG. 10A shows the signal light intensity distribution when the short stack is not used. It is assumed that one book is composed of 100 pages, and all pages are recorded at the same position.
  • FIG. 10B shows the signal light intensity distribution when the short stack is used. When divided into 20-page short stacks, the strength of each short stack is one fifth of that of FIG. Since each short stack is recorded with its position changed, the peak of the sum of the intensity distribution can be reduced.
  • FIG. 10C shows a comparison of signal light intensity distributions when the short stack is used and when it is not used. It can be seen that the peak can be reduced when the short stack is used compared to when the short stack is not used. Since M / # is consumed according to this intensity distribution, M / # consumption can be made uniform by using a short stack.
  • the focal length f 10 mm
  • the angle scanning range since the positions of the two short stacks change in the positive and negative directions, an angle scanning range of ⁇ 2.30 degrees to +2.30 degrees is necessary.
  • the beam diameter of the signal light is 20 mm, the position of the signal light for the short stack can be changed in a time of several ms or less with a currently available galvanometer mirror. Conventionally, it has been necessary to change the position of the optical information recording medium 1 itself, and driving for a short stack has required several tens of ms or more, so the transfer speed of recording or reproduction can be greatly improved. .
  • Fig. 11 shows the operation flow for angle control during recording or playback in a book.
  • i is initialized with the short stack number as i (1101).
  • j is initialized with the page number as j (1102).
  • the angle of the signal light is changed to the angle of the i-th short stack by the galvanometer mirror 330 (1103).
  • the angle of the reference light is changed to the angle of the j-th page by the galvanometer mirror 319 (1104).
  • the jth page is recorded or reproduced (1105).
  • the process of 1108 returns to the process of 1103, and the angle setting of the signal light and the reference light and the recording or reproduction of the page are repeated again. If the short stack number has not changed from the previous time in 1103, the angle of the galvanometer mirror 330 does not change.
  • a method for angularly scanning the galvanometer mirror 330 in a one-dimensional manner has been described.
  • a galvanometer mirror is additionally arranged so that the angle scan can be performed in a direction orthogonal to the angle change direction of the galvanometer mirror 330.
  • the signal light may be angularly scanned two-dimensionally.
  • a mirror that can be angularly scanned two-dimensionally with a single mirror may be used in place of the galvanometer mirror 330.
  • FIG. 12 shows a configuration in which the transmissive liquid crystal tilt element 332 is used in the pickup 11 in place of the galvanometer mirror 330. Since the signal light passes through the liquid crystal tilt element 332, the optical axis of the signal light does not change before and after the liquid crystal tilt element 332.
  • the liquid crystal tilt element generally has a lower driving speed than the galvanometer mirror, but can be configured in a small size and has an advantage that two-dimensional angle scanning can be easily performed.
  • an example of a galvanometer mirror and a liquid crystal tilt element is shown as an element for changing the angle of signal light, but the present invention is not limited to this.
  • an angle variable element by MEMS an acoustooptic element, Any element such as an electro-optic crystal may be used as long as the angle of the light beam is variable.
  • the angle change of the signal light is performed before recording or reproduction of the page, the angle change of the signal light is stepped. However, it is not always necessary to change the angle to the stepped shape. Recording or playback may be performed while making changes.
  • the position of the signal light changes on the optical information recording medium.
  • the signal light and the reference light may not partially overlap.
  • the beam diameter of the reference light is set to a size that completely overlaps even if the position of the signal light changes, and the recording exposure time or reproduction exposure time is increased as the overlap of the signal light and the reference light decreases. The problem can be avoided by adopting a configuration in which the position of the reference light can be changed in accordance with the change in the position of the signal light.
  • the position change of the reference light may be realized by shifting the mirror 319, for example.
  • the effect of improving the transfer speed of recording or reproduction has been described.
  • M / # consumption is further increased. Since it can be made uniform, more pages can be multiplexed on the same M / # optical information recording medium, and the effect of improving the recording density can be expected.
  • management information as shown in FIG. 17 may be recorded in an optical information recording medium, a cartridge of the optical information recording medium, a memory in the optical information recording / reproducing apparatus, or the like.
  • a flag indicating whether a short stack is used due to a change in the angle of the signal light the number of short stacks, the short stack number, the start page corresponding to the short stack number, and the end
  • There is an angle change amount of the page and signal light As a result, appropriate reproduction is possible.
  • the amount of change in the angle of the signal light the figure shows a case where the angle of the signal light is changed one-dimensionally. However, when the angle of the signal light is changed two-dimensionally, a parameter may be added. . As a result, appropriate reproduction is possible.
  • FIG. 13 shows a configuration in which a wavefront correction element 333 is disposed in front of the PBS prism 305 instead of the galvanometer mirror 330 or the liquid crystal tilt element 332 as an element for changing the angle of the signal light.
  • the wavefront correction element can be configured using an element capable of controlling the phase for each pixel of the liquid crystal or a deformable mirror. Since the wavefront correction element can change the phase information of the wavefront of the light beam, for example, it is possible to change the angle of the light beam, or to reproduce or record with high signal quality by compensating for the distorted wavefront. it can.
  • the galvano mirror 319 corrects the amount of change of the reference light angle by the wavefront correction element 333.
  • the wavefront correction element 333 can be used not only to change the angle during recording or reproduction but also to correct aberrations.
  • the wave expander 308 is also used as a relay lens and the wavefront correction element is arranged at the position of the image plane. Thus, the position may not be changed.
  • a relay lens may be disposed in the optical path of the reference light, and the wavefront correction element 333 may be propagated as an image plane so that only the angle is changed without changing the position.
  • Fig. 14 shows the operation flow for angle control during recording or playback in a book.
  • i is initialized with the short stack number as i (1401).
  • j is initialized with the page number as j (1402).
  • the angle of the signal light is changed to the angle of the i-th short stack by the wavefront correction element 333 (1403).
  • the angle of the reference light is changed to the angle of the jth page by the galvanometer mirror 319 (1404).
  • the galvanometer mirror 319 may be controlled in consideration so that the change in the angle of the reference light due to 1403 is corrected in 1404.
  • the jth page is recorded or reproduced (1405). It is determined whether the j-th page is the last page of the book (1406). If it is the last page of the book, the book recording or reproduction process is terminated. If it is not the last page of the book, it is determined whether the j-th page is the last page in the short stack (1407). If it is not the last page of the short stack, the page number j is incremented by 1 (1408). If it is the last page of the short stack, the short stack number i is incremented by 1 (1409), and then the page number is incremented by 1 in 1408.
  • the process returns to the process of 1403, and the angle setting of the signal light and the reference light and the recording or reproduction of the page are repeated again.
  • the angle set by the wavefront correction element 333 does not change. Note that recording / reproduction with high signal quality is possible by correcting the wavefront for each page or for each of a plurality of pages as necessary.
