WO2017052335A1 - 무선 통신 시스템에서 단말 간의 직접 통신을 수행하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 단말 간의 직접 통신을 수행하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017052335A1
WO2017052335A1 PCT/KR2016/010771 KR2016010771W WO2017052335A1 WO 2017052335 A1 WO2017052335 A1 WO 2017052335A1 KR 2016010771 W KR2016010771 W KR 2016010771W WO 2017052335 A1 WO2017052335 A1 WO 2017052335A1
Authority
WO
WIPO (PCT)
Prior art keywords
mme
relay
remote
terminal
identifier
Prior art date
Application number
PCT/KR2016/010771
Other languages
English (en)
French (fr)
Inventor
김태훈
김래영
천성덕
김재현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/762,696 priority Critical patent/US10542414B2/en
Publication of WO2017052335A1 publication Critical patent/WO2017052335A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for efficiently managing a context through direct communication between terminals in a direct communication between terminals (eg, ProSe communication) environment.
  • a direct communication between terminals eg, ProSe communication
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • the present invention improves the direct communication support method between terminals of a network entity in a ProSe communication process.
  • Still another object of the present invention is to reduce power consumption by establishing a relationship between terminals when a plurality of terminals coexist.
  • Still another object of the present invention is to efficiently manage mobility by controlling the context of terminals.
  • a method of performing direct communication may include receiving an identifier of a first MME, which is an MME supporting a relay UE, from a relay UE in which a direct connection is established with a remote UE, and a first MME supporting a relay UE. Sending a TAU request message requesting the client to manage context information of the remote UE together with an identifier of the first MME to a base station supporting the relay UE.
  • the identifier of the first MME is received via a PC5 message from the relay UE, the NAS layer of the remote UE delivers the identifier of the first MME to the AS layer, and the TAU request message and the identifier of the first MME are RRC (Radio Resource Control) Message is transmitted to the base station, and the base station may identify the first MME to which the TAU request message is to be delivered using the identifier of the first MME.
  • RRC Radio Resource Control
  • the receiving step receives a System Architecture Evolution Temporary Mobile Subscriber Identity (S-TMSI) of the relay UE instead of the identifier of the first MME from the relay UE, and the NAS layer of the remote UE receives the identifier of the first MME or S- of the relay UE.
  • S-TMSI System Architecture Evolution Temporary Mobile Subscriber Identity
  • the TMSI is delivered to the AS layer, and the S-TMSI of the relay UE may be delivered to the base station through an RRC message.
  • the receiving step receives the currently registered PLMN ID and the serving cell ID of the relay UE together with the identifier of the first MME, and the remote UE uses the currently registered PLMN ID and the serving cell ID before transmitting the TAU request message.
  • PLMN sorting and cell sorting may be performed.
  • the relay UE and the remote UE form a predetermined terminal group in which mobility is managed together, and the relay UE may be a representative terminal of the terminal group and the remote UE may be a subordinate terminal of the terminal group.
  • context information of the relay UE and context information of the remote UE may be transferred together from the old MME to the new MME.
  • the relay UE When the relay UE detects paging for the remote UE, the relay UE may transmit a paging message to the remote UE through a direct connection with the remote UE.
  • the first MME may obtain context information of the remote UE from a second MME that is an MME supporting the remote UE.
  • the relay UE for solving the technical problem includes a transmitter, a receiver, and a processor operating in connection with the transmitter and the receiver, wherein the processor is an MME supporting a relay UE from a relay UE in which a direct connection is established with a remote UE.
  • the processor is an MME supporting a relay UE from a relay UE in which a direct connection is established with a remote UE.
  • Receiving an identifier of the first MME and transmits a TAU request message requesting that the first MME supporting the relay UE also manages the context information of the remote UE and the identifier of the first MME to the base station supporting the relay UE.
  • the scheme of supporting direct communication between terminals can be improved, thereby reducing waste of radio resources of the terminal and network entities.
  • signaling overhead required for mobility management of the terminal can be reduced through context control between network entities.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • FIG. 7 shows a basic path for two UEs to communicate in EPS.
  • FIG. 9 illustrates a communication path through an eNodeB between two UEs based on a process.
  • 11 is a diagram illustrating communication through a processor UE-to-Network Relay.
  • 12 is a diagram illustrating media traffic of group communication.
  • FIG. 13 illustrates a procedure in which a remote UE performs direct communication through a UE-to-network relay.
  • TAU 14 illustrates a case where an SGW is changed along with a tracking area update (TAU) procedure.
  • TAU tracking area update
  • 15 to 17 are flowcharts illustrating a direct communication method according to an exemplary embodiment.
  • FIG. 18 is a diagram illustrating a configuration of a node device according to an exemplary embodiment.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents.
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW / P-GW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • S-GW network node of EPS network performing mobility anchor, packet routing, idle mode packet buffering, triggering MME to page UE, etc. .
  • PCRF Policy and Charging Rule Function
  • -OMA DM Open Mobile Alliance Device Management: A protocol designed for the management of mobile devices such as mobile phones, PDAs, portable computers, etc., including device configuration, firmware upgrade, error report, etc. Performs the function of.
  • OAM Operaation Administration and Maintenance
  • a group of network management functions that provides network fault indication, performance information, and data and diagnostics.
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • NAS Non-Access Stratum
  • AS Access-Stratum: Includes protocol stack between UE and radio (or access) network, and is in charge of data and network control signal transmission.
  • MO Management object
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • APN Access Point Name: A string indicating or identifying a PDN. In order to access the requested service or network, it goes through a specific P-GW, which means a predefined name (string) in the network to find this P-GW. (For example, internet.mnc012.mcc345.gprs)
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • ANDSF Access Network Discovery and Selection Function: Provides a policy that allows a terminal to discover and select available access on an operator basis as a network entity.
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • ProSe communication means communication through ProSe communication path between two or more ProSe capable terminals. Unless specifically stated otherwise, ProSe communication means one of ProSe E-UTRA communication, ProSe-assisted WLAN direct communication between two terminals, ProSe group communication, or ProSe broadcast communication.
  • ProSe-assisted WLAN direct communication ProSe communication using a direct communication path
  • ProSe communication path As a communication path supporting ProSe communication, a ProSe E-UTRA communication path may be established between ProSe-enabled UEs or through a local eNB using E-UTRA. ProSe-assisted WLAN direct communication path can be established directly between ProSe-enabled UEs using WLAN.
  • EPC path (or infrastructure data path): user plane communication path through EPC
  • ProSe Discovery A process of identifying / verifying a nearby ProSe-enabled terminal using E-UTRA
  • ProSe Group Communication One-to-many ProSe communication using a common communication path between two or more ProSe-enabled terminals in close proximity.
  • ProSe UE-to-Network Relay ProSe-enabled public safety terminal acting as a communication relay between ProSe-enabled network using E-UTRA and ProSe-enabled public safety terminal
  • Remote UE ProSe-enabled public safety that is connected to the EPC network via ProSe UE-to-Network Relay, ie provided with PDN connection, without being serviced by E-UTRAN in UE-to-Network Relay operation. Terminal.
  • ProSe-enabled Network A network that supports ProSe Discovery, ProSe Communication, and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled Network may be referred to simply as a network.
  • ProSe-enabled UE a terminal supporting ProSe discovery, ProSe communication and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled UE and the ProSe-enabled Public Safety UE may be called terminals.
  • Proximity Satisfying proximity criteria defined in discovery and communication, respectively.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • Access to an IP service network eg, IMS.
  • FIG. 1 also shows various reference points (eg, S1-U, S1-MME, etc.).
  • reference points eg, S1-U, S1-MME, etc.
  • Table 1 summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handover).
  • This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW. It provides user plane tunneling and tunnel management between Serving GW and PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services. It is the reference point between the PDN GW and the packet data network.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • the eNodeB routes resources to the gateway, scheduling and sending paging messages, scheduling and sending broadcast channels (BCHs), and uplink and downlink resources while the Radio Resource Control (RRC) connection is active.
  • Functions such as dynamic allocation to UE, configuration and provision for measurement of eNodeB, radio bearer control, radio admission control, and connection mobility control may be performed.
  • paging can be generated, LTE_IDLE state management, user plane encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several subcarriers on the frequency axis.
  • one subframe is composed of a plurality of OFDM symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of OFDM symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channels to map several logical channels to one transport channel. Perform the role of multiplexing.
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter abbreviated as RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and reconfiguration of radio bearers (abbreviated as RB) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • the UE If an RRC connection is established between the RRC of the UE and the RRC layer of the wireless network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode. .
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM Evolved Session Management
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is performed for the UE to obtain UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • the ProSe service refers to a service capable of discovery and direct communication between physically adjacent devices, communication through a base station, or communication through a third device.
  • FIG. 7 illustrates a default data path through which two UEs communicate in EPS. This basic route goes through the operator's base station (eNodeB) and the core network (ie, EPC). In the present invention, such a path will be referred to as an infrastructure data path (or EPC path). In addition, communication through such an infrastructure data path will be referred to as infrastructure communication.
  • eNodeB operator's base station
  • EPC core network
  • FIG. 8 shows a direct mode data path between two UEs based on a process. This direct mode communication path does not go through an eNodeB and a core network (ie, EPC) operated by an operator.
  • FIG. 8 (a) illustrates a case where UE-1 and UE-2 camp on different eNodeBs while transmitting and receiving data through a direct mode communication path.
  • FIG. 8 (b) illustrates camping on the same eNodeB.
  • FIG. 2 illustrates a case in which two UEs that are on exchange data via a direct mode communication path.
  • FIG. 9 shows a locally-routed data path through an eNodeB between two UEs based on a process.
  • the communication path through the eNodeB does not go through the core network (ie, EPC) operated by the operator.
  • EPC core network
  • the EPC may perform an EPC-level ProSe discovery procedure for determining whether proximity between two UEs and informing the UE of this.
  • ProSe Function is to determine whether two UEs are in close proximity and to inform the UE.
  • the ProSe function retrievals and stores process associated subscriber data and / or process associated subscriber data from the HSS, and performs EPC level process discovery and EPC secondary WLAN direct discovery, authentication and configuration for communication. Can be. It can also operate as a location service client to enable EPC level discovery and provide the UE with information to assist in WLAN direct discovery and communication. Handles EPC ProSe User IDs and Application Layer User IDs, and exchanges signals with 3rd party application servers for application registration identifier mapping. It exchanges signals with ProSe functions of other PLMNs for transmission of proximity requests, proximity alerts, and location reporting. In addition, the ProSe Function provisions various parameters required by the UE for ProSe discovery and ProSe communication. For details on ProSe Function, apply 3GPP TS 23.303.
  • the remote UE may be provided with connectivity to the EPC through the UE-to-Network Relay to communicate with an application server (AS) or participate in group communication.
  • AS application server
  • 12 shows an example in which a remote UE participates in group communication.
  • UEs 1 to 6 which are UEs belonging to the same group, may receive downlink traffic through unicast or MBMS for a specific media constituting group communication.
  • the remote UE although not in E-UTRAN coverage, sends media traffic to other group members (i.e., generates directional link traffic) by participating in a group communication via UE-to-Network Relay, or by another group member.
  • One media traffic can be received.
  • a GCS AS Group Communication Service Application Server
  • GC1 Global System for Mobile Communications
  • ii) reception of uplink data from a UE in unicast and iii) for all UEs in a group, using Unicast / MBMS delivery.
  • Data delivery iv) transmission of application level session information through the Rx interface to the PCRF, v) support for service continuity procedures for UEs switching between Unicast Delivery and MBMS Delivery.
  • GCS AS, Public Safety AS, GCSE AS Group Communication Service Enabler Application Server
  • GCS AS, Public Safety AS, GCSE AS Group Communication Service Enabler Application Server
  • the details of group communication shall apply mutatis mutandis to TS 23.468.
  • FIG. 13 illustrates a procedure in which a remote UE not served by the E-UTRAN performs direct communication through the UE-to-network relay.
  • a UE capable of operating as a ProSe UE-to-Network Relay may connect to the network and create a PDN connection to provide relay traffic to the remote UE.
  • a PDN connection supporting UE-to-Network Relay is used only for supporting relay traffic to a remote UE.
  • the relay UE creates a PDN connection through an initial connection to the E-UTRAN (S1310).
  • the relay UE obtains an IPv6 prefix through a prefix delegation function.
  • the relay UE performs a discovery procedure with the UE according to the model A or the model B with the remote UE (S1320).
  • the remote UE selects the relay UE found by the discovery procedure and establishes a one-to-one direct connection (S1330). If there is no PDN connection according to the relay UE ID or additional PDN connection is required for relay operation, the relay UE initiates a new PDN connection procedure (S1340).
  • an IPv6 prefix or an IPv4 address is assigned to the remote UE (S1350), and thus an uplink / downlink relay operation is started.
  • an IPv6 stateless address auto-configuration procedure is performed, which consists of signaling a router solicitation from the remote UE to the relay UE and signaling a router advertisement from the relay UE to the remote UE.
  • DHCPv4 discovery signaling from remote UE to relay UE
  • DHCPv4 offer signaling from relay UE to remote UE
  • DHCPv4 request signaling from remote UE to relay UE
  • IPv4 address allocation using DHCPv4 process consisting of ACK signaling (from relay UE to remote UE) is performed.
  • the relay UE performs a remote UE reporting procedure informing the MME that the remote UE is connected to it (S1360).
  • the MME notifies that the new remote UE is connected by performing a remote UE report notification procedure for the SGW and the PGW (S1370).
  • the remote UE communicates with the network through the relay UE (S1380).
  • TS 23.303 shall apply mutatis mutandis.
  • FIG. 14 illustrates a case where an SGW is changed along with a TAU procedure
  • FIG. 14 includes a case where an MME is changed.
  • the terminal transmits a TAU request message to a base station (eNodeB, eNB).
  • the NAS layer of the UE performs a lower layer (eg, when performing a procedure for establishing a NAS signaling connection (eg, attach / TAU / service request).
  • the AS layer provides a System Architecture Evolution (SAE) Temporary Mobile Subscriber Identity (S-TMSI) assigned by the previous MME or a Globally Unique MME Identifier (GUMMEI) of the previous MME.
  • SAE System Architecture Evolution
  • S-TMSI Temporary Mobile Subscriber Identity
  • GUMMEI Globally Unique MME Identifier
  • the NAS layer of the UE provides S-TMSI, not the MME identifier, to the lower layer. Conversely, if the TA of the current cell is not included in the TA list registered in advance during the NAS signaling connection establishment of the UE, the NAS layer of the UE provides the MME identifier part of the GUTI to the lower layer, and the identifier indicating that the MME identifier is native GUMMEI (When the tracking area of the current cell is in the list of tracking areas that the UE previously registered in the MME during the NAS signaling connection establishment, the UE NAS shall provide the lower layers with the S-TMSI, but shall not provide the registered MME identifier to the lower layers; or When the tracking area of the current cell is not in the list of tracking areas that the UE previously registered in the MME during the NAS signaling connection establishment, the UE NAS shall provide the lower layers with the S-TMSI, but shall not provide the registered MME identifier to the lower layers; or When the tracking area
  • the above-described S-TMSI or GUMMEI is provided to the AS layer together with the TAU request message, and the AS layer of the terminal delivers the received S-TMSI or GUMMEI to the base station.
  • the base station performs a NAS Node Selection Function (NNSF) through the received S-TMSI or GUMMEI, and selects an MME to deliver the received NAS message (eg, a TAU request message).
  • the base station may select the MME through the MME code (MMEGI) and the MMEC (MME code) MMEC (MME code) included in the S-TMSI or GUMMEI. If S-TMSI is provided, the existing MME is selected through the MMEC, and the base station provides the S-TMSI to the MME so that the MME can identify the UE through the S-TMSI.
  • GUMMEI Global System for Mobile Communications
  • NNSF is performed and the MME is selected through the GUMMEI, where the MME may or may not be changed.
  • the new MME derives the GUMMEI of the previous MME from the GUTI of the 'old GUTI IE' included in the TAU request message and checks whether an interface with the corresponding MME exists. If signaling with the MME is possible, a TAU request message including a globally unique MME Identifier (GUMMEI), which is an identifier of the previous MME, is delivered to the new MME, and the new MME sends a context request message to the old MME. Request information about the terminal.
  • GUMMEI globally unique MME Identifier
  • the new MME which has received context information about the terminal through a context response message from the previous MME, performs a procedure related to authentication and security of the terminal with respect to the HSS.
  • the MME modification process is completed by sending a context acknowledge message to the old MME.
  • the new MME then sends a create session request message to the new SGW that has been changed (ie, relocated).
  • the new MME transmits a bearer modify request message to the PGW, and the RAT information is transferred from the PGW to the PCRF.
  • the PGW updates the bearer context and sends a bearer modify bearer response message to the SGW.
  • the SGW sends a create session response message to the new MME.
  • the new MME sends an update location message to the HSS if it does not have the subscriber information of the UE or for certain network sharing scenarios, where the HSS receives the cancel location message with the previous MME. Send and receive a cancellation location acknkowledge message.
  • the previous MME deletes context information of the UE, and in the case of SGSN, an Iu release command message and an Iu release complete message are exchanged with the RNC.
  • the HSS sends a response to the update location acknowlege message to the new MME.
  • the previous MME / SGSN releases the EPS bearer resource by sending a delete session request message to the previous SGW.
  • the previous SGW sends a delete session response message and deletes the packet held in the buffer.
  • the new MME transmits a TAU reject message (TAU reject message) to the terminal when the terminal cannot access the corresponding Tracking Area (TA) due to regional subscription restriction or access restriction.
  • TAU reject message TAU reject message
  • the new MME transmits a TAU accept message to the terminal, and the TAU accept message includes a globally unique temporary identifier (GUTI) for the new MME.
  • the UE receiving the TAU grant message completes the TAU procedure by sending a TAU complete message to the MME.
  • the details of the TAU procedure and the TAU request message, the TAU reject message, the TAU approval message, the TAU completion message, and the included information described in FIG. 14 apply mutatis mutandis to the contents described in TS 24.301.
  • the context management of the remote UE in the network has not been greatly considered. Unnecessary paging may occur when the context information of the remote UE remains in the network.
  • the proposed embodiment considers the case where the remote UE as well as the relay UE is in-coverage, and proposes that the network recognizes the remote UE and manages the context of the remote UE together.
  • the network manages context information of the remote UE the process of allocating an IP address for the remote UE by the relay UE may be omitted.
  • IoT type terminals have been released instead of smartphone or mobile phone type terminals, and wearable devices, watches, and vehicle terminals are typical examples. These terminals may be implemented to communicate with a stand-alone network.
  • a network and signaling are generated for each terminal. That is, signaling increases exponentially as the number of IoT terminals increases, and signaling overhead may be a problem in terms of network.
  • low-power terminals may be classified into three types as follows. i) independent and have a cellular identity, ii) dependent and have a cellular identity, iii) dependent and have no cellular identity.
  • the proposed embodiment considers a scenario in which an IoT terminal having a dependent and cellular identity coexists with an independent terminal as a second case.
  • a description will be given of how the network efficiently manages such terminals and subscriber information of the terminals.
  • 15 to 17 are flowcharts illustrating a context management method according to an exemplary embodiment.
  • a user may independently own and use various terminals, but may also own and use one or more terminals simultaneously.
  • a case may be considered in which a mobile phone type terminal and an IoT terminal are used simultaneously, or a plurality of mobile phone type terminals and a plurality of IoT terminals are used simultaneously.
  • the proposed embodiment proposes a method for reducing power consumption and mobility-related signaling of terminals by establishing a relationship between the terminals and signaling control when multiple terminals coexist.
  • the terminal to be described below considers a case having a capability (capability) that can independently communicate with the EPC.
  • the process of establishing a relationship can be divided in two ways.
  • the network holds individual user information (or subscriber information) for each terminal.
  • the network needs additional information for recognizing the relationship between individual user information (or subscriber information), and each terminal also needs additional information for recognizing the relationship between user information.
  • the network and the terminal establish the relationship by using the above-described additional information, a detailed process will be described later.
  • Such additional information may include at least one of information on a group of terminals and layer or priority information between the terminals.
  • the information about the group of the terminal may be stored as a group identifier indicating a specific group or include all of the identifiers of the specific terminal.
  • Layer or priority information between terminals may mean relative layer or relative priority information between terminals when one or more terminals coexist, and information on dependency (for example, primary / secondary or master / slave) It may mean.
  • the network and each terminal may establish a relationship between the plurality of terminals using the above-described additional information together with individual user information (or subscriber information).
  • the relationship may be established according to the mutual agreement between the terminals.
  • the agreement process between the terminals may be performed by informing the network of the intentions of the terminals, which will be described later.
  • D2D discovery procedure between the terminals is performed.
  • D2D connection it may be connected via E-UTRAN, which is a 3GPP network, or may be connected via WiFi Direct or Bluetooth.
  • a representative terminal In the process of establishing a connection between adjacent terminals, a representative terminal is established.
  • the process of setting the representative terminal is performed differently according to the two methods of establishing the above-described relationship.
  • a representative terminal among a plurality of terminals is predetermined. That is, when additional information for recognizing a relationship between terminals includes layer or priority information between terminals, not only the network but also each terminal has corresponding additional information. Accordingly, the representative terminal may be predetermined according to the corresponding layer or priority among the plurality of terminals.
  • 'representative terminal' refers to one or more terminals representing a plurality of terminal groups, and 'dependent terminal' may mean other terminals except representative terminals in the plurality of terminal groups.
  • the terminal group may be composed of one or more representative terminals and one or more subordinate terminals.
  • the representative terminal may be determined through signaling between the terminals, or the representative terminal may be determined in a manner in which the network determines the representative terminal through signaling to the network.
  • signaling may include the above-described layer information or priority information of each terminal, and may also include information about the capability of the terminal or the power of the terminal.
  • the information on power may indicate the remaining battery amount or power efficiency of each terminal. That is, information for setting the representative terminal among the plurality of terminals may be transmitted or received between the terminals or transmitted to the network, thereby setting the representative terminal.
  • the representative terminal may be set by transmitting and receiving the above-described information between the terminals using a PC5 message through the PC5 interface.
  • the network may set the representative terminal among the plurality of terminals after confirming the request of the terminal.
  • the network may request an application server to receive a result of establishing a relationship between terminals and receive a result, and the application server may be regarded as a function and a functional entity that performs relationship setting and representative terminal setting. have.
  • each terminal When the representative terminal is set, each terminal activates a terminal group including a plurality of terminals. That is, a predetermined terminal group including a plurality of terminals is formed.
  • Each terminal sends signaling to the network (eg, MME) to activate the terminal group. For example, if a particular terminal sends a request to activate the terminal group to the MME via NAS signaling (e.g., TAU request message or newly defined NAS message), the MME responds to another NAS signaling (e.g., For example, a TAU grant message, a TAU reject message, or a newly defined NAS message) is transmitted to the terminal.
