WO2017018662A1 - Pdn 연결 수립 방법 및 사용자 장치 - Google Patents

Pdn 연결 수립 방법 및 사용자 장치 Download PDF

Info

Publication number
WO2017018662A1
WO2017018662A1 PCT/KR2016/006522 KR2016006522W WO2017018662A1 WO 2017018662 A1 WO2017018662 A1 WO 2017018662A1 KR 2016006522 W KR2016006522 W KR 2016006522W WO 2017018662 A1 WO2017018662 A1 WO 2017018662A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
pdn
message
information
network
Prior art date
Application number
PCT/KR2016/006522
Other languages
English (en)
French (fr)
Inventor
김현숙
류진숙
김래영
윤명준
김동수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/745,655 priority Critical patent/US10327277B2/en
Publication of WO2017018662A1 publication Critical patent/WO2017018662A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/165Performing reselection for specific purposes for reducing network power consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/248Connectivity information update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1073Registration or de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the present disclosure relates to mobile communication.
  • the 3GPP which enacts the technical specifications of the mobile communication system, has been trying to optimize and improve the performance of 3GPP technologies since late 2004 in order to respond to various forums and new technologies related to 4G mobile communication. Started research on Term Evolution / System Architecture Evolution technology.
  • 3GPP SAE centered on 3GPP SA WG2
  • 3GPP SA WG2 is a study on network technology aimed at determining network structure and supporting mobility between heterogeneous networks in parallel with LTE work of 3GPP TSG RAN.
  • Recent important standardization issues of 3GPP Is one of. This is a work to develop a 3GPP system into a system supporting various radio access technologies based on IP, and has been aimed at an optimized packet-based system that minimizes transmission delay with improved data transmission capability.
  • the Evolved Packet System (EPS) high-level reference model defined by 3GPP SA WG2 includes non-roaming cases and roaming cases in various scenarios. See TS 23.401 and TS 23.402.
  • the network structure diagram of FIG. 1 is a simple reconfiguration.
  • 1 illustrates an evolved mobile communication network It is a structure diagram .
  • the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (S-GW) 52, a PDN Packet Data Network Gateway (GW) 53, and a Mobility Management Entity (MME). 51, a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG).
  • S-GW Serving Gateway
  • GW Packet Data Network Gateway
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced Packet Data Gateway
  • the S-GW 52 acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB 22 and the PDN GW 53.
  • the S-GW 52 serves as a local mobility anchor point. That is, packets may be routed through the S-GW 52 for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • the S-GW 52 may be connected to other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • 3GPP networks RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • PDN GW (or P-GW) 53 corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW 53 may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the S-GW 52 and the PDN GW 53 are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option. have.
  • the MME 51 is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. .
  • the MME 51 controls control plane functions related to subscriber and session management.
  • the MME 51 manages a number of eNodeBs 22 and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME 51 performs security procedures, terminal-to-network session handling, idle terminal location management, and the like.
  • the SGSN handles all packet data, such as user's mobility management and authentication to other connecting 3GPP networks (e.g., GPRS networks, UTRAN / GERAN).
  • 3GPP networks e.g., GPRS networks, UTRAN / GERAN.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an IP service network eg, IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handover))
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and PDN GW. Used for SGW relocation because of UE mobility and when a connection to the PDN GW where the SGW is not co-located is required for the required PDN connectivity.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services. This reference point corresponds to Gi of 3GPP access
  • the eNodeB 20 is responsible for routing to the gateway, scheduling and sending paging messages, scheduling and sending broadcaster channels (BCHs), and uplink and downlink resources while the RRC connection is active. Function for dynamic allocation, configuration and provision for measurement of the eNodeB 20, radio bearer control, radio admission control, and connection mobility control. Within the EPC, paging can occur, LTE_IDLE state management, user planes can perform encryption, EPS bearer control, NAS signaling encryption and integrity protection.
  • BCHs broadcaster channels
  • the structure of the Radio Interface Protocol in the control plane between Illustrative 4 is another exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station.
  • the radio interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • the PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, and random access transmitted on PDSCH. Resource allocation of higher layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of voice over internet protocol (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • the Medium Access Control (MAC) layer is responsible for mapping various logical channels to various transport channels, and also for multiplexing logical channel multiplexing to map multiple logical channels to one transport channel. Play a role.
  • the MAC layer is connected to the RLC layer, which is the upper layer, by a logical channel.
  • the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • TM Transparent Mode
  • UM Un-acknowledged Mode
  • AM Acknowledged Mode, Response mode
  • the AM RLC performs a retransmission function through an automatic repeat and request (ARQ) function for reliable data transmission.
  • ARQ automatic repeat and request
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size. This transmits only the necessary information in the header portion of the data, thereby increasing the transmission efficiency of the radio section.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection When there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection RRC connection
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED There are several cases in which the UE in RRC_IDLE state needs to establish an RRC connection. For example, when an uplink data transmission is necessary due to a user's call attempt, or when a paging message is received from E-UTRAN, Send a response message.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM Evolved Session Management
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID This is called EPS Bearer ID.
  • MLR maximum bit rate
  • GRR guaranteed bit rate
  • AMBR aggregated maximum bit rate
  • 5a is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE 10 to obtain UL synchronization or to allocate UL radio resources to the base station, that is, the eNodeB 20.
  • the UE 10 receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB 20.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • UE 10 transmits a randomly selected random access preamble to eNodeB 20.
  • the UE 10 selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index.
  • UE 10 transmits the selected random access preamble in the selected subframe.
  • the eNodeB 20 Upon receiving the random access preamble, the eNodeB 20 sends a random access response (RAR) to the UE 10.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE 10 detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE 10 receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC radio resource control
  • an RRC state is shown depending on whether RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE 10 is in a logical connection with an entity of the RRC layer of the eNodeB 20. If the RRC state is connected, the RRC state is connected. A state that is not connected is called an RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE 10.
  • the UE 10 in the idle state cannot be understood by the eNodeB 20, and is managed by a core network in units of a tracking area, which is a larger area than a cell.
  • the tracking area is a collection unit of cells. That is, the idle state UE (10) is identified only in the presence of a large area unit, in order to receive the normal mobile communication services such as voice or data, the terminal must transition to the connected state (connected state).
  • the UE 10 When the user first powers up the UE 10, the UE 10 first searches for a suitable cell and then remains in an idle state in that cell. When the UE 10 staying in the idle state needs to establish an RRC connection, the UE 10 establishes an RRC connection with the RRC layer of the eNodeB 20 through an RRC connection procedure and performs an RRC connection state ( connected state).
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or an uplink data transmission is necessary, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which the UE 10 sends an RRC connection request message to the eNodeB 20, and the eNodeB 20 transmits an RRC connection setup message to the UE 10. And a process in which the UE 10 sends an RRC connection setup complete message to the eNodeB 20. This process will be described in more detail with reference to FIG. 4B.
  • the UE 10 When the UE 10 in idle state attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to the paging of the eNodeB 20, the UE 10 first performs an RRC connection. A RRC connection request message is transmitted to the eNodeB 20.
  • the eNB 10 When the RRC connection request message is received from the UE 10, the eNB 10 accepts the RRC connection request of the UE 10 when the radio resources are sufficient, and establishes an RRC connection that is a response message (RRC connection). setup) message is transmitted to the UE 10.
  • RRC connection a response message
  • the UE 10 When the UE 10 receives the RRC connection setup message, the UE 10 transmits an RRC connection setup complete message to the eNodeB 20. When the UE 10 successfully transmits an RRC connection establishment message, the UE 10 establishes an RRC connection with the eNodeB 20 and transitions to the RRC connected mode.
  • FIG. 6 illustrates a connection between an EPC and an IP Multimedia Subsystem (IMS).
  • IMS IP Multimedia Subsystem
  • IMS is a network technology that enables packet switching (PS) based on IP (Internet Protocol) not only to wired terminals but also to wireless terminals. It was offered to connect via (All-IP).
  • PS packet switching
  • IP Internet Protocol
  • the IMS-based network includes a call session control function (CSCF) for processing procedures for control signaling, registration, and session.
  • the CSCF may include P-CSCF (Proxy-CSCF), S-CSCF (Serving-CSCF), and I-CSCF (Interrogating-CSCF).
  • the P-CSCF operates as a first access point for user equipment (UE) in an IMS based network.
  • the S-CSCF then handles the session within the IMS network. That is, the S-SCSF is an entity responsible for routing signaling and routes a session in an IMS network.
  • the I-CSCF then acts as an access point with other entities in the IMS network.
  • the IP-based session is controlled by a session initiation protocol (SIP).
  • SIP is a protocol for controlling a session
  • the SIP is a procedure for identifying terminals to communicate with each other to find a location, creating a multimedia service session with each other, or deleting a created session.
  • URI SIP Uniform Resource Identifier
  • IP Internet Protocol
  • the first P-GW 53a of the EPC is connected to the P-CSCF 61 of the IMS, and the P-CSCF 61 is connected to the S-CSCF 62.
  • the second P-GW 53b of the EPC is connected to the network of the Internet service provider.
  • one disclosure of the present specification preferentially prioritizes a terminal that transmits a VoLTE call (MO: Mobile Oriented) or a call (MT: Mobile Terminated) when a specific data network (eg, IPv6 network) fails.
  • MO Mobile Oriented
  • MT Mobile Terminated
  • IPv6 network IPv6 network
  • one disclosure of the present specification provides a method for establishing a packet data network (PDN) connection in a user equipment (UE).
  • the method includes transmitting a Session Initiation Protocol (SIP) based request message for requesting voice over LTE (VoLTE) call origination over a first type of PDN connection; Receiving from the network node a message containing information directly or indirectly indicating that there is a problem with the first type of PDN connection, instead of a normal response message to the SIP-based request message; Determining to change the PDN type from the first type to the second type based on the information in the received message; The method may include transmitting a PDN connection request message including information on the changed second type to a mobility management entity (MME).
  • MME mobility management entity
  • the message received from the network node may be a bearer context update request message.
  • the information in the received message may be a new address list of a proxy-call session control function (P-CSCF) in an IP multimedia subsystem (IMS).
  • P-CSCF proxy-call session control function
  • IMS IP multimedia subsystem
  • the network node may be a proxy-call session control function (P-CSCF) in an IP multimedia subsystem (IMS).
  • P-CSCF proxy-call session control function
  • IMS IP multimedia subsystem
  • the information in the message received from the network node may indicate a failure of the first type-based PDN connection. It may be a cause field indicating directly.
  • Only information on the second type may be included in the PDN connection request message instead of information indicating both the first type and the second type.
  • one disclosure of the present specification provides a user equipment (UE) for establishing a packet data network (PDN) connection.
  • the UE transmits a Session Initiation Protocol (SIP) based request message for requesting voice over LTE (VoLTE) call transmission through a first type PDN connection, and instead of a normal response message for the SIP based request message,
  • a transceiver for receiving from the network node a message containing information indicating directly or indirectly that there is a problem with a first type of PDN connection; Based on the information in the received message, it may include a processor for determining to change the PDN type from the first type to the second type.
  • the processor may transmit a PDN connection request message including information on the changed second type to a mobility management entity (MME) through the transceiver.
  • MME mobility management entity
  • 1 is a structural diagram of an evolved mobile communication network.
  • Figure 2 is an exemplary view showing the architecture of a general E-UTRAN and a general EPC.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNodeB.
  • FIG. 4 is another exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station.
  • 5a is a flowchart illustrating a random access procedure in 3GPP LTE.
  • RRC radio resource control
  • FIG. 6 illustrates a connection between an EPC and an IP Multimedia Subsystem (IMS).
  • IMS IP Multimedia Subsystem
  • FIG. 7 is an exemplary view showing a signal flow according to the first embodiment.
  • FIG. 8 is an exemplary view illustrating a signal flow according to a second embodiment.
  • FIG 9 is an exemplary view illustrating a signal flow according to a third embodiment.
  • FIG 10 is an exemplary view showing a signal flow according to a fourth embodiment.
  • FIG. 11 is an exemplary view illustrating a signal flow according to a fifth embodiment.
  • FIG. 12 is an exemplary view showing a signal flow according to a sixth embodiment.
  • FIG. 13 is an exemplary view illustrating a signal flow according to a seventh embodiment.
  • FIG. 14 is a configuration block diagram of a UE 100 and a network node according to an embodiment of the present invention.
  • the present invention is described based on the Universal Mobile Telecommunication System (UMTS) and the Evolved Packet Core (EPC), the present invention is not limited to such a communication system, but also to all communication systems and methods to which the technical spirit of the present invention can be applied. Can be applied.
  • UMTS Universal Mobile Telecommunication System
  • EPC Evolved Packet Core
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • a user equipment UE
  • the illustrated UE may be referred to in terms of terminal, mobile equipment (ME), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a PDA, a smart phone, a multimedia device, or a non-portable device such as a PC or a vehicle-mounted device.
  • GSM EDGE Radio Access Network An acronym for GSM EDGE Radio Access Network, and refers to a wireless access section connecting a core network and a terminal by GSM / EDGE.
  • UTRAN Abbreviation for Universal Terrestrial Radio Access Network, and refers to a wireless access section connecting a terminal and a core network of 3G mobile communication.
  • E-UTRAN Abbreviation for Evolved Universal Terrestrial Radio Access Network, and refers to a 4G mobile communication, that is, a wireless access section connecting a terminal to a LTE core network.
  • UMTS stands for Universal Mobile Telecommunication System and means a core network of 3G mobile communication.
  • UE / MS means User Equipment / Mobile Station, terminal equipment.
  • EPS stands for Evolved Packet System and means a core network supporting a Long Term Evolution (LTE) network.
  • LTE Long Term Evolution
  • UMTS evolved network
  • PDN Public Data Network
  • PDN connection connection from the terminal to the PDN, that is, association (connection) between the terminal represented by the IP address and the PDN represented by the APN
  • PDN-GW Packet Data Network Gateway
  • Network node of EPS network that performs UE IP address allocation, Packet screening & filtering, Charging data collection
  • Serving GW Network node of EPS network performing Mobility anchor, Packet routing, Idle mode packet buffering, Triggering MME to page UE
  • PCRF Policy and Charging Rule Function
  • APN Access Point Name: A name of an access point managed in a network, which is provided to a UE. That is, a string that refers to or distinguishes a PDN. In order to connect to the requested service or network (PDN), the P-GW goes through the name. A predefined name (string) in the network to find this P-GW (example) internet.mnc012.mcc345.gprs
  • Tunnel Endpoint Identifier End point ID of a tunnel established between nodes in a network, and is set for each section in bearer units of each UE.
  • NodeB A base station of a UMTS network, which is installed outdoors, and a cell coverage scale corresponds to a macro cell.
  • eNodeB A base station of an evolved packet system (EPS), which is installed outdoors, and a cell coverage size corresponds to a macro cell.
  • EPS evolved packet system
  • NodeB A term referring to NodeB and eNodeB.
  • MME Mobility Management Entity
  • a session is a channel for data transmission.
  • the unit may be a PDN, a bearer, or an IP flow unit.
  • the difference in each unit can be divided into the entire target network unit (APN or PDN unit), the QoS classification unit (Bearer unit), and the destination IP address unit as defined in 3GPP.
  • PDN connection (connection) A connection from the terminal to the PDN, that is, the association (connection) between the terminal represented by the IP address and the PDN represented by the APN.
  • UE Context Context information of UE used to manage UE in the network, ie Context Information composed of UE id, mobility (current location, etc.), session attributes (QoS, priority, etc.)
  • NAS Non-Access-Stratum: Upper stratum of the control plane (control plane) between the UE and the MME. Support mobility management, session management, IP address maintenance between UE and network
  • RAT Abbreviation for Radio Access Technology, which means GERAN, UTRAN, E-UTRAN and the like.