  • Non-patent Document 1 Kertial Data Storage”, WILEY, pages 313 to 314
  • FIG. 15 omits the relay lens 310 from the optical system configuration of FIG. 3 showing the first embodiment,
  • the phase mask 309 is attached to the spatial light modulator 312.
  • the short stack can be performed at high speed, the short stack can also be performed in units of a smaller number of pages than in the past.
  • the number of pages multiplexed in the same part of the optical recording medium 1 is reduced, so that recording is performed without degrading the recording quality even when the phase mask 309 is stationary. be able to.
  • the phase mask since a mechanism for driving the phase mask has been required, the phase mask is arranged alone in the optical path of the signal light as shown in FIG. 3, and the image of the phase mask is applied to the spatial light modulator 312 by the relay lens 310. Was configured to project.
  • the driving of the phase mask 309 is unnecessary, the relay lens 310 is unnecessary, and the phase mask 309 can be attached to the spatial light modulator 312. Since the drive part of the relay lens 310 and the phase mask 309 becomes unnecessary, the pickup 11 can be reduced in size.
  • the phase mask 309 is attached to the spatial light modulator 312.
  • the spatial light modulator 312 may be integrally manufactured by incorporating the phase modulation function of the phase mask 309 therein.
  • it since it may be arranged in the vicinity of the image plane, for example, it may be configured to be attached to the galvano mirror 330, the liquid crystal tilt element 332, or the like.
  • the relay lens for the phase mask and a driving part have been required, and there has been a problem that the size of the pickup 11 is increased.
  • the relay lens for the phase mask and the driving portion are not required by realizing the short stack in the unit of a small number of pages by changing the angle of the signal light. Since the pickup 11 can be downsized, an easy-to-use optical information recording / reproducing apparatus can be provided.
  • the angle change of the signal light is realized by additionally arranging an element for changing the angle of the signal light is shown, but the present invention is not limited to this.
  • the position of the signal light in the optical information recording medium 1 can be changed by driving the optical objective lens 315 or the relay lens 313 after passing through the polytopic filter in a plane perpendicular to the optical axis.
  • the movement of the short stack is realized by changing the angle of the signal light
  • the movement of the book is realized by moving the optical information recording medium.
  • the present invention is not limited to this. Absent.
  • the movement between the short stacks 1 and 2 and the movement between 3 and 4 are realized by changing the angle of the signal light. Movement between the stacks 2 and 3 may be realized by movement of the optical information recording medium, or movement of the eight short stacks in the two books is realized by changing the angle of the signal light, and two books Each movement may be realized by moving the optical information recording medium.
  • the angle multiplexing method has been described as an example, but the present invention can also be applied to other methods such as a wavelength multiplexing method in which multiple recording is performed at the same position by changing the wavelengths of the signal light and the reference light.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • another configuration can be added, deleted, or replaced.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • SYMBOLS 1 Optical information recording medium, 10 ... Optical information recording / reproducing apparatus, 11 ... Pickup, 12 ... Reference light optical system for reproduction, 13 ... Disc Cure optical system, 14 ... Optical system for detecting disk rotation angle, 81 ... Access control circuit, 82... Light source drive circuit, 83... Servo signal generation circuit, 84 ... Servo control circuit, 85 ... Signal processing circuit, 86 ... Signal generation circuit, 87 ... Shutter control circuit, 88 ... Disc rotation motor control circuit, 89 ... Controller, 90 ... Input / output control circuit, 91 ... External control device, 301 ... light source, 303 ... shutter, 306 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Holo Graphy (AREA)