  • the request message for activating the terminal group may include at least one of an identifier of the terminal group, an identifier of terminals belonging to the group, and an indicator / IE (Information Element) requesting activation of the terminal group.
  • the request for activating the aforementioned terminal group may be transmitted to the network by the established representative terminal.
  • the request for activating the terminal group may be individually transmitted to each network by each of the plurality of terminals.
  • the network may respond to all the terminals after collecting the request of the terminals, or may respond only to the representative terminal.
  • the network may perform an interaction with an application server that is responsible for establishing a relationship between the terminals if necessary.
  • the terminals and the network entities after the terminal group is activated will be described.
  • the terminals and the network entity eg, MME
  • the terminals and the network entity recognize the relation between the plurality of terminals.
  • the operation of subordinate terminals may be divided into i) performing D2D communication through E-UTRAN and ii) performing D2D communication through WiFi or Bluetooth instead of E-UTRAN according to an access method for D2D communication. Can be.
  • each of the plurality of terminals performs only a sidelink operation for D2D, and deactivates an AS layer operation for the Uu interface with the EPC. That is, the plurality of terminals may perform an operation for receiving a radio resource for sidelink operation from the eNodeB. Meanwhile, in the latter case, each of the plurality of terminals may deactivate all of the AS layers. That is, since there is no procedure for allocating sidelink radio resources from the eNodeB, in the latter case, the plurality of terminals may also deactivate the sidelink.
  • AS layer operation may be defined differently according to the type of D2D connection.
  • the AS layer operation means an operation for communicating with the EPC through the Uu interface.
  • the AS layer operation means both an operation for communicating with the EPC and the Uu interface and a sidelink operation.
  • MT Mobile Terminating
  • a network entity eg, an MME
  • DDN downlink data notification
  • the network entity recognizes a terminal group to which the terminal to be DDN belongs and performs paging for a representative terminal of the terminal group to which the terminal belongs. Perform.
  • the paging message transmitted to the representative terminal may include an identifier of a specific terminal that is a target of the DDN.
  • the representative terminal of the terminal group receiving the paging message delivers the paging message to the target terminal through the sidelink.
  • the terminal receiving the paging message activates the AS layer and performs cell selection. If the cell selection process is successful, the terminal performs a service request (SR) procedure, receives MT call / data, and transmits a paging response message to the network entity.
  • SR service request
  • the terminal deactivates the AS layer operation again and performs only an operation for sidelink communication with the representative terminal of the terminal group.
  • the terminal may deactivate the AS layer immediately after the reception of the MT call / data is terminated or may deactivate the AS layer after entering the EMM-IDLE state.
  • the representative terminal of the terminal group may monitor only one paging message at a time, or may monitor a plurality of paging messages.
  • the paging message is implemented to include an identifier of a terminal belonging to the terminal group.
  • the representative terminal of the terminal group may monitor all of the paging messages of the plurality of terminals belonging to the terminal group.
  • MO Mobile Originating
  • the activated terminal group may be deactivated when any of the following is true. For example, when the sidelink connection quality between each subordinate terminal in the terminal group and the representative terminal is degraded more than a certain level or when the sidelink connection is disconnected, the terminal belonging to the terminal group may deactivate the terminal group. .
  • any one terminal or representative terminal belonging to the terminal group may deactivate the terminal group by transmitting NAS signaling (for example, a TAU message or newly defined NAS message) to a network entity.
  • the NAS signaling message may include an indicator for deactivating a terminal group or an information element (IE).
  • a plurality of terminals form a terminal group according to a predetermined relationship, and have described a series of processes of communicating through the terminal group and deactivating the terminal group. Meanwhile, the above descriptions correspond to a case where the same single MME holds context information of a plurality of terminals. On the other hand, the following describes an operation method when the MME to which each terminal belongs in a situation where a terminal group is formed.
  • the terminal and the representative terminal to form a terminal group should select and register the same PLMN.
  • the relay UE may be a representative terminal and the remote UE may be a subordinate terminal belonging to a terminal group.
  • the PLMN of the representative terminal may be aligned (change) to the PLMN of the subordinate terminal (remote UE), and vice versa. Is also possible.
  • UEs share registered PLMN (RPLMN) information currently registered with each other.
  • This process may be performed by including and transmitting the PLMN ID of the RPLMN in the PC5 message, or may be performed by including and transmitting the identifier (eg, GUTI) including the PLMN ID in the PC5 message.
  • the terminal receiving the GUTI may extract the PLMN ID from the GUTI.
  • the PC5 message for sharing PLMN information may use a PC5 discovery message (eg, a PC5 discovery announcement message, a PC5 discovery solicitation message, a PC5 discovery response message, etc.), and a PC5 signaling message (eg, direct A direct communication request message or a direct communication accept message used in the connection establishment process may be used.
  • a PC5 discovery message eg, a PC5 discovery announcement message, a PC5 discovery solicitation message, a PC5 discovery response message, etc.
  • a PC5 signaling message eg, direct A direct communication request message or a direct communication accept message used in the connection establishment process
  • the relay UE and the remote UE share PLMN information
  • either UE performs a PLMN selection procedure for registering as a PLMN of the counterpart UE.
  • the ProSe layer of a specific UE delivers registration PLMN information of a counterpart UE to the NAS layer
  • the NAS layer of the UE delivers an indicator to the AS layer that PLMN selection is required
  • the AS When the layer searches for the E-UTRAN band and delivers the broadcasted PLMN ID to the NAS layer, the NAS layer may check and select the registered PLMN of the counterpart UE in the delivered PLMN list.
  • the ProSe layer of a specific UE delivers PLMN information of the counterpart UE to the NAS layer, and the NAS layer, including the corresponding PLMN ID, to the AS layer indicating that a PLMN selection process for the registered PLMN of the counterpart UE is required.
  • the AS layer checks whether the registered PLMN is included among the PLMN IDs broadcasted and the corresponding PLMN ID is included, the NAS layer may select the PLMN by transmitting an indicator indicating the notification to the NAS.
  • a third method a method of simply setting a registration PLMN provided by the counterpart UE as its own PLMN may be considered.
  • the PLMN selection process is no longer performed until the remote UE releases the direct connection with the counterpart UE (relay UE) in order to prevent unnecessary PLMN switching. Do not perform.
  • the remote UE performs an MME alignment (change) process.
  • the cell sorting (change) process may be performed.
  • the remote UE and the relay UE share the cell ID of the cell currently camped on using the PC5 message.
  • the terminal selects a cell corresponding to the received cell ID to perform cell alignment between the remote UE and the relay UE.
  • MME information may be included in a PC5 message transmitted and received while each of the plurality of terminals performs a D2D discovery process or a direct link setup. Accordingly, MME information of each terminal may be shared with each other by transmitting and receiving a PC5 message.
  • the MME information included in the PC5 message may be a globally unique temporary identifier (GUTI) of the terminal or a globally unique MME identifier (GUMMEI) of the MME.
  • GUI globally unique temporary identifier
  • GUMMEI globally unique MME identifier
  • each terminal may recognize that the MME to which each terminal belongs (ie, supporting each terminal) is different. Subsequently, terminals belonging to different MMEs may operate in two ways. First, a plurality of terminals belonging to different MMEs may operate to belong to the same MME. Secondly, while maintaining the situation belonging to different MME, the representative terminal can forward the DDN to other terminals in the terminal group. In the following, the first method will be described first.
  • the terminal for changing the MME may be a subordinate terminal except for the representative terminal of the terminal group.
  • the relay UE may be a representative terminal and the remote UE may be a slave terminal belonging to a terminal group, and the MME of the slave terminal (remote UE) may be changed to the MME of the representative terminal (relay UE).
  • the opposite case is also possible.
  • the operation of changing the MME may be performed by performing the TAU procedure on the target MME to which the representative terminal or the slave terminal is to be changed, or performing the TAU procedure on the MME to which the slave terminal is currently connected.
  • the target MME takes context information of the UE from the previous MME similarly to the conventional art.
  • identification information of the target MME may be included in the RRC message or the TAU request message so that the target MME may be correctly referred to. If the RRC message includes identification information of the target MME, the eNB delivers a TAU request message to the target MME. This process will be described with specific examples in FIGS. 15 and 16.
  • the MME (the MME other than the target MME, that is, the MME currently connected to the terminal) that receives the TAU request message including the identification information of the target MME is included in the TAU request message.
  • the identification information of the target MME is checked and the TAU request message is transmitted to the target MME.
  • This delivery process may be achieved through redirection through the eNB.
  • the target MME may receive the TAU request message from another MME and operate according to the TAU procedure to obtain context information of the UE from the previous MME. This process will be described with reference to FIG. 17.
  • a case in which the currently connected MME cannot deliver a TAU request message received after the reception of the TAU request message to the target MME may occur. For example, if a request is made to the eNB for redirection but the eNB cannot perform the redirection because there is no interface with the target MME, the eNB notifies the currently connected MME. Subsequently, the MME connected to the eNB transmits to the terminal including a reason for notifying the remote UE that the redirection cannot be performed in a NAS message (eg, a TAU reject message). Accordingly, the remote UE may perform a TAU procedure or an attach procedure with the target MME to be changed.
  • a reason for notifying the remote UE that the redirection cannot be performed in a NAS message eg, a TAU reject message
  • each eNB and the target MME may indicate the cause of an error case occurrence in an RRC message or a NAS message (for example, a TAU rejection message including a reject cause). Include it and send it to the terminal. Accordingly, the terminal performs an additional process when the TAU procedure is performed to the currently connected MME or performs an access procedure to the target MME to be changed.
  • MME between different terminals may be set to the same MME. Accordingly, the MME receiving the DDN from the SGW may operate similarly to the UE group activation process of the same MME.
  • the case where the MME of the plurality of terminals belonging to the activated terminal group is different has been described.
  • This process may be implemented in such a way that the MME to which the representative terminal belongs brings the context information of the terminals from the MME of other terminals, and the MME of other terminals other than the representative terminal delivers the context information of the terminals to the MME to which the representative terminal belongs. It can also be implemented in a manner.
  • the process of checking whether the MME is different or the same may be performed by exchanging GUTI or GUMMEI as described above.
  • the MME may inform the change of the MME through interaction with the SGW and the PGW.
  • UE 1 is served by MME 1 and PDN connected through SGW 1 and PGW 1
  • UE 2 is served by MME 2 and PDN connected through SGW 2 and PGW 2
  • UE 1 is a representative UE.
  • MME 1 may inform SGW 2 and PGW 2 that the serving MME of UE 2 has been changed to MME 1.
  • MT call / data of a terminal other than the representative terminal may be generated and the DDN may be delivered to the MME.
  • the MME receiving the DDN forwards the DDN to the MME to which the representative terminal belongs.
  • the slave terminal transmits NAS signaling (for example, a message of a TAU procedure or a new NAS signaling message), so that the MME to which the terminal belongs (ie, the previous MME) belongs to the MME to which the representative terminal belongs (ie, a target).
  • MME informs that a specific terminal in the UE group belongs to another MME.
  • the message transmitted to the target MME may include an identifier of the terminal or an identifier of the terminal group, and may further include an indicator for paging forwarding (or paging redirection).
  • the DDN message is forwarded to the target MME.
  • an indicator indicating paging forwarding and an identifier of a corresponding terminal may be included in the transferred DDN message.
  • the target MME which has received the DDN message, performs a paging procedure by itself, and includes the identifier of the corresponding terminal (that is, the terminal other than the representative terminal) in the paging message.
  • the representative terminal receiving the paging message according to the DDN delivers a PC5 message including information indicating that the paging message itself or the paging message has been received to the terminal that is the target of paging.
  • the terminal receiving the PC5 message performs a service request procedure with the currently registered MME.
  • MME receiving the service request message transmitted by the terminal that is the target of paging delivers a signaling message informing the target MME.
  • the target MME receiving the signaling message recognizes that the paging message transmission has been successfully performed, and terminates the paging message transmission procedure.
  • the MME receiving the service request message performs a conventional service request procedure.
  • the TAU request message transmitted by the representative terminal may include an identifier of a terminal group or an identifier of terminals belonging to the terminal group.
  • the new MME Upon receiving the TAU request message of the representative terminal, the new MME requests the context information from the previous MME including the identifier of the terminal group, requests the terminal including the identifiers of the terminals belonging to the terminal group, or a predetermined indicator (for example, For example, an indicator requesting the context of all terminals belonging to the terminal group) may be included.
  • a predetermined indicator for example, For example, an indicator requesting the context of all terminals belonging to the terminal group
  • the previous MME transfers all the context information related to the terminals belonging to the terminal group (that is, the representative terminal and the dependent terminal) to the new MME.
  • the context information of the slave terminal may include information of the user ID and the allocated IP of the terminal.
  • the TAU request message transmitted by the representative UE may include an identifier of a UE group or a UE belonging to the UE group. An identifier may be included.
  • the representative terminal among the terminals belonging to the terminal group likewise performs the TAU procedure.
  • the TAU request message may include an identifier of a terminal group, an identifier of terminals belonging to the terminal group, and a predetermined indicator (for example, an indicator for requesting context information of all terminals belonging to the terminal group).
  • the new MME performs a context request procedure for the MME supporting the terminals belonging to the terminal group. If there is more than one MME supporting the terminals, the context request procedure is performed for each MME. Accordingly, the context information of the terminals is delivered from each MME to a new MME.
  • the MME managing the context information of the terminal group may be changed through a redirection process through an eNB or a direct redirection process between the MMEs.
  • the MME should allocate a new GUTI to the UE. This can be done through a TAU grant message or through another newly defined message.
  • the representative terminal should be assigned a plurality of GUTIs including the GUTIs of other terminals belonging to the terminal group, and the new MME may transmit all the GUTIs of the plurality of terminals in one TAU grant message to the representative terminal.
  • the message carrying the assigned GUTI includes the identifier of each terminal and includes the mapping relationship between the identifier of each terminal and the assigned GUTI, so that the representative terminal receiving the message can recognize the GUTI of each terminal.
  • the GUTI may be allocated to the terminal while the MME identifier part is omitted from the GUTI allocated to the terminal. That is, only M-TMSI which is an identifier of each terminal may be delivered.
  • the representative terminal receiving the plurality of GUTIs transfers the newly allocated GUTIs to each terminal through sidelinks.
  • the new MME may transmit a TAU grant message for allocating UEs for allocating GUTIs.
  • a message for example, a TAU grant message
  • delivering each allocated GUTI includes an identifier of the corresponding terminal so that the representative terminal receiving the GUTI can recognize the GUTI of each terminal.
  • the representative terminal receiving the plurality of TAU grant messages transmits the newly allocated GUTIs to each terminal as sidelinks.
  • the MME identifier part in the GUTI may be excluded.
  • a process of forming a terminal group of a plurality of terminals and a process of selecting a representative terminal will be described in connection with a process of communication between terminals. That is, when the relay UE and the remote UE are located at a close distance to form a terminal group, a case in which two UEs belong to different MMEs will be described. In addition, even if two UEs are located at the same location in distance, they may be registered in different MMEs. This is because the eNB may interface with one or more MMEs, and provides an MME suitable for the UE by the MME selection function when the UE connects to the eNB.
  • the DCN including the MME, SGW, PGW is set differently according to the usage type of the UE by DCN functionality (dedicated core network functionality), it is also because it can be registered in different DCN according to the UE. Lastly, even if there is no change of the location of the UE, the load may be changed by belonging to another MME by load balancing.
  • the MME alignment process will be described in detail with reference to FIGS. 15 to 17.
  • the MME alignment process to be described later may be performed together with the UE group activation process.
  • the relay UE is a representative terminal and the remote UE has been described as a terminal belonging to a terminal group, and the process of aligning the remote UE with the MME to which the relay UE belongs is described.
  • the relay UE is described as being served by MME 1 and the remote UE is served by MME 2.
  • the remote UE delivers a TAU request message to the relay UE in the form of a PC5 message (S1505).
  • the PC5 message may be a PC5 signaling message (eg, a direct communication request message, a direct communication accept message, or a newly defined message used in the direct connection establishment process), and may include an indicator that MME alignment is required.
  • the TAU request message of the remote UE may be the TAU request message itself, or may be information included in a TIE request message and a specific IE or parameter or indicator indicating a TAU request.
  • This TAU request message includes the GUTI of the remote UE.
  • the relay UE receiving the PC5 message triggers a TAU procedure for the remote UE (S1510).
  • the relay UE transfers the TAU request message received from the remote UE to MME 1, which is a registered MME (S1515c and S1520).
  • MME 1 is a registered MME (S1515c and S1520).
  • the relay UE directly configures the TAU request message of the remote UE and transmits it to the eNB and MME 1 in step S1520.
  • the NAS layer of the terminal transmits the S-TMSI to the AS layer, and the AS layer provides the S-TMSI from the NAS layer. Upon receiving it, S-TMSI is included in the RA msg3 and transmitted to the eNB (S1515c).
  • the NAS layer of the UE transmits the GUMMEI to the AS layer, and when the AS layer receives the GUMMEI, the GUMMEI is included in the RA msg5 and transmitted to the eNB. (S1520).
  • the MME 1 receiving the TAU request message of the remote UE from the eNB should recognize that the corresponding NAS message is of the remote UE. This is because the relay UE should be informed that a TAU grant / completion message to be described later should be transmitted to the remote UE.
  • an indicator is required to indicate that the TAU request message of the remote UE is that of the remote UE.
  • Such an indicator may be implemented in a manner included in a NAS message (eg, a TAU request message) or in a manner included in an RRC message.
  • the indicator when the remote UE generates the TAU request message, the indicator may be included in the TAU request message, and the remote UE may transmit the indicator to the relay UE by including the indicator in the PC5 message separately from the TAU request message.
  • an indicator may be included in the RRC connection setup complete message and the S1-AP message (eg, the initial UE message) transmitted to the eNB and transmitted to the MME 1.
  • the eNB transmits the TAU request message of the remote UE to MME 1, which is the MME of the relay UE, based on the information (for example, S-TMSI or MME identifier) received in S1515c or S1520 (S1525).
  • the MME 1 recognizes that the received TAU request message is for the remote UE and selects the remote UE according to a conventional TAU procedure. Trigger the context request for (S1530). Specifically, MME 1 derives the old MME identifier (GUMMEI) from the GUTI of the remote UE included in the TAU request message, and requests context information of the remote UE from MME 2, the MME of the remote UE. And receive (S1535, S1540).
  • GUMMEI old MME identifier
  • the TAU procedure described in TS 23.401 is sequentially performed by the network entities (S1545).
  • MME 1 transmits a TAU grant message to the relay UE (S1550), and the relay UE transmits a TAU completion message to MME 1 (S1555).
  • an indicator indicating that the corresponding NAS messages are for the remote UE Can be sent together.
  • the relay UE delivers the TAU grant message to the remote UE through the PC5 message (S1560).
  • the relay UE initiation scheme described with reference to FIG. 15 is a scheme in which the relay UE delivers a TAU request message of the remote UE to the network instead of the remote UE. In this manner, context information of the remote UE is transmitted to the relay UE so that the MME of the remote UE and the relay UE are aligned. Meanwhile, during the conventional TAU procedure, a security process, an authentication process, and a GUTI reassignment process occur between the UE and the network. When these processes are triggered, the network processes the processes while interacting with the remote UE through the relay UE.
  • 16 and 17 illustrate an MME alignment process initiated by a remote UE.
  • an eNB routing scheme is described
  • an MME rerouting scheme is described.
  • the relay UE delivers the S-TMSI value of the relay UE or the MME identifier (ie, GUMMEI) of MME 1 to the remote UE (S1605).
  • an identifier eg, GUTI
  • the serving cell ID of the relay UE is also transmitted to the remote UE.
  • the remote UE performs a cell reselection procedure in consideration of the serving cell ID of the relay UE received in S1605, thereby aligning its serving cell with the serving cell of the relay UE. Subsequently, the remote UE triggers a TAU procedure for aligning the relay UE with the MME (S1610).
  • the remote UE transmits a TAU request message to the MME (ie, MME 1) in which the relay UE is registered through identification information (for example, S-TMSI or GUTI or GUMMEI) of the relay UE received in S1605 (S1615c and S1620). ).
  • This process may be performed by providing S-TMSI or GUMMEI to the AS layer when the NAS layer of the terminal establishes a NAS signaling connection (for example, performing a TAU procedure).
  • the NAS layer of the terminal transmits the S-TMSI to the AS layer
  • the AS layer receives the S-TMSI from the NAS layer RA msg3 S-TMSI is included in the transmission to the eNB (S1615c).
  • the NAS layer of the UE transmits the GUMMEI to the AS layer, and when the AS layer receives the GUMMEI, the GUMMEI is included in the RA msg5 and transmitted to the eNB. (S1620).
  • the S-TMSI or GUMMEI transmitted by the remote UE to the eNB is a value received in S1605 from the relay UE which is not its own. That is, the RA msg 3 includes the S-TMSI value of the relay UE and is transmitted to the eNB, or the RA msg 5 includes the GUMMEI of MME 1, which is the MME of the relay UE, and is transmitted to the eNB.
  • the eNB forwards the TAU request message to the identified MME 1 based on the S-TMSI of the relay UE or the MME identifier of the MME 1 (S1625), and the MME 1 triggers the context request procedure of the remote UE so as to trigger the remote UE's request from the MME 2.
  • the context information is received (S1630, S1635, and S1640).
  • the TAU procedure described in TS 23.401 is sequentially performed by the network entities (S1645).
  • MME 1 transmits a TAU grant message to the remote UE (S1650), and the remote UE transmits a TAU completion message to MME 1 (S1655).
  • the relay UE transmits identification information (eg, GUMMEI) of MME 1 to the remote UE in a PC5 message (S1705).
  • identification information eg, GUMMEI
  • an identifier eg, GUTI
  • the remote UE triggers the TAU procedure according to the PC5 message received from the relay UE (S1710).
  • the remote UE transmits the GUMMEI of MME 1, which is the MME of the relay UE, received in S1705 to the network (MME 2) by including it in the TAU request message (S1720).
  • the TAU request message includes an indicator for triggering MME rerouting. May be further included.
  • eNB 1 transmits a TAU request message to MME 2, which is an MME of a remote UE (S1725).
  • the TAU request message may include an indicator indicating MME rerouting together with the identifier of MME 1.
  • MME 2 receives the TAU request message and verifies the identifier of MME 1 (or confirms the indicator for rerouting MME), it decides to reroute the TAU request message and the TAU procedure for rerouting to MME 1 Trigger (procedure) (S1730).
  • MME 2 includes the identifier of MME 1 together with the TAU request message in the S1AP message for MME rerouting (S1735).
  • the eNB receives the S1AP, checks the MME 1 from the identifier of the MME 1 included in the S1AP (S1740), and transmits a TAU request message to the MME 1 (S1745).
  • MME 1 requests the context information of the remote UE to MME 2 to align the MME of the remote UE, and receives a response (S1750, S1755).
  • processes S1645 to S1655 described in FIG. 16 may be similarly applied.
  • FIG. 18 is a diagram illustrating a configuration of a node device according to an exemplary embodiment.
  • the terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. Alternatively, the transceiver 110 may be implemented by being separated into a transmitter and a receiver.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the transceiver 210 may be implemented by being separated into a transmitter and a receiver.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the direct communication method as described above can be applied not only to 3GPP systems but also to various wireless communication systems including IEEE 802.16x and 802.11x systems. Furthermore, the proposed method can be applied to mmWave communication system using ultra high frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