  • ANDSF Access Network Discovery and Selection Function: Provides a policy that allows a terminal to discover and select available access on an operator basis as a network entity.
  • the UE (or terminal) assumed in the following embodiment is a terminal capable of supporting both IPv4 and IPv6, and according to the prior art, a UE capable of IPv4 and IPv6 requests an IPv4v6 type PDN configuration.
  • the network determines one of IPv4, IPv6, and IPv4v6 types according to the subscriber information according to the policy of the operator and notifies the UE.
  • the operator has configured a network to provide VoLTE services to IPv6 PDN by default, and recognizes each node even if some nodes or all nodes of the IPv6 PDN are not physical failures.
  • network failure such as when the network node cannot be recognized due to a failure of DNS that provides IP address information, a description will be given on the assumption that a service can be provided using an IPv4 PDN.
  • the first to third embodiments below relate to an example of making a VoLTE call (MO).
  • EPC Node First Embodiment Determining to Connect to IPv4 in a Network and Corresponding Required Settings Improvement of P-GW and MME No Improvement of UE
  • Third Embodiment Determining and Connecting to IPv4 in the Network and Required Settings Delivery of Notification Information from IMS Nodes to EPC Nodes, Delivery of Notifications from EPC Nodes to Terminals Improvements in IMS nodes (eg P-CSCF), P-GW, MME No need to improve UE IMS node
  • Second embodiment decides to connect to IPv4 in a network and sets necessary information Needs improvement of IMS node (e.g. P-CSCF) Needs improvement of UE
  • the UE 100 may request a PDN connectivity request together. Alternatively, if attach has already been completed in the network, the UE 100 may independently transmit a PDN connection request message to the network when additional PDN connection is required for another type of service.
  • the UE 100 transmits a PDN connection request message including the IMS APN information and the PDN type to the MME 510 for the VoLTE service.
  • the PDN type may be set to IPv4v6.
  • the PDN type set to the IPv4v6 indicates that the UE 100 may connect the PDN using any one of IP version 4 and IP version 6. That is, the UE 100 indicates that both IP version 4 and IP version 6 can be supported.
  • the MME 510 obtains subscriber information of the corresponding UE from the HSS 540 and checks whether a service can be provided according to a PDN connection request of the corresponding UE 100. If the subscriber information of the UE 100 is already in the MME 510, the interaction with the HSS 540 may be omitted. In the present embodiment, it is assumed that information indicating that both the PDN connection by IPv4 and the PDN connection by IPv6 are configured for the APN in the HSS 540.
  • the MME 510 transmits a Create Session Request message to the P-GW 530 via the S-GW 520. At this time, the MME 510 includes the PDN type set to IPv4v6 in the message based on the information received from the UE 100 and the subscriber information.
  • the P-GW 530 determines to establish a PDN connection for the UE 100 using IPv6 based on configuration information previously set by the operator and request information received from the MME 510, and the UE. Assign an IPv6 prefix for the IP address of 100.
  • the P-GW 530 transmits a create session response message to the MME 510 via the S-GW 520.
  • the session creation response message includes an allowed PDN type.
  • the allowed PDN type may be set to IPv6.
  • the session creation response message includes the IPv6 prefix assigned to the UE 100 and the address of the P-CSCF required for IMS registration.
  • QCI Quality of service Class Identifier
  • the UE 100 transmits a Session Initiation Protocol (SIP) based INVITE message.
  • SIP Session Initiation Protocol
  • the SIP-based INVITE message is not the control signal of the control plane but the data of the user plane in the EPC network side. Accordingly, the SIP-based INVITE message is transmitted to the P-GW 530 via the S-GW 520 without passing through the MME 510.
  • the P-GW 530 detects the SIP-based INVITE message by determining whether the data received from the UE 100 is general data or IMS signaling (eg, the SIP-based INVITE message).
  • the P-GW 530 does not distinguish whether the data received from the UE is general data or IMS signaling (eg, the SIP-based INVITE message).
  • this section proposes to improve the P-GW 530 to distinguish between the general data and the IMS signaling (eg, the SIP-based INVITE message) based on the following information.
  • the P-GW 530 may detect the SIP-based INVITE message using an APN. Using this concept, IMS signaling for services other than VoLTE can be detected.
  • general data or IMS signaling eg, the SIP based INVITE message
  • the reason for detecting the reception of the IMS signaling is that if there is a failure of the IPv6 network-based PDN connection, even if the P-GW 530 receives the IMS signaling, it is received in the IPv6-based IMS. This is because the IMS signaling delivery will fail in the IPv6 network even if it is not delivered to the P-CSCF 610a or the IPv6-based P-CSCF 610a.
  • the P-GW 530 is not always performed to detect the IMS signaling, but only when the P-GW 530 recognizes that there is a failure in the IPv6 network-based PDN connection.
  • Such acknowledgment may be performed based on the setting set by the operator. If there is a failure in the PDN connection based on the IPv6 network, the operator may have changed the setting of the P-GW 530 to enable only IPv4, so that the P-GW 530 is based on the changed setting. Only when it is recognized that there is a failure in the PDN connection based on the IPv6 network may detect the SIP based INVITE message.
  • the P-GW 530 performs a P-GW initiated bearer deactivation procedure. do. That is, the P-GW 100 transmits a Delete Bearer Request message to the MME 510.
  • the P-GW 530 may include implicit information indicating that there is a failure in the IPv6 network-based PDN connection in the message sent to the MME 510.
  • the MME 510 recognizes that there is a failure in the IPv6 network-based PDN connection based on the management setting set by the operator or the information received from the P-GW, and then deactivates the bearer context to the UE 100.
  • a request (Deactivate bearer context request) message is transmitted. In this case, a reactivation requested is set in the cause field of the message.
  • the UE 100 reads the cause field of the received message, releases the corresponding PDN, and then transmits a PDN connection request message to the MME 510 again. This is the same as step 1) above.
  • the MME 510 transmits a session creation request message to the P-GW 530 in the same manner as the above 3) process.
  • the P-GW 530 determines the PDN type as IPv4 based on the settings preset by the operator, and then assigns an IPv4 address to the UE 100.
  • the P-GW 530 transmits a create session response message to the MME 510 via the S-GW 520.
  • the session creation response message includes an allowed PDN type.
  • the allowed PDN type may be set to IPv4.
  • the MME 510 transmits the PDN connection response message to the UE in the same manner as in step 5).
  • the UE 100 receives the VoLTE service after receiving the IMS registration through the PDN connection using the IPv4.
  • Processes to 5) process is the same as the process 1) to 5) of FIG. 7 showing the first embodiment, and thus will not be repeated and will be applied mutatis mutandis.
  • the UE 100 transmits an INVITE message based on a Session Initiation Protocol (SIP).
  • SIP Session Initiation Protocol
  • the SIP-based INVITE message is not the control signal of the control plane but the data of the user plane. Accordingly, the SIP-based INVITE message is delivered to the P-GW 530 without passing through the MME 510.
  • the P-GW 530 is not configured to detect the SIP-based INVITE message, which is IMS signaling, and thus the SIP-based INVITE message is delivered to the P-CSCF 610a.
  • the IPv6-based P-CSCF 610a or another IMS node detects a failure of the IPv6 network-based PDN connection.
  • the IMS node then forwards the SIP message to the UE 100 to request the UE 100 to reconnect to the IPv4 network.
  • Information indicating a failure in an IPv6 network-based PDN connection is set in the cause field in the SIP message.
  • the message transmitted to the UE 100 is a SIP message
  • the message is transmitted to the UE 100 through the user plane of the corresponding PDN
  • QCI 5 default bearer, and does not go through the MME 510 that is in charge of the control plane in the EPC.
  • the IMS node may request the UE 100 to release the IMS registration and then perform the IMS re-registration again only when the P-CSCF is to be changed in the same PDN.
  • this embodiment is improved so that the IMS node can request the UE 100 to release the PDN and then establish a new PDN connection again.
  • the UE 100 reads the cause field in the received SIP message. On the basis of the determination result of the cause field, the UE recognizes that there is a failure in a specific type of PDN connection (ie, IPv6 based PDN connection), releases the corresponding PDN, and then transmits a PDN connection message again.
  • a specific type of PDN connection ie, IPv6 based PDN connection
  • Processes 1) to 7) are the same as processes 1) to 7) of FIG. 8 showing the second embodiment, and thus will not be repeatedly described.
  • the IPv6-based P-CSCF 610a If the IPv6-based P-CSCF 610a recognizes that there is a failure of the IPv6 network-based PDN connection, the IPv6-based P-CSCF 610a uses an IPv6 network-based connection to the P-GW 530 using one of the following methods. Passes information about the failure of the PDN connection. In addition, not only the fact that a failure has occurred, but also information implicitly or directly may include information requesting the P-GW 530 in the EPC to establish a new PDN connection.
  • Method 1 The P-CSCF 610 sends a dummy packet to the P-GW 530 via the user plane of the corresponding PDN. That is, although signaling for an MT call is not received, the P-CSCF 610 informs the P-GW 530 of a failure in the direction in which signaling for the MT call is delivered. Inform.
  • a P-GW initiated bearer deactivation procedure In order to perform this, a bearer delete request message is transmitted to the MME 510.
  • the MME 510 after recognizing that there is a failure of the IPv6 network-based PDN connection based on the management setting set by the operator or the information received from the P-GW, requests the UE 100 to deactivate the bearer context. Send a message (Deactivate bearer context request). In this case, a reactivation requested is set in the cause field of the message.
  • the fourth to sixth embodiments below are for a scenario of making a VoLTE call (MO).
  • EPC Node Fourth Embodiment After detecting an IPv6 network failure in a network, the UE 100 sends information (such as an IPv4 P-CSCF address) to the UE 100. The UE 100 performs an aggressive operation based on the received information (IPv6 network failure).
  • information such as an IPv4 P-CSCF address
  • IMS node notifies network failure to EPC node
  • EPC node notifies UE 100
  • information such as IPv4 P-CSCF address
  • the UE 100 performs aggressive operations based on the received information (recognizes an IPv6 network failure, determines a change in the PDN type, performs a detach / reattach, in particular an IPv4 PDN request) and an IMS node (e.g., P-CSCF).
  • Processes to 6) process is the same as the process 1) to 6) of FIG. 7 showing the first embodiment, and thus will not be repeated and will be applied mutatis mutandis.
  • the P-GW 530 provides indirect information rather than a direct indication to the UE 100. For example, since an IPv6-based P-CSCF address, which has been previously assigned / delivered to the UE 100 due to an IPv6 network-based PDN connection failure, cannot be used, the P-GW 530 may not use the IPv4-based P-CSCF address list. Decide
  • the P-GW 530 includes the IPv4 based P-CSCF address in the PCO field in the bearer update request message and transmits the P-GW 530 to the MME 510 via the S-GW 520.
  • the MME 510 forwards the bearer update request message including the IPv4 based P-CSCF address to the UE 100.
  • a specific type of PDN connection ie, IPv6-based PDN connection
  • the UE 100 sees that the P-CSCF address included in the PCO field in the bearer update request message corresponds to IPv4 only, and recognizes that a specific type of PDN connection (ie, IPv6-based PDN connection) has a failure. can do.
  • the UE 100 may recognize that there is a failure in a specific type of PDN connection (ie, IPv6-based PDN connection) using a combination of other information in addition to the IPv4-based P-CSCF address.
  • the UE 100 determines to establish an IPv4 based PDN connection.
  • the UE 100 After the UE 100 releases the IPv6-based PDN connection, the UE 100 transmits a PDN connection request message to establish an IPv4-based PDN connection.
  • the UE 100 if both IPv4 and IPv6 can be supported, the UE 100 must transmit the PDN type by setting it to IPv4v6.
  • the PDN type may be set to IPv4 by active determination and operation of the UE 100. So that it is improved.
  • Processes 1) to 7) are the same as processes 1) to 7) of FIG. 8 showing the second embodiment, and thus will not be repeatedly described.
  • the IMS node then forwards the SIP message to the UE 100 to request the UE 100 to reconnect to the IPv4 network.
  • Information indicating a failure of an IPv6 network-based PDN connection is set in the cause field in the SIP message.
  • the UE 100 receives a SIP message including a cause field indicating a failure of the IPv6 network-based PDN connection, instead of a normal response message to the SIP-based message, the UE 100 receives the cause field. Based on this, it is recognized that there is a failure in a specific type of PDN connection (ie, IPv6-based PDN connection). The UE 100 determines to reestablish an IPv4 based PDN connection.
  • the UE 100 After the UE 100 releases the IPv6-based PDN connection, the UE 100 transmits a PDN connection request message to establish an IPv4-based PDN connection.
  • the UE 100 if both IPv4 and IPv6 can be supported, the UE 100 must transmit the PDN type by setting it to IPv4v6.
  • the PDN type may be set to IPv4 by active determination and operation of the UE 100. So that it is improved.
  • Processes 1) to 8) are the same as processes 1) to 8) of FIG. 9 showing the third embodiment, and thus, the description thereof will not be repeated and will be repeated mutatis mutandis.
  • the P-GW 530 If the P-GW 530 recognizes the failure of the IPv6 network-based PDN connection, the P-GW 530 includes the IPv4-based P-CSCF address in the PCO field in the bearer update request message. It passes to the MME 510 via.
  • the MME 510 forwards the bearer update request message to the UE 100.
  • a specific type of PDN connection ie, IPv6-based PDN connection
  • the UE 100 sees that the P-CSCF address included in the PCO field in the bearer update request message corresponds to IPv4 only, and recognizes that a specific type of PDN connection (ie, IPv6-based PDN connection) has a failure. can do.
  • the UE 100 may recognize that there is a failure in a specific type of PDN connection (ie, IPv6-based PDN connection) using a combination of other information in addition to the IPv4-based P-CSCF address.
  • the UE 100 determines to establish an IPv4 based PDN connection.
  • the UE 100 After the UE 100 releases the IPv6-based PDN connection, the UE 100 transmits a PDN connection request message to establish an IPv4-based PDN connection.
  • the UE 100 if both IPv4 and IPv6 can be supported, the UE 100 must transmit the PDN type by setting it to IPv4v6.
  • the PDN type may be set to IPv4 by active determination and operation of the UE 100. So that it is improved.
  • the seventh embodiment is for a scenario of receiving (MT) a VoLTE call.
  • MME 510 detects depending on the function of the UE 100 / networkMethod 1 (passive scheme): simply request the UE to attach / reattach scheme 2 (active scheme): Request P-GW 530 to generate a list of CSCF addresses.
  • Option 3 Modify the logical PDN context of the UE / network. Reconnect to IPv4 network with IMS re-registration only. Improvements to HSS (540), MME (510), P-GW (530).
  • the IMS node After recognizing the failure in the IMS node, the IMS node forwards an indication about the failure to the HSS 540.
  • the HSS 540 determines that there is a failure of the IPv6 network-based PDN connection based on the configuration information of the operator and the indication received from the IMS node. In addition, the HSS 540 transmits a failure situation of the IPv6 network-based PDN connection to the MME 510.
  • the MME 510 receives information on the failure situation of the IPv6 network-based PDN connection from the HSS 540, and then selects one of several methods for changing the PDN type. In detail, the MME 510 may select one of the following methods according to the capability of the UE 100, the capability of the network, and the policy of the operator.
  • Scheme 1 Passive Scheme: The MME 510 instructs the UE 100 to perform detach and reattach so that a new PDN can be established.
  • Scheme 2 (active scheme): The MME 510 requests the P-GW 530 to newly generate an address list of an IPv4-based P-CSCF in order for the UE 100 to perform an aggressive operation. Send a message.
  • Method 3 Since PDN is a definition of a logical relationship between the UE 100 and the network, the PDN type is changed without requiring a detach / reattach process by updating information required for PDN configuration. That is, the EPC node only updates the PDN context related information, and the UE 100 performs IMS registration through a new type of PDN.
  • the MME 510 may allocate a new IP address of the UE 100 based on IPv4 based on the P-GW 530 and newly generate an address of the IPv4-based P-CSCF. Send a Bearer Modify Request (Modify Bearer Request) message.
  • Bearer Modify Request Modify Bearer Request
  • the P-GW 530 generates and delivers an IPv4 address and an IPv4-based P-CSCF address list allocated to the UE according to the request of the MME 510. To this end, a Modify Session Response message may be used. At this time, the P-GW 530 updates the PDN context if there is any other necessary information so that a new type of PDN connection can be established, and includes the updated PDN context in the session modification response message to provide the MME ( 510).
  • the MME 510 updates PDN context information received from the P-GW 530.
  • the MME 510 transmits a bearer context update request message including an IPv4 address assigned to the UE and an address list of the IPv4 based P-CSCF to the UE 100.
  • the UE 100 updates its own PDN context information based on information received from the P-GW 530 through the MME 510.
  • the UE 100 performs an IMS registration process for receiving a VoLTE incoming call through a new PDN connection using a newly allocated IPv4 address and an IPv4-based P-CSCF address.
  • the terminal's connection After recognizing the service request and data transmission, the terminal's connection By processing the information first, (If you change the connection settings, for reasons of management / operation of the operator, not the disability conditions) to minimize the time of the service interruption, or it may be provided to receive the changed service first.
  • Example According UE 100 shows the present invention Example According UE 100 and the configuration of network nodes Block diagram .
  • the UE 100 includes a storage means 101, a controller 102, and a transceiver 103.
  • the network node 500/600 may be an MME 510, a P-GW 530, or a P-CSCF 610.
  • the network node 500/600 includes a storage means 501/601, a controller 502/602, and a transceiver 503/603.
  • the storage means store the method described above.
  • the controllers control the storage means and the transceiver. Specifically, the controllers each execute the methods stored in the storage means. The controllers transmit the aforementioned signals through the transceivers.

