KR20150079643A - Ims 기반 서비스 연결 방법 - Google Patents

Ims 기반 서비스 연결 방법 Download PDF

Info

Publication number
KR20150079643A
KR20150079643A KR1020157010849A KR20157010849A KR20150079643A KR 20150079643 A KR20150079643 A KR 20150079643A KR 1020157010849 A KR1020157010849 A KR 1020157010849A KR 20157010849 A KR20157010849 A KR 20157010849A KR 20150079643 A KR20150079643 A KR 20150079643A
Authority
KR
South Korea
Prior art keywords
ims
service
request message
rrc
rrc connection
Prior art date
Application number
KR1020157010849A
Other languages
English (en)
Other versions
KR101698285B1 (ko
Inventor
김재현
김태현
김래영
이영대
김현숙
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20150079643A publication Critical patent/KR20150079643A/ko
Application granted granted Critical
Publication of KR101698285B1 publication Critical patent/KR101698285B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Abstract

본 명세서는 단말에서 IMS(IP Multimedia Subsystem)기반 서비스를 연결하는 방법을 제공한다. 상기 IMS 기반 서비스를 연결하는 방법은: 상기 IMS 기반 서비스를 연결하기 위해 SIP(Session Initiation Protocol) 기반 메시지가 사용자 평면 상에서 전송될 필요가 경우, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 원인 값을 수립 원인(establishment cause) 필드에 설정하는 단계와; 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 서비스 타입(필드)를 포함하는 NAS(Non-Access Stratum) 계층의 서비스 요청 메시지를 기지국으로 전송하는 단계와; 상기 설정된 수립 원인 필드를 포함하는 RRC(Radio Resource Control) 연결 요청 메시지를 기지국으로 전송하는 단계를 포함할 수 있다.

