WO2014084183A1 - アクチュエータ用弾性体及び圧電アクチュエータ - Google Patents

アクチュエータ用弾性体及び圧電アクチュエータ Download PDF

Info

Publication number
WO2014084183A1
WO2014084183A1 PCT/JP2013/081696 JP2013081696W WO2014084183A1 WO 2014084183 A1 WO2014084183 A1 WO 2014084183A1 JP 2013081696 W JP2013081696 W JP 2013081696W WO 2014084183 A1 WO2014084183 A1 WO 2014084183A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic body
actuator
piezoelectric
piezoelectric element
shape
Prior art date
Application number
PCT/JP2013/081696
Other languages
English (en)
French (fr)
Inventor
清水 潔
茂樹 蒲原
金田 宏
伊藤 雅章
篤史 久米
直人 奥山
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2014550186A priority Critical patent/JPWO2014084183A1/ja
Publication of WO2014084183A1 publication Critical patent/WO2014084183A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • H02N2/043Mechanical transmission means, e.g. for stroke amplification

Definitions

  • the present invention relates to an elastic body for an actuator using ultrasonic vibration by an electromechanical transducer such as a piezoelectric element, and a piezoelectric actuator provided with the elastic body.
  • An ultrasonic motor is known as a piezoelectric actuator using a piezoelectric element.
  • the ultrasonic motor is a motor that uses a piezoelectric element that is an electromechanical variable element as an ultrasonic vibrator.
  • ultrasonic motors do not require windings, are simple in structure, have low speed and high torque, have excellent responsiveness and controllability, and can be driven minutely and precisely. It is widely used in optical equipment devices.
  • FIG. 1 is a schematic side view of a rotor type ultrasonic motor
  • FIG. 2 is a schematic perspective view of an elastic body constituting the rotor type ultrasonic motor of FIG.
  • the ultrasonic motor 1 is regularly formed on the disk-shaped (or ring-shaped) piezoelectric element 2 having the same outer diameter as the outer diameter of the piezoelectric element 2 and along the outer periphery.
  • a disk-shaped (or ring-shaped) rotor (rotating body or moving body) 5 having the same outer diameter as that of the elastic body is provided.
  • the stator 4 composed of the piezoelectric element (piezo element) 2 and the comb-like elastic body 3 is a fixed member, whereas the rotor 5 is rotatably arranged.
  • the ultrasonic vibration generated by the piezoelectric element 2 is converted into the rotational motion of the rotor 5 via the comb-like elastic body 3.
  • the piezoelectric element 2 is formed of piezoelectric ceramics that generate distortion when a voltage is applied. When an AC voltage (frequency voltage) is applied, the piezoelectric element 2 regularly repeats distortion and recovery (extension and contraction). To vibrate ultrasonically.
  • the surface traveling wave (longitudinal wave and transverse wave) transmitted along the surface of the elastic body is combined with the ultrasonic vibration from the piezoelectric element. Rayleigh wave).
  • elliptical motion bending vibration
  • the complex elastic modulus in the bending direction is important, and the material is selected from such a viewpoint.
  • a metal material is used as the elastic body because it can generate a surface traveling wave without absorbing ultrasonic vibration from a piezoelectric element.
  • an elastic body made of metal has a high specific gravity and is hard, so it has low vibration characteristics, low formability, and is difficult to downsize.
  • disadvantages such as a point of deterioration, a point of deterioration due to rust, a point of difficulty in improving the characteristics by blending additives, and a point of inability to ensure insulation.
  • As an elastic body other than metal unlike metal, it has viscosity, so it is not suitable as a vibrator by absorbing vibration, or an elastic body made of plastic is proposed, although it has not been put to practical use. Has been.
  • Patent Document 1 discloses a moving body that contacts an elastic body by applying elliptical motion generated in an elastic body that applies a frequency voltage to the electromechanical conversion element and is joined to the electromechanical conversion element.
  • a drive mechanism is disclosed in which a side of the elastic body that contacts the moving body is formed of resin.
  • an elastic body made of metal is further interposed between an elastic body made of resin and the electromechanical conversion element.
  • the elastic body contains metal, vibration is not sufficient and rust is generated. Furthermore, the details of the resin are not described in this document. Further, since the resin normally absorbs ultrasonic vibration as compared with the metal material, the vibration transmission is low. Furthermore, since the elastic body is a friction drive type that is brought into contact with the moving body, frictional heat is generated and heat resistance is required. However, the resin material has lower heat resistance than the metal material.
  • Patent Document 2 discloses a stator composed of a piezoelectric element and an elastic body excited by the piezoelectric element, and a surface of ultrasonic vibration generated in the stator in pressure contact with the stator.
  • a surface wave motor comprising a mover that is an elastic body that moves on the surface of the stator by a traveling wave
  • at least one of the two elastic bodies is formed of a synthetic resin material.
  • a surface wave motor in which a vibrating portion having a surface to which the elastic body is pressed, a supporting portion extending from the vibrating portion, and a held portion provided on the outer periphery of the supporting portion are integrally molded. Yes.
  • the synthetic resin material includes engineering plastic, and a material having a low elastic modulus is preferable.
  • details of the synthetic resin are not described.
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-311794
  • Patent Document 3 includes an electromechanical transducer that expands and contracts when a voltage is applied, and a movable body that is slidably supported and coupled to the electromechanical transducer. And a movable body support member that is displaced together with the electromechanical conversion element.
  • the drive device moves the movable body along the movable body support member by expansion and contraction of the electromechanical conversion element.
  • a drive device is disclosed in which the material is a fiber reinforced resin composite, and the synthetic resin material constituting the fiber reinforced resin composite is a liquid crystal polymer or polyphenylene sulfide.
  • the moving support member (drive shaft) corresponding to the elastic body has a rod shape, and one end thereof and the end of the rod-shaped piezoelectric element are bonded and fixed, and the moving support member has a length due to expansion and contraction of the piezoelectric element.
  • the moving body supported by the moving support member is moved with a predetermined frictional force. That is, the mechanism for moving the moving body applies a sawtooth waveform pulse voltage consisting of a sudden rising part and a gentle falling part to strengthen the reciprocating motion in the length direction of the drive shaft, The moving body is moved according to the law.
  • the drive mechanism of Patent Document 3 is a traveling wave type actuator, that is, a surface traveling wave (sinusoidal) generated by vibration of a piezoelectric element in a state where a piezoelectric element and a moving body are fixed in surface contact and fixed in surface contact.
  • the driving principle is greatly different from an actuator that is elliptically moved by bending and deforming the elastic body itself using waves) (by bending the elastic body in conjunction with the vibration of the piezoelectric element).
  • the drive shaft of Patent Document 3 does not require the flexibility required for bending vibration, and the required characteristics are significantly different from an elastic body using bending vibration in an ultrasonic motor.
  • Patent Document 4 discloses two or more composite material plates in which a plurality of highly elastic fibers are regularly oriented in the same direction in a base material. An acoustic vibration control material that is laminated so that the orientation directions of the high elastic fibers are orthogonal to each other is disclosed. This document describes, as the control material, a carbon fiber or SiC fiber reinforced plastic molding using a polyamide resin or an epoxy resin as a base material.
  • this acoustic vibration control material is intended to control the transmission direction of acoustic vibration, and does not describe flexural vibration of an elastic body. Furthermore, in a laminated structure in which the orientation directions of the fibers are orthogonal between the layers, vibration transmission in bending vibration cannot be improved.
  • piezoelectric actuators depending on the application, such as a piezoelectric pump and a linear motor, in order to apply the vibration (or expansion / contraction) of the electromechanical conversion element as an actuator, a mechanism for expanding the displacement due to the vibration is required.
  • Patent Document 5 discloses a laminated piezoelectric actuator in which piezoelectric ceramic layers and internal electrodes are alternately stacked, and the internal electrodes are connected every other layer, and the outer periphery of the internal electrode The amount of displacement of the portion continuously decreases from the inside to the outside of the outer peripheral portion, and the portion located in the vicinity of the outer peripheral portion of the internal electrode in the piezoelectric ceramic layer includes manganese, iron, chromium, tungsten
  • a multilayer piezoelectric actuator is disclosed in which one or more components selected from the above are included more than other components.
  • the multilayer piezoelectric actuator is large in size and is not suitable for miniaturization.
  • a piezoelectric actuator that applies the lever principle to mechanically amplify the movement of the piezoelectric element to expand the displacement.
  • JP-A-60-81568 Patent Document 6
  • one end in the expansion / contraction direction of the electrostriction or piezoelectric element is connected in common
  • two lever arms as displacement amplification means respectively connected to the other end of the electrostrictive or piezoelectric element by a fulcrum
  • a beam as displacement amplification means supported so as to be sandwiched between the other ends of the two lever arms.
  • a mechanical amplifying mechanism in which a working element as an output end is provided on the beam.
  • a cymbal type or Mooney type piezoelectric actuator having a plate-like element provided with a gap and fixed to the piezoelectric element has been proposed as a displacement enlarging element of the piezoelectric element.
  • FIG. 3 is a schematic perspective view of a cymbal type piezoelectric actuator
  • FIG. 4 is a schematic view for explaining a displacement mechanism of the cymbal type piezoelectric actuator in which a protrusion (claw portion) is formed.
  • a plate-like displacement enlarging element 13 having a ridge-like convex portion 13a formed by bending is fixed on a plate-like piezoelectric element 12 having a rectangular surface shape.
  • the ridge-like convex portion 13a is formed at a substantially central portion in the length direction of the displacement enlarging element, and the cross-sectional shape in the direction perpendicular to the ridge line direction of the ridge-like convex portion is a trapezoidal shape or an arch shape,
  • a gap 14 having a trapezoidal cross section is formed between the gap 12 and the gap 12.
  • the piezoelectric element 12 is formed of piezoelectric ceramics that are distorted when a voltage is applied.
  • the piezoelectric element 12 is regular in the surface direction. Repeats distortion and recovery (stretching movement).
  • a gap 14 is formed between the displacement magnifying element 13 and the piezoelectric element 12, the ridge-like convex part of the displacement magnifying element 13 is compared with the portion fixed to the piezoelectric element 12.
  • the structure is easy to deform.
  • the shape of the ridge-shaped convex portion of the displacement magnifying element 13 is deformed and displaced (moves up and down) in a direction perpendicular to the surface direction of the piezoelectric element.
  • the ridge is in a state where the piezoelectric element 22 is extended in the surface direction (FIG. Since the height of the convex portion 23a is low and the inclination of the side portion is small, the protrusion 23b stands up in a direction substantially perpendicular to the surface of the piezoelectric element.
  • the piezoelectric element 22 is contracted in the plane direction (FIG. 4B)
  • the height of the ridge-like convex portion 23a is high and the inclination of the side portion is large.
  • the protrusion repeats the displacement motion between the standing state and the sleeping state due to the vibration of the piezoelectric element. Therefore, the cymbal type piezoelectric actuator provided with the protrusion can be used as a drive mechanism that scrapes the non-vibrating body (moving body) in contact with the protrusion, and can also be used for a linear motor or the like.
  • a metal material is used as a displacement enlarging element because it can be displaced without absorbing expansion / contraction of the piezoelectric element (or without bending due to expansion / contraction).
  • the elastic body made of metal has a high specific gravity and is hard, its own vibration property is low, its formability is low, and it is difficult to reduce the size, and the complex shape with protrusions is not productive.
  • There are also disadvantages such as a point of deterioration, a point of deterioration due to rust, a point of difficulty in improving properties by blending additives, and a point of inability to ensure insulation.
  • Langevin vibrators are also known as piezoelectric actuators.
  • the Langevin vibrator has a structure in which a piezoelectric crystal is sandwiched between two metal blocks, can resonate at a low frequency, and is widely used for generation and detection of ultrasonic waves.
  • Various improvements have been attempted to date in order to further improve the performance of the Langevin vibrator.
  • Patent Document 7 JP-A-5-236598 discloses a front mass formed of a highly rigid material, a piezoelectric ceramic that has one end joined to one end of the highly rigid material and converts an input electric signal into ultrasonic waves, A rear mass formed of a highly rigid material with one end joined to the other end of the piezoelectric ceramic, a bolt and a nut for fastening the front mass, the piezoelectric ceramic, and the rear mass together, and a water joined to the other end of the front mass.
  • a bolt-clamped Langevin vibrator with an acoustic matching plate having an acoustic matching plate for impedance matching with the front mass, wherein the acoustic matching plate has a glass transition temperature higher than the Curie temperature of the piezoelectric ceramic A Langevin transducer is disclosed. This document describes that the front mass and the rear mass are formed of a highly rigid material such as an aluminum alloy, a titanium alloy, or stainless steel.
  • JP 2009-77130 A Patent Document 8
  • a piezoelectric element, a pair of sandwiching members that sandwich the piezoelectric element, and one of the sandwiching members are fixed, and the hardness is lower than the one sandwiching member.
  • An acoustic matching that is fixed to the buffer member and the other clamping member and has an ultrasonic transmission / reception unit at the end, and the value of the specific acoustic impedance indicates a value between the other clamping member and water
  • An ultrasonic transducer comprising a member is disclosed.