리모트 UE와 직접 연결이 설정된 릴레이 UE로부터 릴레이 UE를 지원하는 MME의 식별자를 수신하고, 릴레이 UE를 지원하는 MME가 리모트 UE의 컨텍스트 정보도 함께 관리할 것을 요청하는 TAU 요청 메시지 및 MME의 식별자를 릴레이 UE를 지원하는 기지국으로 전송하는 직접 통신 방법 및 ProSe-enabled UE가 개시된다.

Description

무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 구체적으로는 단말 간의 직접 통신(예를 들어, ProSe 통신) 환경에서 단말 간의 직접 통신을 통해 컨텍스트를 효율적으로 관리하는 방법 및 그 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명은 ProSe 통신 과정에서 네트워크 엔티티의 단말간 직접 통신 지원 방식을 개선하는 것이다.
본 발명의 또 다른 목적은 복수의 단말이 공존할 때 단말간 관계 설정을 통해 전력 소모를 줄이는 것이다.
본 발명의 또 다른 목적은 단말들의 컨텍스트를 제어하여 이동성 관리를 효율적으로 수행하는 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
상기 기술적 과제를 해결하기 위한 직접 통신 수행 방법은, 리모트 UE와 직접 연결이 설정된 릴레이 UE로부터, 릴레이 UE를 지원하는 MME인 제1 MME의 식별자를 수신하는 단계, 및 릴레이 UE를 지원하는 제1 MME가 리모트 UE의 컨텍스트 정보도 함께 관리할 것을 요청하는 TAU 요청 메시지 및 제1 MME의 식별자를 릴레이 UE를 지원하는 기지국으로 전송하는 단계를 포함한다.
제1 MME의 식별자는 릴레이 UE로부터의 PC5 메시지를 통해서 수신되고, 리모트 UE의 NAS 계층은 제1 MME의 식별자를 AS 계층으로 전달하고, TAU 요청 메시지 및 제1 MME의 식별자는 RRC(Radio Resource Control) 메시지를 통해서 기지국에 전송되며, 기지국은 제1 MME의 식별자를 이용하여 TAU 요청 메시지를 전달할 제1 MME를 식별할 수 있다.
수신하는 단계는 릴레이 UE로부터 제1 MME의 식별자 대신에 릴레이 UE의 S-TMSI(System Architecture Evolution Temporary Mobile Subscriber Identity)를 수신하고, 리모트 UE의 NAS 계층은 제1 MME의 식별자 또는 릴레이 UE의 S-TMSI를 AS 계층으로 전달하며, 릴레이 UE의 S-TMSI는 RRC 메시지를 통해 기지국으로 전달될 수 있다.
수신하는 단계는 제1 MME의 식별자와 함께 릴레이 UE의 현재 등록된 PLMN ID 및 서빙 셀 ID를 수신하며, 리모트 UE는 TAU 요청 메시지를 전송하기에 앞서 현재 등록된 PLMN ID 및 서빙 셀 ID를 이용하여 PLMN 정렬 과정 및 셀 정렬 과정을 수행할 수 있다.
릴레이 UE 및 리모트 UE는 이동성이 함께 관리되는 소정의 단말 그룹을 형성하며, 릴레이 UE는 단말 그룹의 대표 단말이고 리모트 UE는 단말 그룹의 종속 단말일 수 있다.
릴레이 UE의 TAU 절차 수행시 MME가 변경되는 경우, 릴레이 UE의 컨텍스트 정보 및 리모트 UE의 컨텍스트 정보가 이전 MME로부터 새로운 MME로 함께 전달될 수 있다.
릴레이 UE는 리모트 UE에 대한 페이징이 감지되면, 리모트 UE와의 직접 연결을 통해서 페이징 메시지를 리모트 UE로 전달할 수 있다.
제1 MME는, TAU 요청 메시지가 수신됨에 따라 리모트 UE를 지원하는 MME인 제2 MME로부터 리모트 UE의 컨텍스트 정보를 획득할 수 있다.
상기 기술적 과제를 해결하기 위한 릴레이 UE는, 송신부, 수신부, 및 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되, 프로세서는, 리모트 UE와 직접 연결이 설정된 릴레이 UE로부터, 릴레이 UE를 지원하는 MME인 제1 MME의 식별자를 수신하고, 릴레이 UE를 지원하는 제1 MME가 리모트 UE의 컨텍스트 정보도 함께 관리할 것을 요청하는 TAU 요청 메시지 및 제1 MME의 식별자를 릴레이 UE를 지원하는 기지국으로 전송한다.
본 발명의 실시 예들에 따르면 다음과 같은 효과를 기대할 수 있다.
첫째로, 단말간 직접 통신을 지원하는 방식이 개선되어, 단말과 네트워크 엔티티들의 무선 자원 낭비를 줄일 수 있다.
둘째로, 사용자가 복수의 단말을 사용하는 경우 단말의 전력 소모를 효율적으로 개선할 수 있다.
셋째로, 네트워크 엔티티들 간의 컨텍스트 제어를 통해 단말의 이동성 관리에 요구되는 시그널링 오버헤드를 줄일 수 있다.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.
도 6은 무선 자원 제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 EPS에서 두 UE가 통신하는 기본적인 경로를 도시한다.
도 8은 프로세에 기반한 두 UE 간의 직접 모드 통신 경로를 도시한다.
도 9는 프로세에 기반한 두 UE 간의 eNodeB를 거치는 통신 경로를 도시한다.
도 10에는 Non-Roaming Reference Architecture이 도시되어 있다.
도 11은 프로세 UE-to-Network Relay를 통한 커뮤니케이션을 나타낸 도면이다.
도 12는 그룹 커뮤니케이션의 미디어 트래픽을 나타낸 도면이다.
도 13은 은 리모트 UE가 UE-to-network relay를 통한 직접 통신을 수행하는 절차를 도시한다.
도 14는 TAU(Tracking Area Update) 절차와 함께 SGW이 변경되는 경우를 도시한다.
도 15 내지 도 17은 제안하는 실시 예에 따른 직접 통신 방법을 도시하는 흐름도이다.
도 18은 제안하는 실시 예에 따른 노드 장치의 구성을 도시하는 도면이다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다.
또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 특히, 본 발명의 실시 예들은 IEEE 802.16 시스템의 표준 문서인 P802.16e-2004, P802.16e-2005, P802.16.1, P802.16p 및 P802.16.1b 표준 문서들 중 하나 이상에 의해 뒷받침될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시 예들에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
먼저, 본 명세서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW/P-GW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway)/S-GW: 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- PCRF (Policy and Charging Rule Function): 서비스 flow 별로 차별화된 QoS 및 과금 정책을 동적(dynamic) 으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS 네트워크의 네트워크 노드.
- OMA DM (Open Mobile Alliance Device Management): 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 디바이스들 관리를 위해 디자인 된 프로토콜로써, 디바이스 설정(configuration), 펌웨어 업그레이드(firmware upgrade), 에러 보고 (Error Report)등의 기능을 수행함.
- OAM (Operation Administration and Maintenance): 네트웍 결함 표시, 성능정보, 그리고 데이터와 진단 기능을 제공하는 네트웍 관리 기능군.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차 및 IP 주소 관리 등을 지원한다.
- AS (Access-Stratum): UE와 radio(혹은 access) 네트워크간의 프로토콜 스텍을 포함하며, 데이터 및 네트워크 제어 신호 전송 등을 담당한다.
- NAS configuration MO (Management Object): NAS 기능(Functionality)과 연관된 파라미터들(parameters)을 UE에게 설정하는 과정에서 사용되는 MO (Management object).
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- APN (Access Point Name): PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 망에 접속하기 위해서는 특정 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 망 내에서 미리 정의한 이름(문자열)을 의미한다. (예를 들어, internet.mnc012.mcc345.gprs)
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- ANDSF(Access Network Discovery and Selection Function): 하나의 네트워크 entity로써 사업자 단위로 단말이 사용가능한 access 를 발견하고 선택하도록 하는 Policy를 제공.
- Proximity Service(또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때, 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
- ProSe 커뮤니케이션: 둘 이상의 ProSe 가능한 단말들 사이의 ProSe 커뮤니케이션 경로를 통한 커뮤니케이션을 의미한다. 특별히 달리 언급되지 않는 한, ProSe 커뮤니케이션은 ProSe E-UTRA 커뮤니케이션, 두 단말 사이의 ProSe-assisted WLAN direct 커뮤니케이션, ProSe 그룹 커뮤니케이션 또는 ProSe 브로드캐스트 커뮤니케이션 중 하나를 의미한다.
- ProSe E-UTRA 커뮤니케이션 : ProSe E-UTRA 커뮤니케이션 경로를 사용한 ProSe 커뮤니케이션
- ProSe-assisted WLAN direct 커뮤니케이션: 직접 커뮤니케이션 경로를 사용한 ProSe 커뮤니케이션
- ProSe 커뮤니케이션 경로 : ProSe 커뮤니케이션을 지원하는 커뮤니케이션 경로로써, ProSe E-UTRA 커뮤니케이션 경로는 E-UTRA를 사용하여 ProSe-enabled UE들 사이에서 또는 로컬 eNB를 통해 수립될 수 있다. ProSe-assisted WLAN direct communication path는 WLAN을 사용하여 ProSe-enabled UEs 사이에서 직접 수립될 수 있다.
- EPC 경로(또는 infrastructure data path): EPC를 통한 사용자 평면 커뮤니케이션 경로
- ProSe 디스커버리: E-UTRA를 사용하여, 근접한 ProSe-enabled 단말을 식별/확인하는 과정
- ProSe Group Communication: 근접한 둘 이상의 ProSe-enabled 단말 사이에서, 공통 커뮤니케이션 경로를 사용하는 일 대 다 ProSe 커뮤니케이션
- ProSe UE-to-Network Relay : E-UTRA를 사용하는 ProSe-enabled 네트워크와 ProSe-enabled 퍼블릭 세이프티 단말 사이의 커뮤니케이션 릴레이로 동작하는 ProSe-enabled 퍼블릭 세이프티 단말
- 리모트 UE(Remote UE): UE-to-Network Relay 동작에서 E-UTRAN에 의해 서비스 받지 않고 ProSe UE-to-Network Relay를 통해 EPC 네트워크에 연결되는, 즉 PDN 연결을 제공받는 ProSe-enabled 퍼블릭 세이프티 단말.
- ProSe-enabled Network: ProSe 디스커버리, ProSe 커뮤니케이션 및/또는 ProSe-assisted WLAN 직접 통신을 지원하는 네트워크. 이하에서는 ProSe-enabled Network 를 간단히 네트워크라고 지칭할 수 있다.
- ProSe-enabled UE: ProSe 디스커버리, ProSe 커뮤니케이션 및/또는 ProSe-assisted WLAN 직접 통신을 지원하는 단말. 이하에서는 ProSe-enabled UE 및 ProSe-enabled Public Safety UE를 단말이라 칭할 수 있다.
- Proximity: 디스커버리와 커뮤니케이션에서 각각 정의되는 proximity 판정 기준을 만족하는 것
1. EPC (Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티(capability)를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1은 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
표 1
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 방송 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면의 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브캐리어(subcarrier)로 구성된다. 여기서, 하나의 서브프레임(subframe)은 시간 축 상에 복수의 OFDM 심볼 (symbol)들과 복수의 서브캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 OFDM 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel) 등으로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다. 먼저, 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선 자원 제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 베어러(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 수립된(established) 경우 단말은 RRC연결 모드(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 ESM (Evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 수행된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 상태(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
2. ProSe (Proximity Service)
앞서 설명했듯이, 프로세(ProSe) 서비스는 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스를 의미한다.
도 7은 EPS에서 두 UE가 통신하는 기본적인 경로 (default data path)를 도시하고 있다. 이러한 기본적인 경로는 사업자가 운영하는 기지국(eNodeB) 및 core network(즉, EPC)을 거친다. 본 발명에서는 이러한 경로를 인프라스트럭처 데이터 경로(infrastructure data path) (또는 EPC path)라고 부르기로 한다. 또한, 이러한 인프라스트럭처 데이터 경로를 통한 통신을 인프라스트럭처 통신이라고 부르기로 한다.
도 8은 프로세에 기반한 두 UE 간의 직접 모드 통신 경로(direct mode data path)를 보여준다. 이러한 직접 모드 통신 경로는 사업자가 운영하는 eNodeB 및 core network (즉, EPC)을 거치지 않는다. 도 8(a)는 UE-1과 UE-2가 각각 다른 eNodeB에 캠프 온 (camp-on) 하고 있으면서 직접 모드 통신 경로를 통해 데이터를 주고 받는 경우를, 도 8(b)는 동일한 eNodeB에 캠프 온 하고 있는 두 UE가 직접 모드 통신 경로를 통해 데이터를 주고 받는 경우를 도시하고 있다.
도 9는 프로세에 기반한 두 UE 간의 eNodeB를 거치는 통신 경로(locally-routed data path)를 보여준다. 이러한 eNodeB를 거치는 통신 경로는 사업자가 운영하는 core network (즉, EPC)은 거치지 않는다.
도 10에는 Non-Roaming Reference Architecture가 도시되어 있다. 도 10과 같은 구조에서, EPC는 두 UE의 근접(proximity) 여부를 결정하여 이를 UE에게 알려주는 EPC-level ProSe 디스커버리 절차를 수행할 수 있다. 이러한 EPC-level ProSe 디스커버리를 위해 두 UE의 근접 여부를 결정하고 이를 UE에게 알려주는 역할을 수행하도록 하는 것이 ProSe Function이다.
ProSe function은 프로세 연관된 서브스크라이버 데이터 및/또는 HSS로부터의 프로세 연관된 서브스크라이버 데이터를 retrieval하여 저장하고, EPC 레벨 프로세 디스커버리 및 EPC 보조 WLAN 다이렉트 디스커버리, 커뮤니케이션을 위한 인증 및 구성을 수행할 수 있다. 또한, EPC 레벨 디스커버리를 가능하게 하는 위치 서비스 클라이언트로 동작할 수 있으며, UE에게 WLAN 다이렉트 디스커버리 및 커뮤니케이션을 보조하는 정보를 제공할 수 있다. EPC ProSe User IDs 및 Application Layer User ID를 핸들링하고, 애플리케이션 등록 identifier 매핑을 위한 3rd 파티 애플리케이션 서버와의 신호를 교환한다. 근접 요청의 전송, 근접 alerts 및 위치 보고를 위해, 다른 PLMNs의 ProSe function과의 신호를 교환한다. 이외에도 ProSe Function은 단말이 ProSe 디스커버리 및 ProSe 커뮤니케이션에 필요로 하는 다양한 파라미터를 provision한다. ProSe Function에 대한 자세한 사항은 3GPP TS 23.303 내용을 준용한다.