Abstract

 ショートスタックを利用した場合、記録転送速度または再生転送速度を高速化することが難しいという課題があった。 信号光と参照光との干渉パターンをホログラムとして光情報記録媒体に記録する光情報記録装置において、光を出射する光源部と、 前記光源部から出射した光を信号光と参照光に分岐する分岐素子と、前記信号光に2次元情報を付加するための空間光変調器と、信号光の角度を変更可能な信号光角度可変素子 と、を備え、記録の際に、前記信号光角度可変素子が信号光の角度を変えることで光情報記録媒体での信号光の位置を変えることにより解決する。

Description

光情報記録装置、光情報再生装置、光情報記録方法および光情報再生方法
 本発明は、ホログラフィを用いて、光情報記録媒体から情報を記録または再生する、装置及び方法に関する。
 本技術分野の背景技術として、US7589877B2(特許文献1)がある。本公報には、1ブックの記録の中でメディアの位置を変えながら記録することにより、M/#を均一に消費することが可能なショートスタックの技術について記載されている。
US7589877B2
 記録媒体に記録可能な記録密度を示す指標としてM/#がある。このM/#が大きいほど、屈折率変調の大きなホログラムを多く多重することができるため、大容量化が可能であり、ホログラムの記録において、光記録媒体を効率良く利用するためには、M/#を体積的に均一に消費することが重要である。M/#を均一に消費する技術として特許文献1がある。
 ところで、特許文献1にはショートスタックを利用して情報を記録または再生する場合には、1ブックに含まれるページを所定のページ数のショートスタックと呼ばれる単位で分割し、ショートスタックが変る度に光情報記録媒体の位置を変更することが記載されている。しかし、大容量の記録を実現しようとした場合、体積の大きな光情報記録媒体が必要となるため、光情報記録媒体の慣性が大きくなり、光情報記録媒体の位置を変更するために時間を要することになる。したがって、特許文献1の技術はデータ転送速度を向上することが難しいという課題があった。
 そこで本発明の目的は、データ転送速度を向上させることができる光情報記録再生装置、光情報再生装置、光情報記録再生方法および光情報再生方法を提供することである。
 上記課題は、例えば請求の範囲に記載の発明により解決される。
 本発明によれば、データ転送速度を向上させることができる光情報記録再生装置、光情報再生装置、光情報記録再生方法および光情報再生方法を提供することが出来る。
信号光の角度を変えることによりショートスタックと同様の効果が出ることを示す概略図 光情報記録再生装置の実施例を表すブロック図 実施例1における光情報記録再生装置内のピックアップの構成を表す概略図 実施例1における光情報記録再生装置内のピックアップの構成を表す概略図 光情報記録再生装置の動作の実施例を表すフローチャート 光情報記録再生装置の動作の実施例を表すフローチャート 光情報記録再生装置の動作の実施例を表すフローチャート 光情報記録再生装置内の信号生成回路の実施例を表すブロック図 光情報記録再生装置内の信号処理回路の実施例を表すブロック図 信号生成回路及び信号処理回路の動作フローの実施例を表すフローチャート 信号生成回路及び信号処理回路の動作フローの実施例を表すフローチャート 信号光の角度変化と位置の変化の関係を示す概略図 ショートスタックによりM/#の消費が均一化される効果を表す概略図 実施例1における記録再生処理の動作を示すフローチャート 実施例1における光情報記録再生装置内のピックアップの別の構成を表す概略図 実施例2における光情報記録再生装置内のピックアップの実施例を表す概略図 実施例2における記録再生処理の動作を示すフローチャート 実施例3における光情報記録再生装置内のピックアップの構成を表す概略図 ショートスタックにおけるページ配置を表す模式図 管理情報の一例表す模式図
 以下、本発明の実施例について図面を用いて説明する。
 本発明の第1の実施例を添付図面にしたがって説明する。図2はホログラフィを利用してデジタル情報を記録および/または再生する光情報記録媒体の記録再生装置を示すブロック図である。
 光情報記録再生装置10は、入出力制御回路90を介して外部制御装置91と接続されている。記録する場合には、光情報記録再生装置10は外部制御装置91から記録する情報信号を入出力制御回路90により受信する。再生する場合には、光情報記録再生装置10は再生した情報信号を入出力制御回路90により外部制御装置91に送信する。
 光情報記録再生装置10は、ピックアップ11、再生用参照光光学系12、キュア光学系13、ディスク回転角度検出用光学系14、及び回転モータ50を備えており、光情報記録媒体1は回転モータ50によって回転可能な構成となっている。
 ピックアップ11は、参照光と信号光を光情報記録媒体1に出射してホログラフィを利用してデジタル情報を記録媒体に記録する役割を果たす。この際、記録する情報信号はコントローラ89によって信号生成回路86を介してピックアップ11内の空間光変調器に送り込まれ、信号光は空間光変調器によって変調される。
 光情報記録媒体1に記録した情報を再生する場合は、ピックアップ11から出射された参照光を記録時とは逆の向きに光情報記録媒体に入射させる光波を再生用参照光光学系12にて生成する。再生用参照光によって再生される再生光をピックアップ11内の後述する光検出器によって検出し、信号処理回路85によって信号を再生する。
 光情報記録媒体1に照射する参照光と信号光の照射時間は、ピックアップ11内のシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することで調整できる。
 キュア光学系13は、光情報記録媒体1のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、光情報記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、光情報記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。
 ディスク回転角度検出用光学系14は、光情報記録媒体1の回転角度を検出するために用いられる。光情報記録媒体1を所定の回転角度に調整する場合は、ディスク回転角度検出用光学系14によって回転角度に応じた信号を検出し、検出された信号を用いてコントローラ89によってディスク回転モータ制御回路88を介して光情報記録媒体1の回転角度を制御する事が出来る。
 光源駆動回路82からは所定の光源駆動電流がピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。
 また、ピックアップ11、そして、ディスクキュア光学系13は、光情報記録媒体1の半径方向に位置をスライドできる機構が設けられており、アクセス制御回路81を介して位置制御が行われる。
 ところで、ホログラフィの角度多重の原理を利用した記録技術は、参照光角度のずれに対する許容誤差が極めて小さくなる傾向がある。
 従って、ピックアップ11内に、参照光角度のずれ量を検出する機構を設けて、サーボ信号生成回路83にてサーボ制御用の信号を生成し、サーボ制御回路84を介して該ずれ量を補正するためのサーボ機構を光情報記録再生装置10内に備えることで高精度に参照光角度制御する。
 また、ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。