  • the backing plate as one clamping member and the front plate as the other clamping member are made of stainless steel, and the front plate is changed to an aluminum alloy that is lighter and softer than the backing plate. It is described that the Q value (a quantity representing the sharpness of resonance) can be reduced.
  • Patent Document 9 Japanese Patent Application Laid-Open No. 5-37999 (Patent Document 9) has a Langevin vibrator structure in which resonance blocks are provided symmetrically on both sides of a pair of piezoelectric vibrators, and the resonance block is made of a wideband ultrasonic wave made of plastic. A probe is disclosed. This document describes that the resonant block that provides broadband characteristics is composed of an epoxy compound material, and no other examples of plastic materials.
  • Patent Document 10 JP 2007-274191 A (Patent Document 10), a front plate, a backing plate, and a piezoelectric ceramic body disposed between the front plate and the backing plate are integrally formed by a shaft core bolt. There is disclosed a fixed ultrasonic vibrator in which the front plate is made of resin. This document describes that a polypropylene resin excellent in machinability, a polycarbonate resin excellent in transparency, and an acrylic resin excellent in both performances are preferable as a material for the front plate.
  • JP-A-5-300764 (Claim 1, FIGS. 1 and 3) Japanese Patent Publication No. 7-89746 (Claim 1, page 2, column 4, lines 19 to 21) JP 2006-31794 A (Claim 1, paragraphs [0004] to [0006] [0021] [0022]) JP 2001-327919 A (Claim 1, paragraphs [0010] [0022] [0026]) Japanese Patent No. 4353690 (Claim 1) JP-A-60-81568 (Claims) JP-A-5-236598 (Claims, paragraph [0003]) JP 2009-77130 A (Claims, paragraphs [0015] and [0047]) Japanese Patent Laid-Open No. 5-37999 (claims, paragraph [0012], examples) JP 2007-274191 A (Claims, paragraph [0013], Examples)
  • an object of the present invention is to provide an elastic body for an actuator excellent in bending vibration (elliptical motion) transmission property, and a piezoelectric actuator provided with this elastic body, despite being formed of a resin.
  • Another object of the present invention is to provide an actuator elastic body excellent in moldability and light weight, excellent in downsizing and workability into a complicated shape, and a piezoelectric actuator provided with this elastic body.
  • Still another object of the present invention is to provide an actuator elastic body excellent in electrical insulation and corrosion resistance and a piezoelectric actuator provided with this elastic body.
  • Another object of the present invention is to provide a displacement enlarging element capable of greatly enlarging displacement due to vibration (or expansion / contraction) of an electromechanical transducer and a displacement enlarging piezoelectric actuator provided with the displacement enlarging element.
  • Still another object of the present invention is to provide a Langevin vibrator that can vibrate a surface at high speed even with a low current (or low voltage).
  • Another object of the present invention is to provide a Langevin transducer capable of reducing energy loss and transmitting and receiving ultrasonic waves with high efficiency.
  • Still another object of the present invention is to provide a Langevin vibrator that can be miniaturized even for use at a low frequency and can easily control the resonance wavelength.
  • the present inventors have formed an elastic body of an actuator having an electromechanical conversion element such as a piezoelectric element with a thermoplastic resin and a filler, thereby forming the resin.
  • the displacement expansion type actuator can greatly increase the displacement due to vibration (or expansion / contraction) of the electromechanical transducer, and the low current in the Langevin vibrator It was found that the surface is vibrated at high speed even (or at a low voltage), and the present invention has been completed.
  • the elastic body of the present invention is an elastic body that is fixed to an electromechanical conversion element that expands and contracts by application of an alternating voltage and is used in any of the following actuators (1) to (3), and is thermoplastic. Contains resin and filler.
  • Actuator that is used in contact with a non-vibrating body flexurally vibrates due to expansion and contraction of the electromechanical transducer, and drives the actuator itself or the non-vibrating body.
  • Actuator provided with a mechanism for enlarging
  • the electromechanical conversion element may be a piezoelectric element.
  • the filler may be a fibrous filler.
  • the orientation direction of the fibrous filler may be parallel to the expansion / contraction direction of the electromechanical transducer.
  • the fibrous filler may be at least one selected from the group consisting of carbon fiber, glass fiber, and aramid fiber, and has an average fiber diameter of 0.1 to 50 ⁇ m and an average fiber length of 1 to 2 mm. You may do it.
  • the ratio of the filler is about 10 to 60 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • the actuator is an ultrasonic motor, and may have a plurality of protrusions for contacting the non-vibrating body on the side opposite to the side fixed to the piezoelectric element.
  • the piezoelectric actuator may be a linear ultrasonic motor, and the cross-sectional shape of the plurality of convex portions may be a sawtooth shape.
  • the piezoelectric actuator may be a rotor type ultrasonic motor and may have a comb tooth portion.
  • the elastic body of the present invention is an actuator having a mechanism in which the actuator expands displacement due to expansion and contraction of the piezoelectric element, and has a plate shape having a convex portion for forming a gap with the fixed piezoelectric element. Also good.
  • the convex portion may be a ridge-shaped convex portion that extends in one direction and is bent or curved.
  • the cross-sectional shape in a direction perpendicular to the ridge line direction of the ridge-shaped convex portion may be trapezoidal.
  • the side part of the ridge-shaped convex part may have a protrusion.
  • the elastic body of the present invention may be a resonance member of a Langevin vibrator.
  • the present invention includes a piezoelectric actuator including a piezoelectric element and the elastic body.
  • the piezoelectric actuator of the present invention may be a rotor type ultrasonic motor that is used in contact with a rotating body, bends and vibrates due to expansion and contraction of the piezoelectric element, and rotates the actuator itself or the rotating body.
  • the elastic body may be a displacement magnifying element and may be a cymbal type or Mooney type piezoelectric actuator.
  • the piezoelectric actuator of the present invention is a Langevin vibrator having a piezoelectric element and a pair of resonance members that sandwich the piezoelectric element, and at least one of the pair of resonance members is the elastic body. There may be. In general, when resin is used for one of the resonance members, it is assumed that the absorption of ultrasonic waves is greater than that of metal and does not vibrate. However, using the elastic body unexpectedly attenuates ultrasonic waves. It can vibrate with high efficiency.
  • the pair of resonance members may contain different types of resins, but preferably contain the same kind of resin.
  • the piezoelectric element and one resonance member and / or the other resonance member may be pressure-contacted (or pressure-bonded) with a joining means (screw or the like).
  • the “elastic body” is formed of a composition containing a thermoplastic resin and a filler, is used by being fixed to an electromechanical transducer such as a piezoelectric element, and the vibration of the electromechanical transducer is used.
  • an electromechanical transducer such as a piezoelectric element
  • the elastic body of the actuator that vibrates and includes the thermoplastic resin and the filler, it is possible to improve the transmission of the bending vibration (elliptical motion) even though it is formed of resin.
  • the orientation direction of the fibrous filler the stretching electric direction of the electromechanical conversion element (parallel to the contact surface between the piezoelectric element and the elastic body)
  • the acoustic impedance difference with the electromechanical conversion element is suppressed. This is because the efficiency of energy injection from the electromechanical transducer is increased, so that the hysteresis of vibration can be suppressed and the loss can be minimized.
  • the displacement enlarging element of the displacement enlarging actuator is formed of a thermoplastic resin
  • the displacement due to expansion and contraction of the electromechanical conversion element can be greatly expanded, and the thermoplastic resin and the fibrous filler are combined. Therefore, the displacement can be expanded as compared with the conventional metal material.
  • it has a specific gravity smaller than that of metal, it exhibits a displacement expansion function (vibration speed) equal to or higher than that of metal, has a high function per weight, and is suitable for applications that require weight reduction.
  • the size can be reduced as compared with a metal material.
  • electrical insulation and corrosion resistance can be improved.
  • At least one of the pair of resonance members that sandwich the electromechanical transducer of the Langevin vibrator is formed of a specific thermoplastic resin and a fibrous filler, so that a low current (or The surface can be vibrated at high speed even at low voltage, and the maximum vibration speed is also large.
  • energy loss can be remarkably reduced, so that ultrasonic waves can be transmitted and received with high efficiency.
  • it is small and excellent in lightness, and can be easily downsized even when used at a low frequency.
  • the resonance wavelength (or sound velocity) can be easily controlled by adjusting the orientation and content of the fibrous filler.
  • any actuator is excellent in moldability and light weight, and can be downsized and processed into a complicated shape.
  • electrical insulation and corrosion resistance can be improved.
  • FIG. 1 is a schematic side view of a rotor type ultrasonic motor.
  • FIG. 2 is a schematic perspective view of an elastic body constituting the rotor type ultrasonic motor of FIG.
  • FIG. 3 is a schematic perspective view of a cymbal type piezoelectric actuator.
  • FIG. 4 is a schematic view for explaining the displacement mechanism of the cymbal type piezoelectric actuator having protrusions formed thereon.
  • FIG. 5 is a schematic diagram for explaining a method of measuring the vibration speed of the elastic body.
  • FIG. 6 is a schematic side view showing an example of the linear ultrasonic motor of the present invention.
  • FIG. 7 is a schematic perspective view of a stator constituting the linear ultrasonic motor of FIG. FIG.
  • FIG. 8 is a schematic cross-sectional view showing an example of the Langevin vibrator of the present invention.
  • FIG. 9 is a graph showing the vibration speed of the elastic bodies obtained in Example 1 and Comparative Example 1.
  • FIG. 10 is a graph showing the vibration speed of the elastic bodies obtained in Examples 2 and 3.
  • FIG. 11 is a schematic perspective view of a cymbal type piezoelectric actuator manufactured in the example.
  • FIG. 12 is a schematic diagram illustrating an experimental system for evaluating the Langevin vibrator of the example.
  • FIG. 13 is a graph showing the relationship between the current and the vibration speed of the Langevin vibrator of the example.
  • the elastic body for an actuator of the present invention is fixed to a plate-like electromechanical conversion element (particularly a piezoelectric element for generating vibration by application of an AC voltage) that expands and contracts in a plane direction by application of an AC voltage.
  • Ultrasonic motor, displacement expansion type actuator, Langevin vibrator Since the elastic body contains a thermoplastic resin and a filler (particularly fibrous filler), the characteristics of various actuators can be improved.
  • the actuator elastic body of the present invention includes a thermoplastic resin and a filler as main components (substantially formed of a thermoplastic resin and a filler), and the total amount of the thermoplastic resin and the filler is elastic.
  • a thermoplastic resin and a filler as main components (substantially formed of a thermoplastic resin and a filler), and the total amount of the thermoplastic resin and the filler is elastic.
  • 80% by weight or more for example, 80 to 100% by weight
  • 90% by weight or more for example, 90 to 99% by weight
  • more preferably 95% by weight or more particularly 99% by weight or more
  • Thermoplastic resins need to have excellent vibration transmission characteristics. Specifically, both sides of a plate-shaped elastic body are fixed by sandwiching them between plate-shaped piezoelectric elements, and a resonant voltage is applied by applying a frequency voltage to the piezoelectric elements. When the voltage is increased, the maximum vibration speed is 300 mm / second or more, preferably 500 mm / second or more (for example, about 500 to 1500 mm / second), more preferably 700 mm / second or more (for example, 700 About 1000 mm / second). When the vibration speed is less than 300 mm / sec, vibration transmission to the moving body (or the driving performance of the elastic body itself) is low, and thus it is difficult to drive the moving body (or the elastic body itself).
  • the vibration speed of the thermoplastic resin can be measured by the method shown in FIG. That is, a thermoplastic resin is injection-molded into a 10 cm square and 3 mm thick flat plate, and the obtained molded body is cut into 1 cm ⁇ 3 cm by cutting to obtain a resin elastic body 31. As shown in FIG. 5, the obtained resin elastic body 31 is sandwiched between two plate-like piezoelectric elements 32 (“C-123” manufactured by Fuji Ceramics Co., Ltd., 1 cm ⁇ 2 cm ⁇ 1 mm), and an adhesive (Huntsman Bonded with "Araldite (Araldite Standard)" manufactured by Japan Co., Ltd., cured and cured for 24 hours.
  • C-123 manufactured by Fuji Ceramics Co., Ltd., 1 cm ⁇ 2 cm ⁇ 1 mm
  • an adhesive Hauntsman Bonded with "Araldite (Araldite Standard)” manufactured by Japan Co., Ltd., cured and cured for 24 hours.
  • a copper wire 33 is soldered to the electrode of the piezoelectric element 32, and vibration is performed at the resonance frequency. Vibration is measured with a laser Doppler meter at the maximum speed of vibration. When the voltage is increased, an increase in the vibration speed is observed, but at or above a specific voltage corresponding to the mechanical properties of the resin elastic body, a stagnation or decrease in the vibration speed is observed, but the maximum speed is the vibration speed. .
