WO2014086144A1 - 高功率纳米摩擦发电机及其制备方法 - Google Patents
高功率纳米摩擦发电机及其制备方法 Download PDFInfo
- Publication number
- WO2014086144A1 WO2014086144A1 PCT/CN2013/079209 CN2013079209W WO2014086144A1 WO 2014086144 A1 WO2014086144 A1 WO 2014086144A1 CN 2013079209 W CN2013079209 W CN 2013079209W WO 2014086144 A1 WO2014086144 A1 WO 2014086144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- friction
- alloys
- alloy
- electrode layer
- nano
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
Definitions
- the present invention relates to a friction generator, and more particularly to a high power nano-friction generator and a method of fabricating the same. Background technique
- Triboelectricity is one of the most common phenomena in nature, but it is ignored because it is difficult to collect and use. If frictional electricity can be applied to self-generating equipment, it will certainly bring more convenience to people's lives. Summary of the invention
- the first technical problem solved by the present invention is: to overcome the defect that the output energy of the existing friction generator is not high, and provide a high-power nano-friction generator and a preparation method thereof, the nano-friction generator utilizing a cluster provided with nano-holes
- the vinylidene fluoride is rubbed as a polymer layer to make the friction effect good, and the voltage and current output are high, thereby realizing the high energy output of the friction generator.
- the first technical solution provided by the present invention is a nano-friction generator comprising a first electrode layer, a polymer layer, and a friction electrode layer which are sequentially stacked; the polymer layer is relatively A plurality of nanoholes are disposed on the surface of the friction electrode layer; the first electrode layer and the friction electrode layer are voltage and current output electrodes of the nano friction generator.
- the material used for the polymer layer is polyvinylidene fluoride
- the nanopore provided on the surface of the polymer layer has a width of 10-100 nm and a depth of 4-50 ⁇ m.
- the material of the friction electrode layer is selected from a metal or an alloy and has a thickness of 0.05-0.2 mm; wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, Iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys , gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
- the material used for the friction electrode layer is preferably copper or aluminum.
- the friction electrode layer includes a laminated friction film layer and a second electrode layer, and the friction film layer is disposed toward the polymer layer.
- the material used for the friction film layer is a fiber film or polyvinyl chloride (PVC), preferably coated paper or kraft paper; the material of the second electrode layer is selected from the group consisting of indium tin oxide, graphene, and silver.
- PVC polyvinyl chloride
- Nanowire film, metal or alloy wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is aluminum alloy, titanium alloy, magnesium Alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
- the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium
- the alloy is aluminum alloy, titanium alloy, magnesium Alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys,
- At least one of the friction electrode layer and the high-molecular polymer layer is outwardly changed to form a convex surface, so that a gap is formed between the friction electrode layer and the high-molecular polymer layer.
- the material of the first electrode layer is indium tin oxide, graphene, silver nanowire film, metal or alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, Titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys , niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
- a second technical solution provided by the present invention is a method for preparing a nano-friction generator, the method comprising:
- the polymer film having a nanopore obtained in the step (2) was used as a polymer layer, and a first electrode layer, a polymer layer, and a friction electrode layer were laminated in this order to obtain a nano-rubber generator.
- the oxidized nanowires are vertically grown on the surface of the silicon substrate by a hydrothermal method.
- the solution of the polymer material is a solution of polyvinylidene fluoride in a decyl amide.
- the method for removing the oxidized nanowire is an acid-only method.
- the nano-friction generator of the invention uses a polymer layer having a plurality of nanopores to rub with the friction electrode layer, so that the friction effect is good, thereby realizing the high energy output of the friction generator.
- FIG. 1 is a perspective view of a specific embodiment of a nano-friction generator of the present invention.
- FIG. 2 is a schematic cross-sectional view of the nano-friction generator of FIG. 1 of the present invention.
- FIG 3 is a perspective view of another embodiment of a nano-friction generator of the present invention.
- FIG. 4 is a cross-sectional view of the nano-friction generator of FIG. 3 of the present invention.
- Fig. 5 is a schematic view showing a silicon substrate on which an oxidized nanowire is grown according to the present invention.
- Figure 6 is a schematic view of a PVDF coated silicon substrate of the present invention.
- Figure 7 is a schematic view of the substrate separation of the present invention.
- FIG. 8 is a perspective view of still another embodiment of a nano-friction generator according to the present invention.
- Figure 9 is a cross-sectional view of the nano-friction generator of Figure 8 of the present invention.
- FIG. 10 is a perspective view showing still another embodiment of the nano-friction generator of the present invention.
- Figure 11 is a cross-sectional view showing the nano-friction generator of Figure 10 of the present invention. detailed description
- the present invention is a high-power nano-friction generator.
- the layers of the nano-friction generator of the present invention are bent downward, the friction electrode layer in the nano-friction generator and the surface of the polymer layer rub against each other to generate an electrostatic charge.
- the generation of the electrostatic charge changes the capacitance between the first electrode layer and the friction electrode layer, resulting in a potential difference between the first electrode layer and the friction electrode layer. Due to the potential difference between the first electrode layer and the friction electrode layer, free electrons will flow from the lower potential side to the higher potential side through the external circuit, thereby forming a current in the external circuit.
- the invention adopts a polymer layer having a plurality of nanopores to rub with the friction electrode layer, and the surface roughness of the polymer layer is increased due to the disposed nanopores, thereby increasing the frictional electric quantity; in addition, each nanopore is equivalent
- a miniature capacitor can store the charge, avoiding the instantaneous release of triboelectricity, thereby increasing the potential difference between the first electrode layer and the friction electrode layer, so that the voltage and current output can be improved, and the friction generator is realized. High energy output.
- a high-power nano-friction generator includes a first electrode layer 1 , a polymer layer 2 , and a friction electrode layer 3 which are sequentially stacked;
- the polymer layer 2 is provided with a plurality of nanoholes 4 on the surface of the friction electrode layer 3; wherein the friction electrode layer 3 comprises a friction film layer 31 and a second electrode layer 32, and the friction film layer 31 faces the polymer layer 2 settings.
- the high molecular polymer layer 2 is in contact with the opposite surface of the friction film layer 31 Rubbing, and inducing charges at the first electrode layer 1 and the second electrode layer 32; the first electrode layer 1 and the second electrode layer 32 are voltage and current output electrodes of the nano friction generator.
- the first electrode layer 1 and the second electrode layer 32 are not specifically defined for the materials used, and the materials capable of forming the conductive layer are all within the scope of the present invention, and may be, for example, indium tin oxide, graphene, silver nanowire film, a metal or an alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is an aluminum alloy, a titanium alloy, a magnesium alloy, a tantalum alloy , copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
- the preferred first electrode layer 1 and second electrode layer 32 materials of the present invention are copper or aluminum and have a thickness of
- the material used for the polymer layer 2 is polyvinylidene fluoride (PVDF) having a thickness of 0.5 to 1.2 mm (preferably 1 mm), and the surface of the friction electrode layer 3 is provided with a plurality of nanometers. Hole 4.
- the size of each nanopore 4, i.e., width and depth, can be selected according to the needs of the application.
- the preferred size of the nanopore 4 is: a width of 10-100 nm and a depth of 4-50 ⁇ m.
- These plurality of nanopores 4 may be uniformly or unevenly distributed on the surface of the polymer layer 2, and it is preferable in the present invention that the nanopore 4 is uniformly distributed on the surface of the polymer layer 2.
- the number of the nanopores 4 can be adjusted according to the current value and the voltage value to be outputted.
- the plurality of nanoholes 4 are arranged in a uniform distribution with a pore spacing of 2-30 ⁇ m, and more preferably an average pore spacing of 9 ⁇ m. distributed.
- the material used for the friction film layer 31 may be a fiber film (paper) or polyvinyl chloride (PVC) or the like, and has a thickness of 0.2 to 1.5 mm.
- the material used for the friction film layer 31 is preferably coated paper or kraft paper. Commercially available coated paper or kraft paper of various specifications can be applied to the present invention, and more preferably a coated paper having a specification of 100-250 g/m 2 and a specification of 80-120 g. /m 2 kraft paper.
- the use of a fibrous film (paper) as the friction film layer 31 greatly reduces the cost of the entire nano-friction generator.
- the pairing of the two materials of the friction layer in contact with each other is a very important factor.
- PVDF polyvinylidene fluoride film
- a high-power nano-friction generator includes a first electrode layer 1 , a polymer layer 2 , and a friction electrode layer which are sequentially stacked. 3;
- the polymer layer 2 is provided with a plurality of nanopores 4 on the surface of the friction electrode layer 3.
- the high molecular polymer layer 2 is in contact with the opposite surface of the friction electrode layer 3, and induces electric charges at the first electrode layer 1 and the friction electrode layer 3; the first electrode layer 1 and the friction electrode layer 3 are nanometers. Friction generator voltage and electrogram output electrode.
- the first electrode layer 1 is not specifically defined for the material used, and the material capable of forming the conductive layer is within the protection scope of the present invention, and may be, for example, indium tin oxide, graphene, silver nanowire film, metal or alloy, wherein metal Is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys , manganese alloy, nickel alloy, lead alloy, tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
- the preferred first electrode layer 1 material of the present invention is copper or aluminum and has a thickness of 0.05 to 0.2 mm.
- the material used for the polymer layer 2 is polyvinylidene fluoride (PVDF) having a thickness of 0.5 to 1.2 mm (preferably 1 mm), and the surface of the friction electrode layer 3 is provided with a plurality of nanometers. Hole 4.
- the size of each nanopore 4, that is, the width and depth, can be selected according to the needs of the application.
- the preferred size of the nanopore 4 is: a width of 10-100 nm and a depth of 4-50 ⁇ m.
- These plurality of nanopores 4 may be uniformly or unevenly distributed on the surface of the polymer layer 2, and it is preferable in the present invention that the nanopores 4 are uniformly distributed on the surface of the polymer layer 2.