Abstract

본 명세서의 일 개시는 사용자 장치(User Equipment: UE)에서 PDN(Packet Data Network) 연결을 수립하는 방법을 제공한다. 상기 방법은 제1 타입의 PDN 연결을 통해 VoLTE(Voice over LTE) 통화 발신을 요청하기 위한 SIP(Session Initiation Protocol) 기반 요청 메시지를 전송하는 단계와; 상기 SIP 기반 요청 메시지에 대한 정상 응답 메시지 대신에, 상기 제1 타입의 PDN 연결에 문제가 있음을 직접적으로 혹은 간접적으로 나타내는 정보를 포함하는 메시지를 네트워크 노드로부터 수신하는 단계와; 상기 수신한 메시지 내의 정보에 기초하여, PDN 타입을 제1 타입에서 제2타입으로 변경하기로 결정하는 단계와; 상기 변경된 제2 타입에 대한 정보를 포함하는 PDN 연결 요청 메시지를 MME(Mobility Management Entity)로 전송하는 단계를 포함할 수 있다.

Description

PDN 연결 수립 방법 및 사용자 장치
본 명세서는 이동통신에 관한 것이다.
이동통신 시스템의 기술 규격을 제정하는 3GPP에서는 4세대 이동통신과 관련된 여러 포럼들 및 새로운 기술에 대응하기 위하여, 2004년 말경부터 3GPP 기술들의 성능을 최적화 시키고 향상시키려는 노력의 일환으로 LTE/SAE(Long Term Evolution/System Architecture Evolution) 기술에 대한 연구를 시작하였다.
3GPP SA WG2을 중심으로 진행된 SAE는 3GPP TSG RAN의 LTE 작업과 병행하여 네트워크의 구조를 결정하고 이 기종 망간의 이동성을 지원하는 것을 목적으로 하는 망 기술에 관한 연구이며, 최근 3GPP의 중요한 표준화 이슈들 중 하나이다. 이는 3GPP 시스템을 IP 기반으로 하여 다양한 무선 접속 기술들을 지원하는 시스템으로 발전 시키기 위한 작업으로, 보다 향상된 데이터 전송 능력으로 전송 지연을 최소화 하는, 최적화된 패킷 기반 시스템을 목표로 작업이 진행되어 왔다.
3GPP SA WG2에서 정의한 EPS (Evolved Packet System) 상위 수준 참조 모델(reference model)은 비로밍 케이스(non-roaming case) 및 다양한 시나리오의 로밍 케이스(roaming case)를 포함하고 있으며, 상세 내용은 3GPP 표준문서 TS 23.401과 TS 23.402에서 참조할 수 있다. 도 1의 네트워크 구조도는 이를 간략하게 재구성 한 것이다.
도 1은 진화된 이동 통신 네트워크의 구조도이다 .
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, S-GW(Serving Gateway)(52), PDN GW(Packet Data Network Gateway)(53), MME(Mobility Management Entity) (51), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
S-GW(52)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB(22)와 PDN GW(53) 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말(또는 User Equipment: UE)이 eNodeB(22)에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, S-GW(52)는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 S-GW(52)를 통해서 패킷들이 라우팅될 수 있다. 또한, S-GW(52)는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW) (53)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW(53)는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 S-GW(52)와 PDN GW(53)가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME(51)는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME(51)는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME(51)는 수많은 eNodeB(22)들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME(51)는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 접속 3GPP 네트워크(예를 들어, GPRS 네트워크, UTRAN/GERAN)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말(또는 UE)은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 평면 프로토콜에 대한 레퍼런스 포인트
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 평면 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트
S3 유휴(Idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음)
S4 GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 평면 터널링을 제공함
S5 SGW와 PDN GW 간의 사용자 평면 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. UE 이동성으로 인해, 그리고 요구되는 PDN 커넥션성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함
도 2는 일반적으로 E- UTRAN과 일반적인 EPC의 주요 노드의 기능을 나타낸 예시도이다 .
도시된 바와 같이, eNodeB(20)는 RRC 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 상향링크 및 하향 링크에서의 자원을 UE에게 동적 할당, eNodeB(20)의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, EPS 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고 , 도 4는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다.
상기 무선인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling)전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH는 DL-SCH(downlink-shared channel)의 자원 할당 및 전송 포맷, UL-SCH(uplink shared channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(voice over internet protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
제2계층에는 여러 가지 계층이 존재한다. 먼저 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면 (Control Plane)의 정보를 전송하는 제어채널 (Control Channel)과 사용자평면 (User Plane)의 정보를 전송하는 트래픽채널 (Traffic Channel)로 나뉜다.
제2계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다. 또한, 각각의 무선베어러 (Radio Bearer; RB)가 요구하는 다양한 QoS를 보장할 수 있도록 하기 위해 TM (Transparent Mode, 투명모드), UM (Un-acknowledged Mode, 무응답모드), 및 AM (Acknowledged Mode, 응답모드)의 세가지 동작 모드를 제공하고 있다. 특히, AM RLC는 신뢰성 있는 데이터 전송을 위해 자동 반복 및 요청 (Automatic Repeat and Request; ARQ) 기능을 통한 재전송 기능을 수행하고 있다.
제2계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 이는 데이터의 헤더(Header) 부분에서 반드시 필요한 정보만을 전송하도록 하여, 무선 구간의 전송효율을 증가시키는 역할을 한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC휴지상태(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on) 한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 ESM (Evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 와 GBR(guaranteed bit rate) 또는 AMBR (Aggregated maximum bit rate) 의 QoS 특성을 가진다.
도 5a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE(10)가 기지국, 즉 eNodeB(20)과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE(10)는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB(20)로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE(10)은 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB(20)로 전송한다. UE(10)은 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE(10)은 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB(20)은 랜덤 액세스 응답(random access response, RAR)을 UE(10)로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE(10)은 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE(10)은 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 5b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 5b에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE(10)의 RRC 계층의 엔티티(entity)가 eNodeB(20)의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 상태(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE(10)은 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE(10)을 효과적으로 제어할 수 있다. 반면에 유휴 상태(idle state)의 UE(10)은 eNodeB(20)이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 상태(idle state) UE(10)은 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE(10)의 전원을 맨 처음 켰을 때, 상기 UE(10)은 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 상태(idle state)에 머무른다. 상기 유휴 상태(idle state)에 머물러 있던 UE(10)은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 eNodeB(20)의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 상태(Idle state)에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 상태(idle state)의 UE(10)이 상기 eNodeB(20)와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE(10)이 eNodeB(20)으로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB(20)가 UE(10)로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE(10)이 eNodeB(20)으로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 4b를 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 상태(Idle state)의 UE(10)은 통화 시도, 데이터 전송 시도, 또는 eNodeB(20)의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE(10)은 RRC 연결 요청(RRC connection request) 메시지를 eNodeB(20)으로 전송한다.
2) 상기 UE(10)로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB(10) 는 무선 자원이 충분한 경우에는 상기 UE(10)의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE(10)로 전송한다.
3) 상기 UE(10)이 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB(20)로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE(10)이 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE(10)은 eNodeB(20)과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
도 6은 EPC와 IMS(IP Multimedia Subsystem) 간의 연결을 나타낸다.
IMS는 유선 단말(Wired Terminal)뿐만 아니라 무선 단말(Wireless Terminal)에까지도 IP(Internet Protocol)를 근간으로 한 패킷 교환(PS: Packet Switching)을 가능하게 하는 네트워크 기술로서, 유/무선 단말 모두를 IP(All-IP)를 통하여 연결하기 위하여 제안되었다.