  • the glass transition temperature (Tg) of the thermoplastic resin is 30 ° C. or higher. From the viewpoint of moldability, it is, for example, 50 to 450 ° C., preferably 70 to 350 ° C., more preferably 75 to 300 ° C. (especially 80 to 200 ° C.). Degree). Further, it may be 70 ° C. or higher, for example, 75 to 450 ° C., preferably 80 to 430 ° C. (eg 100 to 400 ° C.), more preferably 80 to 300 ° C. (especially 80 to 160 ° C.). May be.
  • the glass transition temperature is preferably higher than the Curie temperature of the piezoelectric element.
  • the temperature of the elastic body rises due to heat generation due to vibration, an increase in ambient temperature, heat storage due to friction, and the like, and the vibration performance decreases. Furthermore, the coefficient of friction of the elastic body also decreases, and the vibration transmission property to the moving body decreases. However, if the glass transition temperature is too low, such a decrease in vibration transmission property becomes significant. Furthermore, if the glass transition temperature is too low, the wear resistance at high temperatures also decreases, and wear and breakage are likely to occur at high temperatures due to frictional heat. On the other hand, if the glass transition temperature is too high, the molding temperature becomes high and approaches the decomposition temperature, which makes processing difficult.
  • the thermoplastic resin used in the present invention has an appropriate elastic modulus, so that the elastic body is excellent in vibration. Especially, in the case of a comb-like elastic body in an ultrasonic motor, a non-vibrating body (especially a moving body).
  • the driving force can be improved because the vibration at the tip portion in contact with the surface increases.
  • the displacement expansion type actuator has an excellent displacement expansion function. For example, when used in a linear motor, the driving force is improved because the vibration at the tip that contacts a non-vibrating body (especially a moving body) increases. it can.
  • the glass transition temperature can be measured according to the DSC method of ASTM 3418.
  • the density (specific gravity) of the thermoplastic resin may be, for example, 3 g / cm 3 or less, preferably 0.8 to 2.5 g / cm 3 , more preferably 0.9 to 2 g / cm 3 (particularly 1 About 1.5 g / cm 3 ). If the density is too large, the vibration property is lowered, and the drive transmission property of the moving body is lowered.
  • the density can be measured by a method based on ISO 1183. In the present invention, even if the displacement magnifying element of the displacement magnifying type actuator is made of a low specific gravity thermoplastic resin, it has a displacement magnifying function equivalent to or higher than that of an element made of a high specific gravity metal. High displacement expansion function.
  • the thermoplastic resin is not particularly limited as long as it satisfies the above characteristics, but is preferably a hard resin because it can suppress attenuation and loss of vibration energy and is excellent in heat resistance and wear resistance.
  • the hard resin include cyclic olefin resin, styrene resin (syndiotactic polystyrene resin, etc.), polyacetal resin (polyoxymethylene, etc.), polyaryl ketone resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin, Polyethersulfone resin, polyester resin (polyalkylene arylate such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyarylate resin, polyglycolic acid resin, liquid crystal polyester, etc.), polycarbonate resin, polyoxybenzoyl ester resin , Polybenzimidazole resins, polyamideimide resins, polyamide resins (aliphatic polyamide resins
  • thermoplastic resins hard resin or engineering plastic can be preferably used because it can suppress attenuation and loss of vibration energy, has a large displacement expansion function, and is excellent in heat resistance and wear resistance.
  • ethylene-norbornene Cyclic olefin resins such as copolymers, syndiotactic polystyrene resins, polycarbonate resins, polyamide resins such as aliphatic polyamides, polyaryl ketone resins, polyether sulfone resins, polyphenylene sulfide resins, polyglycolic acid resins, liquid crystals Polyester is widely used.
  • thermoplastic resins from the viewpoint of excellent heat resistance, wear resistance, and electrical insulation, cyclic olefin resins such as ethylene-norbornene copolymer, polycarbonates such as bisphenol A type polycarbonate, nylon MXD6 and the like Aromatic polyamide resins, polyaryl ketone resins, polyphenylene sulfide resins and the like are widely used, polyaryl ketone resins and polyphenylene sulfide resins are preferred, and polyphenylene sulfide resins are particularly preferred from the viewpoint of excellent bending vibration transmission.
  • cyclic olefin resins such as ethylene-norbornene copolymer
  • polycarbonates such as bisphenol A type polycarbonate, nylon MXD6 and the like
  • Aromatic polyamide resins, polyaryl ketone resins, polyphenylene sulfide resins and the like are widely used, polyaryl ketone resins and polyphenylene sulfide resins are preferred
  • thermoplastic resins may be crystalline resins because of their high vibration transmission and displacement expansion function.
  • the crystalline resin include cyclic olefin resins, syndiotactic polystyrene, polyacetal resins, polyester resins, polyamide resins, polyphenylene sulfide resins, polyaryl ketone resins, and the like.
  • These crystalline resins can be used alone or in combination of two or more.
  • these crystalline resins can be reduced in weight compared to metals and have excellent adhesion to piezoelectric elements.
  • thermosetting resins these resins do not contain unreacted curable monomers and can reduce energy loss.
  • the molecular structure is less likely to be deformed, mechanical loss (tan ⁇ ) is small, and energy loss can be reduced. Therefore, in the Langevin vibrator, even when the same current (or voltage) is applied, ultrasonic waves can be transmitted and received with higher efficiency compared to conventional materials.
  • polyaryl ketone resins and polyphenylene sulfide resins are preferable because they are particularly excellent in heat resistance, wear resistance, and electrical insulation, and polyphenylene sulfide resins are particularly preferable because they are particularly excellent in vibration transmission and displacement expansion function.
  • the polyaryl ketone resin is an aromatic polyether ketone having an aryl skeleton bonded by an ether bond and a ketone bond, and is a polyether ketone resin, a polyether ether ketone resin, a polyether ketone ketone. It is classified as a series resin.
  • the aryl skeleton is usually a phenylene group, but has another arylene group such as a substituted phenylene group (for example, an alkylphenylene group having a substituent such as a C 1-5 alkyl group, or a phenyl group).
  • Arylphenylene group or a group represented by the formula —Ar—X—Ar— (wherein Ar represents a phenylene group and X represents S, SO 2 or a direct bond).
  • the ratio of the other arylene group may be, for example, 50 mol% or less (particularly 30 mol% or less).
  • These polyaryl ketone resins can be used alone or in combination of two or more. Of these polyaryl ketone resins, polyether ether ketone resins having a high proportion of ether bonds are preferred from the viewpoint of excellent mechanical properties such as impact resistance.
  • Polyetheretherketone-based resins are polyetheretherketone obtained by polycondensation of dihalogenobenzophenone and hydroquinone, and are commercially available under the trade name “PEEK” series from VICTREX and “VESTAKEEP” series from EVONIK However, it may be a polyether ether ketone in which the phenylene group has a substituent (for example, a C 1-3 alkyl group), or a polyether ether ketone in which the phenylene group is another aryl skeleton such as a naphthylene group.
  • the weight average molecular weight of the polyaryl ketone resin (especially polyether ether ketone resin) is, for example, about 5000 to 30000, preferably about 6000 to 25000, and more preferably about 8000 to 20000 in GPC (polystyrene conversion).
  • Polyaryl ketone resin (especially a polyether ether ketone resin) volume flow rate (MVR) is in compliance with ISO 1133 (380 °C / 5kg) , for example, 10 ⁇ 200cm 3/10 min, preferably 30 ⁇ 150 cm 3/10 min, more preferably about 50 ⁇ 100 cm 3/10 min.
  • Polyaryl ketone resin (especially polyether ether ketone resin) (single resin that does not contain filler) is capable of vibration transmission and displacement expansion in tensile tests (50 mm / min) in accordance with ISO 527-1 / -2.
  • the tensile strength, breaking strength, yield elongation, breaking elongation, and tensile elastic modulus may be in the following ranges.
  • the tensile strength may be, for example, about 10 to 300 MPa, preferably about 50 to 200 MPa, and more preferably about 80 to 150 MPa.
  • the yield elongation may be, for example, about 1 to 10%, preferably 2 to 8%, more preferably about 3 to 6%.
  • the breaking elongation may be, for example, 10% or more, for example, 10 to 100%, preferably 15 to 50%, and more preferably about 20 to 40%.
  • the tensile elastic modulus may be, for example, about 1000 to 10,000 MPa, preferably about 2000 to 5000 MPa, and more preferably about 3000 to 4000 MPa.
  • polyphenylene sulfide resin As the polyphenylene sulfide resin (polyphenylene thioether resin), homopolymers and copolymers having a polyphenylene sulfide skeleton — (Ar—S) — [wherein Ar represents a phenylene group] Is included.
  • the copolymer includes, for example, a substituted phenylene group (for example, an alkylphenylene group having a substituent such as a C 1-5 alkyl group, and an aryl having a substituent such as a phenyl group).
  • the polyphenylene sulfide resin may be a homopolymer using the same repeating unit among the phenylene sulfide groups composed of such phenylene groups, and includes different repeating units from the viewpoint of processability of the composition. It may be a copolymer.
  • a substantially linear polymer having a p-phenylene sulfide group as a repeating unit is preferably used.
  • the copolymer can be used in combination of two or more different phenylene sulfide groups.
  • the copolymer is preferably a combination having a p-phenylene sulfide group as a main repeating unit and an m-phenylene sulfide group. From the viewpoint of physical properties such as heat resistance, moldability and mechanical properties, p-phenylene is preferred.
  • a substantially linear copolymer containing 60 mol% (preferably 70 mol%) or more of sulfide groups is particularly preferable.
  • the polyphenylene sulfide resin may be a polymer having a relatively low molecular weight linear polymer whose melt viscosity is increased by oxidative crosslinking or thermal crosslinking to improve molding processability, and is reduced from a monomer mainly composed of a bifunctional monomer. It may be a high molecular weight polymer having a substantially linear structure obtained by polymerization. From the viewpoint of physical properties of the obtained molded product, a substantially linear structure polymer obtained by condensation polymerization is preferred.
  • the polyphenylene sulfide resin includes a branched or crosslinked polyphenylene sulfide resin obtained by polymerizing a monomer having three or more functional groups in addition to the polymer, and a resin composition obtained by blending the resin with the linear polymer. Things can also be used.
  • polyphenylene sulfide resin polyphenylene sulfide (poly-1,4-phenylene sulfide and the like) and polybiphenylene sulfide (PBPS), polyphenylene sulfide ketone (PPSK), polybiphenylene sulfide sulfone (PPSS) and the like can be used.
  • PBPS polybiphenylene sulfide
  • PPSK polyphenylene sulfide ketone
  • PPSS polybiphenylene sulfide sulfone
  • a polyphenylene sulfide resin can be used individually or in combination of 2 or more types.
  • the number average molecular weight of the polyphenylene sulfide resin is, for example, about 500 to 100,000, preferably 700 to 50,000, and more preferably about 1,000 to 30,000 in GPC (polystyrene conversion).
  • the melt flow rate (MFR) of the polyphenylene sulfide resin is compliant with JIS K7315-1 (315 ° C., load 5 kg), for example, 1 to 10000 g / 10 minutes, preferably 5 to It may be about 5000 g / 10 minutes, more preferably about 10 to 3000 g / 10 minutes (particularly 20 to 2000 g / 10 minutes).
  • Polyphenylene sulfide resin (single resin that does not contain a filler) is capable of improving vibration transmission and displacement expansion function in a tensile test (50 mm / min) in accordance with ISO 527-1 / -2.
  • the following ranges may be sufficient as a breaking elongation and a tensile elasticity modulus.
  • the tensile strength may be, for example, about 10 to 300 MPa, preferably about 50 to 250 MPa, and more preferably about 60 to 200 MPa.
  • the breaking elongation may be, for example, about 1 to 30%, preferably 1 to 20%, and more preferably about 1 to 15%.
  • the tensile elastic modulus may be, for example, about 1000 to 10,000 MPa, preferably about 2000 to 5000 MPa, and more preferably about 3000 to 4000 MPa.
  • the elastic body of the present invention improves the mechanical properties such as impact resistance, dimensional stability, rigidity, etc. in addition to the improvement of flexural vibration transmission and displacement expansion function.
  • the filler may be an organic filler or an inorganic filler.
  • the shape of the filler is not particularly limited, either a fibrous filler, or a granular or plate-like filler.
  • the fibrous filler includes inorganic fibrous fillers and organic fibrous fillers.
  • inorganic fibrous fillers include ceramic fibers (for example, glass fibers, carbon fibers, asbestos fibers, silica fibers, silica / alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, potassium titanate fibers, etc.) And metal fibers (for example, stainless steel fibers, aluminum fibers, titanium fibers, copper fibers, brass fibers, etc.).
  • organic fibrous filler include high melting point organic fibers such as aramid fibers, fluororesin fibers, and acrylic fibers. These fibrous fillers can be used alone or in combination of two or more.