 図3は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における記録原理を示したものである。光源の一例としての外部共振器型波長可変レーザ301を出射した光ビームは、シャッタ303に入射する。シャッタ303が開いている時は、光ビームはシャッタ303を通過した後、例えば2分の1波長板などで構成される光学素子304によってp偏光とs偏光の光量比が所望の比になるようになど偏光方向が制御された後、PBS(Polarization Beam Splitter)プリズム305に入射する。
 PBSプリズム305を透過した光ビームは、信号光306として働き、ビームエキスパンダ308によって光ビーム径が拡大された後、位相マスク309、リレーレンズ310、PBSプリズム311を透過して空間光変調器312に入射する。
 空間光変調器312によって情報が付加された信号光は、PBSプリズム311を反射し、リレーレンズ313ならびに空間フィルタ314を伝播する。その後、信号光はガルバノミラー330を反射した後、対物レンズ315によって光情報記録媒体1に集光する。ガルバノミラー330はアクチュエータ331によって角度を調整可能である。ガルバノミラー330の動作および制御方法については後述する。
 一方、PBSプリズム305を反射した光ビームは参照光307として働き、偏光方向変換素子316によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー317ならびにミラー318を経由し、ガルバノミラー319に入射する。ガルバノミラー319はアクチュエータ320によって角度を調整可能なため、レンズ321とレンズ322を通過した後に光情報記録媒体1に入射する参照光の入射角度を、所望の角度に設定することができる。
 このように信号光と参照光とを光情報記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。また、ガルバノミラー319によって光情報記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。
 以降、同じ領域に参照光角度を変えて記録されたホログラムにおいて、1つ1つの参照光角度に対応したホログラムをページと呼び、同領域に角度多重されたページの集合をブックと呼ぶことにする。
 図4は、光情報記録再生装置10におけるピックアップ11の基本的な光学系構成の一例における再生原理を示したものである。記録した情報を再生する場合は、前述したように参照光を光情報記録媒体1に入射し、光情報記録媒体1を透過した光ビームを、アクチュエータ323によって角度調整可能なガルバノミラー324にて反射させることで、その再生用参照光を生成する。
 この再生用参照光によって再生された再生光は、対物レンズ315、ガルバノミラー330、リレーレンズ313ならびに空間フィルタ314を伝播する。その後、再生光はPBSプリズム311を透過して光検出器325に入射し、記録した信号を再生することができる。光検出器325としては例えばCMOSイメージセンサーやCCDイメージセンサーなどの撮像素子を用いることができるが、ページデータを再生可能であれば、どのような素子であっても構わない。
 図5(a)、図5(b)、図5(c)は、光情報記録再生装置10における記録、再生の動作フローを示したものである。ここでは、特にホログラフィを利用した記録再生に関するフローを説明する。
 図5(a)は、光情報記録再生装置10に光情報記録媒体1を挿入した後、記録または再生の準備が完了するまでの動作フローを示し、図5(b)は準備完了状態から光情報記録媒体1に情報を記録するまでの動作フロー、図5(c)は準備完了状態から光情報記録媒体1に記録した情報を再生するまでの動作フローを示したものである。
 図5(a)に示すように媒体を挿入すると(501)、光情報記録再生装置10は、例えば挿入された媒体がホログラフィを利用してデジタル情報を記録または再生する媒体であるかどうかディスク判別を行う(502)。
 ディスク判別の結果、ホログラフィを利用してデジタル情報を記録または再生する光情報記録媒体であると判断されると、光情報記録再生装置10は光情報記録媒体に設けられたコントロールデータを読み出し(503)、例えば光情報記録媒体に関する情報や、例えば記録や再生時における各種設定条件に関する情報を取得する。
 コントロールデータの読み出し後は、コントロールデータに応じた各種調整やピックアップ11に関わる学習処理(504)を行い、光情報記録再生装置10は、記録または再生の準備が完了する(505)。
 準備完了状態から情報を記録するまでの動作フローは図5(b)に示すように、まず記録するデータを受信して(511)、該データに応じた情報をピックアップ11内の空間光変調器312に送り込む。
 その後、光情報記録媒体に高品質の情報を記録できるように、必要に応じて例えば光源301のパワー最適化やシャッタ303による露光時間の最適化等の各種記録用学習処理を事前に行う(512)。
 その後、シーク動作(513)ではアクセス制御回路81を制御して、ピックアップ11ならびにキュア光学系13の位置を光情報記録媒体の所定の位置に位置付けする。
 その後、キュア光学系13から出射する光ビームを用いて所定の領域をプリキュアし(514)、ピックアップ11から出射する参照光と信号光を用いてデータを記録する(515)。
 データを記録した後は、キュア光学系13から出射する光ビームを用いてポストキュアを行う(516)。必要に応じてデータをベリファイしても構わない。
 準備完了状態から記録された情報を再生するまでの動作フローは図5(c)に示すように、まずシーク動作(521)で、アクセス制御回路81を制御して、ピックアップ11ならびに再生用参照光光学系12の位置を光情報記録媒体の所定の位置に位置付けする。
 その後、ピックアップ11から参照光を出射し、光情報記録媒体に記録された情報を読み出し(522)、再生データを送信する(523)。
 本実施例は以上の動作の中で、データ記録515もしくはデータ再生522において実施される。
 図8(a)、図8(b)は、記録、再生時のデータ処理フローを示したものであり、図8(a)は、入出力制御回路90において記録データ受信511後、空間光変調器312上の2次元データに変換するまでの信号生成回路86での記録データ処理フローを示しており、図8(b)は光検出器325で2次元データを検出後、入出力制御回路90における再生データ送信523までの信号処理回路85での再生データ処理フローを示している。
 図8(a)を用いて記録時のデータ処理について説明する。ユーザデータを受信(801)すると、複数のデータ列に分割、再生時エラー検出が行えるように各データ列をCRC化(802)し、オンピクセル数とオフピクセル数をほぼ等しくし、同一パターンの繰り返しを防ぐことを目的にデータ列に擬似乱数データ列を加えるスクランブル(803)を施した後、再生時エラー訂正が行えるようにリード・ソロモン符号等の誤り訂正符号化(804)を行う。次にこのデータ列をM×Nの2次元データに変換し、それを1ページデータ分繰返すことで1ページ分の2次元データ(805)を構成する。このように構成した2次元データに対して再生時の画像位置検出や画像歪補正での基準となるマーカーを付加(806)し、空間光変調器312にデータを転送(807)する。
 次に図8(b)を用いて再生時のデータ処理フローについて説明する。光検出器325で検出された画像データが信号処理回路85に転送(811)される。この画像データに含まれるマーカーを基準に画像位置を検出(812)し、画像の傾き・倍率・ディストーションなどの歪みを補正(813)した後、2値化処理(814)を行い、マーカーを除去(815)することで1ページ分の2次元データを取得(816)する。このようにして得られた2次元データを複数のデータ列に変換した後、誤り訂正処理(817)を行い、パリティデータ列を取り除く。次にスクランブル解除処理(818)を施し、CRCによる誤り検出処理(819)を行ってCRCパリティを削除した後にユーザデータを入出力制御回路90経由で送信(820)する。
 図6は、光情報記録再生装置10の信号生成回路86のブロック図である。
 入出力制御回路90にユーザデータの入力が開始されると、入出力制御回路90はコントローラ89にユーザデータの入力が開始されたことを通知する。コントローラ89は本通知を受け、信号生成回路86に入出力制御回路90から入力される1ページ分のデータを記録処理するよう命ずる。コントローラ89からの処理命令は制御用ライン608を経由し、信号生成回路86内サブコントローラ601に通知される。本通知を受け、サブコントローラ601は各信号処理回路を並列に動作させるよう制御用ライン608を介して各信号処理回路の制御を行う。先ずメモリ制御回路603に、データライン609を介して入出力制御回路90から入力されるユーザデータをメモリ602に格納するよう制御する。メモリ602に格納したユーザデータが、ある一定量に達すると、CRC演算回路604でユーザデータをCRC化する制御を行う。次にCRC化したデータに、スクランブル回路605で擬似乱数データ列を加えるスクランブル化を施し、誤り訂正符号化回路606でパリティデータ列を加える誤り訂正符号化する制御を行う。最後にピックアップインターフェース回路607にメモリ602から誤り訂正符号化したデータを空間光変調器312上の2次元データの並び順で読み出させ、再生時に基準となるマーカーを付加した後、ピックアップ11内の空間光変調器312に2次元データを転送する。