Description

IMS 기반 서비스 연결 방법{METHOD FOR CONNECTING IMS-BASED SERVICE}
본 발명은 IMS 기반 서비스 연결 방법에 관한 것이다.
이동통신 시스템의 기술 규격을 제정하는 3GPP에서는 4세대 이동통신과 관련된 여러 포럼들 및 새로운 기술에 대응하기 위하여, 2004년 말경부터 3GPP 기술들의 성능을 최적화 시키고 향상시키려는 노력의 일환으로 LTE/SAE (Long Term Evolution/System Architecture Evolution) 기술에 대한 연구를 시작하였다.
3GPP SA WG2을 중심으로 진행된 SAE는 3GPP TSG RAN의 LTE 작업과 병행하여 네트워크의 구조를 결정하고 이 기종 망간의 이동성을 지원하는 것을 목적으로 하는 망 기술에 관한 연구이며, 최근 3GPP의 중요한 표준화 이슈들 중 하나이다. 이는 3GPP 시스템을 IP 기반으로 하여 다양한 무선 접속 기술들을 지원하는 시스템으로 발전 시키기 위한 작업으로, 보다 향상된 데이터 전송 능력으로 전송 지연을 최소화 하는, 최적화된 패킷 기반 시스템을 목표로 작업이 진행되어 왔다.
3GPP SA WG2에서 정의한 SAE 상위 수준 참조 모델(reference model)은 비로밍 케이스(non-roaming case) 및 다양한 시나리오의 로밍 케이스(roaming case)를 포함하고 있으며, 상세 내용은 3GPP 표준문서 TS 23.401과 TS 23.402에서 참조할 수 있다. 도 1의 네트워크 구조도는 이를 간략하게 재구성 한 것이다.
도 1은 진화된 이동 통신 네트워크의 구조도이다.
EPC(Evolved Packet Core)는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, S-GW(Serving Gateway)(52), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity) (53), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
S-GW(52)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, 기지국, 즉 eNodeB(22)와 PDN GW(53) 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말(또는 User Equipment : UE)이 eNodeB(22)에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, S-GW(52)는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 S-GW(52)를 통해서 패킷들이 라우팅될 수 있다. 또한, S-GW(52)는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW) (53)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW(53)는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 S-GW(52)와 PDN GW(53)가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME(51)는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME(51)는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME(51)는 수많은 eNodeB(22)들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME(51)는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말(또는 UE)은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
표 1
Figure pct00001
Figure pct00002
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적으로 E-UTRAN과 일반적인 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB(20)는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB(20)의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어저 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3a은 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 3b는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다.
상기 무선인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling)전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3a에 도시된 제어 평면의 무선프로토콜과 도 3b에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC휴지상태(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on) 한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3a에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 4a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE(10)가 기지국, 즉 eNodeB(20)과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE(10)는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB(20)로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE(10)은 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB(20)로 전송한다. UE(10)은 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE(10)은 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB(20)은 랜덤 액세스 응답(random access response, RAR)을 UE(10)로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE(10)은 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE(10)은 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 4b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 4b에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE(10)의 RRC 계층의 엔티티(entity)가 eNodeB(20)의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 상태(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE(10)은 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE(10)을 효과적으로 제어할 수 있다. 반면에 유휴 상태(idle state)의 UE(10)은 eNodeB(20)이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 상태(idle state) UE(10)은 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE(10)의 전원을 맨 처음 켰을 때, 상기 UE(10)은 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 상태(idle state)에 머무른다. 상기 유휴 상태(idle state)에 머물러 있던 UE(10)은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 eNodeB(20)의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 상태(Idle state)에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 상태(idle state)의 UE(10)이 상기 eNodeB(20)와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE(10)이 eNodeB(20)으로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB(20)가 UE(10)로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE(10)이 eNodeB(20)으로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 4b를 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 상태(Idle state)의 UE(10)은 통화 시도, 데이터 전송 시도, 또는 eNodeB(20)의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE(10)은 RRC 연결 요청(RRC connection request) 메시지를 eNodeB(20)으로 전송한다.
2) 상기 UE(10)로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB(10) 는 무선 자원이 충분한 경우에는 상기 UE(10)의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE(10)로 전송한다.
3) 상기 UE(10)이 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB(20)로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE(10)이 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE(10)은 eNodeB(20)과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
한편, UE(100)가 사용자 평면의 데이터 전송을 목적으로 RRC 연결 요청을 하는 경우, 상기 네트워크, 예컨대 기지국(즉, eNodeB)가 혼잡 상태라면, 이를 거절할 수 있다. 반면, UE(100)가 CS(circuit switch) 기반의 호(call)을 요청하기 위한 제어 평면의 신호를 전송할 목적으로 RRC 연결 요청을 하는 경우, 상기 네트워크, 예컨대 기지국(즉, eNodeB)이 혼잡 상태일 지라도, 이를 거절할 수 없다.
그런데, VoLTE(Voice over LTE)와 같은 IMS 서비스(즉, ALL IP 서비스)는 호(call) 발신과 수신을 위한 제어 신호로서 IMS(IP Multimedia Subsystem)의 SIP(Session initiation protocol) 기반의 신호를 사용하는데, 이러한 SIP 기반의 제어 신호들은 제어 평면이 아닌 사용자 평면 상에서 전송이 된다. 따라서, 상기 UE(100)가 VoLTE와 같은 IMS 서비스(즉, ALL IP 서비스)를 개시하고자, SIP 기반의 제어 신호를 전송하기 위해 RRC 연결 요청을 하는 경우, 상기 네트워크, 예컨대 기지국(즉, eNodeB)가 혼잡 상태라면, 이를 거절할 수 있게 되버린다.
따라서, 네트워크 혼잡 상태에서는 호(call) 마저 끊겨버리는(drop) 문제가 발생한다.
따라서, 본 명세서의 일 개시는 전술한 문제점을 해결할 수 있는 방안을 제시하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여, 본 명세서는 단말에서 IMS(IP Multimedia Subsystem)기반 서비스를 연결하는 방법을 제공한다. 상기 IMS 기반 서비스를 연결하는 방법은: 상기 IMS 기반 서비스를 연결하기 위해 IMS 기반의 제어 신호 혹은 SIP(Session Initiation Protocol) 기반 메시지가 사용자 평면 상에서 전송될 필요가 경우, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 원인 값을 수립 원인(establishment cause) 필드에 설정하는 단계와; 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 서비스 타입(필드)을 포함하는 NAS(Non-Access Stratum) 계층의 서비스 요청 메시지를 기지국으로 전송하는 단계와; 상기 설정된 수립 원인 필드를 포함하는 RRC(Radio Resource Control) 연결 요청 메시지를 기지국으로 전송하는 단계를 포함할 수 있다.
상기 수립 원인 필드에는 일반 데이터의 전송을 의미하는 원인 값 대신에, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 상기 원인 값이 설정될 수 있다.
상기 RRC 연결 요청 메시지를 전송하는 단계는: 상기 단말의 NAS 계층이 상기 설정된 원인 값을 상기 단말의 RRC 계층으로 전달하는 단계와; 상기 단말의 RRC 계층이 상기 설정된 원인 값에 따라 RRC 연결 요청 메시지의 원인 필드를 설정하는 단계와; 상기 설정된 원인 필드를 포함하는 RRC 연결 요청 메시지를 전송하는 단계를 포함할 수 있다.
상기 IMS 기반 서비스는 IMS 기반의 음성 호 서비스, 화상 호 서비스, 그리고 멀티미디어 전화(Multimedia telephony) 서비스 중 하나에 해당할 수 있다.
상기 IMS 기반 서비스가 상기 단말에 의해서 개시되는 것일 경우, 상기 서비스 타입(필드)은 IMS Voice, IMS Video, MMTEL over PS Session, 그리고 새로운 서비스 타입(필드) 값 중 어느 하나에 해당할 수 있다.
상기 IMS 기반 서비스가 상기 단말에 의해서 개시되는 것일 경우, 상기 원인 값은 MO-signaling, MO-IMS MMTEL service, MO-IMS access, 그리고 새로운 원인 값 중 어느 하나에 해당할 수 있다.
대안적으로, 상기 NAS 계층의 서비스 요청 메시지 혹은 확장 서비스 요청메시지가 상기 기지국으로부터 수신되는 페이징 신호에 응답하여 전송될 경우, 상기 서비스 타입(필드)은 IMS Voice, IMS Video, MMTEL over PS Session, 그리고 새로운 서비스 타입(필드) 값 중 어느 하나에 해당할 수 있다. 또한, 상기 원인 값은 MT-access 그리고 새로운 원인 값 중 어느 하나에 해당할 수 있다.
