WO2018088836A1 - 무선 통신 시스템에서 동일 plmn에 속하는 네트워크 액세스를 통한 등록 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 동일 plmn에 속하는 네트워크 액세스를 통한 등록 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018088836A1
WO2018088836A1 PCT/KR2017/012724 KR2017012724W WO2018088836A1 WO 2018088836 A1 WO2018088836 A1 WO 2018088836A1 KR 2017012724 W KR2017012724 W KR 2017012724W WO 2018088836 A1 WO2018088836 A1 WO 2018088836A1
Authority
WO
WIPO (PCT)
Prior art keywords
access
amf
network
registration
network access
Prior art date
Application number
PCT/KR2017/012724
Other languages
English (en)
French (fr)
Inventor
김래영
윤명준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP17868856.0A priority Critical patent/EP3541125B1/en
Priority to KR1020197016504A priority patent/KR102204365B1/ko
Priority to US16/065,112 priority patent/US10827448B2/en
Priority to SG11201900441RA priority patent/SG11201900441RA/en
Priority to CN201780035144.2A priority patent/CN109314942B/zh
Priority to JP2019524418A priority patent/JP6918937B2/ja
Priority to BR112019001606-6A priority patent/BR112019001606A2/pt
Publication of WO2018088836A1 publication Critical patent/WO2018088836A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/005Multiple registrations, e.g. multihoming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the following description relates to a wireless communication system, and more specifically, to a registration method and apparatus through network access belonging to the same Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • the technical problem is how to perform the registration procedure for 3GPP access and non-3GPP access belonging to the same PLMN.
  • a user equipment performs registration through a first network access and a second network access in a wireless communication system
  • the UE performing registration through the first network access ;
  • the UE performing registration by the UE through a second network access, and if the first network access and the second network access belong to the same Public Land Mobile Network (PLMN)
  • PLMN Public Land Mobile Network
  • the UE must necessarily be in the first network.
  • a registration performing method in which registration through the second network access is started after a registration procedure through access is completed.
  • An embodiment of the present invention provides a user equipment (UE) for performing registration through a first network access and a second network access in a wireless communication system, comprising: a transmitting and receiving device; And a processor, wherein the processor performs registration through a first network access, performs registration through a second network access, and the first and second network access are the same Public Land Mobile Network (PLMN). Belonging to the UE device, the UE necessarily starts registration via the second network access after the registration procedure through the first network access is terminated.
  • PLMN Public Land Mobile Network
  • the information allocated by the UE when registering through the first network access may be used for AMF selection of the UE when performing registration through the second network access.
  • the AMF selected from the information allocated when registering through the first network access may be the same as the AMF selected as the AMF of the UE in the first network access.
  • the AMF selection of the UE may be performed by the gNB when the second network access is a 3GPP access, and by the Non-3GPP InterWorking Funtion (N3IWF) when the second network access is a Non-3GPP access.
  • N3IWF Non-3GPP InterWorking Funtion
  • the first network access and the second network access may be Non-3GPP access and 3GPP access, respectively, or may be 3GPP access and Non-3GPP access.
  • the Non-3GPP access may be a WLAN access.
  • the information allocated when registering through the first network access may be ID information allocated from AMF.
  • the same network function can be allocated for the UE, which is efficient. This enables one network function to support authentication, mobility management, session management, etc. integrated and efficiently for registered UEs through two different accesses.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • FIG. 7 is a diagram for describing a 5G system.
  • FIG. 11 illustrates a non roaming structure in EPS.
  • the UE is connected to the NG core network through non-3GPP access such as WLAN access and 3GPP access.
  • non-3GPP access such as WLAN access and 3GPP access.
  • 13 to 15 are diagrams for explaining an example of a specific registration procedure in connection with embodiments of the present invention.
  • 16 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in relation to at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or through a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access. (Eg, IMS).
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handovers) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • the 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • an eNodeB can route to a gateway, schedule and send paging messages, schedule and send broadcaster channels (BCHs), and resources in uplink and downlink while an RRC (Radio Resource Control) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane can perform encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channel multiplexing to map several logical channels to one transport channel. (Multiplexing).
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to get UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit that is larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • the MME is divided into an access and mobility management function (AMF) and a session management function (SMF) in a next generation system (or 5G CN).
  • AMF access and mobility management function
  • SMF session management function
  • the NAS interaction and mobility management (MM) with the UE are performed by the AMF
  • the session management (SM) is performed by the SMF.
  • the SMF manages a user plane function (UPF), which has a user-plane function, that is, a gateway for routing user traffic.
  • the SMF is responsible for the control-plane portion of the S-GW and the P-GW in the conventional EPC.
  • the user-plane part can be considered to be in charge of the UPF.
  • the conventional EPC may be configured as illustrated in FIG. 7 at 5G.
  • a PDU (Protocol Data Unit) session is defined in 5G system.
  • the PDU session refers to an association between the UE and the DN providing the PDU connectivity service of the Ethernet type or the unstructured type as well as the IP type.
  • UDM Unified Data Management
  • PCF Policy Control Function
  • the functions can be provided in an expanded form to satisfy the requirements of the 5G system.
  • NGx (where x is a number)
  • Nx are used interchangeably.
  • NG1 and N1 mean the same reference point.
  • access, access network, and network access are used interchangeably.
  • 3GPP access, 3GPP access network, 3GPP network access are considered the same.
  • Non-3GPP access is embedded in NextGen non-standalone non-3GPP accesses (RANs) or placed outside of NextGen standalone non-3GPP accesses (RANs). Can be. Standalone Non-3GPP access can support both trusted and untrusted Non-3GPP access. However, only untrusted Non-3GPP accesses are considered in 3GPP Release 15. Trusted Non-3GPP access may be considered for future releases.
  • the NG2 (shown as N2 in FIG. 7) / NG3 (shown as N3 in FIG. 7) interface is used to connect standalone Non-3GPP access to the Control Plane (CP) function and the User Plane (UP) function respectively.
  • CP Control Plane
  • UP User Plane
  • a UE accessing a NextGen CN via Non-3GPP access uses 3GPP NextGen NAS signals.
  • High-level architecture as shown in FIG. 8 may be used for standalone untrusted Non-3GPP access.
  • Untrusted Non-3GPP access a) the UE can discover and select N3IWF in a procedure similar to the ePDG selection in TS 23.402, b) the UE establishes an IPsec tunnel with the selected N3IWF using IKEv2 and establishes this IPsec tunnel.
  • the NAS messages are exchanged between the UE and CP functions over the established IPsec tunnel and over NG2, and the N3IWF transparently forwards the NAS messages via NG2, d IKEv2 and IPsec are used at the interface between the UE and N3IWF, but additional protocols may be specified if necessary, and e) only one IKE security association may exist between the UE and N3IWF, regardless of the number of PDU sessions the UE has. Can be.
  • the NF Repository Function provides NF registration and retrieval to discover peer NG-CP NFs and communicate with each other.
  • the Access and Mobility Management Function handles UE level access and mobility management, including UE network access control, UE location management and UE reachability management. It also supports the UE accessing the network through multiple access types, including 3GPP access and non-3GPP access. AMF is the end of the NG1 reference point and NG2 reference point. Session Management Function (SMF) supports UE IP address assignment, user plane function selection and control, and more. It can also consist of control parts such as QoS-related rules and session-related billing and legitimate blocking.
  • SMF Session Management Function
  • PCF Policy Control Function
  • AMF Access Management Function
  • NEF Network Capability Exposure Function
  • NG1 is the reference point for the control plane between NG UE and AMF
  • NG2 is the reference point for the control plane between NG- (R) AN and AMF
  • NG3 is between NG- (R) AN and NG-UP User plane reference point.
  • NG4 is a reference point between SMF and NG-UP function
  • NG5 is a reference point between PCF and application function
  • NG6 is a reference point between NG-UP and data network.
  • the data network may be a public or private data network external to the mobile operator or may be a mobile operator data network.
  • NG7 is a reference point between NG-CP function and NG integrated data management (UDM), and the service-based interface calls NG-CP functions such as AMF, SMF, PCF, NRF, NEF (other NG-CP functions May be considered as exposed.
  • the UDM stores UE related data, such as subscriptions, policies (eg, QoS and billing), and the NG Core User Plane (NG-UP) is the external PDU session point of the interconnect.
  • IP packet routing and forwarding
  • traffic handling e.g. QoS enforcement
  • anchor points if applicable for intra / inter-RAT mobility
  • packet inspection legal intercept
  • It is a general user plane function that supports various tasks and functions such as (UP collection).
  • multiple NG-UP functions can be used to provide one PDU session.
  • the UE needs to register with the network to obtain authorization for receiving the service, for mobility tracking, reachability.
  • the registration procedure involves mobility registration due to a change in a new tracking area (TA) outside of the UE's registration area in idle mode when the UE needs to perform initial registration (which can be interpreted as an attach operation) for the 5G system.
  • TA new tracking area
  • initial registration which can be interpreted as an attach operation
  • TA new tracking area
  • initial registration which can be interpreted as an attach operation
  • a Permanent Equipment Identifier is obtained from the UE.
  • the AMF operator can verify the PEI with the Equipment Identity Register (EIR).
  • EIR Equipment Identity Register
  • AMF delivers PEI (IMEISV) to UDM, SMF and PCF.
  • an AN message (UE parameters, Registration Request (Registration type, SUPI (Subscriber / Subscription Permanent Identifier) or Temporary Subscriber) or Temporary is transmitted from the UE to the (R) AN.
  • UE parameters Registration Request (Registration type, SUPI (Subscriber / Subscription Permanent Identifier) or Temporary Subscriber) or Temporary is transmitted from the UE to the (R) AN.
  • AN parameters include SUPI or temporary user ID, selected network and NSSAI, and so on.
  • the registration type is the initial registration of the UE (i.e. the UE is in a non-registered state, attach action to it), mobility registration update (i.e. the UE is in the registered state and starts the registration process due to mobility) or periodic registration. Update (ie, the UE is in a registered state and starts the registration process due to periodic update timer expiration, etc. If included, the Temporary User ID indicates the last serving AMF. If the PLMN and other PLMNs have already registered via non-3GPP access, the UE shall not provide the UE temporary ID assigned by AMF during the registration process during non-3GPP access when sending a Registration Request. parameters) are used for authentication and integrity protection NSSAI indicates Network Slice Selection Assistance Information (as defined in section 5.15 of TS 23.501). Represents an available (previously established) PDU session.
  • step S1002 when SUPI is included or the temporary user ID does not indicate a valid AMF, AMF is selected based on (R) AT and NSSAI.
  • (R) AN selects AMF as described in TS 23.501. If the (R) AN cannot select the appropriate AMF, it sends a registration request to the selected AMF according to the local policy. If the selected AMF cannot service the UE, the selected AMF selects the appropriate AMF for the UE. Relocation between the base AMF and the selected AMF is described in TS 23.502 Section 4.2.2.2.3, where the initial AMF refers to the base AMF and the target AMF refers to the selected AMF.
  • an N2 message (N2 parameter, Registration Request (registration type, subscriber permanent identifier or temporary user ID, security parameter, NSSAI and MICO mode preference)) is transmitted from (R) AN to new AMF.
  • N2 parameter Registration Request (registration type, subscriber permanent identifier or temporary user ID, security parameter, NSSAI and MICO mode preference)
  • the N2 parameter includes location information, cell identifier and RAT type associated with the cell the UE is camping on. If the registration type indicated by the UE is periodic registration update, step S1004 to step S1017 may be omitted.
  • an information request that is, an Information Request (complete registration request) is sent from (conditionally) new AMF to old AMF. If the temporary user ID of the UE is included in the registration request and the serving AMF has changed since the last registration, the new AMF may send an information request to the old AMF including the complete Registration Request IE to request the SUPI and MM context of the UE.
  • an information response that is, an Information Response (SUPI, MM context, SMF information) is sent from (conditionally) old AMF to new AMF.
  • the old AMF responds to the new AMF with an information response including the SUPI and MM context of the UE. If the previous AMF has information about the active PDU session, old AMF includes the SMF information, including the SMF ID and the PDU session ID.
  • SUPI Information Response
  • MM context SMF information
  • an identity request i.e., Identity Request () is sent from the (conditional) new AMF to the UE. If SUPI is not provided by the UE or retrieved from the old AMF, the identity request procedure is initiated by the AMF sending an identity request message to the UE.
  • step S1007 the (conditional) UE sends an Identity Response () to new AMF. That is, the UE responds with an Identity Response message including SUPI.
  • the AMF may decide to invoke an Authentication Server Function (AUSF).
  • AUSF Authentication Server Function
  • the AMF shall select AUSF based on SUPI as described in TS 23.501.
  • step S1009 the AUSF should initiate authentication of the UE and NAS security functions.
  • step S1010 Information Acknowledged () is transmitted from (conditionally) new AMF to old AMF. If the AMF has changed, the new AMF acknowledges delivery of the UE MM context. If the authentication / security process fails, registration is rejected and new AMF sends a rejection indication to old AMF. Old AMF continues as if no information request was received.
  • step S1011 Identity Condition () is sent from the (conditional) new AMF to the UE. If a Permanent Equipment Identifier (PEI) has not been provided by the UE or has not been retrieved from the old AMF, the identity request procedure is initiated by the AMF sending an identity request message to the UE to retrieve the PEI.
  • PEI Permanent Equipment Identifier
  • step S1012 new AMF starts ME verification (optional). PEI checks are performed as described in section 4.7 of TS 23.502.
  • step S1013 when step S1014 is performed, new AMF selects the UDM based on SUPI. AMF selects the UDM as described in TS 23.501.
  • step S1014 if the AMF has changed since the last registration, the AMF does not have a valid subscription context for the UE, or if the UE provides SUPI that does not reference a valid context in the AMF, new AMF starts the update location procedure with UDM. . This includes the operation by which the UDM begins relocating with old AMF.
  • step S1015 conditionally new AMF selects the PCF based on SUPI.
  • the AMF selects the PCF as described in TS 23.501.
  • step S1016 (optional) UE Context Establishment Request () is sent from new AMF to PCF.
  • AMF requires PCF to apply operator policy for UE.
  • step S1017 UE Context Establishment Acknowledged () is transmitted from the PCF to the new AMF. That is, the PCF acknowledges the UE Context Establishment Request message.
  • N11 Request () is sent from the (conditional) new AMF to the SMF. If the AMF is changed, the new AMF notifies each SMF of the new AMF serving the UE. The AMF verifies the PDU session state from the UE with the available SMF information. If the AMF has changed, the available SMF information is received from the previous AMF. new AMF requests the SMF to release network resources associated with PDU sessions that are not activated at the UE.
  • N11 Response () is transmitted from SMF to new AMF.
  • the SMF may decide to trigger a UPF relocation, for example. If the registration type indicated by the UE is a periodic registration update, steps S1020 and S1021 may be omitted.
  • step S1020 the UE Context Termination Request () is sent from the (conditional) old AMF to the PCF. If the previous AMF previously requested that the UE context be set in the PCF, the old AMF terminates the UE context in the PCF.
  • step S1021 UE Context Termination Acknowledged () is transmitted from the PCF to the old AMF.
  • step S1022 registration acceptance (Temporary User ID, Registration area, Mobility restrictions, PDU session status, NSSAI, Periodic registration update timer, LADN Information and accepted MICO mode) is transmitted from the new AMF to the UE. If AMF assigns a new temporary user ID, the temporary user ID is included. Mobility restrictions are included if mobility restrictions apply to the UE. AMF indicates a PDU session status for the UE. The UE removes any internal resources associated with the PDU session that are not marked as active in the received PDU session state. If the PDU session state information is present in the Registration Request, the AMF should indicate the PDU session state to the UE.
  • NSSAI includes the allowed Single Network Slice Selection Assistance Information (S-NSSAI).
  • the AMF shall specify the LADN information for the LADN defined in TS 23.501 5.6.5 available in the registration area determined by the AMF in the registration accept message. It must be included. If the UE includes the Mobile Initiated Connection Only (MICO) mode in the request, the AMF responds whether the MICO mode should be used.
  • LADN subscribed Local Area Data Network
  • MICO Mobile Initiated Connection Only
  • step S1023 Registration Complete () is transmitted from the (conditional) UE to new AMF.
  • the UE sends a Registration Complete message to the AMF to confirm if a new temporary user ID has been assigned.
  • the UE attaches via 3GPP access and non-3GPP access (typically WLAN access, including both trusted and untrusted WLANs) in the 3GPP Next Generation system (NGS or NG System). Let's take a look at how to do this efficiently.
  • 3GPP access typically WLAN access, including both trusted and untrusted WLANs
  • NSS Next Generation system
  • FIG. 11 illustrates a non roaming structure in EPS.
  • the EPC when connected to the EPC via the WLAN access, there is no NAS MM procedure compared to connecting to the EPC through the 3GPP access, and there is no network function for managing the MM context.
  • the NG core network via WLAN access when connected to the NG core network via WLAN access, not only the UE and the core network perform the NAS attach procedure but also AMF needs to manage / maintain the MM context of the UE for WLAN access.
  • the UE is connected to the NG core network via a non-3GPP access such as a WLAN access and a 3GPP access.
  • a non-3GPP access such as a WLAN access and a 3GPP access.
  • FIG. 12A illustrates a case in which the UE does not roam, and is connected to the NG core network through 3GPP access and non-3GPP access in the Home PLMN.
  • FIG. 12B illustrates a case where the UE roams and is connected to the NG core network through 3GPP access and non-3GPP access (which may mean N3IWF) belonging to the same Visited PLMN.
  • 12 (c) is a case in which the UE roams, connected to the NG core network through 3GPP access belonging to Visited PLMN # 1, and simultaneously through non-3GPP access belonging to Visited PLMN # 2 (which may mean N3IWF).
  • N3IWF Visited PLMN
  • the NG core network is connected to the NG core network via 3GPP access belonging to the Visited PLMN while simultaneously connected to the NG core network via non-3GPP access belonging to the Home PLMN (which may mean N3IWF).
  • N3IWF non-3GPP access belonging to the Home PLMN
  • the UE when the UE is simultaneously connected to the NG core network via 3GPP access and WLAN access, it is efficient to receive services from the same AMF, regardless of the access type, for integrated authentication, mobility management, session management, and the like.
  • a UE If a UE is connecting (or attaching or authenticating) to the NG core via one access and making a connection (or attaching or authenticating) to the NG core via the other, the same AMF is assigned / assigned for several reasons. You may encounter problems that do not work. For example, if the UE is connecting (or attaching or authenticating) to the NG core via the first access and the AMF is not yet established, the UE connects to the NG core via the second access (or attaching). Or authentication), it is possible that different AMFs will be assigned / designated for the two accesses.
  • the UE is connecting (or attaching or authenticating) to the NG core through the first access, and manages and maintains information about the AMF (DB, which is HSS, User Data Management (UDM), UDR ( User Data Repository), which may be called various names such as State DB), and when the UE has not yet updated the information about the AMF, when the UE initiates connection (or attach or authentication) to the NG core through the second access, It is possible that different AMFs may be assigned / designated for both accesses.
  • DB which is HSS, User Data Management (UDM), UDR ( User Data Repository), which may be called various names such as State DB
  • the following embodiment of the present invention will be described a method for the UE to be served from the same AMF when connected to the NG core network through 3GPP access and non-3GPP access. This may be interpreted as a way to allow the same AMF to process NAS messages sent and received with UEs connected to the NG core network through 3GPP access and non-3GPP access, regardless of which access NAS messages are sent to.
  • a UE may perform registration through a first network access and a registration through a second network access.
  • the UE must be registered through the second network access after the registration procedure through the first network access is finished. Must be started / started.
  • the UE does not initiate / start registration via the second network access until the registration procedure via the first network access is finished.
  • the UE delays the registration start / start through the second network access until the registration procedure through the first network access is terminated.