  • Examples of granular or plate-like fillers include carbon black, graphite, silicon carbide, silica, silicon nitride, boron nitride, quartz powder, hydrotalcite, glasses (glass flakes, glass beads, glass powder, milled glass fiber, etc.) ), Carbonates (calcium carbonate, magnesium carbonate, etc.), silicates (calcium silicate, aluminum silicate, talc, mica, kaolin, clay, diatomaceous earth, wollastonite, etc.), metal oxides (iron oxide, Titanium oxide, zinc oxide, alumina, etc.), sulfates (calcium sulfate, barium sulfate, etc.), various metal powders, metal foils, and the like. These granular or plate-like fillers can be used alone or in combination of two or more.
  • fillers are surface-treated with a sizing agent or a surface treatment agent (for example, a functional compound such as an epoxy compound, an isocyanate compound, a silane compound, or a titanate compound) as necessary. May be.
  • a sizing agent or a surface treatment agent for example, a functional compound such as an epoxy compound, an isocyanate compound, a silane compound, or a titanate compound.
  • the treatment of the filler may be performed simultaneously with the addition of the filler, or may be performed in advance before the addition.
  • the amount of the sizing agent or surface treatment agent used is 5% by weight or less, preferably about 0.05 to 2% by weight, based on the filler.
  • fibrous fillers are preferred because the orientation state can be adjusted to improve the ability to transmit flexural vibrations and the ability to expand displacement, among which inorganic fibers such as glass fibers and carbon fibers, and aramid fibers.
  • Organic fibers such as are widely used, have high heat resistance, can improve vibration transmission, displacement expansion function, and mechanical properties, inorganic fibers are preferred, and carbon fibers are also excellent in lightness and flexibility. Is particularly preferred.
  • the fibrous filler only needs to be at least partially oriented in the elastic body, and includes not only long fibers but also short fibers such as whiskers.
  • the average fiber diameter of the fibrous filler is, for example, about 0.1 to 50 ⁇ m, preferably 1 to 30 ⁇ m, and more preferably about 2 to 20 ⁇ m. If the fiber diameter is too small, it will be difficult to improve the vibration transmissibility, the displacement expansion function, and the mechanical characteristics. On the other hand, even if the fiber diameter is too large, it is difficult to improve vibration transmission, displacement expansion function, and mechanical characteristics.
  • the average fiber length of the fibrous filler is, for example, about 1 ⁇ m to 2 mm, preferably about 10 ⁇ m to 1.5 mm, and more preferably about 100 ⁇ m to 1 mm. If the fiber length is too small, it will be difficult to improve vibration transmission, displacement expansion function, and mechanical properties. On the other hand, when the fiber length is too large, it becomes difficult to orient the fibrous filler, and the vibration transmission property and the displacement expansion function are deteriorated.
  • the average aspect ratio of the fibrous filler is, for example, about 3 to 500, preferably about 5 to 100, and more preferably about 10 to 50. If the aspect ratio is too small, it is difficult to improve vibration transmission, displacement expansion function, and mechanical characteristics. On the other hand, if the aspect ratio is too large, it becomes difficult to orient the fibrous filler, and the vibration transmissibility and the displacement expansion function are reduced.
  • the average fiber diameter of the fibrous filler can be measured by various observation devices such as visual observation, an optical microscope, and a scanning electron microscope (SEM). It is preferable to obtain the value.
  • the average fiber length was determined by using the above-mentioned observation apparatus from a part (about 500) of fibers obtained by cutting out about 5 g of a sample at random from an arbitrary position of the elastic body, ashing at 650 ° C., and taking out the fibers. .
  • the fibrous filler is preferably oriented in a certain direction in the elastic body from the viewpoint of improving the flexural vibration transmission property and the displacement expansion function, and the electromechanical conversion element (particularly a piezoelectric element). It is particularly preferred to be oriented parallel to the surface direction of the contact surface between the elastic body and the elastic body (parallel to the vibration direction of the piezoelectric element).
  • the elastic body of the present invention may be formed by laminating a plurality of layers, but the orientation direction of the fibrous filler in each layer is preferably the same direction, and usually the fibrous filler in the single-layer elastic body Are oriented in a certain direction.
  • the expansion / contraction direction (vibration direction) of the electromechanical conversion element can be appropriately selected.
  • the direction perpendicular to the contact surface between the electromechanical conversion element and the elastic body in the case of a plate-like piezoelectric element, the thickness
  • the surface direction of the contact surface between the electromechanical transducer and the elastic body is preferable from the viewpoint that bending vibration is easily generated in the elastic body.
  • the surface shape of the plate-like electromechanical transducer is rectangular, the longitudinal direction is preferable, and in the case of a ring-shaped elastic body (rotor type ultrasonic motor), the circumferential direction is preferable.
  • the fibrous filler is parallel to the expansion / contraction direction of the electromechanical transducer, the reason why the transmission of bending vibration and the displacement expansion function are improved is not clear, but the fibrous filler is parallel to the expansion / contraction direction. Is oriented in the bending direction on the fibrous filler. Therefore, it is considered that tan ⁇ (loss factor) is reduced by the effect of the fibrous filler, and the characteristics are improved. In particular, it is considered that the ridge-shaped convex portion is easily deformed in the displacement magnifying element.
  • the vibration direction of the electromechanical conversion element is a direction perpendicular to the contact surface between the electromechanical conversion element and the elastic body from the viewpoint of excellent productivity. Also good.
  • the AC frequency applied to the electromechanical conversion element (particularly the piezoelectric element) and the resonance frequency in the orientation direction of the fibrous filler in the elastic body to which the electromechanical conversion element is fixed are the same, Tan ⁇ is small.
  • the resonance frequency is deviated, the ratio of the energy input to the elastic body to heat energy increases, and the vibration energy transmitted to the non-vibrating body and the displacement expansion function are significantly reduced.
  • the ratio of the filler is, for example, 5 to 100 parts by weight, preferably 10 to 60 parts by weight, more preferably 15 to 50 parts by weight (particularly 20 parts by weight) with respect to 100 parts by weight of the thermoplastic resin. About 40 parts by weight). When the proportion of the filler is too large, impact resistance and durability are lowered.
  • the elastic body of the present invention is formed of a thermoplastic resin, it can be easily improved in mechanical properties and designability by blending a conventional resin additive.
  • resin additives include colorants (dyes and pigments), lubricants, stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, light stabilizers, etc.), antistatic agents, flame retardants, and flame retardant aids. , Antiblocking agents, plasticizers, preservatives and the like. These additives can be used alone or in combination of two or more.
  • the elastic body of the present invention can be selected from a range of about 1 to 300 GPa in the tensile elastic modulus in a tensile test (50 mm / min) in accordance with ISO 527-1 / -2. From the point that can be achieved, it may be, for example, about 1.5 to 100 GPa, preferably about 2 to 50 GPa, more preferably about 3 to 10 GPa. If the tensile modulus is too small, the vibration transmission property and the displacement expansion function are lowered, and if the tensile modulus is too large, the molding process becomes difficult.
  • the shape of the elastic body of the present invention can be selected according to the type of actuator (particularly a piezoelectric actuator).
  • a two-dimensional shape such as a plate shape (square flat plate shape, disk shape, etc.), a rod shape, etc. It may be a three-dimensional shape such as a shape, a cylindrical shape, a ring shape, or a column shape.
  • a linear ultrasonic motor it may be a plate shape or a rod shape (particularly a rod shape), or a rotor type ultrasonic motor. It may be ring-shaped or cylindrical (particularly ring-shaped).
  • the ultrasonic motor is fixed to the electromechanical conversion element (particularly piezoelectric element) because it can efficiently drive a non-vibrating body (particularly moving body) by bending vibration transmitted from the electromechanical conversion element (particularly piezoelectric element). It is preferable that a convex portion (tooth portion) is formed on the side opposite to the formed side, and it is particularly preferable that a plurality of convex portions (tooth portions) are formed.
  • Examples of the planar shape of the convex portion include a quadrangular shape (square shape, rectangular shape, etc.), a triangular shape, a circular shape, and an elliptical shape. Of these shapes, a rectangular shape such as a rectangular shape is preferable.
  • Examples of the cross-sectional shape of the convex portion cross-sectional shape in the thickness direction of the elastic body) include a quadrangular shape (square shape, rectangular shape, etc.), a triangular shape, and a wave shape. Of these shapes, a rectangular quadrangular shape, a triangular shape, and the like are preferable.
  • a triangular shape in particular, a triangular shape that is asymmetrical in the protruding direction of the convex portion (direction perpendicular to the contact surface between the piezoelectric element and the elastic body) (non-isosceles triangular shape)
  • Such a triangular shape may have a sawtooth shape in which a plurality of such triangular shapes are arranged at intervals.
  • a quadrangular shape in particular, a quadrangular shape (rectangular shape, square shape, etc.) symmetrical in the protruding direction of the convex portion is preferable.
  • the number of convex portions may be plural in order to drive the moving body by the bending vibration of the elastic body.
  • a linear ultrasonic motor for example, it is about 2 or more (for example, 2 to 10)
  • the rotor for example, about 10 or more (for example, 10 to 20) convex portions may be regularly formed.
  • FIG. 6 is a schematic side view showing an example of the linear ultrasonic motor of the present invention
  • FIG. 7 is a schematic perspective view of a stator constituting the linear ultrasonic motor of FIG.
  • the motor 41 has a plate-like base portion 43a having a rectangular surface shape and two convex portions (sawtooth portions) 43b formed at a lower portion of the plate-like base portion and extending in the width direction at intervals.
  • the plate-like elastic body 43, the plate-like piezoelectric element 42 laminated on a part of the plate-like elastic body 43 in the length direction, and the tips of the convex portions 43b of the plate-like elastic body are arranged in contact with each other.
  • a plate-like moving body 45 having the same width as the plate-like elastic body.
  • a pair of electrodes 42a and 42b for applying a voltage to the piezoelectric element are formed on the surface of the piezoelectric element 42, and a vibrating portion of the piezoelectric element (a portion where the pair of electrodes face each other in the thickness direction of the piezoelectric element). ) And the elastic body 43 coincide with each other. Also in the ultrasonic motor 41, the piezoelectric element 42 and the plate-like elastic body 43 are fixed to form the stator 44, whereas the moving body 45 is movably disposed and is generated by the piezoelectric element 42. The ultrasonic vibration is converted into a linear motion of the moving body 45 via the plate-like elastic body 43.
  • the elastic body expands and contracts in the longitudinal direction along with the vibration of the piezoelectric element on the contact portion side with the piezoelectric element.
  • the expansion and contraction is suppressed, so that bending vibration occurs, and the convex portion formed on the opposite side is scraped in one direction, and the moving body moves straight in one direction.
  • the shape and size of the elastic body can be selected according to the difference in frequency and type, and is not particularly limited.
  • the elastic body may be prepared within the following range.
  • the elastic body has two or more (for example, 2 to 5, preferably 2 to 3) protrusions having a triangular cross section extending at intervals in the width direction. (More preferably, about two) may be formed, and the triangular section of the convex portion may be a sawtooth shape.
  • the height of the convex portion such as a sawtooth is about 0.5 to 10 mm, preferably about 1 to 8 mm, and more preferably about 2 to 5 mm.
  • the height of the convex portion can be selected according to the frequency, but is 0.1 to 1.5 times, preferably 0.2 to 1.0 times, more preferably 0.3 to 1.0 times the thickness of the elastic body. It is about 0.8 times.
  • the thickness of the elastic body is, for example, about 1 to 40 mm, preferably 2 to 30 mm, and more preferably about 3 to 20 mm.
  • the thickness of the elastic body is, for example, about 1 to 10 times, preferably 1.5 to 8 times, and more preferably about 2 to 5 times the thickness of the piezoelectric element.
  • the electromechanical conversion element (particularly the piezoelectric element) is preferably fixed to at least a part of the plate-like elastic body.
  • the length of the elastic body in the longitudinal direction is, for example, 1.5 to 2.5 times (especially 1.8 to 2.2 times) the length of the electromechanical conversion element (length of the vibrating portion). ) Degree.
  • the length of the elastic body in the longitudinal direction may be, for example, about 9 to 200 mm (particularly 15 to 100 mm).
  • the length of the vibration part of the electromechanical transducer may be, for example, about 5 to 100 mm (especially 10 to 50 mm).
  • the thickness of the elastic body may be, for example, about 0.05 to 0.4 times (particularly 0.1 to 0.3 times) the length in the longitudinal direction.
  • the thickness of the elastic body may be, for example, about 1 to 40 mm (particularly 3 to 20 mm).
  • the central axis of the elastic body and the vibration part of the electromechanical transducer be approximately aligned with each other from the viewpoint of the transmission of bending vibration.
  • the elastic body has a convex portion for transmitting the bending vibration of the elastic body to the non-vibrating body at the contact portion with the non-vibrating body.
  • the elastic body which does not have the convex part may have vibration transmission properties, but the vibration transmission performance can be improved by forming the convex portions.
  • the elastic body having a convex portion may have a shape (a shape having a comb tooth portion) in which minute convex portions are regularly formed in the circumferential direction of the ring.