 図7は、光情報記録再生装置10の信号処理回路85のブロック図である。
 コントローラ89はピックアップ11内の光検出器325が画像データを検出すると、信号処理回路85にピックアップ11から入力される1ページ分のデータを再生処理するよう命ずる。コントローラ89からの処理命令は制御用ライン711を経由し、信号処理回路85内サブコントローラ701に通知される。本通知を受け、サブコントローラ701は各信号処理回路を並列に動作させるよう制御用ライン711を介して各信号処理回路の制御を行う。先ず、メモリ制御回路703に、データライン712を介して、ピックアップ11からピックアップインターフェース回路710を経由して入力される画像データをメモリ702に格納するよう制御する。メモリ702に格納されたデータがある一定量に達すると、画像位置検出回路709でメモリ702に格納された画像データ内からマーカーを検出して有効データ範囲を抽出する制御を行う。次に検出されたマーカーを用いて画像歪み補正回路708で、画像の傾き・倍率・ディストーションなどの歪み補正を行い、画像データを期待される2次元データのサイズに変換する制御する。サイズ変換された2次元データを構成する複数ビットの各ビットデータを、2値化回路707において“0”、“1”判定する2値化し、メモリ702上に再生データの出力の並びでデータを格納する制御を行う。次に誤り訂正回路706で各データ列に含まれる誤りを訂正し、スクランブル解除回路705で擬似乱数データ列を加えるスクランブルを解除した後、CRC演算回路704でメモリ702上のユーザデータ内に誤りが含まれない確認を行う。その後、入出力制御回路90にメモリ702からユーザデータを転送する。
 次に信号光の角度を変えることにより高速にショートスタックと同様の効果を出す方法について図1を用いて説明する。図1では図3の信号光の光学系について説明に必要な部分のみを抽出して図示したものである。図3では空間光変調器312で反射した信号光はPBSプリズム311で反射する構成で図示されているが、分かりやすくするため、図1では省略している。また図3ではガルバノミラー330で信号光が反射する構成で図示されているが、分かりやすくするため、図1ではガルバノミラー330を透過して角度が変化するように図示している。また、図1では空間光変調器312から出た光は各ピクセルを点光源として回折する様子を図示している。回折した光はリレーレンズ313の先に透過するレンズで平行光となり、ポリトピックフィルタ314を透過した後に、リレーレンズ313の後で透過するレンズで再び点光源となる。ガルバノミラー330の近傍で像面となり、再度回折した光は対物レンズ315で平行光となり光情報記録媒体1の中で重なり合う。空間光変調器312は一般的に数百万ピクセル以上のピクセルで構成されているが、図1では周辺側のピクセル2個と中央のピクセル1個を代表して図示している。ガルバノミラー330によって信号光の各ピクセルの角度が変化した場合、各ピクセルが対物レンズに入射する位置が変化し、光情報記録媒体1で信号光が集光する位置が変化することが分かる。なお、図1では記録の場合について示したが、再生の場合には空間光変調器312を光検出器325として、信号光の進む向きを逆に考えれば、同様である。
 図9に信号光の各ピクセルの角度変化と光情報記録媒体1の中での信号光の位置の変化の関係を示す。あるピクセルから出た光は基準状態では垂直に対物レンズに入射し、対物レンズで角度が変化し、焦点距離fの位置にある光情報記録媒体1の中のフーリエ面上に集光する。対物レンズが正弦条件を満足するものとして、信号光がθだけ角度変化した場合、対物レンズに入射する信号光の位置の変化量xは、対物レンズの焦点距離をfとしてx=fsinθとなる。この変化量xが光情報記録媒体1の中での信号光の位置変化量となる。図9では1つのピクセルについて図示しているが、どのピクセルについてもθとxの関係は同様のため、ホログラム全体の位置がxだけ変化する。角度と位置変化の関係からガルバノミラー330は信号光の像面近傍に配置することが望ましいが、ガルバノミラーの配置は像面に限定されず、像面以外の位置に配置されていても、同様の効果を奏することができる。また、正弦条件を満足するものとして説明したが、これに限定するものではなく、角度変化と位置変化の関係が分かっていれば、本発明は実施可能である。
 図16にショートスタックにおけるページ配置を模式的に示す。図16(a)にショートスタックを利用しない場合のページ配置を示す。1ブックが100ページで構成されているものとして、各ブック内では全てのページが同じ位置に記録されている。図16(b)にショートスタックを利用する場合のページ配置を示す。20ページずつのショートスタックに分けた場合、ショートスタックの数は5となり。例えばブックの配置間隔の5分の1ずつ位置をずらしながら、ショートスタックを記録する。
 図10にショートスタックによりM/#の消費が均一化される効果について模式的に示す。図10(a)にショートスタックを利用しない場合の信号光強度分布を示す。1ブックが100ページで構成されているものとして、全てのページが同じ位置に記録されているものとする。図10(b)にショートスタックを利用する場合の信号光強度分布を示す。20ページずつのショートスタックに分けた場合、各ショートスタックの強度は図10(a)と比較して5分の1となる。各ショートスタックを位置変化させて記録するため、強度分布の総和のピークを低減することができる。図10(c)にショートスタックを利用する場合と利用しない場合の信号光強度分布の比較を示す。ショートスタックを利用した場合にはショートスタックを利用しない場合に比べてピークを低減できていることが分かる。この強度分布に応じてM/#は消費されるため、ショートスタックを利用することでM/#消費の均一化が可能である。
 一例として、フーリエ面におけるホログラムの大きさを1000μm、1ブックを100ページ、20ページずつ5つのショートスタックで構成したとすると、ショートスタックをするために必要なホログラムの位置変化量xは1000/5=200μmとなる。焦点距離fを10mmとすると、x=fsinθの関係から約1.15度の角度変化が必要である。角度走査範囲としては正負の方向に2つのショートスタックの位置変化をするため、-2.30度~+2.30度の角度走査範囲が必要となる。信号光のビーム径を20mmとすると、現行利用可能なガルバノミラーで数ms以下の時間でショートスタックのための信号光位置変化が可能である。従来は光情報記録媒体1そのものの位置を変化させる必要があり、ショートスタックのための駆動には数10ms以上の時間を要していたため、大幅に記録または再生の転送速度を向上させることができる。
 図11にブック内での記録時または再生時の角度制御について動作フローを示す。ブックの記録または再生が開始されると、ショートスタックの番号をiとしてiは初期化される(1101)。また、ページの番号をjとしてjも初期化される(1102)。次に、ガルバノミラー330により信号光の角度をi番目のショートスタックの角度に変更する(1103)。また、ガルバノミラー319により参照光の角度をj番目のページの角度に変更する(1104)。その後、j番目のページの記録または再生を行う(1105)。次にj番目のページがブックの最後のページか判定する(1106)。ブックの最後のページであればブックの記録または再生の処理を終了する。ブックの最後のページでなければ、j番目のページがショートスタック内の最後のページか判定する(1107)。ショートスタックの最後のページでなければ、ページの番号jを1だけ増加させる(1108)。ショートスタックの最後のページであれば、ショートスタックの番号iを1だけ増加させ(1109)、その後1108でページの番号を1だけ増加させる。1108の処理の後、1103の処理に戻り、再度信号光および参照光の角度設定とページの記録または再生を繰り返す。1103でショートスタックの番号が前回と変更していなければ、ガルバノミラー330の角度は変化しない。
 なお、本実施例ではガルバノミラー330を1次元的に角度走査する方法について示したが、ガルバノミラー330の角度変化方向と直交する向きに角度走査が可能なようにガルバノミラーを追加して配置することにより、信号光を2次元的に角度走査しても構わない。また、1枚のミラーで2次元的に角度走査可能なミラーをガルバノミラー330に代えて用いても構わない。信号光を2次元的に角度走査することにより、光情報記録媒体1の中で信号光を2次元的に位置変化させることが可能となるため、1次元的な位置変化と比べて、M/#消費をより均一にすることができる。