상기 기지국으로부터 수신되는 페이징 신호는 상기 IMS 기반 서비스에 따른 착신인지 혹은 일반 데이터의 착신인지를 나타내는 정보를 포함할 수 있다. 이 경우, 상기 수립 원인 필드를 설정하는 단계는: 상기 페이징 신호 내에 포함된 상기 정보를 확인하는 단계와; 상기 확인된 정보에 따라 여러 원인 값들 중 하나를 선택하는 단계를 포함할 수 있다.
상기 방법은 상기 IMS 기반 서비스와 관련된 원인의 값들에 대한 정보를 상기 기지국으로부터 수신하는 단계를 더 포함할 수 있다. 이 경우, 상기 수립 원인(establishment cause) 필드를 설정하는 단계에서는 상기 원인 값들 중 하나를 선택될 수 있다.
상기 방법은 상기 기지국으로부터 액세스 클래스 별 금지(Access Class Barring) 정보를 포함하는 시스템 정보를 수신하는 단계를 더 포함할 수 있다. 여기서 상기 액세스 클래스별 금지 정보는 IMS 서비스에 대한 예외 규칙을 포함할 수 있다. 이 경우, 상기 방법은 상기 액세스 클래스별 금지 정보에 따라 상기 RRC 연결 요청 메시지를 전송할지 말지를 결정하는 단계를 더 포함할 수 있다. 상기 결정 단계에서는 상기 IMS 기반 서비스를 연결하기 위한 IMS 기반의 제어 신호 혹은 SIP 기반 메시지가 전송될 필요가 있는 경우, 상기 RRC 연결 요청 메시지를 상기 예외 규칙에 따라 전송하는 것으로 결정될 수 있다.
다른 한편, 본 명세서는 IMS(IP Multimedia Subsystem)기반 서비스를 연결하는 단말을 또한 제공한다. 상기 단말은 상기 IMS 기반 서비스를 연결하기 위해 IMS 기반의 제어 신호 혹은 SIP(Session Initiation Protocol) 기반 메시지가 사용자 평면 상에서 전송될 필요가 경우, 상기 IMS 기반 서비스를 의미하는 서비스 타입 (혹은 필드)을 NAS(Non-Access Stratum) 계층의 서비스 요청 메시지 혹은 확장 서비스 요청 메시지에 셋팅하여(포함하여) 네트워크(MME)로 전송하고 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 원인 값을 수립 원인(establishment cause) 필드에 설정하는 제어부와; 그리고 상기 제어부에 의해 설정된 수립 원인 필드를 포함하는 RRC(Radio Resource Control) 연결 요청 메시지를 기지국으로 전송하는 송수신부를 포함할 수 있다.
종래에는, UE가 IMS 기반의 호(call)(예컨대, VoLTE)를 개시하고자, IMS 기반의 제어 신호 혹은 SIP 기반의 제어 신호를 전송하기 위해 RRC 연결 요청을 하는 경우, 혼잡 상태에 있는 기지국(즉, eNodeB)은 IMS 기반의 호(call)와 일반 데이터와 구분하지 못하고, 일반 데이터를 위한 RRC 연결 요청과 더불어 IMS 기반의 호(call)를 위한 RRC 연결 요청 마저도 드롭(drop)시키는 문제가 있었다.
그러나, 본 명세서의 개시에 의하면, 이러한 문제가 해결되어, 사용자의 불편을 해소할 수 있다.
도 1은 진화된 이동 통신 네트워크의 구조도이다.
도 2는 일반적으로 E-UTRAN과 일반적인 EPC의 아키텍처를 나타낸 예시도이다.
도 3a은 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 3b는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다.
도 4a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
도 4b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 5는 네트워크 과부하 상태를 나타낸다.
도 6a은 도 5에 도시된 eNodeB의 혼잡 상황에서 UE가 RRC 연결 요청이 거절되는 예를 나타낸다.
도 6b은 도 5에 도시된 eNodeB의 혼잡 상황에서 UE의 착신 상황을 나타낸다.
도 7은 네트워크 혼잡 상태에서 액세스 클래스에 따른 금지(Access Class Barring)에 따른 동작을 나타낸 예시적인 흐름도이다.
도 8a는 도 6a의 문제점을 해결하기 위해 본 명세서의 첫 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
도 8b는 도 6b의 착신 상황에서 문제점을 해결하기 위해 본 명세서의 첫 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
도 9는 도 7의 문제점을 해결하기 위해 본 명세서의 두 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
도 10은 본 발명의 실시예에 따른 UE(100) 및 eNodeB(200)의 구성 블록도이다.
본 발명은 UMTS(Universal Mobile Telecommunication System) 및 EPC(Evolved Packet Core)를 기준으로 설명되나, 본 발명은 이러한 통신 시스템에만 한정되는 것이 아니라, 본 발명의 기술적 사상이 적용될 수 있는 모든 통신 시스템 및 방법에도 적용될 수 있다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
첨부된 도면에서는 예시적으로 UE(User Equipment)가 도시되어 있으나, 도시된 상기 UE는 단말(Terminal), ME(Mobile Equipment), 등의 용어로 언급될 수 도 있다. 또한, 상기 UE는 노트북, 휴대폰, PDA, 스마트 폰(Smart Phone), 멀티미디어 기기등과 같이 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다.
용어의 정의
이하 도면을 참조하여 설명하기 앞서, 본 발명의 이해를 돕고자, 본 명세서에서 사용되는 용어를 간략하게 정의하기로 한다.
UMTS : Universal Mobile Telecommunication System의 약자로서 3세대 이동통신 네트워크를 의미한다.
UE/MS : User Equipment/Mobile Station, 단말 장치를 의미 함.
EPS : Evolved Packet System의 약자로서, LTE(Long Term Evolution) 네트워크를 지원하는 코어 네트워크를 의미한다. UMTS가 진화된 형태의 네트워크
PDN (Public Data Network) : 서비스를 제공하는 서버가 위치한 독립적인망
PDN connection : 단말에서 PDN으로의 연결, 즉, IP 주소로 표현되는 단말과 APN(Access Point Name)으로 표현되는 PDN과의 연관(연결)
PDN-GW (Packet Data Network Gateway) : UE IP address allocation, Packet screening & filtering, Charging data collection 기능을 수행하는 EPS망의 네트워크 노드
Serving GW(Serving Gateway) : 이동성 담당(Mobility anchor), 패킷 라우팅(Packet routing), 유휴 모드 패킷 버퍼링(Idle mode packet buffering), Triggering MME to page UE 기능을 수행하는 EPS망의 네트워크 노드
PCRF(Policy and Charging Rule Function) : 서비스 flow 별로 차별화된 QoS 및 과금 정책을 동적(dynamic) 으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS망의 노드
APN (Access Point Name) : 네트워크에서 관리하는 접속 포인트의 이름으로서 UE에게 제공된다. 즉, PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 망(PDN)에 접속하기 위해서는 해당 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 망 내에서 미리 정의한 이름(문자열) (예) internet.mnc012.mcc345.gprs
TEID(Tunnel Endpoint Identifier) : 네트워크 내 노드들 간에 설정된 터널의 End point ID, 각 UE의 bearer 단위로 구간별로 설정된다.
NodeB : UMTS 네트워크의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
eNodeB : EPS(Evolved Packet System) 의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
(e)NodeB : NodeB와 eNodeB를 지칭하는 용어이다.
MME : Mobility Management Entity의 약자로서, UE에 대한 세션과 이동성을 제공하기 위해 EPS 내에서 각 엔티티를 제어하는 역할을 한다.
세션(Session) : 세션은 데이터 전송을 위한 통로로써 그 단위는 PDN, Bearer, IP flow 단위 등이 될 수 있다. 각 단위의 차이는 3GPP에서 정의한 것처럼 대상 네트워크 전체 단위(APN 또는 PDN 단위), 그 내에서 QoS로 구분하는 단위(Bearer 단위), 목적지 IP 주소 단위로 구분할 수 있다.
PDN 연결(connection) : 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)을 나타낸다. 이는 세션이 형성될 수 있도록 코어 네트워크 내의 엔티티간 연결(단말-PDN GW)을 의미한다.
UE Context : 네크워크에서 UE를 관리하기 위해 사용되는 UE의 상황 정보, 즉, UE id, 이동성(현재 위치 등), 세션의 속성(QoS, 우선순위 등)으로 구성된 상황 정보
OMA DM (Open Mobile Alliance Device Management) : 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 디바이스들 관리를 위해 디자인 된 프로토콜로써, 디바이스 설정(configuration), 펌웨어 업그레이드(firmware upgrade), 에러 보고 (Error Report)등의 기능을 수행함
OAM (Operation Administration and Maintenance) : OAM이란 네트워크 결함 표시, 기능 정보, 그리고 데이터와 진단 기능을 제공하는 네트워크 관리 기능군을 말함
NAS configuration MO (Management Object) : NAS 기능 (Functionality)와 연관된 파라미터들(parameters)을 UE에게 설정(configuration)하는 데 사용하는 MO (Management object)를 말함
MTC : Machine Type Communication으로 사람의 개입 없이 장치간 또는 장치와 서버간에 일어나는 통신
MTC 기기(device) : 핵심 네트워크를 통한 통신기능이 있는 특정 목적을 수행하는 UE, 예) 자판기, 검침기, 기상센서 등. MTC 기기는 MTC 단말, MTC 장치, MTC 기계, MTC UE, UE used for MTC, UE configured for MTC 등으로 불릴 수도 있다.
MTC 서버 : MTC device를 관리하고 데이터를 주고 받는 네트워크 상의 서버. 이는 core network 외부에 있을 수 있다.
MTC 애플리케이션 : MTC device와 MTC Server를 이용한 실제 응용 (원격 검침, 물량 이동 추적 등)
MTC Feature : MTC 애플리케이션을 지원하기 위한 네트워크의 기능이나 특징, 즉, 각 application의 용도에 따라 일부 feature들이 요구된다. 예를 들어 MTC monitoring (장비 분실 등에 대비한 원격 검침 등에 필요), Low mobility (자판기의 경우 이동이 거의 없다.), Small data transmission (MTC 기기가 소량의 데이터만을 송/수신) 등이 있다.
MTC User : MTC 서버에 의해 제공되는 서비스를 사용하는 user.
NAS (Non-Access-Stratum) : UE와 MME간의 제어 플레인(control plane)의 상위 stratum. UE와 네트워크간의 이동성 관리(Mobility management)와 세션 관리 (Session management), IP 주소 관리 (IP address maintenance) 등을 지원
MM (Mobility Management) 동작/절차 : UE의 이동성 (mobility) 제어/관리/control을 위한 동작 또는 절차. MM 동작/절차는 CS 망에서의 MM 동작/절차, GPRS 망에서의 GMM 동작/절차, EPS 망에서의 EMM 동작/절차 중 하나 이상을 포함하는 것으로 해석될 수 있다. UE와 네트워크 노드(MME, SGSN, MSC)는 MM 동작/절차를 수행하기 위해 MM 메시지를 주고 받는다.
SM(Session Management) 동작/절차 : UE의 user plane 및/또는 bearer context/PDP context를 제어/관리/처리/handling 하기 위한 동작 또는 절차. SM 동작/절차는 GPRS 망에서의 SM 동작/절차, EPS 망에서의 ESM 동작/절차 중 하나 이상을 포함하는 것으로 해석될 수 있다. UE와 네트워크 노드(MME, SGSN)는 SM 동작/절차를 수행하기 위해 SM 메시지를 주고 받는다.
저 순위(Low priority) 단말 : NAS 신호 저 순위로 설정된 단말. 자세한 사항은 표준문서 3GPP TS 24.301 및 TS 24.008을 참고할 수 있다.
정상 순위(Normal priority) 단말: 저 순위(Low priority)로 설정되지 않은 일반적인 단말
이중 순위(Dual priority) 단말 : 이중 순위(Dual priority)로 설정된 단말, 이는 NAS 신호 저순위로 설정됨과 동시에 상기 설저된 NAS 신호 저 순위를 무시(override) 할 수 있게 설정된 단말(즉, UE which provides dual priority support is configured for NAS signalling low priority and also configured to override the NAS signalling low priority indicator). 자세한 사항은 표준문서 3GPP TS 24.301 및 TS 24.008을 참고할 수 있다.
이하, 도면을 참조하여 본 명세서의 개시에 대해서 설명하기로 한다.
도 5는 네트워크 과부하 상태를 나타낸다.
도 5에 도시된 바와 같이, eNodeB(200)의 커버리지에는 수 많은 UE들(100a, 100b, 300c, 300d)가 존재하고, 데이터 송수신을 시도한다. 이로 인해, 상기 eNodeB(200)와 상기 S-GW(520)간의 인터페이스에 트래픽이 과부하(overload) 또는 혼잡(congestion)하게 된 경우, 상기 UE(100)로의 다운링크 데이터 혹은 상기 UE(100)로부터의 업링크 데이터는 올바르게 전송되지 못하고 실패하게 된다.