  • the width of the convex portion is, for example, 0.1 to It is about 30 mm, preferably about 0.2 to 15 mm, more preferably about 0.5 to 10 mm (particularly 0.5 to 5 mm), and the height of the convex portion is, for example, 0.1 to 30 mm, preferably 0.2. It may be about 15 mm (for example, 0.5 to 10 mm), more preferably about 0.5 to 5 mm (particularly 0.5 to 3 mm).
  • the depth of the slit is, for example, about 0.1 to 30 mm, preferably about 0.2 to 15 mm (for example, 0.5 to 10 mm), more preferably about 0.5 to 5 mm (particularly about 0.5 to 3 mm). It may be. Further, the ratio of the width of the convex portion to the width of the slit portion (the width of the convex portion / the width of the slit portion) is, for example, 0.01 to 100, preferably 0.1 to 10, and more preferably 0.3 to About 30.
  • the elastic body of the present invention can be manufactured by a conventional molding method, for example, extrusion molding, injection molding, compression molding, etc., depending on the type and shape of the ultrasonic motor.
  • a conventional molding method for example, extrusion molding, injection molding, compression molding, etc.
  • extrusion molding, injection molding, and the like are widely used, and in the case of a three-dimensional shape such as a sawtooth shape or a comb tooth shape, the molding can usually be performed by injection molding or cutting.
  • the elastic body is formed of resin, it is excellent in moldability.
  • the convex portion of the elastic body may not include a filler.
  • the convex portion not including the convex portion is not integrally formed, and the convex portion not including the filler is separately formed by extrusion molding or injection molding, and joined to the plate base of the elastic body. May be.
  • the fibrous filler can be easily oriented in the resin flow direction.
  • the method for orienting the fibrous filler in a certain direction can be appropriately selected depending on the type of resin and is not particularly limited.
  • the resin composition to be subjected to melt kneading is 80 to 180 ° C. (particularly 100 ° C.).
  • the cylinder temperature may be about 220 to 420 ° C. (particularly 320 to 400 ° C.), and the mold temperature may be about 40 to 250 ° C. (particularly 100 to 220 ° C.). Therefore, for the elastic body of the linear ultrasonic motor, a method in which a base part in which the fibrous filler is oriented in the flow direction of the resin is produced by extrusion molding or injection molding, and then a separately produced convex part is joined.
  • the shape of the displacement magnifying element is a (formable) convex part for forming a gap with a fixed electromechanical piezoelectric element. It has a plate shape. Since the displacement enlarging element has such a convex portion, a gap portion can be formed with the fixed electromechanical piezoelectric element, and the displacement of the convex portion due to expansion and contraction of the electromechanical transducer can be enlarged.
  • the size of the convex portion can be selected according to the type of the displacement expansion type actuator.
  • the height of the convex portion is such that the height of the void (maximum height) is, for example, 0.1 to 10 mm, preferably 0.2 to 5 mm, more preferably 0.3 to 3 mm (particularly 0.5 to 2 mm). ) Is preferred.
  • the shape of the convex portion is not particularly limited as long as it can form a gap with the electromechanical piezoelectric element, and is a convex portion for forming (including) a sealed gap with the electromechanical piezoelectric element. There may be a convex portion for forming a void portion that is not sealed with the electromechanical piezoelectric element, such as the convex portion shown in FIG.
  • Examples of the shape of the convex portion for forming a sealed air gap between the electromechanical piezoelectric element include a hemispherical shape, a conical shape, a truncated conical shape, and a polygonal pyramid shape (triangular pyramid shape, quadrangular pyramid shape, etc.) ), A shape in which a part of the plate surface protrudes into a shape such as a truncated polygonal pyramid shape, a columnar shape, or a polygonal column shape (or a hollow shape that is bent or curved into these shapes).
  • the shape of the convex portion may be, for example, the shape described in JP 2012-34019 A.
  • the ridge-shaped convex with both sides open since the displacement enlargement function is large, the actuator integrated with the electromechanical transducer in injection molding can be easily manufactured, and it is excellent in workability and productivity.
  • a portion (or a mountain-shaped convex portion), that is, a ridge-shaped convex portion extending in one direction formed by bending or bending is preferable.
  • the cross-sectional shape perpendicular to the ridge direction (ridge direction) of the ridge-shaped convex portion is a bent shape or a curved shape.
  • the bent shape include a triangular shape, a square shape, a rectangular shape, and a trapezoidal shape.
  • the curved shape include a substantially semicircular shape and a wave shape.
  • a trapezoidal shape (particularly, a trapezoidal shape whose width narrows from the contact side with the electromechanical conversion element toward the non-contact side) is preferable from the viewpoint of a large displacement enlarging function.
  • An actuator in which the convex portion has a trapezoidal shape is known as a cymbal actuator.
  • the height of the ridge-shaped convex portion is such that the height of the void portion (maximum height) is, for example, 0.1 to 5 mm, preferably 0.3 to 3 mm (for example, 0.4 to 2 mm), and more preferably 0. A height of about 5 to 1.5 mm (particularly 0.8 to 1.2 mm) is preferable.
  • the width of the ridge-shaped convex portion is, for example, the width of the void portion (maximum width), for example, 1 to 30 mm, preferably 2 to 20 mm, more preferably 3 to 15 mm. (Especially about 5 to 10 mm).
  • the width of the gap is, for example, 0.1 to 0.9 times, preferably 0.2 to 0.1 times the length of the electromechanical conversion element (particularly the piezoelectric element) (the length in the direction perpendicular to the ridge line direction). It is about 0.8 times, more preferably about 0.3 to 0.7 times.
  • the length of the ridge-like convex portion in the ridge line direction is, for example, about 1 to 100 mm, preferably 2 to 30 mm, and preferably 3 to 20 mm (particularly 5 to 15 mm).
  • the inclination angle of the side portion is, for example, 50 to 80 °, preferably 10 to 70 °, more preferably 20 to 60 ° (particularly 30 to 50 °). Degree. If the inclination angle is too large, the width of the vertical movement of the convex portion will be reduced and the displacement expansion function will be reduced. If the inclination angle is too small, it will be difficult to deform the convex portion and the displacement expansion function will be reduced.
  • the part where the convex part (particularly the ridge-like convex part) is formed is not particularly limited, but it is usually formed in a substantially central part (in the case of a ridge-like convex part, a substantially central part in a direction perpendicular to the ridge line direction).
  • the planar shape of the displacement enlarging element includes a quadrangular shape (square shape, rectangular shape, etc.), a triangular shape, a circular shape, and an elliptical shape. Of these shapes, a rectangular shape such as a rectangular shape is preferable.
  • the thickness of the displacement enlarging element is, for example, about 0.3 to 5 mm, preferably about 0.5 to 3 mm, and more preferably about 0.6 to 2 mm (particularly 0.8 to 1.5 mm).
  • the thickness of the displacement enlarging element is, for example, 0.1 to 10 times, preferably 0.3 to 5 times, more preferably 0.3 to 3 times (particularly 0.5 to 3 times) the thickness of the electromechanical transducer element. 2 times).
  • the displacement magnifying element may have a protrusion when it is used as a drive mechanism that scrapes a non-vibrating body (moving body) in contact therewith.
  • the protrusion is formed on the convex portion of the displacement magnifying element.
  • the protrusion having the trapezoidal cross-sectional shape it may be formed on the side as shown in FIG.
  • the shape of the protrusion may be a polygonal column shape such as a triangular column shape or a quadrangular column shape, a substantially semi-cylindrical shape, a polygonal pyramid shape such as a triangular pyramid shape or a quadrangular pyramid shape.
  • a polygonal column shape such as a triangular column shape is preferable.
  • Examples of the cross-sectional shape of the protrusion include, for example, a quadrangular shape (square shape, rectangular shape, etc.), a triangular shape, and a wave shape. Of these shapes, a polygonal shape such as a triangular shape is preferable.
  • the number of protrusions can be selected according to the type of actuator, and may be singular or plural.
  • the height of the protrusion is usually 1 or more times the height of the convex portion, for example, 1.2 to 10 times, preferably 1.5 to 8 times, more preferably 2 to 5 times. Degree.
  • the displacement magnifying element of the present invention can be manufactured by a conventional molding method, for example, extrusion molding, injection molding, compression molding, or the like, depending on the type and shape of the displacement magnifying piezoelectric actuator.
  • a conventional molding method for example, extrusion molding, injection molding, compression molding, or the like, depending on the type and shape of the displacement magnifying piezoelectric actuator.
  • extrusion molding, injection molding, and the like are widely used, and in the case of a three-dimensional shape such as a sawtooth shape or a comb tooth shape, the molding can usually be performed by injection molding or cutting.
  • the elastic body is formed of resin, it is excellent in moldability.
  • the displacement magnifying element when the displacement magnifying element includes a filler and has a protrusion, the protrusion may not include the filler.
  • the ridge-shaped convex portion is formed by extrusion molding, injection molding, or the like separately without forming the projection integrally, and by separately forming the projection not including the filler. You may join to the side part.
  • a method for orienting the fibrous filler in a certain direction a method similar to the method exemplified in the section of the ultrasonic motor elastic body can be used.
  • a displacement magnifying element having protrusions it is preferable to produce a base having a fibrous filler oriented in the flow direction of the resin by extrusion molding or injection molding, and then join a separately prepared protrusion.
  • the elastic body of the present invention is an elastic body for a Langevin vibrator
  • the elastic body forms a resonance member
  • the shape of the resonance member is a front member (or front mass) that is a resonance member of a conventional Langevin vibrator
  • the shape used by a rear member (or rear mass) may be sufficient.
  • the Langevin transducer (ultrasonic transducer) shown in FIG. 8 is a so-called bolted Langevin transducer and is useful as a device for generating and detecting ultrasonic waves in a medium such as water or air.
  • the Langevin vibrator includes a piezoelectric element 51 and a pair of resonant members 52 and 53 that sandwich (sandwich) the piezoelectric element.
  • the Langevin vibrator includes a piezoelectric element 51, a first resonance member (front member or front mass) 52 that is fixed to one surface of the piezoelectric element and has an ultrasonic transmission / reception unit, and the piezoelectric element.
  • a second resonance member (rear member or rear mass) 53 is provided that is fixed to the other surface of the element and that presses (or pressure-bonds) the first resonance member 52 to the piezoelectric element. Further, in order to prevent the attenuation of ultrasonic waves at the interface and to improve the durability against vibration, the piezoelectric element 51 and the pair of resonance members 52 and 53 are integrated by a joining means (screw or shaft core bolt or the like) 54. It has become.
  • the surface of the front member 52 can be vibrated at high speed even at a low current (or low voltage).
  • the piezoelectric element 51 has an electrode plate in addition to the piezoelectric layer in order to apply an alternating voltage oscillated from an oscillator, and is usually a laminate in which piezoelectric layers and electrode plates are alternately and repeatedly stacked.
  • the number of piezoelectric layers and the number of electrode plates are not particularly limited, and are the same or different from each other, for example, 1 to 10, preferably 1 to 8, more preferably 1 to 6 (for example, 1 About 4).
  • a circular flaky electrode plate 512 and a disk-shaped piezoelectric layer 511 each having a through hole in the center in the radial direction are inserted through a screw (screw rod) 54 in this order, and three electrode plates A laminated body is formed by interposing two piezoelectric layers 511 between 512.
  • Each of the three electrode plates 512 has a knob 513, and an AC voltage can be applied to the piezoelectric layer 511 by attaching a lead wire to these knobs and connecting to an oscillator (and an amplifier if necessary).
  • the front member (or front plate) 52 has high adhesiveness with the piezoelectric element 51, can propagate to the tip without attenuating the vibration of the piezoelectric element 51, and can emit strong ultrasonic waves toward the medium.
  • the front member 52 has a cylindrical shape, and a hole portion having a female screw portion corresponding to the male screw portion of the bonding means 54 is formed on the bonding surface with the piezoelectric element 51.
  • the shape of the front member 52 is not particularly limited, and may be, for example, a columnar shape, a truncated cone shape, a prismatic shape, a truncated pyramid shape, or a hemispherical shape, and a combination of these shapes (the top portion is a truncated cone shape). Or a cylindrical column).
  • a hole may be formed when bonding is performed by a bonding means such as a screw.
  • the hole is formed in a size that can accommodate a joining member such as a screw.
  • the hole diameter of the hole portion is, for example, about 1 to 60, preferably 5 to 50, and more preferably about 10 to 40, where the length of the front member 52 in the radial direction is 100.
  • the depth of the hole is, for example, about 1 to 70, preferably about 5 to 60, and more preferably about 10 to 50 when the thickness of the front member 52 is 100.
  • the rear member 53 may be formed of the elastic body of the present invention.
  • the front member 52 since the surface of the front member 52 can vibrate at high speed with a low current, the front member 52 is made of the elastic body (thermoplastic resin of the present invention). And an elastic body containing a filler).
  • the thickness (length in the axial direction) of the front member 52 can be appropriately selected according to the resonance wavelength, and is, for example, about 100 mm or less, preferably 10 to 70 mm, more preferably 20 to 60 mm (for example, 30 to 50 mm). .
  • the resonance wavelength can be shortened, the thickness of the front member 52 can be reduced and the size can be reduced.