이러한, IMS를 기반으로 한 네트워크는 제어 시그널링, 등록(Registration), 세션을 위한 절차를 처리하기 위한 CSCF(호 세션 제어 기능: Call Session Control Function)를 포함한다. 상기 CSCF는 P-CSCF(Proxy-CSCF), S-CSCF(Serving-CSCF), 그리고 I-CSCF(Interrogating-CSCF)를 포함할 수 있다. 상기 P-CSCF는 IMS 기반의 네트워크 내에서 사용자 장비(UE: user equipment)를 위한 첫 번째 접속 지점으로 동작한다. 그리고, 상기 S-CSCF는 상기 IMS 네트워크 내에서 세션을 처리한다. 즉, 상기 S-SCSF는 시그널링을 라우팅하는 역할을 담당하는 엔티티(Entity)로서, IMS 네트워크에서 세션을 라우팅한다. 그리고, 상기 I-CSCF는 IMS 네트워크 내에서 다른 엔티티와의 접속 지점으로서 동작한다.
위와 같은 IMS 하에서 IP 기반의 세션은 SIP(session initiation protocol; 세션 개시 프로토콜)에 의해 제어된다. 상기 SIP 는 세션(Session)을 제어하기 위한 프로토콜로서, 상기 SIP는 통신하고자 하는 단말들이 서로를 식별하여 그 위치를 찾고, 그들 상호 간에 멀티미디어 서비스 세션을 생성하거나, 생성된 세션을 삭제 변경하기 위한 절차를 명시한 시그널링 프로토콜을 말한다. 이러한 SIP는 각 사용자들을 구분하기 위해 이메일 주소와 비슷한 SIP URI(Uniform Resource Identifier)를 사용함으로써 IP(Internet Protocol) 주소에 종속되지 않고 서비스를 제공할 수 있도록 한다. 이러한 SIP 메세지는 제어 메세지이나, EPC사용자 평면을 통해 UE와 IMS 망 사이에 전송된다.
도 6을 참조하면, EPC의 제1 P-GW(53a)는 IMS의 P-CSCF(61)와 연결되고, P-CSCF(61)은 S-CSCF(62)와 연결되어 있다.
또한, EPC의 제2 P-GW(53b)는 인터넷 서비스 사업자의 네트워크와 연결되어 있다.
그런데, 만약 EPC 내의 특정 네트워크 노드가 장애를 겪으면, 서비스가 전부 중단되게 된다.
따라서, 종래에는 특정 네트워크 노드가 장애를 겪으면, 장애가 있는 네트워크 노드 대신에 정상적인 네트워크 노드로 경로를 변경하여 서비스를 계속 제공하는 제어 메커니즘이 제시되었었다.
그러나, 종래에 있어서, 특정 데이터 네트워크 예를 들어 VoLTE 서비스를 제공하는 IPv6 네트워크에 장애가 발생하더라도, VoLTE 서비스를 제공할 수 있는 다른 종류의 데이터 네트워크, 즉 IPv4 네트워크로 전환하는 효율적인 메커니즘은 없었다. 이때, 사업자가 네트워크 장애를 대체하기 위해서는, 현재 접속되어 있는 단말들의 접속을 끊고, 재접속하도록 한 뒤, 다른 종류의 데이터 네트워크로 연결을 재 설정하는 작업을 수행하여야 하였다. 그러나, 현재 접속되어 있는 단말의 개수가 많은 경우, 그 단말들을 순차적으로 재접속시키는데 수 시간이 걸릴 수 있는 문제점이 있다. 또한, 이와 같이 수 시간이 걸림으로써, 장애가 발생한 데이터 네트워크(예컨대, IPv6 네트워크)에서 제공되던 VoLTE와 같이 매우 중요한 서비스가 중단되는 문제점이 있었다.
따라서, 본 명세서의 일 개시는 전술한 문제점을 해결할 수 있는 방안을 제시하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여, 본 명세서의 일 개시는 특정 데이터 네트워크(예컨대, IPv6 네트워크)에 장애가 발생시, VoLTE 호를 발신(MO: Mobile Oriented) 또는 착신(MT: Mobile Terminated)하는 단말을 우선적으로 재접속 및 재설정해줌으로써, 사용자가 조금이라도 더 빨리 정상적인 서비스를 제공 받을 수 있게 하는 방안을 제공한다.
구체적으로, 상기와 같은 목적을 달성하기 위하여, 본 명세서의 일 개시는 사용자 장치(User Equipment: UE)에서 PDN(Packet Data Network) 연결을 수립하는 방법을 제공한다. 상기 방법은 제1 타입의 PDN 연결을 통해 VoLTE(Voice over LTE) 통화 발신을 요청하기 위한 SIP(Session Initiation Protocol) 기반 요청 메시지를 전송하는 단계와; 상기 SIP 기반 요청 메시지에 대한 정상 응답 메시지 대신에, 상기 제1 타입의 PDN 연결에 문제가 있음을 직접적으로 혹은 간접적으로 나타내는 정보를 포함하는 메시지를 네트워크 노드로부터 수신하는 단계와; 상기 수신한 메시지 내의 정보에 기초하여, PDN 타입을 제1 타입에서 제2타입으로 변경하기로 결정하는 단계와; 상기 변경된 제2 타입에 대한 정보를 포함하는 PDN 연결 요청 메시지를 MME(Mobility Management Entity)로 전송하는 단계를 포함할 수 있다.
상기 네트워크 노드가 상기 MME인 경우, 상기 네트워크 노드로부터 수신하는 메시지는 베어러 컨텍스트 갱신 요청(Update Bearer Context Request) 메시지일 수 있다. 이때, 상기 수신된 메시지 내의 정보는 IMS(IP Multimedia Subsystem)내의 P-CSCF(Proxy-Call Session Control Function)의 새로운 주소 리스트일 수 있다. 상기 새로운 주소 리스트에는 제 2 타입의 P-CSCF 주소 만이 포함될 수 있다
또는, 상기 네트워크 노드는 IMS(IP Multimedia Subsystem)내의 P-CSCF(Proxy-Call Session Control Function)일 수 있다.이때, 상기 네트워크 노드로부터 수신되는 메시지 내의 정보는 상기 제1 타입 기반 PDN 연결의 장애를 직접적으로 나타내는 원인 필드일 수 있다.
상기 PDN 연결 요청 메시지 내에는 상기 제1 타입 및 제2 타입 모두를 나타내는 정보 대신에 상기 제2 타입에 대한 정보만이 포함될 수 있다.
한편, 상기와 같은 목적을 달성하기 위하여, 본 명세서의 일 개시는 PDN(Packet Data Network) 연결을 수립하는 사용자 장치(User Equipment: UE)를 제공한다. 상기 UE는 제1 타입의 PDN 연결을 통해 VoLTE(Voice over LTE) 통화 발신을 요청하기 위한 SIP(Session Initiation Protocol) 기반 요청 메시지를 전송하고, 상기 SIP 기반 요청 메시지에 대한 정상 응답 메시지 대신에, 상기 제1 타입의 PDN 연결에 문제가 있음을 직접적으로 혹은 간접적으로 나타내는 정보를 포함하는 메시지를 네트워크 노드로부터 수신하는 송수신부와; 상기 수신한 메시지 내의 정보에 기초하여, PDN 타입을 제1 타입에서 제2타입으로 변경하기로 결정하는 프로세서를 포함할 수 있다. 상기 프로세서는 상기 송수신부를 통해 상기 변경된 제2 타입에 대한 정보를 포함하는 PDN 연결 요청 메시지를 MME(Mobility Management Entity)로 전송할 수 있다.
본 명세서의 개시에 의하면, 종래 기술의 문제점을 해결할 수 있다. 특히, 네트워크 장애시 서비스의 중단 시간을 최소화한다.
도 1은 진화된 이동 통신 네트워크의 구조도이다.
도 2는 일반적으로 E-UTRAN과 일반적인 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이다.
도 4는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다.
도 5a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
도 5b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6은 EPC와 IMS(IP Multimedia Subsystem) 간의 연결을 나타낸다.
도 7은 제1 실시예에 따른 신호 흐름을 나타낸 예시도이다.
도 8은 제2 실시예에 따른 신호 흐름을 나타낸 예시도이다.
도 9는 제3 실시예에 따른 신호 흐름을 나타낸 예시도이다.
도 10은 제4 실시예에 따른 신호 흐름을 나타낸 예시도이다.
도 11은 제5 실시예에 따른 신호 흐름을 나타낸 예시도이다.
도 12는 제6 실시예에 따른 신호 흐름을 나타낸 예시도이다.
도 13는 제7 실시예에 따른 신호 흐름을 나타낸 예시도이다.
도 14는 본 발명의 실시예에 따른 UE(100) 및 네트워크 노드의 구성 블록도이다.
본 발명은 UMTS(Universal Mobile Telecommunication System) 및 EPC(Evolved Packet Core)를 기준으로 설명되나, 본 발명은 이러한 통신 시스템에만 한정되는 것이 아니라, 본 발명의 기술적 사상이 적용될 수 있는 모든 통신 시스템 및 방법에도 적용될 수 있다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
첨부된 도면에서는 예시적으로 UE(User Equipment)가 도시되어 있으나, 도시된 상기 UE는 단말(Terminal), ME(Mobile Equipment), 등의 용어로 언급될 수 도 있다. 또한, 상기 UE는 노트북, 휴대폰, PDA, 스마트 폰(Smart Phone), 멀티미디어 기기등과 같이 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다.
용어의 정의
이하 도면을 참조하여 설명하기 앞서, 본 발명의 이해를 돕고자, 본 명세서에서 사용되는 용어를 간략하게 정의하기로 한다.
GERAN: GSM EDGE Radio Access Network의 약자로서, GSM/EDGE에 의한 코어 네트워크와 단말을 연결하는 무선 접속 구간을 말한다.
UTRAN: Universal Terrestrial Radio Access Network의 약자로서, 3세대 이동통신의 코어 네트워크와 단말을 연결하는 무선 접속 구간을 말한다.
E-UTRAN: Evolved Universal Terrestrial Radio Access Network의 약자로서, 4세대 이동통신, 즉 LTE의 코어 네트워크와 단말을 연결하는 무선 접속 구간을 말한다.
UMTS: Universal Mobile Telecommunication System의 약자로서 3세대 이동통신의 코어 네트워크를 의미한다.
UE/MS : User Equipment/Mobile Station, 단말 장치를 의미 함.
EPS: Evolved Packet System의 약자로서, LTE(Long Term Evolution) 네트워크를 지원하는 코어 네트워크를 의미한다. UMTS가 진화된 형태의 네트워크
PDN (Public Data Network): 서비스를 제공하는 서버가 위치한 독립적인망
PDN connection: 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)
PDN-GW (Packet Data Network Gateway) : UE IP address allocation, Packet screening & filtering, Charging data collection 기능을 수행하는 EPS망의 네트워크 노드
Serving GW(Serving Gateway) : 이동성 담당(Mobility anchor), 패킷 라우팅(Packet routing), 유휴 모드 패킷 버퍼링(Idle mode packet buffering), Triggering MME to page UE 기능을 수행하는 EPS망의 네트워크 노드
PCRF(Policy and Charging Rule Function) : 서비스 flow 별로 차별화된 QoS 및 과금 정책을 동적(dynamic) 으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS망의 노드
APN (Access Point Name): 네트워크에서 관리하는 접속 포인트의 이름으로서 UE에게 제공된다. 즉, PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 망(PDN)에 접속하기 위해서는 해당 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 망 내에서 미리 정의한 이름(문자열) (예) internet.mnc012.mcc345.gprs
TEID(Tunnel Endpoint Identifier) : 네트워크 내 노드들 간에 설정된 터널의 End point ID, 각 UE의 bearer 단위로 구간별로 설정된다.
NodeB: UMTS 네트워크의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
eNodeB: EPS(Evolved Packet System) 의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
(e)NodeB: NodeB와 eNodeB를 지칭하는 용어이다.
MME: Mobility Management Entity의 약자로서, UE에 대한 세션과 이동성을 제공하기 위해 EPS 내에서 각 엔티티를 제어하는 역할을 한다.
세션(Session): 세션은 데이터 전송을 위한 통로로써 그 단위는 PDN, Bearer, IP flow 단위 등이 될 수 있다. 각 단위의 차이는 3GPP에서 정의한 것처럼 대상 네트워크 전체 단위(APN 또는 PDN 단위), 그 내에서 QoS로 구분하는 단위(Bearer 단위), 목적지 IP 주소 단위로 구분할 수 있다.
PDN 연결(connection) : 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)을 나타낸다. 이는 세션이 형성될 수 있도록 코어 네트워크 내의 엔티티간 연결(단말-PDN GW)을 의미한다.
UE Context : 네크워크에서 UE를 관리하기 위해 사용되는 UE의 상황 정보, 즉, UE id, 이동성(현재 위치 등), 세션의 속성(QoS, 우선순위 등)으로 구성된 상황 정보
NAS (Non-Access-Stratum) : UE와 MME간의 제어 플레인(control plane)의 상위 stratum. UE와 네트워크간의 이동성 관리(Mobility management)와 세션 관리 (Session management), IP 주소 관리 (IP address maintenance) 등을 지원
RAT: Radio Access Technology의 약자로서, GERAN, UTRAN, E-UTRAN 등을 의미한다.
ANDSF (Access Network Discovery and Selection Function) : 하나의 네트워크 entity로써 사업자 단위로 단말이 사용가능한 access 를 발견하고 선택하도록 하는 Policy를 제공
한편, 이하에서 제시하는 실시예는 단독으로 구현될 수 도 있지만, 여러 실시예의 조합으로 구현될 수 있다.
아래 실시예에서 가정하는 UE(또는 단말)은 IPv4, IPv6 를 모두 지원 가능한 단말로써, 종래기술의 의해 IPv4, IPv6 가능한 UE는 IPv4v6 타입의 PDN 설정을 요청하게 된다. 네트워크에서는 사업자의 정책에 따라, 가입자 정보에 따라, IPv4, IPv6, IPv4v6 타입 중 하나를 결정하여 UE에게 통보한다. 본 명세서는 상기 기술한 문제 시나리오에서 설명한 바와 같이, 사업자가 VoLTE 서비스는 기본적으로 IPv6 PDN으로 제공하도록 네트워크 망을 구성하였으며, IPv6 PDN의 일부 노드 혹은 전체 노드, 또는 물리적 장애가 아니더라도, 각 노드를 인식하는 IP 주소 정보를 제공하는 DNS의 장애로 네트워크 노드 사이의 인지가 불가하게 되는 경우 등, 네트워크의 장애가 발생하였을 경우, IPv4 PDN으로 서비스를 제공할 수 있도록 하는 상황을 가정하여 기술한다.
I. 제1 내지 제3 실시예 : 네트워크에 의한 PDN 타입 변경 방안
아래 제1 내지 제3 실시예는 VoLTE 호를 발신(MO)하는 예에 관한 것이다.
UE로 통지 하는 주체 EPC 노드의 검출 IMS 노드의 검출
EPC 노드 제1 실시예: 네트워크에서 IPv4로 연결할 것을 결정 및 해당 필요한 설정 P-GW 및 MME의 개선 필요UE의 개선 필요 없음 제3 실시예: 네트워크에서 IPv4로 연결할 것을 결정 및 해당 필요한 설정 IMS 노드에서 EPC 노드로 통지 정보 전달, EPC 노드에서 단말로 통지 전달 IMS 노드(예컨대P-CSCF), P-GW, MME 의 개선이 필요함UE의 개선 필요 없음
IMS 노드 제2 실시예: 네트워크에서 IPv4로 연결할 것을 결정하고, 필요한 정보를 설정함IMS 노드(예컨대 P-CSCF)의 개선 필요함UE의 개선 필요 없음
도 7은 제1 실시예에 따른 신호 흐름을 나타낸 예시도이다 .
1) 먼저, UE(100)는 초기 어태치 메시지(initial attach message)를 네트워크로 전송할 때, PDN 연결 요청(PDN connectivity request)을 함께 요청할 수 있다. 혹은 이미 네트워크에 어태치를 완료한 상태라면, 상기 UE(100)는 다른 종류의 서비스를 위해 추가적인 PDN 연결이 필요한 경우 독립적으로 PDN 연결 요청 메시지를 네트워크로 전송할 수 있다. 본 실시예에서는 VoLTE 서비스를 위해 UE(100)가 IMS APN 정보 및 PDN 타입을 포함한 PDN 연결 요청 메시지를 MME(510)으로 전송한다. 여기서 PDN 타입은 IPv4v6으로 설정될 수 있다. 상기 IPv4v6으로 설정된 PDN 타입은 UE(100)는 PDN이 IP 버전 4와 IP 버전 6 중 어느 하나를 사용하여 연결되어도 무방함을 나타낸다. 즉, UE(100)은 IP 버전 4와 IP 버전 6, 모두지원 가능 함을 나타낸다.
2) MME(510)는 해당 UE의 가입자 정보를 HSS(540)로부터 획득하여, 해당 UE(100)의 PDN 연결 요청에 따라 서비스를 제공할 수 있는지 확인하다. 상기 UE(100)의 가입자 정보가 이미 MME(510)에 있다면, HSS(540)와의 상호 작용(interaction)은 생략될 수 있다. 본 실시예에서는 HSS(540)에 해당 APN에 대해 IPv4에 의한 PDN 연결과 IPv6에 의한 PDN 연결이 모두 가능하다는 정보가 설정되어 있는 것으로 가정한다.
3) 상기 MME(510)는 세션 생성 요청(Create Session Request) 메시지를 S-GW(520)를 경유하여 P-GW(530)로 전송한다. 이때, MME(510)는 UE(100)로부터 받은 정보와 가입자 정보에 기반하여 IPv4v6로 설정된 PDN 타입을 상기 메시지에 포함시킨다.
4) P-GW(530)는 사업자가 미리 세팅한 설정 정보 및 MME(510)로부터 받은 요청 정보 등에 기반하여, 상기 UE(100)를 위한 PDN 연결을 IPv6을 이용하여 수립하기로 결정하며, UE(100)의 IP 주소를 위해 IPv6 프리픽스(prefix)를 할당한다.
5) P-GW(530)는 S-GW(520)를 경유하여 MME(510)로 세션 생성 응답(create session response) 메시지를 전송한다. 이때, 상기 세션 생성 응답 메시지는 허용된 PDN 타입을 포함한다. 상기 허용된 PDN 타입은 IPv6로 설정될 수 있다. 또한, 상기 세션 생성 응답 메시지 내에는 UE(100)에게 할당된 IPv6 프리픽스 및 IMS 등록에 필요한 P-CSCF의 주소가 포함된다.
상기 MME(510)는 이러한 정보를 UE(100)로 포워딩함으로써, IPv6을 이용한 PDN이 설정되며, QCI(Quality of service Class Identifier)=5의 디폴트 베어러(default bearer)가 설정된다. 이후, UE(100)은 상기 PDN을 통해 IMS 등록 프로시저 수행하고, 음성 서비스를 받을 수 있게 된다.
6) 이후, 사용자가 VoLTE 발신 통화(MO call)를 요청하는 경우, UE(100)는 SIP(Session Initiation Protocol) 기반의 INVITE 메시지를 전송한다. 이때, 상기 SIP 기반의 INVITE 메시지는 EPC 망 측면에서는 제어 평면의 제어 신호가 아니라 사용자 평면의 데이터이다. 따라서, 상기 SIP 기반의 INVITE 메시지는 MME(510)를 거치지 않고, S-GW(520)을 경유하여 P-GW(530)으로 전달된다.
7) 상기 P-GW(530)은 UE(100)로부터 수신되는 데이터가 일반 데이터 인지 아니면 IMS 시그널링(예컨대 상기 SIP 기반 INVITE 메시지)인지를 판단함으로써, SIP 기반 INVITE 메시지를 검출한다.
그러나, 기존 기술에 다르면 상기 P-GW(530)는 UE로부터 수신되는 데이터가 일반 데이터인지 아니면 IMS 시그널링(예컨대 상기 SIP 기반 INVITE 메시지)인지를 구분하지 않았다. 그러나, 본 절에서는 상기 P-GW(530)가 아래 정보에 기반하여 상기 일반 데이터와 IMS 시그널링(예컨대 상기 SIP 기반 INVITE 메시지)를 구분해내도록 개선하는 것을 제안한다.
a. VoLTE 서비스인 경우, “well known” IMS APN으로 설정된 PDN 연결을 이용한다. 따라서, P-GW(530)은 APN을 이용하여 상기 SIP 기반 INVITE 메시지를 검출할 수 있음. 이러한 개념을 활용하면, VoLTE 외의 다른 서비스를 위한 IMS 시그널링을 검출해낼 수 있음
b. IMS 시그널링은 QCI=5인 디폴트 베어러(default bearer)를 이용하여 전달된다. 그러므로, P-GW(530)은 UE로부터 수신된 데이터가 QCI=5인 디폴트 베어러를 이용하는지에 기반하여 일반 데이터인지 아니면 IMS 시그널링(예컨대 상기 SIP 기반 INVITE 메시지)인지를 알아낼 수 있다.
이와 같이 상기 IMS 시그널링(예컨대 상기 SIP 기반 INVITE 메시지)의 수신을 검출하는 이유는, IPv6 네트워크 기반 PDN 연결의 장애가 있다면, 비록 상기 P-GW(530)가 상기 IMS 시그널링를 수신하였더라도, 이를 IMS 내의 IPv6 기반 P-CSCF(610a)로 전달하지 못하므로, 혹은 IPv6 기반의 P-CSCF(610a)로 전달하더라도 IPv6 망 내부에서 IMS 시그널링 전달은 실패 할 것이므로 대처 방안을 수행해야 하기 때문이다.
한편, 상기 P-GW(530)가 상기 IMS 시그널링을 검출하는 것은 항상 수행되는 것이 아니라, IPv6 네트워크 기반의 PDN 연결에 장애가 있음을 인지하였을 때에만 수행된다.
이러한 인지는 사업자에 의해서 변경 세팅된 설정에 기초하여 수행될 수 있다. 만약, IPv6 네트워크 기반의 PDN 연결에 장애가 있다면, 사업자는 P-GW(530)의 설정을 IPv4만 가능하도록 변경 세팅하였을 것이므로, 상기 P-GW(530)은 이와 같이 변경 세팅된 설정에 기초하여, IPv6 네트워크 기반의 PDN 연결에 장애가 있음을 인지한 경우에만, 상기 SIP 기반 INVITE 메시지의 검출을 시도할 수 있다.
8) 상기 UE(100)로부터 VoLTE를 위한 SIP 기반 INVITE 메시지가 수신되었으나, IPv6 네트워크 기반의 PDN 연결에 장애가 있다면, P-GW(530)는 베어러 비활성화 절차(P-GW initiated bearer deactivation procedure)를 수행한다. 즉, 상기 P-GW(100)는 베어러 삭제 요청(Delete Bearer Request) 메시지를 MME(510)로 전송한다. 이때, 상기 P-GW(530)는 상기 MME(510)로 보내는 메시지 내에 IPv6 네트워크 기반 PDN 연결에 장애가 있음을 나타내는 함축적인 정보를 포함시킬 수도 있다.
9) 상기 MME(510)는 사업자에 의해 세팅된 관리 설정 혹은 상기 P-GW로부터 전달받은 정보에 의해, IPv6 네트워크 기반의 PDN 연결에 장애가 있음을 인지한 후, UE(100)에게 베어러 컨텍스트의 비활성화 요청(Deactivate bearer context request) 메시지를 전송한다. 이때, 상기 메시지 내의 원인(cause) 필드에는 재활성화 요청(reactivation requested)가 세팅된다.
10) 상기 UE(100)은 상기 수신한 메시지의 원인 필드를 판독하여, 해당 PDN을 해제(release) 한 후, 다시 PDN 연결 요청 메시지를 MME(510)으로 전송한다. 이는 앞선 1) 과정과 동일하다.
11) 상기 MME(510)는 앞선 3) 과정과 동일하게 세션 생성 요청 메시지를 P-GW(530)로 전송한다.
12) 상기 P-GW(530)는 사업자에 의해 사전 세팅된 설정에 기초하여, PDN 타입을 IPv4으로 결정한 후, UE(100)에게 IPv4 주소를 할당한다.
13) P-GW(530)는 S-GW(520)를 경유하여 MME(510)로 세션 생성 응답(create session response) 메시지를 전송한다. 이때, 상기 세션 생성 응답 메시지는 허용된 PDN 타입을 포함한다. 상기 허용된 PDN 타입은 IPv4로 설정될 수 있다.
14) 상기 MME(510)는 앞선 5) 과정과 동일하게 상기 PDN 연결 응답 메시지를 UE로 전송한다.
그러면, 상기 UE(100)는 허용된 PDN 타입이 IPv4이므로, IPv4를 이용한 PDN연결을 통해 IMS 등록을 수생한 후, VoLTE 서비스를 받는다.
도 8은 제2 실시예에 따른 신호 흐름을 나타낸 예시도이다 .
1) 과정 내지 5) 과정은 제1 실시예를 나타내는 도 7의 1) 과정 내지 5) 과정과 동일하므로, 반복하여 설명하지 않고, 그대로 준용하기로 한다.
6) 사용자가 VoLTE 발신 통화(MO call)를 요청하는 경우, UE(100)는 SIP(Session Initiation Protocol) 기반의 INVITE 메시지를 전송한다. 이때, 상기 SIP 기반의 INVITE 메시지는 제어 평면의 제어 신호가 아니라 사용자 평면의 데이터이다. 따라서, 상기 SIP 기반의 INVITE 메시지는 MME(510)를 거치지 않고, P-GW(530)으로 전달된다.
한편, 도 8에서는 P-GW(530)가 IMS 시그널링인 SIP 기반 INVITE 메시지를 검출하도록 설정되어 있지 않아, 상기 SIP 기반 INVITE 메시지가 P-CSCF(610a)로 전달되는 것으로 나타내져 있다.
7) IPv6 기반 P-CSCF(610a) 혹은 다른 IMS 노드가 IPv6 네트워크 기반 PDN 연결의 장애가 있음을 검출한다.
8) 그러면, IMS 노드는 UE(100)에게 IPv4 네트워크으로의 재연결을 요청하기 위해 SIP 메시지를 UE(100)에게 전달한다. 상기 SIP 메시지 내의 원인 필드에 IPv6 네트워크 기반의 PDN 연결에 장애를 나타내는 정보가 설정된다. 이때, 상기 UE(100)로 전달되는 메시지는 SIP 메시지이므로 해당 PDN의 사용자 평면, QCI=5 디폴트 베어러를 통해 UE(100)에 전달되며, EPC 내의 제어 평면을 담당하는 MME(510)를 거치지 않는다. 종래 기술에 의하면, IMS 노드는 동일 PDN 내에서 P-CSCF 등을 변경하고자 할 때에만 UE(100)에게 IMS 등록(registration)을 해제 후, 다시 IMS 재등록을 수행하라고 요청할 수 있었다. 그러나, 본 실시예는 IMS 노드가 UE(100)에게 PDN을 해제한 후, 다시 새로운 PDN 연결을 수립하라고 요청할 수 있도록 개선된다.
9) UE(100)은 상기 수신한 SIP 메시지 내의 원인 필드를 판독한다. 그리고 상기 UE는 상기 원인 필드의 판결 결과에 기초하여, 특정 타입의 PDN 연결(즉, IPv6 기반의 PDN 연결)에 장애가 있음을 인지하고, 해당 PDN을 해제 한 후, 다시 PDN 연결 메시지를 전송한다.
10-13) 새로운 PDN 연결이 수립되는 과정은 도 7의 11) 내지 14)과정과 동일하다.
도 9는 제3 실시예에 따른 신호 흐름을 나타낸 예시도이다 .
1) 과정 내지 7) 과정은 제2 실시예를 나타내는 도 8의 1) 과정 내지 7) 과정과 동일하므로, 반복하여 설명하지 않고, 그대로 준용하기로 한다.
8) IPv6 기반 P-CSCF(610a)가 IPv6 네트워크 기반 PDN 연결의 장애가 있음을 인지하면, 상기 IPv6 기반 P-CSCF(610a)는 아래 방안 중 하나를 이용하여 P-GW(530)로 IPv6 네트워크 기반의 PDN 연결의 장애에 관한 정보를 전달한다. 뿐만 아니라 단순히 장애가 발생했다는 사실 뿐만 아니라, EPC 내의 P-GW(530)에게 새로운 PDN 연결을 수립할 것을 요청하는 정보가 함축적/직접적으로 포함될 수 있다.
- 방안 1: P-CSCF(610)는 해당 PDN의 사용자 평면을 경유하여 더미(dummy) 패킷을 P-GW(530)로 보낸다. 즉, 착신 통화(MT call)를 위한 시그널링이 수신되지 않았음에도 불구하고, P-CSCF(610)는 착신 통화(MT call)를 위한 시그널링이 전달되는 방향으로 P-GW(530)에게 장애 사실을 알린다.
- 방안 2: P-CSCF(610)와 P-GW(530) 사이에는 사업자 정책을 관리하는 네트워크 노드 PCRF가 있으므로, P-CSCF(610)는 PCRF를 경유하여 P-GW(530)로 해당 PDN의 장애 사실을 알린다.
9) 상기P-GW(530)가 상기 P-CSCF(610)로부터 전달받은 정보에 기초하여, IPv6 네트워크 기반의 PDN 연결에 장애가 있음을 인지하면, 베어러 비활성화 절차(P-GW initiated bearer deactivation procedure)를 수행하기 위해, 베어러 삭제 요청(Delete Bearer Request) 메시지를 MME(510)로 전송한다.
10) 상기 MME(510)는 사업자에 의해 세팅된 관리 설정 혹은 상기 P-GW로부터 전달받은 정보에 의해, IPv6 네트워크 기반 PDN 연결의 장애가 있음을 인지한 후, UE(100)에게 베어러 컨텍스트의 비활성화 요청(Deactivate bearer context request) 메시지를 전송한다. 이때, 상기 메시지 내의 원인(cause) 필드에는 재활성화 요청(reactivation requested)가 세팅된다.
11)-15) 이는 제1 실시예를 나타낸 도 7의 10) 내지 14) 과정과 동일하다.
II. 제4 내지 제6 실시예 : UE 의한 PDN 타입 변경 방안
아래 제4 내지 제6 실시예는 VoLTE 통화를 발신(MO)하는 시나리오를 위한 것이다.
UE로 통지 하는 주체 EPC 노드의 검출 IMS 노드의 검출
EPC 노드 제4 실시예: 네트워크에서 IPv6 네트워크 장애를 검출한후, UE(100)에게 정보(IPv4 P-CSCF 주소 등)을 보냄.UE(100)는 수신한 정보를 기반으로 적극적인 동작 수행(IPv6 네트워크 장애를 인식하고, PDN 타입을 변경하기로 결정, 디태치/재어태치 수행, 특히 IPv4 PDN 요청)P-GW(530)의 개선이 필요함UE(100)의 개선은 필요하지 않음 제6 실시예: IMS 노드가 EPC 노드로 네트워크 장애 통지, EPC 노드는 UE(100)로 통지네트워크는 IPv6 네트워크 장애를 인지한 후, UE(100)에게 정보(IPv4 P-CSCF 주소 등)을 보냄.UE(100)는 수신한 정보를 기반으로 적극적인 동작 수행(IPv6 네트워크 장애를 인식하고, PDN 타입의 변경을 결정, 디태치/재어태치 수행, 특히 IPv4 PDN 요청)IMS 노드(예컨대, P-CSCF), P-GW(530), MME(510)의 개선이 필요함UE(100)의 개선은 필요하지 않음
IMS 노드 제5 실시예: 네트워크에서 IPv6 네트워크 장애를 인식한후, UE(100)에게 장애 통지 및 정보 전송.UE(100)은 수신한 정보를 기반으로 적극적인 동작 수행(IPv6 네트워크 장애를 인식하고, PDN 타입의 변경을 결정, 디태치/재어태치 수행, 특히 IPv4 PDN 요청)IMS 노드(예컨대, P-CSCF)의 개선이 필요함UE(100)의 개선은 필요하지 않음
도 10은 제4 실시예에 따른 신호 흐름을 나타낸 예시도이다 .
1) 과정 내지 6) 과정은 제1 실시예를 나타내는 도 7의 1) 과정 내지 6) 과정과 동일하므로, 반복하여 설명하지 않고, 그대로 준용하기로 한다.
7) 제1 실시예를 나타내는 도 7의 7) 과정과 같은 방식으로, P-GW(530)가 상황을 검출한 후, UE(100)에게 직접적인 지시가 아닌 간접 정보를 제공한다. 예를 들어 IPv6 네트워크 기반 PDN 연결의 장애로 기존에 UE(100)에게 할당/전달했던 IPv6 기반 P-CSCF의 주소는 사용 불가하므로, 상기 P-GW(530)는 IPv4 기반 P-CSCF 주소 리스트를 결정한다.
8) P-GW(530)는 베어러 갱신 요청(Update bearer request) 메시지 내의 PCO 필드에 IPv4 기반의 P-CSCF 주소를 포함시켜, S-GW(520)를 경유하여 MME(510)로 전달한다.
9) 상기 MME(510)는 상기 IPv4 기반의 P-CSCF 주소를 포함하는 상기 베어러 갱신 요청 메시지를 상기 UE(100)에게 포워딩한다.
10) 상기 UE(100)가 상기 SIP 기반 메시지에 대한 응답 메시지 대신에, 상기 베어러 갱신 요청 메시지를 수신하면, 상기 베어러 갱신 요청 메시지에 기초하여, 특정 타입의 PDN 연결(즉, IPv6 기반의 PDN 연결)에 장애가 있음을 인지한다. 구체적으로 상기 UE(100)는 상기 베어러 갱신 요청 메시지 내의 PCO 필드에 포함된 P-CSCF 주소가 IPv4에만 해당하는 것을 보고, 특정 타입의 PDN 연결(즉, IPv6 기반의 PDN 연결)에 장애가 있음을 인지할 수 있다. 혹은 상기 UE(100)는 IPv4 기반의 P-CSCF 주소 외에도 다른 정보들의 조합으로 특정 타입의 PDN 연결(즉, IPv6 기반의 PDN 연결)에 장애가 있음을 인지할 수도 있다.
그러면, 상기 UE(100)는 IPv4 기반의 PDN 연결을 수립하는 것으로 결정한다.
11) 상기 UE(100)는 IPv6 기반의 PDN 연결을 해제한 후, IPv4 기반의 PDN 연결을 수립하기 위해 PDN 연결 요청 메시지를 전송한다. 종래 기술에서는 IPv4 및 IPv6를 모두 지원 가능한 경우, UE(100)는 반드시 PDN 타입을 IPv4v6로 설정하여 전송해야 했으나, 본 실시예에서는 UE(100)의 적극적인 결정 및 동작으로 PDN 타입을 IPv4로 설정할 수 있도록 개선된다.
도 11은 제5 실시예에 따른 신호 흐름을 나타낸 예시도이다 .
1) 과정 내지 7) 과정은 제2 실시예를 나타내는 도 8의 1) 과정 내지 7) 과정과 동일하므로, 반복하여 설명하지 않고, 그대로 준용하기로 한다.
8) 그러면, IMS 노드는 UE(100)에게 IPv4 네트워크으로의 재연결을 요청하기 위해 SIP 메시지를 UE(100)에게 전달한다. 상기 SIP 메시지 내의 원인 필드에 IPv6 네트워크 기반 PDN 연결의 장애를 나타내는 정보가 설정된다.
9) 상기 UE(100)가 상기 SIP 기반 메시지에 대한 정상 응답 메시지 대신에, 상기 IPv6 네트워크 기반 PDN 연결의 장애를 나타내는 원인 필드를 포함하는 SIP 메시지를 수신하면, 상기 UE(100)는 상기 원인 필드에 기초하여, 특정 타입의 PDN 연결(즉, IPv6 기반의 PDN 연결)에 장애가 있음을 인지한다. 그리고, 상기 UE(100)는 IPv4 기반의 PDN 연결을 다시 수립하는 것으로 결정한다.
10) 상기 UE(100)는 IPv6 기반의 PDN 연결을 해제한 후, IPv4 기반의 PDN 연결을 수립하기 위해 PDN 연결 요청 메시지를 전송한다. 종래 기술에서는 IPv4 및 IPv6를 모두 지원 가능한 경우, UE(100)는 반드시 PDN 타입을 IPv4v6로 설정하여 전송해야 했으나, 본 실시예에서는 UE(100)의 적극적인 결정 및 동작으로 PDN 타입을 IPv4로 설정할 수 있도록 개선된다.
도 12는 제6 실시예에 따른 신호 흐름을 나타낸 예시도이다 .
1) 과정 내지 8) 과정은 제3 실시예를 나타내는 도 9의 1) 과정 내지 8) 과정과 동일하므로, 반복하여 설명하지 않고, 그대로 준용하기로 한다.
9) P-GW(530)가 IPv6 네트워크 기반 PDN 연결의 장애를 인식하면, 베어러 갱신 요청(Update bearer request) 메시지 내의 PCO 필드에 IPv4 기반의 P-CSCF 주소를 포함시켜, S-GW(520)를 경유하여 MME(510)로 전달한다.
10) 상기 MME(510)는 상기 베어러 갱신 요청 메시지를 UE(100)에게 포워딩한다.
11) 상기 UE(100)가 상기 SIP 기반 메시지에 대한 응답 메시지 대신에, 상기 베어러 갱신 요청 메시지를 수신하면, 상기 베어러 갱신 요청 메시지에 기초하여, 특정 타입의 PDN 연결(즉, IPv6 기반의 PDN 연결)에 장애가 있음을 인지한다. 구체적으로 상기 UE(100)는 상기 베어러 갱신 요청 메시지 내의 PCO 필드에 포함된 P-CSCF 주소가 IPv4에만 해당하는 것을 보고, 특정 타입의 PDN 연결(즉, IPv6 기반의 PDN 연결)에 장애가 있음을 인지할 수 있다. 혹은 상기 UE(100)는 IPv4 기반의 P-CSCF 주소 외에도 다른 정보들의 조합으로 특정 타입의 PDN 연결(즉, IPv6 기반의 PDN 연결)에 장애가 있음을 인지할 수도 있다.
그러면, 상기 UE(100)는 IPv4 기반의 PDN 연결을 수립하는 것으로 결정한다.
12) 상기 UE(100)는 IPv6 기반의 PDN 연결을 해제한 후, IPv4 기반의 PDN 연결을 수립하기 위해 PDN 연결 요청 메시지를 전송한다. 종래 기술에서는 IPv4 및 IPv6를 모두 지원 가능한 경우, UE(100)는 반드시 PDN 타입을 IPv4v6로 설정하여 전송해야 했으나, 본 실시예에서는 UE(100)의 적극적인 결정 및 동작으로 PDN 타입을 IPv4로 설정할 수 있도록 개선된다.
III. 제7 실시예 : MME(510)에 의한 PDN 타입 변경 방안
제7 실시예는 VoLTE 통화를 착신(MT)하는 시나리오를 위한 것이다.
착신 통화의 경우 IMS 노드로부터 SIP 메시지를 받은 후부터 시작되므로, EPC 노드가 검출하는 것은 불가능하다.
또한, IMS 노드가 검출하더라도, 현재 IMS 네트워크가 장애가 있으므로, IMS 노드가 UE에게 장애 사실을 통지하는 것을 불가능하다.
UE로 통지 하는 주체 EPC 노드의 검출 IMS 노드의 검출
EPC 노드 제7 실시예: MME(510)가 검출UE(100)/네트워크의 기능에 따라방안 1(수동적인 방안): UE에게 단순히 디태치/재어태치를 요청방안 2(적극적인 방안): MME가 새로운 P-CSCF 주소 리스트를 생성하여 줄 것을 P-GW(530)에게 요청방안 3: UE/네트워크의 논리적인 PDN 컨텍스트를 수정. IMS 재등록만으로 IPv4 네트워크에 다시 연결HSS(540), MME(510), P-GW(530)의 개선이 필요함
도 13은 제7 실시예에 따른 신호 흐름을 나타낸 예시도이다 .
1)~2) 착신 통화를 요청하는 SIP 메시지가 장애가 있는 IPv6 네트워크 노드에 도착한다.
3) 내지 5) IMS 노드에서 장애를 인지 후, IMS 노드는 HSS(540)로 장애에 관한 인디케이션을 전달한다
6) HSS(540)는 사업자의 설정 정보 및 IMS 노드로부터 받은 인디케이션을 기반으로 IPv6 네트워크 기반 PDN 연결의 장애가 있음을 판단한다. 그리고, HSS(540)는 MME(510)으로 IPv6 네트워크 기반 PDN 연결의 장애 상황을 전달한다.
7) MME(510)는 HSS(540)로부터 IPv6 네트워크 기반 PDN 연결의 장애 상황에 대한 정보를 받은 후, PDN 타입 변경에 관한 여러 방안 중 어느 하나를 선택한다. 구체적으로, MME(510)는 UE(100)의 능력, 네트워크의 능력, 사업자의 정책에 따라 아래 여러 방안들 중 하나를 선택할 수 있다.
방안 1(수동적인 방안): 상기 MME(510)는 UE(100)에게 디티채(detach) 및 재 어태치(reattach)를 수행하도록 지시함으로써, 새로운 PDN이 설정될 수 있도록 한다.
방안 2(적극적인 방안): 상기 MME(510)는 UE(100)가 적극적인 동작을 수행할 수 있도록 하기 위해, P-GW(530)에게 IPv4 기반의 P-CSCF의 주소 리스트를 새로이 생성하도록 요청하는 메시지를 전송한다.
방안 3: PDN이란 UE(100)과 네트워크 사이의 논리적인 관계의 정의 이므로 PDN 설정에 필요한 정보들을 갱신함으로써 디태치/재어태치 과정이 필요 없이 PDN 타입을 변경한다. 즉, EPC 노드는 PDN 컨텍스트 관련 정보만 갱신하고, UE(100)는 새로운 타입의 PDN을 통해 IMS 등록을 수행한다.
8) 만약, 상기 방안 3이 선택된 경우, 상기 MME(510)는 P-GW(530)가 UE(100)의 IP 주소를 IPv4 기반으로 새로 할당하고, IPv4 기반 P-CSCF의 주소를 새로이 생성할 것을 요청하기 위해 베어러 수정 요청(Modify Bearer Request) 메시지를 전송한다.
9) 상기 P-GW(530)는 MME(510)의 요청에 따라 UE에게 할당한 IPv4의 주소 및 IPv4 기반 P-CSCF의 주소 리스트를 생성하여 전달한다. 이를 위해, 세션 수정 응답(Modify Session Response) 메시지가 사용될 수 있다. 이때, 상기 P-GW(530)는 새로운 타입의 PDN 연결이 수립 될 수 있도록 그 외 필요한 정보가 있다면 PDN 컨텍스트를 갱신하고, 상기 갱신된 PDN 컨텍스트를 상기 세션 수정 응답 메시지에 포함시켜, 상기 MME(510)로 전달한다.
10) 상기 MME(510)는 P-GW(530)로부터 받은 PDN 컨텍스트 정보를 갱신한다. 그리고, 상기 MME(510)는 UE에게 할당된 IPv4의 주소 및 IPv4 기반 P-CSCF의 주소 리스트를 포함하는 베어러 컨텍스트 갱신 요청 메시지를 UE(100)로 전송한다.
11) UE(100)는 MME(510)를 통해 P-GW(530)로부터 받은 정보에 기반하여 자신이 가지고 있는 PDN 컨텍스트 정보를 갱신한다.
12) UE(100)은 새로이 할당받은 IPv4 주소 및 IPv4 기반 P-CSCF 주소를 사용하여, 새로운 PDN 연결을 통해 VoLTE 착신 통화를 받기 위한 IMS 등록 과정을 수행한다.
지금까지 설명한 상기 실시예는 EPS를 기반으로 설명하였으나, 3GPP Rel-14에서 스터디를 진행하고 있는 차세대 네트워크 시스템 (Next Generation System) 및 다른 네트워크에서도 확장 적용 가능하다, 예를 들어, 네트워크의 어느 한 논리적/물리적 서비스 도메인에서 다른 논리적/물리적 도메인으로 연결 설정을 변경하고자 할 때, 특정 논리적/물리적 서비스 도메인에 연결되어 있는 단말의 수가 많아 순차적으로 변경을 시도하는 경우, 그 사이 시간 동안 계속 서비스에 대한 요청은 발생할 수 있으며, 그러한 경우, 특정 APN 정보 혹은 특정 논리적/물리적 서비스 도메인상의 시그널링에 대한 고유한 특성 정보 (예를 들어 IMS 시그널링은 상기 실시예의 QCI=5 default bearer를 통해 전송되는 특성)에 기반하여 서비스 요청 및 데이터 전송을 인지 한 후, 그 단말의 연결 설정을 먼저 처리함으로써, 서비스 단절의 시간을 최소화 하거나, (장애 상황이 아닌 사업자의 관리/운용 상의 이유로 연결 설정을 변경하는 경우라면) 변경된 서비스를 먼저 제공 받을 수 있도록 할 수 있다.
지금까지 설명한 내용들은 하드웨어로 구현될 수 있다. 이에 대해서 도 14를 참조하여 설명하기로 한다.
도 14는 본 발명의 실시예에 따른 UE (100) 및 네트워크 노드의 구성 블록도이다 .
도 18에 도시된 바와 같이 상기 UE(100)은 저장 수단(101)와 컨트롤러(102)와 송수신부(103)를 포함한다. 그리고 상기 네트워크 노드(500/600)는 MME(510)이거나, P-GW(530)이거나, P-CSCF(610)일 수 있다. 상기 네트워크 노드(500/600)은 저장 수단(501/601)와 컨트롤러(502/602)와 송수신부(503/603)를 포함한다.
상기 저장 수단들은 전술한 방법을 저장한다.
상기 컨트롤러들은 상기 저장 수단들 및 상기 송수신부들을 제어한다. 구체적으로 상기 컨트롤러들은 상기 저장 수단들에 저장된 상기 방법들을 각기 실행한다. 그리고 상기 컨트롤러들은 상기 송수신부들을 통해 상기 전술한 신호들을 전송한다.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니므로, 본 발명은 본 발명의 사상 및 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있다.

Claims (14)

  1. 사용자 장치(User Equipment: UE)에서 PDN(Packet Data Network) 연결을 수립하는 방법으로서,
    제1 타입의 PDN 연결을 통해 VoLTE(Voice over LTE) 통화 발신을 요청하기 위한 SIP(Session Initiation Protocol) 기반 요청 메시지를 전송하는 단계와;
    상기 SIP 기반 요청 메시지에 대한 정상 응답 메시지 대신에, 상기 제1 타입의 PDN 연결에 문제가 있음을 직접적으로 혹은 간접적으로 나타내는 정보를 포함하는 메시지를 네트워크 노드로부터 수신하는 단계와;
    상기 수신한 메시지 내의 정보에 기초하여, PDN 타입을 제1 타입에서 제2타입으로 변경하기로 결정하는 단계와;
    상기 변경된 제2 타입에 대한 정보를 포함하는 PDN 연결 요청 메시지를 MME(Mobility Management Entity)로 전송하는 단계를 포함하는 PDN 연결 수립 방법.
  2. 제1항에 있어서,
    상기 네트워크 노드가 상기 MME인 경우, 상기 네트워크 노드로부터 수신하는 메시지는 베어러 컨텍스트 갱신 요청(Update Bearer Context Request) 메시지인 것을 특징으로 하는 PDN 연결 수립 방법.
  3. 제2항에 있어서,
    상기 수신된 메시지 내의 정보는 IMS(IP Multimedia Subsystem)내의 P-CSCF(Proxy-Call Session Control Function)의 새로운 주소 리스트인 것을 특징으로 하는 PDN 연결 수립 방법.
  4. 제3항에 있어서,
    상기 새로운 주소 리스트에는 제 2 타입의 P-CSCF 주소 만을 포함하는 PDN 연결 수립 방법.
  5. 제1항에 있어서,
    상기 네트워크 노드가 IMS(IP Multimedia Subsystem)내의 P-CSCF(Proxy-Call Session Control Function)인 것을 특징으로 하는 PDN 연결 수립 방법.
  6. 제5항에 있어서,
    상기 네트워크 노드로부터 수신되는 메시지 내의 정보는 상기 제1 타입 기반 PDN 연결의 장애를 직접적으로 나타내는 원인 필드인 것을 특징으로 하는 PDN 연결 수립 방법.
  7. 제1항에 있어서,
    상기 PDN 연결 요청 메시지 내에는 상기 제1 타입 및 제2 타입 모두를 나타내는 정보 대신에 상기 제2 타입에 대한 정보만이 포함되는 것을 특징으로 하는 PDN 연결 수립 방법.
  8. PDN(Packet Data Network) 연결을 수립하는 사용자 장치(User Equipment: UE)로서,
    제1 타입의 PDN 연결을 통해 VoLTE(Voice over LTE) 통화 발신을 요청하기 위한 SIP(Session Initiation Protocol) 기반 요청 메시지를 전송하고, 상기 SIP 기반 요청 메시지에 대한 정상 응답 메시지 대신에, 상기 제1 타입의 PDN 연결에 문제가 있음을 직접적으로 혹은 간접적으로 나타내는 정보를 포함하는 메시지를 네트워크 노드로부터 수신하는 송수신부와;
    상기 수신한 메시지 내의 정보에 기초하여, PDN 타입을 제1 타입에서 제2타입으로 변경하기로 결정하는 프로세서를 포함하고,
    상기 프로세서는 상기 송수신부를 통해 상기 변경된 제2 타입에 대한 정보를 포함하는 PDN 연결 요청 메시지를 MME(Mobility Management Entity)로 전송하는 것을 특징으로 하는 사용자 장치.
  9. 제8항에 있어서,
    상기 네트워크 노드가 상기 MME인 경우, 상기 네트워크 노드로부터 수신하는 메시지는 베어러 컨텍스트 갱신 요청(Update Bearer Context Request) 메시지인 것을 특징으로 하는 사용자 장치.
  10. 제9항에 있어서,
    상기 수신된 메시지 내의 정보는 IMS(IP Multimedia Subsystem)내의 P-CSCF(Proxy-Call Session Control Function)의 새로운 주소 리스트인 것을 특징으로 하는 사용자 장치.
  11. 제10항에 있어서,
    상기 새로운 주소 리스트에는 제 2 타입의 P-CSCF 주소 만을 포함하는 사용자 장치.
  12. 제8항에 있어서,
    상기 네트워크 노드가 IMS(IP Multimedia Subsystem)내의 P-CSCF(Proxy-Call Session Control Function)인 것을 특징으로 하는 사용자 장치.
  13. 제12항에 있어서,
    상기 네트워크 노드로부터 수신되는 메시지 내의 정보는 상기 제1 타입 기반 PDN 연결의 장애를 직접적으로 나타내는 원인 필드인 것을 특징으로 하는 사용자 장치.
  14. 제8항에 있어서,
    상기 PDN 연결 요청 메시지 내에는 상기 제1 타입 및 제2 타입 모두를 나타내는 정보 대신에 상기 제2 타입에 대한 정보만이 포함되는 것을 특징으로 하는 사용자 장치.
PCT/KR2016/006522 2015-07-24 2016-06-20 Pdn 연결 수립 방법 및 사용자 장치 WO2017018662A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/745,655 US10327277B2 (en) 2015-07-24 2016-06-20 PDN connection establishment method and user equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562196306P 2015-07-24 2015-07-24
US62/196,306 2015-07-24
US201662323694P 2016-04-16 2016-04-16
US62/323,694 2016-04-16

Publications (1)

Publication Number Publication Date
WO2017018662A1 true WO2017018662A1 (ko) 2017-02-02

Family

ID=57884543

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2016/006522 WO2017018662A1 (ko) 2015-07-24 2016-06-20 Pdn 연결 수립 방법 및 사용자 장치
PCT/KR2016/006524 WO2017018663A1 (ko) 2015-07-24 2016-06-20 Pdn 연결 관리 방법 및 네트워크 엔티티

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006524 WO2017018663A1 (ko) 2015-07-24 2016-06-20 Pdn 연결 관리 방법 및 네트워크 엔티티

Country Status (2)

Country Link
US (2) US10327277B2 (ko)
WO (2) WO2017018662A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093252A (ja) * 2015-04-07 2018-06-14 シャープ株式会社 端末装置、mme、pgw、及び通信制御方法
WO2018057077A1 (en) * 2016-09-21 2018-03-29 Mavenir Systems, Inc. Method and system for session resilience in packet gateways
US10264622B2 (en) * 2017-03-17 2019-04-16 Ofinno Technologies, Llc Inactive state data forwarding
EP3592016B1 (en) * 2017-03-21 2021-09-22 Huawei Technologies Co., Ltd. Method and apparatus for selecting core network device
EP3649827B1 (en) * 2017-07-07 2022-01-12 Nokia Solutions and Networks Oy Multiple air interface aggregation supporting multivendor 4g/5g networks
WO2021000229A1 (en) * 2019-07-01 2021-01-07 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes and methods performed therein for handling discovery of entrance points to an ip multimedia subsystem
CN111800406B (zh) * 2020-06-30 2022-07-01 陕西能源职业技术学院 一种终端自组网呼叫方法
US11864265B2 (en) * 2021-10-13 2024-01-02 T-Mobile Usa, Inc. Proxy-call session control function (P-CSCF) restoration
US20230217235A1 (en) * 2021-12-30 2023-07-06 T-Mobile Usa, Inc. Hss-based p-cscf restoration triggered by as
CN115551117B (zh) * 2022-11-30 2023-05-05 荣耀终端有限公司 一种pdn连接方法和通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140120914A1 (en) * 2011-07-22 2014-05-01 Fujitsu Limited Server apparatus and communication control method
WO2014084596A1 (ko) * 2012-11-27 2014-06-05 엘지전자 주식회사 Ims 기반 서비스 연결 방법
US20150063346A1 (en) * 2013-09-05 2015-03-05 Mavenir Systems, Inc. Converged media packet gateway for a novel lte data and voice core network architecture
WO2015044664A1 (en) * 2013-09-24 2015-04-02 Nec Europe Ltd. Methods and apparatuses for facilitating p-cscf restoration when a p-cscf failure has occured

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150499A1 (en) * 2008-06-09 2009-12-17 Telefonaktiebolaget L M Ericsson (Publ) A system and method of releasing resources in a telecommunications network
CN101932026B (zh) * 2009-06-26 2012-06-06 华为终端有限公司 业务处理方法、通信设备及通信系统
WO2011001628A1 (ja) * 2009-07-03 2011-01-06 パナソニック株式会社 コネクション管理方法、コネクション管理システム、移動端末、パケットデータゲートウェイ並びに移動管理ゲートウェイ
US9572088B2 (en) 2010-03-28 2017-02-14 Lg Electronics Inc. Method for transceiving accessible cell information of a relay node in a wireless communication system, and device for same
JP4927213B1 (ja) * 2010-12-03 2012-05-09 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、ゲートウェイ装置、移動管理ノード及び呼セッション制御サーバ装置
EP3544326B1 (en) 2011-01-21 2020-11-04 BlackBerry Limited Network apparatus and process to determine the connection context for connections used for (local) offloading
CN102308614B (zh) * 2011-07-01 2014-04-02 华为技术有限公司 承载的处理方法和装置
US9161380B2 (en) 2011-07-19 2015-10-13 Qualcomm Incorporated Silent redial during mobile-originated call
CN103907374B (zh) * 2011-10-28 2018-11-16 瑞典爱立信有限公司 IPv6转换处理方法及装置
US9094839B2 (en) * 2012-03-13 2015-07-28 Verizon Patent And Licensing Inc. Evolved packet core (EPC) network error mapping
WO2013163595A2 (en) * 2012-04-27 2013-10-31 Interdigital Patent Holdings, Inc. Method and apparatus for optimizing proximity data path setup
US9408125B2 (en) 2012-07-05 2016-08-02 Qualcomm Incorporated Aggregation of data bearers for carrier aggregation
WO2014008630A1 (en) * 2012-07-10 2014-01-16 Telefonaktiebolaget L M Ericsson(Publ) Reducing signaling load caused by change of terminal location
US9392634B2 (en) 2012-08-15 2016-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Node and method for connection re-establishment
KR102094499B1 (ko) 2012-10-31 2020-03-27 삼성전자주식회사 무선 통신 시스템에서 로컬 영역 패킷 데이터 네트워크 연결을 관리하는 방법 및 장치
GB2509072B (en) * 2012-12-19 2015-08-05 Samsung Electronics Co Ltd Bearer management
TW201442527A (zh) * 2013-01-11 2014-11-01 Interdigital Patent Holdings 使用者平面壅塞管理
US9584553B2 (en) 2013-06-28 2017-02-28 Qualcomm Incorporated User experience of a voice call associated with a device
JP6409772B2 (ja) * 2013-07-11 2018-10-24 日本電気株式会社 通信システム、サービングゲートウェイ、その通信方法および基地局
KR102176923B1 (ko) * 2013-12-04 2020-11-10 삼성전자 주식회사 이동 통신 시스템에서 호 서비스의 품질을 높이는 방법 및 장치
KR101922577B1 (ko) * 2013-12-31 2018-11-27 후아웨이 테크놀러지 컴퍼니 리미티드 서비스 처리 방법 및 장치
KR20150111236A (ko) 2014-03-25 2015-10-05 삼성전자주식회사 전자 장치 및 전자 장치의 통화 서비스 제공 방법
US10602350B2 (en) * 2014-04-23 2020-03-24 Lg Electronics Inc. Method for responding to failure of specific PDN
WO2016011011A1 (en) 2014-07-14 2016-01-21 Convida Wireless, Llc Network-initiated handover in integrated small cell and wifi networks
US9980310B2 (en) * 2014-10-17 2018-05-22 Mediatek Inc. Method for processing unsuccessful PDN establishment request
US9420554B1 (en) 2015-03-09 2016-08-16 Verizon Patent And Licensing Inc. Determining correct device VoLTE status for call routing
JP2018093251A (ja) * 2015-04-07 2018-06-14 シャープ株式会社 端末装置、ゲートウェイ装置、pgw、及び通信制御方法
WO2016163422A1 (ja) * 2015-04-07 2016-10-13 シャープ株式会社 端末装置、pgw及びtwag
JP2018093252A (ja) * 2015-04-07 2018-06-14 シャープ株式会社 端末装置、mme、pgw、及び通信制御方法
JP2018093253A (ja) * 2015-04-07 2018-06-14 シャープ株式会社 端末装置、mme、pgw、及び通信制御方法
US10455628B2 (en) * 2015-04-07 2019-10-22 Sharp Kabushiki Kaisha Terminal device, MME, and PGW
US11082797B2 (en) * 2015-04-07 2021-08-03 Sharp Kabushiki Kaisha Terminal device, TWAG, ePDG, and PGW
JP7014600B2 (ja) * 2015-04-07 2022-02-01 シャープ株式会社 Ue、twag、及び通信方法
EP3289826B1 (en) * 2015-04-28 2021-06-09 Telefonaktiebolaget LM Ericsson (publ) Adaptive peer status check over wireless local area networks
RU2676533C1 (ru) * 2015-07-14 2019-01-09 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство назначения ip-адреса

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140120914A1 (en) * 2011-07-22 2014-05-01 Fujitsu Limited Server apparatus and communication control method
WO2014084596A1 (ko) * 2012-11-27 2014-06-05 엘지전자 주식회사 Ims 기반 서비스 연결 방법
US20150063346A1 (en) * 2013-09-05 2015-03-05 Mavenir Systems, Inc. Converged media packet gateway for a novel lte data and voice core network architecture
WO2015044664A1 (en) * 2013-09-24 2015-04-02 Nec Europe Ltd. Methods and apparatuses for facilitating p-cscf restoration when a p-cscf failure has occured

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSGSSA; GPRS Enhancements for E-UTRAN Access (Release 13", 3GPP TS 23.401 V13.3.0, 21 June 2015 (2015-06-21), XP055349942 *

Also Published As

Publication number Publication date
US10327277B2 (en) 2019-06-18
US20180213587A1 (en) 2018-07-26
US10687380B2 (en) 2020-06-16
WO2017018663A1 (ko) 2017-02-02
US20180213449A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2017018662A1 (ko) Pdn 연결 수립 방법 및 사용자 장치
WO2017082532A1 (ko) 방문 네트워크의 사업자 네트워크 식별번호 획득 방법
WO2017034352A1 (ko) 기지국 접속 방법 및 이를 수행하는 사용자 장치
WO2019160376A1 (ko) 무선 통신 시스템에서 smf의 신호 송수신 방법 및 이를 위한 장치
WO2015002456A1 (ko) 근접 서비스를 위해 중계기를 선택 또는 재선택하는 방법
WO2018155934A1 (ko) 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치
WO2015009069A1 (ko) 서비스 요청 방법 및 사용자 장치
WO2019066544A1 (ko) 무선 통신 시스템에서 5gs에서 eps로의 핸드오버에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2015037882A1 (ko) 제어 평면을 담당하는 네트워크 노드를 재선택하는 방법
WO2015163712A1 (ko) 특정 pdn의 장애에 대처하는 방법
WO2015105301A1 (ko) 다운링크 데이터 전달 방법 및 위치 갱신 절차 수행 방법
WO2014058245A1 (ko) 추적 영역 갱신 방법 및 단말
WO2014084596A1 (ko) Ims 기반 서비스 연결 방법
WO2018131970A1 (ko) 네트워크에서 혼잡이 발생한 경우 혼잡을 제어하는 방법
WO2017171184A1 (ko) Nb-iot rat에서 네트워크 액세스를 시도하는 방법
WO2017034195A1 (ko) 방문 네트워크의 사업자 네트워크 식별번호 획득 방법
WO2018101574A1 (ko) Ps 데이터 오프 기능을 사용하는 방법 및 사용자 장치
WO2015170862A1 (ko) Csipto에 기인하여 복수의 pdn 커넥션을 수립하는 방법
WO2017030343A1 (ko) 게이트웨이를 재배정하는 방법 및 전용 베어러를 생성하는 방법
WO2015016546A1 (ko) Ims 서비스를 위한 페이징 방법 및 장치
WO2015137631A1 (ko) 근접 서비스 수행 방법 및 사용자 장치
WO2017039187A1 (ko) Home routed 방식으로 로밍 중인 사용자 장치를 ims 망에 등록하기 위한 방법
WO2014129794A1 (ko) 정책에 기반한 액세스 결정 방법 및 단말
WO2017142170A1 (ko) 차세대 이동통신에서 세션을 생성, 수정, 해제하는 방법 및 단말
WO2014182061A1 (ko) Isr 기능의 활성 여부 결정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15745655

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830695

Country of ref document: EP

Kind code of ref document: A1