혹은 상기 S-GW(520)와 상기 PDN-GW(530) 간의 인터페이스, 혹은 상기 PDN-GW(530)와 이동통신 사업자의 IP(Internet Protocol) 서비스 네트워크 사이의 인터페이스가 과부하(overload) 또는 혼잡(congestion)할 경우에도, 상기 UE들(100a, 100b, 300c, 300d)로의 다운링크 데이터 혹은 UE들(100a, 100b, 300c, 300d)로부터의 업링크 데이터는 올바르게 전송되지 못하고 실패하게 된다.
상기 eNodeB(200)와 상기 S-GW(520)간의 인터페이스에 과부하 또는 혼잡이 있거나, 상기 S-GW(520)와 상기 PDN-GW(530) 간의 인터페이스에 과부하 또는 혼잡이 있는 경우, 상기 핵심 네트워크의 노드(예컨대 MME)는 NAS 단계에서의 혼잡 제어(NAS level congestion control)을 수행하여 신호 혼잡(signaling congestion) 및 APN 혼잡을 회피하거나 제어하게 된다.
이러한 NAS 단계에서의 혼잡 제어는 APN 기반의 혼잡 제어(APN based congestion control)와 일반 NAS 단계에서 이동 관리 제어(General NAS level mobility management control)로 구성된다.
상기 APN 기반의 혼잡 제어는 UE 그리고 특정 APN(혼잡 상태와 연관된 APN)와 관련된 EMM, GMM과 (E)SM 신호 혼잡 제어를 의미하며, APN 기반의 세션 관리 혼잡 제어(APN based Session Management congestion control)와 APN 기반의 이동 관리 혼잡 제어(APN based Mobility Management congestion control)를 포함한다.
반면, 상기 일반 NAS 단계의 이동 관리 제어는 일반적인 네트워크 혼잡(congestion)이나, 과부하(overload)상황에서 UE/MS가 요청하는 이동 관리신호(Mobility Management signaling) 요청을 핵심 네트워크 내의 노드(MME, SGSN)가 거절하여 혼잡 및 과부하를 회피하는 것을 의미한다.
일반적으로 핵심 네트워크가 NAS 단계의 혼잡 제어를 수행하는 경우, 유휴 모드(idle mode)로 있는 혹은 연결 모드(connected mode)로 있는 UE에게 지연시간 타이머(백오프 타이머)(back-off timer) 값을 NAS 거절 메시지(reject message)에 실어 전송하게 되는데, UE는 지연시간 타이머(백오프 타이머)(back-off timer)가 만료(expire) 되기 전까지 네트워크에 EMM/GMM/(E)SM 신호를 요청하지 않게 된다. 상기 NAS 거절 메시지는 어태치 거절(ATTACH REJECT), TAU(Tracking Area Updating) 거절, RAU (Routing Area Updating) 거절, 서비스 거절, 확장 서비스(EXTENDED SERVICE) 거절, PDN 연결(connectivity) 거절, 베어러 리소스 할당(bearer resource allocation) 거절, 베어러 리소스 수정(bearer resource modification) 거절, EPS 베어러 컨텍스트 비활성화 요청(deactivate EPS bearer context request)에 대한 거절의 메시지 중 하나에 해당한다.
이러한 지연시간 타이머(back-off timer)은 이동 관리(Mobility Management: MM) 지연시간(back-off) 타이머와 세션 관리(Session Management: SM) 지연시간(back-off) 타이머로 나눌 수 있다.
상기 MM 지연시간(back-off) 타이머는 UE 마다 그리고 SM 지연시간(back-off) 타이머는 APN 마다 그리고 UE 마다 각각 독립적으로 동작한다.
간략하게는, 상기 MM 지연시간(back-off) 타이머는 EMM/GMM 신호(예컨대, Attach, TAU/RAU 요청 등) 제어를 위한 것이다. 상기 SM 지연시간(back-off) 타이머는 (E)SM 신호(예컨대, PDN connectivity, Bearer Resource Allocation, Bearer Modification, PDP Context Activation, PDP Context Modification 요청 등) 제어를 위한 것이다.
구체적으로는, MM 지연시간(back-off) 타이머는 네트워크에 혼잡(congestion)이 발생한 경우, 이를 제어하기 위해 사용하는 이동성 관련 지연시간(back-off) 타이머로써, 타이머가 동작하고 있는 동안 UE는 어태치(attach), 위치정보 갱신(TAU, RAU), 서비스 요청 절차(Service request procedure)를 할 수 없도록 하는 타이머이다. 단, 긴급 베어러 서비스(emergency bearer service), MPS(Multimedia Priority Service) 인 경우에는 예외로 타이머가 동작하고 있더라도 UE(가 요청 가능할 수 있다.
전술한 바와 같이 UE가 MM 지연시간(back-off) 타이머 값을 핵심 망 네트워크 노드(예컨대 MME, SGSN 등)로부터 제공받거나, 하위 계층(lower layer; Access Stratum)으로부터 전달받을 수 있다. 또한, UE에 의해 15분에서 30분 사이의 범위 내에서 랜덤하게 설정되어질 수도 있다.
상기 SM 지연시간(back-off) 타이머는 네트워크에 혼잡(congestion)이 발생한 경우, 이를 제어하기 위해 사용하는 세션 관리(Session Management) 관련 지연시간(back-off) 타이머로써, 타이머가 동작하고 있는 동안 UE는 관련된(associated) APN 기반의 세션을 설정 또는 변경할 수 없도록 하는 타이머이다. 단, 마찬가지로 긴급 베어러 서비스, MPS(Multimedia Priority Service) 인 경우에는 예외로 타이머가 동작하고 있더라도 UE(100) 가 요청 가능할 수 있다.
UE는 이러한 SM 지연시간(back-off) 타이머 값을 핵심 망 네트워크 노드 (예컨대, MME, SGSN 등)로부터 제공받으며, 최대 72시간 이내에서 랜덤하게 설정되어진다. 또한, UE(100)에 의해 15분에서 30분 사이의 범위 내에서 랜덤하게 설정되어질 수도 있다.
다른 한편, 상기 eNodeB(200)에서 혼잡이 발생한 경우, 상기 eNodeB(200)도 혼잡 제어를 수행할 수 있다. 즉, UE가 사용자 평면의 데이터 전송을 목적으로 RRC 연결 수립(connection establishment)을 요청하는 경우, eNodeB(200)가 혼잡 상태라면, 연장 대기 타이머(extended wait timer)와 함께 거절 응답을 UE로 전송할 수 있다. 이러한 경우 RRC 연결 수립 요청을 상기 연장 대기 타이머(extended wait timer)가 만료하기 전까지 재시도할 수 없다. 반면, UE가 CS(circuit switch) 기반의 호(call) 수신을 위한 제어 평면의 신호를 전송할 목적으로 RRC 연결 요청을 하는 경우, 상기 eNodeB(200)가 혼잡 상태일 지라도, 이를 거절할 수 없다.
그런데, VoLTE(Voice over LTE)와 같은 ALL IP 서비스는 호(call) 발신과 수신을 위한 제어 신호로서 IMS(IP Multimedia Subsystem)의 SIP(Session initiation protocol) 기반의 신호를 사용하는데, 이러한 SIP 기반의 제어 신호들은 제어 평면이 아닌 사용자 평면 상에서 전송이 된다. 따라서, 상기 UE가 VoLTE와 같은 ALL IP 서비스를 개시하고자, SIP 기반의 제어 신호를 전송하기 위해 RRC 연결 요청을 하는 경우, 상기 네트워크, 예컨대 기지국(즉, eNodeB)가 혼잡 상태라면, 이를 거절할 수 있게 되버린다.
따라서, 네트워크 혼잡 상태에서는 호(call) 마저 끊겨버리는(drop) 문제가 발생한다. 구체적으로는 도 6을 참조하여 설명하기로 한다.
도 6a은 도 5에 도시된 eNodeB의 혼잡 상황에서 UE가 RRC 연결 요청이 거절되는 예를 나타낸다.
도 6a를 참조하여 알 수 있는 바와 같이, eNodeB(200)가 혼잡한 상태에서, 유휴 상태(Idle state)에 있는 UE1(100a)는 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 발신을 결정한다. 마찬가지로 유휴 상태에 있는 UE2(200b)는 일반 데이터를 발신하기로 결정한다.
1) UE1(100a)의 상위 계층, 예컨대 NAS 계층은 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 발신을 위해 수립 원인(establishment cause)필드의 값을 UE에 의해 전송 개시되는 데이터를 의미하는 'MO(Mobile Originating) Data'로 설정하여, 서비스 요청(Service Request) 메시지를 전송한다. 또한, UE2(100b)의 상위 계층, 예컨대 NAS 계층은 일반 데이터의 발신을 위해 수립 원인(establishment cause)필드의 값을 UE에 의해 전송 개시되는 데이터를 의미하는 'MO(Mobile Originating) Data'로 설정하여, 서비스 요청(Service Request) 메시지를 전송한다.
2) VoLTE에 따른 호(call) 발신과 수신을 위한 제어 신호는 IMS의 SIP 기반 제어 신호가 이용되고, 사용자 평면 상에서 전송된다. 따라서, 상기 UE1(100a)의 상위 계층, 예컨대 NAS 계층은 수립 원인(establishment cause)필드의 값을 'MO(Mobile Originating) Data'로 설정하여, RRC 계층으로 전달한다. 그러면, 상기 UE1(100a)의 RRC 계층은 상기 RRC 연결 요청 메시지 내의 수립 원인(establishment cause)필드에 상기'MO(Mobile Originating) Data'를 설정하고, eNodeB(200)로 전송한다.
마찬가지로, UE2(100b)의 상위 계층, 예컨대 NAS 계층은 수립 원인(establishment cause)필드의 값을 'MO(Mobile Originating) Data'로 설정하여, RRC 계층으로 전달한다. 그러면, 상기 UE2(100b)의 RRC 계층은 상기 RRC 연결 요청 메시지 내의 수립 원인(establishment cause)필드에 상기'MO(Mobile Originating) Data'를 설정하여, eNodeB(200)로 전송한다.
3) 그러면, 과부하 상태인 상기 eNodeB(200)가 상기 UE1(100a)로부터의 RRC 연결 요청 메시지와 상기 UE2(100b)로부터의 RRC 연결 요청 메시지를 각기 수신하면, 각각의 수립 원인(establishment cause) 필드를 확인한다.
혼잡 상태에 있는 상기 eNodeB(200)는 상기 UE1(100a) 및 상기 UE2(100b)로부터의 RRC 연결 요청 메시지 내의 수립 원인 필드가 똑같이 MO Data로 설정되어 있으므로, 상기 UE2(100b)로부터의 RRC 연결 요청 뿐만 아니라, 상기 UE1(100a)로부터의 RRC 연결 요청에 대해 모두 RRC 연결 거절 메시지를 전송한다.
따라서, eNodeB(200)의 혼잡 상태에서는 VoLTE에 따른 호(call) 발신마저 끊겨버리는(drop) 문제가 발생한다.
도 6b은 도 5에 도시된 eNodeB의 혼잡 상황에서 UE의 착신 상황을 나타낸다.
0) 도 6b를 참조하여 알 수 있는 바와 같이, eNodeB(200)가 혼잡한 상태 혹은 일반적인 상태에서, 유휴 상태(Idle state)에 있는 UE1(100a)에게 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 페이징 신호를 전송하고, UE2(100b)에게 데이터의 착신을 위한 페이징 신호를 전송한다.
이때, 상기 페이징 신호에는 상기 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 것인지 혹은 데이터의 착신을 위한 것인지를 구분하는 정보가 포함되어 있지 않을 수 있다.
한편, 상기 eNodeB(200)는 상기 페이징 신호들이 상기 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 것인지 혹은 데이터의 착신을 위한 것인지를 구분할 수 없으므로, 상기 UE1(100a)와 상기 UE2(100b)에게 전송하는페이징 신호를 차등화할 수가 없다. 또한, 혼잡 상황에서는 상기 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 페이징 신호가 상기 데이터의 착신을 위한 페이징 신호 보다 늦게 전송될 수 있다.
이에 따라, 상기 UE1(100a)는 UE2(200b) 보다 늦게 서비스 요청(또는 확정 서비스 요청)과 RRC 연결 요청 메시지를 전송하는 상황이 발생될 수 있고, 그로 인해 상기 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신은 지연될 수 있다.
도 7은 네트워크 혼잡 상태에서 액세스 클래스에 따른 금지(Access Class Barring)에 따른 동작을 나타낸 예시적인 흐름도이다.
도 7에 도시된 바와 같이, 네트워크 혹은 eNodeB(200)의 과부하 또는 혼잡 상태에서, eNodeB(200)는 시스템 정보를 통해 ACB(Access Class Barring) 관련 정보를 브로드캐스팅할 수 있다. 상기 시스템 정보는 SIB(System Information Block) 타입 2일 수 있다.
상기 SIB(System Information Block) 타입 2는 아래의 표와 같은 ACB 관련 정보를 포함할 수 있다.
표 2
Figure pct00003
한편, 상기 UE1(100a)은 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 발신을 결정하고, 상기 ACB의 적용 대상이 되는지 결정한다. 마찬가지로, UE2(100b)는 일반 데이터의 발신을 결정하고, 상기 ACB의 적용 대상이 되는지 결정한다.
일반적으로, UE는 일반적으로 10개 액세스 클래스(예컨대, AC0, AC1, ..., AC9) 중의 적어도 하나가 랜덤하게 할당되어 있다. 예외적으로, 긴급 비상 액세스를 위해서는 AC10이 할당된다. 이와 같이 랜덤하게 할당된 액세스 클래스의 값은 상기 UE1(100) 및 UE2(100b)의 각 USIM에는 저장될 수 있다.
그러면, 상기 UE1(100a)와 상기 UE2(100b)는 상기 저장된 액세스 클래스에 기반하여, 상기 수신한 ACB 관련 정보에 포함되어 있는 barring factor 필드를 이용하여, 액세스 금지가 적용되는지를 확인한다. 이런 Access Barring 체크는 상기 UE1(100a)와 상기 UE2(100b)의 각 AS(Access Stratum) 계층, 즉 RRC 계층에서 수행된다.
만약, 상기 ACB의 적용 대상이 아니라면, 상기 UE1(100a)와 상기 UE2(100b)는 각기 서비스 요청 (혹은 확장 서비스 요청) 메시지와 RRC 연결 요청 메시지를 전송할 수 있다.
그러나, 상기 ACB의 적용 대상이라면, 상기 UE1(100a)와 상기 UE2(100b) 모두는 각기 RRC 연결 요청 메시지를 전송할 수 없다.