 図12は、ピックアップ11において、ガルバノミラー330に代えて、透過型の液晶チルト素子332を用いた構成を示したものである。信号光は液晶チルト素子332を透過するため、信号光の光軸は液晶チルト素子332の前後で変らない。液晶チルト素子はガルバノミラーと比べて一般的に駆動速度が低速であるが、小型に構成可能であり、2次元的な角度走査の実施が容易であるメリットがある。
 本実施例では信号光の角度を変化させる素子としてガルバノミラーと液晶チルト素子の例を示したが、本発明はこれに限定されるものではなく、例えば、MEMSによる角度可変素子、音響光学素子、 電気光学結晶等、光線の角度を可変であればどのような素子を用いて実現しても構わない。
 なお、信号光の角度変更はページの記録または再生の前に行うものとしたため、信号光の角度変更は階段状となるが、必ずしも階段状に角度変更をする必要は無く、例えば連続的に角度変更をしながら、記録または再生を行っても構わない。
 なお、本実施例を実施した場合、光情報記録媒体上で信号光の位置が変化するが、参照光の位置は変わらないため、信号光と参照光が一部重ならなくなる可能性がある。信号光と参照光が一部重ならなくなった場合、ホログラムの回折効率が低下する、記録品質が低下する可能性がある。一例として、参照光のビーム径を信号光の位置が変化しても完全に重なるような大きさにしておく、信号光と参照光の重なりの低下に合わせて記録露光時間または再生露光時間を増加させる、信号光の位置変化に合わせて参照光の位置も変化できるような構成とする、といった対策により問題の回避が可能である。なお、上記の信号光の位置変化に合わせて参照光の位置を変化させる場合には、例えばミラー319をシフトさせることによって参照光の位置変化を実現してもよい。
 なお、本実施例では記録または再生の転送速度を向上する効果について記載したが、従来のショートスタックと比べて、より少ないページ数の単位でショートスタックを構成することにより、M/#消費をより均一化することができるため、同一のM/#の光情報記録媒体に対しても、より多くのページを多重することが可能となり、記録密度を向上させる効果も期待できる。
 従来、ショートスタックを利用した光情報記録再生装置においては、記録または再生の転送速度の向上が難しいという課題があった。しかしながら、以上の第1の実施例によれば、信号光の角度を変化させることにより高速にショートスタックを実現できるため、記録または再生の転送速度を向上することが可能であり、使い勝手の良い光情報記録再生装置を提供することができる。
 なお、図17に示すような管理情報を光情報記録媒体、光情報記録媒体のカートリッジ、光情報記録再生装置内のメモリ等に記録してもよい。管理情報の内容の一例として、図17に示すように、信号光の角度変化によるショートスタックを利用しているかを示すフラグ、ショートスタック数、ショートスタック番号、ショートスタック番号に対応する開始ページ、終了ページ、信号光の角度変化量がある。これにより、適切な再生が可能となる。信号光の角度変化量については、一次元的に信号光の角度を変化させる場合についての図としたが、二次元的に信号光の角度を変化させる場合には、パラメータを追加しても良い。これにより、適切な再生が可能となる。
 本発明の第2の実施例を添付図面にしたがって説明する。光情報再生装置の構成は第1の実施例と同様であるため説明を省略する。
 図13は信号光の角度を変化させる素子として、ガルバノミラー330もしくは液晶チルト素子332に代えて、PBSプリズム305の前に波面補正素子333を配置した構成である。波面補正素子としては、液晶のピクセル毎に位相を制御可能な素子や、デフォーマブルミラーを用いて構成することができる。波面補正素子により光ビームの波面の位相情報を変えることができるため、例えば光ビームの角度を変えることもできるし、歪んだ波面の補償をすることで信号品質の高い再生または記録をすることもできる。記録時または再生時に波面補正素子333を用いて信号光の角度を変化させることにより実施例1と同様にショートスタックの効果を奏することが可能であるが、同時に参照光の角度も変化してしまう。そこで、本実施例では参照光の角度が波面補正素子333で変化した分をガルバノミラー319で補正する。波面補正素子333は記録時または再生時に角度を変えるだけでなく、収差の補正にも利用可能である。
 なお、波面補正素子333により信号光の角度を変えた場合、角度だけではなく位置も変ってしまうため、例えばビームエキスパンダ308をリレーレンズとしても用いて波面補正素子を像面の位置に配置することで、位置が変らないようにしても構わない。同様に参照光の光路中にリレーレンズを配置し、波面補正素子333を像面として伝搬させることにより、位置を変えずに、角度のみを変化させる構成としても構わない。
 図14にブック内での記録時または再生時の角度制御について動作フローを示す。ブックの記録または再生が開始されると、ショートスタックの番号をiとしてiは初期化される(1401)。また、ページの番号をjとしてjも初期化される(1402)。次に、波面補正素子333により信号光の角度をi番目のショートスタックの角度に変更する(1403)。また、ガルバノミラー319により参照光の角度をj番目のページの角度に変更する(1404)。1403では信号光の角度だけではなく参照光の角度も変化してしまうが、1404で1403による参照光の角度変化分が補正されるように考慮してガルバノミラー319を制御すれば良い。その後、j番目のページの記録または再生を行う(1405)。j番目のページがブックの最後のページか判定する(1406)。ブックの最後のページであればブックの記録または再生の処理を終了する。ブックの最後のページでなければ、j番目のページがショートスタック内の最後のページか判定する(1407)。ショートスタックの最後のページでなければ、ページの番号jを1だけ増加させる(1408)。ショートスタックの最後のページであれば、ショートスタックの番号iを1だけ増加させ(1409)、その後1408でページの番号を1だけ増加させる。1408の処理の後、1403の処理に戻り、再度信号光および参照光の角度設定とページの記録または再生を繰り返す。1403ではショートスタックの番号が前回と変更していなければ、波面補正素子333で設定する角度は変化しない。なお、必要に応じてページ毎もしくは複数のページ毎に波面の補正を実施することで、信号品質の高い記録再生が可能となる。
 従来、ショートスタックを利用した光情報記録再生装置においては、記録または再生の転送速度の向上が難しいという課題があった。しかしながら、以上の第2の実施例によれば、信号光の角度を変化させることにより高速にショートスタックを実現できることに加え、波面の補正ができるため、信号品質の高い記録再生が可能であり、信頼性の高い光情報記録再生装置を提供することができる。
 本発明の第3の実施例を添付図面にしたがって説明する。光情報再生装置の構成は第1の実施例と同様であるため説明を省略する。
 位相マスク309を固定したまま多重記録をした場合、記録品質が低下するが、ブック記録中に位相マスクを駆動することで記録品質低下を回避できることが報告されている(非特許文献1)。
(非特許文献1)Kevin Curtis著、「Holographic Data Storage」、WILEY、第313頁から第314頁
 図15は第1の実施例を示す図3の光学系構成から、リレーレンズ310を省略し、位相マスク309を空間光変調器312に貼り付けた構成としたものである。第1の実施例で説明したように、高速にショートスタックを実施することができるため、従来に比べて少ないページ数の単位でショートスタックをすることもできる。少ないページ数の単位でショートスタックをすることにより、光記録媒体1の同一の箇所に多重されるページ数が減少するため、位相マスク309が静止していても記録品質を低下させずに記録することができる。従来、位相マスクを駆動するための機構が必要であったため、図3に示すように位相マスクは信号光の光路中に単体で配置し、リレーレンズ310で空間光変調器312に位相マスクの像を投影する構成としていた。本実施例では位相マスク309の駆動が不要であるため、リレーレンズ310は不要であり、位相マスク309を空間光変調器312に貼り付けることが可能である。リレーレンズ310と位相マスク309の駆動部分が不要となるため、ピックアップ11を小型化することができる。
 なお、本実施例では位相マスク309を空間光変調器312に貼り付けた構成として説明したが、空間光変調器312を内部に位相マスク309の位相変調機能を組み込んで一体として作製しても構わないし、像面近傍に配置できれば良いため、例えばガルバノミラー330や液晶チルト素子332等に貼り付けた構成としても構わない。