도 11은 ProSe UE-to-Network Relay를 통한 커뮤니케이션을 나타내고 있다. 리모트 UE가 UE-to-Network Relay를 통해 EPC로의 연결성을 제공받음으로서 AS(Application Server)와 통신하거나, 그룹 커뮤니케이션에 참여할 수 있다. 도 12는 리모트 UE가 그룹 커뮤니케이션에 참여하는 예시를 보여준다. 도 12에서 동일한 그룹에 속한 UE들인 UE-1 ~ UE-6가 그룹 커뮤니케이션을 구성하는 특정 미디어에 대해 유니캐스트 또는 MBMS로 하향링크 트래픽을 전달받을 수 있다. 결국 리모트 UE는 비록 E-UTRAN 커버리지에 있지는 않으나 UE-to-Network Relay를 통해 그룹 커뮤니케이션에 참여함으로써 다른 그룹 멤버 들에게 미디어 트래픽을 전송하거나(즉, 샹향링크 트래픽을 생성), 다른 그룹 멤버가 전송한 미디어 트래픽을 수신할 수 있다. 도 12에서 GCS AS(Group Communication Service Application Server)는 i) GC1 signalling의 교환, ii) 유니캐스트로 UE로부터 상향링크 데이터의 수신, iii) Unicast/MBMS delivery를 사용하여, 그룹에 속한 모든 UE들에 데이터 전달, iv) PCRF로의 Rx 인터페이스를 통한, 애플리케이션 레벨 세션 정보의 전송, v) Unicast Delivery and MBMS Delivery 사이에서 스위치하는 UE를 위한 서비스 연속성 절차를 위한 지원 등의 역할을 수행할 수 있다. GCS AS, Public Safety AS, GCSE AS(Group Communication Service Enabler Application Server)는 모두 같은 의미를 가지는 것으로 해석될 수 있으며 다수의 UE들이 참여하는 통신을 제어/관리하는 AS를 포함하는 의미로 해석될 수 있다. 그룹 커뮤니케이션에 대한 자세한 사항은 TS 23.468 내용을 준용한다.
도 13은 E-UTRAN에 의해 서빙되지 않는 리모트 UE가 UE-to-network relay를 통한 직접 통신을 수행하는 절차를 도시한다. ProSe UE-to-Network Relay 로 동작가능한 UE는 네트워크에 접속하여 리모트 UE에 릴레이 트래픽을 제공하기 위해 PDN 연결을 생성할 수 있다. UE-to-Network Relay를 지원하는 PDN 연결은 리모트 UE로의 릴레이 트래픽을 지원하기 위한 용도로만 사용된다.
먼저, 릴레이UE는 E-UTRAN 에 초기 접속을 통해 PDN 연결을 생성하며(S1310), IPv6의 경우 릴레이 UE는 prefix delegation function 을 통해서 IPv6 프리픽스(prefix)를 획득한다. 이어서, 릴레이 UE는 모델 A 또는 모델 B에 따른 UE와의 디스커버리 절차를 리모트 UE와 수행한다(S1320). 리모트 UE는 디스커버리 절차에 의해 발견된 릴레이 UE를 선택하고 one-to-one 직접 연결을 수립(establish)한다(S1330). 릴레이 UE ID에 따른 PDN 연결이 없거나 릴레이 동작을 위한 추가적인 PDN 연결이 필요한 경우, 릴레이 UE는 새로운 PDN 연결 절차를 개시한다(S1340).
이어서, IPv6 프리픽스 또는 IPv4 주소가 리모트 UE에 할당되며(S1350), 이에 따라 상향링크/하향링크 릴레이 동작이 시작된다. IPv6 프리픽스가 할당되는 경우, 리모트 UE로부터의 릴레이 UE로의 라우터 요청(router solicitation) 시그널링과 릴레이 UE로부터 리모트 UE로의 라우터 광고(router advertisement) 시그널링으로 구성되는 IPv6 stateless address auto-configuration 과정이 수행된다. IPv4 주소가 할당되는 경우, DHCPv4 디스커버리 시그널링(from 리모트 UE to 릴레이 UE), DHCPv4 제공(offer) 시그널링(from 릴레이 UE to 리모트 UE), DHCPv4 요청(request) 시그널링(from 리모트 UE to 릴레이 UE), DHCPv4 ACK 시그널링(from 릴레이 UE to 리모트 UE)으로 구성되는 IPv4 address allocation using DHCPv4 과정이 수행된다.
이어서, 릴레이 UE는 리모트 UE가 자신에게 연결되었음을 MME에 알리는 리모트 UE 보고 절차를 수행한다(S1360). MME는 SGW 및 PGW에 대하여 리모트 UE 보고 알림 절차를 수행함으로써 새로운 리모트 UE가 연결되었음을 알린다(S1370). 이어서, 리모트 UE는 네트워크와 릴레이 UE를 통해서 통신을 수행한다(S1380). 상술한 직접 연결의 생성 과정의 구체적인 내용은 TS 23.303을 준용한다.
3. TAU 절차 (Tracking Area Update procedure)
도 14는 TAU 절차와 함께 SGW가 변경되는 경우를 도시하며, 도 14는 MME가 변경되는 경우도 포함한다. TAU 절차가 트리거링되면, 단말은 기지국(eNodeB, eNB)으로 TAU 요청 메시지(TAU request message)를 전송한다. 이때, 단말의 NAS 계층은 NAS 시그널링 연결(NAS signaling connection)을 수립하기 위한 절차(예를 들어, 접속/TAU/서비스 요청(attach/TAU/service request) 등)를 수행할 때 하위 계층(예를 들어, AS 계층)에게 이전 MME로부터 할당받은 S-TMSI(System Architecture Evolution (SAE) Temporary Mobile Subscriber Identity) 또는 이전 MME의 GUMMEI(Globally Unique MME Identifier)를 제공한다. 현재 셀의 TA가 UE의 NAS 시그널링 연결 수립(NAS signalling connection establishment) 동안에 미리 등록된 TA 리스트에 포함되는 경우, UE의 NAS 계층은 하위 계층으로 MME 식별자가 아닌 S-TMSI를 제공한다. 반대로, 현재 셀의 TA가 UE의 NAS 시그널링 연결 수립 동안에 미리 등록된 TA 리스트에 포함되지 않는 경우, UE의 NAS 계층은 하위 계층으로 GUTI의 MME 식별자 부분을 제공하며, MME 식별자가 native GUMMEI임을 나타내는 식별자도 함께 제공한다(When the tracking area of the current cell is in the list of tracking areas that the UE previously registered in the MME during the NAS signalling connection establishment, the UE NAS shall provide the lower layers with the S-TMSI, but shall not provide the registered MME identifier to the lower layers; or When the tracking area of the current cell is not in the list of tracking areas that the UE previously registered in the MME during the NAS signalling connection establishment, the UE NAS shall provide the lower layers with the MME identifier part of the valid GUTI with an indication that the identifier is a native GUMMEI).
상술한 S-TMSI 또는 GUMMEI는 TAU 요청 메시지와 함께 AS 계층에 제공되며, 단말의 AS 계층은 수신한 S-TMSI 또는 GUMMEI를 기지국으로 전달한다. 기지국은 수신한 S-TMSI 또는 GUMMEI를 통해 NNSF(NAS Node Selection Function)를 수행하고, 수신한 NAS 메시지(예를 들어, TAU 요청 메시지)를 전달할 MME를 선택한다. 기지국은 S-TMSI에 포함된 MMEC(MME code) 또는 GUMMEI의 MMEGI(MME Group Identifier)와 MMEC(MME code)를 통해서 MME를 선택할 수 있다. S-TMSI가 제공되는 경우, MMEC를 통해 기존의 MME를 선택되고, 기지국은 S-TMSI를 MME에게 제공하여 MME가 S-TMSI를 통해 UE를 식별할 수 있게 된다.
반대로, GUMMEI가 제공되는 경우, GUMMEI를 통해서 NNSF가 수행되고 MME가 선택되는데, 이때 MME가 변경될 수도 있고 변경되지 않을 수도 있다. 새로운 MME가 선택된 경우, 새로운 MME는 TAU 요청 메시지에 포함된 'old GUTI IE'의 GUTI로부터 이전 MME의 GUMMEI를 추출(derive)하고, 해당 MME와의 인터페이스가 존재하는지 확인한다. 해당 MME와의 시그널링이 가능한 경우, 이전 MME의 식별자인 GUMMEI(Globally Unique MME Identifier)를 포함하는 TAU 요청 메시지는 새로운 MME로 전달되며, 새로운 MME는 이전 MME로 컨텍스트 요청 메시지(context request message)를 전송하여 단말에 대한 정보를 요청한다. 이전 MME로부터 컨텍스트 응답 메시지(context response message)를 통해 단말에 대한 컨텍스트 정보를 수신한 새로운 MME는 HSS에 대하여 단말의 인증과 보안 관련 절차를 수행한다. 새로운 MME가 이전 MME로 컨텍스트 확인 메시지(context acknowledge message)를 전송함으로써 MME변경 과정이 완료된다.
이어서, 새로운 MME는 변경된 (즉, 재배치된(relocated)) 새로운 SGW로 세션 생성 요청 메시지(create session request message)를 전송한다. MME 변경에 따라 RAT(Radio Access Technology)이 변경되는 경우, 새로운 MME는 PGW로 베어러 수정 요청 메시지(modify bearer request message)를 전송하며, RAT 정보는 PGW로부터 PCRF로 전달된다. PGW는 베어러 컨텍스트를 갱신하고 베어러 수정 응답 메시지(modify bearer response message)를 SGW로 전송한다. 베어러 컨텍스트의 갱신이 완료되면 SGW는 세션 생성 응답 메시지(create session response message)를 새로운 MME로 전송한다.
새로운 MME는 UE의 가입자 정보를 보유하고 있지 않은 경우나 특정 네트워크 공유 시나리오의 경우 HSS로 위치 갱신 메시지(update location message)를 전송하며, 이를 수신한 HSS는 이전 MME와 위치 취소 메시지(cancel location message) 및 위치 취소 확인 메시지(cancel location acknkowledge message)를 주고 받는다. 이전 MME는 보유하고 있는 단말의 컨텍스트 정보를 삭제하며, SGSN의 경우 Iu 해제 명령 메시지(Iu release command message)와 Iu 해제 완료 메시지(Iu release complete message)를 RNC와 주고받는다.
HSS는 새로운 MME로 위치 갱신 확인 메시지(update location acknowlege message)를 응답하여 전송한다. 한편, 이전 MME/SGSN은 이전 SGW로 세션 삭제 요청 메시지(delete session request message)를 전송함으로써 EPS 베어러 자원을 해제한다. 이전 SGW는 세션 삭제 응답 메시지(delete session response message)를 전송하며, 버퍼에 보유중인 패킷을 삭제한다.
한편, 새로운 MME는 지역 가입 제한(regional subscription restriction) 이나 접속 제한(access restriction)으로 인해 단말이 해당 TA(Tracking Area)로 접속할 수 없는 경우에는 단말로 TAU 거절 메시지(TAU reject message)를 전송한다. 그 외의 경우, 새로운 MME는 단말로 TAU 승인 메시지(TAU accept message)를 전송하며, TAU 승인 메시지에는 새로운 MME에 대한 GUTI(Globally Unique Temporary Identifier)가 포함된다. TAU 승인 메시지를 수신한 UE는 TAU 완료 메시지(TAU complete message)를 MME로 전송함으로써 TAU 절차가 완료된다. 한편, 도 14에서 설명한 TAU 절차에 대한 구체적인 내용 및 TAU 요청 메시지, TAU 거절 메시지, TAU 승인 메시지, TAU 완료 메시지에 대한 구체적인 정의 및 포함되는 정보들은 TS 24.301에 기술된 내용을 준용한다.
4. 제안하는 단말 간 직접 통신 방법
종래의 UE-to-Network relay 단말의 경우 리모트 UE가 커버리지 밖에 위치하는(out-of-coverage) 경우를 고려하여 동작하였기 때문에, 네트워크에서 리모트 UE의 컨텍스트를 관리하는 것에 대해서는 크게 고려하지 않았다. 리모트 UE의 컨텍스트 정보가 네트워크에 남아 있는 경우에는 불필요한 페이징이 발생할 수 있다.
반면에, 제안하는 실시 예에서는 릴레이 UE 뿐 아니라 리모트 UE도 커버리지 내에 위치하는(in-coverage) 경우 고려하며, 네트워크가 리모트 UE도 인지하고 리모트 UE의 컨텍스트도 함께 관리하는 것을 제안한다. 리모트 UE의 컨텍스트 정보를 네트워크가 관리하는 경우, 릴레이 UE가 리모트 UE를 위해 IP 주소를 할당하는 과정이 생략될 수도 있다.
최근 스마트폰이나 핸드폰 타입의 단말이 아닌 다양한 IoT 타입의 단말이 출시되고 있으며 웨어러블 디바이스, 시계, 차량용 단말 등이 대표적인 예이다. 이러한 단말들은 독립적으로(stand-alone) 네트워크와 통신이 가능하도록 구현되기도 한다. 독립적으로 네트워크와 통신이 가능한 단말의 경우, 단말 별로 네트워크와 시그널링을 발생시킨다. 즉, IoT 단말 수가 증가할수록 시그널링은 기하급수적으로 증가하게 되며, 네트워크 측면에서 시그널링 오버헤드가 문제될 수 있다.
한편, 저전력(low-power) 단말들의 경우 다음과 같이 3가지로 분류될 수 있다. i) 독립적이고 셀룰러 아이덴티티를 가짐, ii) 종속적이고 셀룰러 아이덴티티를 가짐, iii) 종속적이고 셀룰러 아이덴티티를 갖지않음. 이 중에서도, 제안하는 실시 예에서는 두번째 케이스인 종속적이면서 셀룰러 아이덴티티를 갖는 IoT 단말이 독립적인 단말과 공존하는 시나리오에 대해 고려해본다. 특히, 네트워크가 이러한 단말 및 해당 단말들의 가입자 정보를 효율적으로 관리하는 방법에 대해 설명한다.
도 15 내지 도 17은 제안하는 실시 예에 따른 컨텍스트 관리 방법을 도시하는 흐름도이다.
사용자는 다양한 단말들을 독립적으로 소유 및 사용할 수도 있지만, 하나 이상의 단말들을 동시에 소유 및 사용할 수도 있다. 예를 들어, 휴대폰 타입의 단말과 IoT 단말을 동시에 사용하거나, 복수의 휴대폰 타입 단말과 복수의 IoT 단말을 동시에 사용하는 경우를 생각해볼 수 있다. 제안하는 실시 예에서는, 여러 단말들이 공존할 때 단말 간의 관계 설정과 시그널링 제어를 통해서 단말들의 전력 소모와 이동성 관련 시그널링을 줄이는 방법을 제안한다. 또한, 이하에서 설명하는 단말은 앞서 설명했듯이 독립적으로 EPC와 통신이 가능한 캐퍼빌리티(capability)를 가지는 경우를 고려한다.
먼저, 복수의 단말들 간의 관계를 설정하는 과정에 대해 설명한다. 관계를 설정하는 과정은 크게 2가지 방식으로 나뉠 수 있다. 첫째로, 기설정된 방식(preconfigured method)의 경우, 네트워크가 각 단말들에 대해 개별적인 사용자 정보(또는, 가입자 정보)를 보유한다. 또한, 네트워크는 각 개별적인 사용자 정보(또는, 가입자 정보)들 간의 관계를 인식하기 위한 추가적인 정보를 필요로 하며, 각 단말들 또한 동일하게 사용자 정보들 간의 관계를 인식하기 위한 추가적인 정보를 필요로 한다. 네트워크와 단말들은 상술한 추가적인 정보를 이용하여 관계를 설정하게 되며, 구체적인 과정은 후술한다.
이러한 추가적인 정보는 단말의 그룹에 대한 정보 및 단말 간의 계층 또는 우선순위(priority) 정보 중 적어도 하나를 포함할 수 있다. 여기서, 단말의 그룹에 대한 정보는 특정 그룹을 지칭하는 그룹 식별자로 저장되거나 특정 단말의 식별자 모두를 포함할 수 있다. 단말 간의 계층 또는 우선순위 정보는 하나 이상의 단말이 공존할 때 단말 간의 상대적인 계층이나 상대적인 우선순위 정보를 의미할 수 있으며, 종속관계에 대한 정보(예를 들어, 프라이머리/세컨더리 또는 마스터/슬레이브 등)를 의미할 수도 있다. 네트워크와 각 단말들은 개별적인 사용자 정보(또는, 가입자 정보)와 함께 상술한 추가적인 정보를 이용하여 복수의 단말들 간의 관계를 설정할 수 있다.
둘째로, 기설정되지 않은 방식(non-preconfigured method)의 경우, 단말들 간의 관계를 인식하기 위해 미리 설정된 정보가 없더라도, 단말들 상호 간의 합의에 따라 관계를 설정할 수도 있다. 단말들 간의 합의 과정은 단말들의 의사를 네트워크에 알림으로써 수행될 수 있으며, 구체적으로는 후술한다.
이어서, 상술한 2가지 방식에 따라 복수의 단말들 간의 관계를 설정하는 구체적인 절차를 설명한다. 먼저, 각 단말들이 서로 근접하면, 단말 간의 D2D 디스커버리 절차가 수행된다. D2D 연결의 경우, 3GPP 네트워크인 E-UTRAN 을 통해 연결될 수도 있고, WiFi 다이렉트나 블루투스를 통해서도 연결될 수 있다.
근접한 단말들 간의 연결이 수립되는 과정에서, 대표 단말이 설정된다. 대표 단말을 설정하는 과정은 상술한 관계를 설정하는 2가지 방식에 따라 다르게 수행된다. 첫째로, 기설정된 방식의 경우, 복수의 단말 중에서 대표 단말이 미리 정해진다. 즉, 각 단말들 간의 관계를 인식하기 위한 추가적인 정보가 단말 간의 계층이나 우선순위 정보를 포함하는 경우, 네트워크뿐 아니라 각 단말들도 해당 추가적인 정보를 보유하고 있다. 따라서, 복수의 단말 중에서 해당 계층이나 우선순위에 따라 대표 단말이 미리 결정될 수 있다. 한편, 이하에서 '대표 단말'이란 복수의 단말 그룹을 대표하는 하나 이상의 단말을 의미하며, '종속 단말'이란 복수의 단말 그룹에서 대표 단말을 제외한 다른 단말을 의미할 수 있다. 단말 그룹은 하나 이상의 대표 단말과 하나 이상의 종속 단말로 구성될 수 있다.
둘째로, 기설정되지 않은 방식의 경우 단말 간의 시그널링을 통해 대표 단말이 결정되거나, 네트워크로의 시그널링을 통해 네트워크가 대표 단말을 정하는 방식으로 대표 단말이 결정될 수 있다. 이러한 시그널링에는 상술한 각 단말들의 계층 정보 또는 우선순위 정보가 포함될 수 있으며, 나아가 단말의 캐퍼빌리티나 단말의 전력에 대한 정보도 포함될 수 있다. 전력에 대한 정보는 각 단말의 잔여 배터리량 또는 전력 효율을 나타낼 수 있다. 즉, 복수의 단말 중 대표 단말을 설정하기 위한 정보가 단말들 간에 송수신되거나 네트워크로 전달되어 대표 단말이 설정될 수 있다.
구체적으로, 단말들 간에 상술한 정보가 PC5 인터페이스를 통한 PC5 메시지를 이용하여 송수신됨으로써 대표 단말이 설정될 수 있다. 이와는 달리, 각 단말이 네트워크에 대표 단말을 설정해줄 것을 요청하면, 네트워크는 단말의 요청을 확인한 뒤 복수의 단말 중 대표 단말을 설정할 수 있다. 이 경우, 단말 간의 관계를 설정하고 대표 단말을 설정하기 위한 정보를 담당/관리하는 어플리케이션 서버가 별도로 존재할 수 있다. 네트워크는 단말들 간의 관계를 설정하기 위해 어플리케이션 서버에 요청하고 그 결과를 수신할 수 있으며, 어플리케이션 서버는 관계 설정 및 대표 단말 설정을 수행하는 기능(function) 및 기능 엔티티(functional entity)로 간주될 수 있다.
대표 단말이 설정되면, 각 단말은 복수의 단말을 포함하는 단말 그룹을 활성화한다. 즉, 복수의 단말들을 포함하는 소정의 단말 그룹이 형성된다. 각 단말은 단말 그룹을 활성화하기 위해 네트워크(예를 들어, MME)에 시그널링을 전송한다. 예를 들어, 특정 단말이 단말 그룹을 활성화하기 위한 요청을 NAS 시그널링(예를 들어, TAU 요청 메시지 또는 새롭게 정의된 NAS 메시지)을 통해 MME에 전송하면, MME는 이에 응답하여 또 다른 NAS 시그널링(예를 들어, TAU 승인 메시지, TAU 거절 메시지 또는 새롭게 정의되는 NAS 메시지)을 단말에게 전송한다. 단말 그룹을 활성화하기 위한 요청 메시지는 단말 그룹의 식별자, 그룹에 속하는 단말들의 식별자 및 단말 그룹의 활성화를 요청하는 지시자/IE(Information Element) 중 적어도 하나를 포함할 수 있다.
상술한 단말 그룹을 활성화하기 위한 요청은 설정된 대표 단말이 네트워크로 전송할 수 있다. 또는, 단말 그룹을 활성화하기 위한 요청은 복수의 단말들 각각이 모두 개별적으로 네트워크에 전송할 수도 있다. 후자의 경우, 네트워크는 단말들의 요청을 수집한 이후 모든 단말에 응답할 수도 있고, 대표 단말에만 응답할 수도 있다. 또한, 네트워크는 하나 이상의 단말로부터 단말 그룹 활성화를 위한 요청을 수신함에 따라, 필요한 경우 단말 간의 관계를 설정하는 기능을 담당하는 어플리케이션 서버와의 인터랙션(interaction)을 수행할 수도 있다.
이하에서는 단말 그룹이 활성화된 이후의 단말 및 네트워크 엔티티들의 동작에 대해 설명한다. 상술한 과정에 따라 복수의 단말들 간의 관계가 설정되어 단말 그룹이 형성되고 대표 단말이 선택되면, 단말들과 네트워크 엔티티(예를 들어, MME)는 복수의 단말들 간의 관계를 인지하게 된다. 이어서, 종속 단말들의 동작은 D2D 통신을 위한 접속 방식에 따라 i) D2D 통신을 E-UTRAN을 통해 수행하는 경우 와 ii) D2D 통신을 E-UTRAN이 아닌 WiFi 또는 블루투스를 통해 수행하는 경우로 나누어 볼 수 있다. 전자의 경우, 복수의 단말 각각은 D2D를 위한 사이드링크(sidelink) 동작만을 수행하고, EPC와의 Uu 인터페이스를 위한 AS 계층 동작은 비활성화(deactivation) 한다. 즉, 복수의 단말들은 eNodeB로부터 사이드링크 동작을 위한 무선 자원을 할당받기 위한 동작은 수행할 수 있다. 한편, 후자의 경우, 복수의 단말 각각은 AS 계층을 모두 비활성화할 수 있다. 즉, 사이드링크 무선 자원을 eNodeB로부터 할당받기 위한 절차가 없기 때문에, 후자의 경우 복수의 단말들은 사이드링크도 비활성화할 수 있다.
한편, 이하에서 AS 계층 동작이란, D2D 연결의 종류에 따라 다르게 정의될 수 있다. 앞서 설명한 바와 같이 D2D 연결이 E-UTRAN을 통해 이루어지는 경우, AS 계층 동작이란 EPC와 Uu 인터페이스를 통해 통신하기 위한 동작을 의미한다. 반면에, D2D 연결이 E-UTRAN이 아닌 WiFi 또는 블루투스를 통해 이루어지는 경우, AS 계층 동작이란 EPC와 Uu 인터페이스를 통해 통신하기 위한 동작과 사이드링크 동작을 모두 의미한다.
MT(Mobile Terminating) 콜/데이터가 수신되는 경우를 설명한다. 네트워크 엔티티(예를 들어, MME)는 특정 단말에 대한 DDN(Downlink Data Notification)을 수신한 경우, DDN 대상이 되는 단말이 속한 단말 그룹을 인지하고 해당 단말이 속한 단말 그룹의 대표 단말에 대해 페이징을 수행한다. 대표 단말에 전송되는 페이징 메시지에는 DDN의 대상이 되는 특정 단말의 식별자가 포함될 수 있다.
페이징 메시지를 수신한 단말 그룹의 대표 단말은 페이징 메시지를 대상이되는 특정 단말에게 사이드링크를 통해서 전달한다. 페이징 메시지를 수신한 단말은 AS 계층을 활성화하고 셀 선택(cell selection)을 수행한다. 셀 선택 과정이 성공되면, 단말은 SR(Service Request) 절차를 수행하고 MT 콜/데이터를 수신하며, 페이징 응답 메시지를 네트워크 엔티티로 전송한다. MT 콜/데이터의 수신이 종료되면, 단말은 AS 계층 동작을 다시 비활성화하고, 단말 그룹의 대표 단말과의 사이드링크 통신을 위한 동작만 수행한다. 단말은 MT 콜/데이터의 수신이 종료된 직후 곧바로 AS 계층을 비활성화할 수도 있고, EMM-IDLE 상태로 진입한 이후에 AS 계층을 비활성화할 수도 있다.
한편, 상술한 과정에서 단말 그룹의 대표 단말은 한번에 하나의 페이징 메시지만을 모니터링할 수도 있고, 복수의 페이징 메시지를 모니터링할 수도 있다. 전자의 경우 페이징 메시지에는 단말 그룹에 속한 단말의 식별자가 포함되도록 구현되며, 후자의 경우 단말 그룹의 대표 단말은 단말 그룹에 속한 복수의 단말들의 페이징 메시지를 모두 한꺼번에 모니터링할 수 있다.
반대로, MO(Mobile Originating) 콜/데이터가 전송되는 경우를 설명한다. 단말로부터 MO 콜/데이터 또는 MO 시그널링이 발생한 경우, 단말은 AS 계층을 활성화하고, 셀 선택을 수행한다. 셀 선택이 성공적으로 완료되면, 단말은 SR 절차를 수행하고 MO 콜/데이터 또는 MO 시그널링을 네트워크로 전송한다. MO 콜/데이터 또는 MO 시그널링의 전송이 완료되면, 단말은 AS 계층 동작을 다시 비활성화하고 대표 단말과의 사이드링크 통신을 위한 동작만을 수행한다. MT 콜/데이터의 경우와 유사하게, 단말은 MO 콜/데이터의 전송 직후에 곧바로 AS 계층을 비활성화할 수도 있고, EMM-IDLE 상태로 진입한 이후에 비활성화할 수도 있다.
이어서, 단말 그룹의 비활성화에 대해 설명한다. 앞서 설명한 실시 예에 따라 활성화된 단말 그룹은 다음 중 어느 하나에 해당하는 경우 비활성화될 수 있다. 예를 들어, 단말 그룹 내의 각 종속 단말들과 대표 단말 간의 사이드링크 연결 품질이 일정 이상 저하되거나 사이드링크 연결이 끊어지는 경우, 단말 그룹에 속한 단말이 단말 그룹을 비활성화하기 원하는 경우 등을 들 수 있다. 상술한 경우, 단말 그룹에 속한 어느 하나의 단말 또는 대표 단말은 네트워크 엔티티로 NAS 시그널링(예를 들어, TAU 절차에서 이용되는 TAU 메시지 또는 새롭게 정의되는 NAS 메시지)을 전송함으로써 단말 그룹을 비활성화할 수 있다. 이때, NAS 시그널링 메시지에는 단말 그룹을 비활성화한다는 지시자나 IE(Information Element)가 포함될 수 있다. 단말 그룹이 비활성화되는 경우, 네트워크 엔티티와 복수의 단말들은 단말 그룹을 형성하기 전 상태와 같이 독립적으로(stand-alone) EPC와 통신하게 된다.
이상에서는 복수의 단말들이 소정의 관계에 따라 단말 그룹을 형성하고, 단말 그룹을 통해 통신하며 단말 그룹을 비활성화하는 일련의 과정을 설명하였다. 한편, 이상에서 설명한 내용들은 동일한 하나의 MME가 복수의 단말들의 컨텍스트 정보를 보유하는 경우에 해당한다. 반면에, 이하에서는 단말 그룹이 형성된 상황에서 각 단말들이 속하는 MME가 다른 경우의 동작 방법에 대해 설명한다.
먼저, 릴레이 UE와 리모트 UE 간의 PLMN 정렬(PLMN alignment) 과정에 대해 설명한다. 단말 그룹을 형성하고자 하는 단말과 대표 단말은 같은 PLMN을 선택하고 등록해야 한다. 이때, 릴레이 UE가 대표 단말이고 리모트 UE는 단말 그룹에 속하는 종속 단말이 될 수 있으며, 이때 대표 단말(릴레이 UE)의 PLMN이 종속 단말(리모트 UE)의 PLMN으로 정렬(변경)될 수 있고, 반대의 경우 또한 가능하다.
먼저, 단말들은 서로 간의 현재 등록된 PLMN(Registered PLMN, RPLMN) 정보를 공유한다. 이러한 과정은 RPLMN의 PLMN ID를 PC5 메시지에 포함시켜 송수신함으로써 이루어질 수도 있으며, PLMN ID가 포함된 식별자(예를 들어, GUTI)를 PC5 메시지에 포함시켜 송수신함으로써 이루어질 수도 있다. 후자의 경우, GUTI를 수신한 단말은 GUTI로부터 PLMN ID를 추출할 수 있다. 한편, PLMN 정보를 공유하기 위한 PC5 메시지는 PC5 디스커버리 메시지(예를 들어, PC5 디스커버리 announcement 메시지, PC5 디스커버리 solicitation 메시지, PC5 디스커버리 response 메시지 등)가 이용될 수 있으며, PC5 시그널링 메시지(예를 들어, 직접 연결 설정 과정에 이용되는 direct communication request 메시지 또는 direct communication accept 메시지)가 이용될 수도 있다.
릴레이 UE와 리모트 UE가 PLMN 정보를 공유하면, 어느 하나의 UE는 상대 UE의 PLMN으로 등록하기 위한 PLMN 선택 과정(PLMN selection procedure)을 수행한다. 첫번째 방식으로, 종래의 PLMN 선택 과정에 따라, 특정 UE의 ProSe 계층이 상대 UE의 등록 PLMN 정보를 NAS 계층으로 전달하고, UE의 NAS 계층이 PLMN 선택이 필요하다는 지시자를 AS 계층으로 전달하고, AS 계층은 E-UTRAN 밴드를 검색하여 브로드캐스트 되는 PLMN ID를 NAS 계층으로 전달하면, NAS 계층이 전달된 PLMN 리스트 중 상대 UE의 등록 PLMN이 포함된 경우, 이를 확인하여 선택할 수 있다. 두번째 방식으로, 특정 UE의 ProSe 계층이 상대 UE의 PLMN 정보를 NAS 계층으로 전달하고, NAS 계층이 상대 UE의 등록 PLMN에 대한 PLMN 선택 과정이 필요함을 해당 PLMN ID를 포함하여 AS 계층으로 전달한다. AS 계층이 브로드캐스트 되는 PLMN ID 중 등록 PLMN이 포함되어있는지 확인하여 해당 PLMN ID가 포함되어 있는 경우, 이를 알리는 지시자를 NAS로 전달하면, NAS 계층은 해당 PLMN 을 선택할 수 있다. 세번째 방식으로, 단순하게 상대 UE가 제공한 등록 PLMN 을 자신의 PLMN으로 설정하는 방식도 고려해볼 수 있다.
상술한 과정을 통해 리모트 UE와 릴레이 UE의 PLMN이 동일하게 선택되면, 리모트 UE는 불필요한 PLMN 스위칭이 발생하지 않도록 하기 위해서 상대 UE(릴레이 UE)와의 직접 연결을 해제하기 전까지는 PLMN 선택 과정을 더 이상 수행하지 않는다. 이어서, PLMN 정렬 과정이 성공적으로 수행됨에 따라, 리모트 UE는 MME 정렬(변경) 과정을 수행한다. PLMN 정렬 과정이 수행된 이후 MME 정렬(변경) 과정이 수행되기 앞서서, 셀 정렬(변경) 과정이 수행될 수 있다. 이를 위해서, 리모트 UE와 릴레이 UE는 현재 캠프 온한 셀의 셀 ID를 PC5 메시지를 이용하여 공유한다. 단말은 수신한 셀 ID에 해당하는 셀을 선택함으로써 리모트 UE와 릴레이 UE 간의 셀 정렬 과정이 수행된다.
이어서, 복수의 단말들 각각이 D2D 디스커버리 과정을 수행하거나 직접 연결 설정(direct link setup)을 수행하는 과정에서 송수신되는 PC5 메시지에 MME 정보가 포함될 수 있다. 이에 따라, PC5 메시지를 송수신됨으로써 각 단말들의 MME 정보가 서로 간에 공유될 수 있다. PC5 메시지에 포함되는 MME 정보는 단말의 GUTI(Globally Unique Temporary Identifier) 또는 MME의 GUMMEI(Globally Unique MME Identifier)가 될 수 있다.
상술한 과정들을 통해 단말들 간에 MME 정보가 교환되면, 각 단말들은 각 단말들이 속하는(즉, 각 단말들을 지원하는) MME가 다름을 인지할 수 있다. 이어서, 서로 다른 MME에 속하는 단말들은 크게 2가지 방법으로 동작할 수 있다. 첫째로, 서로 다른 MME에 속하는 복수의 단말들이 동일한 MME에 속하도록 동작할 수 있다. 둘째로, 서로 다른 MME에 속하는 상황을 유지한 채로, 대표 단말이 단말 그룹 내의 다른 단말들로 DDN을 포워딩할 수 있다. 이하에서, 첫번째 방식에 대해 먼저 설명한다.
단말 그룹에 속한 어느 하나의 단말은 MME를 변경하기 위한 TAU 절차를 수행한다. MME를 변경하는 단말은 단말 그룹의 대표 단말을 제외한 종속 단말이 될 수 있다. 이때, 릴레이 UE가 대표 단말이고 리모트 UE는 단말 그룹에 속하는 종속 단말이 될 수 있으며, 종속 단말(리모트 UE)의 MME가 대표 단말(릴레이 UE)의 MME로 변경될 수 있다. 반대의 경우 또한 가능하다. MME를 변경하는 동작은, 대표 단말 또는 종속 단말이 변경될 대상 MME로 TAU 절차를 수행하거나, 종속 단말이 현재 연결된 MME로 TAU 절차를 수행함으로써 이루어질 수 있다.
변경될 대상 MME로 TAU 절차가 수행되는 경우, 종래와 유사하게 대상 MME가 이전 MME로부터 단말의 컨텍스트 정보를 가져오게 된다. 이때, 대상 MME가 정확히 지칭될 수 있도록 RRC 메시지 또는 TAU 요청 메시지에 대상 MME의 식별 정보가 포함될 수 있다. RRC 메시지에 대상 MME의 식별 정보가 포함되는 경우, eNB가 대상 MME로 TAU 요청 메시지를 전달한다. 이러한 과정은 도 15 및 도 16에서 구체적인 예를 들어 설명한다.
반면에, 현재 연결된 MME로 TAU 절차가 수행되는 경우, 대상 MME의 식별 정보를 포함하는 TAU 요청 메시지를 수신한 MME(대상 MME가 아닌 MME, 즉 단말에 현재 연결된 MME)는, TAU 요청 메시지에 포함된 대상 MME의 식별 정보를 확인하여 TAU 요청 메시지를 대상 MME로 전달한다. 이러한 전달 과정은 eNB를 통한 리디렉션(redirection)을 통해 이루어질 수 있다. 대상 MME는 다른 MME로부터 TAU 요청 메시지를 전달받아서 TAU 절차에 따라 동작하여 이전 MME로부터 단말의 컨텍스트 정보를 가져올 수 있다. 이러한 과정은 도 17에서 구체적인 예를 들어 설명한다. 이때, 현재 연결된 MME가 TAU 요청 메시지의 수신 이후에 수신한 TAU 요청 메시지를 대상 MME로 전달할 수 없는 경우가 발생할 수도 있다. 예를 들어, eNB에게 리디렉션을 요청했으나 eNB가 대상 MME와의 인터페이스가 없어서 리디렉션을 수행할 수 없는 경우, eNB는 이를 현재 연결된 MME에게 알린다. 이어서, eNB에 연결된 MME는 리모트 UE에게 NAS 메시지(예를 들어, TAU 거절 메시지)에 리디렉션이 수행될 수 없음을 알려주는 이유(cause)를 포함하여 단말에게 전송한다. 이에 따라, 리모트 UE는 변경될 대상 MME로 TAU 절차를 수행하거나 접속 절차(attach procedure)를 수행할 수 있다.
한편, 변경될 대상 MME로 TAU 절차가 수행되는 경우 중에서 TAU 요청 메시지에 대상 MME의 식별 정보가 포함되는 경우, TAU 요청 메시지가 대상 MME로 도착하고 이전 MME와 인터랙션이 가능한 경우에는 문제가 없으나, 그렇지 않은 경우도 발생할 수 있다. 예를 들어, eNB에서 대상 MME를 찾지 못한 경우, 대상 MME와의 인터페이스가 없어서 TAU 요청 메시지를 전달할 수 없는 경우, 대상 MME가 TAU 요청 메시지를 수신했지만 이전 MME를 찾을 수 없거나 인터페이스가 없어서 인터랙션이 불가능한 경우를 생각해볼 수 있다. 이러한 에러 케이스(error case)에 대해서 각 eNB와 대상 MME는 에러 케이스의 발생을 알리는 이유(cause)를 RRC 메시지나 NAS 메시지(예를 들어, 거절 이유(reject cause)를 포함하는 TAU 거절 메시지)에 포함시켜 단말에게 전송한다. 이에 따라, 단말은 현재 연결된 MME로 TAU 절차가 수행되는 경우의 추가적인 프로세스를 수행하거나 변경될 대상 MME로의 접속 절차를 수행하게 된다.
대상 MME가 이전 MME로부터 단말의 컨텍스트 정보를 가져오면, 서로 다른 단말들 간의 MME가 동일한 MME로 설정될 수 있다. 이에 따라, SGW로부터 DDN을 수신한 MME는 앞서 동일한 MME의 단말 그룹 활성화 과정과 유사하게 동작할 수 있다.
이상에서는 활성화된 단말 그룹에 속한 복수의 단말들의 MME가 다른 경우를 설명하였다. 반면에, 단말 그룹이 활성화되는 과정 자체에서 단말 그룹에 속하는 단말들의 MME가 동일한 MME가 되도록 동작하는 것 또한 가능하다. 즉, 단말 그룹의 활성화 과정에서 복수의 단말들이 속한 MME가 서로 다르다면, 동일한 MME(예를 들어, 대표 단말의 MME)에 속하도록 설정할 수 있다. 이러한 과정은 대표 단말이 속하는 MME가 다른 단말들의 MME로부터 단말들의 컨텍스트 정보를 가져오는 방식으로 구현될 수 있으며, 대표 단말이 아닌 다른 단말들의 MME가 대표 단말이 속하는 MME로 단말들의 컨텍스트 정보를 전달해주는 방식으로도 구현될 수 있다. MME가 다른지 동일한지 여부를 확인하는 과정은 상술한 바와 같이 GUTI 또는 GUMMEI를 교환함으로써 이루어질 수 있다.
또한, 단말 그룹이 활성화되는 과정에서 단말들이 동일한 MME에 속하게 될 때, 해당 MME는 SGW 및 PGW와의 인터랙션을 통해 MME의 변경을 알릴 수도 있다. 예를 들어, 단말 1이 MME 1에 의해 서빙되고 SGW 1 및 PGW 1을 통해 PDN 연결되며, 단말 2가 MME 2에 의해 서빙되고 SGW 2 및 PGW 2를 통해 PDN 연결된 상태에서, 단말 1이 대표 단말인 경우를 생각해본다. 이때, MME 2에 의해 서빙되는 단말 2는 MME 1에 의해 서빙되는 것으로 변경되며, MME 1은 SGW 2 및 PGW 2로 단말 2의 서빙 MME가 MME 1로 변경되었음을 알릴 수 있다.
이어서, 복수의 단말들이 서로 다른 MME에 속하는 상황을 유지한 채로, 대표 단말이 단말 그룹 내의 다른 단말들로 DDN을 포워딩하는 두번째 방식(즉, 페이징 리디렉션)에 대해 설명한다.
복수의 단말들이 서로 다른 MME에 속함을 인지한 이후, 대표 단말이 아닌 단말의 MT 콜/데이터가 발생하여 DDN이 MME로 전달될 수 있다. 이러한 경우, DDN을 수신한 MME는 대표 단말이 속한 MME로 DDN을 포워딩하여 처리하게끔 한다.
구체적으로 설명하면, 종속 단말은 NAS 시그널링(예를 들어, TAU 절차의 메시지 또는 새로운 NAS 시그널링 메시지)을 전송함으로써, 해당 단말이 속한 MME(즉, 이전 MME)가 대표 단말이 속한 MME(즉, 대상 MME)에게 단말 그룹 내의 특정 단말이 다른 MME에 속해있음을 알리게끔 한다. 이러한 과정을 통해 이전 MME와 대상 MME 모두 단말 그룹 내의 특정 단말과 대표 단말의 MME가 다름을 인지하게 된다. 이때, 대상 MME로 전송되는 메시지에는 단말의 식별자나 단말 그룹의 식별자가 포함될 수 있으며, 페이징 포워딩(또는, 페이징 리디렉션)을 위한 지시자가 더 포함될 수 있다. 이어서, 대표 단말이 아닌 단말의 MME가 해당 단말의 DDN을 수신하는 경우, DDN 메시지를 대상 MME로 포워딩한다. 이때, 전달되는 DDN 메시지에 페이징 포워딩을 나타내는 지시자와 해당 단말의 식별자가 포함될 수 있다. DDN 메시지를 수신한 대상 MME는 자신이 페이징 절차를 수행하며, 페이징 메시지에 해당 단말(즉, 대표 단말이 아닌 단말)의 식별자를 포함시킨다.
한편, DDN에 따른 페이징 메시지를 수신한 대표 단말은 페이징의 대상이 되는 단말에게 페이징 메시지 자체 또는 페이징 메시지가 수신되었음을 알리는 정보를 포함하는 PC5 메시지를 전달한다. PC5 메시지를 수신한 단말은 현재 등록된 MME로 서비스 요청 절차(service request procedure)를 수행한다. 페이징의 대상이 되는 단말이 전송한 서비스 요청 메시지를 수신한 MME는 대상 MME에게 이를 알리는 시그널링 메시지를 전달한다. 시그널링 메시지를 수신한 대상 MME는 페이징 메시지 전송이 성공적으로 수행되었음을 인지하고, 페이징 메시지 전송 절차를 종료한다. 한편, 서비스 요청 메시지를 수신한 MME는 종래 서비스 요청 절차를 수행한다.
이어서, 단말 그룹 활성화 이후의 이동성 관리(즉, 단말 그룹에 속하는 단말들이 이동하여 새로운 MME에 의해 서빙되는 경우)에 대해 설명한다. 먼저, 상술한 절차에 의해 각 단말들의 컨텍스트 정보가 동일한 MME에 존재하는 경우, 이동성(mobility)이 발생한다면 단말 그룹에 속하는 단말 중 대표 단말만 TAU 절차를 수행한다. 즉, 종속 단말은 대표 단말과의 그룹이 활성화되어 대표 단말이 이동성 관리를 대신하는 경우, 인커버리지(in-coverage)의 경우에도 이동성에 따른 TAU 절차를 별도로 수행하지 않는다. 한편, 캐퍼빌리티나 파라미터 업데이트 등 다른 목적의 TAU 절차의 경우, 종속 단말은 대표 단말에 PC5 메시지를 통해 요청함으로써 대표 단말이 TAU 절차를 대신 수행할 수도 있고, 종속 단말이 직접 TAU 절차를 수행할 수도 있다.
대표 단말이 전송하는 TAU 요청 메시지에는 단말 그룹의 식별자나 단말 그룹에 속하는 단말들의 식별자가 포함될 수 있다. 대표 단말의 TAU 요청 메시지를 수신한 새로운 MME는 이전 MME로부터 컨텍스트 정보를 가져올 때, 단말 그룹의 식별자를 포함시켜 요청하거나, 단말 그룹에 속하는 단말들의 식별자를 포함시켜 요청하거나, 소정의 지시자(예를 들어, 단말 그룹에 속하는 모든 단말의 컨텍스트를 요청하는 지시자)를 포함시켜 요청할 수 있다. 이러한 정보를 수신한 이전 MME는 단말 그룹에 속하는 단말(즉, 대표 단말 및 종속 단말)들에 관련된 모든 컨텍스트 정보를 새로운 MME로 전달한다. 이때, 종속 단말(예를 들어, 리모트 UE)의 컨텍스트 정보는 단말의 User ID 와 할당된 IP의 정보를 포함할 수 있다. 현재 셀의 TA가 UE의 NAS 시그널링 연결 수립(NAS signalling connection establishment) 동안에 미리 등록된 TA 리스트에 포함되지 않는 경우에 대표 단말이 전송하는 TAU 요청 메시지에는, 단말 그룹의 식별자나 단말 그룹에 속하는 단말들의 식별자가 포함될 수 있다.
반대로, 각 단말들의 컨텍스트 정보가 다른 MME에 존재하는 경우, 마찬가지로 단말 그룹에 속하는 단말 중 대표 단말이 TAU 절차를 수행한다. 이때, TAU 요청 메시지에는 단말 그룹의 식별자, 단말 그룹에 속하는 단말들의 식별자, 및 소정의 지시자(예를 들어, 단말 그룹에 속하는 모든 단말의 컨텍스트 정보를 요청하는 지시자)가 포함될 수 있다. 새로운 MME는 단말 그룹에 속하는 단말들을 지원하는 MME에 대하여 컨텍스트 요청 절차를 수행한다. 단말들을 지원하는 MME가 둘 이상인 경우, 컨텍스트 요청 절차를 각각의 MME에 대해 수행한다. 이에 따라, 단말들의 컨텍스트 정보가 각각의 MME들로부터 새로운 MME에 전달된다. 단말 그룹 중 대표 단말이 아닌 특정 단말의 MME가 컨텍스트 정보를 다뤄야하는 경우, eNB를 통한 리디렉션 과정 또는 MME간의 직접적인 리디렉션 과정을 통해서 단말 그룹의 컨텍스트 정보를 관리하는 MME가 변경될 수 있다.
이어서, MME 변경 이후의 GUTI 할당 과정에 대해 설명한다. 상술한 과정에 따라 단말 그룹에 속하는 단말들의 MME가 변경된 경우, MME는 새로운 GUTI를 할당하여 단말에 전달해야 한다. 이러한 과정은 TAU 승인 메시지를 통해서 이루어지거나 새롭게 정의되는 다른 메시지를 통해서 이루어질 수 있다. 대표 단말은 단말 그룹에 속하는 다른 단말의 GUTI를 포함하여 복수의 GUTI를 할당받아야 하며, 새로운 MME는 하나의 TAU 승인 메시지에 복수의 단말들의 GUTI를 모두 포함시켜 대표 단말로 전송할 수 있다. 할당된 GUTI를 전달하는 메시지는 각 단말의 식별자를 포함하고 각 단말의 식별자와 할당된 GUTI의 매핑 관계를 포함하여, 이 메시지를 수신한 대표 단말이 각 단말들의 GUTI를 인식할 수 있게끔 한다. 만약 복수의 단말들이 동일한 MME로 변경되었다면, MME의 식별자(즉, GUMMEI)가 동일하기 때문에 단말에 할당되는 GUTI에서 MME 식별자 부분은 생략된 채로 단말에 GUTI가 할당될 수 있다. 즉, 각 단말의 식별자인 M-TMSI만 전달될 수 있다. 복수의 GUTI를 수신한 대표 단말은 새로 할당된 GUTI들을 각 단말들에 사이드링크를 통해 전달한다.
이와는 달리, 새로운 MME는 GUTI를 할당하기 위한 TAU 승인 메시지를 각 단말 별로 전송할 수도 있다. 각각의 할당된 GUTI를 전달하는 메시지(예를 들어, TAU 승인 메시지)에는 해당 단말의 식별자가 포함되어 이를 수신한 대표 단말이 각 단말들의 GUTI를 인지할 수 있게끔 한다. 이러한 경우, 복수의 TAU 승인 메시지를 수신한 대표 단말은 새로 할당된 GUTI들을 각 단말들에 사이드링크로 전달한다. 마찬가지로, 복수의 단말들이 동일한 MME로 변경되었다면, GUTI에서 MME 식별자 부분은 제외될 수 있다.
이하에서는, 이상에서 설명한 바와 같이 복수의 단말들이 단말 그룹을 형성하는 과정 및 대표 단말이 선택되는 과정을 단말 간의 프로세 통신 과정과 연결하여 설명한다. 즉, 릴레이 UE와 리모트 UE가 가까운 거리에 위치하여 단말 그룹을 형성할 때, 두 UE가 다른 MME에 속하는 경우를 설명한다. 또한, 두 UE가 거리상 같은 위치에 있다 하더라도 다른 MME에 등록될 수 있다. 이는, eNB는 하나 이상의 MME와 인터페이스를 형성할 수 있고, UE가 eNB에 접속할 때 UE에게 적합한 MME를 MME 선택 기능(MME selection function)에 의해 제공하기 때문이다. 또한, DCN functionality(dedicated core network functionality)에 의해서 UE의 usage type에 따라 MME, SGW, PGW를 포함하는 DCN이 다르게 설정되며, UE에 따라 다른 DCN에 등록될 수 있기 때문이기도 하다. 마지막으로, UE의 위치 변경이 없는 경우에도 로드 밸런싱(load balancing)에 의해 UE가 다른 MME에 속하게 변경될 수도 있기 때문이다.
MME 정렬 과정에 대해서 도 15 내지 도 17을 통해 구체적으로 설명한다. 후술할 MME 정렬 과정은 단말 그룹 활성화 과정과 함께 수행될 수 있다. 이하에서는, 편의를 위해 릴레이 UE가 대표 단말이고 리모트 UE는 단말 그룹에 속하는 단말로 설명하였으며, 리모트 UE가 릴레이 UE가 속하는 MME로 정렬하는 과정을 설명하였다. 릴레이 UE는 MME 1에 의해 서빙되고, 리모트 UE는 MME 2에 의해 서빙되는 것으로 설명한다.
도 15는 릴레이 UE에 의해 개시되는 MME 정렬 과정을 도시한다. 먼저, 리모트 UE는 릴레이 UE에게 TAU 요청 메시지를 PC5 메시지 형태로 전달한다(S1505). 이러한 PC5 메시지는 PC5 시그널링 메시지(예를 들어, 직접 연결 설정 과정에 이용되는 direct communication request 메시지, direct communication accept 메시지 또는 새롭게 정의되는 메시지)일 수 있으며, MME 정렬이 필요하다는 지시자를 포함할 수 있다. 또한, 리모트 UE의 TAU 요청 메시지는 TAU 요청 메시지 자체가 될 수도 있고, TAU 요청 메시지에 포함되며 TAU 요청을 나타내는 특정 IE나 파라미터, 또는 지시자 형태의 정보일 수도 있다. 이러한 TAU 요청 메시지에는 리모트 UE의 GUTI가 포함된다.
PC5 메시지를 수신한 릴레이 UE는 리모트 UE를 위한 TAU 절차를 트리거링한다(S1510). 릴레이 UE는 리모트 UE로부터 수신한 TAU 요청 메시지를 등록된 MME인 MME 1으로 전달한다(S1515c, S1520). 앞서 설명한 바와 같이 리모트 UE의 TAU 요청 메시지가 IE, 파라미터 또는 지시자 형태로 표현되는 정보인 경우, S1520 과정에서 릴레이 UE는 리모트 UE의 TAU 요청 메시지를 직접 구성하여 eNB 및 MME 1으로 전달한다. 이러한 과정을 구체적으로 설명하면, 현재 셀의 TA가 UE에 등록된 TA 리스트에 포함되는 경우, 단말의 NAS 계층이 AS 계층으로 S-TMSI를 전송하며, AS 계층은 NAS 계층으로부터 S-TMSI를 제공받으면 RA msg3에 S-TMSI를 포함시켜 eNB로 전송한다(S1515c). 반면에, 현재 셀의 TA가 UE에 등록된 TA 리스트에 포함되지 않은 경우, 단말의 NAS 계층은 AS 계층으로 GUMMEI를 전송하며, AS 계층은 GUMMEI를 제공받으면 RA msg5에 GUMMEI를 포함시켜 eNB로 전송한다(S1520). 한편, 리모트 UE의 TAU 요청 메시지를 eNB로부터 수신한 MME 1은 해당 NAS 메시지가 리모트 UE의 것임을 인지해야 한다. 이는, 이후 설명할 TAU 승인/완료 메시지가 리모트 UE로 전송되어야 함을 릴레이 UE에게 알려야 하기 때문이다. 이를 위해, 리모트 UE의 TAU 요청 메시지가 리모트 UE의 것임을 알리기 위한 지시자가 필요하다. 이러한 지시자는 NAS 메시지(예를 들어, TAU 요청 메시지)에 포함되는 방식으로 구현되거나, RRC 메시지에 포함되는 방식으로 구현될 수 있다. 전자의 경우, 리모트 UE가 TAU 요청 메시지를 생성할 때 해당 지시자를 TAU 요청 메시지에 포함시킬 수 있으며, 리모트 UE는 TAU 요청 메시지와는 별도로 PC5 메시지에 지시자를 포함시켜 릴레이 UE로 전달할 수도 있다. 후자의 경우, eNB로 전송되는 RRC 연결 설정 완료(RRC connection setup complete) 메시지와 S1-AP 메시지(예를 들어, 초기 UE 메시지)에 지시자가 포함되어 MME 1으로 전송될 수 있다.
eNB는 S1515c 또는 S1520에서 수신한 정보(예를 들어, S-TMSI 또는 MME 식별자)를 바탕으로 리모트 UE의 TAU 요청 메시지를 릴레이 UE의 MME인 MME 1으로 전달한다(S1525).
이어서, MME 1은 리모트 UE의 TAU 요청 메시지와 함께 해당 TAU 요청 메시지가 리모트 UE의 것임을 나타내는 지시자를 수신하면, 수신한 TAU 요청 메시지가 리모트 UE를 위한 것임을 인지하고 종래의 TAU 절차에 따라 리모트 UE를 위한 컨텍스트 요청을 트리거링한다(S1530). 이러한 과정을 구체적으로 설명하면, MME 1은 TAU 요청 메시지에 포함된 리모트 UE의 GUTI로부터 예전 MME 식별자(GUMMEI)를 추출(derive)하고, 리모트 UE의 MME 인 MME 2로 리모트 UE의 컨텍스트 정보를 요청하고 수신한다(S1535, S1540). 이어서 TS 23.401에 기술된 TAU 절차가 네트워크 엔티티들에 의해 순차적으로 수행된다(S1545). TAU 절차가 완료되면 MME 1은 릴레이 UE로 TAU 승인 메시지를 전송하며(S1550), 릴레이 UE는 MME 1로 TAU 완료 메시지를 전송한다(S1555), 이때 해당 NAS 메시지들이 리모트 UE에 대한 것임을 알리는 지시자가 함께 전송될 수 있다. 릴레이 UE는 TAU 승인 메시지를 리모트 UE로 PC5 메시지를 통해 전달한다(S1560).
도 15에서 설명한 릴레이 UE 개시 방식은 릴레이 UE가 리모트 UE의 TAU 요청 메시지를 리모트 UE 대신 네트워크로 전달하는 방식이다. 이러한 방식에 따라 리모트 UE의 컨텍스트 정보가 릴레이 UE에 전달되어 리모트 UE와 릴레이 UE의 MME가 정렬된다. 한편, 종래의 TAU 절차 도중에는 보안 과정, 인증 과정, GUTI 재할당 과정 등이 UE와 네트워크 사이에 발생하는데, 이러한 과정들이 트리거링되는 경우 네트워크는 릴레이 UE를 통해서 리모트 UE와의 인터랙션하면서 그 과정들을 처리한다.
도 16 및 도 17은 리모트 UE에 의해 개시되는 MME 정렬 과정을 도시한다. 도 16에서는 eNB 라우팅 방식을, 도 17에서는 MME 재라우팅(re-routing) 방식을 각각 설명한다.
도 16에서, 릴레이 UE는 리모트 UE에게 릴레이 UE의 S-TMSI 값이나 MME 1의 MME 식별자(즉, GUMMEI)를 전달한다(S1605). 이때, 릴레이 UE의 S-TMSI 나 MME 1의 MME 식별자 대신 S-TMSI를 추출할 수 있는 식별자(예를 들어, GUTI)가 전달될 수도 있다. 또한, 상술한 과정에서 릴레이 UE의 서빙 셀 ID 또한 리모트 UE로 함께 전달된다.
리모트 UE는 S1605에서 수신한 릴레이 UE의 서빙 셀 ID를 고려하여, 셀 재선택 절차(cell reselection procedure)를 수행함으로써, 자신의 서빙 셀을 릴레이 UE의 서빙 셀과 동일하게 정렬(align)한다. 이어서, 리모트 UE는 릴레이 UE와 MME를 정렬하기 위한 TAU 절차를 트리거링한다(S1610).
리모트 UE는 S1605에서 수신한 릴레이 UE의 식별 정보(예를 들어, S-TMSI 또는 GUTI 또는 GUMMEI)를 통해서 릴레이 UE가 등록된 MME(즉, MME 1)로 TAU 요청 메시지를 전송한다(S1615c, S1620). 이러한 과정은 단말의 NAS 계층이 NAS 시그널링 연결을 수립하는 경우(예를 들어, TAU 절차 수행) AS 계층에게 S-TMSI 또는 GUMMEI를 제공함으로써 수행될 수 있다. 구체적으로 설명하면, 현재 셀의 TA가 UE에 등록된 TA 리스트에 포함되는 경우, 단말의 NAS 계층이 AS 계층으로 S-TMSI를 전송하며, AS 계층은 NAS 계층으로부터 S-TMSI를 제공받으면 RA msg3에 S-TMSI를 포함시켜 eNB로 전송한다(S1615c). 반면에, 현재 셀의 TA가 UE에 등록된 TA 리스트에 포함되지 않은 경우, 단말의 NAS 계층은 AS 계층으로 GUMMEI를 전송하며, AS 계층은 GUMMEI를 제공받으면 RA msg5에 GUMMEI를 포함시켜 eNB로 전송한다(S1620). 이때, 리모트 UE가 eNB로 전송하는 S-TMSI 또는 GUMMEI는 자신의 것이 아닌 릴레이 UE로부터 S1605에서 수신한 값이다. 즉, RA msg 3에 릴레이 UE의 S-TMSI 값이 포함되어 eNB로 전송되거나 RA msg 5에 릴레이 UE의 MME 인 MME 1의 GUMMEI가 포함되어 eNB로 전송된다.
eNB는 릴레이 UE의 S-TMSI 또는 MME 1의 MME 식별자에 기초하여 식별된 MME 1으로 TAU 요청 메시지를 전달하며(S1625), MME 1은 리모트 UE의 컨텍스트 요청 절차를 트리거링하여 MME 2로부터 리모트 UE의 컨텍스트 정보를 수신한다(S1630, S1635, S1640). 이어서 TS 23.401에 기술된 TAU 절차가 네트워크 엔티티들에 의해 순차적으로 수행된다(S1645). TAU 절차가 완료되면 MME 1은 리모트 UE로 TAU 승인 메시지를 전송(S1650)하며, 리모트 UE는 MME 1로 TAU 완료 메시지를 전송(S1655)한다.
도 17에서, 릴레이 UE는 리모트 UE에게 MME 1의 식별 정보(예를 들어, GUMMEI)를 PC5 메시지로 전달한다(S1705). 이때, MME 식별자 대신 MME 식별자를 추출할 수 있는 식별자(예를 들어, GUTI)가 대신 전달될 수도 있다. 리모트 UE는 릴레이 UE로부터 수신된 PC5 메시지에 따라 TAU 절차를 트리거링한다(S1710). 리모트 UE는 S1705에서 수신한 릴레이 UE의 MME인 MME 1의 GUMMEI를 TAU 요청 메시지에 포함시켜 네트워크(MME 2)로 전송한다(S1720).이때, TAU 요청 메시지에는 MME 재라우팅을 트리거링하기 위한 지시자가 추가로 포함될 수 있다.
이어서, eNB 1은 리모트 UE의 MME인 MME 2로 TAU 요청 메시지를 전송한다(S1725). 이때, TAU 요청 메시지에는 MME 1의 식별자와 함께 MME 재라우팅을 나타내는 지시자가 포함될 수 있다. MME 2는 TAU 요청 메시지를 수신하고 MME 1의 식별자를 확인하면(또는, MME를 재라우팅하기 위한 지시자를 확인하면), TAU 요청 메시지를 재라우팅 할 것을 결정하고MME 1로의 재라우팅을 위한 TAU 절차(procedure)를 트리거링한다(S1730). MME 2는 MME 재라우팅을 위해 S1AP 메시지에 TAU 요청 메시지와 함께 MME 1의 식별자를 포함시켜 eNB로 전송한다(S1735). eNB는 S1AP를 수신하고, S1AP에 포함된 MME 1의 식별자로부터 MME 1을 확인하며(S1740), TAU 요청 메시지를 MME 1으로 전송한다(S1745). MME 1은 리모트 UE의 MME를 정렬하기 위해 MME 2로 리모트 UE의 컨텍스트 정보를 요청하고, 응답을 수신한다(S1750, S1755). 이어지는 TAU 절차는 도 16에서 설명한 S1645 내지 S1655 과정이 유사하게 적용될 수 있다.
5. 장치 구성
도 18은 제안하는 실시 예에 따른 노드 장치의 구성을 도시하는 도면이다.
제안하는 실시 예에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 또는, 송수신장치(110)는 송신부와 수신부로 분리되어 구현될 수도 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
도 18을 참조하면 제안하는 실시 예에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)는 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 송수신장치(210)는 송신부와 수신부로 분리되어 구현될 수도 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 직접 통신 방법은 3GPP 시스템뿐 아니라, 그 외에도 IEEE 802.16x, 802.11x 시스템을 포함하는 다양한 무선 통신 시스템에 적용하는 것이 가능하다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.

Claims (16)

  1. 무선 통신 시스템에서 ProSe-enabled UE(Proximity Service-enabled User Equipment)인 리모트 UE가 릴레이 UE와 직접 통신을 수행하는 방법에 있어서,
    상기 리모트 UE와 직접 연결이 설정된 상기 릴레이 UE로부터, 상기 릴레이 UE를 지원하는 MME인 제1 MME의 식별자를 수신하는 단계; 및
    상기 릴레이 UE를 지원하는 상기 제1 MME가 상기 리모트 UE의 컨텍스트 정보도 함께 관리할 것을 요청하는 TAU 요청 메시지 및 상기 제1 MME의 식별자를 상기 릴레이 UE를 지원하는 기지국으로 전송하는 단계를 포함하는 것인, 직접 통신 수행 방법.
  2. 제1항에 있어서,
    상기 제1 MME의 식별자는 상기 릴레이 UE로부터의 PC5 메시지를 통해서 수신되고, 상기 리모트 UE의 NAS 계층은 상기 제1 MME의 식별자를 AS 계층으로 전달하고,
    상기 TAU 요청 메시지 및 상기 제1 MME의 식별자는 RRC(Radio Resource Control) 메시지를 통해서 상기 기지국에 전송되며,
    상기 기지국은 상기 제1 MME의 식별자를 이용하여 상기 TAU 요청 메시지를 전달할 상기 제1 MME를 식별하는 것인, 직접 통신 수행 방법.
  3. 제1항에 있어서,
    상기 수신하는 단계는 상기 릴레이 UE로부터 상기 제1 MME의 식별자 대신에 상기 릴레이 UE의 S-TMSI(System Architecture Evolution Temporary Mobile Subscriber Identity)를 수신하고,
    상기 리모트 UE의 NAS 계층은 상기 제1 MME의 식별자 또는 상기 릴레이 UE의 S-TMSI를 AS 계층으로 전달하며,
    상기 릴레이 UE의 S-TMSI는 RRC 메시지를 통해 상기 기지국으로 전달되는 것인, 직접 통신 수행 방법.
  4. 제1항에 있어서,
    상기 수신하는 단계는 상기 제1 MME의 식별자와 함께 상기 릴레이 UE의 현재 등록된 PLMN ID 및 서빙 셀 ID를 수신하며,
    상기 리모트 UE는 상기 TAU 요청 메시지를 전송하기에 앞서 상기 현재 등록된 PLMN ID 및 상기 서빙 셀 ID를 이용하여 PLMN 정렬 과정 및 셀 정렬 과정을 수행하는 것인, 직접 통신 수행 방법.
  5. 제1항에 있어서,
    상기 릴레이 UE 및 상기 리모트 UE는 이동성이 함께 관리되는 소정의 단말 그룹을 형성하며, 상기 릴레이 UE는 상기 단말 그룹의 대표 단말이고 상기 리모트 UE는 상기 단말 그룹의 종속 단말인 것인, 직접 통신 수행 방법.
  6. 제5항에 있어서,
    상기 릴레이 UE의 TAU 절차 수행시 MME가 변경되는 경우, 상기 릴레이 UE의 컨텍스트 정보 및 상기 리모트 UE의 컨텍스트 정보가 이전 MME로부터 새로운 MME로 함께 전달되는 것인, 직접 통신 수행 방법.
  7. 제5항에 있어서,
    상기 릴레이 UE는 상기 리모트 UE에 대한 페이징이 감지되면, 상기 리모트 UE와의 직접 연결을 통해서 페이징 메시지를 상기 리모트 UE로 전달하는 것인, 직접 통신 수행 방법.
  8. 제1항에 있어서,
    상기 제1 MME는, 상기 TAU 요청 메시지가 수신됨에 따라 상기 리모트 UE를 지원하는 MME인 제2 MME로부터 상기 리모트 UE의 컨텍스트 정보를 획득하는 것인, 직접 통신 수행 방법.
  9. 무선 통신 시스템에서 ProSe-enabled UE(Proximity Service-enabled User Equipment)이고 릴레이 UE와 직접 통신을 수행하는 리모트 UE에 있어서,
    송신부;
    수신부; 및
    상기 송신부 및 상기 수신부와 연결되어 동작하는 프로세서를 포함하되,
    상기 프로세서는,
    상기 리모트 UE와 직접 연결이 설정된 상기 릴레이 UE로부터, 상기 릴레이 UE를 지원하는 MME인 제1 MME의 식별자를 수신하고,
    상기 릴레이 UE를 지원하는 상기 제1 MME가 상기 리모트 UE의 컨텍스트 정보도 함께 관리할 것을 요청하는 TAU 요청 메시지 및 상기 제1 MME의 식별자를 상기 릴레이 UE를 지원하는 기지국으로 전송하는 것인, 리모트 UE.
  10. 제9항에 있어서,
    상기 제1 MME의 식별자는 상기 릴레이 UE로부터의 PC5 메시지를 통해서 수신되고, 상기 리모트 UE의 NAS 계층은 상기 제1 MME의 식별자를 AS 계층으로 전달하고,
    상기 TAU 요청 메시지 및 상기 제1 MME의 식별자는 RRC(Radio Resource Control) 메시지를 통해서 상기 기지국에 전송되며,
    상기 기지국은 상기 제1 MME의 식별자를 이용하여 상기 TAU 요청 메시지를 전달할 상기 제1 MME를 식별하는 것인, 리모트 UE.
  11. 제9항에 있어서,
    상기 프로세서는 상기 릴레이 UE로부터 상기 제1 MME의 식별자 대신에 상기 릴레이 UE의 S-TMSI(System Architecture Evolution Temporary Mobile Subscriber Identity)를 수신하고,
    상기 리모트 UE의 NAS 계층은 상기 제1 MME의 식별자 또는 상기 릴레이 UE의 S-TMSI를 AS 계층으로 전달하며,
    상기 릴레이 UE의 S-TMSI는 RRC 메시지를 통해 상기 기지국으로 전달되는 것인, 직접 통신 수행 방법.
  12. 제9항에 있어서,
    상기 프로세서는 상기 제1 MME의 식별자와 함께 상기 릴레이 UE의 현재 등록된 PLMN ID 및 서빙 셀 ID를 수신하며, 상기 TAU 요청 메시지를 전송하기에 앞서 상기 현재 등록된 PLMN ID 및 상기 서빙 셀 ID를 이용하여 PLMN 정렬 과정 및 셀 정렬 과정을 수행하는 것인, 리모트 UE.
  13. 제9항에 있어서,
    상기 릴레이 UE 및 상기 리모트 UE는 이동성이 함께 관리되는 소정의 단말 그룹을 형성하며, 상기 릴레이 UE는 상기 단말 그룹의 대표 단말이고 상기 리모트 UE는 상기 단말 그룹의 종속 단말인 것인, 리모트 UE.
  14. 제13항에 있어서,
    상기 릴레이 UE의 TAU 절차 수행시 MME가 변경되는 경우, 상기 릴레이 UE의 컨텍스트 정보 및 상기 리모트 UE의 컨텍스트 정보가 이전 MME로부터 새로운 MME로 함께 전달되는 것인, 리모트 UE.
  15. 제13항에 있어서,
    상기 릴레이 UE는 상기 리모트 UE에 대한 페이징이 감지되면, 상기 리모트 UE와의 직접 연결을 통해서 페이징 메시지를 상기 리모트 UE로 전달하는 것인, 리모트 UE.
  16. 제9항에 있어서,
    상기 제1 MME는, 상기 TAU 요청 메시지가 수신됨에 따라 상기 리모트 UE를 지원하는 MME인 제2 MME로부터 상기 리모트 UE의 컨텍스트 정보를 획득하는 것인, 리모트 UE.
PCT/KR2016/010771 2015-09-25 2016-09-26 무선 통신 시스템에서 단말 간의 직접 통신을 수행하는 방법 및 이를 위한 장치 WO2017052335A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/762,696 US10542414B2 (en) 2015-09-25 2016-09-26 Method for performing device-to-device direct communication in wireless communication system and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562232462P 2015-09-25 2015-09-25
US62/232,462 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017052335A1 true WO2017052335A1 (ko) 2017-03-30

Family

ID=58386625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010771 WO2017052335A1 (ko) 2015-09-25 2016-09-26 무선 통신 시스템에서 단말 간의 직접 통신을 수행하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10542414B2 (ko)
WO (1) WO2017052335A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194390A1 (en) * 2017-04-20 2018-10-25 Lg Electronics Inc. Method for forwarding system information for a remote ue by a relay ue in wireless communication system and a device therefor
WO2019216665A1 (en) * 2018-05-10 2019-11-14 Samsung Electronics Co., Ltd. Method and apparatus for supporting network connection of terminal in next generation mobile communication system
WO2019216686A1 (ko) * 2018-05-10 2019-11-14 삼성전자 주식회사 차세대 이동 통신 시스템에서 페이징을 지원하는 방법 및 장치
CN111107512A (zh) * 2018-10-26 2020-05-05 华为技术有限公司 一种配置参数更新方法及装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080704A1 (en) * 2015-11-09 2017-05-18 Sony Corporation Telecommunications apparatuses and methods
WO2018061760A1 (ja) * 2016-09-30 2018-04-05 京セラ株式会社 無線端末及びネットワーク装置
ES2821833T3 (es) * 2016-10-14 2021-04-27 Ntt Docomo Inc Método para establecer una conexión de un terminal móvil a una red móvil de comunicación por radio y componente de red de acceso por radio
EP4221356A3 (en) * 2016-11-17 2023-08-23 Huawei Technologies Co., Ltd. Indication method and related device
DE112018001272T5 (de) * 2017-03-10 2019-11-28 Intel IP Corporation BENUTZERGERÄT (UE), ENB (EVOLVED NODE-B) UND VERFAHREN ZUM PAGEN GEMÄß EINER RELAIS-ANORDNUNG
US12047826B2 (en) * 2017-03-10 2024-07-23 Apple Inc. Evolved node-b (eNB), user equipment (UE) and methods of switching between direct and indirect communication for a relay arrangement
CN109245845B (zh) * 2017-05-05 2022-05-13 中兴通讯股份有限公司 一种信令传输方法及设备
US10700867B2 (en) * 2018-03-09 2020-06-30 Bank Of America Corporation Internet of things (“IoT”) multi-layered embedded handshake
EP3831099A1 (en) * 2018-08-03 2021-06-09 Convida Wireless, Llc Low latency messaging service for the 5gc
JP7509133B2 (ja) * 2018-08-20 2024-07-02 ソニーグループ株式会社 非地上系ネットワーク通信
EP3981176A1 (en) * 2019-09-30 2022-04-13 NEC Corporation Charging in device-to-device communications over pc5 for interactive services
US20230071815A1 (en) * 2020-02-03 2023-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Path section between uu and pc5
WO2021195867A1 (en) * 2020-03-30 2021-10-07 Mediatek Singapore Pte. Ltd. Bearer mapping for ue-to-ue relay
US11564071B2 (en) * 2020-06-12 2023-01-24 Qualcomm Incorporated Techniques for vehicle based wireless communications
US11477848B2 (en) * 2020-06-29 2022-10-18 At&T Intellectual Property I, L.P. Disseminating alerts or other notifications using ProSe direct discovery signaling
KR102583516B1 (ko) * 2020-07-28 2023-09-27 엘지전자 주식회사 무선통신시스템에서 사이드링크 디스커버리에 관련된 동작 방법
CN116420427A (zh) * 2020-07-30 2023-07-11 瑞典爱立信有限公司 用于侧链路中继情形中的ue上下文管理的系统和方法
CN114449680A (zh) * 2020-11-06 2022-05-06 维沃移动通信有限公司 连接态建立方法、终端、核心网功能及接入网设备
CN114650581B (zh) * 2020-12-18 2024-08-20 维沃移动通信有限公司 中继通信方法及装置
US20240236775A9 (en) * 2021-01-13 2024-07-11 Telefonaktiebolaget Lm Ericsson (Publ) Technique for Mobility Update Reporting
CN114828148A (zh) * 2021-01-18 2022-07-29 大唐移动通信设备有限公司 一种目标中继终端的选择方法、装置、网络设备及终端
CN115884157A (zh) * 2021-09-24 2023-03-31 大唐移动通信设备有限公司 一种信息发送方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140192739A1 (en) * 2013-01-08 2014-07-10 Htc Corporation Method of Handling Proximity Service in Wireless Communication System
WO2015142132A1 (en) * 2014-03-21 2015-09-24 Lg Electronics Inc. Method and apparatus for indicating d2d related information in wireless communication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139854B (zh) * 2010-06-28 2016-03-30 华为技术有限公司 切换方法、通信装置和通信系统
KR20140062484A (ko) * 2011-08-11 2014-05-23 인터디지탈 패튼 홀딩스, 인크 모바일 릴레이 핸드오버
GB2495145A (en) * 2011-09-30 2013-04-03 Nec Corp Relay services used in LTE advanced systems
ES2797552T3 (es) * 2012-02-06 2020-12-02 Alcatel Lucent Un aparato y un método para un transceptor de estación repetidora móvil y una estación base para un sistema de comunicación móvil
US9913095B2 (en) * 2014-11-19 2018-03-06 Parallel Wireless, Inc. Enhanced mobile base station

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140192739A1 (en) * 2013-01-08 2014-07-10 Htc Corporation Method of Handling Proximity Service in Wireless Communication System
WO2015142132A1 (en) * 2014-03-21 2015-09-24 Lg Electronics Inc. Method and apparatus for indicating d2d related information in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Management of the PC5 Link between the Relay UE and the Remote UE", R2-153461, 3GPP TSG-RAN WG2 #91, 14 August 2015 (2015-08-14), Beijing, China, XP050992235 *
KYOCERA: "Consideration of Initiation of ProSe UE-to-Network Relays", R2-153351, 3GPP TSG-RAN WG2 #91, 14 August 2015 (2015-08-14), Beijing, China, XP050991998 *
SAMSUNG: "Clarification on ProSe UE-NW Relay", S2-152367, 3GPP SA WG2 MEETING #110, 30 June 2015 (2015-06-30), Dubrovnik, Croatia, XP050987284 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194390A1 (en) * 2017-04-20 2018-10-25 Lg Electronics Inc. Method for forwarding system information for a remote ue by a relay ue in wireless communication system and a device therefor
US11432226B2 (en) 2017-04-20 2022-08-30 Lg Electronics Inc. Method for forwarding system information for a remote UE by a relay UE in wireless communication system and a device therefor
WO2019216665A1 (en) * 2018-05-10 2019-11-14 Samsung Electronics Co., Ltd. Method and apparatus for supporting network connection of terminal in next generation mobile communication system
WO2019216686A1 (ko) * 2018-05-10 2019-11-14 삼성전자 주식회사 차세대 이동 통신 시스템에서 페이징을 지원하는 방법 및 장치
US11641637B2 (en) 2018-05-10 2023-05-02 Samsung Electronics Co., Ltd. Method and apparatus for supporting paging in next generation mobile communication system
US11700649B2 (en) 2018-05-10 2023-07-11 Samsung Electronics Co., Ltd. Method and apparatus for supporting network connection of terminal in next generation mobile communication system
CN111107512A (zh) * 2018-10-26 2020-05-05 华为技术有限公司 一种配置参数更新方法及装置
CN111107512B (zh) * 2018-10-26 2021-06-15 华为技术有限公司 一种配置参数更新方法及装置
US11877261B2 (en) 2018-10-26 2024-01-16 Huawei Cloud Computing Technologies Co., Ltd. Configuration parameter update method and apparatus

Also Published As

Publication number Publication date
US20180295497A1 (en) 2018-10-11
US10542414B2 (en) 2020-01-21

Similar Documents

Publication Publication Date Title
WO2017052335A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 수행하는 방법 및 이를 위한 장치
WO2017069435A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치
WO2017074012A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2018155934A1 (ko) 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치
WO2018199668A1 (ko) 무선 통신 시스템에서 udm이 amf의 등록에 관련된 절차를 수행하는 방법 및 이를 위한 장치
WO2017146523A1 (ko) 네트워크로의 연결 요청 방법 및 사용자기기
WO2017142362A1 (ko) 무선 통신 시스템에서 위치 등록 관련 메시지 송수신 방법 및 이를 위한 장치
WO2016190672A1 (ko) 무선 통신 시스템에서 후원 연결을 위한 접속 절차를 수행하는 방법 및 단말
WO2017043854A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 지원하는 방법 및 이를 위한 장치
WO2018169343A1 (ko) 페이징을 수행하는 방법 및 기지국, 페이징을 지원하는 방법 및 네트워크 엔티티
WO2018088836A1 (ko) 무선 통신 시스템에서 동일 plmn에 속하는 네트워크 액세스를 통한 등록 방법 및 이를 위한 장치
WO2016024773A1 (ko) 무선 통신 시스템에서 릴레이 선택 방법 및 이를 위한 장치
WO2017191973A1 (ko) 무선 통신 시스템에서 리모트 ue의 위치 등록 수행 방법 및 이를 위한 장치
WO2018199611A1 (ko) 네트워크로의 등록 요청 전송 방법 및 사용자기기, 그리고 등록 요청 수신 방법 및 네트워크 기기
WO2016144147A1 (ko) V2x 통신 시스템에서 차량에 설치된 단말의 통신 방법 및 단말
WO2017086618A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2017171427A1 (ko) 시스템 정보 전송 방법 및 기지국과 시스템 정보 수신 방법 및 사용자기기
WO2017007104A1 (ko) V2x 통신 시스템에서 단말의 통신 방법 및 단말
WO2016105004A1 (ko) 무선 통신 시스템에서 nbifom 캐퍼빌리티를 송수신하는 방법 및 이를 위한 장치
WO2019066544A1 (ko) 무선 통신 시스템에서 5gs에서 eps로의 핸드오버에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2016111603A1 (ko) 무선 통신 시스템에서 pdn 연결 복구에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2019022442A9 (ko) 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치
WO2017003230A1 (ko) V2x 통신 시스템에서 단말의 v2x 통신 방법 및 단말
WO2016039579A1 (ko) 무선 통신 시스템에서 mcptt 그룹 콜 설정 방법 및 이를 위한 장치
WO2015002456A1 (ko) 근접 서비스를 위해 중계기를 선택 또는 재선택하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16849060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762696

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16849060

Country of ref document: EP

Kind code of ref document: A1