정리하여 설명하면, 상기 UE1(100a)에 의한 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 발신을 위한 RRC 연결 요청과 상기 UE2(100b)에 의한 일반 데이터 발신을 위한 RRC 연결 요청은 구분되지 못하고, 모두 ACB가 적용되어 금지되는 문제점이 있다.
이상에서 설명한 바와 같이, 현재 3GPP 표준에서는 IMS 기반 호 발신을 일반 데이터의 발신과 구분하지 못함으로써, 도 6a에 도시된 바와 같이 네트워크 혼잡 상황에서 IMS 기반 호 발신이 실패되게 만들거나 혹은 도 7에 도시된 바와 같이 아예 시도조차 할 수 없게 만드는 문제점이 있다. 또한, 이러한 문제는 네트워크 자원 낭비를 초래 하고, 사용자의 경험 만족도를 저하시킨다.
<본 명세서에서 제시되는 해결책>
본 명세서의 일 개시에 의하면, IMS 기반 서비스, 예컨대 VoLTE 서비스의 제어 신호, 예컨대 IMS 기반의 제어 신호 혹은 SIP 기반의 제어 신호는 사용자 평면으로 전송되더라도, 일반 데이터와 차등되도록 처리될 수 있다.
구체적으로, 본 명세서의 일 개시에 따르면, 상기 UE가 IMS 기반 서비스, VoLTE에 의한 호 발신을 하고자 할 경우, 상기 UE의 NAS 계층은 수립 원인 필드를 'MO data' 대신에 다른 것으로 설정하여 RRC 계층으로 전달하고, 상기 UE의 RRC 계층은 이에 따라 RRC 연결 요청 메시지를 전송함으로써, eNodeB(200)의 혼잡 상황에서도 거절되지 않도록 한다.
보다 더 구체적으로, 본 명세서의 일 개시에 따르면, UE가 IMS 기반 호(call) 발신(예컨대, 음성 호 발신 또는 화상 호 발신)를 하고자 하는 경우에, UE의 NAS 계층은 IMS 기반 호(call) 발신을 위한 제어 신호, 예컨대 IMS 기반 제어 신호 혹은 SIP 기반 제어 신호에 대해 RRC 수립 원인(establishment cause)을 'MO Data'대신에'MO-signaling'혹은 새로운 원인 값(예컨대, IMS 기반 발신 혹은 'MO-IMS MMTEL service')로 설정한다또한, UE의 NAS 계층은 상기 설정한 수립 원인(establishment cause)을 AS 계층, 즉 RRC 계층으로 전달하여, 상기 RRC 계층이 상기 NAS 계층이 설정한 수립 원인(establishment cause)을 사용하여, RRC 연결 요청 메시지를 전송할 수 있다. 한편, UE는 IMS 기반 서비스를 의미하는 서비스 타입 (혹은 필드)을 IMS Voice, IMS Video, MMTEL over PS Session, 혹은 새로운 서비스 타입(필드) 값으로 설정한 후, 서비스 요청 혹은 확장 서비스 요청 메시지에 셋팅하여(포함하여) 전송한다. 본 명세서의 일 개시에 따르면, IMS 기반 음성 호 또는 화상 호를 연결하기 위한 제어 신호, IMS 기반 제어 신호 또는 SIP 기반 제어 신호는 일반적인 서비스 요청 메시지가 아닌 새로운 NAS 메시지(예컨대, IMS SERVICE REQUEST)에 포함되어 전송될 수도 있다.
그러면, 혼잡 또는 과부하 상태에 있는 eNodeB(200)는 상기 수신한 RRC 연결 요청 메시지의 RRC 수립 원인 필드에 설정된 MO-signaling 혹은 새로운 원인 값에 기반하여, 일반 데이터를 거절하는 것과는 다르게, 처리할 수 있다. 설사 상기 eNodeB(200)가 혼잡 또는 과부하 상태에 있지 않더라도, 상기 수신한 RRC 연결 요청 메시지의 RRC 수립 원인 필드에 설정된 'MO-signaling 혹은 새로운 원인 값이 설정되어 있다면, 일반 데이터를 처리하는 것보다 높은 우선 순위로 처리를 할 수 있다. (또는 낮은 우선 순위로 처리를 할 수도 있다.)
또한, 본 명세서의 일 개시에 따르면, IMS 기반 서비스, VoLTE에 의한 호 착신의 경우, 네트워크 노드(예컨대, S-GW, P-GW)는 VoLTE에 의한 호 착신을 위한 제어 신호, 예컨대 IMS 제어 신호 혹은 SIP 기반 제어 신호를 일반 데이터의 착신으로부터 구별되도록 MME(510)에게 알려주도록 한다. 이에 따라 MME(510)도 역시 구별가능하게 페이징 신호를 UE에게 전달하고, 그에 따라 상기 UE가 RRC 연결 요청 메시지를 생성할 때, 수립 원인 필드를 'MT-access'혹은 새로운 원인 값으로 설정할 수 있도록 한다.
그러면, 혼잡 또는 과부하 상태에 있는 eNodeB(200)는 상기 수신한 RRC 연결 요청 메시지의 RRC 수립 원인 필드에 설정된 MT-access 혹은 새로운 원인 값에 기반하여, 거절하지 않고 허락하여 처리할 수 있다.
이하에서는, 상기 RRC 수립 원인 필드에 설정된 'MO-signaling 혹은 새로운 원인 값이 설정되어 있는 경우, eNodeB(200)가 일반 데이터와 달리 처리하는 예를 나타낸다.
- RRC 수립 원인 필드에 'MO-signaling' 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, 'MO-Data'로 설정된 RRC 연결 요청 보다 높은 우선순위로 처리
- RRC 수립 원인 필드에 'MO-signaling' 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, 'highPriorityAccess'로 RRC 연결 요청 보다 높은 우선순위 혹은 동등한 우선순위로 처리
- RRC 수립 원인 필드에 'MO-signaling' 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, 'MT-Access'로 RRC 연결 요청 보다 높은 우선순위 혹은 동등한 우선순위로 처리
- RRC 수립 원인 필드에 (IMS 기반 서비스를 구분하는)'MO-signaling' 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, (종래의 일반적인)'MO-signaling'로 RRC 연결 요청 보다 높은 우선순위 혹은 동등한 우선순위로 처리
- RRC 수립 원인 필드에 'MO-signaling' 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, 'MO-Data'로 설정된 RRC 연결 요청에 비해 더 낮은 우선순위 혹은 동등한 우선순위로 거절
- RRC 수립 원인 필드에 'MO-signaling' 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, 'highPriorityAccess' 로 설정된 RRC 연결 요청에 비해 더 낮은 우선순위 혹은 동등한 우선순위로 거절
- RRC 수립 원인 필드에 'MO-signaling' 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, 'MT-Access' 로 설정된 RRC 연결 요청에 비해 더 낮은 우선순위 혹은 동등한 우선순위로 거절
- RRC 수립 원인 필드에 (IMS 기반 서비스를 구분하는)'MO-signaling' 혹은 새로운 원인 값이 설정되어 있는 RRC 연결 요청 메시지를, (종래의 일반적인)'MO-signaling'로 RRC 연결 요청에 비해 더 낮은 우선순위 혹은 동등한 우선순위로 거절
한편, 이러한, IMS 기반 음성 호 및 비디오 호를 일반 데이터와 차등화하는 것은 사업자의 정책(Operator's policy), 네트워크 노드(예컨대, MME/SGSN, eNodeB)의 설정, 가입자 정보, 혹은 UE의 기능(capability)에 따라 변경될 수 있다.
한편, 본 명세서의 일 개시에 따라 추가된 수립 원인 값을 포함하는 테이블을 나타내면 아래와 같다.
표 3
Figure pct00004
이하, 본 명세서에서 제시되는 해결책들에 대해서 도면을 참조하여 설명하기로 한다.
도 8a는 도 6a의 문제점을 해결하기 위해 본 명세서의 첫 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
도 8a를 참조하여 알 수 있는 바와 같이, UE1(100a)는 IMS 서비스, 예컨대 IMS 기반의 호(call)의 발신을 결정하고, UE2(100b)는 데이터의 발신을 결정한다. 상기 IMS 기반의 호는 음성 호, 화상 호 또는 MMTEL에 따른 호일 수 있다.
먼저 도 8a를 참조하여 설명하면 다음과 같다.
1) UE1(100a)의 상위 계층, 예컨대 NAS 계층은 IMS 서비스, 예컨대 IMS 기반의 호(call)의 발신을 위해 수립 원인(establishment cause)필드의 값을 기존의'MO-Data' 대신에 표 2에 나타난 바와 같은'MO-signaling'또는 새로운 원인, 예컨대'MO-IMS service'or 'MO-IMS MMTEL service'로 설정한다. 또한, UE1(100a)의 상위 계층, 예컨대 NAS 계층은 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 서비스 타입(필드)를 포함하는서비스 요청(Service Request) 혹은 확장 서비스 요청(Extended Service Request) 메시지를 전송한다. 즉, 상기 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 상기 서비스 타입(필드)는 IMS Voice, IMS Video, MMTEL over PS Session, 혹은 새로운 서비스 값으로 설정될 수 있다.
또한, UE2(100b)의 상위 계층, 예컨대 NAS 계층은 일반 데이터의 발신을 위해 수립 원인(establishment cause)필드의 값을 UE에 의해 전송 개시되는 데이터를 의미하는 'MO(Mobile Originating) Data'로 설정한다. 또한, UE2(100b)의 상위 계층, 예컨대 NAS 계층은 서비스 요청(Service Request) 혹은 확장 서비스 요청(Extended Service Request) 메시지를 전송한다.
2) 이어서, 상기 UE1(100a)의 상위 계층, 예컨대 NAS 계층은 상기 설정한 수립 원인(establishment cause)필드의 값, 즉 'MO-signaling'또는 'MO-IMS service' 을 RRC 계층으로 전달한다. 그러면, 상기 UE1(100a)의 RRC 계층은 상기 RRC 연결 요청 메시지 내의 수립 원인(establishment cause)필드를 상기 전달받은 바에 따라 설정하고, eNodeB(200)로 전송한다.
한편, UE2(100b)의 상위 계층, 예컨대 NAS 계층은 상기 설정한 수립 원인(establishment cause)필드의 값, 즉 'MO Data'를 RRC 계층으로 전달한다. 그러면, 상기 UE2(100b)의 RRC 계층은 상기 RRC 연결 요청 메시지 내의 수립 원인(establishment cause)필드에 상기'MO Data'를 설정하여, eNodeB(200)로 전송한다.
3) 그러면, 과부하 상태인 상기 eNodeB(200)가 상기 UE1(100a)로부터의 RRC 연결 요청 메시지와 상기 UE2(100b)로부터의 RRC 연결 요청 메시지를 각기 수신하면, 각각의 수립 원인(establishment cause) 필드를 확인한다.
혼잡 상태에 있는 상기 eNodeB(200)는 상기 UE1(100a)로부터의 RRC 연결 요청 메시지 내의 수립 원인 필드가 'MO-signaling'또는 'MO-IMS service'으로 설정되어 있으므로, 상기 UE1(100a)로부터의 RRC 연결 요청 메시지에 대해서는 거절하지 않고, 상기 UE1(100a)로 RRC 연결 셋업(RRC connection setup) 메시지를 전달한다.
그러나, 상기 eNodeB(200)는 상기 UE2(100b)로부터의 RRC 연결 요청 메시지 내의 수립 원인 필드에는 'MO Data'로 설정되어 있으므로, 상기 UE2(100b)로부터의 RRC 연결 요청에 대해서는 RRC 연결 거절 메시지를 전송한다.
4) 상기 RRC 연결 셋업(RRC connection setup) 메시지를 수신한 상기 UE1(100a)는 RRC 연결 셋업 완료 메시지를 상기 eNodeB(200)로 전달한다.
5~7) 상기 eNodeB(200)는 초기 UE 메시지에 서비스 요청 메시지 혹은 확장서비스 요청 메시지를 포함시켜 MME(510)으로 전달한다. 그러면 상기 MME(510)은 초기 컨텍스트 셋업 요청 메시지를 상기 eNodeB(200)로 전달한다. 그러면, 상기 eNodeB(200)는 상기 UE1(100a)와 라디오 베어러를 수립한다.
8) 마침내, 상기 UE1(100a)는 IMS 서비스, 예컨대 IMS 기반의 호(call)에 의한 사용자 데이터를 전송할 수 있게 된다.
다른 한편, 도 8a는 UE1(100a)는 IMS 기반의 호 발신을 시도하고, UE2(200b)는 일반 데이터의 발신을 시도하는 예시를 나타내었으나, 이러한 예시는 하나의 UE가 IMS 기반의 호 발신과 일반 데이터의 발신을 동시에 시도하는 경우에도 적용될 수 있다.
한편, 상기 UE1(100a)가 상기 수립 원인(establishment cause)필드에 상기 IMS 기반의 호 발신 인지 혹은 일반 데이터의 발신인지에 따라 다르게 설정하는 것은 사업자의 정책(Operator's policy)에 따라, 네트워크 노드(예컨대, MME, eNodeB)의 설정에 따라, 가입자 정보에 따라, 혹은 단말의 기능(capability 에 따라서 적용될 수 도 있고, 적용되지 않을 수 도 있다. 또한, 이는 네트워크 노드(예컨대, MME, eNodeB)에 혼잡이나 과부하가 발생하 상황에서만 적용될 수도 있다. 혹은 UE가 기능(capability) 정보 혹은 지원 여부 정보를 어태치(Attach)/TAU(Tracking Area Update)/RAU(Routing Area Update) 등을 통해 네트워크에 알려준 후, 상기 네트워크가 적용 여부를 결정할 수도 있다. 상기 네트워크의 적용 여부는 OMA-DM을 통하여 NAS configuration MO(Management Object, 3GPP TS 24.368)로 제공될 수 있다. 따라서 이러한 설정 방식은 static 혹은 dynamic하게 변경되어 적용 될 수 있다.
다른 한편, 도 8a에서는 수립 원인(establishment cause)필드에 'MO-signaling'또는 'MO-IMS service'가 설정되는 것으로 나타내었다. 그러나, 수립 원인(establishment cause)필드에 'MO-IMS Access', 'MO-IMS MMTEL service' 혹은 새로운 원인을 나타내는 값이 포함될 수도 있다.
도 8b는 도 6b의 착신 상황에서의 문제점을 해결하기 위해 본 명세서의 첫 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
먼저, PDN GW(530)은 UE1(100a)에 대한 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 알리기 위한 다운링크 데이터에 대한 통지를 MME(510)을 통해 eNodeB(200)에게 전송하고, 또한 UE2(100b)에 대한 일반 데이터의 착신을 알리기 위한 다운링크 데이터에 대한 통지를 MME(510)을 통해 eNodeB(200)에게 전송한다.