  • the length of the front member 52 in the radial direction is, for example, about 1 to 50 mm, preferably about 5 to 40 mm, and more preferably about 10 to 30 mm.
  • the acoustic impedance of the front member 52 can be selected from a range of about 1 to 10 N ⁇ s / m 3 in accordance with JIS A1405 at room temperature (temperature of about 15 to 25 ° C.), for example, 3 to 9 N ⁇ s / m. 3 , preferably 4 to 8 N ⁇ s / m 3 , and more preferably about 5 to 7 N ⁇ s / m 3 .
  • a medium such as water or a living body
  • the acoustic matching layer is unnecessary, and the apparatus can be miniaturized.
  • the rear member (or backing plate) 53 sandwiches (sandwiches) the piezoelectric element 51 together with the front member 52, thereby pressing the front member 52 to the piezoelectric element 51.
  • the rear member 53 has the same shape as the front member 52 and has the same dimensions.
  • the rear member 53 is not limited to the shape and dimensions shown in FIG. 8, and can be changed in design to various shapes and dimensions as with the front member 52.
  • the main material of the rear member 53 examples include resins, metals (light metals such as aluminum, magnesium, beryllium, and titanium, heavy metals such as stainless steel), ceramics, and the like. Of these main materials, resins are preferred.
  • the resin may be a thermosetting resin, but is usually a thermoplastic resin.
  • the thermoplastic resin for example, in addition to the same resin as the front member 12, (meth) acrylic resin, polyolefin resin (polyethylene resin, polypropylene resin, etc.), polyester resin (polyethylene terephthalate, polyethylene naphthalate) And poly C 2-4 alkylene C 6-10 arylate, etc.), polycarbonate resins, polyamide resins, polyurethane resins and the like.
  • the main material of the rear member 53 is also preferably a polyphenylene sulfide resin, a polyaryl ketone resin, particularly a polyphenylene sulfide resin, similarly to the front member 52.
  • the resin of the rear member 53 may be the same kind or a different kind of resin as the resin of the front member 52, but is preferably the same kind of resin.
  • the resin of the rear member 53 may be used in combination with a filler and / or other additives, like the front member 52.
  • a filler and / or other additives like the front member 52.
  • the filler and other additives include the components exemplified in the section of the actuator elastic body, and the preferred components are also the same.
  • the rear member 53 may have an optional layer (buffer layer, protective layer, etc.) laminated on the surface opposite to the piezoelectric element 51 as necessary.
  • the actuator of this invention should just be equipped with the plate-shaped electromechanical transducer which expands-contracts in a surface direction by application of an alternating voltage, and the said elastic body fixed to this electromechanical transducer.
  • the electromechanical transducer may be an electrostrictive element (or a magnetostrictive element), but a piezoelectric element is preferable from the viewpoint of excellent vibration transmission and displacement expansion function.
  • the piezoelectric element may be a laminated piezoelectric element in order to further improve the displacement expansion function.
  • Piezoelectric elements are not particularly limited as long as they can generate ultrasonic vibrations, but are not limited to piezoelectric polymer films (fluorine resins such as polyvinylidene fluoride and vinylidene fluoride-trifluoride ethylene copolymers), piezoelectric metal thin films (oxidized) Zinc vapor-deposited film or the like may be used, but it is usually a piezoelectric ceramic layer.
  • the piezoelectric ceramic layer includes ceramics exhibiting piezoelectricity, for example, ABO 3 type perovskite oxide such as lead zirconate titanate (PZT), lead lanthanum zirconate titanate, lead titanate, and barium titanate. These ceramics can be used alone or in combination of two or more.
  • the piezoelectric layer 511 may be a piezoelectric polymer film (a fluororesin such as polyvinylidene fluoride or vinylidene fluoride-ethylene trifluoride copolymer), a piezoelectric metal thin film (such as a zinc oxide vapor deposition film), Usually a piezoelectric ceramic layer.
  • a piezoelectric polymer film a fluororesin such as polyvinylidene fluoride or vinylidene fluoride-ethylene trifluoride copolymer
  • a piezoelectric metal thin film such as a zinc oxide vapor deposition film
  • the actuator of the present invention is usually a piezoelectric actuator, and may be, for example, an ultrasonic motor, a displacement expansion type piezoelectric actuator, a Langevin vibrator, or the like.
  • the ultrasonic motor of the present invention is used in contact with a non-vibrating body, and the elastic body bends and vibrates (ellipse motion) due to the vibration of the electromechanical variable element (particularly the piezoelectric element), thereby the elastic body (actuator) itself. Alternatively, the non-vibrating body is driven.
  • the piezoelectric actuator in which the elastic body bends and vibrates include ultrasonic motors such as a rotor type ultrasonic motor and a linear type ultrasonic motor.
  • the non-vibrating body is a moving body, and a piezoelectric actuator that drives the moving body (in particular, an ultrasonic motor such as a rotor type ultrasonic motor or a linear type ultrasonic motor) is widely used.
  • an ultrasonic motor such as a rotor type ultrasonic motor or a linear type ultrasonic motor
  • the non-vibrating body As the non-vibrating body (moving body), a conventional non-vibrating body, a plate-shaped or rod-shaped moving body (slider), and a rotor (rotating body) can be used depending on the type of the ultrasonic motor.
  • a plate-like moving body used for a linear ultrasonic motor and a rotating body used for a rotor ultrasonic motor are preferable.
  • the material of the non-vibrating body (moving body) is not particularly limited and can be formed of a conventional metal material or resin, and is usually formed of a metal such as stainless steel, aluminum, or brass.
  • a film made of silicone, fluororesin, or the like may be formed on the surface of the moving body.
  • the displacement enlarging type piezoelectric actuator of the present invention is an actuator having a mechanism for enlarging displacement due to expansion and contraction of a plate-like electromechanical conversion element that expands and contracts in the surface direction by application of an alternating voltage. What is necessary is just to provide the said displacement expansion element fixed to the electromechanical conversion element.
  • the displacement enlarging element is usually used in contact with a non-vibrating body, and the displacement due to expansion and contraction of the electromechanical transducer is enlarged to drive the displacement enlarging element itself or the non-vibrating body.
  • the plate surface of the displacement magnifying element and the plate-like electromechanical transducer are fixed so as to close at least the concave portion on the back side of the convex portion. It suffices if a gap due to the convex portion is formed between them.
  • a method of fixing the displacement magnifying element and the electromechanical transducer for example, a method of fixing the cut displacement magnifying element and the electromechanical transducer using an adhesive, or melting the resin surface of the cut displacement magnifying element.
  • a method of fusing the electromechanical conversion element a method of inserting the electromechanical conversion element in the mold and then pouring the molten resin into the mold to seal the electromechanical conversion element (insert molding method). Can be mentioned.
  • the displacement magnifying element may be fixed to one surface of the plate-like electromechanical transducer, or may be fixed to both surfaces.
  • the size of the electromechanical conversion element is not particularly limited as long as the sealed gap can be formed.
  • the size of the electromechanical transducer is preferably smaller than the displacement magnifying element, for example, the diameter of the electromechanical transducer May be about 0.3 to 0.7 times (particularly 0.4 to 0.6 times) the diameter of the displacement enlarging element.
  • the size of the electromechanical conversion element is preferably substantially the same or larger than the displacement magnifying element.
  • the element diameter may be about 0.9 to 1.5 times (particularly 1 to 1.2 times) the diameter of the displacement enlarging element.
  • the size of the electromechanical conversion element only needs to be able to form a void portion across the ridge-like convex part from the concave side, and the length of the electromechanical conversion element in the ridge line direction is It is about 0.5 to 1.5 times (particularly 0.8 to 1.2 times) the length of the displacement magnifying element, and is generally substantially the same as the length of the displacement magnifying element.
  • the length in the direction perpendicular to the ridge line direction when the displacement magnifying element is fixed to one surface of the plate-like electromechanical transducer, the length of the electromechanical transducer is shorter than the displacement magnifying element.
  • the length of the electromechanical transducer element may be about 0.3 to 0.7 times (particularly 0.4 to 0.6 times) the length of the displacement enlarging element.
  • the length of the electromechanical transducer is approximately equal to or greater than the displacement magnifying element.
  • the length of the electromechanical conversion element may be about 0.9 to 1.5 times (particularly 1 to 1.2 times) the length of the displacement enlarging element.
  • the length of the displacement magnifying element in the direction perpendicular to the ridge line direction is, for example, 5 to 300 mm, preferably 10 to 100 mm, more preferably 20 to 50 mm (particularly 25 to 40 mm). Degree.
  • the length of the electromechanical transducer in the direction perpendicular to the ridge line direction may be, for example, about 5 to 100 mm, preferably about 10 to 50 mm, and more preferably about 10 to 30 mm.
  • non-vibrating body a conventional non-vibrating body, for example, a plate-like or rod-like moving body (slider) such as a linear motor, a rotor (rotating body), or the like can be used.
  • the material of the non-vibrating body (moving body) is not particularly limited and can be formed of a conventional metal material or resin, and is usually formed of a metal such as stainless steel, aluminum, or brass.
  • the center axis of the displacement enlarging element and the electromechanical transducer element are substantially aligned with each other from the viewpoint of vibration transmission.
  • the Langevin vibrator of the present invention is an actuator that uses a member that reduces the frequency of vibration caused by expansion and contraction of the electromechanical transducer element by a resonance member that sandwiches the electromechanical transducer element. Good.
  • the shape of the piezoelectric layer 511 formed of a piezoelectric element is not particularly limited, and may be, for example, a cylindrical shape, a truncated cone shape, a prismatic shape, a truncated pyramid shape, etc.
  • the shape may be a combination of the above shapes (such as a shape in which a cylinder and a truncated cone are connected in series).
  • the thickness of the piezoelectric layer 511 can be appropriately selected according to the oscillation frequency, and is, for example, about 500 ⁇ m to 10 mm, preferably 1 to 7 mm, and more preferably about 2 to 5 mm.
  • the shape of the electrode plate 512 is not particularly limited as long as it is a thin piece, and may be a polygon such as a rectangle, a circle, an ellipse, or the like.
  • the electrode plate 512 does not necessarily have a knob, but in order to facilitate the attachment of the lead wire, a knob (extending piece, folded piece, etc.) is provided at the end (or peripheral edge) of the electrode plate 112. ).
  • the thickness of the electrode plate 512 is, for example, about 10 to 500 ⁇ m, preferably about 30 to 300 ⁇ m, and more preferably about 50 to 150 ⁇ m.
  • the electrode plate 512 may be formed of a conductive material, and examples of the conductive material include metals such as gold, silver, copper, platinum, and aluminum. These conductive materials can be used alone or in combination of two or more.
  • the piezoelectric element 51 may not have a hole, but the resonant member may be a screw (or a shaft core bolt) or the like.
  • a hole may be formed in the piezoelectric element 51 (piezoelectric layer 511 and / or electrode plate 512).
  • the hole portions may be formed on the joint surfaces of the front member 52 and the rear member 53, and the respective hole portions may be through holes that communicate with each other and penetrate the entire piezoelectric element 51.
  • the hole part should just be a magnitude
  • the resonance frequency of the Langevin vibrator of the present invention can be appropriately selected depending on the application, and is, for example, about 10 to 1000 kHz, preferably about 15 to 900 kHz, and more preferably about 20 to 800 kHz.
  • the ultrasonic transducer may be used at at least one frequency selected from 26, 38, 78, 100, 130, 160, 200, 430, 750, and 950 kHz.
  • the Langevin vibrator can be miniaturized even when applied to an application used at a low frequency.
  • the current applied to the Langevin vibrator is, for example, about 30 to 250 mA, preferably about 50 to 220 mA, and more preferably about 70 to 210 mA (for example, 80 to 200 mA).
  • the surface can be vibrated at high speed, and ultrasonic waves can be transmitted and received with high efficiency.
  • CF-containing PEEK Polyetheretherketone containing 30% by weight of carbon fibers with an average fiber diameter of about 7 ⁇ m, “PEEK / CF: Black” manufactured by Nippon Extron Co., Ltd., cross-sectional circle with carbon fibers oriented in the length direction by extrusion molding Rod-shaped body, glass transition temperature (Tg) 143 ° C
  • PEEK Polyetheretherketone, “Natural Color (Unfilled)” manufactured by Nippon Extron Co., Ltd., rod-shaped product with a circular cross section, specific gravity 1.45, Tg 143 ° C.
  • CF-containing PPS Polyphenylene sulfide containing 30% by weight of carbon fibers having an average fiber diameter of about 7 ⁇ m, “PPS / CF: black” manufactured by Nippon Extron Co., Ltd., rod-shaped with a circular cross section in which carbon fibers are oriented in the length direction by extrusion molding Molded body, specific gravity 1.45, Tg 90 ° C
  • PPS Polyphenylene sulfide, “Round bar PPS N” manufactured by Nippon Extron, specific gravity 1.34, glass transition temperature (Tg) 90 ° C.