  • the second network access may be Non-3GPP access, wherein 3GPP access may include both 5G New Radio and LTE for connecting the UE to the NG core network.
  • Non-3GPP access may be WLAN access.
  • the second access means a 3GPP access. That is, the UE does not perform initial registration (or attach) simultaneously (or simultaneously or concurrently) via 3GPP access and non-3GPP access (ie two accesses). This may be interpreted as not initiating / performing initial registration (or registration) with another access once the initial registration procedure is initiated (or in progress) with one access.
  • one access can initiate / perform registration with another access once the initial registration procedure is complete. It can also be interpreted that if an initial registration procedure is being performed with one access, (initial) registration with another access is suspend.
  • the end of the initial registration may be interpreted as a time point when all the registration procedures are completed, or may be interpreted as a time point when the UE receives a registration Accept message from the AMF.
  • registration procedures to 3GPP access and registration to non-3GPP access see section 4.2.2 (registration procedure) and section 4.12.2 (registration via Untrusted non-3GPP access) of TS 23.502.
  • the procedure can be interpreted as a transaction or an operation, which is applied throughout the present invention.
  • registration with the second network access may be initiated only after registration with the first network access is terminated, wherein the information allocated by the UE when registering with the first network access is determined via the second network access.
  • it can be used for AMF selection of the UE.
  • the AMF selected from the information allocated when registering through the first network access may be the same as the AMF selected as the AMF of the UE in the first network access. That is, the network function of assigning / assigning AMF to the UE in the NG core network can assign / assign / select the same AMF to the UE since the UE does not simultaneously perform the attach procedure through different accesses as described above. have.
  • the serving AMF of the UE may be recognized / determined / selected.
  • the network function for assigning / allocating / selecting AMF to the UE may be called by various names such as DB for managing / maintaining information about AMF (HSS, User Data Management (UDS), User Data Repository (UDR), State DB, etc.). Or a function that has the ability to select AMF. This applies throughout the present invention.
  • Examples of functions having a function of selecting the AMF are gNB and Non-3GPP InterWorking Funtion (N3IWF). That is, the AMF selection of the UE may be performed by gNB and N3IWF. However, the AMF selection may be made by one or more various network functions, without being limited thereto.
  • N3IWF Non-3GPP InterWorking Funtion
  • the information allocated when registering through the first network access may be ID information allocated from the AMF.
  • the information on the designated / assigned / selected AMF (that is, serving AMF) when the UE attaches to the NG core network through the first network access may be based on the Temporary User ID of the UE included in the registration request. Can be.
  • the Temporary User ID is assigned by the AMF when the UE registers with the NG core network and is defined as 5G Globally Unique Temporary Identity (5G-GUTI).
  • 5G-GUTI consists of following Table 2 referring to Section 5.9.4 of TS 23.501. That is, a globally unique AMF ID (GUAMI), which is identification information of a serving AMF of a UE, and 5G Temporary Mobile Subscriber Identity (5G-TMSI), which can identify the UE in the AMF. It is composed.
  • GUI globally unique AMF ID
  • 5G-TMSI 5G Temporary Mobile Subscriber Identity
  • the AMF Region ID addresses the case that there are more AMFs in the network than the number of AMFs that can be supported by AMF Set ID and AMF Pointer by enabling operators to re-use the same AMF Set IDs and AMF Pointers in different regions.
  • the attach procedure to the NG core network may be one of 1) an authentication procedure of the UE, 2) a NAS attach procedure of the UE, and 3) an authentication and NAS attach procedure of the UE. Let's look at it sequentially.
  • the authentication procedure of the UE is a procedure of authenticating the UE in the NG core network in the case of WLAN access, for example, may be an EAP procedure.
  • the EAP procedure when the EAP-Success message is received from the network, the authentication procedure may be considered as completed.
  • the UE is usually authenticated through a NAS attach procedure, but may indicate an authentication procedure when authentication is performed separately. This may include receiving an authentication failure / rejection message from the network due to an authentication failure.
  • the NAS attach procedure In relation to the NAS attach procedure of the UE, when the UE receives an attach accept message from the network, it may be considered that the NAS attach procedure is completed. However, this may include receiving an attach reject message from the network because the attach fails. Alternatively, the NAS attach procedure may be considered complete until all message exchanges between the UE and the network are completed in relation to the attach procedure. In the present invention, the NAS attach procedure may be interpreted as an initial registration procedure, an initial registration update procedure, or an initial registration type registration procedure.
  • the attach procedure to the NG core network is completed when both procedures are completed. This may typically be the case when the UE receives an Attach Accept message or an Attach Reject message for the NAS attach procedure. However, this may also correspond to a case where the UE receives an authentication success / failure message or a response message for the NAS attach and a response message for authentication.
  • the UE After the UE completes the attach procedure to the NG core network through the first network access as described above, initiating the attach procedure to the NG core network through the second network access (or the UE performs two accesses). May not be a rule that the UE should always obey, but A) if the PLMN to which the first network access belongs and the PLMN to which the second network access belongs is the same, B) the first network access is When the 3GPP access and the second network access are non-3GPP access, the PLMN to which the first network access (or RAN or gNB) belongs and the PLMN to which the N3IWF belongs may be applied when one or more conditions are satisfied. If the above A) and / or B) conditions are not satisfied, the UE may perform the attach procedure to the NG core network through the first network access and the attach procedure to the NG core network through the second network access in parallel. Can be.
  • the UE When the UE performs the attach procedure to the NG core network via the first network access (ie, the attach procedure is not completed) and performs the attach procedure to the NG core network via the second network access.
  • Access type information iii) information indicating that the UE does not yet have a serving AMF
  • iv) information indicating that the UE does not yet have an ID provided / assigned from the AMF this may be a Temporary User ID). Contains one or more of information (eg, identifiers) for the AMF that provided / assigned it. Such information may be included in a complex form and explicitly or implicitly.
  • the state where the attach procedure to the NG core network is not completed means a state that does not correspond to the case where the attach procedure to the NG core network described above is completed.
  • the information of iii) and iv) may be replaced by the UE not including the Temporary User ID in the attach request message.
  • the information of i) to iv) described above is a) authentication request / related message sent by the UE to the network (which can be interpreted as ngPDG, N3IWF or AMF) sent by the UE to the NG core network. This may or may not be the first message, which may vary depending on the protocol containing the information, for example IKEv2 messages, EAP messages, etc.) and / or b) NAS attach request messages sent by the UE to the network. (Which may be interpreted as a request message for performing attach or initial registration).
  • the operation including the information is always performed.
  • the PLMN to which the network access (or RAN or gNB) belongs and the PLMN to which the N3IWF belongs may be the same when one or more conditions are satisfied.
  • a network function (such as a gNB, a N3IWF or a network node performing a similar function) that assigns / assigns / selects an AMF to a UE receives a connection request / related message to a network including i) to iv) information described above, or If a message is received from the other network function inquiring who is the UE's serving AMF, it is checked whether there is a serving AMF assigned / assigned to the UE.
  • a network function such as a gNB, a N3IWF or a network node performing a similar function
  • the serving AMF can process the message (or the UE). This may eventually be interpreted as allowing the designated / assigned / selected serving AMF to serve the UE even when the UE is connected to the network via the second network access as the UE is connected to the network via the first network access.
  • the network function for assigning / assigning / selecting the AMF also assigns / assigns / selects the serving AMF already assigned / assigned / selected to the UE so that the same AMF serves the UE regardless of access. If a message for inquiring who the serving AMF is for the UE is received, the network function that receives the serving AMF checks the serving AMF that is already assigned / assigned / selected to the UE and then answers the query.
  • the serving AMF does not exist (or is determined not to exist)
  • the serving AMF has not yet been assigned / assigned / confirmed / selected in connection with connection to the first network access. Delay processing the connection request / related message to the network transmitted by the UE via the second network access until AMF is assigned / assigned / confirmed / selected.
  • a connection request / related message to the network transmitted by the UE through the second network access may be processed in the serving AMF.
  • This may eventually be interpreted as allowing the designated / assigned / selected serving AMF to serve the UE even when the UE is connected to the network via the second network access as the UE is connected to the network via the first network access.
  • assign / assign / select it so that the same AMF serves the UE regardless of access.
  • the network function receiving the message answers the query after the serving AMF is confirmed / selected, that is, after obtaining information about the serving AMF. Or informing the query that the serving AMF does not exist, and then notifying the querying network function if it is confirmed later.
  • attach procedure to the NG core network through the first network access ie, the attach procedure is not completed
  • attach procedure to the NG core network through the second network access is performed.
  • the UE when the UE transmits a connection request / related message to the network through the second network access, the above-mentioned i) to iv) information may be included.
  • the AMF When AMF is assigned / selected to serve a UE, the AMF registers with the UDM that it is the serving AMF of the UE.
  • II) Type of access the UE performed registration eg, 3GPP access, non-3GPP access, etc.
  • ID information of AMF One or more of the following (if the same AMF is assigned / selected for both accesses, the AMF may only perform the operation of registering itself as a serving AMF with the UDM, but may not provide such information to the UDM) Information can be provided to the UDM.
  • the UDM receives a registration request for the serving AMF from the AMF, it verifies whether the serving AMF of the UE is already registered for different accesses, and if so, whether the two AMFs belong to the same PLMN.
  • the UDM instructs the AMF change / redirection, providing the AMF requesting registration of the serving AMF with the information of the already registered AMF.
  • Such instructions may be explicit or implicit. For example, it may provide information about this AMF by informing that a serving AMF already exists. Alternatively, it may provide information about an AMF already registered while rejecting a serving AMF registration request.
  • the AMF provided with the above indication / information causes the AMF that is already serving the UE to serve the UE. This may include delivering a registration request message received by the AMF that is already serving the UE, and / or delivering UE context information that the user has / generated. And, if there is a context created for the UE, it may include an operation for deleting it.
  • the AMF already serving the UE completes the registration procedure, which in turn is registration for the second network access.
  • the AMF provided with the above indication / information completes the registration procedure of the UE.
  • the AMF queries and obtains a Temporary User ID for the UE from the AMF provided from the UDM.
  • the temporary user ID is included. That is, instead of the AMF receiving the registration request from the UE allocating a Temporary User ID, the AMF already serving the UE receives a Temporary User ID assigned to the UE and transmits it to the UE.
  • the AMF provided with the above indication / information may then perform an operation of delivering the UE context information which it has / generated to the AMF which has already served the UE. If there is a context created for the corresponding UE, the operation may delete the context.
  • NG-RAN is a RAN connected to a 5G core network with a 3GPP access network, as defined in TS 23.501, 1) Standalone New Radio, 2) New Radio is the anchor with E-UTRA extensions, 3) Standalone 4) E-UTRA is the anchor with New Radio extensions.
  • the NG-RAN may be called a RAN and may be referred to as a gNB connected to a 5G core network or an eNB (or ng-eNB) connected to a 5G core network.
  • a gNB connected to a 5G core network
  • an eNB or ng-eNB
  • FIG. 13 shows a case where a 3GPP access and a non-3GPP access (which can be interpreted as N3IWF, which is applied throughout the present invention) for a UE to be served belong to the same PLMN.
  • the UE is powered on (ie, switch-on).
  • the UE intends to connect to the 5G core network through non-3GPP access. Since the 3GPP access and the non-3GPP access belong to the same PLMN, the UE decides to first perform registration with one access and then finish registration with another access.
  • registration through 3GPP access is performed first.
  • registration through non-3GPP access may be performed first, in which case, steps S1305 to S1308 are performed first, and then steps S1301 to S1304 are performed.
  • the UE transmits a registration request message to the 5G core network through the NG-RAN.
  • the registration request message may include a Subscriber Permanent Identifier (SUPI) as an identifier of the UE.
  • SUPI Subscriber Permanent Identifier
  • the NG-RAN Upon receiving the registration request message from the UE in step S1302, the NG-RAN selects an AMF to serve the UE and delivers the registration request message to the AMF.
  • step S1303 and step S1304 the AMF allocates 5G-GUTI to the UE. In addition, it transmits a registration accept message to the UE. This registration accept message is delivered to the UE via the NG-RAN.
  • step S1305 the UE registers with the 5G core network through the first network access, and thus performs the registration through the second network access.
  • the registration request message is transmitted to the 5G core network through the non-3GPP access network.
  • the registration request message is an identifier of the UE and includes 5G-GUTI included in the registration Accept message received in step S1304.
  • the N3IWF receives the registration request message sent by the UE.
  • the N3IWF may determine the serving AMF of the UE using 5G-GUTI included in the UE.
  • the registration request message is transmitted to the AMF.
  • step S1307 and step S1308 the AMF sends a registration Accept message to the UE.
  • This registration Accept message is delivered to the UE via the N3IWF and non-3GPP access networks.
  • FIG. 14 also shows a case in which 3GPP access and non-3GPP access accessed by the UE belong to the same PLMN.
  • the difference from FIG. 13 is a case where a UE wants to receive a service through non-3GPP access while being registered with the 5G core network through 3GPP access and receiving service.
  • step S1401 the UE transmits a registration request message to the 5G core network through the NG-RAN.
  • the registration request message may include SUPI as an identifier of the UE.
  • the NG-RAN Upon receiving the registration request message from the UE in step S1402, the NG-RAN selects an AMF to serve the UE and delivers a registration request message to the AMF.
  • step S1403 and step S1404 the AMF allocates 5G-GUTI to the UE. In addition, it transmits a registration accept message to the UE. This registration accept message is delivered to the UE via the NG-RAN.
  • the UE may receive a service by forming a PDU session.
  • step S1405 registration update according to the move (which can be interpreted as re-registration) can be performed throughout the present invention. This is because the UE has left the registration area included in the registration Accept message of step S1404.
  • the registration update according to the movement of the UE is described, in contrast, the UE may perform periodic registration update as the registration update timer expires, or perform the registration update as the capability / configuration of the UE changes. This can all be done by performing a registration update.
  • the UE intends to connect to the 5G core network even through non-3GPP access. Since the 3GPP access and the non-3GPP access belong to the same PLMN, the UE decides to first perform registration with one access and then finish registration with another access. In FIG. 14, it is assumed that registration through 3GPP access is performed first. Alternatively, however, registration via non-3GPP access may be performed first. In this case, steps S1410 to S1413 are performed first, and then steps S1406 to S1409 are performed.
  • step S1406 the UE transmits a registration request message to the 5G core network through the NG-RAN.
  • the registration request message includes 5G-GUTI as an identifier of the UE.
  • step S1407 the NG-RAN receiving the registration request message from the UE transmits the registration request message to the serving AMF of the UE.
  • step S1408 and step S1409 AMF transmits a registration Accept message to the UE.
  • This registration accept message is delivered to the UE via the NG-RAN.
  • the AMF may assign a new 5G-GUTI for the UE, and then provide it to the UE in a registration accept message.
  • step S1410 the UE registers with the 5G core network through the first network access, and performs registration through the second network access.
  • the registration request message is transmitted to the 5G core network through the non-3GPP access network.
  • the registration request message is an identifier of the UE, and includes 5G-GUTI received from the AMF after the UE performs registration through 3GPP access. This is 5G-GUTI included in the registration Accept message of step S1409 when it is received in step S1409, and 5G-GUTI included in the registration Accept message of step S1404 if it is received in step S1409.
  • the N3IWF receives the registration request message sent by the UE in step S1411.
  • the N3IWF may determine the serving AMF of the UE using 5G-GUTI included in the UE.
  • the registration request message is transmitted to the AMF.
  • step S1412 and step S1413 AMF transmits a registration Accept message to the UE.
  • This registration Accept message is delivered to the UE via the N3IWF and non-3GPP access networks.
  • FIG. 15 illustrates a case where a UE wants to receive a service through non-3GPP access while the UE is already registered with the 5G core network through 3GPP access to receive a service as shown in FIG. 14.
  • the 3GPP access and the non-3GPP access accessed by the UE belong to different PLMNs.
  • step S1501 the UE transmits a registration request message to the 5G core network through the NG-RAN.
  • the registration request message may include SUPI as an identifier of the UE.
  • the NG-RAN Upon receiving the registration request message from the UE in step S1502, the NG-RAN selects an AMF to serve the UE and transfers the registration request message to this AMF, that is, AMF # 1.
  • step S1503 and step S1504 AMF # 1 allocates 5G-GUTI to the UE. In addition, it transmits a registration accept message to the UE. This registration accept message is delivered to the UE via the NG-RAN.
  • the UE may receive a service by forming a PDU session.
  • a registration update according to the move (which can be interpreted as re-registration) may be performed throughout the present invention. This is because the UE has left the registration area included in the registration Accept message of step S1504.
  • the registration update according to the movement of the UE is described, in contrast, the UE may perform periodic registration update as the registration update timer expires, or perform the registration update as the capability / configuration of the UE changes. This can all be done by performing a registration update.
  • step S1506a to step S1509a and step S1506b to step S1509b are performed simultaneously.
  • step S1506a the UE transmits a registration request message to the 5G core network through the NG-RAN.
  • the registration request message includes 5G-GUTI as an identifier of the UE.
  • the NG-RAN Upon receiving the registration request message from the UE in step S1507a, the NG-RAN forwards the registration request message to AMF # 1, which is a serving AMF of the UE.
  • AMF # 1 transmits a registration accept message to the UE.
  • This registration accept message is delivered to the UE via the NG-RAN.
  • AMF # 1 may newly assign 5G-GUTI for the UE, and then provide it to the UE by putting it in a registration accept message.
  • step S1506b the UE performs registration via the second network access regardless of whether registration with the 5G core network through the first network access is completed.
  • the registration request message is transmitted to the 5G core network through the non-3GPP access network.
  • the registration request message may be an identifier of a UE and include SUPI.
  • the N3IWF receives the registration request message sent by the UE in step S1507b.
  • the N3IWF selects an AMF to serve the UE and delivers the registration request message to this AMF, that is, AMF # 2.
  • step S1508b and step S1509b AMF # 2 allocates 5G-GUTI to the UE. In addition, it transmits a registration accept message to the UE. This registration Accept message is delivered to the UE via the N3IWF and non-3GPP access networks.
  • 16 is a diagram showing the configuration of a preferred embodiment of a terminal device and a network node device according to an example of the present invention.
  • the terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the processor 120 performs registration through a first network access, performs registration through a second network access, and the first network and the second network belong to the same Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the UE may start registration via the second network access after the registration procedure via the first network access is ended.
  • the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the above-described functions or operations.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 UE(User Equipment)가 제1 네트워크 액세스 및 제2 네트워크 액세스를 통한 등록을 수행하는 방법에 있어서, UE가 제1 네트워크 액세스를 통해 등록을 수행하는 단계; 및 상기 UE가 제2 네트워크 액세스를 통해 등록을 수행하는 단계를 포함하며, 상기 제1 네트워크 액세스와 제2 네트워크 액세스가 동일한 PLMN(Public Land Mobile Network)에 속하면, 상기 UE는 반드시 상기 제1 네트워크 액세스를 통한 등록 절차가 종료된 후 상기 제2 네트워크 액세스를 통한 등록을 시작하는, 등록 수행 방법이다.