한편, 상기 PDN GW(530)은 호(call)의 착신을 위한 제어 신호가 IMS 기반의 제어 신호 또는 SIP 기반의 제어 신호인지 혹은 일반 제어 신호인지를 구분하여, 상기 MME(510)에게 알려준다. 마찬가지로, 상기 MME(510)는 호(call)의 착신을 위한 제어 신호가 IMS 기반의 제어 신호 또는 SIP 기반의 제어 신호인지 혹은 일반 제어 신호인지를 구분하여 상기 eNodeB(200)에게 알려준다. 이때, 상기 IMS 기반 제어 신호 또는 SIP 기반 제어 신호임을 구분하는 것은 IMS 세션인지 아닌지를 나타내는 정보에 의해 구분가능할 수 있다. 상기 정보는 기존 제어 메시지에 포함되는 인자(혹은 인디케이터)이거나 새로운 제어 메시지에 포함되는 인자(혹은 인디케이터)일 수 있다. 이러한 상기 인자(혹은 인디케이터)는 상기 PDN GW(530) 또는 S-GW으로부터 MME(510)로 제어 메시지를 통하여 전송되어 지며, 상기 MME(510)은 상기 인자(혹은 인디케이터)를 인지하여, 상기 IMS 기반 제어 신호 또는 SIP 기반 제어 신호를 나타내는 정보를 페이징 신호에 포함하여 eNodeB(200)에게 전송한다. 한편, 상기 페이징 신호에 추가되는 정보에 따라 상기 UE1(100a)는 상기 수립 원인(establishment cause)필드에 'MT-access' 혹은 'MT-IMS Access' 혹은'MT-signaling' 혹은 'MT-IMS Service' 혹은 새로운 원인을 나타내는 값을 설정할 수 있다.
이에 따라, 혼잡한 상태에 있는 상기 eNodeB(200)는 페이징 신호를 차등화할 수 있다. 예컨대, 상기 eNodeB(200)는 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 페이징 신호를 일반 데이터의 착신을 알리기 위한 페이징 신호에 비하여 우선적으로 처리할 수 있다.
그리고, 혼잡한 상태에 있는 상기 eNodeB(200)는, 유휴 상태(Idle state)에 있는 UE1(100a)에게 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 착신을 위한 페이징 신호를 전송할 때, 상기 정보를 포함시켜서 전송한다. 이때, 상기 eNodeB(200)는 상기 정보, 망의 혼잡상황, 사업자의 정책(operator policy), 단말의 능력 정보 등의 기반하여 상기 페이징 신호를 전송할 수 있다. 일례로, 상기 eNodeB(200)는 망이 혼잡하여 일반적인 페이징 신호를 전송하지 않는 것을 결정하였다 하더라도 상기 정보가 수신되는 경우, UE1(100a)에 대한 페이징 신호는 전송하는 것으로 결정할 수 있다.
그러나, 상기 eNodeB(200)는 단순한 페이징 신호를 UE2(100b)에게 전송한다. 상기 UE2(100b)로의 페이징 신호는 브로드캐스팅 방식으로 전송될 수 있다. 그러나, 상기 UE1(100a)로의 페이징 신호는 브로드캐스팅 방식으로 전송될 수도 있지만, 새로운 전용 채널을 통해 전송될 수도 있다.
이와 같이 IMS 기반의 서비스를 위한 페이징 신호는 차등화하여 UE1(100a)에게 제공될 수 있다. 상기 페이징 신호를 차등화 처리하는 것은 일반적인 데이터의 수신을 알리기 위한 페이징 신호에 비해 IMS 기반의 서비스 연결을 알리기 위한 페이징 신호를 더 높은 우선 순위 (high priority)로 처리하는 것을 의미할 수 있다.
상기 IMS 기반의 서비스를 위한 페이징 신호를 차등화하는 방안은 사업자의 정책(Operator's policy)에 따라, 네트워크 노드(예컨대, MME 또는 eNodeB)의 설정에 따라, 가입자 정보에 따라, 혹은 단말의 기능(capability) 설정에 따라서 적용될 수 도 있고, 적용되지 않을 수도 있다. 또한, 네트워크 노드(예컨대, MME 또는 eNodeB)에 혼잡이나 과부하 등 특정한 상황이 발생한 경우에만 적용될 수도 있다. 만약 UE가 단말의 지원 여부 정보 혹은 기능(capability) 정보를 네트워크 노드에 Attach/TAU/RAU 등을 통해 알려준 후, 상기 네트워크 노드가 상기 방식을 적용할지 여부를 결정할 수 있다. 상기 네트워크의 적용 여부는 OMA-DM을 통하여 NAS configuration MO(Management Object, 3GPP TS 24.368)로 제공될 수 있다 따라서 이러한 설정 방식은 static 혹은 dynamic하게 변경되어 적용 될 수 있다.
이하에서는 UE가 전송하는 어태치 요청 메시지, 디태치(detach) 요청 메시지, TAU 요청 메시지, 서비스 요청 메시지에 포함되는 수립 원인(establishment cause)에 대해서 설명하기로 한다.
NAS 연결 수립을 요청 할 때, UE의 상위 계층, NAS 계층에 의해 사용되는 수립 원인은 아래의 표에 나타난 각 절차에 따라 선택될 수 있다. 상기 NAS 계층은 액세스 제어 목적으로 하위 계층, RRC 계층에게 RRC 수립 원인과 관련된 타입을 지시할 수 있다. 만약, EAB(Extended Access Barring)이 설정되어 있는 경우, UE의 상위 계층은 하위 계층에게 아래의 케이스를 제외한 요청에 대해서는 EAB가 적용된다고 알릴 수 있다.
- UE가 클래스 11-15 중 하나를 이용하여 액세스를 시도하는 경우
- UE가 페이징 신호에 응답하는 경우
- RRC 수립 원인이 긴급 호인 경우,
- UE가 EAB를 무시(overriding)하도록 설정된 경우
표 4
Figure pct00005
Figure pct00006
위 표에 나타나지는 않았으나, 상기 서비스 요청 메시지 혹은 확장 서비스 요청 메시지의 서비스 타입(service type)은 "mobile originating IMS Voice", "mobile originating IMS Video", "mobile originating IMS MMTEL over PS Session" 중 어느 하나로 셋팅될 수 있다. 이 경우 각각(개별적으로) 타입은 "originating calls" 으로 설정/매핑될 수 있다. 대안적으로 상기 서비스 요청 메시지 혹은 확장 서비스 요청 메시지의 서비스 타입(service type)은 "mobile originating IMS Voice/Video/MMTEL over PS Session"의 형태로 셋팅될 수 있다.
마찬가지로, 상기 서비스 요청 메시지 혹은 확장 서비스 요청 메시지의 서비스 타입(service type)은 "mobile terminating IMS Voice", "mobile terminating IMS Video", "mobile terminating IMS MMTEL over PS Session" 중 어느 하나로 셋팅될 수 있다. 이 경우 각각(개별적으로) 타입은 " terminating calls" 으로 설정/매핑될 수 있다. 대안적으로 상기 서비스 요청 메시지 혹은 확장 서비스 요청 메시지의 서비스 타입(service type)은 "mobile terminating IMS Voice/Video/MMTEL over PS Session"의 형태로 셋팅될 수 있다.
다른 한편, 상기 서비스 요청 메시지 혹은 확장 서비스 요청 메시지에 수립 원인에 MO-signaling, 혹은 MO-IMS service 등과 같은 것으로 세팅하는 방안은, 낮은 우선순위(low priority) 또는 정상 순위(normal priority)를 가지는 UE도 활용할 수 있다.
낮은 우선순위(low priority)로 설정된 UE가 애플리케이션의 요청이나 UE의 기능(capability), 사업자 정책 혹은 네트워크의 요청에 의해서 낮은 우선순위(low priority)가 아닌 정상 순위로 변경되어 상기의 IMS 기반 서비스를 위해 발신을 요청하는 경우에, 낮은 우선순위(low priority)가 아닌 정상 순위로 설정된 IE를 포함하는 확장 서비스 요청 메시지를 네트워크 노드(예컨대. MME)로 전송할 수 있다. 이때, 상기 UE의 NAS 계층은 수립 원인을 'MO-signaling'또는 새로운 원인 값(예컨대, MO-IMS access 혹은 MO-IMS MMTEL service)로 설정한 확장 서비스 요청 메시지를 전송할 수 있다 된다. 또한, 상기 UE의 RRC 계층은 수립 원인을 'MO-signaling'또는 새로운 원인 값(예컨대, MO-IMS access 혹은 MO-IMS MMTEL access)로 설정한 RRC 연결 요청 메시지를 전송할 수 있다.
그러면 eNodeB(200)는 상기 수신한 RRC 연결 요청 메시지의 수립 원인에 세팅된 'MO-signaling' 혹은 새로운 cause 값에 기반하여, MO-IMS 서비스(특히, voice call, video call)를 위한 연결을 차등화하여 처리할 수 있다.
도 9는 도 7의 문제점을 해결하기 위해 본 명세서의 두 번째 개시에 따른 예시적인 흐름을 나타낸 예시도이다.
도 9를 참조하여 알 수 있는 바와 같이, 본 명세서의 두 번째 개시에 따르면, IMS 기반의 서비스를 연결하기 위한 IMS 기반 제어 신호를 차등화하기 위해서, eNodeB(200)는 수립 원인(establishment cause)들 중 MO-signaling 또는 새로운 원인(예컨대, MO-IMS service 또는 IMS MMTEL service )에 대한 예외 규칙을 포함하는 액세스 클래스에 따른 금지(ACB) 정보를 포함하는 시스템 정보를 브로드캐스팅할 수 있다.
그러면, IMS 기반의 호 발신을 희망하는 UE1(100a)와 일반 데이터의 발신을 희망하는 UE2(100b)는 상기 예외 규칙이 포함된 상기 액세스 클래스에 따른 금지(ACB) 정보에 기반하여, ACB 적용 여부를 결정할 수 있다.
즉, UE1(100a)는 IMS 기반의 서비스(예컨대, IMS 기반의 음성 호, 화상 호)를 연결하기 위한 IMS 기반 제어 신호(signaling), 혹은 SIP 기반 제어 신호에 대해서 기존에 사용하던 수립 원인인 MO-Data로 ACB 적용 여부를 체크하지 않고, 본 명세서의 개시에 의해 세팅되는 수립 원인, 즉 MO-signaling 또는 새로운 원인(예컨대, MO-IMS service 또는 IMS MMTEL service)에 기초하여 ACB 적용 여부를 체크한다. 상기 수신한 액세스 클래스에 따른 금지(ACB) 정보는 상기 수립 원인(establishment cause)들 중 MO-signaling 또는 새로운 원인(예컨대, MO-IMS service 또는 IMS MMTEL service)에 대한 예외를 포함하고 있으므로, 상기 UE1(100a)은 RRC 연결 요청이 상기 ACB에 적용되지 않는 것으로 결정한다. 따라서, 상기 UE1(100a)은 RRC 연결 요청을 전송할 수 있다.
이렇게 함으로써, IMS 기반의 서비스(예컨대, IMS 기반의 음성 호, 화상 호)를 연결하기 위한 IMS 기반 제어 신호(signaling), 혹은 SIP 기반 제어 신호를 나르기 위한 RRC 요청 메시지는 상기 eNodeB(200)에 의해 거절 되지 않고 정상적으로 처리될 수 있다.
아래의 표는 본 명세서의 두 번째 개시에 따라 수립 원인(establishment cause)들 중 MO-signaling 또는 새로운 원인(예컨대, MO-IMS service 또는 IMS MMTEL service )에 대한 예외 규칙을 포함하는 액세스 클래스에 따른 금지(ACB) 정보를 나타낸다.
표 5
Figure pct00007
이상에서는, 본 명세서의 첫 번째 개시와 두 번째 개시에 대해서 설명하였다. 별도로 설명하지 않더라도, 당업자라면 이러한 개시들이 조합될 수 있음을 자명하게 알 수 있을 것이다.
이하에서는, 본 명세서의 개시들을 다시 한번 요약하여 설명하기로 한다.
UE(100)는 IMS 기반의 서비스(예컨대, IMS 기반의 음성 호, 화상 호)의 연결이 필요한 것으로 판단하면, UE의 NAS 계층은 수립 원인(establishment cause)필드의 값을 기존의'MO-Data' 대신에 표 2에 나타난 바와 같은'MO-signaling'또는 새로운 원인(예컨대'MO-IMS service', 'MO-IMS MMTEL service' 또는 'MO-IMS Access' )로 설정한 후, 서비스 요청(Service Request) 혹은 확장 서비스 요청(Extended Service Request) 메시지를 전송한다. 이어서, UE의 NAS 계층은 상기 설정된 수립 원인(establishment cause)을 RRC 계층으로 전달한다. 상기 UE의 RRC 계층은 IMS 기반의 서비스(예컨대, IMS 기반의 음성 호, 화상 호)를 연결하기 위한 IMS 기반 제어 신호(signaling), 혹은 SIP 기반 제어 신호를 나르기 위한 RRC 요청 메시지에 상기 전달받은 수립 원인을 세팅하여 eNodeB(200)로 전송한다.
한편, eNodeB(200)는 IMS 기반의 서비스를 연결하기 위한 제어 신호, 즉 IMS 기반 제어 신호(signaling), 혹은 SIP 기반 제어 신호를 나르기 위한 RRC 요청 메시지에 사용할 수 있는 수립 원인의 값으로서, 표 2에 나타난 바와 같은'MO-signaling'또는 새로운 원인(예컨대'MO-IMS service', MO-IMS MMTEL service' 또는 'MO-IMS Access')에 대한 정보를 UE(100)에게 전달할 수 있다.
그리고, 상기 eNodeB(200)는 MO-signaling'또는 새로운 원인(예컨대'MO-IMS service', 'MO-IMS MMTEL service' 또는 'MO-IMS Access')으로 설정된 수립 원인을 포함하는 서비스 요청 메시지 혹은 확장 서비스 요청(Extended Service Request) 혹은 RRC 연결 요청 메시지를 수신하면, 혼잡 상태 혹은 과부하 상태에서 'MO Data'로 설정된 수립 원인을 포함하는 요청 메시지와 차등화하여 처리할 수 있다.
지금까지 설명한 내용들은 하드웨어로 구현될 수 있다. 이에 대해서 도 16를 참조하여 설명하기로 한다.
도 10은 본 발명의 실시예에 따른 UE(100) 및 eNodeB(200)의 구성 블록도이다.
도 10에 도시된 바와 같이 상기 UE(100)은 저장 수단(101)와 컨트롤러(102)와 송수신부(103)를 포함한다. 그리고 상기 eNodeB(200)는 저장 수단(201)와 컨트롤러(202)와 송수신부(203)를 포함한다.
상기 저장 수단들(101, 201)은 도 5 내지 도 9에 도시된 방법을 저장한다.
상기 컨트롤러들(102, 202)은 상기 저장 수단들(101, 201) 및 상기 송수신부들(103, 203)을 제어한다. 구체적으로 상기 컨트롤러들(102, 202)은 상기 저장 수단들(101, 201)에 저장된 상기 방법들을 각기 실행한다. 그리고 상기 컨트롤러들(102, 202)은 상기 송수신부들(103, 203)을 통해 상기 전술한 신호들을 전송한다.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니므로, 본 발명은 본 발명의 사상 및 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있다.