  • GF-containing PA Nylon MXD6 containing 50% by weight of glass fiber
  • MXD-6 Black [Lenny (registered trademark)]” manufactured by Nippon Extron Co., Ltd., having a circular cross section in which glass fibers are oriented in the length direction by extrusion molding Rod-shaped body, specific gravity 1.65, Tg75 ° C GF-containing PC: Bisphenol A type polycarbonate containing 20% by weight of glass fiber, “PC round bar GF-20 (black)” manufactured by Shiraishi Kogyo Co., Ltd., rod-shaped molding with a circular cross section in which glass fibers are oriented in the length direction by extrusion molding Body, specific gravity 1.41, Tg160 °C GF-containing PES: Polyethersulfone containing 30% by weight of glass fiber, “Polyethersulfone round bar GF-30” manufactured by Shiroishi Kogyo Co., Ltd., a rod-shaped product having a circular cross section in which glass fibers are oriented in the
  • ABS ABS resin, “ABS round bar natural” manufactured by Shiraishi Kogyo Co., Ltd., rod shaped body with circular cross section, specific gravity 1.05, Tg 100 ° C.
  • PC1 Bisphenol A-type polycarbonate, “PC (round bar)” manufactured by Shiba Light Co., Ltd., rod-shaped body having a circular cross section, specific gravity 1.2, Tg 160 ° C.
  • PC2 Polycarbonate, “Polycarbonate round bar” manufactured by Shiraishi Kogyo Co., Ltd.
  • PMMA Polymethyl methacrylate, “acrylic cast round bar (transparent)” manufactured by Shiraishi Kogyo Co., Ltd.
  • Glass epoxy Epoxy resin containing about 40% by weight of glass fiber with an average fiber diameter of 10 ⁇ m, “Epoxy glass (Garaepo) round bar” manufactured by Murakami Electric Co., Ltd.
  • Aluminum Alloy standard number A5052 PZT: “C-216” manufactured by Fuji Ceramics.
  • the upper part of the elastic body made of resin expands and contracts, while the lower part where the legs (convex parts) are formed does not expand and contract, so that bending vibration of the stator is realized.
  • the linear motor advances by the foot catching the ground (non-vibrating body).
  • the vibration speed at this time is evaluated by the evaluation apparatus using the laser Doppler effect, and the resin end portion under the resonance condition (among the sawtooth portion 43b, the central portion of the tip of the sawtooth portion located below the piezoelectric element)
  • the relationship between the maximum vibration speed (vibration speed: mm / second) and the voltage was determined.
  • the AC voltage generated by the function generator (“WAVE FACTORY 1946” manufactured by NF Circuit Design Block) was boosted by an amplifier (“HSA4101T” manufactured by NF Circuit Design Block) and driven at the resonance frequency.
  • the applied voltage and frequency were adjusted to the most vibrated value for each material and shape.
  • Rotational characteristics were evaluated using the rotor type ultrasonic motor described in FIGS. 1 and 2 or the rotor type ultrasonic motor in which the comb teeth portion is not formed in FIGS. A part of the rotor was marked and rotated, and the rotation characteristics within the unit time of the mark were used as rotational characteristics.
  • the elastic body and the piezoelectric element were bonded using an adhesive (“Araldite Standard” manufactured by Huntsman Japan Co., Ltd.).
  • An alternating voltage with a phase delayed by 90 ° was sequentially applied to the electrodes adjacent to the electrodes divided into eight. Specifically, the AC voltage generated by the function generator (“WAVE FACTORY 1946” manufactured by NF Circuit Design Block) is boosted by an amplifier (“HSA4101T” manufactured by NF Circuit Design Block) and the phase is 180 ° by the transformer. By separating, four frequency voltages shifted by 90 ° were applied.
  • the function generator (“WAVE FACTORY 1946” manufactured by NF Circuit Design Block)
  • HSA4101T manufactured by NF Circuit Design Block
  • the sizes of the two types of rotor type ultrasonic motors are as follows.
  • Piezoelectric vibrator PZT, inner diameter 6 mm, outer diameter 10 mm, thickness 0.5 mm
  • Elastic body inner diameter 4 mm, outer diameter 10 mm, thickness 2 mm
  • Rotor made of aluminum, inner diameter 4 mm, outer diameter 10 mm, thickness 5 mm
  • Power supply The frequency was adjusted to the value that vibrates most for each material.
  • Piezoelectric vibrator PZT, inner diameter 6 mm, outer diameter 10 mm, thickness 0.5 mm
  • Elastic body inner diameter 4 mm, outer diameter 10 mm, thickness 2 mm
  • Comb shape slits with a width of 0.5 mm and a depth of 1 mm are formed at equal intervals in 16 locations
  • Rotor made of aluminum, inner diameter 4 mm, outer diameter 10 mm, thickness 5 mm
  • Power supply The frequency was adjusted to the value that vibrates most for each material.
  • Example 1 Using CF-containing PEEK, cutting was performed so that the orientation direction of the carbon fiber was parallel to the contact surface between the piezoelectric element and the elastic body and parallel to the longitudinal direction of the elastic body. An elastic body having the same shape as the elastic body 43 shown was produced.
  • Comparative Example 1 PEEK was cut to produce an elastic body having the same shape as the elastic body 43 shown in FIG.
  • Example 9 shows the results of producing a linear ultrasonic motor using the elastic bodies obtained in Example 1 and Comparative Example 1 and evaluating the maximum vibration speed. As is clear from the results of FIG. 9, the maximum vibration speed when the same voltage was applied was improved in the elastic body of Example 1 as compared with the elastic body of Comparative Example 1.
  • Example 2 Using CF-containing PPS, the carbon fiber is oriented so that the orientation direction of the carbon fiber is parallel to the contact surface between the piezoelectric element and the elastic body, and parallel to the longitudinal direction of the elastic body, as shown in FIG. An elastic body having the same shape as the elastic body 43 was produced.
  • Example 3 Using CF-containing PPS, cutting was performed so that the orientation direction of the carbon fibers was perpendicular to the contact surface between the piezoelectric element and the elastic body, and the elastic body shown in FIG. 6 was produced.
  • FIG. 10 shows the results of producing a linear ultrasonic motor using the elastic bodies obtained in Examples 2 and 3 and evaluating the maximum vibration speed.
  • the elastic body of Example 2 improved the maximum vibration speed at a higher voltage than the elastic body of Example 3.
  • Example 4 Using the CF-containing PEEK, cutting is performed so that the orientation direction of the carbon fiber is perpendicular to the contact surface between the piezoelectric element and the elastic body, and the rotor elastic body with comb teeth shown in FIGS. 1 and 2 is obtained. Produced. Using the obtained elastic body, a rotor type ultrasonic motor was produced and subjected to a rotation test. As a result, the rotor was rotated at 1.7 rpm.
  • Example 5 Using the CF-containing PPS, the orientation direction of the carbon fiber is cut so as to be perpendicular to the contact surface between the piezoelectric element and the elastic body, and the rotor elastic body with comb teeth shown in FIGS. Produced. Using the obtained elastic body, a rotor type ultrasonic motor was manufactured and subjected to a rotation test. As a result, it was rotated at 1.8 rpm.
  • Example 6 A comb in which the comb-shaped portion is not formed in FIGS. 1 and 2 by cutting using CF-containing PEEK so that the orientation direction of the carbon fiber is perpendicular to the contact surface between the piezoelectric element and the elastic body.
  • a toothless rotor-type elastic body was produced.
  • a rotor-type ultrasonic motor was manufactured, and as a result of a rotation test, it was rotated at 0.7 rpm.
  • Example 7 A comb in which the comb-shaped portion is not formed in FIGS. 1 and 2 by cutting using a CF-containing PPS so that the orientation direction of the carbon fiber is perpendicular to the contact surface between the piezoelectric element and the elastic body.
  • a toothless rotor-type elastic body was produced.
  • a rotor-type ultrasonic motor was manufactured and subjected to a rotation test. As a result, it was rotated at 0.8 rpm.
  • Example 8 A comb in which a comb-tooth portion is not formed in FIGS. 1 and 2 by using GF-containing PA and cutting so that the orientation direction of the glass fiber is perpendicular to the contact surface between the piezoelectric element and the elastic body.
  • a toothless rotor-type elastic body was produced.
  • a rotor-type ultrasonic motor was manufactured and subjected to a rotation test. As a result, it was rotated at 0.5 rpm.
  • Example 9 A comb in which the comb fiber portion is not formed in FIGS. 1 and 2 by cutting the glass fiber so that the orientation direction of the glass fiber is perpendicular to the contact surface between the piezoelectric element and the elastic body using the GF-containing PC.
  • a toothless rotor-type elastic body was produced.
  • a rotor-type ultrasonic motor was produced, and as a result of a rotation test, it was rotated at 0.4 rpm.
  • Comparative Example 2 PE was cut to produce a rotorless elastic body without a comb tooth in which the comb tooth portion is not formed in FIGS. Using the obtained elastic body, a rotor type ultrasonic motor was manufactured and a rotation test was performed, but it did not rotate.
  • Comparative Example 3 The ABS was cut to produce a rotorless elastic body without comb teeth in which the comb teeth portion was not formed in FIGS. Using the obtained elastic body, a rotor type ultrasonic motor was manufactured and a rotation test was performed, but it did not rotate.
  • the piezoelectric element when an AC voltage is applied to the piezoelectric element 62, the piezoelectric element expands and contracts in the longitudinal direction, and the expansion (vibration) is perpendicular to the piezoelectric element surface of the convex portion 63a of the displacement expanding element 63. Converted to vibration (displacement).
  • the vibration velocity in the vertical direction was evaluated using a laser Doppler evaluation apparatus (“AT500-05” manufactured by Graphtec). Further, the maximum vibration speed was read from the amplitude of the vibration speed displayed on the oscilloscope (Tektronix "TDS2014”), and the relationship between the maximum vibration speed and the current was obtained.
  • the AC voltage generated by the function generator (“WAVE FACTORY 1946” manufactured by NF Circuit Design Block) was boosted by an amplifier (“HSA4101T” manufactured by NF Circuit Design Block) and driven at the resonance frequency.
  • the applied voltage and frequency were adjusted to the most vibrated value for each material and shape.
  • Example 10 Using a CF-containing PPS, cutting was performed so that the orientation direction of the carbon fibers and the longitudinal direction of the displacement magnifying element were parallel, and a displacement magnifying element having the same shape as the displacement magnifying element 63 shown in FIG. 11 was produced.
  • Example 11 Using a GF-containing PA, cutting was performed so that the orientation direction of the glass fiber and the longitudinal direction of the displacement magnifying element were parallel, and a displacement magnifying element having the same shape as the displacement magnifying element 63 shown in FIG. 11 was produced.
  • Example 12 Using a GF-containing PC, cutting was performed so that the orientation direction of the glass fiber and the longitudinal direction of the displacement magnifying element were parallel, and a displacement magnifying element having the same shape as the displacement magnifying element 63 shown in FIG. 11 was produced.
  • Example 13 Using a GF-containing PES, cutting was performed so that the orientation direction of the glass fiber and the longitudinal direction of the displacement magnifying element were parallel, and a displacement magnifying element having the same shape as the displacement magnifying element 63 shown in FIG. 11 was produced.
  • Comparative Example 4 Aluminum was cut to produce a displacement enlarging element having the same shape as the displacement enlarging element 63 shown in FIG.
  • Comparative Example 5 PC1 was cut to produce a displacement enlarging element having the same shape as the displacement enlarging element 63 shown in FIG.
  • Comparative Example 6 The ABS was cut to produce a displacement magnifying element having the same shape as the displacement magnifying element 63 shown in FIG.
  • Comparative Example 7 PE was cut to produce a displacement magnifying element having the same shape as the displacement magnifying element 63 shown in FIG.
  • the displacement magnifying type piezoelectric actuator was produced using the displacement magnifying elements obtained in the examples and comparative examples, and the maximum vibration speed was measured. Among the measured values, the maximum vibration speed at the current showing the highest value was defined as the maximum speed. Further, Table 1 shows the maximum vibration speed (specific gravity conversion speed) converted per specific gravity for the maximum vibration speed (maximum speed).
  • the screw 54 protruding from one surface of the piezoelectric element 51 is screwed into the hole portion of the front mass 52, and the screw 54 protruding from the other surface is screwed into the hole portion of the rear mass 53, so that the piezoelectric element 51 is A Langevin vibrator was obtained by sandwiching and adhering between the front mass 52 and the rear mass 53.
  • Examples 14 to 15 and Comparative Examples 8 to 11 Measurement of vibration speed
  • the vibration speed of the Langevin vibrators of Examples and Comparative Examples in which the front mass and the rear mass were produced using the materials shown in Table 2 below were evaluated by the experimental system shown in FIG. That is, an alternating voltage oscillating at a resonance frequency was oscillated from an oscillator 55, amplified by an amplifier 56, and applied between electrodes of an ultrasonic vibrator, and the piezoelectric element 51 was vibrated in thickness. The vibration was transmitted to the front mass 52, ultrasonic waves were emitted to the outside, and the vibration speed of the front mass 52 was evaluated using a laser Doppler device 57 (“AT500-05” manufactured by Graphtec).