 従来、位相マスクのためのリレーレンズと駆動部分が必要であったため、ピックアップ11が大型化する課題があった。しかしながら、以上の第3の実施例によれば、信号光の角度を変化させることにより少ないページ数の単位でショートスタックを実現することで、位相マスクのためのリレーレンズと駆動部分が不要となり、ピックアップ11を小型化できるため、使い勝手の良い光情報記録再生装置を提供することができる。
 なお、上記実施例では信号光の角度を変化させるための素子を追加して配置することにより信号光の角度変化を実現する例について示したが、これに限定されるものではなく、例えば、信号光の対物レンズ315、もしくはポリトピックフィルタ透過後のリレーレンズ313を光軸に対して垂直な面内で駆動することにより、光情報記録媒体1の中で信号光の位置を変えることもできる。
 なお、上記実施例では、ショートスタックの移動は信号光の角度変化により実現し、ブックの移動は光情報記録媒体の移動により実現することを想定して説明したが、これに限定されるものではない。例えば、ブックを4個のショートスタックで構成した場合、ショートスタック1と2の間の移動、および、3と4の間の移動を信号光の角度変化により実現し、ブックの移動、および、ショートスタック2と3の間の移動を光情報記録媒体の移動により実現しても構わないし、2個のブック内の8個のショートスタックの移動を全て信号光の角度変化により実現し、ブック2個毎の移動を光情報記録媒体の移動により実現しても構わない。
 また、上記実施例では角度多重方式を例に説明したが、信号光と参照光の波長を変化させることで同一位置に多重記録を行う波長多重方式等の他の方式にも適用できる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることもできる。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることができる。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1・・・光情報記録媒体、10・・・光情報記録再生装置、11・・・ピックアップ、
12・・・再生用参照光光学系、13・・・ディスクCure光学系、
14・・・ディスク回転角度検出用光学系、81・・・アクセス制御回路、
82・・・光源駆動回路、83・・・サーボ信号生成回路、
84・・・サーボ制御回路、85・・・信号処理回路、86・・・信号生成回路、
87・・・シャッタ制御回路、88・・・ディスク回転モータ制御回路、
89・・・コントローラ、90・・・入出力制御回路、91・・・外部制御装置、
301・・・光源、303・・・シャッタ、306・・・信号光、307・・・参照光、
308・・・ビームエキスパンダ、309・・・位相(フェーズ)マスク、
310・・・リレーレンズ、311・・・PBSプリズム、
312・・・空間光変調器、313・・・リレーレンズ、314・・・空間フィルタ、
315・・・対物レンズ、316・・・偏光方向変換素子、320・・・アクチュエータ、
321・・・レンズ、322・・・レンズ、323・・・アクチュエータ、
324・・・ミラー、325・・・光検出器、
330・・・ミラー、331・・・アクチュエータ、
332・・・液晶チルト素子、333・・・波面補正素子

Claims (15)

  1.  信号光と参照光との干渉パターンをホログラムとして光情報記録媒体に記録する光情報記録装置において、
     光を出射する光源部と、 
     前記光源部から出射した光を信号光と参照光に分岐する分岐素子と、
     前記信号光に2次元情報を付加するための空間光変調器と、
     信号光の角度を変更可能な信号光角度可変素子 と、を備え、
     記録の際に、前記信号光角度可変素子が信号光の角度を変えることで光情報記録媒体での信号光の位置を変えることを特徴とする光情報記録装置。
  2.  光情報記録媒体に入射する参照光の角度を変えるための参照光角度可変素子を備え、
     第1の参照光角度範囲の参照光と第1の角度の信号光を用いて第1のショートスタックが光情報記録媒体に記録され、第2の参照光角度範囲の参照光と第2の角度の信号光を用いて、前記第1のショートスタックが含まれるブックに第2のショートスタックが記録されることを特徴とする請求項1に記載の光情報記録装置。
  3.  前記信号光角度可変素子は前記信号光の光路中に配置することを特徴とする請求項1に記載の光情報記録装置。
  4.  前記信号光角度可変素子は前記空間光変調器の像面となる位置近傍に配置することを特徴とする請求項3に記載の光情報記録装置。
  5.  前記信号光角度可変素子は前記光源部と前記分岐素子との間に配置することを特徴とする請求項1に記載の光情報記録装置。
  6.  前記信号光角度可変素子は波面補正機能を有することを特徴とする請求項5に記載の光情報記録装置。
  7.  前記信号光が前記光情報記録媒体に集光することを緩和するための位相マスクを前記空間光変調器と一体化して配置することを特徴とする請求項1に記載の光情報記録装置。
  8.  前記信号光角度可変素子はガルバノミラーで構成されることを特徴とする請求項1に記載の光情報記録装置。
  9.  前記信号光角度可変素子は液晶チルト素子で構成されることを特徴とする請求項1に記載の光情報記録装置。
  10.  信号光の角度変化によるショートスタックを利用しているかを示すフラグ、ショートスタック数と、ショートスタック番号と、該ショートスタック番号に対応する開始ページ及び終了ページと、信号光の角度変化量とを記録することを特徴とする請求項1に記載の光情報記録装置。
  11.  情報が重畳された信号光と参照光との干渉パターンとして光情報記録媒体に記録されたホログラムから参照光を用いて情報を再生する光情報再生装置において、
     光を出射する光源部と、 
     再生された信号光の角度を変更可能な信号光角度可変素子 と、を備え、
     位置がずれて再生された前記信号光を前記角度可変素子によって角度を変えて再生することを特徴とする光情報再生装置。
  12.  情報が重畳された信号光と参照光との干渉パターンをホログラムとして光情報記録媒体に記録する光情報記録方法において、
     信号光と参照光を生成する生成工程と、 
     前記信号光に2次元情報を付加する付加工程と、
     信号光の角度を変えることで光情報記録媒体での信号光の位置を変える角度変更工程と、
     前記角度変更工程で角度が変更された信号光と参照光を光情報記録媒体に照射することにより情報を記録する工程と、
     を含むことを特徴とする光情報記録方法。
  13.  第1の参照光角度範囲の参照光と第1の角度の信号光を用いて第1のショートスタックを光情報記録媒体に記録する工程と、
     第2の参照光角度範囲の参照光と第2の角度の信号光を用いて、前記第1のショートスタックが含まれるブックに第2のショートスタックを記録する工程と、
     を含むことを特徴とする請求項12に記載の光情報記録方法。
  14.  信号光の角度変化によるショートスタックを利用しているかを示すフラグ、ショートスタック数と、ショートスタック番号と、該ショートスタック番号に対応する開始ページ及び終了ページと、信号光の角度変化量とを記録する工程を含むことを特徴とする請求項12に記載の光情報記録方法。
  15.  情報が重畳された信号光と参照光との干渉パターンとして光情報記録媒体に記録されたホログラムから参照光を用いて情報を再生する光情報再生方法において、
     前記参照光の角度を変更する工程と、
     位置がずれて再生された信号光を角度可変素子によって角度を変えて再生する工程と、を含むことを特徴とする光情報再生方法。
PCT/JP2013/074178 2013-09-09 2013-09-09 光情報記録装置、光情報再生装置、光情報記録方法および光情報再生方法 WO2015033456A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074178 WO2015033456A1 (ja) 2013-09-09 2013-09-09 光情報記録装置、光情報再生装置、光情報記録方法および光情報再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074178 WO2015033456A1 (ja) 2013-09-09 2013-09-09 光情報記録装置、光情報再生装置、光情報記録方法および光情報再生方法

Publications (1)

Publication Number Publication Date
WO2015033456A1 true WO2015033456A1 (ja) 2015-03-12