Claims (11)

  1. 단말에서 IMS(IP Multimedia Subsystem)기반 서비스를 연결하는 방법으로서,
    상기 IMS 기반 서비스를 연결하기 위해 SIP(Session Initiation Protocol) 기반 메시지가 사용자 평면 상에서 전송될 필요가 경우, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 원인 값을 수립 원인(establishment cause) 필드에 설정하는 단계와;
    시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 서비스 타입(필드)를 포함하는 NAS(Non-Access Stratum) 계층의 서비스 요청 혹은 확장 서비스 요청 메시지를 기지국으로 전송하는 단계와;
    상기 설정된 수립 원인 필드를 포함하는 RRC(Radio Resource Control) 연결 요청 메시지를 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  2. 제1항에 있어서, 상기 수립 원인 필드에는
    일반 데이터의 전송을 의미하는 원인 값 대신에, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 상기 원인 값이 설정되는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  3. 제1항에 있어서, 상기 RRC 연결 요청 메시지를 전송하는 단계는
    상기 단말의 NAS 계층이 상기 설정된 원인 값을 상기 단말의 RRC 계층으로 전달하는 단계와;
    상기 단말의 RRC 계층이 상기 설정된 원인 값에 따라 RRC 연결 요청 메시지의 원인 필드를 설정하는 단계와;
    상기 설정된 원인 필드를 포함하는 RRC 연결 요청 메시지를 전송하는 단계를 포함하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  4. 제1항에 있어서, 상기 IMS 기반 서비스는
    IMS 기반의 음성 호 서비스, 화상 호 서비스, 그리고 멀티미디어 전화(Multimedia telephony) 서비스 중 하나에 해당하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  5. 제1항에 있어서,
    상기 IMS 기반 서비스가 상기 단말에 의해서 개시되는 것일 경우, 상기 원인 값은 MO-signaling, MO-IMS service, MO-IMS access, MO-IMS MMTEL service 그리고 새로운 원인 값 중 어느 하나에 해당하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  6. 제1항에 있어서,
    IMS 기반 착신의 경우, 네트워크가 일반 데이터 착신과 구분하기 위한 정보를 포함하여 기지국에게 전달하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  7. 제6항에 있어서,
    상기 기지국으로부터 수신되는 페이징 신호는 상기 IMS 기반 서비스에 따른 착신인지 혹은 일반 데이터의 착신인지를 나타내는 정보 혹은 우선순위를 포함하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  8. 제7항에 있어서, 상기 수립 원인 필드를 설정하는 단계는
    상기 페이징 신호 내에 포함된 상기 정보를 확인하는 단계와;
    상기 확인된 정보에 따라 MT-access를 설정하는 단계를 포함하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  9. 제1항에 있어서,
    상기 IMS 기반 서비스와 관련된 원인의 값들에 대한 정보를 상기 기지국으로부터 수신하는 단계를 더 포함하고,
    상기 수립 원인(establishment cause) 필드를 설정하는 단계에서는 상기 원인 값들 중 하나를 선택하는 것을 특징으로 하는 IMS 기반 서비스 연결 방법.
  10. 제1항에 있어서,
    상기 기지국으로부터 액세스 클래스 별 금지(Access Class Barring) 정보를 포함하는 시스템 정보를 수신하는 단계와, 여기서 상기 액세스 클래스별 금지 정보는 IMS 서비스에 대한 예외 규칙을 포함하고;
    상기 액세스 클래스별 금지 정보에 따라 상기 RRC 연결 요청 메시지를 전송할지 말지를 결정하는 단계를 더 포함하고,
    상기 결정 단계에서는 상기 IMS 기반 서비스를 연결하기 위한 IMS 기반 제어 신호 또는 SIP 기반 메시지가 전송될 필요가 있는 경우, 상기 RRC 연결 요청 메시지를 상기 예외 규칙에 따라 전송하는 것으로 결정하는 특징으로 하는 IMS 기반 서비스 연결 방법.
  11. IMS(IP Multimedia Subsystem)기반 서비스를 연결하는 단말로서,
    상기 IMS 기반 서비스를 연결하기 위해 IMS 기반 제어 신호 또는 SIP(Session Initiation Protocol) 기반 메시지가 사용자 평면 상에서 전송될 필요가 경우, 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 원인 값을 수립 원인(establishment cause) 필드에 설정하는 제어부와;
    상기 제어부에 의해 시그널링(signaling)을 의미하거나 혹은 IMS에 의한 것임을 의미하는 서비스 타입(필드)을 포함하는 NAS(Non-Access Stratum) 계층의 서비스 요청 혹은 확장 서비스 요청 메시지를 기지국으로 전송하고, 상기 설정된 수립 원인 필드를 포함하는 RRC(Radio Resource Control) 연결 요청 메시지를 기지국으로 전송하는 송수신부를 포함하는 것을 특징으로 하는 단말.
KR1020157010849A 2012-11-27 2013-11-27 Ims 기반 서비스 연결 방법 KR101698285B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261730057P 2012-11-27 2012-11-27
US61/730,057 2012-11-27
US201361858090P 2013-07-24 2013-07-24
US61/858,090 2013-07-24
PCT/KR2013/010843 WO2014084596A1 (ko) 2012-11-27 2013-11-27 Ims 기반 서비스 연결 방법