- the number of the nanopores 4 can be adjusted according to the current value and the voltage value to be outputted.
- the plurality of nanoholes 4 are arranged in a uniform distribution with a pore spacing of 2-30 ⁇ m, and more preferably an average pore spacing of 9 ⁇ m. distributed.
- the preferred material for the friction electrode layer 3 is a metal or an alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; Aluminum alloy, titanium alloy, magnesium alloy, niobium alloy, copper alloy, alloy, manganese alloy, nickel alloy, lead alloy, tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy Or a tantalum alloy, more preferably the friction electrode layer 3 is made of copper or aluminum and has a thickness of 0.05 to 0.2 mm.
- the preparation method of the above high power nano friction generator will be described in detail below. The method comprises the following steps:
- the oxidized nanowires are grown vertically on one surface of the substrate to obtain a substrate having nanowires.
- the substrate that can be used in the present invention may be a silicon substrate, a gold-plated or chrome-plated glass substrate, or the like.
- the present invention uses a conventional hydrothermal method to grow an oxidized nanowire array, for example, a mixture of cyclohexamethylenetetramine (HMTA) and nitric acid hexahydrate ( ⁇ 0 3 ⁇ 6( ⁇ 20 )) as a culture solution.
- HMTA cyclohexamethylenetetramine
- nitric acid hexahydrate ⁇ 0 3 ⁇ 6( ⁇ 20 )
- the oxidized nanowire array is grown on a silicon substrate at a suitable temperature, for example, 80-95 °C.
- a oxidized seed layer having a thickness of 30-50 nm is formed on one side of the silicon substrate by conventional spray sputtering.
- a silicon substrate is oxidized by a culture solution consisting of an equimolar amount of cyclohexamethylenetetramine (HMTA) and nitric acid hexahydrate ( ⁇ 0 3 ⁇ 6( ⁇ 2 0) at a concentration of 0.1 mol/L.
- HMTA cyclohexamethylenetetramine
- nitric acid hexahydrate ⁇ 0 3 ⁇ 6( ⁇ 2 0
- concentration of 0.1 mol/L concentration of 0.1 mol/L.
- the seed layer is placed face down, placed on top of the culture medium, grown at 85 ° C in a mechanical convection oven (model: Yamato DKN400, Santa Clara, Calif.), then rinsed with deionized water to grow oxidized nano
- the silicon substrate of the wire is dried in air to obtain an array of oxidized nanowires.
- FIG. 5 is a schematic illustration of a silicon substrate grown with a circular cross section of oxidized nanowires. It should be understood that those skilled in the art can easily adjust the growth process conditions of the oxidized nanowires according to the width, depth and spacing of the desired oxidized nanowires, such as the concentration of the culture solution, the growth temperature and the time, so that the obtained oxidized nanowires
- the array is preferably evenly distributed and meets the requirements for use, such as extending the growth time to vary the width and length of the oxidized nanowires.
- a solution of the polymer material is coated on the substrate on which the oxidized nanowires are grown, solidified into a polymer film, and then the substrate is separated to remove the oxidized nanowires to obtain a polymer film having nanopores.
- the curing according to the present invention means: volatilizing the solvent in the polymer material solution to form a polymer film.
- Both conventional drying and heating evaporation e.g., water bath heating
- the PVDF is dissolved with dimercaptophthalamide (DMF), and then sonicated until the PVDF is completely dissolved; the prepared PVDF solution is uniformly coated directly on the surface of the silicon substrate prepared by the step (1) by spin coating. , after drying, vacuum drying.
- Figure 6 is a schematic illustration of a silicon substrate (grown with oxidized nanowires) coated with a polymeric material.
- Figure 7 is a schematic view of substrate separation.
- the oxidation of the nanowire acid is then removed by acid monolithic methods. Specifically, a conventional inorganic acid such as dilute hydrochloric acid, dilute sulfuric acid or dilute nitric acid is used to etch the oxidized nanowire to obtain a polymer film having a plurality of nanopores.
- a conventional inorganic acid such as dilute hydrochloric acid, dilute sulfuric acid or dilute nitric acid is used to etch the oxidized nanowire to obtain a polymer film having a plurality of nanopores.
- the polymer film having a nanopore obtained in the step (2) is used as a polymer layer, and the first electrode layer 1, the polymer layer 2, and the friction electrode layer 3 are laminated in this order to obtain a nano-friction generator. .
- the edge of the nano-friction generator is sealed with a common tape.
- the first electrode layer 1 may be disposed on the polymer layer 2 by a conventional prior art, for example, by sticking the first electrode layer 1 on the polymer layer 2, or by chemical deposition or physical deposition (for example, RF sputtering).
- the first electrode layer 1 is deposited on the polymer layer 2 by plating, evaporation, or the like.
- the method of providing the second electrode layer 32 on the friction film layer 31 may be a method such as pasting, chemical deposition or physical deposition.
- the two friction surfaces need constant contact friction and separation, while the generator can not have 4 ⁇ good output performance when it is in contact state or separated state. . Therefore, in order to be able to produce a generator having excellent performance, the inventors have improved the structure of the generator.
- the friction electrode layer 3 includes a friction film layer 31 and a second electrode layer 32, and the friction film layer 31 is disposed opposite to the polymer layer 2.
- the friction electrode layer 3 as a whole is outwardly changed with respect to the polymer layer 2 to form a convex surface, and a gap is formed between the friction electrode layer 3 and the polymer polymer layer 2, so that the two friction surfaces are not It can automatically bounce in the case of force.
- the friction electrode layer 3 and the layers of the nanopore 4 For the applicable selection of the friction electrode layer 3 and the layers of the nanopore 4, reference may be made to the above, and details are not described herein again.
- the high-power nano-friction generator shown in FIG. 10 and FIG. 11 includes a first electrode layer 1 , a polymer layer 2 , and a friction electrode layer 3 which are sequentially stacked; a polymer layer 2 A plurality of nanoholes 4 are provided on the surface of the friction electrode layer 3.
- the friction electrode layer 3 is outwardly changed with respect to the polymer layer 2 to form a convex surface, and a gap is formed between the friction electrode layer 3 and the polymer polymer layer 2, so that the two friction surfaces are unstressed. In case you can automatically bounce.
- the structure of each layer of the high-power nano-friction generator shown in FIG. 10 and FIG. 11 is the same as that of the high-power nano-friction generator shown in FIG. 3, so the first electrode layer 1, the polymer layer 2, and the friction electrode layer 3 and the suitable selection of the layers of the nanopore 4 can be referred to above, and will not be described again here.
- the protection range of the present invention is that at least one of the friction electrode layer and the high molecular polymer layer is outwardly changed to form a convex surface, so that a gap is formed between the friction electrode layer and the high molecular polymer layer.
- the length ratio of the polymer polymer layer 2 to the friction electrode layer 3 of 21:20 or 20:21 a high-power nano-friction generator with a shape change structure is obtained.
- step (3) is explained in detail below:
- the first electrode layer 1 is placed on the polymer layer 2 to form a laminate of the first electrode layer 1-polymer layer 2.
- the friction electrode layer 3 is placed on the polymer layer 2 of the laminate obtained in the step a, and the laminate is fixed to one end of the friction electrode layer 3.
- one of the short side ends of the laminated body and the friction electrode layer 3 is fixed by a method of adhesive bonding or heat sealing. C. The friction electrode layer 3 is replaced, and then the opposite ends of the laminated body and the fixed end of the friction electrode layer 3 are fixed.
- the laminated body and the friction electrode layer 3 are rectangular, the laminated body and the other short side end of the friction electrode layer 3 are fixed.
- the high-power nano-friction generator of the present embodiment has a size of 4.5 cm (length) X 1.2 cm (width), and includes a first electrode layer 1 (0.1 mm thick aluminum layer) which are sequentially stacked. ), a polymer layer 2 (1 mm thick polyvinylidene fluoride), and a friction electrode layer 3.
- the friction electrode layer 3 includes a friction film layer 31 (1 mm thick coated paper (size 200 g/m 2 )) and a second electrode layer 32 (0.1 mm thick copper layer), and the friction film layer 31 is opposed to the polymer layer. 2 settings.
- the polymer layer 2 is provided with a plurality of nanopores 4 on the surface of the friction electrode layer 3 (having a width of about 60 nm, a depth of about 8 ⁇ m, and an average pore spacing of 9 ⁇ m).
- the first electrode layer 1 and the second electrode layer 32 are voltage and current output electrodes of a nano friction generator.
- a 40 nm thick oxidized seed layer was formed on one side of the silicon substrate by conventional spray sputtering.
- the formation of a silicon substrate is oxidized by a culture solution consisting of an equimolar amount of cyclohexamethylenetetramine (HMTA) and nitric acid hexahydrate ( ⁇ 0 3 ⁇ 6( ⁇ 2 0)) at a concentration of 0.1 mol/L.
- HMTA cyclohexamethylenetetramine
- nitric acid hexahydrate ⁇ 0 3 ⁇ 6( ⁇ 2 0)
- the seed layer is placed face down, placed on top of the culture solution, grown in a mechanical convection oven (Model: Yamato DKN400, Santa Clara, Calif.) at 85 °C for 6 hours, then rinsed with deionized water for oxidation.
- the silicon substrate of the nanowires was dried and dried in air to obtain an array of oxidized nanowires.
- the above-prepared PVDF solution was uniformly applied by spin coating to the surface of the silicon substrate prepared by the step (1) on which the oxidized nanowires were grown, and after the coating was completed, vacuum drying was carried out at 80 °C.
- the silicon substrate is removed.
- the oxidized nanowire is acid-etched off with a concentration of 3 wt% of dilute hydrochloric acid to obtain a PVDF polymer film having nanopores, wherein the film has nanopores on one surface: a width of about 60 nm and a depth of about 8 ⁇ m, and The pore spacing averaged 9 ⁇ .