Description

무선 통신 시스템에서 동일 PLMN에 속하는 네트워크 액세스를 통한 등록 방법 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 동일 PLMN(Public Land Mobile Network)에 속하는 네트워크 액세스를 통한 등록 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명에서는 동일한 PLMN에 속하는 3GPP 액세스와 non-3GPP 액세스에 등록 절차를 어떻게 수행하는지를 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 UE(User Equipment)가 제1 네트워크 액세스 및 제2 네트워크 액세스를 통한 등록을 수행하는 방법에 있어서, UE가 제1 네트워크 액세스를 통해 등록을 수행하는 단계; 및 상기 UE가 제2 네트워크 액세스를 통해 등록을 수행하는 단계를 포함하며, 상기 제1 네트워크 액세스와 제2 네트워크 액세스가 동일한 PLMN(Public Land Mobile Network)에 속하면, 상기 UE는 반드시 상기 제1 네트워크 액세스를 통한 등록 절차가 종료된 후 상기 제2 네트워크 액세스를 통한 등록을 시작하는, 등록 수행 방법이다.
본 발명의 일 실시예는, 무선통신시스템에서 제1 네트워크 액세스 및 제2 네트워크 액세스를 통한 등록을 수행하는 UE(User Equipment) 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는 제1 네트워크 액세스를 통해 등록을 수행하고, 제2 네트워크 액세스를 통해 등록을 수행하며, 상기 제1 네트워크 액세스와 제2 네트워크 액세스가 동일한 PLMN(Public Land Mobile Network)에 속하면, 상기 UE는 반드시 상기 제1 네트워크 액세스를 통한 등록 절차가 종료된 후 상기 제2 네트워크 액세스를 통한 등록을 시작하는, UE 장치이다.
상기 UE가 제1 네트워크 액세스를 통한 등록시 할당 받은 정보는, 상기 제2 네트워크 액세스를 통한 등록을 수행시 상기 UE의 AMF 선택에 사용될 수 있다.
상기 제1 네트워크 액세스를 통한 등록시 할당 받은 정보로부터 선택되는 AMF는, 상기 제1 네트워크 액세스에서 상기 UE의 AMF로 선택된 AMF와 동일할 수 있다.
상기 UE의 AMF의 선택은 제2 네트워크 액세스가 3GPP 액세스인 경우 gNB에 의해 수행되고, 제2 네트워크 액세스가 Non-3GPP 액세스인 경우 N3IWF(Non-3GPP InterWorking Funtion)에 의해 수행되는 것일 수 있다.
상기 제1 네트워크 액세스 및 상기 제2 네트워크 액세스는 각각 Non-3GPP 액세스 및 3GPP 액세스이거나, 또는 3GPP 액세스 및 Non-3GPP 액세스일 수 있다.
상기 Non-3GPP 액세스는 WLAN 액세스일 수 있다.
상기 제1 네트워크 액세스를 통한 등록시 할당 받은 정보는 AMF로부터 할당 받은 ID 정보일 수 있다.
본 발명에 따르면, 동일한 PLMN에 속하는 3GPP 액세스와 non-3GPP 액세스에 등록 절차를 제어함으로써, 동일한 네트워크 펑션이 UE를 위해 할당될 수 있어 효율적이다. 이로 인해 두 개의 서로 다른 액세스를 통해 등록한 UE에 대해 인증, 이동성 관리, 세션 관리 등을 하나의 네트워크 펑션이 통합적이고 효율적으로 지원할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 5G 시스템을 설명하기 위한 도면이다.
도 8은 standalone untrusted non-3GPP 액세스에 대한 NextGen High-level architecture의 예시이다.
도 9에는 Non-Roaming NextGen Architecture가 도시되어 있다.
도 10에는 등록 절차(Registration procedures)가 도시되어 있다.
도 11에는 EPS 내에서의 non roaming 구조가 도시되어 있다.
도 12는 UE가 WLAN 액세스와 같은 non-3GPP 액세스와 3GPP 액세스를 통해 NG 코어 네트워크로 연결되는 경우의 다양한 예시이다.
도 13 내지 도 15는 본 발명의 실시예들과 관련하여 구체적인 등록 절차의 예를 설명하기 위한 도면이다.
도 16은 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
EPC(Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
종래 EPC에서의 MME는 Next Generation system(또는 5G CN(Core Network))에서는 AMF(Access and Mobility Management Function)와 SMF(Session Management Function)로 분리되었다. 이에 UE와의 NAS interaction 및 MM(Mobility Management)은 AMF가, 그리고 SM(Session Management)은 SMF가 수행하게 된다. 또한 SMF는 user-plane 기능을 갖는, 즉 user traffic을 라우팅하는 gateway인 UPF(User Plane Function)를 관리하는데, 이는 종래 EPC에서 S-GW와 P-GW의 control-plane 부분은 SMF가 담당하고, user-plane 부분은 UPF가 담당하는 것으로 간주할 수 있다. User traffic의 라우팅을 위해 RAN과 DN(Data Network) 사이에 UPF는 하나 이상이 존재할 수 있다. 즉, 종래 EPC는 5G에서 도 7에 예시된 바와 같이 구성될 수 있다. 또한, 종래 EPS에서의 PDN connection에 대응하는 개념으로 5G system에서는 PDU(Protocol Data Unit) session이 정의되었다. PDU session은 IP type 뿐만 아니라 Ethernet type 또는 unstructured type의 PDU connectivity service를 제공하는 UE와 DN 간의 association을 일컫는다. 그 외에 UDM(Unified Data Management)은 EPC의 HSS에 대응되는 기능을 수행하며, PCF(Policy Control Function)은 EPC의 PCRF에 대응되는 기능을 수행한다. 물론 5G system의 요구사항을 만족하기 위해 그 기능들이 확장된 형태로 제공될 수 있다. 5G system architecture, 각 function, 각 interface에 대한 자세한 사항은 TS 23.501을 준용한다. 본 발명 전반에 걸쳐, 5G와 NextGen이 혼용되어 사용된다. 또한, reference point의 경우 NGx (여기서 x는 숫자)와 Nx가 혼용되어 사용된다. 예컨대, NG1과 N1은 동일한 reference point를 의미한다. 또한, 액세스, 액세스 네트워크, 네트워크 액세스가 서로 혼용되어 사용된다. 예컨대, 3GPP 액세스, 3GPP 액세스 네트워크, 3GPP 네트워크 액세스는 동일한 것으로 간주한다.
공통 AN-CN (Access Network-Core Network) 인터페이스와 관련하여, Non-3GPP 액세스는 NextGen RAN (non-standalone non-3GPP accesses)에 내장(embedded)되거나 NextGen RAN (standalone non-3GPP accesses) 외부에 배치될 수 있다. Standalone Non-3GPP 액세스는 trusted Non-3GPP 액세스와 untrusted Non-3GPP 액세스 모두를 지원할 수 있다. 그러나, 3GPP Release 15에는 untrusted Non-3GPP 액세스들만이 고려된다. Trusted Non-3GPP 액세스는 추후 release에서 고려될 수 있다. NG2 (도 7에서는 N2로 도시됨) / NG3 (도 7에서는 N3로 도시됨) 인터페이스는 standalone Non-3GPP 액세스를 CP(Control Plane) 기능 및 UP(User Plane) 기능에 각각 연결하는 데 사용된다. Non-3GPP 액세스를 통해 NextGen CN에 액세스하는 UE가 3GPP NextGen NAS 신호를 사용한다고 가정한다. Standalone untrusted Non-3GPP 액세스에는 도 8에 도시된 것과 같은 High-level architecture 가 사용될 수 있다. Untrusted Non-3GPP 액세스와 관련하여, a) UE는 TS 23.402의 ePDG 선택과 유사한 절차로 N3IWF를 발견하고 선택할 수 있고, b) UE는 IKEv2를 사용하여 선택된 N3IWF와 IPsec 터널을 설정하며 이 IPsec 터널 설정 중에 UE는 NG2를 통해 NextGen CN에 인증되며, c) 인증 후에 NAS 메시지는 설정된 IPsec 터널을 통해 그리고 NG2를 통해 UE와 CP 기능 사이에서 교환되고, N3IWF는 NG2를 통해 NAS 메시지를 transparently 전달하며, d) IKEv2와 IPsec은 UE와 N3IWF 사이의 인터페이스에서 사용되지만 필요하다면 추가적인 프로토콜이 명시 될 수 있고, e) UE가 갖는 PDU 세션의 수에 관계 없이, UE와 N3IWF 사이에 단 하나의 IKE 보안 관계만 존재할 수 있다.
NG-CP(NextGen Core-Control Plane) 기능과 관련하여, NRF(NF Repository Function)는 피어 NG-CP NF를 발견하고 서로 통신 할 수 있도록 NF 등록 및 검색 기능을 제공한다. AMF(Access and Mobility Management Function)는, UE 네트워크 액세스 제어, UE 위치 관리 및 UE 도달 가능성(reachability) 관리를 포함하는 UE 레벨 액세스 및 이동성 관리를 처리한다. 또한, UE가 3GPP 액세스 및 non-3GPP 액세스를 포함하는 다중 액세스 유형을 통해 네트워크에 액세스하는 것을 지원한다. AMF는 NG1 reference point과 NG2 reference point의 종단이다. SMF(Session Management Function)는 UE IP 주소 할당, 사용자 평면 기능 선택 및 제어 등을 지원합니다. 또한 QoS 관련 규칙 및 세션 관련 과금 및 합법적인 차단과 같은 제어 부분으로 구성될 수 있다. SMF는 NG4를 통해 NG 사용자 평면 기능을 제어한다. PCF(Policy Control Function)은 SMF, AMF와 같은 다른 NG-CP 기능과 상호 작용하여 동적 정책(QoS 적용, 요금 부과, 액세스 제어, 트래픽 라우팅 등)을 제공한다. 이외 NEF(Network Capability Exposure Function) 등이 있다.
도 9에는 Non-Roaming NextGen Architecture가 도시되어 있다. 도 9에서는 다음과 reference point 및 인터페이스가 정의된다. NG1는 NG UE와 AMF 사이의 제어 평면에 대한 reference point이고, NG2는 NG-(R)AN과 AMF 사이의 제어 평면에 대한 reference point이며, NG3는 NG-(R)AN과 NG-UP 사이의 사용자 평면 reference point이다. 또한, NG4는 SMF와 NG-UP 기능 사이의 reference point이고, NG5는 PCF와 응용 기능(Application Function) 간 reference point이며, NG6는 NG-UP과 데이터 네트워크 간의 reference point이다. 데이터 네트워크는 이동통신사업자 외부의 공용 또는 사설 데이터 네트워크이거나 또는 이동통신사업자 데이터 네트워크 일 수 있다. NG7는 NG-CP 기능과 NG 통합 데이터 관리(UDM) 사이의 reference point이며, 서비스 기반 인터페이스는 AMF, SMF, PCF, NRF, NEF와 같은 NG-CP 기능 (다른 NG-CP 기능을 통해 서비스를 호출 할 수 있음)에서 노출된 것으로 간주 되어야 한다. 계속해서 도 9를 참조하면, UDM은 UE 관련 데이터, 예를 들어 가입, 정책 (예를 들어, QoS 및 과금)을 저장하며, NG-UP(NG Core User Plane)는 상호 연결의 외부 PDU 세션 포인트 (예를 들어, IP), 패킷 라우팅 및 전달, 트래픽 처리 (예를 들어, QoS 적용), 인트라 / 인터 (Intra/Inter-RAT) 이동성을 위한 앵커 포인트 (적용 가능한 경우), 패킷 검사, 합법적 인터셉트 (UP 수집) 등의 다양한 작업과 기능을 지원하는 일반적인 사용자 평면 기능이다. 한편, 다수의 NG-UP 기능이 하나의 PDU 세션을 제공하는데 사용될 수 있다.
도 10에는 등록 절차(Registration procedures)가 도시되어 있다. UE는 mobility tracking, reachability를 위해, 서비스를 수신하기 위한 승인(authorization)를 얻기 위해 네트워크에 등록할 필요가 있다. 등록 절차는 UE가 5G 시스템에 대한 초기 등록 (이는 attach 동작으로 해석될 수 있음)을 수행할 필요가 있을 때, 유휴 모드에서 UE의 등록 영역 외부의 새로운 트래킹 영역(TA)으로 변경으로 인한 이동성 등록 업데이트시, (미리 설정된 inactivity 구간으로 인한) 주기적 등록 업데이트를 수행할 때, UE가 capabilities를 업데이트할 필요가 있거나, 또는 등록 절차에서 협상된 프로토콜 파라미터를 업데이트할 필요가 있을 때 수행될 수 있다. 초기 등록 동안, Permanent Equipment Identifier는 UE로부터 획득된다. AMF 오퍼레이터는 EIR(Equipment Identity Register)로 PEI를 확인할 수 있다. AMF는 PEI (IMEISV)를 UDM, SMF 및 PCF로 전달한다.
계속해서 도 10을 참조하여 등록 절차에 대해 살펴보면, 단계 S1001에서, UE에서 (R)AN으로 AN 메시지(AN parameters, Registration Request (Registration type, SUPI(Subscriber/Subscription Permanent Identifier, 가입자 영구 식별자) or Temporary User ID, Security parameters, NSSAI, UE 5GCN Capability, PDU session status and MICO mode preference))가 전송된다. 5G-RAN의 경우, AN 파라미터는 SUPI 또는 임시 사용자 ID, 선택된 네트워크 및 NSSAI 등을 포함한다.
등록 유형(Registration type)은 UE가 초기 등록 (즉, UE가 비 등록 상태에 있음. 이에 attach 동작), 이동성 등록 업데이트(즉 UE가 등록 상태에 있고 이동성으로 인해 등록 절차를 시작 함) 또는 주기적 등록 업데이트 (즉, UE는 등록된 상태에 있으며 주기적인 업데이트 타이머 만료로 인해 등록 절차를 시작 등이 있다. 만약 포함된다면, 임시 사용자 ID(Temporary User ID)는 마지막 서빙 AMF를 나타낸다. UE가 3GPP 액세스의 PLMN과 다른 PLMN에서 non-3GPP 액세스를 통해 이미 등록된 경우, UE는 non-3GPP 액세스를 통한 등록 절차 동안 AMF에 의해 할당된 UE 임시 ID를 Registration Request 전송 시 제공하지 않아야 한다. 보안 매개 변수(Security parameters)는 인증 및 무결성 보호에 사용된다. NSSAI는 Network Slice Selection Assistance Information을 나타낸다 (TS 23.501의 5.15 절에 정의됨). PDU 세션 상태는 UE에서 사용 가능한 (이전에 설정된) PDU 세션을 나타낸다.