Publications (2)

Publication Number Publication Date
KR20150079643A true KR20150079643A (ko) 2015-07-08
KR101698285B1 KR101698285B1 (ko) 2017-01-19

Family

ID=50828156

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157010849A KR101698285B1 (ko) 2012-11-27 2013-11-27 Ims 기반 서비스 연결 방법

Country Status (4)

Country Link
US (2) US9585081B2 (ko)
KR (1) KR101698285B1 (ko)
CN (1) CN104871603B (ko)
WO (1) WO2014084596A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170023723A (ko) * 2015-08-24 2017-03-06 삼성전자주식회사 무선 통신 시스템에서 통신 방법 및 장치

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089101A (ja) * 2013-09-26 2015-05-07 株式会社Nttドコモ 移動局、移動通信システム及びネットワーク装置
US9723466B2 (en) * 2013-11-01 2017-08-01 Nokia Technologies Oy Enhanced control of services
US20150181472A1 (en) * 2013-12-20 2015-06-25 Apple Inc. ESR Extension for LTE TDD to FDD Redirection for VoLTE
US10003972B2 (en) * 2014-01-06 2018-06-19 Intel IP Corporation Systems, methods, and devices for application aware access control for communication on a mobile network
US10111166B2 (en) * 2014-07-30 2018-10-23 Lg Electronics Inc. Method and apparatus for performing access control for WLAN interworking in wireless communication system
US9591548B1 (en) * 2014-09-16 2017-03-07 Sprint Spectrum L.P. Method and system for addressing an error condition associated with a service that enables user equipment devices being served by a first access network to engage in signaling with a second access network
US9729588B2 (en) 2014-10-31 2017-08-08 T-Mobile Usa, Inc. SPI handling between UE and P-CSCF in an IMS network
WO2016102290A1 (en) * 2014-12-22 2016-06-30 Koninklijke Kpn N.V. Handling of connection setup requests
CN107251611B (zh) * 2015-03-13 2020-04-14 华为技术有限公司 一种业务处理方法、相关装置和系统
CA2979798A1 (en) * 2015-03-20 2016-09-29 Nec Corporation Communication system, management apparatus, communication terminal,communication control method, sensor information transmission method, and computer readable medium
US10327277B2 (en) 2015-07-24 2019-06-18 Lg Electronics Inc. PDN connection establishment method and user equipment
US9750047B1 (en) * 2015-09-02 2017-08-29 Sprint Spectrum L.P. Control of initial uplink grant based on random access request indicating planned initiation of packet-based real-time media session
WO2017052154A1 (ko) * 2015-09-24 2017-03-30 엘지전자 주식회사 우선되는 서비스가 전송되는 방법 및 장치
WO2017049642A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 一种业务处理方法及装置
WO2017049643A1 (zh) 2015-09-25 2017-03-30 华为技术有限公司 一种业务处理方法及装置
WO2017077793A1 (ja) * 2015-11-06 2017-05-11 株式会社Nttドコモ ユーザ装置及び通知方法
US10219188B2 (en) * 2015-11-11 2019-02-26 Samsung Electronics Co., Ltd Handling IMS and CSFB call at user equipment in wireless network
WO2017123048A1 (en) * 2016-01-14 2017-07-20 Lg Electronics Inc. Method for connecting with network at ue in wireless communication system and apparatus therefor
CN107018577B (zh) * 2016-01-28 2022-01-25 中兴通讯股份有限公司 流程状态管理方法、移动终端、基站及流程状态管理系统
CN108464034B (zh) * 2016-03-09 2022-06-10 华为技术有限公司 语音业务处理方法和装置
WO2018084635A1 (ko) * 2016-11-03 2018-05-11 엘지전자 주식회사 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치
KR20180049885A (ko) * 2016-11-04 2018-05-14 삼성전자주식회사 무선 통신 시스템에서 코어망을 선택하기 위한 장치 및 방법
WO2018088756A1 (ko) * 2016-11-09 2018-05-17 엘지전자 주식회사 Rrc 메시지를 전송하는 방법 및 무선 기기
WO2018128456A1 (ko) * 2017-01-06 2018-07-12 엘지전자 주식회사 5세대 이동통신 시스템에서 액세스 제어를 수행하는 방법 및 단말
EP3557910B1 (en) * 2017-01-06 2021-10-13 LG Electronics Inc. Method and device for configuring signaling category for access control mechanism in wireless communication system
ES2936290T3 (es) * 2017-02-10 2023-03-15 Ipcom Gmbh & Co Kg Control de itinerancia
US10932175B2 (en) * 2017-03-21 2021-02-23 Lg Electronics Inc. Method for relay terminal to select remote terminal where access control is applied due to network congestion and relay terminal performing method
CN109246815B (zh) * 2017-05-22 2022-03-22 展讯通信(上海)有限公司 通信方法、寻呼方法及装置、存储介质、终端、基站
WO2019090649A1 (zh) * 2017-11-09 2019-05-16 Oppo广东移动通信有限公司 一种接入控制的方法,设备及计算机可读介质和系统
US20190260807A1 (en) * 2018-02-16 2019-08-22 T-Mobile Usa, Inc. Local routing of media streams
WO2020030972A1 (en) * 2018-08-10 2020-02-13 Lenovo (Singapore) Pte. Ltd. Transport layer protocol for sip message
EP3892035A4 (en) * 2018-12-05 2022-08-03 INTEL Corporation OVERLOAD CONTROL OVER VARIOUS PUBLIC LAND MOBILE NETWORKS
WO2020225600A1 (en) * 2019-05-03 2020-11-12 Lenovo (Singapore) Pte, Ltd. Method and apparatus for determining validity
US20220263874A1 (en) * 2019-08-07 2022-08-18 Lg Electronics Inc. Ims signaling
WO2021025432A1 (ko) * 2019-08-07 2021-02-11 엘지전자 주식회사 Ims 시그널링
WO2021029636A1 (ko) * 2019-08-12 2021-02-18 엘지전자 주식회사 Sip 메시지 타입에 기초한 ims 시그널링
US11140117B1 (en) 2020-03-20 2021-10-05 Sprint Communication Company L.P. Wireless messaging with high-priority quality-of-service
WO2022181979A1 (ko) * 2021-02-25 2022-09-01 삼성전자 주식회사 측정 보고를 수행하는 전자 장치 및 그 동작 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090238143A1 (en) * 2008-03-21 2009-09-24 Interdigital Patent Holdings, Inc. Method and apparatus to enable fallback to circuit switched domain from packet switched domain
WO2010141788A2 (en) * 2009-06-03 2010-12-09 Research In Motion Ltd Voice service in evolved packet system
US20110002327A1 (en) * 2009-06-03 2011-01-06 Johanna Lisa Dwyer Voice service in evolved packet system
US20120269099A1 (en) * 2009-10-02 2012-10-25 Research In Motion Limited System and Method for Determining Establishment Causes for Emergency Sessions

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070049342A1 (en) * 2005-08-26 2007-03-01 Net2Phone, Inc. MTA-cradle personal gateway
KR101213285B1 (ko) * 2006-01-04 2012-12-17 삼성전자주식회사 이동통신 시스템에서 아이들모드 단말기의 세션 설정 프로토콜 데이터를 전송하는 방법 및 장치
US9094257B2 (en) * 2006-06-30 2015-07-28 Centurylink Intellectual Property Llc System and method for selecting a content delivery network
US20090016334A1 (en) * 2007-07-09 2009-01-15 Nokia Corporation Secured transmission with low overhead
CN101931898B (zh) * 2009-06-26 2014-03-05 华为技术有限公司 用户面数据的传输方法、装置及系统
CN102696260B (zh) * 2010-01-08 2016-05-25 黑莓有限公司 紧急无线连接建立
CN102438292B (zh) * 2010-09-29 2015-06-10 中兴通讯股份有限公司 一种无线资源控制方法及系统
JP5396375B2 (ja) * 2010-11-30 2014-01-22 株式会社Nttドコモ 移動通信方法及び移動局
US8891512B2 (en) * 2011-08-19 2014-11-18 Htc Corporation Method of handling a VoIP connection of a mobile device and related communication device
GB2489545B (en) * 2011-11-29 2013-05-29 Renesas Mobile Corp Method, apparatus and computer program for establishing an emergency service
US20130201870A1 (en) * 2012-02-06 2013-08-08 Vivek Gupta Handling dual priority applications in a wireless communication network
JP6068037B2 (ja) * 2012-08-03 2017-01-25 株式会社Nttドコモ 移動局、ネットワーク装置及び移動通信方法
US9282579B2 (en) * 2013-05-23 2016-03-08 Broadcom Corporation Deactivating elevated priority public data network connections in user equipment
US9445304B2 (en) * 2013-08-19 2016-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Inverse service specific access control (SSAC)
WO2015066383A1 (en) * 2013-10-30 2015-05-07 Interdigital Patent Holdings, Inc. Systems and methods for handling priority services congestion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090238143A1 (en) * 2008-03-21 2009-09-24 Interdigital Patent Holdings, Inc. Method and apparatus to enable fallback to circuit switched domain from packet switched domain
WO2010141788A2 (en) * 2009-06-03 2010-12-09 Research In Motion Ltd Voice service in evolved packet system
US20110002327A1 (en) * 2009-06-03 2011-01-06 Johanna Lisa Dwyer Voice service in evolved packet system
US20120269099A1 (en) * 2009-10-02 2012-10-25 Research In Motion Limited System and Method for Determining Establishment Causes for Emergency Sessions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170023723A (ko) * 2015-08-24 2017-03-06 삼성전자주식회사 무선 통신 시스템에서 통신 방법 및 장치

Also Published As

Publication number Publication date
CN104871603A (zh) 2015-08-26
US9585081B2 (en) 2017-02-28
US20170142706A1 (en) 2017-05-18
US10616868B2 (en) 2020-04-07
CN104871603B (zh) 2019-06-11
US20150304937A1 (en) 2015-10-22
KR101698285B1 (ko) 2017-01-19
WO2014084596A1 (ko) 2014-06-05

Similar Documents

Publication Publication Date Title
KR101698285B1 (ko) Ims 기반 서비스 연결 방법
JP6505274B2 (ja) アプリケーション別ネットワークアクセス遮断方法及びユーザ装置
KR101828725B1 (ko) 서비스 요청 절차 수행 방법 및 사용자 장치
JP6333994B2 (ja) Acdcによるネットワークアクセス遮断方法及びユーザ装置
JP6321832B2 (ja) アプリケーション別ネットワークアクセス遮断方法及びユーザ装置
US9628941B2 (en) MTC monitoring method
CN106134281B (zh) 用于执行邻近服务的方法及用户装置
US20200196359A1 (en) Method for using ps data off function and user equipment
US9854381B2 (en) Method for transmitting data of MTC device
US10887833B2 (en) Method by which remote terminal selects relay terminal in situation in which access control is applied because of network congestion, and remote terminal for performing method
US20140029530A1 (en) Method and terminal for applying an extended access barring
US11064555B2 (en) Method for transmitting RRC message and wireless device
KR20160045076A (ko) Ims 서비스를 위한 페이징 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right