- the polymer film having a nanopore obtained in the step (2) is used as a polymer layer, and a 0.1 mm thick aluminum layer is attached to the polymer layer 2 to obtain a first electrode layer 1 - polymer polymerization.
- a laminate of the layer 2; a 0.1 mm thick copper layer was adhered to the coated paper to obtain a friction electrode layer 3.
- the friction electrode layer 3 was placed on the above laminated body in such a manner that the polymer polymer layer 2 was placed on the coated paper, and then the edges were sealed with a common tape to obtain a nano-friction generator 1#.
- the nano-friction generator 1# exhibits typical open-circuit characteristics in the measurement of 1- (current-voltage).
- the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the nano-friction generator 1# to undergo periodic bending and release, and the maximum output voltage and current signals of the nano-friction generator 1# reach 800 V and 750 ⁇ , respectively. .
- Example 2-3
- the nano-friction generators 2# and 3# undergo periodic bending and release, and the maximum output voltage and current signals of the nano-friction generator 2# reach 900 respectively.
- Example 4
- the high-power nano-friction generator of the present embodiment has a size of 4.5 cm (length) X 1.2 cm (width), and includes a first electrode layer 1 (0.1 mm thick aluminum layer) which are sequentially stacked. ), polymer layer 2 (lmm thick polyvinylidene fluoride), and friction electrode layer 3 (0.1 mm thick copper layer).
- the polymer layer 2 is provided with a plurality of nanopores 4 (having a width of about 60 nm, a depth of about 8 ⁇ m, and an average pore spacing of 9 ⁇ m) on the surface of the friction electrode layer 3.
- the first electrode layer 1 and the friction electrode layer 3 are voltage and current output electrodes of a nano-friction generator.
- a 40 nm thick oxidized seed layer was formed on one side of the silicon substrate by conventional spray sputtering.
- HMTA cyclohexamethylenetetramine
- nitric acid hexahydrate at a concentration of 0.1 mol/L a culture solution consisting of ⁇ 0 3 ⁇ 6( ⁇ 2 0)
- the surface of the silicon substrate with the oxidized seed layer facing down, placed on top of the culture solution at 85 ° C in a mechanical convection oven (model : Yamato DKN400, Santa Clara, Calif., was grown for 6 hours, then the silicon substrate grown with oxidized nanowires was rinsed with deionized water and dried in air to obtain an array of oxidized nanowires.
- the PVDF was placed in a beaker, and then dimercaptophthalamide (DMF) was added to the beaker to dissolve the PVDF to obtain a PVDF solution having a concentration of 11.7 wt%.
- DMF dimercaptophthalamide
- the beaker was then sealed with plastic wrap and sonicated for 30 min. The PVDF was completely dissolved and then set aside.
- the above-prepared PVDF solution was uniformly applied by spin coating to the surface of the silicon substrate prepared by the step (1) on which the oxidized nanowires were grown, and after the coating was completed, vacuum drying was carried out at 80 °C.
- the silicon substrate is removed.
- the oxidized nanowire is acid-etched off with a concentration of 3 wt% of dilute sulfuric acid to obtain a PVDF polymer film having nanopores, wherein the film has nanopores on one surface: a width of about 60 nm and a depth of about 8 ⁇ m, and The average pore spacing was 9 ⁇ .
- the polymer film having a nanopore obtained in the step (2) is used as a polymer layer, and a 0.1 mm thick aluminum layer is attached to the polymer layer 2 to obtain a first electrode layer 1 - polymer polymerization.
- the friction electrode layer 3 was placed on the above laminated body in such a manner that the polymer polymer layer 2 was disposed relative to the friction electrode layer 3, and then the edges were sealed with a general tape to obtain a nano-friction generator 4#.
- the nano-friction generator 4# exhibits typical open-circuit characteristics in the measurement of 1- (current-voltage).
- the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the nano-friction generator 4# to undergo periodic bending and release, and the maximum output voltage and current signals of the nano-friction generator 4# reach 120 V and 90 ⁇ , respectively. .
- Example 5-6
- the nano-friction generators 5# and 6# undergo periodic bending and release, and the maximum output voltage and current signals of the nano-friction generator 5# reach 280V, respectively. With a 1750 ⁇ , the maximum output voltage and current signal of the nano-friction generator 6# reached 226 V and 162 ⁇ , respectively.
- Example 7
- the high-power nano-friction generator of the present embodiment has a size of 4.5 cm (length) x l. 2 cm (width), and includes a first electrode layer 1 (0.1 mm thick aluminum) which are sequentially stacked. Layer), polymer layer 2 (1 mm thick polyvinylidene fluoride), and friction electrode layer 3.
- the friction electrode layer 3 includes a friction film layer 31 (1 mm thick coated paper (size 200 g/m 2 ) and a second electrode layer 32 (0.1 mm thick copper layer), and the friction film layer 31 is opposite to the polymer layer 2
- the polymer layer 2 is provided with a plurality of nanopores 4 (having a width of about 60 nm, a depth of about 8 ⁇ m, and an average pore spacing of 9 ⁇ m) on the surface of the friction electrode layer 3.
- the first electrode layer 1 and The second electrode layer 32 is a voltage and current output electrode of the nano-friction generator.
- the friction electrode layer 3 as a whole is outwardly changed with respect to the polymer layer 2 to form a convex surface, and is polymerized in the friction electrode layer 3 and the polymer.
- a gap is formed between the object layers 2 so that the two friction surfaces can automatically bounce off without being subjected to force.
- a 40 nm thick oxidized seed layer was formed on one side of the silicon substrate by conventional spray sputtering.
- the formation of a silicon substrate is oxidized by a culture solution consisting of an equimolar amount of cyclohexamethylenetetramine (HMTA) and nitric acid hexahydrate ( ⁇ 0 3 ⁇ 6( ⁇ 2 0)) at a concentration of 0.1 mol/L.
- HMTA cyclohexamethylenetetramine
- nitric acid hexahydrate ⁇ 0 3 ⁇ 6( ⁇ 2 0)
- the seed layer is placed face down, placed on top of the culture medium, grown at 85 ° C for 6 hours in a mechanical convection oven (Model: Yamato DKN400, Santa Clara, Calif.), then rinsed with deionized water for oxidation.
- the silicon substrate of the nanowires was dried and dried in air to obtain an array of oxidized nanowires.
- the PVDF was placed in a beaker, and then dimercaptophthalamide (DMF) was added to the beaker to dissolve the PVDF to obtain a PVDF solution having a concentration of 11.7 wt%.
- DMF dimercaptophthalamide
- the beaker was then sealed with plastic wrap and sonicated for 30 min. The PVDF was completely dissolved and then set aside.
- the above-prepared PVDF solution was uniformly applied by spin coating to the surface of the silicon substrate prepared by the step (1) on which the oxidized nanowires were grown, and after the coating was completed, vacuum drying was carried out at 80 °C.
- the silicon substrate is removed.
- the oxidized nanowire is acid-etched off with a concentration of 3 wt% of dilute hydrochloric acid to obtain a PVDF polymer film having nanopores, wherein the film has nanopores on one surface: a width of about 60 nm and a depth of about 8 ⁇ m, and The average pore spacing was 9 ⁇ .
- the polymer film having a nanopore obtained in the step (2) is used as a polymer layer, and a 0.1 mm thick aluminum layer is attached to the polymer layer 2 to obtain a first electrode layer 1 - polymer polymerization.
- a laminate of the layer 2; a 0.1 mm thick copper layer was adhered to the coated paper to obtain a friction electrode layer 3.
- the friction electrode layer 3 is placed on the polymer layer 2 of the laminate, and one short side end thereof is aligned, using a conventional The heat sealing method fixes the aligned short side ends.
- the friction electrode layer 3 is replaced, and then the other of the short side ends of the laminated body and the friction electrode layer 3 is fixed to obtain a nano friction generator 7#.
- the nano-friction generator 7# exhibits a typical open circuit characteristic in the measurement of IV (current-voltage).
- the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the nano-friction generator 7# to undergo periodic bending and release, and the maximum output voltage and current signals of the nano-friction generator 7# reach 1020 V and 840 ⁇ , respectively. .
- Example 8
- the high power nano friction generator of the present embodiment has a size of 4.5 cm (length) X 1.2 cm (width), and includes a first electrode layer 1 (0.1 mm thick aluminum layer) which are sequentially stacked. ), polymer layer 2 (lmm thick polyvinylidene fluoride), and friction electrode layer 3 (0.1 mm thick copper layer).
- the polymer layer 2 is provided with a plurality of nanopores 4 (having a width of about 60 nm, a depth of about 8 ⁇ m, and an average pore spacing of 9 ⁇ m) on the surface of the friction electrode layer 3.
- the first electrode layer 1 and the friction electrode layer 3 are voltage and current output electrodes of a nano-friction generator.
- the friction electrode layer 3 is outwardly changed with respect to the polymer layer 2 to form a convex surface, and a gap is formed between the friction electrode layer 3 and the polymer polymer layer 2, so that the two friction surfaces are not subjected to force. Can automatically bounce.
- a 40 nm thick oxidized seed layer was formed on one side of the silicon substrate by conventional spray sputtering.
- the formation of a silicon substrate is oxidized by a culture solution consisting of an equimolar amount of cyclohexamethylenetetramine (HMTA) and nitric acid hexahydrate ( ⁇ 0 3 ⁇ 6( ⁇ 2 0)) at a concentration of 0.1 mol/L.
- HMTA cyclohexamethylenetetramine
- nitric acid hexahydrate ⁇ 0 3 ⁇ 6( ⁇ 2 0)
- the seed layer is placed face down, placed on top of the culture medium, grown at 85 ° C for 6 hours in a mechanical convection oven (Model: Yamato DKN400, Santa Clara, Calif.), then rinsed with deionized water for oxidation.
- the silicon substrate of the nanowires was dried and dried in air to obtain an array of oxidized nanowires.
- the PVDF was placed in a beaker, and then dimercaptophthalamide (DMF) was added to the beaker to dissolve the PVDF to obtain a PVDF solution having a concentration of 11.7 wt%.
- DMF dimercaptophthalamide
- the beaker was then sealed with plastic wrap and sonicated for 30 min. The PVDF was completely dissolved and then set aside.
- the above-prepared PVDF solution was uniformly applied by spin coating to the surface of the silicon substrate prepared by the step (1) on which the oxidized nanowires were grown, and after the coating was completed, vacuum drying was carried out at 80 °C.
- the silicon substrate is removed.
- the oxidized nanowire is acid-etched off with a concentration of 3 wt% of dilute sulfuric acid to obtain a PVDF polymer film having nanopores, wherein the film has nanopores on one surface: a width of about 60 nm and a depth of about 8 ⁇ m, and The average pore spacing was 9 ⁇ .
- the polymer film having a nanopore obtained in the step (2) is used as a polymer layer, and a 0.1 mm thick aluminum layer is attached to the polymer layer 2 to obtain a first electrode layer 1 - polymer polymerization.
- the friction electrode layer is used.
- the nano-friction generator 8# exhibits typical open-circuit characteristics in the measurement of I-V (current-voltage). Using a stepper motor with periodic oscillations (0.33 Hz and 0.13% deformation), the nano-friction generator 8# undergoes periodic bending and release, and the maximum output voltage and current signals of the nano-friction generator 8# reach 360V and 205 ⁇ , respectively.
- the nano-friction generator of the present invention can be applied to various self-driven system fields such as film pressure sensors, touch screens, electronic displays, and other fields of potential application value.
- the nano-friction generator of the present invention has the effects of low production cost and high energy output.
Landscapes
- Laminated Bodies (AREA)
Abstract
一种高功率纳米摩擦发电机。该纳米摩擦发电机包括:依次层叠设置的第一电极层(1),高分子聚合物层(2),以及摩擦电极层(3);高分子聚合物层的相对摩擦电极层的面上设有多个纳米孔(4);第一电极层和摩擦电极层为摩擦发电机的电压和电流输出电极。利用设有纳米孔的聚偏氟乙烯作为高分子聚合物层进行摩擦,摩擦效果好,电压和电流输出高,实现了摩擦发电机的高能量输出。
Description
高功率纳米摩擦发电机及其制备方法 技术领域
本发明涉及一种摩擦发电机, 尤其是涉及一种高功率纳米摩擦发电机及 其制备方法。 背景技术
随着现代生活水平不断提高, 生活节奏不断加快, 出现了应用方便、 对 环境依赖度低的自发电设备。 现有的自发电设备通常都是利用材料的压电特 性。 例如 2006年, 美国佐治亚理工学院教授王中林等成功地在纳米尺度范围 内将机械能转换成电能, 研制出世界上最小的发电机-纳米发电机。 纳米发电 机的基本原理是: 当纳米线(NWs )在外力下动态拉伸时, 纳米线中生成压 电电势, 相应瞬变电流在两端流动以平衡费米能级。
物体和物体之间相互进行摩擦, 就会使物体带电, 这种由于物体间摩擦 产生的电叫摩擦电。 摩擦电是自然界最常见的现象之一, 但是因为很难收集 利用而被忽略。 如果能够将摩擦电应用到自发电设备中, 势必会给人们的生 活带来更多的便利。 发明内容
本发明解决的第一技术问题是: 克服现有摩擦发电机输出能量不高的缺 陷, 提供了一种高功率纳米摩擦发电机及其制备方法, 该纳米摩擦发电机利 用设有纳米孔的聚偏氟乙烯作为高分子聚合物层进行摩擦,使得摩擦效果好, 电压和电流输出高, 从而实现了摩擦发电机的高能量输出。
为了解决上述技术问题, 本发明提供的第一技术方案是, 一种纳米摩擦 发电机, 包括依次层叠设置的第一电极层, 高分子聚合物层, 以及摩擦电极 层; 高分子聚合物层相对摩擦电极层的面上设有多个纳米孔; 所述第一电极 层和摩擦电极层为纳米摩擦发电机的电压和电流输出电极。
前述的纳米摩擦发电机, 所述高分子聚合物层所用材料是聚偏氟乙烯
( PVDF ) 。
前述的纳米摩擦发电机, 所述高分子聚合物层表面上设置的纳米孔宽度 为 10-100nm, 以及深度为 4-50μηι。
前述的纳米摩擦发电机, 所述摩擦电极层所用材料选自金属或合金, 厚 度为 0.05-0.2mm; 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓 合金、 钨合金、 钼合金、 铌合金或钽合金。
前述的纳米摩擦发电机, 所述摩擦电极层所用材料优选铜或铝。
前述的纳米摩擦发电机, 所述摩擦电极层包括层叠设置的摩擦薄膜层和 第二电极层, 所述摩擦薄膜层朝向高分子聚合物层设置。
前述的纳米摩擦发电机, 所述摩擦薄膜层所用材料是纤维薄膜或聚氯乙 烯(PVC ) , 优选铜版纸或牛皮纸; 所述第二电极层所用材料选自铟锡氧化 物、 石墨烯、 银纳米线膜、 金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合 金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。
前述的纳米摩擦发电机, 所述摩擦电极层和高分子聚合物层中的至少一 层向外换起形成凸面, 使得摩擦电极层与高分子聚合物层之间形成间隙。
前述的纳米摩擦发电机, 所述第一电极层所用材料是铟锡氧化物、 石墨 烯、 银纳米线膜、 金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合 金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。
本发明提供的第二技术方案是, 一种纳米摩擦发电机的制备方法, 该方 法包括:
( 1 )制备具有纳米线的基底
在基底的一个表面上沿垂直表面方向生长氧化辞纳米线, 得到具有纳米 线的基底;
( 2 )制备具有纳米孔的高分子聚合物薄膜
将聚合物材料的溶液涂覆于生长有氧化辞纳米线的基底上, 固化成高分 子聚合物膜, 然后分离基底, 去除氧化辞纳米线, 得到具有纳米孔的高分子 聚合物薄膜;
( 3 )制成纳米摩擦发电机
将步骤( 2 )所得的具有纳米孔的高分子聚合物薄膜作为高分子聚合物层, 依次层叠设置第一电极层, 高分子聚合物层, 以及摩擦电极层, 得到纳米摩 擦发电机。
前述的纳米摩擦发电机的制备方法, 步骤(1 )中, 采用水热法在硅基底 的表面上垂直生长氧化辞纳米线。
前述的纳米摩擦发电机的制备方法, 所述聚合物材料的溶液是聚偏氟乙 烯的二曱基曱酰胺溶液。
前述的纳米摩擦发电机的制备方法, 步骤(2 )中, 氧化辞纳米线的去除 方法是酸独刻法。
本发明纳米摩擦发电机采用具有多个纳米孔的高分子聚合物层与摩擦电 极层进行摩擦, 使得摩擦效果好, 从而实现了摩擦发电机的高能量输出。 附图说明
图 1为本发明纳米摩擦发电机一种具体实施方式的立体示意图。
图 2为本发明图 1纳米摩擦发电机的剖面示意图。
图 3为本发明纳米摩擦发电机另一种具体实施方式的立体示意图。
图 4为本发明图 3纳米摩擦发电机的剖面示意图。
图 5为本发明生长有氧化辞纳米线的硅基底示意图。
图 6为本发明涂覆 PVDF的硅基底示意图。
图 7为本发明基底分离示意图。
图 8为本发明纳米摩擦发电机又一种具体实施方式的立体示意图。
图 9为本发明图 8纳米摩擦发电机的剖面示意图。
图 10为本发明纳米摩擦发电机再一种具体实施方式的立体示意图。
图 11为本发明图 10纳米摩擦发电机的剖面示意图。 具体实施方式
为充分了解本发明之目的、 特征及功效, 借由下述具体的实施方式, 对 本发明做详细说明。
本发明是一种高功率纳米摩擦发电机, 当本发明的纳米摩擦发电机的各 层向下弯曲时, 纳米摩擦发电机中的摩擦电极层与高分子聚合物层表面相互 摩擦产生静电荷, 静电荷的产生会使第一电极层和摩擦电极层之间的电容发 生改变, 从而导致第一电极层和摩擦电极层之间出现电势差。 由于第一电极 层和摩擦电极层之间电势差的存在, 自由电子将通过外电路由电势低的一侧 流向电势高的一侧, 从而在外电路中形成电流。 当本发明的纳米摩擦发电机 的各层恢复到原来状态时, 这时形成在第一电极层和摩擦电极层之间的内电 势消失, 此时已平衡的第一电极层和摩擦电极层之间将再次产生反向的电势 差, 则自由电子通过外电路形成反向电流。 通过反复摩擦和恢复, 就可以在 外电路中形成周期性的交流电信号。
本发明采用具有多个纳米孔的高分子聚合物层与摩擦电极层进行摩擦, 由于设置的纳米孔使得高分子聚合物层表面粗糙度增加, 增加了摩擦电量; 另外, 每一个纳米孔相当于一个微型电容, 能够起到存储电荷的作用, 避免 了摩擦电在瞬间释放, 从而增加了第一电极层和摩擦电极层之间的电势差, 使得电压和电流输出得以提高, 实现了摩擦发电机的高能量输出。
如图 1和图 2所示,本发明一种具体实施方式的高功率纳米摩擦发电机, 包括依次层叠设置的第一电极层 1 , 高分子聚合物层 2, 以及摩擦电极层 3; 高分子聚合物层 2相对摩擦电极层 3的面上设有多个纳米孔 4; 其中, 摩擦 电极层 3包括摩擦薄膜层 31和第二电极层 32, 所述摩擦薄膜层 31朝向高分 子聚合物层 2设置。所述高分子聚合物层 2与摩擦薄膜层 31的相对表面接触
摩擦, 并在第一电极层 1和第二电极层 32处感应出电荷; 所述第一电极层 1 和第二电极层 32为纳米摩擦发电机的电压和电流输出电极。
第一电极层 1和第二电极层 32对所用材料没有特殊规定,能够形成导电 层的材料都在本发明的保护范围之内, 例如可以是铟锡氧化物、 石墨烯、 银 纳米线膜、 金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合 金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。 本发明优选的第一电极层 1和 第二电极层 32材料是铜或铝, 厚度为 0.05-0.2mm。
在本实施方式中, 高分子聚合物层 2所用材料是聚偏氟乙烯(PVDF ), 其厚度为 0.5-1.2mm (优选 1mm ), 且其相对摩擦电极层 3的面上设有多个纳 米孔 4。 每个纳米孔 4的尺寸, 即宽度和深度, 可以根据应用的需要进行选 择, 优选的纳米孔 4的尺寸为: 宽度为 10-100nm以及深度为 4-50μηι。 这些 多个纳米孔 4可以均勾也可以不均勾的分布在高分子聚合物层 2的面上, 本 发明优选纳米孔 4均勾的分布在高分子聚合物层 2的面上。 纳米孔 4的数量 可以根据需要输出的电流值和电压值进行调整, 优选的这些多个纳米孔 4的 排列方式是孔间距为 2-30μηι的均匀分布, 更优选的平均孔间距为 9μηι的均 匀分布。
摩擦薄膜层 31所用材料可以是纤维薄膜(纸)或聚氯乙烯(PVC )等, 厚度为 0.2-1.5mm。 摩擦薄膜层 31所用材料优选铜版纸或牛皮纸等, 市售的 各种规格的铜版纸或牛皮纸均可应用于本发明,更优选的是规格 100-250g/m2 的铜版纸和规格 80-120g/m2的牛皮纸。 采用纤维薄膜(纸)作为摩擦薄膜层 31 , 使得整个纳米摩擦发电机的成本得到了极大的降低。
根据发明人的研究发现, 要提高纳米摩擦发电机的能量输出, 相互接触 的摩擦层的两种材料的配对是一种非常重要的影响因素。 例如, 纸与聚偏氟 乙烯薄膜(PVDF )摩擦时, 使得输出的功率和电压都得以提高。
如图 3和图 4所示, 本发明另一种具体实施方式的高功率纳米摩擦发电 机, 包括依次层叠设置的第一电极层 1 , 高分子聚合物层 2, 以及摩擦电极层
3; 高分子聚合物层 2相对摩擦电极层 3的面上设有多个纳米孔 4。 所述高分 子聚合物层 2与摩擦电极层 3的相对表面接触摩擦, 并在第一电极层 1和摩 擦电极层 3处感应出电荷; 所述第一电极层 1和摩擦电极层 3为纳米摩擦发 电机的电压和电克输出电极。
第一电极层 1对所用材料没有特殊规定, 能够形成导电层的材料都在本 发明的保护范围之内, 例如可以是铟锡氧化物、 石墨烯、 银纳米线膜、 金属 或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨 合金、 钼合金、 铌合金或钽合金。 本发明优选的第一电极层 1材料是铜或铝, 厚度为 0.05-0.2mm。
在本实施方式中, 高分子聚合物层 2所用材料是聚偏氟乙烯(PVDF ), 其厚度为 0.5-1.2mm (优选 1mm ), 且其相对摩擦电极层 3的面上设有多个纳 米孔 4。 其中, 每个纳米孔 4的尺寸, 即宽度和深度, 可以根据应用的需要 进行选择, 优选的纳米孔 4的尺寸为: 宽度为 10-100nm以及深度为 4-50μηι。 这些多个纳米孔 4可以均匀也可以不均匀的分布在高分子聚合物层 2的面上, 本发明优选纳米孔 4均匀的分布在高分子聚合物层 2的面上。 纳米孔 4的数 量可以根据需要输出的电流值和电压值进行调整, 优选的这些多个纳米孔 4 的排列方式是孔间距为 2-30μηι的均匀分布, 更优选的平均孔间距为 9μηι的 均匀分布。
根据发明人的研究发现, 金属与高分子聚合物摩擦, 金属更易失去电子, 因此采用金属电极与高分子聚合物层摩擦也能提高能量输出。 因此, 优选的 摩擦电极层 3所用材料是金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋 合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金, 更优选的摩擦 电极层 3材料是铜或铝, 厚度为 0.05-0.2mm。
下面详细说明上述高功率纳米摩擦发电机的制备方法。 该方法包括如下 步骤:
( 1 )制备具有纳米线的基底
在基底的一个表面上垂直生长氧化辞纳米线, 得到具有纳米线的基底。 本发明可以使用的基底可以是硅基底, 镀金或镀铬的玻璃基底等。
本发明采用常规水热法生长氧化辞纳米线阵列, 例如采用环六亚曱基四 胺(HMTA )和硝酸辞六水合物 ( ΖηΝ03·6(Η20) ) 的混合物作为培养液, 在 适当的温度例如 80-95°C下, 在硅基底上生长氧化辞纳米线阵列。 具体的, 在 一个具体实施方式中, 采用常规喷射溅镀在硅基底的一个面上生成一个厚度 30-50nm的氧化辞种子层。 采用 0.1mol/L浓度的由等摩尔的环六亚曱基四胺 ( HMTA )和硝酸辞六水合物 ( ΖηΝ03·6(Η20) )组成的培养液, 将硅基底的 生成有氧化辞种子层的面朝下, 放在培养液顶部, 在 85°C下在机械对流加热 炉 (型号: Yamato DKN400, 加利福尼亚, 圣克拉拉) 中生长, 然后用去离 子水沖洗生长有氧化辞纳米线的硅基底并在空气中干燥, 得到氧化辞纳米线 阵列。 本发明对氧化辞纳米线的断面形状没有特殊要求, 规则矩形、 六边形、 圓形或正方形等均可以应用于本发明。 如图 5所示是生长有圓形断面的氧化 辞纳米线的硅基底的示意图。 应当理解的是, 本领域技术人员容易根据需要 的氧化辞纳米线的宽度, 深度以及间距, 调整氧化辞纳米线的生长工艺条件, 例如培养液浓度, 生长温度和时间, 使得所得氧化辞纳米线阵列优选的均匀 分布, 且满足使用要求, 例如延长生长时间改变氧化辞纳米线的宽度和长度。
( 2 )制备具有纳米孔的高分子聚合物薄膜
将聚合物材料的溶液涂覆于生长有氧化辞纳米线的基底上, 固化成高分 子聚合物膜, 然后分离基底, 去除氧化辞纳米线, 得到具有纳米孔的高分子 聚合物薄膜。
本发明所述固化是指: 将聚合物材料溶液中的溶剂挥发掉, 形成聚合物 薄膜。 常规干燥, 以及加热蒸发(例如水浴加热) 的方法均可以应用于本发 明。
具体的, 用二曱基曱酰胺(DMF ) 溶解 PVDF , 然后超声处理, 直至 PVDF全部溶解; 将上述配好的 PVDF溶液通过旋转涂覆均匀直接地涂覆在 步骤( 1 )制备的硅基底表面, 涂覆完毕后真空干燥。 图 6所示是涂覆有聚合 物材料的硅基底(生长有氧化辞纳米线) 示意图。
干燥后, 将硅基底移除, 图 7所示是基底分离示意图。 然后采用酸独刻 法将氧化辞纳米线酸独掉。 具体的, 采用稀盐酸、 稀硫酸或稀硝酸等常规无 机酸, 将氧化辞纳米线腐蚀掉, 得到具有多个纳米孔的高分子聚合物薄膜。
( 3 )制成纳米摩擦发电机
将步骤( 2 )所得的具有纳米孔的高分子聚合物薄膜作为高分子聚合物层, 依次层叠设置第一电极层 1 , 高分子聚合物层 2 , 以及摩擦电极层 3 , 得到纳 米摩擦发电机。 将该纳米摩擦发电机的边缘用普通胶布密封。
可以采用常规现有技术在高分子聚合物层 2上设置第一电极层 1 , 例如 在高分子聚合物层 2上粘贴第一电极层 1 , 或者通过化学沉积或物理沉积的 方法 (例如射频溅镀, 蒸镀等方法)在高分子聚合物层 2上沉积第一电极层 1。
当摩擦电极层 3包括层叠设置的摩擦薄膜层 31和第二电极层 32时, 在 摩擦薄膜层 31上设置第二电极层 32的方法也可以是粘贴, 化学沉积或物理 沉积等方法。
根据纳米摩擦发电机的工作原理,在发电机工作的过程中,两个摩擦面需 要不断的接触摩擦和分离, 而一直处于接触状态或者分离状态时, 发电机则 不能具有 4艮好的输出性能。 因此, 为了能够制作出性能优异的发电机, 发明 人对发电机的结构进行了改进。 如图 8和图 9所示的换形结构高功率纳米摩 擦发电机, 包括依次层叠设置的第一电极层 1 , 高分子聚合物层 2 , 以及摩擦 电极层 3 ; 高分子聚合物层 2相对摩擦电极层 3的面上设有多个纳米孔 4; 摩 擦电极层 3包括摩擦薄膜层 31和第二电极层 32 , 所述摩擦薄膜层 31相对高 分子聚合物层 2设置。 其中, 所述摩擦电极层 3作为一个整体相对高分子聚 合物层 2向外换起形成凸面, 并在摩擦电极层 3与高分子聚合物层 2之间形 成间隙, 使两个摩擦面在不受力的情况下能够自动弹起。 除摩擦电极层 3形
成凸面外, 图 8和图 9所示的高功率纳米摩擦发电机的各层结构与图 1所示 的高功率纳米摩擦发电机相同, 因此第一电极层 1 , 高分子聚合物层 2 , 摩擦 电极层 3以及纳米孔 4各层的适用选择可以参考上文, 这里不再赘述。
如图 10和图 11所示的换形结构高功率纳米摩擦发电机, 其包括依次层 叠设置的第一电极层 1 , 高分子聚合物层 2 , 以及摩擦电极层 3 ; 高分子聚合 物层 2相对摩擦电极层 3的面上设有多个纳米孔 4。 其中, 所述摩擦电极层 3 相对高分子聚合物层 2向外换起形成凸面, 并在摩擦电极层 3与高分子聚合 物层 2之间形成间隙, 使两个摩擦面在不受力的情况下能够自动弹起。 图 1 0 和图 11所示的高功率纳米摩擦发电机的各层结构与图 3所示的高功率纳米摩 擦发电机相同, 因此第一电极层 1 , 高分子聚合物层 2 , 摩擦电极层 3以及纳 米孔 4各层的适用选择可以参考上文, 这里不再赘述。
虽然上文仅示例性描述了摩擦电极层 3向外换起的换形结构高功率纳米 摩擦发电机, 应当理解的是, 基于本发明的优选实施方式, 本领域技术人员 很容易实现高分子聚合物层 2相对摩擦电极层 3向外换起形成凸面, 并在摩 擦电极层 3与高分子聚合物层 2之间形成间隙, 使两个摩擦面在不受力的情 况下能够自动弹起。 因此, 本发明的保护范围是摩擦电极层和高分子聚合物 层中的至少一层向外换起形成凸面, 使得摩擦电极层与高分子聚合物层之间 形成间隙。 在一个具体实施方式中, 依照高分子聚合物层 2与摩擦电极层 3 的长度比为 21 :20或 20: 21 , 得到了换形结构高功率纳米摩擦发电机。
下面详细说明换形结构高功率纳米摩擦发电机的制备方法, 步骤( 1 )制 备具有氧化辞纳米线的基底与步骤( 2 )制备具有氧化辞纳米孔的高分子聚合 物薄膜与上文所述相同, 这里不再赘述, 下面仅详细说明步骤(3 ) :
a. 将第一电极层 1设置到高分子聚合物层 2上, 形成第一电极层 1-高分 子聚合物层 2的层叠体。
b. 将摩擦电极层 3放置到步骤 a所得层叠体的高分子聚合物层 2上, 并 且将所述层叠体与摩擦电极层 3的一端固定。
具体的, 例如所述层叠体与摩擦电极层 3是矩形时, 采用胶布粘贴或者 热封的方法将层叠体与摩擦电极层 3的短边端中的其中一个固定。
C. 将摩擦电极层 3换起, 然后将层叠体与摩擦电极层 3的固定端的相对 端进行固定。
具体的, 例如所述层叠体与摩擦电极层 3是矩形时, 将层叠体与摩擦电 极层 3的另一个短边端固定。
^施, 本领域技术人员应 当理解的是, 这不应被理解为对本发明权利要求范围的限制。 实施例 1
如图 1和图 2所示, 本实施例高功率纳米摩擦发电机尺寸为 4.5cm (长 度) X 1.2cm (宽度) , 其包括依次层叠设置的第一电极层 1 ( 0.1mm厚的铝 层) , 高分子聚合物层 2 ( 1mm厚的聚偏氟乙烯) , 以及摩擦电极层 3。 摩 擦电极层 3包括摩擦薄膜层 31 ( 1mm厚的铜版纸 (规格 200g/m2 ) )和第二 电极层 32 ( 0.1mm厚的铜层) , 所述摩擦薄膜层 31相对高分子聚合物层 2 设置。 高分子聚合物层 2相对摩擦电极层 3的面上设有多个纳米孔 4 (宽度 约为 60nm, 深度约为 8μηι, 以及孔间距平均为 9μηι ) 。 所述第一电极层 1 和第二电极层 32为纳米摩擦发电机的电压和电流输出电极。
下面详细说明该高功率纳米摩擦发电机的制备方法。
( 1 )制备具有纳米线的基底
采用常规喷射溅镀在硅基底的一个面上生成厚度 40nm的氧化辞种子层。 采用 0.1mol/L浓度的由等摩尔的环六亚曱基四胺(HMTA )和硝酸辞六水合 物 ( ΖηΝ03·6(Η20) )组成的培养液, 将硅基底的生成有氧化辞种子层的面朝 下, 放在培养液顶部, 在 85 °C下在机械对流加热炉(型号: Yamato DKN400, 加利福尼亚, 圣克拉拉) 中生长 6小时, 然后用去离子水沖洗生长有氧化辞 纳米线的硅基底并在空气中干燥, 得到的氧化辞纳米线阵列。
( 2 )制备具有纳米孔的高分子聚合物薄膜
将 PVDF放入烧杯中, 然后将二曱基曱酰胺( DMF ) 加入到烧杯中溶 解 PVDF , 得到浓度 11.7 wt%的 PVDF溶液。 然后将烧杯用保鲜膜封住, 超 声处理 30min, PVDF全部溶解, 然后待用。
将上述配好的 PVDF溶液通过旋转涂覆均匀直接地涂覆在步骤( 1 )制备 的硅基底的生长有氧化辞纳米线的表面, 涂覆完毕后, 在 80°C下进行真空干 燥。
干燥完成后, 将硅基底移除。 然后采用浓度 3wt%的稀盐酸将氧化辞纳米 线酸蚀掉, 得到具有纳米孔的 PVDF聚合物薄膜, 其中该薄膜一个表面上具 有的纳米孔为: 宽度约为 60nm, 深度约为 8μηι, 以及孔间距平均为 9μηι。
( 3 )制成纳米摩擦发电机
将步骤( 2 )所得的具有纳米孔的高分子聚合物薄膜作为高分子聚合物层, 将 0.1mm厚的铝层粘贴在高分子聚合物层 2上,得到第一电极层 1-高分子聚 合物层 2的层叠体; 将 0.1mm厚的铜层粘贴在铜版纸上, 得到摩擦电极层 3。 按照高分子聚合物层 2相对铜版纸设置的方式, 将摩擦电极层 3放置到上述 层叠体上, 然后边缘用普通胶布密封, 得到纳米摩擦发电机 1#。
该纳米摩擦发电机 1#在1- (电流-电压) 的测量中表现出典型的开路特 征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使纳米摩擦发电机 1#发生周期的弯曲和释放, 纳米摩擦发电机 1#的最大输出电压和电流信号分 别达到了 800 V和 750μΑ。 实施例 2-3
实施例 2和 3采用与实施例 1基本相同的方法进行制备, 不同之处列于 下表:
表 1
使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使纳米摩擦发电机 2#和3#发生周期的弯曲和释放,纳米摩擦发电机 2#的最大输出电压和电流信 号分别达到了 900 V和 850μΑ, 纳米摩擦发电机 3#的最大输出电压和电流信 号分别达到了 680 V和 450μΑ。 实施例 4
如图 3和图 4所示, 本实施例高功率纳米摩擦发电机尺寸为 4.5cm (长 度) X 1.2cm (宽度) , 其包括依次层叠设置的第一电极层 1 ( 0.1mm厚的铝 层), 高分子聚合物层 2 ( lmm厚的聚偏氟乙烯), 以及摩擦电极层 3 ( 0.1mm 厚的铜层) 。 高分子聚合物层 2相对摩擦电极层 3的面上设有多个纳米孔 4 (宽度约为 60nm, 深度约为 8μηι, 以及平均孔间距为 9μηι )。 所述第一电极 层 1和摩擦电极层 3为纳米摩擦发电机的电压和电流输出电极。
下面详细说明该高功率纳米摩擦发电机的制备方法。
( 1 )制备具有纳米线的基底
采用常规喷射溅镀在硅基底的一个面上生成厚度 40nm的氧化辞种子层。 采用 0.1mol/L浓度的由等摩尔的环六亚曱基四胺(HMTA )和硝酸辞六水合
物 ( ΖηΝ03·6(Η20) )组成的培养液, 将硅基底的生成有氧化辞种子层的面朝 下, 放在培养液顶部, 在 85°C下在机械对流加热炉(型号: Yamato DKN400, 加利福尼亚, 圣克拉拉) 中生长 6小时, 然后用去离子水沖洗生长有氧化辞 纳米线的硅基底并在空气中干燥, 得到的氧化辞纳米线阵列。
( 2 )制备具有纳米孔的高分子聚合物薄膜
将 PVDF放入烧杯中, 然后将二曱基曱酰胺( DMF ) 加入到烧杯中溶 解 PVDF , 得到浓度 11.7 wt%的 PVDF溶液。 然后将烧杯用保鲜膜封住, 超 声处理 30min, PVDF全部溶解, 然后待用。
将上述配好的 PVDF溶液通过旋转涂覆均匀直接地涂覆在步骤( 1 )制备 的硅基底的生长有氧化辞纳米线的表面, 涂覆完毕后, 在 80°C下进行真空干 燥。
干燥完成后, 将硅基底移除。 然后采用浓度 3wt%的稀硫酸将氧化辞纳米 线酸蚀掉, 得到具有纳米孔的 PVDF聚合物薄膜, 其中该薄膜一个表面上具 有的纳米孔为: 宽度约为 60nm, 深度约为 8μηι, 以及平均孔间距为 9μηι。
( 3 )制成纳米摩擦发电机
将步骤( 2 )所得的具有纳米孔的高分子聚合物薄膜作为高分子聚合物层, 将 0.1mm厚的铝层粘贴在高分子聚合物层 2上,得到第一电极层 1-高分子聚 合物层 2的层叠体。 按照高分子聚合物层 2相对摩擦电极层 3设置的方式, 将摩擦电极层 3放置到上述层叠体上, 然后边缘用普通胶布密封, 得到纳米 摩擦发电机 4#。
该纳米摩擦发电机 4#在1- (电流-电压) 的测量中表现出典型的开路特 征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使纳米摩擦发电机 4#发生周期的弯曲和释放, 纳米摩擦发电机 4#的最大输出电压和电流信号分 别达到了 120 V和 90μΑ。 实施例 5-6
实施例 5和 6采用与实施例 4基本相同的方法进行制备, 不同之处列于 下表:
表 2
使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使纳米摩擦发电机 5#和 6#发生周期的弯曲和释放,纳米摩擦发电机 5#的最大输出电压和电流信 号分别达到了 280V和 1750μΑ,纳米摩擦发电机 6#的最大输出电压和电流信 号分别达到了 226 V和 162μΑ。 实施例 7
如图 8和图 9所示, 本实施例高功率纳米摩擦发电机尺寸为 4.5cm (长 度) x l.2cm (宽度) , 其包括依次层叠设置的第一电极层 1 ( 0.1mm厚的铝 层) , 高分子聚合物层 2 ( 1mm厚的聚偏氟乙烯) , 以及摩擦电极层 3。 摩 擦电极层 3包括摩擦薄膜层 31 ( 1mm厚的铜版纸 (规格 200g/m2 )和第二电 极层 32 ( 0.1mm厚的铜层 ) , 所述摩擦薄膜层 31相对高分子聚合物层 2设 置。 高分子聚合物层 2相对摩擦电极层 3的面上设有多个纳米孔 4 (宽度约 为 60nm, 深度约为 8μηι, 以及平均孔间距为 9μηι )。 所述第一电极层 1和第 二电极层 32为纳米摩擦发电机的电压和电流输出电极。所述摩擦电极层 3作 为一个整体相对高分子聚合物层 2向外换起形成凸面, 并在摩擦电极层 3与 高分子聚合物层 2之间形成间隙, 使两个摩擦面在不受力的情况下能够自动 弹起。
下面详细说明该换形结构高功率纳米摩擦发电机的制备方法。
( 1 )制备具有纳米线的基底
采用常规喷射溅镀在硅基底的一个面上生成厚度 40nm的氧化辞种子层。 采用 0.1mol/L浓度的由等摩尔的环六亚曱基四胺(HMTA )和硝酸辞六水合 物 ( ΖηΝ03·6(Η20) )组成的培养液, 将硅基底的生成有氧化辞种子层的面朝 下, 放在培养液顶部, 在 85°C下在机械对流加热炉(型号: Yamato DKN400, 加利福尼亚, 圣克拉拉) 中生长 6小时, 然后用去离子水沖洗生长有氧化辞 纳米线的硅基底并在空气中干燥, 得到的氧化辞纳米线阵列。
( 2 )制备具有纳米孔的高分子聚合物薄膜
将 PVDF放入烧杯中, 然后将二曱基曱酰胺( DMF ) 加入到烧杯中溶 解 PVDF , 得到浓度 11.7 wt%的 PVDF溶液。 然后将烧杯用保鲜膜封住, 超 声处理 30min, PVDF全部溶解, 然后待用。
将上述配好的 PVDF溶液通过旋转涂覆均匀直接地涂覆在步骤( 1 )制备 的硅基底的生长有氧化辞纳米线的表面, 涂覆完毕后, 在 80°C下进行真空干 燥。
干燥完成后, 将硅基底移除。 然后采用浓度 3wt%的稀盐酸将氧化辞纳米 线酸蚀掉, 得到具有纳米孔的 PVDF聚合物薄膜, 其中该薄膜一个表面上具 有的纳米孔为: 宽度约为 60nm, 深度约为 8μηι, 以及平均孔间距为 9μηι。
( 3 )制成纳米摩擦发电机
将步骤( 2 )所得的具有纳米孔的高分子聚合物薄膜作为高分子聚合物层, 将 0.1mm厚的铝层粘贴在高分子聚合物层 2上,得到第一电极层 1-高分子聚 合物层 2的层叠体; 将 0.1mm厚的铜层粘贴在铜版纸上, 得到摩擦电极层 3。
依照摩擦电极层 3与高分子聚合物层 2的长度比为 21:20,将摩擦电极层 3放置到层叠体的高分子聚合物层 2上, 并将它们的一个短边端对齐, 采用 常规热封的方法将该对齐的短边端固定。 将摩擦电极层 3换起, 然后将层叠 体与摩擦电极层 3的短边端中的另一个进行固定, 得到纳米摩擦发电机 7#。
该纳米摩擦发电机 7#在 I-V (电流 -电压) 的测量中表现出典型的开路特 征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使纳米摩擦发电机 7#发生周期的弯曲和释放, 纳米摩擦发电机 7#的最大输出电压和电流信号分 别达到了 1020 V和 840μΑ。
实施例 8
如图 10和图 11所示,本实施例高功率纳米摩擦发电机尺寸为 4.5cm (长 度) X 1.2cm (宽度) , 其包括依次层叠设置的第一电极层 1 ( 0.1mm厚的铝 层), 高分子聚合物层 2 ( lmm厚的聚偏氟乙烯), 以及摩擦电极层 3 ( 0.1mm 厚的铜层) 。 高分子聚合物层 2相对摩擦电极层 3的面上设有多个纳米孔 4 (宽度约为 60nm, 深度约为 8μηι, 以及平均孔间距为 9μηι )。 所述第一电极 层 1和摩擦电极层 3为纳米摩擦发电机的电压和电流输出电极。 所述摩擦电 极层 3相对高分子聚合物层 2向外换起形成凸面, 并在摩擦电极层 3与高分 子聚合物层 2之间形成间隙,使两个摩擦面在不受力的情况下能够自动弹起。
下面详细说明该高功率纳米摩擦发电机的制备方法。
( 1 )制备具有纳米线的基底
采用常规喷射溅镀在硅基底的一个面上生成厚度 40nm的氧化辞种子层。 采用 0.1mol/L浓度的由等摩尔的环六亚曱基四胺(HMTA )和硝酸辞六水合 物 ( ΖηΝ03·6(Η20) )组成的培养液, 将硅基底的生成有氧化辞种子层的面朝 下, 放在培养液顶部, 在 85°C下在机械对流加热炉(型号: Yamato DKN400, 加利福尼亚, 圣克拉拉) 中生长 6小时, 然后用去离子水沖洗生长有氧化辞 纳米线的硅基底并在空气中干燥, 得到的氧化辞纳米线阵列。
( 2 )制备具有纳米孔的高分子聚合物薄膜
将 PVDF放入烧杯中, 然后将二曱基曱酰胺( DMF ) 加入到烧杯中溶 解 PVDF , 得到浓度 11.7 wt%的 PVDF溶液。 然后将烧杯用保鲜膜封住, 超 声处理 30min, PVDF全部溶解, 然后待用。
将上述配好的 PVDF溶液通过旋转涂覆均匀直接地涂覆在步骤( 1 )制备 的硅基底的生长有氧化辞纳米线的表面, 涂覆完毕后, 在 80°C下进行真空干 燥。
干燥完成后, 将硅基底移除。 然后采用浓度 3wt%的稀硫酸将氧化辞纳米 线酸蚀掉, 得到具有纳米孔的 PVDF聚合物薄膜, 其中该薄膜一个表面上具 有的纳米孔为: 宽度约为 60nm, 深度约为 8μηι, 以及平均孔间距为 9μηι。
( 3 )制成纳米摩擦发电机
将步骤( 2 )所得的具有纳米孔的高分子聚合物薄膜作为高分子聚合物层, 将 0.1mm厚的铝层粘贴在高分子聚合物层 2上,得到第一电极层 1-高分子聚 合物层 2的层叠体。
依照摩擦电极层 3与高分子聚合物层 2的长度比为 21:20,将摩擦电极层
3放置到层叠体的高分子聚合物层 2上, 并将它们的一个短边端对齐, 采用 常规热封的方法将该对齐的短边端固定。 将摩擦电极层 3换起, 然后将层叠 体与摩擦电极层 3的另一个短边端固定, 得到纳米摩擦发电机 8#。
该纳米摩擦发电机 8#在 I-V (电流 -电压 ) 的测量中表现出典型的开路特 征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使纳米摩擦发电机 8#发生周期的弯曲和释放, 纳米摩擦发电机 8#的最大输出电压和电流信号分 别达到了 360V和 205μΑ。
本发明的纳米摩擦发电机可以应用到各种自驱动系统领域如薄膜压力传 感器, 触摸屏, 电子显示器, 以及其它具有潜在的应用价值的领域。 本发明 的纳米摩擦发电机具有生产成本低、 能量输出高的效果。
上述方案包含首选实施例和备案时发明人所知的该项发明的最佳模式 时, 上述实施例只作为说明性例子给出。 对该说明中揭露的特定实施例的许 多异化, 不偏离该项发明的精神和范围的话, 将是容易鉴别的。 因此, 该项 发明的范围将通过所附的权利要求确定, 而不限于上面特别描述的实施例。
Claims
1. 一种纳米摩擦发电机, 其特征在于, 该纳米摩擦发电机包括: 依次层 叠设置的第一电极层, 高分子聚合物层, 以及摩擦电极层; 高分子聚合物层 相对摩擦电极层的面上设有多个纳米孔; 所述第一电极层和摩擦电极层为纳 米摩擦发电机的电压和电流输出电极。
2. 根据权利要求 1所述的纳米摩擦发电机, 其特征在于, 所述高分子聚 合物层所用材料是聚偏氟乙烯。
3. 根据权利要求 2所述的纳米摩擦发电机, 其特征在于, 所述高分子聚 合物层表面上设置的纳米孔宽度为 10-100nm以及深度为 4-50μηι。
4. 根据权利要求 1-3任一项所述的纳米摩擦发电机, 其特征在于, 所述 摩擦电极层所用材料选自金属或合金, 厚度为 0.05-0.2mm; 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合 金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽 合金。
5. 根据权利要求 4所述的纳米摩擦发电机, 其特征在于, 所述摩擦电极 层所用材料是铜或铝。
6. 根据权利要求 1-3任一项所述的纳米摩擦发电机, 其特征在于, 所述 摩擦电极层包括层叠设置的摩擦薄膜层和第二电极层, 所述摩擦薄膜层朝向 高分子聚合物层设置。
7. 根据权利要求 6所述的纳米摩擦发电机, 其特征在于, 所述摩擦薄膜 层所用材料是纤维薄膜或聚氯乙烯, 优选铜版纸或牛皮纸; 所述第二电极层 所用材料选自铟锡氧化物、 石墨烯、 银纳米线膜、 金属或合金, 其中金属是 金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是 铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅 合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合 金或钽合金。
8. 根据权利要求 1-7任一项所述的纳米摩擦发电机, 其特征在于, 所述 摩擦电极层和高分子聚合物层中的至少一层向外换起形成凸面, 使得摩擦电 极层与高分子聚合物层之间形成间隙。
9. 根据权利要求 1-8任一项所述的纳米摩擦发电机, 其特征在于, 所述 第一电极层所用材料是铟锡氧化物、 石墨烯、 银纳米线膜、 金属或合金, 其 中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合 金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。
10. 一种权利要求 1-9任一项所述的纳米摩擦发电机的制备方法,该方法 包括:
( 1 )制备具有纳米线的基底
在基底的一个表面上沿垂直表面方向生长氧化辞纳米线, 得到具有纳米 线的基底;
( 2 )制备具有纳米孔的高分子聚合物薄膜
将聚合物材料的溶液涂覆于生长有氧化辞纳米线的基底上, 固化成高分 子聚合物膜, 然后分离基底, 去除氧化辞纳米线, 得到具有纳米孔的高分子 聚合物薄膜;
( 3 )制成纳米摩擦发电机
将步骤(2 )所得的具有纳米孔的高分子聚合物薄膜作为高分子聚合物层, 依次层叠设置第一电极层, 高分子聚合物层, 以及摩擦电极层, 得到纳米摩 擦发电机。
11. 根据权利要求 10所述的纳米摩擦发电机的制备方法, 其特征在于, 步骤(1 ) 中, 采用水热法在硅基底的表面上垂直生长氧化辞纳米线。
12. 根据权利要求 10或 11所述的纳米摩擦发电机的制备方法, 其特征 在于, 所述聚合物材料的溶液是聚偏氟乙烯的二曱基曱酰胺溶液。
13. 根据权利要求 10-12任一项所述的纳米摩擦发电机的制备方法,其特 征在于, 步骤(2 ) 中, 氧化辞纳米线的去除方法是酸独刻法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210524392.2 | 2012-12-07 | ||
CN201210524392.2A CN103856096B (zh) | 2012-12-07 | 2012-12-07 | 高功率纳米摩擦发电机及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014086144A1 true WO2014086144A1 (zh) | 2014-06-12 |
Family
ID=50863386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/079209 WO2014086144A1 (zh) | 2012-12-07 | 2013-07-11 | 高功率纳米摩擦发电机及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103856096B (zh) |
WO (1) | WO2014086144A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019077077A1 (en) * | 2017-10-19 | 2019-04-25 | Luxembourg Institute Of Science And Technology (List) | THREADED TRIBOELECTRIC GENERATOR WITH GAUGE HONEYCOMB PATTERN |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105337526B (zh) * | 2014-06-27 | 2019-01-15 | 北京纳米能源与系统研究所 | 一种水中信号发生装置和救生装置 |
CN105470313B (zh) * | 2014-08-12 | 2018-11-02 | 北京纳米能源与系统研究所 | 基于接触起电的背栅场效应晶体管 |
CN105450079B (zh) * | 2014-09-30 | 2019-05-17 | 北京纳米能源与系统研究所 | 振动能收集器及智能流量计 |
CN106533246B (zh) * | 2015-09-11 | 2018-04-24 | 北京纳米能源与系统研究所 | 纳米发电机 |
CN105305869B (zh) * | 2015-09-11 | 2017-10-31 | 纳智源科技(唐山)有限责任公司 | 摩擦发电机的电极及其制备方法 |
JP6977336B2 (ja) * | 2017-06-29 | 2021-12-08 | ブラザー工業株式会社 | ヒンジ装置および画像形成装置 |
CN109390403B (zh) * | 2017-08-10 | 2022-08-26 | 北京纳米能源与系统研究所 | 石墨烯晶体管及其制备方法、使用方法和自驱动电子皮肤 |
CN108336924B (zh) * | 2018-02-06 | 2019-04-19 | 中国科学院上海微系统与信息技术研究所 | 一种生物蛋白柔性纳米摩擦发电机及其制备方法 |
DE102018221053A1 (de) | 2018-04-05 | 2019-10-10 | Continental Reifen Deutschland Gmbh | Vorrichtung zum Messen einer mechanischen Kraft, umfassend eine erste, zweite, dritte, vierte und fünfte Schicht sowie die Verwendungen der Vorrichtung und Reifen oder technischer Gummiartikel umfassend die Vorrichtung |
CN110499332B (zh) * | 2018-05-16 | 2021-05-04 | 北京纳米能源与系统研究所 | 用于为细胞递送目标物的自供电系统及方法 |
CN110896287B (zh) * | 2018-09-12 | 2021-09-28 | 北京纳米能源与系统研究所 | 自供能电子设备 |
CN109505736B (zh) * | 2018-10-23 | 2020-05-12 | 北京科技大学 | 一种同时收集风能和水能的复合能源系统的制备方法 |
CN109361373A (zh) * | 2018-11-16 | 2019-02-19 | 电子科技大学中山学院 | 一种柔性薄膜体声波谐振器及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070085450A1 (en) * | 2005-10-14 | 2007-04-19 | Academia Sinica | Motion actuator |
CN102684546A (zh) * | 2012-05-15 | 2012-09-19 | 纳米新能源(唐山)有限责任公司 | 一种摩擦发电机 |
CN102710166A (zh) * | 2012-04-13 | 2012-10-03 | 纳米新能源(唐山)有限责任公司 | 一种摩擦发电机 |
CN202949379U (zh) * | 2012-12-07 | 2013-05-22 | 纳米新能源(唐山)有限责任公司 | 高功率纳米摩擦发电机 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7061158B2 (en) * | 2002-07-25 | 2006-06-13 | Nanomotion Ltd. | High resolution piezoelectric motor |
RU2216095C1 (ru) * | 2002-09-30 | 2003-11-10 | Журбин Валерий Владимирович | Способ генерирования электрической энергии высокого напряжения |
-
2012
- 2012-12-07 CN CN201210524392.2A patent/CN103856096B/zh active Active
-
2013
- 2013-07-11 WO PCT/CN2013/079209 patent/WO2014086144A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070085450A1 (en) * | 2005-10-14 | 2007-04-19 | Academia Sinica | Motion actuator |
CN102710166A (zh) * | 2012-04-13 | 2012-10-03 | 纳米新能源(唐山)有限责任公司 | 一种摩擦发电机 |
CN102684546A (zh) * | 2012-05-15 | 2012-09-19 | 纳米新能源(唐山)有限责任公司 | 一种摩擦发电机 |
CN202949379U (zh) * | 2012-12-07 | 2013-05-22 | 纳米新能源(唐山)有限责任公司 | 高功率纳米摩擦发电机 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019077077A1 (en) * | 2017-10-19 | 2019-04-25 | Luxembourg Institute Of Science And Technology (List) | THREADED TRIBOELECTRIC GENERATOR WITH GAUGE HONEYCOMB PATTERN |
LU100485B1 (en) * | 2017-10-19 | 2019-04-25 | Luxembourg Inst Science & Tech List | Triboelectric member with embossed honeycomb pattern |
US11601070B2 (en) | 2017-10-19 | 2023-03-07 | Luxembourg Institute Of Science And Technology (List) | Triboelectric generator with embossed honeycomb pattern |
Also Published As
Publication number | Publication date |
---|---|
CN103856096B (zh) | 2015-12-16 |
CN103856096A (zh) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014086144A1 (zh) | 高功率纳米摩擦发电机及其制备方法 | |
CN202949379U (zh) | 高功率纳米摩擦发电机 | |
Liao et al. | Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting | |
CN108365776B (zh) | 一种湿气发电机及其制备方法 | |
CN109781311B (zh) | 一种柔性电容式压力传感器及其制备方法 | |
Cho et al. | BaTiO3@ PVDF-TrFE nanocomposites with efficient orientation prepared via phase separation nano-coating method for piezoelectric performance improvement and application to 3D-PENG | |
Bui et al. | Treefrog toe pad‐inspired micropatterning for high‐power triboelectric nanogenerator | |
WO2015024392A1 (zh) | 发电效果改善的摩擦发电机及其制备方法 | |
Zhou et al. | Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-Mesh hybrid electrode | |
WO2014044077A1 (zh) | 多层高功率纳米摩擦发电机 | |
WO2014183457A1 (zh) | 摩擦发电机 | |
WO2014089891A1 (zh) | 一种微纳集成发电机及其制备方法 | |
WO2014012403A1 (zh) | 压电和摩擦电混合薄膜纳米发电机 | |
WO2014154017A1 (zh) | 一种摩擦电纳米传感器 | |
WO2013181952A1 (zh) | 压电和摩擦电混合纳米发电机 | |
CN103532430A (zh) | 基于压电和摩擦电耦合的柔性微型能量采集器及制备方法 | |
JP5404357B2 (ja) | アクチュエータ | |
Ye et al. | High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P (VDF-TrFE) composite membranes for energy harvesting application | |
WO2014005434A1 (zh) | 一种磁场驱动的纳米摩擦发电机 | |
Su et al. | Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor | |
CN107481801B (zh) | 一种银纳米线网格透明电极的制备方法 | |
WO2012043845A1 (en) | Actuator | |
US9024510B1 (en) | Compliant electrode and composite material for piezoelectric wind and mechanical energy conversions | |
WO2014059807A1 (zh) | 基于摩擦电的压力感应电缆 | |
CN103682081A (zh) | 压电驻极体薄膜及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13860072 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13860072 Country of ref document: EP Kind code of ref document: A1 |