단계 S1002에서, SUPI가 포함되거나 임시 사용자 ID가 유효한 AMF를 나타내지 않는 경우, (R)AT 및 NSSAI에 기초하여 AMF가 선택된다. (R)AN은 TS 23.501에 설명된 대로 AMF를 선택한다. (R)AN이 적절한 AMF를 선택할 수 없는 경우, 로컬 정책에 따라 선택된 AMF로 등록 요청을 전송한다. 선택된 AMF가 UE를 서비스 할 수 없는 경우, 선택된 AMF는 UE에 대한 적절한 AMF를 선택한다. 기본 AMF와 선택된 AMF 사이의 재배치는 TS 23.502 4.2.2.2.3 절에 설명되어 있으며 초기 AMF는 기본 AMF를 참조하고 대상 AMF는 선택한 AMF를 참조한다.
단계 S1003에서, (R)AN에서 new AMF로 N2 메시지 (N2 매개 변수, Registration Request (등록 유형, 가입자 영구 식별자 또는 임시 사용자 ID, 보안 매개 변수, NSSAI 및 MICO mode preference))가 전송된다. 5G-RAN이 사용될 때, N2 파라미터는 UE가 캠핑하고 있는 셀과 관련된 위치 정보, 셀 식별자 및 RAT 타입을 포함한다. UE에 의해 표시된 등록 유형이 주기적 등록 갱신이면, 단계 S1004 내지 단계 S1017은 생략 될 수 있다.
단계 S1004에서, (조건부) new AMF에서 old AMF로 정보 요청, 즉 Information Request (완전한 Registration Request)이 전송된다. UE의 임시 사용자 ID가 등록 요청에 포함되고 서빙 AMF가 마지막 등록 이후 변경된 경우, new AMF는 UE의 SUPI 및 MM 컨텍스트를 요청하기 위해 완전한 Registration Request IE를 포함하는 정보 요청을 old AMF로 전송할 수 있다.
단계 S1005에서, (조건부) old AMF에서 new AMF로 정보 응답, 즉 Information Response (SUPI, MM 컨텍스트, SMF 정보)이 전송된다. old AMF는 UE의 SUPI 및 MM 컨텍스트를 포함하는 정보 응답으로 new AMF에게 응답한다. 이전 AMF에 활성 PDU 세션에 대한 정보가 있는 경우 old AMF는 SMF ID 및 PDU 세션 ID가 포함 된 SMF 정보를 포함시킨다.
단계 S1006에서, (조건부) new AMF에서 UE로 신원 요청, 즉 Identity Request ()이 전송된다. SUPI가 UE에 의해 제공되지 않거나 old AMF로부터 검색되지 않으면, 신원 요청 절차는 AMF가 신원 요청 메시지를 UE에 전송함으로써 개시된다.
단계 S1007에서, (조건부) UE가 new AMF로 Identity Response ()를 전송한다. 즉, UE는 SUPI를 포함하는 Identity Response 메시지로 응답한다.
단계 S1008에서, AMF는 AUSF(Authentication Server Function)를 invoke하기로 결정할 수 있다. 이 경우, AMF는 SUPI에 기반을 두고 TS 23.501 설명된 대로 AUSF를 선택해야 한다.
단계 S1009에서, AUSF는 UE 및 NAS 보안 기능의 인증을 개시해야 한다.
단계 S1010에서, (조건부) new AMF에서 old AMF로 Information Acknowledged ()가 전송된다. AMF가 변경된 경우, new AMF는 UE MM 컨텍스트의 전달을 확인 응답한다. 인증 / 보안 절차가 실패하면 등록은 거절되고 new AMF는 old AMF에 거절 표시를 보낸다. Old AMF는 정보 요청이 수신되지 않은 것처럼 계속된다.
단계 S1011에서, (조건부) new AMF에서 UE로 Identity Request ()가 전송된다. PEI(Permanent Equipment Identifier)가 UE에 의해 제공되지 않았거나 old AMF로부터 검색되지 않은 경우, 신원 요청 절차는 AMF가 PEI를 검색하기 위해 신원 요청 메시지를 UE에 전송함으로써 개시된다.
단계 S1012에서, new AMF는 ME 확인을 시작한다 (선택 사항). PEI 점검은 TS 23.502의 4.7 절에 설명된 대로 수행된다.
단계 S1013에서, 단계 S1014가 수행되는 경우 SUPI에 기초하여 new AMF가 UDM을 선택한다. AMF는 TS 23.501의 설명된 대로 UDM을 선택한다.
단계 S1014에서, 마지막 등록 이후에 AMF가 변경되거나, AMF에서 UE에 대한 유효한 가입 컨텍스트가 없거나, UE가 AMF에서 유효한 컨텍스트를 참조하지 않는 SUPI를 제공하면, new AMF는 업데이트 위치 절차를 UDM으로 시작한다. 여기에는 UDM이 old AMF로 위치 취소를 시작하는 동작을 포함한다.
단계 S1015에서, 조건부로 new AMF는 SUPI를 기반으로 PCF를 선택한다. AMF는 TS 23.501에 설명된 대로 PCF를 선택한다.
단계 S1016에서, (선택사항) new AMF에서 PCF로 UE Context Establishment Request ()가 전송된다. AMF는 PCF에게 UE에 대한 운영자 정책을 적용 할 것을 요구한다.
단계 S1017에서, PCF에서 new AMF로 UE Context Establishment Acknowledged ()가 전송된다. 즉, PCF는 UE Context Establishment Request 메시지를 확인 응답한다.
단계 S1018에서, (조건부) new AMF에서 SMF로 N11 Request ()가 전송된다. AMF가 변경되면, new AMF는 각 SMF에게 UE를 서비스하는 new AMF를 통지한다. AMF는 이용 가능한 SMF 정보로 UE로부터의 PDU 세션 상태를 검증한다. AMF가 변경된 경우 사용 가능한 SMF 정보가 이전 AMF로부터 수신된다. new AMF는 UE에서 활성화되지 않은 PDU 세션과 관련된 네트워크 자원을 해제하도록 SMF에 요청한다.
단계 S1019에서, SMF에서 new AMF로 N11 Response ()이 전송된다. SMF는 예를 들어 UPF 재배치를 트리거할 것을 결정할 수 있다. UE에 의해 표시된 등록 유형이 주기적 등록 갱신이면, 단계 S1020 및 S1021은 생략될 수 있다.
단계 S1020에서, (조건부) old AMF에서 PCF로 UE Context Termination Request ()가 전송된다. 이전 AMF가 이전에 UE 컨텍스트가 PCF에서 설정되도록 요청한 경우, old AMF는 PCF에서 UE 컨텍스트를 종료한다.
단계 S1021에서, PCF에서 old AMF로 UE Context Termination Acknowledged ()가 전송된다.
단계 S1022에서, new AMF에서 UE로 등록 수락, 즉 Registration Accept (Temporary User ID, Registration area, Mobility restrictions, PDU session status, NSSAI, Periodic registration update timer, LADN Information and accepted MICO mode)이 전송된다. AMF가 새 임시 사용자 ID를 할당하는 경우 임시 사용자 ID가 포함된다. 이동성 제한이 UE에 적용되는 경우에 이동성 제한(Mobility restrictions)이 포함된다. AMF는 UE에 대한 PDU 세션 상태(PDU session status)를 나타낸다. UE는 수신된 PDU 세션 상태에서 활성으로 표시되지 않은 PDU 세션과 관련된 임의의 내부 리소스를 제거한다. PDU 세션 상태 정보가 Registration Request에 존재하면, AMF는 UE에게 PDU 세션 상태를 표시해야 한다. NSSAI는 허용 된 S-NSSAI(Single Network Slice Selection Assistance Information)를 포함한다. UE 가입 데이터가 가입된 LADN(Local Area Data Network) 식별 정보를 포함하는 경우, AMF는 등록 수락 메시지에 AMF에 의해 결정된 등록 영역 내에서 이용 가능한 TS 23.501 5.6.5에 정의된 LADN에 대한 LADN 정보를 포함해야 한다. UE가 요청에 MICO(Mobile Initiated Connection Only) 모드를 포함하면, AMF는 MICO 모드가 사용되어야 하는지 여부에 응답한다.
단계 S1023에서, (조건부) UE 에서 new AMF 로 Registration Complete ()가 전송된다. UE는 새로운 임시 사용자 ID가 할당되었다면 이를 확인하기 위해 AMF에 Registration Complete 메시지를 전송한다.
이하에서는 3GPP Next Generation system (NGS 또는 NG System: 차세대, 일명 5G 이동통신 시스템)에서 UE가 3GPP 액세스와 non-3GPP 액세스 (대표적으로는 WLAN 액세스며 trusted WLAN과 untrusted WLAN을 모두 포함)를 통해 어태치시 이를 효율적으로 처리하는 방법에 대해 살펴본다.
도 11에는 EPS 내에서의 non roaming 구조가 도시되어 있다. 도 11에 도시된 바와 같이, WLAN 액세스를 통해 EPC로 연결되는 경우, 3GPP 액세스를 통해 EPC로 연결되는 것과 비교하여 NAS MM 절차가 없으며, 이에 MM 컨텍스트를 관리하는 network function이 존재하지 않는다. 그러나, WLAN 액세스를 통해 NG 코어 네트워크로 연결되는 경우 UE와 코어 네트워크가 NAS 어태치 절차를 수행할 뿐만 아니라 이에 AMF가 WLAN 액세스에 대해 UE의 MM 컨텍스트를 관리/유지할 필요가 있다.
도 12는 UE가 WLAN 액세스와 같은 non-3GPP 액세스와 3GPP 액세스를 통해 NG 코어 네트워크로 연결되는 경우의 다양한 시나리오를 보여준다.
도 12(a)은 UE가 로밍하지 않은 경우로, Home PLMN에서 3GPP 액세스와 non-3GPP 액세스를 통해 NG 코어 네트워크에 연결된 경우이다. 도 12(b)는 UE가 로밍한 경우로, 동일한 Visited PLMN에 속한 3GPP 액세스와 non-3GPP 액세스 (이는 N3IWF을 의미할 수 있음)를 통해 NG 코어 네트워크에 연결된 경우이다. 도 12(c)는 UE가 로밍한 경우로, Visited PLMN#1에 속한 3GPP 액세스를 통해 NG 코어 네트워크에 연결된 동시에 Visited PLMN#2에 속한 non-3GPP 액세스 (이는 N3IWF을 의미할 수 있음)를 통해 NG 코어 네트워크에 연결된 경우이다. 또는 Visited PLMN에 속한 3GPP 액세스를 통해 NG 코어 네트워크에 연결된 동시에 Home PLMN에 속한 non-3GPP 액세스 (이는 N3IWF을 의미할 수 있음)를 통해 NG 코어 네트워크에 연결된 경우이다. 이러한 경우, 서로 다른 PLMN에 속한 액세스를 통해 NG 코어 네트워크에 연결되는 바, 연결되는 NG 코어 네트워크가 2개이고 각 액세스에 대해 UE를 서빙하는 AMF가 별개로 존재한다.
특히, UE가 동시에 3GPP 액세스와 WLAN 액세스를 통해 NG 코어 네트워크에 연결되는 경우 통합적인 인증, mobility management, session management 등을 위해 액세스 타입에 상관없이 동일한, 즉 하나의 AMF로부터 서비스를 받는 것이 효율적이다.
만약 UE가 한쪽 액세스를 통해 NG core에 연결 (또는 어태치 또는 인증)을 수행하고 있으면서 다른쪽 액세스를 통해 NG core로의 연결 (또는 어태치 또는 인증)을 수행한다면, 여러 이유로 동일한 AMF가 할당/지정되지 않는 문제가 발생할 수도 있다. 예를 들어, UE가 제 1 액세스를 통해 NG core에 연결 (또는 어태치 또는 인증)을 수행하고 있으며 아직 AMF가 확정되지 않은 상태에서, UE가 제 2 액세스를 통해 NG core에 연결 (또는 어태치 또는 인증)을 개시하면, 두 액세스에 대해 서로 다른 AMF가 할당/지정될 가능성이 있다. 또 다른 예로써, UE가 제 1 액세스를 통해 NG core에 연결 (또는 어태치 또는 인증)을 수행하고 있으며 AMF에 대한 정보를 관리/유지하는 DB (이는 HSS, UDM(User Data Management), UDR(User Data Repository), State DB 등 다양한 명칭으로 불릴 수 있다)로 아직 AMF에 대한 정보가 업데이트 되지 않은 상태에서, UE가 제 2 액세스를 통해 NG core에 연결 (또는 어태치 또는 인증)을 개시하면, 두 액세스에 대해 서로 다른 AMF가 할당/지정될 가능성이 있다.
따라서, 이하 본 발명의 실시예에서는 UE가 3GPP 액세스 및 non-3GPP 액세스를 통해 NG 코어 네트워크에 연결되는 경우 동일한 AMF로부터 서빙 받도록 하는 방법에 대해 설명한다. 이는, 3GPP 액세스와 non-3GPP 액세스를 통해 NG 코어 네트워크로 연결되는 UE와 주고받는 NAS 메시지를 NAS 메시지가 어떠한 액세스로 전송되든 동일한 AMF가 처리할 수 있도록 하는 방법으로도 해석될 수 있다.
실시예
본 발명의 일 실시예에 의한 UE는 UE가 제1 네트워크 액세스를 통해 등록을 수행하고, 제2 네트워크 액세스를 통해 등록을 수행할 수 있다. 여기서 상기 제1 네트워크 액세스와 제2 네트워크 액세스가 동일한 PLMN(Public Land Mobile Network)에 속하면, 상기 UE는 반드시 상기 제1 네트워크 액세스를 통한 등록 절차가 종료된 후 상기 제2 네트워크 액세스를 통한 등록을 개시/시작하여야 한다. 다시 말해, 제1 네트워크 액세스와 제2 네트워크 액세스가 동일한 PLMN에 속하면, 상기 UE는 상기 제1 네트워크 액세스를 통한 등록 절차가 종료될 때까지는 상기 제2 네트워크 액세스를 통한 등록을 개시/시작하지 않는다. 또는, 제1 네트워크 액세스와 제2 네트워크 액세스가 동일한 PLMN에 속하면, 상기 UE는 상기 제1 네트워크 액세스를 통한 등록 절차가 종료될 때까지 상기 제2 네트워크 액세스를 통한 등록 개시/시작을 지연한다. 상기 제1 네트워크 엑세스가 3GPP access이면, 상기 제2 네트워크 엑세스는 Non-3GPP access일 수 있으며, 이 때 3GPP access는 5G New Radio 그리고 UE를 NG core network으로 연결시킬 수 있는 LTE를 모두 포함할 수 있고, Non-3GPP access는 WLAN access일 수 있다. 반대로 상기 제1 access가 non-3GPP access (예, WLAN access)인 경우 제 2 access는 3GPP access를 의미한다. 즉, UE는 3GPP 액세스와 non-3GPP 액세스 (즉 두개의 액세스)를 통해 동시에 (또는 simultaneously 또는 concurrently) 초기 등록 (또는 어태치)을 수행하지 않는다. 이는 하나의 액세스로 초기 등록 절차가 개시되면 (또는 진행 중이면) 다른 액세스로는 초기 등록 (또는 등록)을 개시/수행하지 않는 것으로 해석될 수 있다. 또한 이는 하나의 액세스로 초기 등록 절차가 종료되면 다른 액세스로 등록을 개시/수행할 수 있는 것으로 해석될 수 있다. 또한, 이는 하나의 액세스로 초기 등록 절차가 수행되고 있으면, 다른 액세스로의 (초기) 등록은 suspend되는 것으로 해석될 수 있다. 상기 초기 등록의 종료는 등록 절차가 모두 종료되는 시점으로 해석될 수도 있고, UE가 AMF로부터 등록 Accept 메시지를 수신하는 시점으로 해석될 수도 있다. 3GPP 액세스로의 등록 절차 및 non-3GPP 액세스로의 등록 절차는 TS 23.502의 4.2.2절 (registration procedure) 및 4.12.2절 (registration via Untrusted non-3GPP access)을 참고한다. 여기에서 절차는 transaction 또는 동작으로 해석될 수 있으며, 이는 본 발명 전반에 걸쳐 적용된다.
이와 같이, 제2 네트워크 액세스로의 등록은 제1 네트워크 액세스로의 등록이 종료된 후에만 개시될 수 있는데, 상기 UE가 제1 네트워크 액세스를 통한 등록시 할당 받은 정보는, 상기 제2 네트워크 액세스를 통한 등록을 수행시 상기 UE의 AMF 선택에 사용될 수 있다. 보다 구체적으로, 상기 제1 네트워크 액세스를 통한 등록시 할당 받은 정보로부터 선택되는 AMF는, 상기 제1 네트워크 액세스에서 상기 UE의 AMF로 선택된 AMF와 동일한 것일 수 있다. 즉, NG 코어 네트워크에서 UE에게 AMF를 지정/할당하는 network function은, 위 설명된 바와 같이 UE가 서로 다른 액세스를 통해 동시에 어태치 절차를 수행하지 않으므로, UE에게 동일한 AMF를 지정/할당/선택할 수 있다. 즉, UE가 제1 네트워크 액세스를 통해 NG 코어 네트워크로 어태치 시 지정/할당/선택한 AMF (즉, 서빙 AMF)에 대한 정보에 기반하여 UE가 제2 네트워크 액세스를 통해 NG 코어 네트워크로 어태치 시 UE의 서빙 AMF를 인지/결정/선택할 수 있다. 상기 UE에게 AMF를 지정/할당/선택하는 network function은 AMF에 대한 정보를 관리/유지하는 DB(이는 HSS, UDM(User Data Management), UDR(User Data Repository), State DB 등 다양한 명칭으로 불릴 수 있다) 일 수도 있고, AMF를 selection하는 기능을 갖고 있는 function일 수도 있다. 이는 본 발명 전반에 걸쳐 적용된다. 상기 AMF를 selection하는 기능을 갖고 있는 function의 예로는 gNB, N3IWF(Non-3GPP InterWorking Funtion)이 있다. 즉, 상기 UE의 AMF의 선택은 gNB 및 N3IWF에 의해 수행되는 것일 수 있다. 그러나, 이에 국한하지 않고 하나 이상의 다양한 네트워크 function에 의해 AMF 선택이 이루어질 수도 있다.
또한, 상기 제1 네트워크 액세스를 통한 등록시 할당 받은 정보는 AMF로부터 할당 받은 ID 정보일 수 있다. 구체적으로, 상기에서 UE가 제1 네트워크 액세스를 통해 NG 코어 네트워크로 어태치시 지정/할당/선택한 AMF (즉, 서빙 AMF)에 대한 정보는 UE가 등록 요청 시 포함하는 UE의 Temporary User ID 에 기반할 수 있다. 이러한 Temporary User ID는 UE가 NG 코어 네트워크로 등록 시 AMF로부터 할당 받으며, 5G-GUTI (5G Globally Unique Temporary Identity)로 정의된다. 5G-GUTI는 TS 23.501의 5.9.4절을 참고하면 다음 표 2와 같이 구성된다. 즉, 5G-GUTI를 할당한 AMF, 즉 UE의 서빙 AMF의 식별 정보인 GUAMI (Globally Unique AMF ID)와 그 AMF에서 해당 UE를 식별할 수 있는 정보인 5G-TMSI(5G Temporary Mobile Subscriber Identity)로 구성된다.
The 5G-GUTI shall be structured as: <5G-GUTI> := <GUAMI> <5G-TMSI> where GUAMI identifies the assigned AMF and 5G-TMSI identifies the UE uniquely within the AMF.The Globally Unique AMF ID (GUAMI) shall be structured as: <GUAMI> := <MCC> <MNC> <AMF Region ID> <AMF Set ID> <AMF Pointer> where AMF Region ID identifies the region, AMF Set ID uniquely identifies the AMF Set within the AMF Region and AMF Pointer uniquely identifies the AMF within the AMF Set.NOTE 2: The AMF Region ID addresses the case that there are more AMFs in the network than the number of AMFs that can be supported by AMF Set ID and AMF Pointer by enabling operators to re-use the same AMF Set IDs and AMF Pointers in different regions.
한편, 상기 NG 코어 네트워크로의 어태치 절차는 1) UE의 인증절차, 2) UE의 NAS 어태치 절차, 3) UE의 인증과 NAS 어태치 절차 중 하나일 수 있다. 이에 대해 순차적으로 살펴본다.
UE의 인증절차는 WLAN 액세스의 경우 UE를 NG 코어 네트워크에서 인증하는 절차로 예를 들어 EAP 절차일 수 있다. EAP 절차인 경우 네트워크로부터 EAP-Success 메시지를 수신하면 인증 절차가 완료된 것으로 간주할 수 있다. 3GPP 액세스의 경우 보통 UE는 NAS 어태치 절차를 통해 인증을 받지만 인증이 별도로 진행되는 경우에는 인증 절차를 가리킬 수 있다. 인증이 실패함으로써 network으로부터 인증실패/거절 메시지를 수신하는 경우도 이에 포함될 수 있다.
UE의 NAS 어태치 절차와 관련하여, UE가 network으로부터 어태치 Accept 메시지를 수신하면 NAS 어태치 절차가 완료된 것으로 간주할 수 있다. 그러나 어태치가 실패함으로써 network으로부터 어태치 Reject 메시지를 수신하는 경우도 포함할 수 있다. 또는 어태치 절차와 관련되어 UE와 네트워크가 주고 받는 모든 메시지 교환이 끝나야 NAS 어태치 절차가 완료된 것으로 간주할 수도 있다. 본 발명에서 NAS 어태치 절차는 초기 등록 절차 또는 초기 등록 업데이트 과정 또는 초기 등록 타입의 등록 절차 등으로 해석될 수 있다.
UE의 인증과 NAS 어태치 절차와 관련하여, UE의 인증과 NAS 어태치 절차가 동시에 수행될 경우 두 절차가 모두 완료되면 상기 NG 코어 네트워크로의 어태치 절차가 완료된 것으로 간주할 수 있다. 이는 통상적으로는 NAS 어태치 절차에 대한 어태치 Accept 메시지 또는 어태치 Reject 메시지를 UE가 수신한 경우에 해당할 수 있다. 그러나, 이외에도 인증 성공/실패 메시지를 UE가 수신한 경우 또는 상기 NAS 어태치에 대한 응답 메시지도 수신하고 인증에 대한 응답 메시지도 수신한 경우에 해당할 수도 있다.
상기와 같이 UE가 제1 네트워크 액세스를 통해 NG 코어 네트워크로의 어태치 절차를 완료한 후, 제2 네트워크 액세스를 통해 NG 코어 네트워크로의 어태치 절차를 개시하는 동작 (또는 UE가 두개의 액세스를 통해 동시에 초기 등록을 수행하지 않는 동작)은 UE가 항상 지켜야 하는 규칙일 수 도 있지만, A) 제1 네트워크 액세스가 속하는 PLMN과 제2 네트워크 액세스가 속하는 PLMN이 동일한 경우, B) 제1 네트워크 액세스가 3GPP 액세스고 제2 네트워크 액세스가 non-3GPP 액세스인 경우, 제1 네트워크 액세스 (또는 RAN 또는 gNB)가 속하는 PLMN과 N3IWF이 속하는 PLMN이 동일한 경우 중 하나 이상의 조건이 만족되는 경우 적용되는 것일 수도 있다. 만약 위 A) 및/또는 B) 조건이 만족되지 않으면 UE는 제1 네트워크 액세스를 통한 NG 코어 네트워크로의 어태치 절차와 제2 네트워크 액세스를 통한 NG 코어 네트워크로의 어태치 절차를 parallel하게 수행할 수 있다.
이하에서는 네트워크 측면을 위주로 본 발명의 실시예를 설명한다.
UE가 제1 네트워크 액세스를 통해 NG 코어 네트워크로의 어태치 절차를 수행하면서 (즉, 어태치 절차가 완료되지 않은 상태에서) 제2 네트워크 액세스를 통해 NG 코어 네트워크로의 어태치 절차를 수행하는 경우, UE는 제2 네트워크 액세스를 통해 네트워크로 연결 요청/관련 메시지를 전송 시 i) UE가 다른 액세스를 통해 어태치 절차를 수행 중임을 알리는 정보, ii) UE가 어태치 절차를 수행 중인 다른 액세스의 액세스 타입 정보, iii) UE가 아직 서빙 AMF가 없음을 알리는 정보, iv) UE가 아직 AMF로부터 제공/할당받은 ID (이는 Temporary User ID일 수 있음)가 없음을 알리는 정보(참고로, Temporary User ID는 이를 제공/할당한 AMF에 대한 정보 (예, 식별자)가 포함되어 있을 수 있다) 중 하나 이상의 정보를 포함한다. 이러한 정보는 복합적인 형태로, 그리고 명시적으로 또는 암시적으로 포함될 수도 있다.
여기서, NG 코어 네트워크로의 어태치 절차가 완료되지 않은 상태는 앞서 기술한 NG 코어 네트워크로의 어태치 절차가 완료된 것으로 간주하는 경우에 해당하지 않는 상태를 의미한다. 또한 iii), iv)의 정보는 UE가 어태치 요청 메시지에 Temporary User ID를 포함시키지 않는 것으로 대체될 수 있다.
상술한 i)~iv)의 정보들은 a) UE가 네트워크로 전송하는 인증 요청/관련 메시지(이는 UE가 NG 코어 네트워크로 전송하는 (이는 ngPDG, N3IWF으로 해석될 수도 있고 AMF로 해석될 수도 있음) 첫번째 메시지일 수도 있고, 아닐 수도 있다. 이는 상기 정보를 포함시키는 프로토콜에 따라 다양할 수 있다. 예를 들어 IKEv2 메시지, EAP 메시지 등) 및/또는 b) UE가 네트워크로 전송하는 NAS 어태치 Request 메시지 (이는 어태치 내지는 초기 등록을 수행하기 위한 요청 메시지로 해석될 수 있다) 에 포함될 수 있다.
상기와 같이 UE가 제1 네트워크 액세스를 통해 NG 코어 네트워크로의 어태치 절차를 수행하면서 제2 네트워크 액세스를 통해 NG 코어 네트워크로의 어태치 절차를 수행하는 경우, 상기 정보를 포함하는 동작은 항상 수행되는 것일 수도 있고 또는 A) 제1 네트워크 액세스가 속하는 PLMN과 제2 네트워크 액세스가 속하는 PLMN이 동일한 경우, B) 제1 네트워크 액세스가 3GPP 액세스고 제2 네트워크 액세스가 non-3GPP 액세스인 경우, 제1 네트워크 액세스 (또는 RAN 또는 gNB)가 속하는 PLMN과 N3IWF이 속하는 PLMN이 동일한 경우 중 하나 이상의 조건이 만족되는 경우 적용되는 것일 수도 있다.
UE에게 AMF를 지정/할당/선택하는 network function(gNB, N3IWF 또는 유사 기능을 수행하는 네트워크 노드 등) 이 상술한 i)~iv) 정보를 포함하는 네트워크로의 연결 요청/관련 메시지를 수신하거나 이러한 메시지로 인해 다른 network function으로부터 UE의 서빙 AMF가 누구인지를 질의하는 메시지를 수신하면, UE에게 지정/할당된 서빙 AMF가 존재하는지 확인한다.
만약, 서빙 AMF가 존재하는 경우 (또는 존재하는 것으로 판단된 경우), 해당 서빙 AMF가 상기 메시지 (또는 상기 UE)를 처리할 수 있도록 한다. 이는 결국 UE가 제1 네트워크 액세스를 통해 네트워크로 연결됨에 따라 지정/할당/선택된 서빙 AMF가 UE가 제2 네트워크 액세스를 통해 네트워크로 연결되는 경우에도 UE를 서빙 하도록 하는 것으로 해석될 수 있다. 구체적으로는 AMF를 지정/할당/선택하는 network function이 UE에게 이미 지정/할당/선택된 서빙 AMF를 역시 지정/할당/선택함으로써 액세스에 상관없이 동일한 AMF가 UE를 서빙하도록 한다. 만약, UE에 대한 서빙 AMF가 누구인지 질의하는 메시지를 받은 경우에는 이를 수신한 network function은 UE에게 이미 지정/할당/선택된 서빙 AMF를 확인 후 이를 포함하여 상기 질의에 답한다.
만약, 서빙 AMF가 존재하지 않는 경우 (또는 존재하지 않는 것으로 판단된 경우), 아직 제1 네트워크 액세스로의 연결 관련하여 서빙 AMF가 지정/할당/확인/선택되지 않은 것인바, 상기 network function은 서빙 AMF가 지정/할당/확인/선택될 때까지 상기 제2 네트워크 액세스를 통해 UE가 전송한 네트워크로의 연결 요청/관련 메시지가 처리되는 것을 미룬다.
이후 상기 UE에 대해 서빙 AMF가 지정/할당/확인/선택되면 상기 제2 네트워크 액세스를 통해 UE가 전송한 네트워크로의 연결 요청/관련 메시지가 해당 서빙 AMF에서 처리될 수 있도록 한다. 이는 결국 UE가 제1 네트워크 액세스를 통해 네트워크로 연결됨에 따라 지정/할당/선택된 서빙 AMF가 UE가 제2 네트워크 액세스를 통해 네트워크로 연결되는 경우에도 UE를 서빙 하도록 하는 것으로 해석될 수 있다. 구체적으로는 AMF를 지정/할당/선택하는 network function이 아직 UE에게 서빙 AMF를 지정/할당/선택하지 않은 경우 이를 지정/할당/선택하여 액세스에 상관없이 동일한 AMF가 UE를 서빙하도록 한다. 만약, UE에 대한 서빙 AMF가 누구인지 질의하는 메시지를 받은 경우 이를 수신한 network function은 서빙 AMF가 확인/선택된 후, 즉 이에 대한 정보를 획득한 후 상기 질의에 답한다. 또는 상기 질의에 일단 서빙 AMF가 존재하지 않음을 알린 후, 추후 확인되면 이를 상기 질의한 network function에게 알린다.
계속해서, UE가 제1 네트워크 액세스를 통해 NG 코어 네트워크로의 어태치 절차를 수행하면서 (즉, 어태치 절차가 완료되지 않은 상태에서), 제2 네트워크 액세스를 통해 NG 코어 네트워크로의 어태치 절차를 수행한다.
이 때, UE가 제2 네트워크 액세스를 통해 네트워크로 연결 요청/관련 메시지를 전송 시 상술한 i)~iv) 정보를 포함시킬 수도 있다.
UE를 서빙하기 위해 AMF가 할당/선택되면 AMF는 자신이 해당 UE의 서빙 AMF임을 UDM에 등록하는데 이 때 추가적으로 I) 상기에서 기술한 UE로부터 수신한 정보 (즉 상술한 i)~iv) 정보), II) UE가 등록을 수행한 액세스의 종류 (예, 3GPP 액세스, non-3GPP 액세스 등), III) AMF가 속한/위치한 PLMN 정보: 이는 AMF의 ID 정보로부터 유추될 수도 있다. (만약, 두 액세스에 대해 동일한 AMF가 할당/선택되면 AMF는 UDM에 자신을 서빙 AMF로 등록하는 동작을 한번만 수행할 수도 있다. 이 때 UDM에 상기한 정보를 제공하지 않을 수도 있다) 중 하나 이상의 정보를 UDM에 제공할 수 있다.
만약 UDM이 AMF로부터 서빙 AMF에 대한 등록 요청을 수신하면, 서로 다른 액세스에 대해 이미 해당 UE의 서빙 AMF가 등록되어 있는지, 등록되어 있다면 두 AMF가 동일한 PLMN에 속하는지를 검증한다.
검증 결과 맞는다면, UDM은 서빙 AMF 등록을 요청한 AMF에게 이미 등록되어 있는 AMF의 정보를 제공하면서 AMF 변경/리다이렉션을 지시한다. 이러한 지시는 명시적일 수도 있고 암시적일 수도 있다. 예를 들어 이미 서빙 AMF가 존재함을 알리면서 이 AMF에 대한 정보를 제공할 수도 있다. 또는 서빙 AMF 등록 요청을 거절하면서 이미 등록되어 있는 AMF에 대한 정보를 제공할 수도 있다.
구체적으로, 상기의 지시/정보를 제공받은 AMF는 이미 UE를 서빙 중인 AMF가 이 UE를 서빙하도록 한다. 이는 이미 UE를 서빙 중인 AMF에게 자신이 수신한 등록 request 메시지를 전달, 및/또는 자신이 가지고 있는/생성한 UE 컨텍스트 정보를 전달하는 동작을 포함할 수 있다. 그리고, 자신이 해당 UE에 대해 생성한 컨텍스트가 있으면 이를 삭제하는 동작을 포함할 수 있다. 상기 이미 UE를 서빙 중인 AMF는 등록 절차 (이는 결국 제2 네트워크 액세스에 대한 등록임)를 완료한다.
또 다른 예로써, 상기의 지시/정보를 제공받은 AMF는 UE의 등록 절차를 완료한다. 이때 AMF는 UDM으로부터 제공받은 AMF에게 상기 UE에 대한 Temporary User ID를 질의하여 획득한다. 그리고, 등록 요청에 대한 응답으로 UE에게 등록 응답/허용 메시지 (예, 어태치 Accept 또는 등록 Accept)를 전송 시, 상기 Temporary User ID를 포함시킨다. 즉, UE로부터 등록 요청을 받은 AMF가 Temporary User ID를 할당하는 대신, 이미 UE를 서빙 중인 AMF가 기할당한 Temporary User ID를 제공받아 UE에게 전송하는 것이다. 상기의 지시/정보를 제공받은 AMF는 이후 자신이 가지고 있는/생성한 UE 컨텍스트 정보를 UE를 이미 서빙하고 있던 AMF에게 전달하는 동작을 수행할 수 있다. 그리고, 자신이 해당 UE에 대해 생성한 컨텍스트가 있으면 이를 삭제하는 동작을 수행할 수 있다.
도 13 내지 도 15에는 상술한 본 발명의 실시예들과 관련하여 구체적인 등록 절차의 예가 도시되어 있다. 도시된 예에서는 편의상 UE가 PDU session을 형성하는 동작, traffic을 송수신하는 동작 등은 도시하지 않았으며, 이는 TS 23.501, TS 23.502를 참고한다. 이하의 설명에서 NG-RAN은 3GPP 액세스 네트워크로 5G 코어 네트워크에 연결된 RAN이며, TS 23.501에 정의된 바와 같이, 1) Standalone New Radio, 2) New Radio is the anchor with E-UTRA extensions, 3) Standalone E-UTRA, 4) E-UTRA is the anchor with New Radio extensions 일 수 있다. NG-RAN은 RAN으로 불릴 수도 있고, 5G 코어 네트워크에 연결된 gNB 또는 5G 코어 네트워크에 연결된 eNB (또는 ng-eNB)로 일컬어질 수도 있다. 이하 도 13 내지 도 15 각각의 경우에 대해 구체적으로 살펴본다.
도 13은 UE가 서비스를 받으려는 3GPP 액세스와 non-3GPP 액세스 (이는 N3IWF으로 해석될 수 있으며, 이는 본 발명 전반에 걸쳐 적용됨)가 동일한 PLMN에 속하는 경우를 보여준다. 단계 S1301에서 UE가 power-on (즉, switch-on) 된다. 이에 3GPP 액세스를 통해서 5G 코어 네트워크에 연결하고자 한다. 아울러, UE는 non-3GPP 액세스를 통해서도 5G 코어 네트워크에 연결하고자 한다. 3GPP 액세스 및 non-3GPP 액세스가 동일한 PLMN에 속하므로 UE는 한쪽 액세스로의 등록을 먼저 수행하고, 이를 마치면 다른 액세스로의 등록을 수행할 것을 결정한다. 도 13에서는 3GPP 액세스를 통한 등록을 먼저 수행함을 가정한다. 물론 non-3GPP 액세스를 통한 등록을 먼저 수행할 수도 있고, 이 경우 단계 S1305 ~ 단계 S1308이 먼저 수행되고 이 후, 단계 S1301 ~ 단계 S1304가 수행된다.
단계 S1301에서 UE는 NG-RAN을 통해 5G 코어 네트워크로 등록 Request 메시지를 전송한다. 이 때 상기 등록 Request 메시지는 UE의 식별자로 SUPI(Subscriber Permanent Identifier 또는 Subscription Permanent Identifier)를 포함할 수 있다.
단계 S1302 에서 UE로부터 등록 Request 메시지를 받은 NG-RAN은 UE를 서빙해 줄 AMF를 선택하여 이 AMF로 등록 Request 메시지를 전달한다.
단계 S1303 및 단계 S1304 에서 AMF는 UE에게 5G-GUTI를 할당한다. 그리고 이를 포함하여 UE에게 등록 Accept 메시지를 전송한다. 이러한 등록 Accept 메시지는 NG-RAN을 통해 UE로 전달된다.
단계 S1305 에서 UE는 제1 네트워크 액세스를 통해 5G 코어 네트워크로 등록을 마친 바, 제2 네트워크 액세스를 통한 등록을 수행한다. 이에 non-3GPP 액세스 network을 통해 5G 코어 네트워크로 등록 Request 메시지를 전송한다. 이 때 상기 등록 Request 메시지는 UE의 식별자로 단계 S1304에서 수신한 등록 Accept 메시지에 포함된 5G-GUTI를 포함한다.
단계 S1306 에서 UE가 보낸 등록 Request 메시지를 N3IWF이 수신한다. N3IWF은 UE가 포함시킨 5G-GUTI를 이용하여 UE의 서빙 AMF를 결정할 수 있다. 그리고 그 AMF로 상기 등록 Request 메시지를 전달한다.
단계 S1307 및 단계 S1308 에서 AMF는 UE에게 등록 Accept 메시지를 전송한다. 이러한 등록 Accept 메시지는 N3IWF 및 non-3GPP 액세스 네트워크를 통해 UE로 전달된다.
도 14 역시 도 13과 마찬가지로 UE가 접속한 3GPP 액세스와 non-3GPP 액세스가 동일한 PLMN에 속하는 경우를 보여준다. 도 13과 다른점은 UE가 이미 3GPP 액세스를 통해 5G 코어 네트워크에 등록 하여 서비스를 받고 있는 상태에서 non-3GPP 액세스를 통해 서비스를 받고자 하는 경우이다.
단계 S1401 에서 UE는 NG-RAN을 통해 5G 코어 네트워크로 등록 Request 메시지를 전송한다. 이 때 상기 등록 Request 메시지는 UE의 식별자로 SUPI를 포함할 수 있다.
단계 S1402 에서 UE로부터 등록 Request 메시지를 받은 NG-RAN은 UE를 서빙해 줄 AMF를 선택하여 이 AMF로 등록 Request 메시지를 전달한다.
단계 S1403 및 단계 S1404 에서 AMF는 UE에게 5G-GUTI를 할당한다. 그리고 이를 포함하여 UE에게 등록 Accept 메시지를 전송한다. 이러한 등록 Accept 메시지는 NG-RAN을 통해 UE로 전달된다.
이후 도 14에 도시하지는 않았으나 UE는 PDU session을 형성하여 서비스를 받을 수 있다.
단계 S1405 에서 UE가 이동함에 따라 이동에 따른 등록 업데이트 (이는 본 발명 전반에 걸쳐 re-registration (재등록)으로 해석될 수 있음)을 수행해야 한다. 이는 단계 S1404의 등록 Accept 메시지에 포함된 등록 area를 UE가 벗어났기 때문이다. 여기서는 UE의 이동에 따른 등록 업데이트를 기술하였으나, 이와 달리 등록 업데이트 timer가 만료됨에 따라 periodic 등록 업데이트를 수행하는 동작, 또는 UE의 capability/configuration이 변경됨에 따라 등록 업데이트를 수행하는 동작 등 다양한 이유로 UE가 등록 업데이트를 수행하는 것이 모두 해당할 수 있다.
이 때, UE는 non-3GPP 액세스를 통해서도 5G 코어 네트워크에 연결하고자 한다. UE는 3GPP 액세스 및 non-3GPP 액세스가 동일한 PLMN에 속하는 바, 한쪽 액세스로의 등록을 먼저 수행하고, 이를 마치면 다른 액세스로의 등록을 수행할 것을 결정한다. 도 14에서는 3GPP 액세스를 통한 등록을 먼저 수행함을 가정한다. 그러나 이와는 달리, non-3GPP 액세스를 통한 등록을 먼저 수행할 수도 있다. 이 경우 단계 S1410 ~ 단계 S1413이 먼저 수행되고 이 후, 단계 S1406 ~ 단계 S1409가 수행된다.
단계 S1406 에서 UE는 NG-RAN을 통해 5G 코어 네트워크로 등록 Request 메시지를 전송한다. 이 때 상기 등록 Request 메시지는 UE의 식별자로 5G-GUTI를 포함한다.
단계 S1407 에서 UE로부터 등록 Request 메시지를 받은 NG-RAN은 UE의 서빙 AMF로 등록 Request 메시지를 전달한다.
단계 S1408 및 단계 S1409 에서 AMF는 UE에게 등록 Accept 메시지를 전송한다. 이러한 등록 Accept 메시지는 NG-RAN을 통해 UE로 전달된다. AMF는 UE를 위해 5G-GUTI를 새롭게 할당할 수도 있고, 이 때 이를 등록 Accept 메시지에 넣어서 UE에게 제공한다.
단계 S1410 에서 UE는 제1 네트워크 액세스를 통해 5G 코어 네트워크로 등록을 마친 바, 제2 네트워크 액세스를 통한 등록을 수행한다. 이에 non-3GPP 액세스 network을 통해 5G 코어 네트워크로 등록 Request 메시지를 전송한다. 이 때 상기 등록 Request 메시지는 UE의 식별자로, UE가 3GPP 액세스를 통해 등록을 수행 후 AMF로부터 받은 5G-GUTI를 포함한다. 이는 단계 S1409에서 수신한 경우 단계 S1409의 등록 Accept 메시지에 포함된 5G-GUTI이며, 아닌 경우 단계 S1404의 등록 Accept 메시지에 포함된 5G-GUTI이다.
단계 S1411 에서 UE가 보낸 등록 Request 메시지를 N3IWF이 수신한다. N3IWF은 UE가 포함시킨 5G-GUTI를 이용하여 UE의 서빙 AMF를 결정할 수 있다. 그리고 그 AMF로 상기 등록 Request 메시지를 전달한다.
단계 S1412 및 단계 S1413 에서 AMF는 UE에게 등록 Accept 메시지를 전송한다. 이러한 등록 Accept 메시지는 N3IWF 및 non-3GPP 액세스 네트워크를 통해 UE로 전달된다.
도 15는 도 14에서와 같이 UE가 이미 3GPP 액세스를 통해 5G 코어 네트워크에 등록 하여 서비스를 받고 있는 상태에서 non-3GPP 액세스를 통해 서비스를 받고자 하는 경우를 도시하였다. 그러나, 도 14와 달리 UE가 접속한 3GPP 액세스와 non-3GPP 액세스가 서로 다른 PLMN에 속하는 경우를 보여준다.
단계 S1501 에서 UE는 NG-RAN을 통해 5G 코어 네트워크로 등록 Request 메시지를 전송한다. 이 때 상기 등록 Request 메시지는 UE의 식별자로 SUPI를 포함할 수 있다.
단계 S1502 에서 UE로부터 등록 Request 메시지를 받은 NG-RAN은 UE를 서빙해 줄 AMF를 선택하여 이 AMF, 즉 AMF#1로 등록 Request 메시지를 전달한다.
단계 S1503 및 단계 S1504 에서 AMF#1은 UE에게 5G-GUTI를 할당한다. 그리고 이를 포함하여 UE에게 등록 Accept 메시지를 전송한다. 이러한 등록 Accept 메시지는 NG-RAN을 통해 UE로 전달된다.
이후 도 15에 도시하지는 않았으나 UE는 PDU session을 형성하여 서비스를 받을 수 있다.
단계 S1505 에서 UE가 이동함에 따라 이동에 따른 등록 업데이트 (이는 본 발명 전반에 걸쳐 re-registration (재등록)으로 해석될 수 있음)을 수행해야 한다. 이는 단계 S1504의 등록 Accept 메시지에 포함된 등록 area를 UE가 벗어났기 때문이다. 여기서는 UE의 이동에 따른 등록 업데이트를 기술하였으나, 이와 달리 등록 업데이트 timer가 만료됨에 따라 periodic 등록 업데이트를 수행하는 동작, 또는 UE의 capability/configuration이 변경됨에 따라 등록 업데이트를 수행하는 동작 등 다양한 이유로 UE가 등록 업데이트를 수행하는 것이 모두 해당할 수 있다.
이 때, UE는 non-3GPP 액세스를 통해서도 5G 코어 네트워크에 연결하고자 한다. UE는 3GPP 액세스 및 non-3GPP 액세스가 서로 다른 PLMN에 속하는 바, 한쪽 액세스로의 등록이 완료될 때까지 다른쪽 액세스로의 등록을 미룰 필요가 없다. 이에 두 액세스로의 등록을 동시에 (또는 개별적으로 또는 병렬적으로 또는 독립적으로) 수행할 것을 결정한다. 이에 단계 S1506a ~ 단계 S1509a와, 단계 S1506b ~ 단계 S1509b가 동시에 수행된다.
단계 S1506a 에서 UE는 NG-RAN을 통해 5G 코어 네트워크로 등록 Request 메시지를 전송한다. 이 때 상기 등록 Request 메시지는 UE의 식별자로 5G-GUTI를 포함한다.
단계 S1507a 에서 UE로부터 등록 Request 메시지를 받은 NG-RAN은 UE의 서빙 AMF인 AMF#1으로 등록 Request 메시지를 전달한다.
단계 S1508a 및 단계 S1509a 에서 AMF#1은 UE에게 등록 Accept 메시지를 전송한다. 이러한 등록 Accept 메시지는 NG-RAN을 통해 UE로 전달된다. AMF#1은 UE를 위해 5G-GUTI를 새롭게 할당할 수도 있고, 이 때 이를 등록 Accept 메시지에 넣어서 UE에게 제공한다.
단계 S1506b 에서 UE는 제1 네트워크 액세스를 통한 5G 코어 네트워크로 등록 완료 여부와 무관하게 제2 네트워크 액세스를 통한 등록을 수행한다. 이에 non-3GPP 액세스 network을 통해 5G 코어 네트워크로 등록 Request 메시지를 전송한다. 이 때 상기 등록 Request 메시지는 UE의 식별자로, SUPI를 포함할 수 있다.
단계 S1507b 에서 UE가 보낸 등록 Request 메시지를 N3IWF이 수신한다. N3IWF은 UE를 서빙할 AMF를 선택하여 이 AMF, 즉 AMF#2에게 상기 등록 Request 메시지를 전달한다.
단계 S1508b 및 단계 S1509b 에서 AMF#2는 UE에게 5G-GUTI를 할당한다. 그리고 이를 포함하여 UE에게 등록 Accept 메시지를 전송한다. 이러한 등록 Accept 메시지는 N3IWF 및 non-3GPP 액세스 네트워크를 통해 UE로 전달된다.
상기에서는 두 액세스 간의 initial registration 절차 내지는 registration 절차 위주로 기술하였으나, 이는 두 액세스 간에 MM(Mobility Management) 절차가 동시에 수행되면 안되는 것으로 확장 적용될 수 있다.
도 16은 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.
도 16을 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다. 구체적으로, 프로세서(120)는 제1 네트워크 액세스를 통해 등록을 수행하고, 제2 네트워크 액세스를 통해 등록을 수행하며, 상기 제1 네트워크와 제2 네트워크가 동일한 PLMN(Public Land Mobile Network)에 속하면, 상기 UE는 반드시 상기 제1 네트워크 액세스를 통한 등록 절차가 종료된 후 상기 제2 네트워크 액세스를 통한 등록을 시작할 수 있다.
도 16을 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.

Claims (14)

  1. 무선통신시스템에서 UE(User Equipment)가 제1 네트워크 액세스 및 제2 네트워크 액세스를 통한 등록을 수행하는 방법에 있어서,
    UE가 제1 네트워크 액세스를 통해 등록을 수행하는 단계; 및
    상기 UE가 제2 네트워크 액세스를 통해 등록을 수행하는 단계;
    를 포함하며,
    상기 제1 네트워크 액세스와 제2 네트워크 액세스가 동일한 PLMN(Public Land Mobile Network)에 속하면, 상기 UE는 반드시 상기 제1 네트워크 액세스를 통한 등록 절차가 종료된 후 상기 제2 네트워크 액세스를 통한 등록을 시작하는, 등록 수행 방법.
  2. 제1항에 있어서,
    상기 UE가 제1 네트워크 액세스를 통한 등록시 할당 받은 정보는, 상기 제2 네트워크 액세스를 통한 등록을 수행시 상기 UE의 AMF 선택에 사용되는, 등록 수행 방법.
  3. 제2항에 있어서,
    상기 제1 네트워크 액세스를 통한 등록시 할당 받은 정보로부터 선택되는 AMF는, 상기 제1 네트워크 액세스에서 상기 UE의 AMF로 선택된 AMF와 동일한, 등록 수행 방법.
  4. 제2항에 있어서,
    상기 UE의 AMF의 선택은 제2 네트워크 액세스가 3GPP 액세스인 경우 gNB에 의해 수행되고, 제2 네트워크 액세스가 Non-3GPP 액세스인 경우 N3IWF(Non-3GPP InterWorking Funtion)에 의해 수행되는 것인, 등록 수행 방법.
  5. 제1항에 있어서,
    상기 제1 네트워크 액세스 및 상기 제2 네트워크 액세스는 각각 Non-3GPP 액세스 및 3GPP 액세스이거나, 또는 3GPP 액세스 및 Non-3GPP 액세스인, 등록 수행 방법.
  6. 제5항에 있어서,
    상기 Non-3GPP 액세스는 WLAN 액세스인, 등록 수행 방법.
  7. 제2항에 있어서,
    상기 제1 네트워크 액세스를 통한 등록시 할당 받은 정보는 AMF로부터 할당 받은 ID 정보인, 등록 수행 방법.
  8. 무선통신시스템에서 제1 네트워크 액세스 및 제2 네트워크 액세스를 통한 등록을 수행하는 UE(User Equipment) 장치에 있어서,
    송수신 장치; 및
    프로세서를 포함하고,
    상기 프로세서는 제1 네트워크 액세스를 통해 등록을 수행하고, 제2 네트워크 액세스를 통해 등록을 수행하며,
    상기 제1 네트워크 액세스와 제2 네트워크 액세스가 동일한 PLMN(Public Land Mobile Network)에 속하면, 상기 UE는 반드시 상기 제1 네트워크 액세스를 통한 등록 절차가 종료된 후 상기 제2 네트워크 액세스를 통한 등록을 시작하는, UE 장치.
  9. 제8항에 있어서,
    상기 UE가 제1 네트워크 액세스를 통한 등록시 할당 받은 정보는, 상기 제2 네트워크 액세스를 통한 등록을 수행시 상기 UE의 AMF 선택에 사용되는, UE 장치.
  10. 제9항에 있어서,
    상기 제1 네트워크 액세스를 통한 등록시 할당 받은 정보로부터 선택되는 AMF는, 상기 제1 네트워크 액세스에서 상기 UE의 AMF로 선택된 AMF와 동일한, UE 장치.
  11. 제9항에 있어서,
    상기 UE의 AMF의 선택은 제2 네트워크 액세스가 3GPP 액세스인 경우 gNB에 의해 수행되고, 제2 네트워크 액세스가 Non-3GPP 액세스인 경우 N3IWF(Non-3GPP InterWorking Funtion)에 의해 수행되는 것인, UE 장치.
  12. 제8항에 있어서,
    상기 제1 네트워크 액세스 및 상기 제2 네트워크 액세스는 각각 Non-3GPP 액세스 및 3GPP 액세스이거나, 또는 3GPP 액세스 및 Non-3GPP 액세스인, UE 장치.
  13. 제12항에 있어서,
    상기 Non-3GPP 액세스는 WLAN 액세스인, UE 장치.
  14. 제9항에 있어서,
    상기 제1 네트워크 액세스를 통한 등록시 할당 받은 정보는 AMF로부터 할당 받은 ID 정보인, UE 장치.
PCT/KR2017/012724 2016-11-10 2017-11-10 무선 통신 시스템에서 동일 plmn에 속하는 네트워크 액세스를 통한 등록 방법 및 이를 위한 장치 WO2018088836A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17868856.0A EP3541125B1 (en) 2016-11-10 2017-11-10 Registration method through network access belonging to identical plmn in wireless communication system, and device therefor
KR1020197016504A KR102204365B1 (ko) 2016-11-10 2017-11-10 무선 통신 시스템에서 동일 plmn에 속하는 네트워크 액세스를 통한 등록 방법 및 이를 위한 장치
US16/065,112 US10827448B2 (en) 2016-11-10 2017-11-10 Registration method through network access belonging to identical PLMN in wireless communication system, and device therefor
SG11201900441RA SG11201900441RA (en) 2016-11-10 2017-11-10 Registration method through network access belonging to identical plmn in wireless communication system, and device therefor
CN201780035144.2A CN109314942B (zh) 2016-11-10 2017-11-10 在无线通信系统中通过属于相同plmn的网络接入的注册方法及其设备
JP2019524418A JP6918937B2 (ja) 2016-11-10 2017-11-10 無線通信システムにおいて同一のplmnに属するネットワークアクセスを通じた登録方法及びそのための装置
BR112019001606-6A BR112019001606A2 (pt) 2016-11-10 2017-11-10 método e equipamento de usuário (ue) para realizar um registro através de um primeiro acesso à rede e um segundo acesso à rede em um sistema de comunicação sem fios

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662419971P 2016-11-10 2016-11-10
US62/419,971 2016-11-10
US201762484867P 2017-04-12 2017-04-12
US62/484,867 2017-04-12
US201762489466P 2017-04-25 2017-04-25
US62/489,466 2017-04-25
US201762502785P 2017-05-08 2017-05-08
US62/502,785 2017-05-08

Publications (1)

Publication Number Publication Date
WO2018088836A1 true WO2018088836A1 (ko) 2018-05-17

Family

ID=62109588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012724 WO2018088836A1 (ko) 2016-11-10 2017-11-10 무선 통신 시스템에서 동일 plmn에 속하는 네트워크 액세스를 통한 등록 방법 및 이를 위한 장치

Country Status (8)

Country Link
US (1) US10827448B2 (ko)
EP (1) EP3541125B1 (ko)
JP (1) JP6918937B2 (ko)
KR (1) KR102204365B1 (ko)
CN (1) CN109314942B (ko)
BR (1) BR112019001606A2 (ko)
SG (1) SG11201900441RA (ko)
WO (1) WO2018088836A1 (ko)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221033A1 (en) * 2018-05-18 2019-11-21 Nec Corporation A method for synchronizing status of ue in a communication network
CN110519840A (zh) * 2018-05-21 2019-11-29 中国移动通信有限公司研究院 会话处理方法及装置、网元及存储介质
WO2020076750A1 (en) * 2018-10-08 2020-04-16 Apple Inc. Mobile device context transfer in a 5g system
CN111182591A (zh) * 2018-11-12 2020-05-19 华为技术有限公司 网络切换的方法和装置
CN111405553A (zh) * 2019-01-03 2020-07-10 大唐移动通信设备有限公司 一种基于5g网络建立会话的方法及装置
US20200236612A1 (en) * 2017-10-20 2020-07-23 Beijing Xiaomi Mobile Software Co., Ltd. Access method and device, user equipment and base station
JP2020137062A (ja) * 2019-02-25 2020-08-31 株式会社Lte−X 通信システム及び通信制御方法
CN112567833A (zh) * 2018-08-13 2021-03-26 苹果公司 使用用户设备(ue)标识符以在第五代(5g)系统中注册
JP2021530129A (ja) * 2018-06-25 2021-11-04 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 管理機能間モビリティのコンテキストにおけるネットワーク機能の取り扱い
JP2022552641A (ja) * 2019-10-11 2022-12-19 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 複数usimのueのための移動体終端の情報配信
US11711779B2 (en) 2018-10-05 2023-07-25 Samsung Electronics Co., Ltd. Method and UE for triggering registration procedure within registration area of wireless communication network
US12127150B2 (en) 2020-10-06 2024-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Mobile terminating information delivery for mulitple USIM UE

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018079690A1 (ja) * 2016-10-26 2019-09-19 日本電気株式会社 システム、ネットワーク装置、端末、及び方法
US11190928B2 (en) * 2016-12-19 2021-11-30 Nokia Technologies Oy Data storage function selection
KR102549946B1 (ko) 2017-01-09 2023-06-30 삼성전자주식회사 이동통신 환경에서 단말의 초기 접속 요청 메시지를 라우팅하는 방법 및 관련 파라미터
CA3051938C (en) * 2017-01-30 2023-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communications
RU2745719C2 (ru) * 2017-02-07 2021-03-31 АйПиКОМ ГМБХ УНД КО. КГ Реализация функции межсетевого взаимодействия с использованием недоверенной сети
PL3664517T3 (pl) * 2017-02-10 2021-11-15 Ipcom Gmbh & Co. Kg Kontrola roamingu
CN108738104B (zh) * 2017-04-19 2021-11-19 华为技术有限公司 一种建立本地网络连接的方法、装置、系统和存储介质
JP7181224B2 (ja) * 2017-05-05 2022-11-30 アイディーエーシー ホールディングス インコーポレイテッド モバイルで開始される接続専用(mico)の無線送受信ユニット(wtru)をサポートする方法、装置、およびシステム
US11889298B2 (en) * 2017-11-20 2024-01-30 Telefonaktiebolaget Lm Ericsson (Publ) Security gateway selection in hybrid 4G and 5G networks
CN110100474B (zh) * 2017-11-28 2022-07-08 联发科技(新加坡)私人有限公司 移动管理拥塞控制方法及用户设备
US10986602B2 (en) * 2018-02-09 2021-04-20 Intel Corporation Technologies to authorize user equipment use of local area data network features and control the size of local area data network information in access and mobility management function
WO2019192593A1 (en) * 2018-04-05 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for notification subscription
CN110650467B (zh) * 2018-06-26 2022-03-29 华为技术有限公司 管理用户数据的方法和装置
KR102699862B1 (ko) * 2019-03-29 2024-08-29 삼성전자 주식회사 단말에게 사설 셀룰러 네트워크들에 대한 가입정보를 제공하는 방법
EP3949308B1 (en) * 2019-03-29 2023-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Service based interface enabled home subscriber service selection
CN111770486B (zh) * 2019-03-30 2022-02-08 华为技术有限公司 一种终端漫游的方法及装置
EP3949477A4 (en) * 2019-04-09 2022-06-08 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR PERFORMING COMMUNICATION IN A WIRELESS COMMUNICATION SYSTEM
CN110191458B (zh) * 2019-04-19 2021-11-09 中兴通讯股份有限公司 一种网络漫游互通方法、装置和系统
CN111866874B (zh) * 2019-04-29 2022-05-10 华为技术有限公司 一种注册方法及装置
WO2020226434A1 (en) * 2019-05-07 2020-11-12 Samsung Electronics Co., Ltd. Method and apparatus for performing plmn selection in dual registration mode
US20220174637A1 (en) * 2019-05-31 2022-06-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Registration
WO2020254359A1 (en) * 2019-06-17 2020-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Amf reallocation handling using ue exceptions to security context rules
US11412092B2 (en) * 2019-06-24 2022-08-09 Qualcomm Incorporated User equipment policy management in evolved packet systems and fifth generation systems interworking
US10582371B1 (en) 2019-08-09 2020-03-03 Cisco Technology, Inc. Subscriber management with a stateless network architecture in a fifth generation (5G) network
EP3787352B1 (en) * 2019-08-29 2023-05-31 Nokia Technologies Oy Method for user equipment's registration update
WO2021089484A1 (en) * 2019-11-10 2021-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Network information delivery towards application at device side
WO2021163853A1 (zh) * 2020-02-17 2021-08-26 Oppo广东移动通信有限公司 数据传输方式的更改方法、装置、设备及存储介质
CN113329448B (zh) * 2020-02-29 2024-10-15 华为技术有限公司 一种通信的方法及装置
US11902885B2 (en) * 2020-09-21 2024-02-13 Mediatek Singapore Pte. Ltd. Adjusted PLMN search in MICO mode
US20220377538A1 (en) * 2021-05-19 2022-11-24 Qualcomm Incorporated Non-access stratum signaling over a non-3gpp network
US11553334B1 (en) 2021-05-26 2023-01-10 T-Mobile Innovations Llc User equipment (UE) identification in a wireless communication network
US11582314B1 (en) * 2021-11-29 2023-02-14 Industrial Technology Research Institute Method for assisting unregistered user device to access private network service and communication system
WO2023182728A1 (ko) * 2022-03-25 2023-09-28 엘지전자 주식회사 트래픽 전송을 위한 네트워크 등록 방법 및 이를 지원하는 장치
CN117897978A (zh) * 2022-08-15 2024-04-16 北京小米移动软件有限公司 通过非3gpp接入网络接入3gpp网络的认证方法、装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040041685A (ko) * 2001-10-09 2004-05-17 모토로라 인코포레이티드 통신 네트워크 위치 레지스터 및 가입자 디바이스
US20080287125A1 (en) * 2002-10-30 2008-11-20 Research In Motion Limited Methods And Apparatus For Selecting A Communication Network
US20130035056A1 (en) * 2010-04-15 2013-02-07 Nec Corporation Communications system
WO2013119025A1 (ko) * 2012-02-06 2013-08-15 삼성전자 주식회사 동등한 plmn 선택 방법 및 장치
KR20140015545A (ko) * 2011-05-20 2014-02-06 애플 인크. 하이브리드 네트워크 동작에 있어서의 우선순위 기반 태스크 스케줄링을 위한 장치 및 방법들
KR20150026982A (ko) * 2013-08-29 2015-03-11 삼성전자주식회사 다중 sim 휴대 장치에서 소비전력 최적화 방법 및 시스템

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102273263A (zh) 2009-01-06 2011-12-07 夏普株式会社 移动通信系统、QoS控制站和移动台
US9215582B2 (en) * 2009-11-02 2015-12-15 Telefonaktiebolaget L M Ericsson (Publ) Node selection in a communication network
CN103648157A (zh) * 2013-11-29 2014-03-19 华为终端有限公司 移动终端请求注册无线通信网络的方法、移动终端、无线通信网络服务器和系统
GB2543280A (en) * 2015-10-13 2017-04-19 Tcl Communication Ltd Radio access network interworking
US9998856B2 (en) * 2016-05-13 2018-06-12 Qualcomm Incorporated Method and/or system for positioning of a mobile device
US20170374581A1 (en) * 2016-06-23 2017-12-28 Huawei Technologies Co., Ltd. System and method for delivering unicast and broadcast traffic in a communication network
KR102549946B1 (ko) * 2017-01-09 2023-06-30 삼성전자주식회사 이동통신 환경에서 단말의 초기 접속 요청 메시지를 라우팅하는 방법 및 관련 파라미터
US20200059989A1 (en) * 2017-08-16 2020-02-20 Lenovo (Singapore) Pte. Ltd. Indicating a packet data unit session as unavailable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040041685A (ko) * 2001-10-09 2004-05-17 모토로라 인코포레이티드 통신 네트워크 위치 레지스터 및 가입자 디바이스
US20080287125A1 (en) * 2002-10-30 2008-11-20 Research In Motion Limited Methods And Apparatus For Selecting A Communication Network
US20130035056A1 (en) * 2010-04-15 2013-02-07 Nec Corporation Communications system
KR20140015545A (ko) * 2011-05-20 2014-02-06 애플 인크. 하이브리드 네트워크 동작에 있어서의 우선순위 기반 태스크 스케줄링을 위한 장치 및 방법들
WO2013119025A1 (ko) * 2012-02-06 2013-08-15 삼성전자 주식회사 동등한 plmn 선택 방법 및 장치
KR20150026982A (ko) * 2013-08-29 2015-03-11 삼성전자주식회사 다중 sim 휴대 장치에서 소비전력 최적화 방법 및 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3541125A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200236612A1 (en) * 2017-10-20 2020-07-23 Beijing Xiaomi Mobile Software Co., Ltd. Access method and device, user equipment and base station
JP2021502037A (ja) * 2018-05-18 2021-01-21 日本電気株式会社 方法、amf、3gppアクセスノード、及びue
US12052798B2 (en) 2018-05-18 2024-07-30 Nec Corporation Method for synchronizing status of UE in a communication network
US11751045B2 (en) 2018-05-18 2023-09-05 Nec Corporation Method for synchronizing status of UE in a communication network
JP7248070B2 (ja) 2018-05-18 2023-03-29 日本電気株式会社 Ueのための方法及びue
WO2019221033A1 (en) * 2018-05-18 2019-11-21 Nec Corporation A method for synchronizing status of ue in a communication network
JP2022000977A (ja) * 2018-05-18 2022-01-04 日本電気株式会社 Ueのための方法及びue
CN110519840A (zh) * 2018-05-21 2019-11-29 中国移动通信有限公司研究院 会话处理方法及装置、网元及存储介质
CN110519840B (zh) * 2018-05-21 2021-01-15 中国移动通信有限公司研究院 会话处理方法及装置、网元及存储介质
JP7047142B2 (ja) 2018-06-25 2022-04-04 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 管理機能間モビリティのコンテキストにおけるネットワーク機能の取り扱い
JP2021530129A (ja) * 2018-06-25 2021-11-04 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 管理機能間モビリティのコンテキストにおけるネットワーク機能の取り扱い
US11792697B2 (en) 2018-06-25 2023-10-17 Telefonaktiebolaget Lm Ericsson (Publ) Network function handling in the context of inter-management function mobility
JP2022091867A (ja) * 2018-06-25 2022-06-21 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 管理機能間モビリティのコンテキストにおけるネットワーク機能の取り扱い
US11382006B2 (en) 2018-06-25 2022-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Network function handling in the context of inter-management function mobility
JP7319416B2 (ja) 2018-06-25 2023-08-01 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 管理機能間モビリティのコンテキストにおけるネットワーク機能の取り扱い
CN112567833A (zh) * 2018-08-13 2021-03-26 苹果公司 使用用户设备(ue)标识符以在第五代(5g)系统中注册
US11711779B2 (en) 2018-10-05 2023-07-25 Samsung Electronics Co., Ltd. Method and UE for triggering registration procedure within registration area of wireless communication network
WO2020076750A1 (en) * 2018-10-08 2020-04-16 Apple Inc. Mobile device context transfer in a 5g system
US12010615B2 (en) 2018-10-08 2024-06-11 Apple Inc. Mobile device context transfer in a 5G system
US11751105B2 (en) 2018-11-12 2023-09-05 Huawei Technologies Co., Ltd. Network handover method and apparatus
WO2020098620A1 (zh) * 2018-11-12 2020-05-22 华为技术有限公司 网络切换的方法和装置
CN111182591A (zh) * 2018-11-12 2020-05-19 华为技术有限公司 网络切换的方法和装置
CN111405553A (zh) * 2019-01-03 2020-07-10 大唐移动通信设备有限公司 一种基于5g网络建立会话的方法及装置
CN111405553B (zh) * 2019-01-03 2021-07-23 大唐移动通信设备有限公司 一种基于5g网络建立会话的方法及装置
JP7351498B2 (ja) 2019-02-25 2023-09-27 株式会社closip 通信システム及び通信制御方法
JP2020137062A (ja) * 2019-02-25 2020-08-31 株式会社Lte−X 通信システム及び通信制御方法
JP2022552641A (ja) * 2019-10-11 2022-12-19 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 複数usimのueのための移動体終端の情報配信
JP7370460B2 (ja) 2019-10-11 2023-10-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 複数usimのueのための移動体終端の情報配信
US12127150B2 (en) 2020-10-06 2024-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Mobile terminating information delivery for mulitple USIM UE

Also Published As

Publication number Publication date
SG11201900441RA (en) 2019-02-27
CN109314942B (zh) 2021-08-27
US20190037516A1 (en) 2019-01-31
CN109314942A (zh) 2019-02-05
KR102204365B1 (ko) 2021-01-18
JP2019537901A (ja) 2019-12-26
JP6918937B2 (ja) 2021-08-11
EP3541125A4 (en) 2020-05-27
BR112019001606A2 (pt) 2019-04-30
EP3541125A1 (en) 2019-09-18
EP3541125B1 (en) 2021-08-18
KR20190082876A (ko) 2019-07-10
US10827448B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2018088836A1 (ko) 무선 통신 시스템에서 동일 plmn에 속하는 네트워크 액세스를 통한 등록 방법 및 이를 위한 장치
WO2018199668A1 (ko) 무선 통신 시스템에서 udm이 amf의 등록에 관련된 절차를 수행하는 방법 및 이를 위한 장치
WO2018084635A1 (ko) 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치
WO2016190672A1 (ko) 무선 통신 시스템에서 후원 연결을 위한 접속 절차를 수행하는 방법 및 단말
WO2018155934A1 (ko) 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치
WO2019160376A1 (ko) 무선 통신 시스템에서 smf의 신호 송수신 방법 및 이를 위한 장치
WO2018169343A1 (ko) 페이징을 수행하는 방법 및 기지국, 페이징을 지원하는 방법 및 네트워크 엔티티
WO2017142362A1 (ko) 무선 통신 시스템에서 위치 등록 관련 메시지 송수신 방법 및 이를 위한 장치
WO2019066544A1 (ko) 무선 통신 시스템에서 5gs에서 eps로의 핸드오버에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2017052335A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 수행하는 방법 및 이를 위한 장치
WO2018230928A1 (ko) 무선 통신 시스템에서 사용자 기기의 위치 정보를 리포팅하는 방법 및 장치
WO2018199611A1 (ko) 네트워크로의 등록 요청 전송 방법 및 사용자기기, 그리고 등록 요청 수신 방법 및 네트워크 기기
WO2018221943A1 (ko) 무선 통신 시스템에서 multi-homing 기반 psa 추가와 관련하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2016039579A1 (ko) 무선 통신 시스템에서 mcptt 그룹 콜 설정 방법 및 이를 위한 장치
WO2016024773A1 (ko) 무선 통신 시스템에서 릴레이 선택 방법 및 이를 위한 장치
WO2016105004A1 (ko) 무선 통신 시스템에서 nbifom 캐퍼빌리티를 송수신하는 방법 및 이를 위한 장치
WO2017171427A1 (ko) 시스템 정보 전송 방법 및 기지국과 시스템 정보 수신 방법 및 사용자기기
WO2019022442A9 (ko) 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치
WO2017026872A1 (ko) 무선 통신 시스템에서 리모트 ue의 신호 송수신 방법 및 이를 위한 장치
WO2017026772A1 (ko) 무선 통신 시스템에서 p-cscf 선택 및 sip 메시지 전송 방법 및 이를 위한 장치
WO2016111603A1 (ko) 무선 통신 시스템에서 pdn 연결 복구에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2016144009A1 (ko) 무선 통신 시스템에서 네트워크 트래픽을 제어하는 방법 및 단말
WO2018169281A1 (ko) 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국
WO2018008922A2 (ko) 무선 통신 시스템에서 기지국의 nas 시그널링 지원 방법 및 이를 위한 장치
WO2017086618A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868856

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019001606

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019001606

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190125

ENP Entry into the national phase

Ref document number: 2019524418

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197016504

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017868856

Country of ref document: EP

Effective date: 20190611