Family

ID=52627961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074178 WO2015033456A1 (ja) 2013-09-09 2013-09-09 光情報記録装置、光情報再生装置、光情報記録方法および光情報再生方法

Country Status (1)

Country Link
WO (1) WO2015033456A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078686A (ja) * 2004-09-08 2006-03-23 Fuji Xerox Co Ltd ホログラム記録方法及び装置
JP2006163021A (ja) * 2004-12-08 2006-06-22 Sony Corp ホログラム記録装置、ホログラム再生方法、およびホログラム記録媒体
WO2007114011A1 (ja) * 2006-03-20 2007-10-11 Matsushita Electric Industrial Co., Ltd. 情報記録再生装置及びホログラムの記録再生方法
JP2008040166A (ja) * 2006-08-07 2008-02-21 Sony Corp ホログラム記録再生装置およびホログラム記録再生方法
WO2009044440A1 (ja) * 2007-10-01 2009-04-09 Fujitsu Limited ホログラム記録装置、ホログラム再生装置、ホログラム記録方法、および、ホログラム再生方法
JP2009265534A (ja) * 2008-04-28 2009-11-12 Nippon Hoso Kyokai <Nhk> 角度多重ホログラム記録角度特定方法
JP2010503025A (ja) * 2006-08-28 2010-01-28 インフェイズ テクノロジーズ インコーポレイテッド ホログラフィックデータシステムにおける位相共役を改良する新規なタイプのフーリエ変換(ft)レンズ(204)が提供されるこのタイプのftレンズは、独特に大きいアイソプラナティックパッチを有するこれは、組み立て許容範囲の緩和、非対称の読み取り/書き込みアーキテクチャー、および媒体における傾斜したプレートの収差に対する補償を可能にする
WO2010029608A1 (ja) * 2008-09-09 2010-03-18 パイオニア株式会社 ホログラム装置及び記録方法
JP2013109793A (ja) * 2011-11-18 2013-06-06 Hitachi Consumer Electronics Co Ltd 光情報記録再生装置、光情報再生装置、光情報記録再生方法および光情報再生方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078686A (ja) * 2004-09-08 2006-03-23 Fuji Xerox Co Ltd ホログラム記録方法及び装置
JP2006163021A (ja) * 2004-12-08 2006-06-22 Sony Corp ホログラム記録装置、ホログラム再生方法、およびホログラム記録媒体
WO2007114011A1 (ja) * 2006-03-20 2007-10-11 Matsushita Electric Industrial Co., Ltd. 情報記録再生装置及びホログラムの記録再生方法
JP2008040166A (ja) * 2006-08-07 2008-02-21 Sony Corp ホログラム記録再生装置およびホログラム記録再生方法
JP2010503025A (ja) * 2006-08-28 2010-01-28 インフェイズ テクノロジーズ インコーポレイテッド ホログラフィックデータシステムにおける位相共役を改良する新規なタイプのフーリエ変換(ft)レンズ(204)が提供されるこのタイプのftレンズは、独特に大きいアイソプラナティックパッチを有するこれは、組み立て許容範囲の緩和、非対称の読み取り/書き込みアーキテクチャー、および媒体における傾斜したプレートの収差に対する補償を可能にする
WO2009044440A1 (ja) * 2007-10-01 2009-04-09 Fujitsu Limited ホログラム記録装置、ホログラム再生装置、ホログラム記録方法、および、ホログラム再生方法
JP2009265534A (ja) * 2008-04-28 2009-11-12 Nippon Hoso Kyokai <Nhk> 角度多重ホログラム記録角度特定方法
WO2010029608A1 (ja) * 2008-09-09 2010-03-18 パイオニア株式会社 ホログラム装置及び記録方法
JP2013109793A (ja) * 2011-11-18 2013-06-06 Hitachi Consumer Electronics Co Ltd 光情報記録再生装置、光情報再生装置、光情報記録再生方法および光情報再生方法

Similar Documents

Publication Publication Date Title
JP5802616B2 (ja) 光情報記録再生装置および光情報記録再生方法
JP5753768B2 (ja) 光情報記録装置、光情報再生装置、光情報記録再生装置、光情報記録方法、光情報再生方法および光情報記録再生方法
US7990830B2 (en) Optical pickup, optical information recording apparatus and optical information recording and reproducing apparatus using the optical pickup
US8699311B2 (en) Optical information recording/reproducing apparatus, optical information reproducing apparatus, optical information recording/reproducing method and optical information reproducing method
US9013972B2 (en) Optical information recording and reproducing method and device
JP5868494B2 (ja) 光情報記録再生装置、および光情報記録再生方法、および再生装置
US9373352B2 (en) Optical information reproduction apparatus and optical information reproduction method
US9601147B2 (en) Optical information recording and reproducing apparatus and optical information recording and reproducing method
WO2015033456A1 (ja) 光情報記録装置、光情報再生装置、光情報記録方法および光情報再生方法
JP5953284B2 (ja) 光情報記録媒体、光情報記録装置、光情報記録方法、光情報再生装置、光情報再生方法。
US9728219B2 (en) Optical information reproduction device and optical information reproduction method
JP5414861B2 (ja) 光情報記録装置、光情報記録方法、光情報記録再生装置および光情報記録再生方法
WO2015083246A1 (ja) 光情報再生装置及び光情報再生方法
JP6078634B2 (ja) 光情報再生装置および光情報記録再生装置
WO2013175525A1 (ja) 光情報記録再生装置、記録条件調整方法及び光情報記録媒体
JP2015060613A (ja) 光情報記録装置および光情報記録方法
WO2016163312A1 (ja) 光情報再生装置及び光情報再生方法
WO2016020994A1 (ja) 光情報記録装置および光情報再生装置
JP2015082327A (ja) 光情報再生装置、光情報再生方法および光情報記録方法
WO2013175526A1 (ja) 光情報再生装置及び光情報再生方法
JP2014203484A (ja) 光情報記録再生装置、および光情報記録再生方法
JP2012243355A (ja) 光情報記録再生装置および光情報記録再生方法
WO2016009546A1 (ja) 光情報記録再生装置、光情報再生装置、および光情報再生方法
JP2016071918A (ja) 光情報記録再生装置および光情報再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP