WO2014084596A1 - Ims 기반 서비스 연결 방법 - Google Patents

Ims 기반 서비스 연결 방법 Download PDF

Info

Publication number
WO2014084596A1
WO2014084596A1 PCT/KR2013/010843 KR2013010843W WO2014084596A1 WO 2014084596 A1 WO2014084596 A1 WO 2014084596A1 KR 2013010843 W KR2013010843 W KR 2013010843W WO 2014084596 A1 WO2014084596 A1 WO 2014084596A1
Authority
WO
WIPO (PCT)
Prior art keywords
ims
service
rrc
request message
rrc connection
Prior art date
Application number
PCT/KR2013/010843
Other languages
English (en)
French (fr)
Inventor
김재현
김태현
김래영
이영대
김현숙
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/646,593 priority Critical patent/US9585081B2/en
Priority to KR1020157010849A priority patent/KR101698285B1/ko
Priority to CN201380061875.6A priority patent/CN104871603B/zh
Publication of WO2014084596A1 publication Critical patent/WO2014084596A1/ko
Priority to US15/414,262 priority patent/US10616868B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the present invention relates to an IMS-based service connection method.
  • the 3GPP which enacts the technical specifications of the mobile communication system, has been trying to optimize and improve the performance of 3GPP technologies since late 2004 in order to respond to various forums and new technologies related to 4G mobile communication. Started research on Term Evolution / System Architecture Evolution technology.
  • 3GPP SAE centered on 3GPP SA WG2
  • 3GPP SA WG2 is a study on network technology aimed at determining network structure and supporting mobility between heterogeneous networks in parallel with LTE work of 3GPP TSG RAN.
  • Recent important standardization issues of 3GPP Is one of. This is a work to develop a 3GPP system into a system supporting various radio access technologies based on IP, and has been aimed at an optimized packet-based system that minimizes transmission delay with improved data transmission capability.
  • the SAE high-level reference model defined by 3GPP SA WG2 includes non-roaming cases and roaming cases in various scenarios. For details, see 3GPP standard documents TS 23.401 and TS 23.402. See for more information.
  • the network structure diagram of FIG. 1 is a simple reconfiguration.
  • 1 is a structural diagram of an evolved mobile communication network.
  • the Evolved Packet Core may include various components, and in FIG. 1, a part of the Evolved Packet Core (EPC) may include a Serving Gateway (S-GW) 52, a PDN Packet Data Network Gateway (GW), and mobility management (MME). Entity (53), Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and Enhanced Packet Data Gateway (ePDG).
  • S-GW Serving Gateway
  • GW Packet Data Network Gateway
  • MME mobility management
  • Entity 53
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG Enhanced Packet Data Gateway
  • the S-GW 52 operates as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the base station, that is, the eNodeB 22 and the PDN GW 53.
  • the S-GW 52 serves as a local mobility anchor point. That is, packets may be routed through the S-GW 52 for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • the S-GW 52 may be connected to other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • 3GPP networks RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • PDN GW (or P-GW) 53 corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW 53 may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the S-GW 52 and the PDN GW 53 are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option. have.
  • the MME 51 is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. .
  • the MME 51 controls control plane functions related to subscriber and session management.
  • the MME 51 manages a number of eNodeBs 22 and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME 51 performs security procedures, terminal-to-network session handling, idle terminal location management, and the like.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an IP service network eg, IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides relevant control and mobility support between the GPRS core and SGW's 3GPP anchor functionality. It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW.In addition, if Direct Tunnel is not established, it provIdes the user plane tunneling .
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and PDN GW. It provides user plane tunneling and tunnel management between Serving GW and PDN GW.It is used because of UE mobility and when a connection to the PDN GW where no SGW is located is required for the required PDN connectivity.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services. It is the reference point between the PDN GW and the packet data network.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • Figure 2 is an exemplary view showing the architecture of a general E-UTRAN and a general EPC.
  • the eNodeB 20 may route to a gateway, schedule and send paging messages, schedule and transmit broadcaster channels (BCHs), uplinks and downlinks while a Radio Resource Control (RRC) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3A is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNodeB
  • FIG. 3B is a structure of a radio interface protocol in a user plane between a terminal and a base station. Another example is shown.
  • the radio interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on a time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection When there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection RRC connection
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 4a is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE 10 to obtain UL synchronization or to allocate UL radio resources to the base station, that is, the eNodeB 20.
  • the UE 10 receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB 20.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • UE 10 transmits a randomly selected random access preamble to eNodeB 20.
  • the UE 10 selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index.
  • UE 10 transmits the selected random access preamble in the selected subframe.
  • the eNodeB 20 Upon receiving the random access preamble, the eNodeB 20 sends a random access response (RAR) to the UE 10.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE 10 detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE 10 receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE 10 is in a logical connection with an entity of the RRC layer of the eNodeB 20. If the RRC state is connected, the RRC state is connected. A state that is not connected is called an RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE 10.
  • the UE 10 in the idle state cannot be understood by the eNodeB 20, and is managed by a core network in units of a tracking area, which is a larger area than a cell.
  • the tracking area is a collection unit of cells. That is, the idle state UE (10) is identified only in the presence of a large area unit, in order to receive the normal mobile communication services such as voice or data, the terminal must transition to the connected state (connected state).
  • the UE 10 When the user first powers up the UE 10, the UE 10 first searches for a suitable cell and then remains in an idle state in that cell. When the UE 10 staying in the idle state needs to establish an RRC connection, the UE 10 establishes an RRC connection with the RRC layer of the eNodeB 20 through an RRC connection procedure and performs an RRC connection state ( connected state).
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or an uplink data transmission is necessary, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which the UE 10 sends an RRC connection request message to the eNodeB 20, and the eNodeB 20 transmits an RRC connection setup message to the UE 10. And a process in which the UE 10 sends an RRC connection setup complete message to the eNodeB 20. This process will be described in more detail with reference to FIG. 4B.
  • the UE 10 When the UE 10 in idle state attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to the paging of the eNodeB 20, the UE 10 first performs an RRC connection. A RRC connection request message is transmitted to the eNodeB 20.
  • the eNB 10 When the RRC connection request message is received from the UE 10, the eNB 10 accepts the RRC connection request of the UE 10 when the radio resources are sufficient, and establishes an RRC connection that is a response message (RRC connection). setup) message is transmitted to the UE 10.
  • RRC connection a response message
  • the UE 10 When the UE 10 receives the RRC connection setup message, the UE 10 transmits an RRC connection setup complete message to the eNodeB 20. When the UE 10 successfully transmits an RRC connection establishment message, the UE 10 establishes an RRC connection with the eNodeB 20 and transitions to the RRC connected mode.
  • the UE 100 when the UE 100 requests an RRC connection for the purpose of data transmission in the user plane, if the network, for example, the base station (ie, the eNodeB) is congested, it may refuse it.
  • the network for example, the base station (ie, the eNodeB) is congested. Even if it is, it cannot be refused.
  • IMS services such as Voice over LTE (VoLTE) (i.e., ALL IP services) use signals based on Session Initiation Protocol (SIP) of IP Multimedia Subsystem (IMS) as control signals for call origination and reception.
  • SIP Session Initiation Protocol
  • IMS IP Multimedia Subsystem
  • the SIP-based control signals are transmitted on the user plane rather than the control plane. Accordingly, when the UE 100 requests an RRC connection to transmit a SIP-based control signal to initiate an IMS service (ie, an ALL IP service) such as VoLTE, the network, for example, a base station (ie, an eNodeB) If is congested, it can be rejected.
  • a base station ie, an eNodeB
  • the present disclosure provides a method for connecting an IMS (IP Multimedia Subsystem) -based service in the terminal.
  • the method for connecting the IMS-based service may include: signaling if an IMS-based control signal or a Session Initiation Protocol (SIP) -based message needs to be transmitted on a user plane in order to connect the IMS-based service, or Setting a cause value in the establishment cause field, meaning that it is by IMS; Transmitting a service request message of a non-access stratum (NAS) layer including a service type (field) meaning signaling or by IMS to a base station;
  • the method may include transmitting a radio resource control (RRC) connection request message including the established cause field to the base station.
  • RRC radio resource control
  • the cause value indicating signaling or by IMS may be set.
  • the transmitting of the RRC connection request message may include: transmitting, by the NAS layer of the terminal, the set cause value to the RRC layer of the terminal; Setting, by the RRC layer of the UE, a cause field of an RRC connection request message according to the set cause value;
  • the method may include transmitting an RRC connection request message including the set cause field.
  • the IMS-based service may correspond to one of an IMS-based voice call service, a video call service, and a multimedia telephony service.
  • the service type (field) may correspond to any one of IMS Voice, IMS Video, MMTEL over PS Session, and a new service type (field) value.
  • the cause value may correspond to any one of a MO-signaling, a MO-IMS MMTEL service, a MO-IMS access, and a new cause value.
  • the service type (field) may include IMS Voice, IMS Video, MMTEL over PS Session, and It may correspond to any one of the new service type (field) values.
  • the cause value may correspond to any one of MT-access and a new cause value.
  • the paging signal received from the base station may include information indicating whether the incoming according to the IMS-based service or the reception of general data.
  • setting the establishment cause field includes: checking the information included in the paging signal; The method may include selecting one of several cause values according to the identified information.
  • the method may further comprise receiving information from the base station about values of causes associated with the IMS based service.
  • receiving information from the base station about values of causes associated with the IMS based service.
  • one of the cause values may be selected.
  • the method may further include receiving system information including access class barring information from the base station.
  • the prohibition information for each access class may include an exception rule for an IMS service.
  • the method may further include determining whether to transmit the RRC connection request message according to the prohibition information for each access class. In the determining step, when it is necessary to transmit an IMS-based control signal or a SIP-based message for connecting the IMS-based service, it may be determined to transmit the RRC connection request message according to the exception rule.
  • the present disclosure also provides a terminal for connecting an IP Multimedia Subsystem (IMS) based service.
  • IMS IP Multimedia Subsystem
  • the terminal needs to transmit an IMS-based control signal or a Session Initiation Protocol (SIP) -based message to the user plane in order to connect the IMS-based service
  • the terminal selects a service type (or field) representing the IMS-based service.
  • a cause value that is set (including) in a service request message or an extended service request message of a (non-access stratum) layer and transmitted to a network (MME) and means a signaling or an IMS.
  • MME network
  • a control unit set to an establishment cause) field and it may include a transceiver for transmitting a radio resource control (RRC) connection request message including the establishment cause field set by the control unit to the base station.
  • RRC radio resource control
  • a base station in a congested state ie, , eNodeB
  • a base station in a congested state ie, , eNodeB
  • 1 is a structural diagram of an evolved mobile communication network.
  • Figure 2 is an exemplary view showing the architecture of a general E-UTRAN and a general EPC.
  • FIG. 3A is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNodeB
  • FIG. 3B is a structure of a radio interface protocol in a user plane between a terminal and a base station. Another example is shown.
  • 4a is a flowchart illustrating a random access procedure in 3GPP LTE.
  • RRC radio resource control
  • FIG. 6A illustrates an example in which an RRC connection request is rejected by a UE in a congestion situation of the eNodeB illustrated in FIG. 5.
  • FIG. 6B illustrates an incoming situation of a UE in a congestion situation of the eNodeB illustrated in FIG. 5.
  • FIG. 7 is an exemplary flowchart illustrating an operation according to an access class barring in a network congestion state.
  • FIG. 8A is an exemplary diagram illustrating an exemplary flow according to the first disclosure of the present specification to solve the problem of FIG. 6A.
  • FIG. 8B is an exemplary diagram illustrating an exemplary flow according to the first disclosure of the present specification to solve a problem in the incoming situation of FIG. 6B.
  • FIG. 9 is an exemplary view illustrating an exemplary flow according to the second disclosure of the present specification to solve the problem of FIG. 7.
  • FIG. 10 is a block diagram illustrating a configuration of a UE 100 and an eNodeB 200 according to an embodiment of the present invention.
  • the present invention is described based on the Universal Mobile Telecommunication System (UMTS) and the Evolved Packet Core (EPC), the present invention is not limited to such a communication system, but also to all communication systems and methods to which the technical spirit of the present invention can be applied. Can be applied.
  • UMTS Universal Mobile Telecommunication System
  • EPC Evolved Packet Core
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • a user equipment UE
  • the illustrated UE may be referred to in terms of terminal, mobile equipment (ME), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a PDA, a smart phone, a multimedia device, or a non-portable device such as a PC or a vehicle-mounted device.
  • UMTS stands for Universal Mobile Telecommunication System and means 3rd generation mobile communication network.
  • UE / MS means User Equipment / Mobile Station, terminal equipment.
  • EPS An abbreviation for Evolved Packet System, which means a core network supporting a Long Term Evolution (LTE) network.
  • LTE Long Term Evolution
  • UMTS evolved network
  • PDN Public Data Network
  • Independent network where the server that provides the service is located
  • PDN connection Connection from the terminal to the PDN, that is, association between the terminal represented by an IP address and the PDN expressed as an APN (access point name) (connection)
  • PDN-GW Packet Data Network Gateway
  • Network node of EPS network that performs UE IP address allocation, Packet screening & filtering, Charging data collection
  • Serving GW Network node of EPS network performing Mobility anchor, Packet routing, Idle mode packet buffering, Triggering MME to page UE
  • PCRF Policy and Charging Rule Function
  • APN Access Point Name: A name of an access point managed in a network, which is provided to a UE. That is, a string that refers to or distinguishes a PDN. In order to connect to the requested service or network (PDN), the P-GW goes through the name. A predefined name (string) in the network to find this P-GW (example) internet.mnc012.mcc345.gprs
  • Tunnel Endpoint Identifier End point ID of a tunnel established between nodes in a network, and is set for each section in bearer units of each UE.
  • NodeB Base station of the UMTS network, which is installed outdoors, and the cell coverage size corresponds to a macro cell.
  • eNodeB Base station of EPS (Evolved Packet System) is installed outdoors, the cell coverage size corresponds to a macro cell.
  • EPS Evolved Packet System
  • NodeB A term referring to NodeB and eNodeB.
  • MME Abbreviation for Mobility Management Entity, which controls each entity in EPS to provide session and mobility for the UE.
  • a session is a channel for data transmission.
  • the unit may be a PDN, a bearer, or an IP flow unit.
  • the difference in each unit can be divided into the entire target network unit (APN or PDN unit), the QoS classification unit (Bearer unit), and the destination IP address unit as defined in 3GPP.
  • PDN connection (connection) A connection from the terminal to the PDN, that is, the association (connection) between the terminal represented by the IP address and the PDN represented by the APN.
  • UE Context Context information of UE used to manage UE in the network, ie Context Information composed of UE id, mobility (current location, etc.), session attributes (QoS, priority, etc.)
  • OMA DM Open Mobile Alliance Device Management
  • OMA DM Open Mobile Alliance Device Management
  • OAM Operaation Administration and Maintenance
  • OAM is a group of network management functions that provides network fault indication, function information, and data and diagnostic functions.
  • NAS configuration MO Management Object: A MO (Management Object) that is used to configure the UE with parameters associated with NAS Functionality.
  • MTC Machine Type Communication that communicates between devices or between server and server without human intervention
  • MTC device UE that performs a specific purpose with a communication function through a core network, eg vending machine, meter reader, weather sensor, etc.
  • the MTC device may be called an MTC terminal, an MTC device, an MTC machine, an MTC UE, a UE used for MTC, or a UE configured for MTC.
  • MTC Server A server on the network that manages MTC devices and sends and receives data. It can be outside the core network.
  • MTC Application Actual application using MTC device and MTC Server (remote reading, quantity movement tracking, etc.)
  • MTC Feature Some features are required depending on the function or feature of the network to support MTC applications, that is, the purpose of each application. Examples include MTC monitoring (needed for remote meter reading in case of loss of equipment), low mobility (less movement in vending machines), and small data transmission (MTC device only sends and receives a small amount of data).
  • MTC User A user who uses the services provided by the MTC Server.
  • NAS Non-Access-Stratum: Upper stratum of the control plane (control plane) between the UE and the MME. Support mobility management, session management, IP address maintenance between UE and network
  • MM (Mobility Management) operation / procedure An operation or procedure for mobility control / management / control of a UE.
  • the MM operation / procedure may be interpreted as including one or more of the MM operation / procedure in the CS network, the GMM operation / procedure in the GPRS network, and the EMM operation / procedure in the EPS network.
  • the UE and the network nodes (MME, SGSN, MSC) send and receive MM messages to perform MM operation / procedure.
  • SM (Session Management) operation / procedure An operation or procedure for controlling / managing / processing / handling a user plane and / or bearer context / PDP context of a UE.
  • SM operation / procedure may be interpreted as including one or more of SM operation / procedure in GPRS network and ESM operation / procedure in EPS network.
  • the UE and the network nodes (MME, SGSN) exchange SM messages to perform SM operations / procedures.
  • Low priority terminal A terminal set to NAS signal low priority. For details, refer to standard documents 3GPP TS 24.301 and TS 24.008.
  • Normal priority terminal General terminal not set to low priority
  • Dual priority terminal A terminal set to a dual priority, which is set to NAS signal low priority and is configured to override the described NAS signal low priority (ie, UE which provides dual priority support is configured for NAS signaling low priority and also configured to override the NAS signaling low priority indicator).
  • UE which provides dual priority support is configured for NAS signaling low priority and also configured to override the NAS signaling low priority indicator.
  • a large number of UEs 100a, 100b, 300c, and 300d exist in the coverage of the eNodeB 200, and attempt to transmit and receive data.
  • traffic is overloaded or congested on the interface between the eNodeB 200 and the S-GW 520, downlink data to the UE 100 or from the UE 100.
  • the uplink data of the is not transmitted correctly and fails.
  • an interface between the S-GW 520 and the PDN-GW 530 or an interface between the PDN-GW 530 and an IP (Internet Protocol) service network of a mobile communication operator may be overloaded or congested. Even in the case of congestion, downlink data to the UEs 100a, 100b, 300c and 300d or uplink data from the UEs 100a, 100b, 300c and 300d may fail to be transmitted correctly.
  • IP Internet Protocol
  • the core network when there is an overload or congestion on the interface between the eNodeB 200 and the S-GW 520 or when there is an overload or congestion on the interface between the S-GW 520 and the PDN-GW 530.
  • the node e.g., MME
  • the node performs congestion control (NAS level congestion control) at the NAS level to avoid or control signaling congestion and APN congestion.
  • Congestion control at the NAS level is composed of APN based congestion control and General NAS level mobility management control at the NAS level.
  • the APN-based congestion control refers to EMM, GMM and (E) SM signal congestion control associated with a UE and a specific APN (APN associated with a congestion state), and is based on APN-based session management congestion control. And APN based Mobility Management congestion control.
  • the mobility management control of the general NAS phase is a node in the core network (MME, SGSN) to request the mobility management signaling request from the UE / MS in a general network congestion or overload situation Means to avoid congestion and overload by refusing.
  • MME core network
  • SGSN core network
  • a back-off timer value is assigned to a UE in idle mode or connected mode. It is sent in a NAS reject message, and the UE does not request the EMM / GMM / (E) SM signal from the network until the back-off timer expires. Will not.
  • the NAS reject message may include an attach rejection (ATTACH REJECT), a tracking area updating (TAU) rejection, a routing area updating (RAU) rejection, a service rejection, an extended service (EXTENDED SERVICE) rejection, a PDN connectivity rejection, and bearer resource allocation. (bearer resource allocation) rejection, bearer resource modification (bearer resource modification) rejection, the message of the rejection for the deactivate EPS bearer context request (deactivate EPS bearer context request).
  • an attach rejection ATTACH REJECT
  • TAU tracking area updating
  • RAU routing area updating
  • EXTENDED SERVICE extended service
  • PDN connectivity rejection PDN connectivity rejection
  • bearer resource allocation bearer resource allocation
  • bearer resource modification
  • the back-off timer may be divided into a mobility management (MM) back-off timer and a session management (SM) back-off timer.
  • MM mobility management
  • SM session management
  • the MM back-off timer operates independently for each UE, and the SM back-off timer operates independently for each APN and for each UE.
  • the MM back-off timer is for controlling an EMM / GMM signal (eg, Attach, TAU / RAU request, etc.).
  • the SM back-off timer is for controlling (E) SM signals (eg, PDN connectivity, Bearer Resource Allocation, Bearer Modification, PDP Context Activation, PDP Context Modification Request, etc.).
  • the MM back-off timer is a mobility-related back-off timer used to control when congestion occurs in the network.
  • the UE may perform a back-off timer while the timer is running. It is a timer that disables attach, location information update (TAU, RAU), and service request procedure.
  • TAU location information update
  • RAU location information update
  • MPS multimedia priority service
  • the UE may be able to request even if the timer operates.
  • the UE may receive an MM back-off timer value from a core network network node (eg, MME, SGSN, etc.) or may be delivered from a lower layer (Access Stratum). It may also be set randomly within the range of 15 to 30 minutes by the UE.
  • a core network network node eg, MME, SGSN, etc.
  • a lower layer Access Stratum
  • the SM back-off timer is a session management related back-off timer used to control when congestion occurs in the network, while the timer is running.
  • the UE is a timer that prevents the establishment or modification of an associated APN based session.
  • MPS multimedia priority service
  • the UE 100 may be able to request even if the timer is operating.
  • the UE receives this SM back-off timer value from a core network network node (eg, MME, SGSN, etc.) and is randomly set within a maximum of 72 hours. It may also be set randomly within the range of 15 to 30 minutes by the UE 100.
  • a core network network node eg, MME, SGSN, etc.
  • the eNodeB 200 may also perform congestion control. That is, when the UE requests RRC connection establishment for data transmission in the user plane, if the eNodeB 200 is congested, the UE may transmit a rejection response to the UE together with an extended wait timer. have. In this case, the RRC connection establishment request cannot be retried until the extended wait timer expires. On the other hand, when the UE requests an RRC connection for the purpose of transmitting a signal of a control plane for receiving a call based on a CS (circuit switch), even if the eNodeB 200 is congested, it cannot be rejected.
  • CS circuit switch
  • an ALL IP service such as Voice over LTE (VoLTE) uses a signal based on the Session Initiation Protocol (SIP) of IP Multimedia Subsystem (IMS) as a control signal for call origination and reception. Control signals are transmitted on the user plane rather than the control plane. Therefore, when the UE requests an RRC connection to transmit a SIP-based control signal to initiate an ALL IP service such as VoLTE, if the network, for example, the base station (ie, the eNodeB) is congested, it may refuse it. It becomes.
  • SIP Session Initiation Protocol
  • IMS IP Multimedia Subsystem
  • FIG. 6A illustrates an example in which an RRC connection request is rejected by a UE in a congestion situation of the eNodeB illustrated in FIG. 5.
  • UE1 100a in idle state determines the origination of a call by an IMS service, e.g., VoLTE. .
  • UE2 200b in the idle state decides to send general data.
  • the upper layer of the UE1 100a such as the NAS layer, means data that is initiated by the UE with a value of a establishment cause field for originating a call by an IMS service, such as VoLTE. Set as MO (Mobile Originating) Data ', and send the Service Request message.
  • the upper layer of the UE2 100b for example, the NAS layer, sets the value of the establishment cause field to 'Mobile Originating (MO) Data', meaning data initiated by the UE, for transmission of general data. To transmit a service request message.
  • MO Mobile Originating
  • Control signals for call origination and reception according to VoLTE are used by IMS SIP-based control signals and are transmitted on the user plane.
  • the upper layer of the UE1 100a for example, the NAS layer, sets the value of the establishment cause field to "Mobile Originating (MO) Data" and transmits it to the RRC layer.
  • the RRC layer of the UE1 100a sets the 'Mobile Originating (MO) Data' in the establishment cause field in the RRC connection request message and transmits it to the eNodeB 200.
  • the upper layer of the UE2 100b for example, the NAS layer, sets the value of the establishment cause field to "Mobile Originating (MO) Data" and transmits it to the RRC layer. Then, the RRC layer of the UE2 100b sets the 'MO (Mobile Originating) Data' in the establishment cause field in the RRC connection request message and transmits it to the eNodeB 200.
  • the NAS layer sets the value of the establishment cause field to "Mobile Originating (MO) Data" and transmits it to the RRC layer.
  • the RRC layer of the UE2 100b sets the 'MO (Mobile Originating) Data' in the establishment cause field in the RRC connection request message and transmits it to the eNodeB 200.
  • the eNodeB 200 in a congested state has the establishment cause field in the RRC connection request message from the UE1 100a and the UE2 100b equally set to MO Data, and thus the RRC connection request from the UE2 100b. In addition, all of the RRC connection request from the UE1 100a transmits an RRC connection rejection message.
  • FIG. 6B illustrates an incoming situation of a UE in a congestion situation of the eNodeB illustrated in FIG. 5.
  • a call by an IMS service such as VoLTE
  • UE1 100a in an idle state Idle state
  • Idle state Transmit a paging signal for incoming call, and transmits a paging signal for incoming data to UE2 (100b).
  • the paging signal may not include information for distinguishing whether the IMS service, for example, for a call by VoLTE or for the reception of data.
  • the eNodeB 200 cannot distinguish whether the paging signals are for the reception of the IMS service, for example, a call by VoLTE or for the reception of data, so that the UE1 100a and the UE2 ( It is not possible to differentiate the paging signal transmitted to 100b).
  • a paging signal for receiving a call by the IMS service for example, VoLTE
  • a situation in which the UE1 100a transmits a service request (or a confirmed service request) and an RRC connection request message later than the UE2 200b may occur, thereby causing a call by the IMS service, for example, VoLTE.
  • the incoming call can be delayed.
  • FIG. 7 is an exemplary flowchart illustrating an operation according to an access class barring in a network congestion state.
  • the eNodeB 200 may broadcast access class barring (ACB) related information through system information.
  • the system information may be a System Information Block (SIB) Type 2.
  • SIB System Information Block
  • the SIB (System Information Block) Type 2 may include ACB related information as shown in the following table.
  • ac-BarringForCSFB ACB for the CS (circuit switch) fallback.
  • CS fallback converts a VoLTE call to a previous 3G call.
  • ac-BarringForEmergency ACB for emergency services.
  • ac-BarringForMO-Data ACB for outgoing data of the UE.
  • ac-BarringForMO-Signalling ACB for the originating control signal of the UE.
  • ac-BarringForSpecialAC ACB for a special access class, 11-15.
  • ac-BarringTime Indicates the time for which access is prohibited.
  • ssac-BarringForMMTEL-Video Service-specific ACB for MMTEL video outgoing.
  • ssac-BarringForMMTEL-Voice MMTEL is a service-specific ACB for voice outgoing.
  • the UE1 determines the origination of the call (call) by the IMS service, for example, VoLTE, and determines whether the application of the ACB.
  • UE2 100b determines the origination of general data and determines whether to apply the ACB.
  • a UE is generally randomly assigned at least one of ten access classes (e.g., AC0, AC1, ..., AC9). As an exception, AC10 is assigned for emergency emergency access.
  • the value of the randomly assigned access class may be stored in each USIM of the UE1 100 and the UE2 100b.
  • the UE1 100a and the UE2 100b use the barring factor field included in the received ACB information, based on the stored access class, to determine whether access prohibition is applied.
  • This access barring check is performed in each access stratum (AS) layer, that is, an RRC layer, of the UE1 100a and the UE2 100b.
  • AS access stratum
  • the UE1 100a and the UE2 100b may transmit a service request (or extended service request) message and an RRC connection request message, respectively.
  • both the UE1 100a and the UE2 100b cannot transmit an RRC connection request message.
  • an RRC connection request for originating an IMS service by the UE1 100a for example, a call by VoLTE
  • an RRC connection request for general data transmission by the UE2 100b cannot be distinguished.
  • ACB is applied and prohibited.
  • IMS-based call origination cannot be distinguished from origination of general data, so that IMS-based call origination fails in a network congestion situation as shown in FIG. 6A or illustrated in FIG. 7.
  • this problem causes network resource waste and decreases the user's experience satisfaction.
  • a control signal of an IMS-based service such as a VoLTE service, for example, an IMS-based control signal or a SIP-based control signal may be processed to be different from general data even though it is transmitted to the user plane.
  • the NAS layer of the UE sets an establishment cause field to something other than 'MO data' to RRC layer.
  • the RRC layer of the UE transmits an RRC connection request message accordingly, so that it is not rejected even in a congestion situation of the eNodeB 200.
  • the NAS layer of the UE when a UE wishes to make an IMS based call call (eg, a voice call call or a video call call), the NAS layer of the UE is configured to perform an IMS based call.
  • the RRC establishment cause is' MO-signaling 'or a new cause value instead of' MO Data '(e.g., IMS-based origination or' MO
  • the NAS layer of the UE transmits the established establishment cause to the AS layer, that is, the RRC layer, so that the RRC layer establishes the establishment cause set by the NAS layer. cause), the RRC connection request message can be transmitted.
  • the UE sets a service type (or field) representing an IMS-based service to an IMS Voice, IMS Video, MMTEL over PS Session, or a new service type (field) value, and then sets it in a service request or extended service request message. (Including) to transmit.
  • a control signal, an IMS based control signal, or a SIP based control signal for connecting an IMS based voice call or a video call is included in a new NAS message (eg, IMS SERVICE REQUEST) rather than a general service request message. May be transmitted.
  • the eNodeB 200 in a congested or overloaded state may process differently from rejecting general data based on the MO-signaling or the new cause value set in the RRC establishment cause field of the received RRC connection request message. . Even if the eNodeB 200 is not in a congested or overloaded state, if 'MO-signaling' or a new cause value set in the RRC establishment cause field of the received RRC connection request message is set, it is higher than processing general data. You can do it with priority. (Or you can do it at a lower priority.)
  • a network node eg, S-GW, P-GW
  • the SIP-based control signal is informed to the MME 510 to be distinguished from the reception of general data.
  • the MME 510 also distinguishably transmits a paging signal to the UE, so that when the UE generates the RRC connection request message, the establishment cause field may be set to 'MT-access' or a new cause value. do.
  • the eNodeB 200 in a congestion or overload state may allow and process without rejection based on the MT-access or the new cause value set in the RRC establishment cause field of the received RRC connection request message.
  • the eNodeB 200 processes differently from general data.
  • RRC connection request message with 'MO-signaling' or new cause value set in RRC establishment cause field as 'highPriorityAccess' with higher or equivalent priority than RRC connection request.
  • RRC connection request message with 'MO-signaling' or new cause value set in RRC establishment cause field with 'MT-Access' higher or equivalent priority than RRC connection request.
  • differentiating the IMS-based voice call and the video call with the general data may include operator's policy, configuration of network nodes (eg, MME / SGSN, eNodeB), subscriber information, or capability of the UE. Subject to change.
  • FIG. 8A is an exemplary diagram illustrating an exemplary flow according to the first disclosure of the present specification to solve the problem of FIG. 6A.
  • UE1 100a determines the origination of an IMS service, such as an IMS based call, and UE2 100b determines the origination of data.
  • the IMS based call may be a voice call, a video call or a call according to MMTEL.
  • the upper layer of the UE1 100a such as the NAS layer, may set the value of the establishment cause field for the origination of an IMS service, such as an IMS based call, instead of the existing 'MO-Data'. 'MO-signaling' or a new cause as shown in, for example, 'MO-IMS service' or 'MO-IMS MMTEL service'.
  • a higher layer of the UE1 100a for example, a NAS layer, may include a service request or extended service request including a service type (field) meaning signaling or IMS. ) Send a message. That is, the service type (field) meaning the signaling or the IMS may be set to an IMS Voice, an IMS Video, an MMTEL over PS Session, or a new service value.
  • the upper layer of the UE2 100b for example, the NAS layer, sets the value of the establishment cause field to 'Mobile Originating (MO) Data', meaning data initiated by the UE, for transmission of general data. do.
  • the upper layer of the UE2 100b for example, the NAS layer, transmits a service request or extended service request message.
  • the upper layer of the UE1 100a for example, the NAS layer, transfers the value of the establishment cause field, that is, 'MO-signaling' or 'MO-IMS service', to the RRC layer.
  • the RRC layer of the UE1 (100a) sets the establishment cause (establishment cause) field in the RRC connection request message as received, and transmits to the eNodeB (200).
  • the upper layer of the UE2 100b transmits the value of the establishment cause field, that is, 'MO Data', to the RRC layer. Then, the RRC layer of the UE2 100b sets the 'MO Data' in the establishment cause field in the RRC connection request message and transmits it to the eNodeB 200.
  • the eNodeB 200 in a congested state is established from the UE1 100a since the establishment cause field in the RRC connection request message is set to 'MO-signaling' or 'MO-IMS service'.
  • the RRC connection request message is not rejected and an RRC connection setup message is transmitted to the UE1 100a.
  • the eNodeB 200 since the eNodeB 200 is set to 'MO Data' in the establishment cause field in the RRC connection request message from the UE2 100b, the eNodeB 200 receives an RRC connection rejection message for the RRC connection request from the UE2 100b. send.
  • the UE1 100a Upon receiving the RRC connection setup message, the UE1 100a transmits an RRC connection setup complete message to the eNodeB 200.
  • the eNodeB 200 includes a service request message or an extended service request message in an initial UE message and transmits the same to the MME 510.
  • the MME 510 then forwards an initial context setup request message to the eNodeB 200.
  • the eNodeB 200 establishes a radio bearer with the UE1 100a.
  • the UE1 100a can transmit user data by an IMS service, such as an IMS based call.
  • FIG. 8A illustrates an example in which UE1 100a attempts to make an IMS-based call and UE2 200b attempts to transmit general data. This can also be applied when attempting to send general data at the same time.
  • the UE1 100a may set differently depending on whether the IMS-based call origination or general data is originated in the establishment cause field according to an operator's policy. , Depending on the configuration of the MME, eNodeB), depending on the subscriber information, or depending on the capabilities of the terminal (capability) may or may not be applied. In addition, this may be congested to network nodes (eg, MME, eNodeB). It may be applied only in a situation in which an overload occurs, or after the UE informs the network of attachability (capability) information or support information through attach / tracking area update (TAU) / routing area update (RAU), etc. The network may determine whether to apply the network or not, which may be provided to the NAS configuration MO (Management Object, 3GPP TS 24.368) through OMA-DM. Setting method can be applied is changed to static or dynamic.
  • MO Management Object, 3GPP TS 24.368
  • the establishment cause field may include a value indicating 'MO-IMS Access', 'MO-IMS MMTEL service' or a new cause.
  • FIG. 8B is an exemplary diagram illustrating an exemplary flow according to the first disclosure of the present specification to solve a problem in an incoming situation of FIG. 6B.
  • the PDN GW 530 transmits a notification to the eNodeB 200 via the MME 510 about downlink data for notifying the reception of an IMS service, for example, a call by VoLTE, to the UE1 100a.
  • a notification of downlink data for notifying the reception of general data to UE2 100b is transmitted to the eNodeB 200 through the MME 510.
  • the PDN GW 530 distinguishes whether the control signal for incoming call is an IMS-based control signal or a SIP-based control signal or a general control signal, and informs the MME 510.
  • the MME 510 notifies whether the control signal for incoming call is an IMS based control signal or a SIP based control signal or a general control signal and informs the eNodeB 200.
  • it may be distinguished by information indicating whether the IMS based control signal or the SIP based control signal is an IMS session.
  • the information may be a factor (or indicator) included in an existing control message or a factor (or indicator) included in a new control message.
  • the factor (or indicator) is transmitted from the PDN GW 530 or S-GW to the MME 510 through a control message, and the MME 510 recognizes the factor (or indicator), and the IMS Information indicating the base control signal or the SIP based control signal is included in the paging signal and transmitted to the eNodeB 200. Meanwhile, according to the information added to the paging signal, the UE1 (100a) in the establishment cause field 'MT-access' or 'MT-IMS Access' or 'MT-signaling' or 'MT-IMS Service' 'Or you can set a value indicating a new cause.
  • the eNodeB 200 in a congested state may differentiate the paging signal.
  • the eNodeB 200 may preferentially process a paging signal for an incoming call of an IMS service, for example, a VoLTE, compared to a paging signal for notifying the reception of general data.
  • the eNodeB 200 When the eNodeB 200 is in a congested state, the eNodeB 200 transmits a paging signal for receiving an IMS service, for example, a call by VoLTE, to the UE1 100a in an idle state. Include and send. In this case, the eNodeB 200 may transmit the paging signal based on the information, network congestion, operator policy, capability information of the terminal, and the like. For example, even if the eNodeB 200 determines that the network is congested so as not to transmit a general paging signal, when the information is received, the eNodeB 200 may determine to transmit the paging signal for the UE1 100a.
  • the eNodeB 200 transmits a simple paging signal to UE2 100b.
  • the paging signal to the UE2 100b may be transmitted by broadcasting.
  • the paging signal to the UE1 100a may be transmitted in a broadcasting manner, it may be transmitted through a new dedicated channel.
  • the paging signal for the IMS-based service may be differentially provided to the UE1 100a. Differentiating the paging signal may mean processing the paging signal for notifying IMS based service connection at a higher priority than a paging signal for notifying reception of general data.
  • Differentiating the paging signal for the IMS-based service is according to the operator's policy, according to the configuration of the network node (eg, MME or eNodeB), according to subscriber information, or the capability of the terminal. Depending on the setting, it may or may not be applied. In addition, it may be applied only when a specific situation such as congestion or overload occurs in a network node (eg, MME or eNodeB). If the UE informs the network node of whether the UE supports or capability information (Capability) through the Attach / TAU / RAU, etc., the network node can determine whether to apply the scheme. Whether the network is applied or not may be provided to NAS configuration MO (3GPP TS 24.368) through OMA-DM. Thus, this configuration may be applied statically or dynamically.
  • MO 3GPP TS 24.368
  • the establishment cause included in the attach request message, the detach request message, the TAU request message, and the service request message transmitted by the UE will be described.
  • the establishment cause used by the upper layer and the NAS layer of the UE may be selected according to each procedure shown in the table below.
  • the NAS layer may indicate a type related to the cause of RRC establishment to the lower layer and the RRC layer for access control purposes. If Extended Access Barring (EAB) is set, the higher layer of the UE may inform the lower layer that the EAB is applied to requests except for the following cases.
  • EAB Extended Access Barring
  • the service request message or extended service request message has a service type set to "mobile originating IMS Voice / Video / MMTEL over PS Session" and the outgoing call for the IMS voice / video / MMTEL service on the PS session. If requested, the RRC establishment cause is set to MO-signaling or a new cause value, such as MO-IMS service or IMS MMTEL service.
  • Initiating signaling initiated by the UE A service request message or extended service request message (or in response to a paging signal for an IMS voice / video / MMTEL service on a PS session, sent with a service type set to "mobile terminating IMS Voice / Video / MMTEL over PS Session"). If the service type is set, the RRC establishment cause is set to MT access. Terminating calls of UE The service request message or extended service request message includes a Device Properties with a low priority indicator set to "MS is not configured to NAS signaling low priority" and set to "mobile originating IMS Voice / Video / MMTEL over PS Session".
  • the RRC establishment cause may be set to MO-signaling or a new cause (eg, MO-IMS service or IMS MMTEL service). have. Originating calls from the UE
  • the service type of the service request message or extended service request message is one of “mobile originating IMS Voice”, “mobile originating IMS Video”, and “mobile originating IMS MMTEL over PS Session”. Can be set. In this case each (individually) type may be set / mapped to "originating calls”. Alternatively, a service type of the service request message or extended service request message may be set in the form of “mobile originating IMS Voice / Video / MMTEL over PS Session”.
  • a service type of the service request message or extended service request message may be set to any one of “mobile terminating IMS Voice”, “mobile terminating IMS Video” and “mobile terminating IMS MMTEL over PS Session”. In this case each (individually) type may be set / mapped to "terminating calls”.
  • the service type of the service request message or the extended service request message may be set in the form of “mobile terminating IMS Voice / Video / MMTEL over PS Session”.
  • the method of setting the service request message or the extended service request message to the establishment cause such as MO-signaling or MO-IMS service, the UE having a low priority or a normal priority (low priority) Can also be used.
  • a UE set to a low priority is changed to a normal priority instead of a low priority by an application request, a UE's capability, an operator policy, or a network's request to change the IMS-based service.
  • an extended service request message including an IE set to a normal priority rather than a low priority may be transmitted to a network node (eg, an MME).
  • the NAS layer of the UE may transmit an extended service request message in which the establishment cause is set to 'MO-signaling' or a new cause value (eg, MO-IMS access or MO-IMS MMTEL service).
  • the RRC layer of the UE may transmit an RRC connection request message in which the establishment cause is set to 'MO-signaling' or a new cause value (eg, MO-IMS access or MO-IMS MMTEL access).
  • the eNodeB 200 differentiates the connection for the MO-IMS service (especially voice call and video call) based on the 'MO-signaling' or new cause value set in the establishment cause of the received RRC connection request message. Can be processed.
  • FIG. 9 is an exemplary view illustrating an exemplary flow according to the second disclosure of the present specification to solve the problem of FIG. 7.
  • the eNodeB 200 is one of establishment causes.
  • the system information may be broadcast including prohibition (ACB) information according to an access class including an exception rule for MO-signaling or a new cause (eg, MO-IMS service or IMS MMTEL service).
  • UE1 100a wishing to make an IMS-based call and UE2 100b wishing to originate general data are applied with ACB based on the prohibition (ACB) information according to the access class including the exception rule. Can be determined.
  • ACB prohibition
  • the UE1 100a is an MO that is an existing cause of establishment for IMS-based control signals or SIP-based control signals for connecting IMS-based services (eg, IMS-based voice calls and video calls).
  • the prohibition (ACB) information according to the received access class includes an exception for MO-signaling or a new cause (eg, MO-IMS service or IMS MMTEL service) among the establishment causes.
  • 100a determines that an RRC connection request does not apply to the ACB. Accordingly, the UE1 100a may transmit an RRC connection request.
  • an IMS based control signal (signaling) for connecting an IMS based service (eg, an IMS based voice call or a video call), or an RRC request message for carrying a SIP based control signal is transmitted by the eNodeB 200. It can be processed normally without being rejected.
  • the table below shows a prohibition according to an access class that includes exception rules for MO-signaling or new causes (eg, MO-IMS service or IMS MMTEL service) among establishment causes in accordance with the second disclosure herein.
  • ACB indicates information.
  • CS fallback converts a VoLTE call to a previous 3G call.
  • ac-BarringForMO-Signalling ACB for outgoing control signaling of the UE or signaling for originating an IMS service.
  • ac-BarringForSpecialAC ACB for a special access class, 11-15.
  • ac-BarringTime Indicates the time for which access is prohibited.
  • ssac-BarringForMMTEL-Voice MMTEL is a service-specific ACB for voice outgoing.
  • the NAS layer of the UE sets a value of the establishment cause field to the existing 'MO-Data'. 'Instead of' MO-signaling 'or a new cause (e.g.,' MO-IMS service ',' MO-IMS MMTEL service 'or' MO-IMS Access', as shown in Table 2, Request) or Extended Service Request message. Subsequently, the NAS layer of the UE transmits the established establishment cause to the RRC layer.
  • an IMS-based service eg, IMS-based voice call or video call
  • the RRC layer of the UE establishes the received message in an IMS based control signal for connecting an IMS based service (eg, an IMS based voice call or a video call) or an RRC request message for carrying a SIP based control signal.
  • the cause is set and transmitted to the eNodeB 200.
  • the eNodeB 200 is a value of a establishment cause that can be used for a control signal for connecting an IMS-based service, that is, an IMS-based control signal or an RRC request message for carrying a SIP-based control signal.
  • Information about 'MO-signaling' or a new cause eg, 'MO-IMS service', MO-IMS MMTEL service ', or' MO-IMS Access'
  • 'MO-IMS service', MO-IMS MMTEL service ', or' MO-IMS Access' may be delivered to the UE 100 as shown in FIG.
  • the eNodeB 200 may include a service request message including a establishment cause set to MO-signaling or a new cause (for example, 'MO-IMS service', 'MO-IMS MMTEL service' or 'MO-IMS Access').
  • a service request message including a establishment cause set to MO-signaling or a new cause (for example, 'MO-IMS service', 'MO-IMS MMTEL service' or 'MO-IMS Access').
  • the service may be differentially processed with a request message including a establishment cause set to 'MO Data' in a congested state or an overloaded state.
  • FIG. 10 is a block diagram illustrating a configuration of a UE 100 and an eNodeB 200 according to an embodiment of the present invention.
  • the UE 100 includes a storage means 101, a controller 102, and a transceiver 103.
  • the eNodeB 200 includes a storage means 201, a controller 202, and a transceiver 203.
  • the storage means 101, 201 store the method shown in FIGS. 5 to 9.
  • the controllers 102 and 202 control the storage means 101 and 201 and the transceivers 103 and 203. Specifically, the controllers 102 and 202 execute the methods stored in the storage means 101 and 201, respectively. The controllers 102 and 202 transmit the aforementioned signals through the transceivers 103 and 203.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 단말에서 IMS(IP Multimedia Subsystem)기반 서비스를 연결하는 방법을 제공한다. 상기 IMS 기반 서비스를 연결하는 방법은: 상기 IMS 기반 서비스를 연결하기 위해 SIP(Session Initiation Protocol) 기반 메시지가 사용자 평면 상에서 전송될 필요가 경우, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 원인 값을 수립 원인(establishment cause) 필드에 설정하는 단계와; 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 서비스 타입(필드)를 포함하는 NAS(Non-Access Stratum) 계층의 서비스 요청 메시지를 기지국으로 전송하는 단계와; 상기 설정된 수립 원인 필드를 포함하는 RRC(Radio Resource Control) 연결 요청 메시지를 기지국으로 전송하는 단계를 포함할 수 있다.

Description

IMS 기반 서비스 연결 방법
본 발명은 IMS 기반 서비스 연결 방법에 관한 것이다.
이동통신 시스템의 기술 규격을 제정하는 3GPP에서는 4세대 이동통신과 관련된 여러 포럼들 및 새로운 기술에 대응하기 위하여, 2004년 말경부터 3GPP 기술들의 성능을 최적화 시키고 향상시키려는 노력의 일환으로 LTE/SAE (Long Term Evolution/System Architecture Evolution) 기술에 대한 연구를 시작하였다.
3GPP SA WG2을 중심으로 진행된 SAE는 3GPP TSG RAN의 LTE 작업과 병행하여 네트워크의 구조를 결정하고 이 기종 망간의 이동성을 지원하는 것을 목적으로 하는 망 기술에 관한 연구이며, 최근 3GPP의 중요한 표준화 이슈들 중 하나이다. 이는 3GPP 시스템을 IP 기반으로 하여 다양한 무선 접속 기술들을 지원하는 시스템으로 발전 시키기 위한 작업으로, 보다 향상된 데이터 전송 능력으로 전송 지연을 최소화 하는, 최적화된 패킷 기반 시스템을 목표로 작업이 진행되어 왔다.
3GPP SA WG2에서 정의한 SAE 상위 수준 참조 모델(reference model)은 비로밍 케이스(non-roaming case) 및 다양한 시나리오의 로밍 케이스(roaming case)를 포함하고 있으며, 상세 내용은 3GPP 표준문서 TS 23.401과 TS 23.402에서 참조할 수 있다. 도 1의 네트워크 구조도는 이를 간략하게 재구성 한 것이다.
도 1은 진화된 이동 통신 네트워크의 구조도이다.
EPC(Evolved Packet Core)는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, S-GW(Serving Gateway)(52), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity) (53), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
S-GW(52)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, 기지국, 즉 eNodeB(22)와 PDN GW(53) 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말(또는 User Equipment : UE)이 eNodeB(22)에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, S-GW(52)는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 S-GW(52)를 통해서 패킷들이 라우팅될 수 있다. 또한, S-GW(52)는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW) (53)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW(53)는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 S-GW(52)와 PDN GW(53)가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME(51)는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME(51)는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME(51)는 수많은 eNodeB(22)들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME(51)는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말(또는 UE)은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
표 1
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 평면 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB(eNodeB) 간 경로 스위칭 및 베어러 당 사용자 평면 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(Idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in Idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 평면 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provIdes the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 평면 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. UE 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적으로 E-UTRAN과 일반적인 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB(20)는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB(20)의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어저 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3a은 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 3b는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다.
상기 무선인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling)전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3a에 도시된 제어 평면의 무선프로토콜과 도 3b에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC휴지상태(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on) 한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3a에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 4a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE(10)가 기지국, 즉 eNodeB(20)과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE(10)는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB(20)로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE(10)은 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB(20)로 전송한다. UE(10)은 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE(10)은 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB(20)은 랜덤 액세스 응답(random access response, RAR)을 UE(10)로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE(10)은 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE(10)은 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 4b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 4b에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE(10)의 RRC 계층의 엔티티(entity)가 eNodeB(20)의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 상태(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE(10)은 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE(10)을 효과적으로 제어할 수 있다. 반면에 유휴 상태(idle state)의 UE(10)은 eNodeB(20)이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 상태(idle state) UE(10)은 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE(10)의 전원을 맨 처음 켰을 때, 상기 UE(10)은 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 상태(idle state)에 머무른다. 상기 유휴 상태(idle state)에 머물러 있던 UE(10)은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 eNodeB(20)의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 상태(Idle state)에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 상태(idle state)의 UE(10)이 상기 eNodeB(20)와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE(10)이 eNodeB(20)으로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB(20)가 UE(10)로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE(10)이 eNodeB(20)으로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 4b를 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 상태(Idle state)의 UE(10)은 통화 시도, 데이터 전송 시도, 또는 eNodeB(20)의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE(10)은 RRC 연결 요청(RRC connection request) 메시지를 eNodeB(20)으로 전송한다.
2) 상기 UE(10)로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB(10) 는 무선 자원이 충분한 경우에는 상기 UE(10)의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE(10)로 전송한다.
3) 상기 UE(10)이 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB(20)로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE(10)이 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE(10)은 eNodeB(20)과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
한편, UE(100)가 사용자 평면의 데이터 전송을 목적으로 RRC 연결 요청을 하는 경우, 상기 네트워크, 예컨대 기지국(즉, eNodeB)가 혼잡 상태라면, 이를 거절할 수 있다. 반면, UE(100)가 CS(circuit switch) 기반의 호(call)을 요청하기 위한 제어 평면의 신호를 전송할 목적으로 RRC 연결 요청을 하는 경우, 상기 네트워크, 예컨대 기지국(즉, eNodeB)이 혼잡 상태일 지라도, 이를 거절할 수 없다.
그런데, VoLTE(Voice over LTE)와 같은 IMS 서비스(즉, ALL IP 서비스)는 호(call) 발신과 수신을 위한 제어 신호로서 IMS(IP Multimedia Subsystem)의 SIP(Session initiation protocol) 기반의 신호를 사용하는데, 이러한 SIP 기반의 제어 신호들은 제어 평면이 아닌 사용자 평면 상에서 전송이 된다. 따라서, 상기 UE(100)가 VoLTE와 같은 IMS 서비스(즉, ALL IP 서비스)를 개시하고자, SIP 기반의 제어 신호를 전송하기 위해 RRC 연결 요청을 하는 경우, 상기 네트워크, 예컨대 기지국(즉, eNodeB)가 혼잡 상태라면, 이를 거절할 수 있게 되버린다.
따라서, 네트워크 혼잡 상태에서는 호(call) 마저 끊겨버리는(drop) 문제가 발생한다.
따라서, 본 명세서의 일 개시는 전술한 문제점을 해결할 수 있는 방안을 제시하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여, 본 명세서는 단말에서 IMS(IP Multimedia Subsystem)기반 서비스를 연결하는 방법을 제공한다. 상기 IMS 기반 서비스를 연결하는 방법은: 상기 IMS 기반 서비스를 연결하기 위해 IMS 기반의 제어 신호 혹은 SIP(Session Initiation Protocol) 기반 메시지가 사용자 평면 상에서 전송될 필요가 경우, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 원인 값을 수립 원인(establishment cause) 필드에 설정하는 단계와; 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 서비스 타입(필드)을 포함하는 NAS(Non-Access Stratum) 계층의 서비스 요청 메시지를 기지국으로 전송하는 단계와; 상기 설정된 수립 원인 필드를 포함하는 RRC(Radio Resource Control) 연결 요청 메시지를 기지국으로 전송하는 단계를 포함할 수 있다.
상기 수립 원인 필드에는 일반 데이터의 전송을 의미하는 원인 값 대신에, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 상기 원인 값이 설정될 수 있다.
상기 RRC 연결 요청 메시지를 전송하는 단계는: 상기 단말의 NAS 계층이 상기 설정된 원인 값을 상기 단말의 RRC 계층으로 전달하는 단계와; 상기 단말의 RRC 계층이 상기 설정된 원인 값에 따라 RRC 연결 요청 메시지의 원인 필드를 설정하는 단계와; 상기 설정된 원인 필드를 포함하는 RRC 연결 요청 메시지를 전송하는 단계를 포함할 수 있다.
상기 IMS 기반 서비스는 IMS 기반의 음성 호 서비스, 화상 호 서비스, 그리고 멀티미디어 전화(Multimedia telephony) 서비스 중 하나에 해당할 수 있다.
상기 IMS 기반 서비스가 상기 단말에 의해서 개시되는 것일 경우, 상기 서비스 타입(필드)은 IMS Voice, IMS Video, MMTEL over PS Session, 그리고 새로운 서비스 타입(필드) 값 중 어느 하나에 해당할 수 있다.
상기 IMS 기반 서비스가 상기 단말에 의해서 개시되는 것일 경우, 상기 원인 값은 MO-signaling, MO-IMS MMTEL service, MO-IMS access, 그리고 새로운 원인 값 중 어느 하나에 해당할 수 있다.
대안적으로, 상기 NAS 계층의 서비스 요청 메시지 혹은 확장 서비스 요청메시지가 상기 기지국으로부터 수신되는 페이징 신호에 응답하여 전송될 경우, 상기 서비스 타입(필드)은 IMS Voice, IMS Video, MMTEL over PS Session, 그리고 새로운 서비스 타입(필드) 값 중 어느 하나에 해당할 수 있다. 또한, 상기 원인 값은 MT-access 그리고 새로운 원인 값 중 어느 하나에 해당할 수 있다.
상기 기지국으로부터 수신되는 페이징 신호는 상기 IMS 기반 서비스에 따른 착신인지 혹은 일반 데이터의 착신인지를 나타내는 정보를 포함할 수 있다. 이 경우, 상기 수립 원인 필드를 설정하는 단계는: 상기 페이징 신호 내에 포함된 상기 정보를 확인하는 단계와; 상기 확인된 정보에 따라 여러 원인 값들 중 하나를 선택하는 단계를 포함할 수 있다.
상기 방법은 상기 IMS 기반 서비스와 관련된 원인의 값들에 대한 정보를 상기 기지국으로부터 수신하는 단계를 더 포함할 수 있다. 이 경우, 상기 수립 원인(establishment cause) 필드를 설정하는 단계에서는 상기 원인 값들 중 하나를 선택될 수 있다.
상기 방법은 상기 기지국으로부터 액세스 클래스 별 금지(Access Class Barring) 정보를 포함하는 시스템 정보를 수신하는 단계를 더 포함할 수 있다. 여기서 상기 액세스 클래스별 금지 정보는 IMS 서비스에 대한 예외 규칙을 포함할 수 있다. 이 경우, 상기 방법은 상기 액세스 클래스별 금지 정보에 따라 상기 RRC 연결 요청 메시지를 전송할지 말지를 결정하는 단계를 더 포함할 수 있다. 상기 결정 단계에서는 상기 IMS 기반 서비스를 연결하기 위한 IMS 기반의 제어 신호 혹은 SIP 기반 메시지가 전송될 필요가 있는 경우, 상기 RRC 연결 요청 메시지를 상기 예외 규칙에 따라 전송하는 것으로 결정될 수 있다.
다른 한편, 본 명세서는 IMS(IP Multimedia Subsystem)기반 서비스를 연결하는 단말을 또한 제공한다. 상기 단말은 상기 IMS 기반 서비스를 연결하기 위해 IMS 기반의 제어 신호 혹은 SIP(Session Initiation Protocol) 기반 메시지가 사용자 평면 상에서 전송될 필요가 경우, 상기 IMS 기반 서비스를 의미하는 서비스 타입 (혹은 필드)을 NAS(Non-Access Stratum) 계층의 서비스 요청 메시지 혹은 확장 서비스 요청 메시지에 셋팅하여(포함하여) 네트워크(MME)로 전송하고 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 원인 값을 수립 원인(establishment cause) 필드에 설정하는 제어부와; 그리고 상기 제어부에 의해 설정된 수립 원인 필드를 포함하는 RRC(Radio Resource Control) 연결 요청 메시지를 기지국으로 전송하는 송수신부를 포함할 수 있다.
종래에는, UE가 IMS 기반의 호(call)(예컨대, VoLTE)를 개시하고자, IMS 기반의 제어 신호 혹은 SIP 기반의 제어 신호를 전송하기 위해 RRC 연결 요청을 하는 경우, 혼잡 상태에 있는 기지국(즉, eNodeB)은 IMS 기반의 호(call)와 일반 데이터와 구분하지 못하고, 일반 데이터를 위한 RRC 연결 요청과 더불어 IMS 기반의 호(call)를 위한 RRC 연결 요청 마저도 드롭(drop)시키는 문제가 있었다.
그러나, 본 명세서의 개시에 의하면, 이러한 문제가 해결되어, 사용자의 불편을 해소할 수 있다.
도 1은 진화된 이동 통신 네트워크의 구조도이다.
도 2는 일반적으로 E-UTRAN과 일반적인 EPC의 아키텍처를 나타낸 예시도이다.
도 3a은 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 3b는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다.
도 4a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
도 4b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 5는 네트워크 과부하 상태를 나타낸다.
도 6a은 도 5에 도시된 eNodeB의 혼잡 상황에서 UE가 RRC 연결 요청이 거절되는 예를 나타낸다.
도 6b은 도 5에 도시된 eNodeB의 혼잡 상황에서 UE의 착신 상황을 나타낸다.
도 7은 네트워크 혼잡 상태에서 액세스 클래스에 따른 금지(Access Class Barring)에 따른 동작을 나타낸 예시적인 흐름도이다.
도 8a는 도 6a의 문제점을 해결하기 위해 본 명세서의 첫 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
도 8b는 도 6b의 착신 상황에서 문제점을 해결하기 위해 본 명세서의 첫 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
도 9는 도 7의 문제점을 해결하기 위해 본 명세서의 두 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
도 10은 본 발명의 실시예에 따른 UE(100) 및 eNodeB(200)의 구성 블록도이다.
본 발명은 UMTS(Universal Mobile Telecommunication System) 및 EPC(Evolved Packet Core)를 기준으로 설명되나, 본 발명은 이러한 통신 시스템에만 한정되는 것이 아니라, 본 발명의 기술적 사상이 적용될 수 있는 모든 통신 시스템 및 방법에도 적용될 수 있다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
첨부된 도면에서는 예시적으로 UE(User Equipment)가 도시되어 있으나, 도시된 상기 UE는 단말(Terminal), ME(Mobile Equipment), 등의 용어로 언급될 수 도 있다. 또한, 상기 UE는 노트북, 휴대폰, PDA, 스마트 폰(Smart Phone), 멀티미디어 기기등과 같이 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다.
용어의 정의
이하 도면을 참조하여 설명하기 앞서, 본 발명의 이해를 돕고자, 본 명세서에서 사용되는 용어를 간략하게 정의하기로 한다.
UMTS : Universal Mobile Telecommunication System의 약자로서 3세대 이동통신 네트워크를 의미한다.
UE/MS : User Equipment/Mobile Station, 단말 장치를 의미 함.
EPS : Evolved Packet System의 약자로서, LTE(Long Term Evolution) 네트워크를 지원하는 코어 네트워크를 의미한다. UMTS가 진화된 형태의 네트워크
PDN (Public Data Network) : 서비스를 제공하는 서버가 위치한 독립적인망
PDN connection : 단말에서 PDN으로의 연결, 즉, IP 주소로 표현되는 단말과 APN(Access Point Name)으로 표현되는 PDN과의 연관(연결)
PDN-GW (Packet Data Network Gateway) : UE IP address allocation, Packet screening & filtering, Charging data collection 기능을 수행하는 EPS망의 네트워크 노드
Serving GW(Serving Gateway) : 이동성 담당(Mobility anchor), 패킷 라우팅(Packet routing), 유휴 모드 패킷 버퍼링(Idle mode packet buffering), Triggering MME to page UE 기능을 수행하는 EPS망의 네트워크 노드
PCRF(Policy and Charging Rule Function) : 서비스 flow 별로 차별화된 QoS 및 과금 정책을 동적(dynamic) 으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS망의 노드
APN (Access Point Name) : 네트워크에서 관리하는 접속 포인트의 이름으로서 UE에게 제공된다. 즉, PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 망(PDN)에 접속하기 위해서는 해당 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 망 내에서 미리 정의한 이름(문자열) (예) internet.mnc012.mcc345.gprs
TEID(Tunnel Endpoint Identifier) : 네트워크 내 노드들 간에 설정된 터널의 End point ID, 각 UE의 bearer 단위로 구간별로 설정된다.
NodeB : UMTS 네트워크의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
eNodeB : EPS(Evolved Packet System) 의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
(e)NodeB : NodeB와 eNodeB를 지칭하는 용어이다.
MME : Mobility Management Entity의 약자로서, UE에 대한 세션과 이동성을 제공하기 위해 EPS 내에서 각 엔티티를 제어하는 역할을 한다.
세션(Session) : 세션은 데이터 전송을 위한 통로로써 그 단위는 PDN, Bearer, IP flow 단위 등이 될 수 있다. 각 단위의 차이는 3GPP에서 정의한 것처럼 대상 네트워크 전체 단위(APN 또는 PDN 단위), 그 내에서 QoS로 구분하는 단위(Bearer 단위), 목적지 IP 주소 단위로 구분할 수 있다.
PDN 연결(connection) : 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)을 나타낸다. 이는 세션이 형성될 수 있도록 코어 네트워크 내의 엔티티간 연결(단말-PDN GW)을 의미한다.
UE Context : 네크워크에서 UE를 관리하기 위해 사용되는 UE의 상황 정보, 즉, UE id, 이동성(현재 위치 등), 세션의 속성(QoS, 우선순위 등)으로 구성된 상황 정보
OMA DM (Open Mobile Alliance Device Management) : 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 디바이스들 관리를 위해 디자인 된 프로토콜로써, 디바이스 설정(configuration), 펌웨어 업그레이드(firmware upgrade), 에러 보고 (Error Report)등의 기능을 수행함
OAM (Operation Administration and Maintenance) : OAM이란 네트워크 결함 표시, 기능 정보, 그리고 데이터와 진단 기능을 제공하는 네트워크 관리 기능군을 말함
NAS configuration MO (Management Object) : NAS 기능 (Functionality)와 연관된 파라미터들(parameters)을 UE에게 설정(configuration)하는 데 사용하는 MO (Management object)를 말함
MTC : Machine Type Communication으로 사람의 개입 없이 장치간 또는 장치와 서버간에 일어나는 통신
MTC 기기(device) : 핵심 네트워크를 통한 통신기능이 있는 특정 목적을 수행하는 UE, 예) 자판기, 검침기, 기상센서 등. MTC 기기는 MTC 단말, MTC 장치, MTC 기계, MTC UE, UE used for MTC, UE configured for MTC 등으로 불릴 수도 있다.
MTC 서버 : MTC device를 관리하고 데이터를 주고 받는 네트워크 상의 서버. 이는 core network 외부에 있을 수 있다.
MTC 애플리케이션 : MTC device와 MTC Server를 이용한 실제 응용 (원격 검침, 물량 이동 추적 등)
MTC Feature : MTC 애플리케이션을 지원하기 위한 네트워크의 기능이나 특징, 즉, 각 application의 용도에 따라 일부 feature들이 요구된다. 예를 들어 MTC monitoring (장비 분실 등에 대비한 원격 검침 등에 필요), Low mobility (자판기의 경우 이동이 거의 없다.), Small data transmission (MTC 기기가 소량의 데이터만을 송/수신) 등이 있다.
MTC User : MTC 서버에 의해 제공되는 서비스를 사용하는 user.
NAS (Non-Access-Stratum) : UE와 MME간의 제어 플레인(control plane)의 상위 stratum. UE와 네트워크간의 이동성 관리(Mobility management)와 세션 관리 (Session management), IP 주소 관리 (IP address maintenance) 등을 지원
MM (Mobility Management) 동작/절차 : UE의 이동성 (mobility) 제어/관리/control을 위한 동작 또는 절차. MM 동작/절차는 CS 망에서의 MM 동작/절차, GPRS 망에서의 GMM 동작/절차, EPS 망에서의 EMM 동작/절차 중 하나 이상을 포함하는 것으로 해석될 수 있다. UE와 네트워크 노드(MME, SGSN, MSC)는 MM 동작/절차를 수행하기 위해 MM 메시지를 주고 받는다.
SM(Session Management) 동작/절차 : UE의 user plane 및/또는 bearer context/PDP context를 제어/관리/처리/handling 하기 위한 동작 또는 절차. SM 동작/절차는 GPRS 망에서의 SM 동작/절차, EPS 망에서의 ESM 동작/절차 중 하나 이상을 포함하는 것으로 해석될 수 있다. UE와 네트워크 노드(MME, SGSN)는 SM 동작/절차를 수행하기 위해 SM 메시지를 주고 받는다.
저 순위(Low priority) 단말 : NAS 신호 저 순위로 설정된 단말. 자세한 사항은 표준문서 3GPP TS 24.301 및 TS 24.008을 참고할 수 있다.
정상 순위(Normal priority) 단말: 저 순위(Low priority)로 설정되지 않은 일반적인 단말
이중 순위(Dual priority) 단말 : 이중 순위(Dual priority)로 설정된 단말, 이는 NAS 신호 저순위로 설정됨과 동시에 상기 설저된 NAS 신호 저 순위를 무시(override) 할 수 있게 설정된 단말(즉, UE which provides dual priority support is configured for NAS signalling low priority and also configured to override the NAS signalling low priority indicator). 자세한 사항은 표준문서 3GPP TS 24.301 및 TS 24.008을 참고할 수 있다.
이하, 도면을 참조하여 본 명세서의 개시에 대해서 설명하기로 한다.
도 5는 네트워크 과부하 상태를 나타낸다.
도 5에 도시된 바와 같이, eNodeB(200)의 커버리지에는 수 많은 UE들(100a, 100b, 300c, 300d)가 존재하고, 데이터 송수신을 시도한다. 이로 인해, 상기 eNodeB(200)와 상기 S-GW(520)간의 인터페이스에 트래픽이 과부하(overload) 또는 혼잡(congestion)하게 된 경우, 상기 UE(100)로의 다운링크 데이터 혹은 상기 UE(100)로부터의 업링크 데이터는 올바르게 전송되지 못하고 실패하게 된다.
혹은 상기 S-GW(520)와 상기 PDN-GW(530) 간의 인터페이스, 혹은 상기 PDN-GW(530)와 이동통신 사업자의 IP(Internet Protocol) 서비스 네트워크 사이의 인터페이스가 과부하(overload) 또는 혼잡(congestion)할 경우에도, 상기 UE들(100a, 100b, 300c, 300d)로의 다운링크 데이터 혹은 UE들(100a, 100b, 300c, 300d)로부터의 업링크 데이터는 올바르게 전송되지 못하고 실패하게 된다.
상기 eNodeB(200)와 상기 S-GW(520)간의 인터페이스에 과부하 또는 혼잡이 있거나, 상기 S-GW(520)와 상기 PDN-GW(530) 간의 인터페이스에 과부하 또는 혼잡이 있는 경우, 상기 핵심 네트워크의 노드(예컨대 MME)는 NAS 단계에서의 혼잡 제어(NAS level congestion control)을 수행하여 신호 혼잡(signaling congestion) 및 APN 혼잡을 회피하거나 제어하게 된다.
이러한 NAS 단계에서의 혼잡 제어는 APN 기반의 혼잡 제어(APN based congestion control)와 일반 NAS 단계에서 이동 관리 제어(General NAS level mobility management control)로 구성된다.
상기 APN 기반의 혼잡 제어는 UE 그리고 특정 APN(혼잡 상태와 연관된 APN)와 관련된 EMM, GMM과 (E)SM 신호 혼잡 제어를 의미하며, APN 기반의 세션 관리 혼잡 제어(APN based Session Management congestion control)와 APN 기반의 이동 관리 혼잡 제어(APN based Mobility Management congestion control)를 포함한다.
반면, 상기 일반 NAS 단계의 이동 관리 제어는 일반적인 네트워크 혼잡(congestion)이나, 과부하(overload)상황에서 UE/MS가 요청하는 이동 관리신호(Mobility Management signaling) 요청을 핵심 네트워크 내의 노드(MME, SGSN)가 거절하여 혼잡 및 과부하를 회피하는 것을 의미한다.
일반적으로 핵심 네트워크가 NAS 단계의 혼잡 제어를 수행하는 경우, 유휴 모드(idle mode)로 있는 혹은 연결 모드(connected mode)로 있는 UE에게 지연시간 타이머(백오프 타이머)(back-off timer) 값을 NAS 거절 메시지(reject message)에 실어 전송하게 되는데, UE는 지연시간 타이머(백오프 타이머)(back-off timer)가 만료(expire) 되기 전까지 네트워크에 EMM/GMM/(E)SM 신호를 요청하지 않게 된다. 상기 NAS 거절 메시지는 어태치 거절(ATTACH REJECT), TAU(Tracking Area Updating) 거절, RAU (Routing Area Updating) 거절, 서비스 거절, 확장 서비스(EXTENDED SERVICE) 거절, PDN 연결(connectivity) 거절, 베어러 리소스 할당(bearer resource allocation) 거절, 베어러 리소스 수정(bearer resource modification) 거절, EPS 베어러 컨텍스트 비활성화 요청(deactivate EPS bearer context request)에 대한 거절의 메시지 중 하나에 해당한다.
이러한 지연시간 타이머(back-off timer)은 이동 관리(Mobility Management: MM) 지연시간(back-off) 타이머와 세션 관리(Session Management: SM) 지연시간(back-off) 타이머로 나눌 수 있다.
상기 MM 지연시간(back-off) 타이머는 UE 마다 그리고 SM 지연시간(back-off) 타이머는 APN 마다 그리고 UE 마다 각각 독립적으로 동작한다.
간략하게는, 상기 MM 지연시간(back-off) 타이머는 EMM/GMM 신호(예컨대, Attach, TAU/RAU 요청 등) 제어를 위한 것이다. 상기 SM 지연시간(back-off) 타이머는 (E)SM 신호(예컨대, PDN connectivity, Bearer Resource Allocation, Bearer Modification, PDP Context Activation, PDP Context Modification 요청 등) 제어를 위한 것이다.
구체적으로는, MM 지연시간(back-off) 타이머는 네트워크에 혼잡(congestion)이 발생한 경우, 이를 제어하기 위해 사용하는 이동성 관련 지연시간(back-off) 타이머로써, 타이머가 동작하고 있는 동안 UE는 어태치(attach), 위치정보 갱신(TAU, RAU), 서비스 요청 절차(Service request procedure)를 할 수 없도록 하는 타이머이다. 단, 긴급 베어러 서비스(emergency bearer service), MPS(Multimedia Priority Service) 인 경우에는 예외로 타이머가 동작하고 있더라도 UE(가 요청 가능할 수 있다.
전술한 바와 같이 UE가 MM 지연시간(back-off) 타이머 값을 핵심 망 네트워크 노드(예컨대 MME, SGSN 등)로부터 제공받거나, 하위 계층(lower layer; Access Stratum)으로부터 전달받을 수 있다. 또한, UE에 의해 15분에서 30분 사이의 범위 내에서 랜덤하게 설정되어질 수도 있다.
상기 SM 지연시간(back-off) 타이머는 네트워크에 혼잡(congestion)이 발생한 경우, 이를 제어하기 위해 사용하는 세션 관리(Session Management) 관련 지연시간(back-off) 타이머로써, 타이머가 동작하고 있는 동안 UE는 관련된(associated) APN 기반의 세션을 설정 또는 변경할 수 없도록 하는 타이머이다. 단, 마찬가지로 긴급 베어러 서비스, MPS(Multimedia Priority Service) 인 경우에는 예외로 타이머가 동작하고 있더라도 UE(100) 가 요청 가능할 수 있다.
UE는 이러한 SM 지연시간(back-off) 타이머 값을 핵심 망 네트워크 노드 (예컨대, MME, SGSN 등)로부터 제공받으며, 최대 72시간 이내에서 랜덤하게 설정되어진다. 또한, UE(100)에 의해 15분에서 30분 사이의 범위 내에서 랜덤하게 설정되어질 수도 있다.
다른 한편, 상기 eNodeB(200)에서 혼잡이 발생한 경우, 상기 eNodeB(200)도 혼잡 제어를 수행할 수 있다. 즉, UE가 사용자 평면의 데이터 전송을 목적으로 RRC 연결 수립(connection establishment)을 요청하는 경우, eNodeB(200)가 혼잡 상태라면, 연장 대기 타이머(extended wait timer)와 함께 거절 응답을 UE로 전송할 수 있다. 이러한 경우 RRC 연결 수립 요청을 상기 연장 대기 타이머(extended wait timer)가 만료하기 전까지 재시도할 수 없다. 반면, UE가 CS(circuit switch) 기반의 호(call) 수신을 위한 제어 평면의 신호를 전송할 목적으로 RRC 연결 요청을 하는 경우, 상기 eNodeB(200)가 혼잡 상태일 지라도, 이를 거절할 수 없다.
그런데, VoLTE(Voice over LTE)와 같은 ALL IP 서비스는 호(call) 발신과 수신을 위한 제어 신호로서 IMS(IP Multimedia Subsystem)의 SIP(Session initiation protocol) 기반의 신호를 사용하는데, 이러한 SIP 기반의 제어 신호들은 제어 평면이 아닌 사용자 평면 상에서 전송이 된다. 따라서, 상기 UE가 VoLTE와 같은 ALL IP 서비스를 개시하고자, SIP 기반의 제어 신호를 전송하기 위해 RRC 연결 요청을 하는 경우, 상기 네트워크, 예컨대 기지국(즉, eNodeB)가 혼잡 상태라면, 이를 거절할 수 있게 되버린다.
따라서, 네트워크 혼잡 상태에서는 호(call) 마저 끊겨버리는(drop) 문제가 발생한다. 구체적으로는 도 6을 참조하여 설명하기로 한다.
도 6a은 도 5에 도시된 eNodeB의 혼잡 상황에서 UE가 RRC 연결 요청이 거절되는 예를 나타낸다.
도 6a를 참조하여 알 수 있는 바와 같이, eNodeB(200)가 혼잡한 상태에서, 유휴 상태(Idle state)에 있는 UE1(100a)는 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 발신을 결정한다. 마찬가지로 유휴 상태에 있는 UE2(200b)는 일반 데이터를 발신하기로 결정한다.
1) UE1(100a)의 상위 계층, 예컨대 NAS 계층은 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 발신을 위해 수립 원인(establishment cause)필드의 값을 UE에 의해 전송 개시되는 데이터를 의미하는 ‘MO(Mobile Originating) Data’로 설정하여, 서비스 요청(Service Request) 메시지를 전송한다. 또한, UE2(100b)의 상위 계층, 예컨대 NAS 계층은 일반 데이터의 발신을 위해 수립 원인(establishment cause)필드의 값을 UE에 의해 전송 개시되는 데이터를 의미하는 ‘MO(Mobile Originating) Data’로 설정하여, 서비스 요청(Service Request) 메시지를 전송한다.
2) VoLTE에 따른 호(call) 발신과 수신을 위한 제어 신호는 IMS의 SIP 기반 제어 신호가 이용되고, 사용자 평면 상에서 전송된다. 따라서, 상기 UE1(100a)의 상위 계층, 예컨대 NAS 계층은 수립 원인(establishment cause)필드의 값을 ‘MO(Mobile Originating) Data’로 설정하여, RRC 계층으로 전달한다. 그러면, 상기 UE1(100a)의 RRC 계층은 상기 RRC 연결 요청 메시지 내의 수립 원인(establishment cause)필드에 상기‘MO(Mobile Originating) Data’를 설정하고, eNodeB(200)로 전송한다.
마찬가지로, UE2(100b)의 상위 계층, 예컨대 NAS 계층은 수립 원인(establishment cause)필드의 값을 ‘MO(Mobile Originating) Data’로 설정하여, RRC 계층으로 전달한다. 그러면, 상기 UE2(100b)의 RRC 계층은 상기 RRC 연결 요청 메시지 내의 수립 원인(establishment cause)필드에 상기‘MO(Mobile Originating) Data’를 설정하여, eNodeB(200)로 전송한다.
3) 그러면, 과부하 상태인 상기 eNodeB(200)가 상기 UE1(100a)로부터의 RRC 연결 요청 메시지와 상기 UE2(100b)로부터의 RRC 연결 요청 메시지를 각기 수신하면, 각각의 수립 원인(establishment cause) 필드를 확인한다.
혼잡 상태에 있는 상기 eNodeB(200)는 상기 UE1(100a) 및 상기 UE2(100b)로부터의 RRC 연결 요청 메시지 내의 수립 원인 필드가 똑같이 MO Data로 설정되어 있으므로, 상기 UE2(100b)로부터의 RRC 연결 요청 뿐만 아니라, 상기 UE1(100a)로부터의 RRC 연결 요청에 대해 모두 RRC 연결 거절 메시지를 전송한다.
따라서, eNodeB(200)의 혼잡 상태에서는 VoLTE에 따른 호(call) 발신마저 끊겨버리는(drop) 문제가 발생한다.
도 6b은 도 5에 도시된 eNodeB의 혼잡 상황에서 UE의 착신 상황을 나타낸다.
0) 도 6b를 참조하여 알 수 있는 바와 같이, eNodeB(200)가 혼잡한 상태 혹은 일반적인 상태에서, 유휴 상태(Idle state)에 있는 UE1(100a)에게 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 페이징 신호를 전송하고, UE2(100b)에게 데이터의 착신을 위한 페이징 신호를 전송한다.
이때, 상기 페이징 신호에는 상기 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 것인지 혹은 데이터의 착신을 위한 것인지를 구분하는 정보가 포함되어 있지 않을 수 있다.
한편, 상기 eNodeB(200)는 상기 페이징 신호들이 상기 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 것인지 혹은 데이터의 착신을 위한 것인지를 구분할 수 없으므로, 상기 UE1(100a)와 상기 UE2(100b)에게 전송하는페이징 신호를 차등화할 수가 없다. 또한, 혼잡 상황에서는 상기 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 페이징 신호가 상기 데이터의 착신을 위한 페이징 신호 보다 늦게 전송될 수 있다.
이에 따라, 상기 UE1(100a)는 UE2(200b) 보다 늦게 서비스 요청(또는 확정 서비스 요청)과 RRC 연결 요청 메시지를 전송하는 상황이 발생될 수 있고, 그로 인해 상기 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신은 지연될 수 있다.
도 7은 네트워크 혼잡 상태에서 액세스 클래스에 따른 금지(Access Class Barring)에 따른 동작을 나타낸 예시적인 흐름도이다.
도 7에 도시된 바와 같이, 네트워크 혹은 eNodeB(200)의 과부하 또는 혼잡 상태에서, eNodeB(200)는 시스템 정보를 통해 ACB(Access Class Barring) 관련 정보를 브로드캐스팅할 수 있다. 상기 시스템 정보는 SIB(System Information Block) 타입 2일 수 있다.
상기 SIB(System Information Block) 타입 2는 아래의 표와 같은 ACB 관련 정보를 포함할 수 있다.
표 2
필드 설명
ac-BarringFactor UE에 의해서 생성되는 랜덤값이 ac-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
ac-BarringForCSFB CS(circuit switch) 폴백(fallback)에 대한 ACB이다. CS 폴백은 VoLTE 호를 이전 3G 호로 전환시키는 것이다.
ac-BarringForEmergency 긴급 서비스에 대한 ACB이다.
ac-BarringForMO-Data UE의 발신 데이터에 대한 ACB이다.
ac-BarringForMO-Signalling UE의 발신 제어 신호에 대한 ACB이다.
ac-BarringForSpecialAC 특수한 액세스 클래스, 즉 11-15에 대한 ACB이다.
ac-BarringTime 액세스가 금지되는 시간을 나타낸다.
ssac-BarringForMMTEL-Video MMTEL 비디오 발신에 대한 서비스 별 ACB이다.
ssac-BarringForMMTEL-Voice MMTEL 음성 발신에 대한 서비스 별 ACB이다.
한편, 상기 UE1(100a)은 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 발신을 결정하고, 상기 ACB의 적용 대상이 되는지 결정한다. 마찬가지로, UE2(100b)는 일반 데이터의 발신을 결정하고, 상기 ACB의 적용 대상이 되는지 결정한다.
일반적으로, UE는 일반적으로 10개 액세스 클래스(예컨대, AC0, AC1, …, AC9) 중의 적어도 하나가 랜덤하게 할당되어 있다. 예외적으로, 긴급 비상 액세스를 위해서는 AC10이 할당된다. 이와 같이 랜덤하게 할당된 액세스 클래스의 값은 상기 UE1(100) 및 UE2(100b)의 각 USIM에는 저장될 수 있다.
그러면, 상기 UE1(100a)와 상기 UE2(100b)는 상기 저장된 액세스 클래스에 기반하여, 상기 수신한 ACB 관련 정보에 포함되어 있는 barring factor 필드를 이용하여, 액세스 금지가 적용되는지를 확인한다. 이런 Access Barring 체크는 상기 UE1(100a)와 상기 UE2(100b)의 각 AS(Access Stratum) 계층, 즉 RRC 계층에서 수행된다.
만약, 상기 ACB의 적용 대상이 아니라면, 상기 UE1(100a)와 상기 UE2(100b)는 각기 서비스 요청 (혹은 확장 서비스 요청) 메시지와 RRC 연결 요청 메시지를 전송할 수 있다.
그러나, 상기 ACB의 적용 대상이라면, 상기 UE1(100a)와 상기 UE2(100b) 모두는 각기 RRC 연결 요청 메시지를 전송할 수 없다.
정리하여 설명하면, 상기 UE1(100a)에 의한 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 발신을 위한 RRC 연결 요청과 상기 UE2(100b)에 의한 일반 데이터 발신을 위한 RRC 연결 요청은 구분되지 못하고, 모두 ACB가 적용되어 금지되는 문제점이 있다.
이상에서 설명한 바와 같이, 현재 3GPP 표준에서는 IMS 기반 호 발신을 일반 데이터의 발신과 구분하지 못함으로써, 도 6a에 도시된 바와 같이 네트워크 혼잡 상황에서 IMS 기반 호 발신이 실패되게 만들거나 혹은 도 7에 도시된 바와 같이 아예 시도조차 할 수 없게 만드는 문제점이 있다. 또한, 이러한 문제는 네트워크 자원 낭비를 초래 하고, 사용자의 경험 만족도를 저하시킨다.
<본 명세서에서 제시되는 해결책>
본 명세서의 일 개시에 의하면, IMS 기반 서비스, 예컨대 VoLTE 서비스의 제어 신호, 예컨대 IMS 기반의 제어 신호 혹은 SIP 기반의 제어 신호는 사용자 평면으로 전송되더라도, 일반 데이터와 차등되도록 처리될 수 있다.
구체적으로, 본 명세서의 일 개시에 따르면, 상기 UE가 IMS 기반 서비스, VoLTE에 의한 호 발신을 하고자 할 경우, 상기 UE의 NAS 계층은 수립 원인 필드를 ‘MO data’ 대신에 다른 것으로 설정하여 RRC 계층으로 전달하고, 상기 UE의 RRC 계층은 이에 따라 RRC 연결 요청 메시지를 전송함으로써, eNodeB(200)의 혼잡 상황에서도 거절되지 않도록 한다.
보다 더 구체적으로, 본 명세서의 일 개시에 따르면, UE가 IMS 기반 호(call) 발신(예컨대, 음성 호 발신 또는 화상 호 발신)를 하고자 하는 경우에, UE의 NAS 계층은 IMS 기반 호(call) 발신을 위한 제어 신호, 예컨대 IMS 기반 제어 신호 혹은 SIP 기반 제어 신호에 대해 RRC 수립 원인(establishment cause)을 ‘MO Data’대신에‘MO-signaling’혹은 새로운 원인 값(예컨대, IMS 기반 발신 혹은 ‘MO-IMS MMTEL service’)로 설정한다또한, UE의 NAS 계층은 상기 설정한 수립 원인(establishment cause)을 AS 계층, 즉 RRC 계층으로 전달하여, 상기 RRC 계층이 상기 NAS 계층이 설정한 수립 원인(establishment cause)을 사용하여, RRC 연결 요청 메시지를 전송할 수 있다. 한편, UE는 IMS 기반 서비스를 의미하는 서비스 타입 (혹은 필드)을 IMS Voice, IMS Video, MMTEL over PS Session, 혹은 새로운 서비스 타입(필드) 값으로 설정한 후, 서비스 요청 혹은 확장 서비스 요청 메시지에 셋팅하여(포함하여) 전송한다. 본 명세서의 일 개시에 따르면, IMS 기반 음성 호 또는 화상 호를 연결하기 위한 제어 신호, IMS 기반 제어 신호 또는 SIP 기반 제어 신호는 일반적인 서비스 요청 메시지가 아닌 새로운 NAS 메시지(예컨대, IMS SERVICE REQUEST)에 포함되어 전송될 수도 있다.
그러면, 혼잡 또는 과부하 상태에 있는 eNodeB(200)는 상기 수신한 RRC 연결 요청 메시지의 RRC 수립 원인 필드에 설정된 MO-signaling 혹은 새로운 원인 값에 기반하여, 일반 데이터를 거절하는 것과는 다르게, 처리할 수 있다. 설사 상기 eNodeB(200)가 혼잡 또는 과부하 상태에 있지 않더라도, 상기 수신한 RRC 연결 요청 메시지의 RRC 수립 원인 필드에 설정된 ‘MO-signaling 혹은 새로운 원인 값이 설정되어 있다면, 일반 데이터를 처리하는 것보다 높은 우선 순위로 처리를 할 수 있다. (또는 낮은 우선 순위로 처리를 할 수도 있다.)
또한, 본 명세서의 일 개시에 따르면, IMS 기반 서비스, VoLTE에 의한 호 착신의 경우, 네트워크 노드(예컨대, S-GW, P-GW)는 VoLTE에 의한 호 착신을 위한 제어 신호, 예컨대 IMS 제어 신호 혹은 SIP 기반 제어 신호를 일반 데이터의 착신으로부터 구별되도록 MME(510)에게 알려주도록 한다. 이에 따라 MME(510)도 역시 구별가능하게 페이징 신호를 UE에게 전달하고, 그에 따라 상기 UE가 RRC 연결 요청 메시지를 생성할 때, 수립 원인 필드를 ‘MT-access’혹은 새로운 원인 값으로 설정할 수 있도록 한다.
그러면, 혼잡 또는 과부하 상태에 있는 eNodeB(200)는 상기 수신한 RRC 연결 요청 메시지의 RRC 수립 원인 필드에 설정된 MT-access 혹은 새로운 원인 값에 기반하여, 거절하지 않고 허락하여 처리할 수 있다.
이하에서는, 상기 RRC 수립 원인 필드에 설정된 ‘MO-signaling 혹은 새로운 원인 값이 설정되어 있는 경우, eNodeB(200)가 일반 데이터와 달리 처리하는 예를 나타낸다.
- RRC 수립 원인 필드에 ‘MO-signaling’ 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, ‘MO-Data’로 설정된 RRC 연결 요청 보다 높은 우선순위로 처리
- RRC 수립 원인 필드에 ‘MO-signaling’ 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, ‘highPriorityAccess’로 RRC 연결 요청 보다 높은 우선순위 혹은 동등한 우선순위로 처리
- RRC 수립 원인 필드에 ‘MO-signaling’ 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, ‘MT-Access’로 RRC 연결 요청 보다 높은 우선순위 혹은 동등한 우선순위로 처리
- RRC 수립 원인 필드에 (IMS 기반 서비스를 구분하는)‘MO-signaling’ 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, (종래의 일반적인)‘MO-signaling’로 RRC 연결 요청 보다 높은 우선순위 혹은 동등한 우선순위로 처리
- RRC 수립 원인 필드에 ‘MO-signaling’ 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, ‘MO-Data’로 설정된 RRC 연결 요청에 비해 더 낮은 우선순위 혹은 동등한 우선순위로 거절
- RRC 수립 원인 필드에 ‘MO-signaling’ 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, ‘highPriorityAccess’ 로 설정된 RRC 연결 요청에 비해 더 낮은 우선순위 혹은 동등한 우선순위로 거절
- RRC 수립 원인 필드에 ‘MO-signaling’ 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, ‘MT-Access’ 로 설정된 RRC 연결 요청에 비해 더 낮은 우선순위 혹은 동등한 우선순위로 거절
- RRC 수립 원인 필드에 (IMS 기반 서비스를 구분하는)‘MO-signaling’ 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, (종래의 일반적인)‘MO-signaling’로 RRC 연결 요청에 비해 더 낮은 우선순위 혹은 동등한 우선순위로 거절
한편, 이러한, IMS 기반 음성 호 및 비디오 호를 일반 데이터와 차등화하는 것은 사업자의 정책(Operator’s policy), 네트워크 노드(예컨대, MME/SGSN, eNodeB)의 설정, 가입자 정보, 혹은 UE의 기능(capability)에 따라 변경될 수 있다.
한편, 본 명세서의 일 개시에 따라 추가된 수립 원인 값을 포함하는 테이블을 나타내면 아래와 같다.
표 3
수립 원인(Establishment cause) 설명
Emergency 긴급 비상 서비스가 필요함
HighPriorityAccess 높은 우선 순위 액세스가 필요함
MT-Access UE의 착신에 따른 액세스가 필요함
MO-Signaling 어태치 요청 또는 TAU 요청 또는 IMS 음성/비디오/MMTEL 서비스에 대한 UE의 발신 위한 제어 신호
MO-IMS service or MO-IMSMMTELservice or new cause IMS 서비스 또는 IMS 기반의 MMTEL 서비스에 대한 UE의 발신을 위한 제어 신호
MO-IMS Access IMS 서비스를 위한 액세스의 발신
MO-Data UE에 의한 데이터의 발신
이하, 본 명세서에서 제시되는 해결책들에 대해서 도면을 참조하여 설명하기로 한다.
도 8a는 도 6a의 문제점을 해결하기 위해 본 명세서의 첫 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
도 8a를 참조하여 알 수 있는 바와 같이, UE1(100a)는 IMS 서비스, 예컨대 IMS 기반의 호(call)의 발신을 결정하고, UE2(100b)는 데이터의 발신을 결정한다. 상기 IMS 기반의 호는 음성 호, 화상 호 또는 MMTEL에 따른 호일 수 있다.
먼저 도 8a를 참조하여 설명하면 다음과 같다.
1) UE1(100a)의 상위 계층, 예컨대 NAS 계층은 IMS 서비스, 예컨대 IMS 기반의 호(call)의 발신을 위해 수립 원인(establishment cause)필드의 값을 기존의‘MO-Data’ 대신에 표 2에 나타난 바와 같은‘MO-signaling’또는 새로운 원인, 예컨대‘MO-IMS service’or ‘MO-IMS MMTEL service’로 설정한다. 또한, UE1(100a)의 상위 계층, 예컨대 NAS 계층은 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 서비스 타입(필드)를 포함하는서비스 요청(Service Request) 혹은 확장 서비스 요청(Extended Service Request) 메시지를 전송한다. 즉, 상기 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 상기 서비스 타입(필드)는 IMS Voice, IMS Video, MMTEL over PS Session, 혹은 새로운 서비스 값으로 설정될 수 있다.
또한, UE2(100b)의 상위 계층, 예컨대 NAS 계층은 일반 데이터의 발신을 위해 수립 원인(establishment cause)필드의 값을 UE에 의해 전송 개시되는 데이터를 의미하는 ‘MO(Mobile Originating) Data’로 설정한다. 또한, UE2(100b)의 상위 계층, 예컨대 NAS 계층은 서비스 요청(Service Request) 혹은 확장 서비스 요청(Extended Service Request) 메시지를 전송한다.
2) 이어서, 상기 UE1(100a)의 상위 계층, 예컨대 NAS 계층은 상기 설정한 수립 원인(establishment cause)필드의 값, 즉 ‘MO-signaling’또는 ‘MO-IMS service’ 을 RRC 계층으로 전달한다. 그러면, 상기 UE1(100a)의 RRC 계층은 상기 RRC 연결 요청 메시지 내의 수립 원인(establishment cause)필드를 상기 전달받은 바에 따라 설정하고, eNodeB(200)로 전송한다.
한편, UE2(100b)의 상위 계층, 예컨대 NAS 계층은 상기 설정한 수립 원인(establishment cause)필드의 값, 즉 ‘MO Data’를 RRC 계층으로 전달한다. 그러면, 상기 UE2(100b)의 RRC 계층은 상기 RRC 연결 요청 메시지 내의 수립 원인(establishment cause)필드에 상기‘MO Data’를 설정하여, eNodeB(200)로 전송한다.
3) 그러면, 과부하 상태인 상기 eNodeB(200)가 상기 UE1(100a)로부터의 RRC 연결 요청 메시지와 상기 UE2(100b)로부터의 RRC 연결 요청 메시지를 각기 수신하면, 각각의 수립 원인(establishment cause) 필드를 확인한다.
혼잡 상태에 있는 상기 eNodeB(200)는 상기 UE1(100a)로부터의 RRC 연결 요청 메시지 내의 수립 원인 필드가 ‘MO-signaling’또는 ‘MO-IMS service’으로 설정되어 있으므로, 상기 UE1(100a)로부터의 RRC 연결 요청 메시지에 대해서는 거절하지 않고, 상기 UE1(100a)로 RRC 연결 셋업(RRC connection setup) 메시지를 전달한다.
그러나, 상기 eNodeB(200)는 상기 UE2(100b)로부터의 RRC 연결 요청 메시지 내의 수립 원인 필드에는 ‘MO Data’로 설정되어 있으므로, 상기 UE2(100b)로부터의 RRC 연결 요청에 대해서는 RRC 연결 거절 메시지를 전송한다.
4) 상기 RRC 연결 셋업(RRC connection setup) 메시지를 수신한 상기 UE1(100a)는 RRC 연결 셋업 완료 메시지를 상기 eNodeB(200)로 전달한다.
5~7) 상기 eNodeB(200)는 초기 UE 메시지에 서비스 요청 메시지 혹은 확장서비스 요청 메시지를 포함시켜 MME(510)으로 전달한다. 그러면 상기 MME(510)은 초기 컨텍스트 셋업 요청 메시지를 상기 eNodeB(200)로 전달한다. 그러면, 상기 eNodeB(200)는 상기 UE1(100a)와 라디오 베어러를 수립한다.
8) 마침내, 상기 UE1(100a)는 IMS 서비스, 예컨대 IMS 기반의 호(call)에 의한 사용자 데이터를 전송할 수 있게 된다.
다른 한편, 도 8a는 UE1(100a)는 IMS 기반의 호 발신을 시도하고, UE2(200b)는 일반 데이터의 발신을 시도하는 예시를 나타내었으나, 이러한 예시는 하나의 UE가 IMS 기반의 호 발신과 일반 데이터의 발신을 동시에 시도하는 경우에도 적용될 수 있다.
한편, 상기 UE1(100a)가 상기 수립 원인(establishment cause)필드에 상기 IMS 기반의 호 발신 인지 혹은 일반 데이터의 발신인지에 따라 다르게 설정하는 것은 사업자의 정책(Operator’s policy)에 따라, 네트워크 노드(예컨대, MME, eNodeB)의 설정에 따라, 가입자 정보에 따라, 혹은 단말의 기능(capability 에 따라서 적용될 수 도 있고, 적용되지 않을 수 도 있다. 또한, 이는 네트워크 노드(예컨대, MME, eNodeB)에 혼잡이나 과부하가 발생하 상황에서만 적용될 수도 있다. 혹은 UE가 기능(capability) 정보 혹은 지원 여부 정보를 어태치(Attach)/TAU(Tracking Area Update)/RAU(Routing Area Update) 등을 통해 네트워크에 알려준 후, 상기 네트워크가 적용 여부를 결정할 수도 있다. 상기 네트워크의 적용 여부는 OMA-DM을 통하여 NAS configuration MO(Management Object, 3GPP TS 24.368)로 제공될 수 있다. 따라서 이러한 설정 방식은 static 혹은 dynamic하게 변경되어 적용 될 수 있다.
다른 한편, 도 8a에서는 수립 원인(establishment cause)필드에 ‘MO-signaling’또는 ‘MO-IMS service’가 설정되는 것으로 나타내었다. 그러나, 수립 원인(establishment cause)필드에 ‘MO-IMS Access’, ‘MO-IMS MMTEL service’ 혹은 새로운 원인을 나타내는 값이 포함될 수도 있다.
도 8b는 도 6b의 착신 상황에서의 문제점을 해결하기 위해 본 명세서의 첫 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
먼저, PDN GW(530)은 UE1(100a)에 대한 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 알리기 위한 다운링크 데이터에 대한 통지를 MME(510)을 통해 eNodeB(200)에게 전송하고, 또한 UE2(100b)에 대한 일반 데이터의 착신을 알리기 위한 다운링크 데이터에 대한 통지를 MME(510)을 통해 eNodeB(200)에게 전송한다.
한편, 상기 PDN GW(530)은 호(call)의 착신을 위한 제어 신호가 IMS 기반의 제어 신호 또는 SIP 기반의 제어 신호인지 혹은 일반 제어 신호인지를 구분하여, 상기 MME(510)에게 알려준다. 마찬가지로, 상기 MME(510)는 호(call)의 착신을 위한 제어 신호가 IMS 기반의 제어 신호 또는 SIP 기반의 제어 신호인지 혹은 일반 제어 신호인지를 구분하여 상기 eNodeB(200)에게 알려준다. 이때, 상기 IMS 기반 제어 신호 또는 SIP 기반 제어 신호임을 구분하는 것은 IMS 세션인지 아닌지를 나타내는 정보에 의해 구분가능할 수 있다. 상기 정보는 기존 제어 메시지에 포함되는 인자(혹은 인디케이터)이거나 새로운 제어 메시지에 포함되는 인자(혹은 인디케이터)일 수 있다. 이러한 상기 인자(혹은 인디케이터)는 상기 PDN GW(530) 또는 S-GW으로부터 MME(510)로 제어 메시지를 통하여 전송되어 지며, 상기 MME(510)은 상기 인자(혹은 인디케이터)를 인지하여, 상기 IMS 기반 제어 신호 또는 SIP 기반 제어 신호를 나타내는 정보를 페이징 신호에 포함하여 eNodeB(200)에게 전송한다. 한편, 상기 페이징 신호에 추가되는 정보에 따라 상기 UE1(100a)는 상기 수립 원인(establishment cause)필드에 ‘MT-access’ 혹은 ‘MT-IMS Access’ 혹은‘MT-signaling’ 혹은 ‘MT-IMS Service’ 혹은 새로운 원인을 나타내는 값을 설정할 수 있다.
이에 따라, 혼잡한 상태에 있는 상기 eNodeB(200)는 페이징 신호를 차등화할 수 있다. 예컨대, 상기 eNodeB(200)는 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 페이징 신호를 일반 데이터의 착신을 알리기 위한 페이징 신호에 비하여 우선적으로 처리할 수 있다.
그리고, 혼잡한 상태에 있는 상기 eNodeB(200)는, 유휴 상태(Idle state)에 있는 UE1(100a)에게 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 페이징 신호를 전송할 때, 상기 정보를 포함시켜서 전송한다. 이때, 상기 eNodeB(200)는 상기 정보, 망의 혼잡상황, 사업자의 정책(operator policy), 단말의 능력 정보 등의 기반하여 상기 페이징 신호를 전송할 수 있다. 일례로, 상기 eNodeB(200)는 망이 혼잡하여 일반적인 페이징 신호를 전송하지 않는 것을 결정하였다 하더라도 상기 정보가 수신되는 경우, UE1(100a)에 대한 페이징 신호는 전송하는 것으로 결정할 수 있다.
그러나, 상기 eNodeB(200)는 단순한 페이징 신호를 UE2(100b)에게 전송한다. 상기 UE2(100b)로의 페이징 신호는 브로드캐스팅 방식으로 전송될 수 있다. 그러나, 상기 UE1(100a)로의 페이징 신호는 브로드캐스팅 방식으로 전송될 수도 있지만, 새로운 전용 채널을 통해 전송될 수도 있다.
이와 같이 IMS 기반의 서비스를 위한 페이징 신호는 차등화하여 UE1(100a)에게 제공될 수 있다. 상기 페이징 신호를 차등화 처리하는 것은 일반적인 데이터의 수신을 알리기 위한 페이징 신호에 비해 IMS 기반의 서비스 연결을 알리기 위한 페이징 신호를 더 높은 우선 순위 (high priority)로 처리하는 것을 의미할 수 있다.
상기 IMS 기반의 서비스를 위한 페이징 신호를 차등화하는 방안은 사업자의 정책(Operator’s policy)에 따라, 네트워크 노드(예컨대, MME 또는 eNodeB)의 설정에 따라, 가입자 정보에 따라, 혹은 단말의 기능(capability) 설정에 따라서 적용될 수 도 있고, 적용되지 않을 수도 있다. 또한, 네트워크 노드(예컨대, MME 또는 eNodeB)에 혼잡이나 과부하 등 특정한 상황이 발생한 경우에만 적용될 수도 있다. 만약 UE가 단말의 지원 여부 정보 혹은 기능(capability) 정보를 네트워크 노드에 Attach/TAU/RAU 등을 통해 알려준 후, 상기 네트워크 노드가 상기 방식을 적용할지 여부를 결정할 수 있다. 상기 네트워크의 적용 여부는 OMA-DM을 통하여 NAS configuration MO(Management Object, 3GPP TS 24.368)로 제공될 수 있다 따라서 이러한 설정 방식은 static 혹은 dynamic하게 변경되어 적용 될 수 있다.
이하에서는 UE가 전송하는 어태치 요청 메시지, 디태치(detach) 요청 메시지, TAU 요청 메시지, 서비스 요청 메시지에 포함되는 수립 원인(establishment cause)에 대해서 설명하기로 한다.
NAS 연결 수립을 요청 할 때, UE의 상위 계층, NAS 계층에 의해 사용되는 수립 원인은 아래의 표에 나타난 각 절차에 따라 선택될 수 있다. 상기 NAS 계층은 액세스 제어 목적으로 하위 계층, RRC 계층에게 RRC 수립 원인과 관련된 타입을 지시할 수 있다. 만약, EAB(Extended Access Barring)이 설정되어 있는 경우, UE의 상위 계층은 하위 계층에게 아래의 케이스를 제외한 요청에 대해서는 EAB가 적용된다고 알릴 수 있다.
- UE가 클래스 11-15 중 하나를 이용하여 액세스를 시도하는 경우
- UE가 페이징 신호에 응답하는 경우
- RRC 수립 원인이 긴급 호인 경우,
- UE가 EAB를 무시(overriding)하도록 설정된 경우
표 4
NAS 절차 수립 원인 타입
어태치 절차 어태치 요청 메시지가 EPS 긴급 어태치로 세팅되지 않는 EPS 어태치 타입을 갖는 경우, RRC 수립 원인은 MO-signaling으로 세팅된다. UE가 개시하는 시그널링(originating signaling)
어태치 요청 메시지가 EPS 긴급 어태치로 세팅된 EPS 어태치 타입을 갖는 경우, RRC 수립 원인은 Emergency call 으로 세팅된다. 긴급 호
Tracking Area Update UE가 긴급 베어러 서비스를 위해 수립된 PDN 연결을가지고 있지 않고, 긴급으로 세팅된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, RRC 연결 요청의 수립 원인은 MO-signaling으로 세팅된다. UE가 개시하는 시그널링(originating signalling)
Service Request 서비스 요청 메시지 혹은 확장 서비스 요청 메시지(또는 새로운 NAS 메시지)가 "mobile originating IMS Voice/Video/MMTEL over PS Session"로 세팅된 서비스 타입을 갖고 PS 세션 상에서의IMS 음성/화상/MMTEL 서비스를 위해 발신을 요청하는 경우, RRC 수립 원인은 MO-signaling 또는 새로운 원인 값, 예컨대 MO-IMS service 또는 IMS MMTEL service 등으로 세팅된다. UE가 개시하는 시그널링(originating signaling)
서비스 요청 메시지 혹은 확장 서비스 요청 메시지(또는 PS 세션 상에서의 IMS 음성/화상/MMTEL 서비스를 위한 페이징 신호에 대한 응답으로 전송되고, 서비스 타입은 "mobile terminating IMS Voice/Video/MMTEL over PS Session" 로 세팅된 서비스 타입을 갖는 경우, RRC 수립 원인은 MT access로 세팅된다. UE의 착신 호(terminating calls)
서비스 요청 메시지 혹은 확장 서비스 요청 메시지가 "MS is not configured to NAS signalling low priority"로 세팅된 낮은 우선 순위 인디케이터를 가진 Device Properties를 포함하고, "mobile originating IMS Voice/Video/MMTEL over PS Session"로 세팅된 서비스 타입을 갖고, PS 세션 상에서 IMS Voice/Video/MMTEL 서비스를 위한 발신을 요청하는 경우, RRC 수립 원인은 MO-signaling 또는 새로운 원인(예컨대, MO-IMS service 또는 IMS MMTEL service)로 세팅될 수 있다. UE가 발신하는 호(originating calls)
위 표에 나타나지는 않았으나, 상기 서비스 요청 메시지 혹은 확장 서비스 요청 메시지의 서비스 타입(service type)은 “mobile originating IMS Voice”, “mobile originating IMS Video”, “mobile originating IMS MMTEL over PS Session” 중 어느 하나로 셋팅될 수 있다. 이 경우 각각(개별적으로) 타입은 "originating calls" 으로 설정/매핑될 수 있다. 대안적으로 상기 서비스 요청 메시지 혹은 확장 서비스 요청 메시지의 서비스 타입(service type)은 “mobile originating IMS Voice/Video/MMTEL over PS Session”의 형태로 셋팅될 수 있다.
마찬가지로, 상기 서비스 요청 메시지 혹은 확장 서비스 요청 메시지의 서비스 타입(service type)은 “mobile terminating IMS Voice”, “mobile terminating IMS Video”, “mobile terminating IMS MMTEL over PS Session” 중 어느 하나로 셋팅될 수 있다. 이 경우 각각(개별적으로) 타입은 " terminating calls" 으로 설정/매핑될 수 있다. 대안적으로 상기 서비스 요청 메시지 혹은 확장 서비스 요청 메시지의 서비스 타입(service type)은 “mobile terminating IMS Voice/Video/MMTEL over PS Session”의 형태로 셋팅될 수 있다.
다른 한편, 상기 서비스 요청 메시지 혹은 확장 서비스 요청 메시지에 수립 원인에 MO-signaling, 혹은 MO-IMS service 등과 같은 것으로 세팅하는 방안은, 낮은 우선순위(low priority) 또는 정상 순위(normal priority)를 가지는 UE도 활용할 수 있다.
낮은 우선순위(low priority)로 설정된 UE가 애플리케이션의 요청이나 UE의 기능(capability), 사업자 정책 혹은 네트워크의 요청에 의해서 낮은 우선순위(low priority)가 아닌 정상 순위로 변경되어 상기의 IMS 기반 서비스를 위해 발신을 요청하는 경우에, 낮은 우선순위(low priority)가 아닌 정상 순위로 설정된 IE를 포함하는 확장 서비스 요청 메시지를 네트워크 노드(예컨대. MME)로 전송할 수 있다. 이때, 상기 UE의 NAS 계층은 수립 원인을 ‘MO-signaling’또는 새로운 원인 값(예컨대, MO-IMS access 혹은 MO-IMS MMTEL service)로 설정한 확장 서비스 요청 메시지를 전송할 수 있다 된다. 또한, 상기 UE의 RRC 계층은 수립 원인을 ‘MO-signaling’또는 새로운 원인 값(예컨대, MO-IMS access 혹은 MO-IMS MMTEL access)로 설정한 RRC 연결 요청 메시지를 전송할 수 있다.
그러면 eNodeB(200)는 상기 수신한 RRC 연결 요청 메시지의 수립 원인에 세팅된 ‘MO-signaling’ 혹은 새로운 cause 값에 기반하여, MO-IMS 서비스(특히, voice call, video call)를 위한 연결을 차등화하여 처리할 수 있다.
도 9는 도 7의 문제점을 해결하기 위해 본 명세서의 두 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
도 9를 참조하여 알 수 있는 바와 같이, 본 명세서의 두 번째 개시에 따르면, IMS 기반의 서비스를 연결하기 위한 IMS 기반 제어 신호를 차등화하기 위해서, eNodeB(200)는 수립 원인(establishment cause)들 중 MO-signaling 또는 새로운 원인(예컨대, MO-IMS service 또는 IMS MMTEL service )에 대한 예외 규칙을 포함하는 액세스 클래스에 따른 금지(ACB) 정보를 포함하는 시스템 정보를 브로드캐스팅할 수 있다.
그러면, IMS 기반의 호 발신을 희망하는 UE1(100a)와 일반 데이터의 발신을 희망하는 UE2(100b)는 상기 예외 규칙이 포함된 상기 액세스 클래스에 따른 금지(ACB) 정보에 기반하여, ACB 적용 여부를 결정할 수 있다.
즉, UE1(100a)는 IMS 기반의 서비스(예컨대, IMS 기반의 음성 호, 화상 호)를 연결하기 위한 IMS 기반 제어 신호(signaling), 혹은 SIP 기반 제어 신호에 대해서 기존에 사용하던 수립 원인인 MO-Data로 ACB 적용 여부를 체크하지 않고, 본 명세서의 개시에 의해 세팅되는 수립 원인, 즉 MO-signaling 또는 새로운 원인(예컨대, MO-IMS service 또는 IMS MMTEL service)에 기초하여 ACB 적용 여부를 체크한다. 상기 수신한 액세스 클래스에 따른 금지(ACB) 정보는 상기 수립 원인(establishment cause)들 중 MO-signaling 또는 새로운 원인(예컨대, MO-IMS service 또는 IMS MMTEL service)에 대한 예외를 포함하고 있으므로, 상기 UE1(100a)은 RRC 연결 요청이 상기 ACB에 적용되지 않는 것으로 결정한다. 따라서, 상기 UE1(100a)은 RRC 연결 요청을 전송할 수 있다.
이렇게 함으로써, IMS 기반의 서비스(예컨대, IMS 기반의 음성 호, 화상 호)를 연결하기 위한 IMS 기반 제어 신호(signaling), 혹은 SIP 기반 제어 신호를 나르기 위한 RRC 요청 메시지는 상기 eNodeB(200)에 의해 거절 되지 않고 정상적으로 처리될 수 있다.
아래의 표는 본 명세서의 두 번째 개시에 따라 수립 원인(establishment cause)들 중 MO-signaling 또는 새로운 원인(예컨대, MO-IMS service 또는 IMS MMTEL service )에 대한 예외 규칙을 포함하는 액세스 클래스에 따른 금지(ACB) 정보를 나타낸다.
표 5
필드 설명
ac-BarringFactor UE에 의해서 생성되는 랜덤값이 ac-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
ac-BarringForCSFB CS(circuit switch) 폴백(fallback)에 대한 ACB이다. CS 폴백은 VoLTE 호를 이전 3G 호로 전환시키는 것이다.
ac-BarringForEmergency 긴급 서비스에 대한 ACB이다.
ac-BarringForMO-Data UE의 발신 데이터에 대한 ACB이다.
ac-BarringForMO-Signalling UE의 발신 제어 신호(signaling) 또는 IMS 서비스의 발신을 위한 시그널링에 대한 ACB이다.
ac-BarringFor MO-IMS service or IMS MMTEL service or new cause IMS 서비스의 발신을 위한 시그널링에 대한 ACB이다.
ac-BarringForSpecialAC 특수한 액세스 클래스, 즉 11-15에 대한 ACB이다.
ac-BarringTime 액세스가 금지되는 시간을 나타낸다.
ssac-BarringForMMTEL-Video MMTEL 비디오 발신에 대한 서비스 별 ACB이다.
ssac-BarringForMMTEL-Voice MMTEL 음성 발신에 대한 서비스 별 ACB이다.
이상에서는, 본 명세서의 첫 번째 개시와 두 번째 개시에 대해서 설명하였다. 별도로 설명하지 않더라도, 당업자라면 이러한 개시들이 조합될 수 있음을 자명하게 알 수 있을 것이다.
이하에서는, 본 명세서의 개시들을 다시 한번 요약하여 설명하기로 한다.
UE(100)는 IMS 기반의 서비스(예컨대, IMS 기반의 음성 호, 화상 호)의 연결이 필요한 것으로 판단하면, UE의 NAS 계층은 수립 원인(establishment cause)필드의 값을 기존의‘MO-Data’ 대신에 표 2에 나타난 바와 같은‘MO-signaling’또는 새로운 원인(예컨대‘MO-IMS service’, ‘MO-IMS MMTEL service’ 또는 ‘MO-IMS Access’ )로 설정한 후, 서비스 요청(Service Request) 혹은 확장 서비스 요청(Extended Service Request) 메시지를 전송한다. 이어서, UE의 NAS 계층은 상기 설정된 수립 원인(establishment cause)을 RRC 계층으로 전달한다. 상기 UE의 RRC 계층은 IMS 기반의 서비스(예컨대, IMS 기반의 음성 호, 화상 호)를 연결하기 위한 IMS 기반 제어 신호(signaling), 혹은 SIP 기반 제어 신호를 나르기 위한 RRC 요청 메시지에 상기 전달받은 수립 원인을 세팅하여 eNodeB(200)로 전송한다.
한편, eNodeB(200)는 IMS 기반의 서비스를 연결하기 위한 제어 신호, 즉 IMS 기반 제어 신호(signaling), 혹은 SIP 기반 제어 신호를 나르기 위한 RRC 요청 메시지에 사용할 수 있는 수립 원인의 값으로서, 표 2에 나타난 바와 같은‘MO-signaling’또는 새로운 원인(예컨대‘MO-IMS service’, MO-IMS MMTEL service’ 또는 ‘MO-IMS Access’)에 대한 정보를 UE(100)에게 전달할 수 있다.
그리고, 상기 eNodeB(200)는 MO-signaling’또는 새로운 원인(예컨대‘MO-IMS service’, ‘MO-IMS MMTEL service’ 또는 ‘MO-IMS Access’)으로 설정된 수립 원인을 포함하는 서비스 요청 메시지 혹은 확장 서비스 요청(Extended Service Request) 혹은 RRC 연결 요청 메시지를 수신하면, 혼잡 상태 혹은 과부하 상태에서 ‘MO Data’로 설정된 수립 원인을 포함하는 요청 메시지와 차등화하여 처리할 수 있다.
지금까지 설명한 내용들은 하드웨어로 구현될 수 있다. 이에 대해서 도 16를 참조하여 설명하기로 한다.
도 10은 본 발명의 실시예에 따른 UE(100) 및 eNodeB(200)의 구성 블록도이다.
도 10에 도시된 바와 같이 상기 UE(100)은 저장 수단(101)와 컨트롤러(102)와 송수신부(103)를 포함한다. 그리고 상기 eNodeB(200)는 저장 수단(201)와 컨트롤러(202)와 송수신부(203)를 포함한다.
상기 저장 수단들(101, 201)은 도 5 내지 도 9에 도시된 방법을 저장한다.
상기 컨트롤러들(102, 202)은 상기 저장 수단들(101, 201) 및 상기 송수신부들(103, 203)을 제어한다. 구체적으로 상기 컨트롤러들(102, 202)은 상기 저장 수단들(101, 201)에 저장된 상기 방법들을 각기 실행한다. 그리고 상기 컨트롤러들(102, 202)은 상기 송수신부들(103, 203)을 통해 상기 전술한 신호들을 전송한다.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니므로, 본 발명은 본 발명의 사상 및 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있다.

Claims (11)

  1. 단말에서 IMS(IP Multimedia Subsystem)기반 서비스를 연결하는 방법으로서,
    상기 IMS 기반 서비스를 연결하기 위해 SIP(Session Initiation Protocol) 기반 메시지가 사용자 평면 상에서 전송될 필요가 경우, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 원인 값을 수립 원인(establishment cause) 필드에 설정하는 단계와;
    시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 서비스 타입(필드)를 포함하는 NAS(Non-Access Stratum) 계층의 서비스 요청 혹은 확장 서비스 요청 메시지를 기지국으로 전송하는 단계와;
    상기 설정된 수립 원인 필드를 포함하는 RRC(Radio Resource Control) 연결 요청 메시지를 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  2. 제1항에 있어서, 상기 수립 원인 필드에는
    일반 데이터의 전송을 의미하는 원인 값 대신에, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 상기 원인 값이 설정되는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  3. 제1항에 있어서, 상기 RRC 연결 요청 메시지를 전송하는 단계는
    상기 단말의 NAS 계층이 상기 설정된 원인 값을 상기 단말의 RRC 계층으로 전달하는 단계와;
    상기 단말의 RRC 계층이 상기 설정된 원인 값에 따라 RRC 연결 요청 메시지의 원인 필드를 설정하는 단계와;
    상기 설정된 원인 필드를 포함하는 RRC 연결 요청 메시지를 전송하는 단계를 포함하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  4. 제1항에 있어서, 상기 IMS 기반 서비스는
    IMS 기반의 음성 호 서비스, 화상 호 서비스, 그리고 멀티미디어 전화(Multimedia telephony) 서비스 중 하나에 해당하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  5. 제1항에 있어서,
    상기 IMS 기반 서비스가 상기 단말에 의해서 개시되는 것일 경우,
    상기 원인 값은 MO-signaling, MO-IMS service, MO-IMS access, MO-IMS MMTEL service 그리고 새로운 원인 값 중 어느 하나에 해당하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  6. 제1항에 있어서,
    IMS 기반 착신의 경우, 네트워크가 일반 데이터 착신과 구분하기 위한 정보를 포함하여 기지국에게 전달하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  7. 제6항에 있어서,
    상기 기지국으로부터 수신되는 페이징 신호는 상기 IMS 기반 서비스에 따른 착신인지 혹은 일반 데이터의 착신인지를 나타내는 정보 혹은 우선순위를 포함하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  8. 제7항에 있어서, 상기 수립 원인 필드를 설정하는 단계는
    상기 페이징 신호 내에 포함된 상기 정보를 확인하는 단계와;
    상기 확인된 정보에 따라 MT-access를 설정하는 단계를 포함하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  9. 제1항에 있어서,
    상기 IMS 기반 서비스와 관련된 원인의 값들에 대한 정보를 상기 기지국으로부터 수신하는 단계를 더 포함하고,
    상기 수립 원인(establishment cause) 필드를 설정하는 단계에서는 상기 원인 값들 중 하나를 선택하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  10. 제1항에 있어서,
    상기 기지국으로부터 액세스 클래스 별 금지(Access Class Barring) 정보를 포함하는 시스템 정보를 수신하는 단계와, 여기서 상기 액세스 클래스별 금지 정보는 IMS 서비스에 대한 예외 규칙을 포함하고;
    상기 액세스 클래스별 금지 정보에 따라 상기 RRC 연결 요청 메시지를 전송할지 말지를 결정하는 단계를 더 포함하고,
    상기 결정 단계에서는 상기 IMS 기반 서비스를 연결하기 위한 IMS 기반 제어 신호 또는 SIP 기반 메시지가 전송될 필요가 있는 경우, 상기 RRC 연결 요청 메시지를 상기 예외 규칙에 따라 전송하는 것으로 결정하는 특징으로 하는 IMS 기반 서비스 연결 방법.
  11. IMS(IP Multimedia Subsystem)기반 서비스를 연결하는 단말로서,
    상기 IMS 기반 서비스를 연결하기 위해 IMS 기반 제어 신호 또는 SIP(Session Initiation Protocol) 기반 메시지가 사용자 평면 상에서 전송될 필요가 경우, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 원인 값을 수립 원인(establishment cause) 필드에 설정하는 제어부와;
    상기 제어부에 의해 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 서비스 타입(필드)을 포함하는 NAS(Non-Access Stratum) 계층의 서비스 요청 혹은 확장 서비스 요청 메시지를 기지국으로 전송하고, 상기 설정된 수립 원인 필드를 포함하는 RRC(Radio Resource Control) 연결 요청 메시지를 기지국으로 전송하는 송수신부를 포함하는 것을 특징으로 하는 단말.
PCT/KR2013/010843 2012-11-27 2013-11-27 Ims 기반 서비스 연결 방법 WO2014084596A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/646,593 US9585081B2 (en) 2012-11-27 2013-11-27 Method for connecting IMS-based service
KR1020157010849A KR101698285B1 (ko) 2012-11-27 2013-11-27 Ims 기반 서비스 연결 방법
CN201380061875.6A CN104871603B (zh) 2012-11-27 2013-11-27 用于连接基于ims的服务的方法
US15/414,262 US10616868B2 (en) 2012-11-27 2017-01-24 Method for connecting IMS-based service

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261730057P 2012-11-27 2012-11-27
US61/730,057 2012-11-27
US201361858090P 2013-07-24 2013-07-24
US61/858,090 2013-07-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/646,593 A-371-Of-International US9585081B2 (en) 2012-11-27 2013-11-27 Method for connecting IMS-based service
US15/414,262 Continuation US10616868B2 (en) 2012-11-27 2017-01-24 Method for connecting IMS-based service

Publications (1)

Publication Number Publication Date
WO2014084596A1 true WO2014084596A1 (ko) 2014-06-05

Family

ID=50828156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010843 WO2014084596A1 (ko) 2012-11-27 2013-11-27 Ims 기반 서비스 연결 방법

Country Status (4)

Country Link
US (2) US9585081B2 (ko)
KR (1) KR101698285B1 (ko)
CN (1) CN104871603B (ko)
WO (1) WO2014084596A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016070143A3 (en) * 2014-10-31 2016-06-23 T-Mobile Usa, Inc. Spi handling between ue and p-cscf in an ims network
WO2017018662A1 (ko) * 2015-07-24 2017-02-02 엘지전자 주식회사 Pdn 연결 수립 방법 및 사용자 장치
WO2017034272A1 (en) * 2015-08-24 2017-03-02 Samsung Electronics Co., Ltd. Method and apparatus for communication in wireless communication system
WO2017052154A1 (ko) * 2015-09-24 2017-03-30 엘지전자 주식회사 우선되는 서비스가 전송되는 방법 및 장치
WO2018088756A1 (ko) * 2016-11-09 2018-05-17 엘지전자 주식회사 Rrc 메시지를 전송하는 방법 및 무선 기기
WO2018128456A1 (ko) * 2017-01-06 2018-07-12 엘지전자 주식회사 5세대 이동통신 시스템에서 액세스 제어를 수행하는 방법 및 단말
EP3273723A4 (en) * 2015-03-20 2018-09-05 Nec Corporation Communication system, management device, communication terminal, communication control method, sensor information transmission method, and computer readable medium
CN109246815A (zh) * 2017-05-22 2019-01-18 展讯通信(上海)有限公司 通信方法、寻呼方法及装置、存储介质、终端、基站
EP3537843A4 (en) * 2016-11-03 2020-06-17 LG Electronics Inc. -1- METHOD FOR PASSING FROM NGS TO EPS IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREOF
WO2021029636A1 (ko) * 2019-08-12 2021-02-18 엘지전자 주식회사 Sip 메시지 타입에 기초한 ims 시그널링
EP3251411B1 (en) * 2015-01-30 2024-07-31 InterDigital Patent Holdings, Inc. Methods, apparatus and system for application specific congestion control for data communication (acdc)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089101A (ja) * 2013-09-26 2015-05-07 株式会社Nttドコモ 移動局、移動通信システム及びネットワーク装置
US9723466B2 (en) * 2013-11-01 2017-08-01 Nokia Technologies Oy Enhanced control of services
US20150181472A1 (en) * 2013-12-20 2015-06-25 Apple Inc. ESR Extension for LTE TDD to FDD Redirection for VoLTE
US10003972B2 (en) * 2014-01-06 2018-06-19 Intel IP Corporation Systems, methods, and devices for application aware access control for communication on a mobile network
CN106664596B (zh) * 2014-07-30 2020-04-14 Lg 电子株式会社 在无线通信系统中执行用于wlan互通的接入控制的方法和装置
US9591548B1 (en) * 2014-09-16 2017-03-07 Sprint Spectrum L.P. Method and system for addressing an error condition associated with a service that enables user equipment devices being served by a first access network to engage in signaling with a second access network
US11259338B2 (en) * 2014-12-22 2022-02-22 Koninklijke Kpn N.V. Handling of connection setup requests
KR102003812B1 (ko) * 2015-03-13 2019-07-25 후아웨이 테크놀러지 컴퍼니 리미티드 서비스 처리 방법, 관련 장치 및 시스템
US9750047B1 (en) * 2015-09-02 2017-08-29 Sprint Spectrum L.P. Control of initial uplink grant based on random access request indicating planned initiation of packet-based real-time media session
CN106804119A (zh) * 2015-09-25 2017-06-06 华为技术有限公司 一种业务处理方法及装置
WO2017049643A1 (zh) 2015-09-25 2017-03-30 华为技术有限公司 一种业务处理方法及装置
JPWO2017077793A1 (ja) * 2015-11-06 2018-08-23 株式会社Nttドコモ ユーザ装置及び通知方法
US10219188B2 (en) * 2015-11-11 2019-02-26 Samsung Electronics Co., Ltd Handling IMS and CSFB call at user equipment in wireless network
EP3403467B1 (en) 2016-01-14 2020-07-22 LG Electronics Inc. -1- Method for connecting with network at ue in wireless communication system and apparatus therefor
CN107018577B (zh) * 2016-01-28 2022-01-25 中兴通讯股份有限公司 流程状态管理方法、移动终端、基站及流程状态管理系统
EP3419332B1 (en) * 2016-03-09 2022-09-28 Huawei Technologies Co., Ltd. Voice service processing method and apparatus
KR20180049885A (ko) * 2016-11-04 2018-05-14 삼성전자주식회사 무선 통신 시스템에서 코어망을 선택하기 위한 장치 및 방법
US10952125B2 (en) 2017-01-06 2021-03-16 Lg Electronics Inc. Method and device for configuring signaling category for access control mechanism in wireless communication system
EP3911020B1 (en) * 2017-02-10 2022-12-21 IPCom GmbH & Co. KG Roaming control
US10932175B2 (en) * 2017-03-21 2021-02-23 Lg Electronics Inc. Method for relay terminal to select remote terminal where access control is applied due to network congestion and relay terminal performing method
WO2019090649A1 (zh) 2017-11-09 2019-05-16 Oppo广东移动通信有限公司 一种接入控制的方法,设备及计算机可读介质和系统
US20190260807A1 (en) * 2018-02-16 2019-08-22 T-Mobile Usa, Inc. Local routing of media streams
EP3834397B1 (en) * 2018-08-10 2022-10-05 Lenovo (Singapore) Pte. Ltd. Transport layer protocol for sip message
EP4404606A3 (en) * 2018-12-05 2024-10-23 Intel Corporation Congestion control across different public land mobile networks
US11425263B2 (en) * 2019-05-03 2022-08-23 Lenovo (Singapore) Pte. Ltd. Validity information conditions for a protocol data unit session for background data transfer
EP4013143A4 (en) * 2019-08-07 2023-08-02 LG Electronics Inc. IMS SIGNALING
WO2021025432A1 (ko) * 2019-08-07 2021-02-11 엘지전자 주식회사 Ims 시그널링
US11140117B1 (en) 2020-03-20 2021-10-05 Sprint Communication Company L.P. Wireless messaging with high-priority quality-of-service
WO2022181979A1 (ko) * 2021-02-25 2022-09-01 삼성전자 주식회사 측정 보고를 수행하는 전자 장치 및 그 동작 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154408A1 (en) * 2006-01-04 2009-06-18 Kyeong-In Jeong Method and apparatus for transmitting sip data of idle mode ue in a mobile communication system
US20090238143A1 (en) * 2008-03-21 2009-09-24 Interdigital Patent Holdings, Inc. Method and apparatus to enable fallback to circuit switched domain from packet switched domain
WO2010141788A2 (en) * 2009-06-03 2010-12-09 Research In Motion Ltd Voice service in evolved packet system
US20110002327A1 (en) * 2009-06-03 2011-01-06 Johanna Lisa Dwyer Voice service in evolved packet system
US20120269099A1 (en) * 2009-10-02 2012-10-25 Research In Motion Limited System and Method for Determining Establishment Causes for Emergency Sessions

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070049342A1 (en) * 2005-08-26 2007-03-01 Net2Phone, Inc. MTA-cradle personal gateway
US9094257B2 (en) * 2006-06-30 2015-07-28 Centurylink Intellectual Property Llc System and method for selecting a content delivery network
US20090016334A1 (en) * 2007-07-09 2009-01-15 Nokia Corporation Secured transmission with low overhead
CN101931898B (zh) * 2009-06-26 2014-03-05 华为技术有限公司 用户面数据的传输方法、装置及系统
CN102696260B (zh) * 2010-01-08 2016-05-25 黑莓有限公司 紧急无线连接建立
CN102438292B (zh) * 2010-09-29 2015-06-10 中兴通讯股份有限公司 一种无线资源控制方法及系统
JP5396375B2 (ja) * 2010-11-30 2014-01-22 株式会社Nttドコモ 移動通信方法及び移動局
US8891512B2 (en) * 2011-08-19 2014-11-18 Htc Corporation Method of handling a VoIP connection of a mobile device and related communication device
GB2489545B (en) * 2011-11-29 2013-05-29 Renesas Mobile Corp Method, apparatus and computer program for establishing an emergency service
US20130201870A1 (en) * 2012-02-06 2013-08-08 Vivek Gupta Handling dual priority applications in a wireless communication network
JP6068037B2 (ja) * 2012-08-03 2017-01-25 株式会社Nttドコモ 移動局、ネットワーク装置及び移動通信方法
US9282579B2 (en) * 2013-05-23 2016-03-08 Broadcom Corporation Deactivating elevated priority public data network connections in user equipment
US9445304B2 (en) * 2013-08-19 2016-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Inverse service specific access control (SSAC)
CN115484639A (zh) * 2013-10-30 2022-12-16 交互数字专利控股公司 用于处理优先级服务拥塞的系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154408A1 (en) * 2006-01-04 2009-06-18 Kyeong-In Jeong Method and apparatus for transmitting sip data of idle mode ue in a mobile communication system
US20090238143A1 (en) * 2008-03-21 2009-09-24 Interdigital Patent Holdings, Inc. Method and apparatus to enable fallback to circuit switched domain from packet switched domain
WO2010141788A2 (en) * 2009-06-03 2010-12-09 Research In Motion Ltd Voice service in evolved packet system
US20110002327A1 (en) * 2009-06-03 2011-01-06 Johanna Lisa Dwyer Voice service in evolved packet system
US20120269099A1 (en) * 2009-10-02 2012-10-25 Research In Motion Limited System and Method for Determining Establishment Causes for Emergency Sessions

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10193939B2 (en) 2014-10-31 2019-01-29 T-Mobile U.S.A., Inc. SPI handling between UE and P-CSCF in an IMS network
US9729588B2 (en) 2014-10-31 2017-08-08 T-Mobile Usa, Inc. SPI handling between UE and P-CSCF in an IMS network
CN107113310A (zh) * 2014-10-31 2017-08-29 T移动美国公司 在互联网协议多媒体子系统网络中的用户设备和代理呼叫会话控制功能之间的安全参数信息处理
WO2016070143A3 (en) * 2014-10-31 2016-06-23 T-Mobile Usa, Inc. Spi handling between ue and p-cscf in an ims network
US10412128B2 (en) 2014-10-31 2019-09-10 T-Mobile Usa, Inc. SPI handling between UE and P-CSCF in an IMS network
EP3251411B1 (en) * 2015-01-30 2024-07-31 InterDigital Patent Holdings, Inc. Methods, apparatus and system for application specific congestion control for data communication (acdc)
US10863417B2 (en) 2015-03-20 2020-12-08 Nec Corporation Communication system, management apparatus, communication terminal, communication control method, sensor information transmission method, and computer readable medium
EP3273723A4 (en) * 2015-03-20 2018-09-05 Nec Corporation Communication system, management device, communication terminal, communication control method, sensor information transmission method, and computer readable medium
WO2017018662A1 (ko) * 2015-07-24 2017-02-02 엘지전자 주식회사 Pdn 연결 수립 방법 및 사용자 장치
US10687380B2 (en) 2015-07-24 2020-06-16 Lg Electronics Inc. PDN connection management method and network entity
US10327277B2 (en) 2015-07-24 2019-06-18 Lg Electronics Inc. PDN connection establishment method and user equipment
CN107926069A (zh) * 2015-08-24 2018-04-17 三星电子株式会社 无线通信系统中用于通信的方法和装置
US10142920B2 (en) 2015-08-24 2018-11-27 Samsung Electronics Co., Ltd. Method and apparatus for communication in wireless communication system
WO2017034272A1 (en) * 2015-08-24 2017-03-02 Samsung Electronics Co., Ltd. Method and apparatus for communication in wireless communication system
WO2017052154A1 (ko) * 2015-09-24 2017-03-30 엘지전자 주식회사 우선되는 서비스가 전송되는 방법 및 장치
US11039380B2 (en) 2016-11-03 2021-06-15 Lg Electronics Inc. Method for moving from NGS to EPS in wireless communication system and apparatus therefor
EP3537843A4 (en) * 2016-11-03 2020-06-17 LG Electronics Inc. -1- METHOD FOR PASSING FROM NGS TO EPS IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREOF
WO2018088756A1 (ko) * 2016-11-09 2018-05-17 엘지전자 주식회사 Rrc 메시지를 전송하는 방법 및 무선 기기
US11064555B2 (en) 2016-11-09 2021-07-13 Lg Electronics Inc. Method for transmitting RRC message and wireless device
WO2018128456A1 (ko) * 2017-01-06 2018-07-12 엘지전자 주식회사 5세대 이동통신 시스템에서 액세스 제어를 수행하는 방법 및 단말
US10986562B2 (en) 2017-01-06 2021-04-20 Lg Electronics Inc. Method and terminal for carrying out access control in 5th generation mobile communication system
US11160007B2 (en) 2017-01-06 2021-10-26 Lg Electronics Inc. Method and terminal for carrying out access control in 5th generation mobile communication system
WO2018128458A1 (ko) * 2017-01-06 2018-07-12 엘지전자 주식회사 5세대 이동통신 시스템에서 액세스 제어를 수행하는 방법 및 단말
CN109246815A (zh) * 2017-05-22 2019-01-18 展讯通信(上海)有限公司 通信方法、寻呼方法及装置、存储介质、终端、基站
WO2021029636A1 (ko) * 2019-08-12 2021-02-18 엘지전자 주식회사 Sip 메시지 타입에 기초한 ims 시그널링

Also Published As

Publication number Publication date
KR20150079643A (ko) 2015-07-08
CN104871603A (zh) 2015-08-26
US10616868B2 (en) 2020-04-07
KR101698285B1 (ko) 2017-01-19
US20170142706A1 (en) 2017-05-18
US20150304937A1 (en) 2015-10-22
US9585081B2 (en) 2017-02-28
CN104871603B (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2014084596A1 (ko) Ims 기반 서비스 연결 방법
WO2018155934A1 (ko) 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치
WO2017171184A1 (ko) Nb-iot rat에서 네트워크 액세스를 시도하는 방법
WO2018128519A1 (ko) 무선 통신 시스템에서 리모트 ue와 연결을 가진 릴레이 ue가 네트워크와 연결 수행 방법 및 이를 위한 장치
WO2018101574A1 (ko) Ps 데이터 오프 기능을 사용하는 방법 및 사용자 장치
WO2017052335A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 수행하는 방법 및 이를 위한 장치
WO2018084635A1 (ko) 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치
WO2018131970A1 (ko) 네트워크에서 혼잡이 발생한 경우 혼잡을 제어하는 방법
WO2017034352A1 (ko) 기지국 접속 방법 및 이를 수행하는 사용자 장치
WO2015016546A1 (ko) Ims 서비스를 위한 페이징 방법 및 장치
WO2016190672A1 (ko) 무선 통신 시스템에서 후원 연결을 위한 접속 절차를 수행하는 방법 및 단말
WO2017069435A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치
WO2015037882A1 (ko) 제어 평면을 담당하는 네트워크 노드를 재선택하는 방법
WO2016076603A1 (ko) Acdc에 의한 네트워크 액세스 차단 방법 및 사용자 장치
WO2017191973A1 (ko) 무선 통신 시스템에서 리모트 ue의 위치 등록 수행 방법 및 이를 위한 장치
WO2015002456A1 (ko) 근접 서비스를 위해 중계기를 선택 또는 재선택하는 방법
WO2014069928A1 (ko) Mtc 기기의 데이터 전송 방법
WO2014058245A1 (ko) 추적 영역 갱신 방법 및 단말
WO2018088630A1 (ko) Rrc 메시지를 전송하는 방법 및 무선 기기
WO2016105004A1 (ko) 무선 통신 시스템에서 nbifom 캐퍼빌리티를 송수신하는 방법 및 이를 위한 장치
WO2015009070A1 (ko) Plmn 선택 방법 및 사용자 장치
WO2015102444A1 (ko) 근접 통신을 위한 탐지 신호 전송 방법 및 사용자 장치
WO2017030343A1 (ko) 게이트웨이를 재배정하는 방법 및 전용 베어러를 생성하는 방법
WO2014051260A1 (ko) Mtc 모니터링 방법
WO2015137631A1 (ko) 근접 서비스 수행 방법 및 사용자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157010849

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14646593

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857856

Country of ref document: EP

Kind code of ref document: A1