  • a laser Doppler device 57 (“AT500-05” manufactured by Graphtec).
  • FIG. 13 shows the applied current dependence of the vibration velocity of the front mass surface evaluated by the experimental system shown in FIG. 12, and Table 2 shows the maximum vibration velocity.
  • the example can vibrate the vibrator surface at a high speed even at a low current, and the maximum vibration speed is large as compared with the comparative example.
  • Example 14 contains fibers, the maximum vibration speed is higher than that of Comparative Example 11 that is a thermosetting resin.
  • the elastic body of the present invention can be used for actuators such as various electric devices, measuring instruments, and optical devices, in particular, piezoelectric actuators such as ultrasonic motors, displacement expansion type piezoelectric actuators, Langevin vibrators, and the like.
  • piezoelectric actuators such as ultrasonic motors, displacement expansion type piezoelectric actuators, Langevin vibrators, and the like.
  • the elastic body of the present invention can be used as an ultrasonic motor, for example, a linear type or rotor type ultrasonic motor.
  • the elastic body of the present invention is a displacement enlarging element of a piezoelectric actuator (particularly, an ultrasonic motor such as a linear ultrasonic motor) that drives a moving body as a displacement enlarging piezoelectric actuator.
  • a piezoelectric actuator particularly, an ultrasonic motor such as a linear ultrasonic motor
  • the displacement magnifying element itself can be used as a displacement magnifying element of a piezoelectric actuator that is a moving body.
  • it is suitable for cymbal type piezoelectric actuators and Mooney type piezoelectric actuators, and is particularly suitable for cymbal type piezoelectric actuators.
  • the elastic body of the present invention is a Langevin vibrator such as a measuring instrument (flow meter, depth meter, snow cover, etc.), fish detector, probe, cleaning machine, processing machine (cutter, welding machine, etc.) It can be suitably used for a resonance member of a vibrator.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 交流電圧の印加により振動を発生する圧電素子42に固定され、かつ移動体45と接触させて用いられ、前記圧電素子42の振動により屈曲振動して、移動体45を駆動させるための弾性体43を熱可塑性樹脂及び充填材で形成する。この弾性体43は、圧電素子42と固定された側の反対側に、歯部43bが形成されていてもよい。この充填材は、繊維状充填材であってもよい。この圧電アクチュエータは屈曲振動伝達性に優れる。また、変位拡大型圧電アクチュエータの変位拡大素子を熱可塑性樹脂及び充填材で形成すると、圧電素子の伸縮による変位を大きく拡大できる。さらに、ランジュバン振動子の共振部材を熱可塑性樹脂及び充填材で形成すると、低電流(又は低電圧)でも表面を高速に振動させることができる。

Description

アクチュエータ用弾性体及び圧電アクチュエータ
 本発明は、圧電素子などの電気機械変換素子による超音波振動を利用したアクチュエータ用弾性体及びこの弾性体を備えた圧電アクチュエータに関する。
 圧電素子を利用した圧電アクチュエータとして超音波モータが知られている。超音波モータは、電気機械変動素子である圧電素子を超音波振動体として利用したモータである。超音波モータは、電磁モータに比べて、巻き線が不要で構造が簡単である上に、低速高トルクで応答性及び制御性に優れ、微小で精密な駆動が可能であるため、カメラやDVDなどの光学機器装置などに汎用されている。超音波モータには、リニア型やロータ型があり、振動体からの超音波振動を直線運動や回転運動に変換している。
 図1は、ロータ型超音波モータの概略側面図であり、図2は、図1のロータ型超音波モータを構成する弾性体の概略斜視図である。この超音波モータ1は、円板状(又はリング状)の圧電素子2の上に、この圧電素子2の外径と同一の外径を有し、かつ外周に沿って規則的に形成された櫛歯状の凸部(櫛歯部)3aを有するリング状弾性体(櫛歯状弾性体)3が固定されたステータ4と、前記弾性体3に加圧接触させて配設され、かつ前記弾性体の外径と同一の外径を有する円板状(又はリング状)ロータ(回転体又は移動体)5とを備えている。超音波モータ1では、圧電素子(ピエゾ素子)2と櫛歯状弾性体3とで構成されているステータ4は固定された部材であるの対して、ロータ5は回転可能に配設されており、圧電素子2で発生させた超音波振動が、櫛歯状弾性体3を介してロータ5の回転運動に変換される。詳しくは、圧電素子2は、電圧が負荷されると歪みを生じる圧電セラミックスで形成されており、交流電圧(周波電圧)が印加されると、規則的に歪みと回復(伸縮運動)を繰り返すことにより超音波振動する。これに対して、圧電素子に固定された櫛歯状弾性体3では、圧電素子からの超音波振動に伴って、弾性体の表面に沿って伝わる表面進行波(縦波と横波とが合成されたレイリー波)が発生する。その結果、弾性体の表面で楕円運動(屈曲振動)が起こり、弾性体に加圧接触されたロータ5が回転する。このような屈曲振動を利用する場合、曲げ方向についての複素弾性率が重要であり、このような観点から、材料が選択される。
 一般的に、弾性体としては、圧電素子からの超音波振動を吸収することなく、表面進行波を発生できる点から、金属材料が使用されている。しかし、金属で形成された弾性体は、比重が重く、硬質であるため、自身の振動性が低い点、成形性が低く、小型化が困難であり、櫛歯などの複雑な形状では生産性が低下する点、錆により劣化する点、添加剤の配合などによる特性の改良が困難である点、絶縁性が確保できない点などの欠点も有している。なお、金属以外の弾性体として、金属とは異なり、粘性を有するため、振動を吸収することにより振動子として不適なためか、実用化はされていないものの、プラスチックで形成された弾性体が提案されている。
 特開平5-300764号公報(特許文献1)には、電気機械変換素子に周波電圧を印加し、前記電気機械変換素子に接合した弾性体に生ずる楕円運動によって、前記弾性体に接触する移動体を駆動する駆動機構において、前記弾性体の前記移動体と接触する側を樹脂で形成した駆動機構が開示されている。この文献には、樹脂で形成された弾性体と電気機械変換素子との間に、さらに金属で形成された弾性体が介在している。
 しかし、この駆動機構でも、弾性体が金属を含むため、振動性は十分でなく、錆も発生する。さらに、この文献には、樹脂の詳細は記載されていない。また、樹脂は、通常、金属材料に比べて、超音波振動を吸収するため、振動伝達性が低い。さらに、弾性体は、移動体と接触させる摩擦駆動型であるため、摩擦熱が発生し、耐熱性が必要であるが、樹脂材料は、金属材料に比べて耐熱性も低い。
 特公平7-89746号公報(特許文献2)には、圧電素子及びこの圧電素子により励振される弾性体から成る固定子と、この固定子に圧接され、前記固定子に生じる超音波振動の表面進行波によって前記固定子の面上を移動する弾性体である移動子とから成る表面波モータにおいて、前記両弾性体の少なくとも一方を合成樹脂材料にて形成し、この一方の弾性体は、他方の弾性体が圧接される面を有する振動部と、この振動部から延在する支持部と、さらにこの支持部の外周に設けられた被保持部とを一体成形した表面波モータが開示されている。
 しかし、この文献でも、合成樹脂材料としては、エンジニアリングプラスチックが挙げられ、低弾性率の材料が好ましく、圧電素子に対して1/10程度の弾性率、金属に対して1/20程度の弾性率のリング状弾性体材料を使用することが記載されているに止まり、合成樹脂の詳細は記載されていない。
 特開2006-311794号公報(特許文献3)には、電圧が印加されると伸縮する電気機械変換素子と、移動体を摺動可能なように支持し、前記電気機械変換素子に結合して前記電気機械変換素子と共に変位する移動体支持部材とを備え、前記電気機械変換素子の伸縮によって前記移動体を前記移動体支持部材に沿って移動させる駆動装置であって、前記移動体支持部材の材質が繊維強化樹脂複合体であり、前記繊維強化樹脂複合体を構成する合成樹脂材料が液晶ポリマー又はポリフェニレンスルフィドである駆動装置が開示されている。詳しくは、弾性体に相当する移動支持部材(駆動軸)は棒状であって、その一端と棒状の圧電素子の端部とが接着固定されており、圧電素子の伸縮によって移動支持部材が長さ方向に沿って変位することにより、所定の摩擦力で移動支持部材に支持された移動体を移動させている。すなわち、移動体が変位する機構は、急激な立ち上がり部分と緩やかな立ち下がり部分とからなる鋸歯状波形のパルス電圧を印加して、前記駆動軸の長さ方向の往復運動に強弱をつけ、慣性の法則により移動体を移動させている。
 しかし、この文献には、移動支持部材を屈曲振動させる圧電アクチュエータは記載されていない。詳しくは、特許文献3の駆動装置では、圧電素子と駆動軸とは面接触することなく、駆動軸は、鋸歯状のパルスを利用した長さ方向の往復運動での摩擦により移動体を移動させて直進駆動しており、駆動軸自体は変形しない。そのため、駆動軸を構成する材料には、圧電素子の振動を正確に伝達するための剛性が主に要求され、剛性保持のために繊維が配合されていると推測できる。すなわち、特許文献3の駆動機構は、進行波型アクチュエータ、すなわち圧電素子と移動体とが面接触して固定され、面接触で固定された状態の圧電素子の振動により発生した表面進行波(正弦波)を利用して弾性体自身が屈曲変形して(弾性体が圧電素子の振動に連動してたわむことにより)楕円運動するアクチュエータとは駆動原理が大きく異なる。そのため、特許文献3の駆動軸には屈曲振動で必要とされる柔軟性などが必要とされず、超音波モータにおける屈曲振動を利用した弾性体とは、要求される特性が大きく異なる。
 特開2001-327919号公報(特許文献4)には、母材中に複数の高弾性繊維がそれぞれ同一の方向に規則的に配向配置された複合材料板が二枚以上、それぞれの複合材料板の高弾性繊維の配向方向が互いに直交するように積層されてなる音響振動制御材料が開示されている。この文献には、前記制御材料として、ポリアミド樹脂やエポキシ樹脂を母材とした炭素繊維又はSiC繊維強化プラスチック成型体が記載されている。
 しかし、この音響振動制御材料は、音響振動の伝達方向を制御することを目的としており、弾性体の屈曲振動は記載されていない。さらに、繊維の配向方向を層間で直交させた積層構造では、屈曲振動における振動伝達性を向上できない。
 また、圧電アクチュエータのうち、圧電ポンプやリニアモータなど、用途によっては、電気機械変換素子の振動(又は伸縮)をアクチュエータとして応用するために、振動による変位を拡大する機構が必要である。
 圧電素子の振動による変位を拡大する機構として、圧電素子を積層することにより変位を拡大させる積層型圧電アクチュエータが知られている。
 特許第4353690号公報(特許文献5)には、圧電セラミックス層と内部電極とが交互に積層され、前記内部電極が一層おきに接続されてなる積層型圧電アクチュエータであって、前記内部電極の外周部分の変位量が前記外周部分の内側から外側に向かって連続的に小さくなっており、前記圧電セラミックス層において前記内部電極の外周部分の近傍に位置する部分には、マンガン、鉄、クロム、タングステンから選ばれた1以上の成分が他の成分よりも多く含まれる積層型圧電アクチュエータが開示されている。
 しかし、積層型圧電アクチュエータでは、サイズが大きくなり、小型化には適さなかった。
 また、梃子の原理を応用して圧電素子の運動を機械的に増幅して変位を拡大させる圧電アクチュエータも知られている。
 特開昭60-81568号公報(特許文献6)には、電歪又は圧電素子の運動を増幅し駆動する増幅機構において、前記電歪又は圧電素子の伸縮方向の一端を共通にして接続し、かつ前記電歪又は圧電素子の他端と支点によりそれぞれ接続した変位増幅手段としての二本のレバーアームと、その二本のレバーアームの他端で挟むように支持された変位増幅手段としての梁とから構成され、その梁には出力端としての作用素子が設けられている機械的増幅機構が開示されている。
 しかし、このような機械的増幅機構でも、機構が大きく、複雑になるため、小型化に適さない。
 これに対して、圧電素子の変位拡大素子として、空隙部を設けて圧電素子に固定した板状素子を備えたシンバル型又はムーニー型圧電アクチュエータが提案されている。
 図3は、シンバル型圧電アクチュエータの概略斜視図であり、図4は、突起(爪部)を形成したシンバル型圧電アクチュエータの変位機構を説明するための概略図である。
 この圧電アクチュエータ11は、面形状が長方形状である板状圧電素子12の上に、屈曲して形成された尾根状凸部13aを有する板状の変位拡大素子13が固定されている。前記尾根状凸部13aは、変位拡大素子の長さ方向の略中央部に形成されており、尾根状凸部の稜線方向と垂直な方向の断面形状が台形状又はアーチ状であり、圧電素子12との間で断面台形状の空隙部14を形成している。このような空隙部を有する圧電アクチュエータでは、圧電素子12は、電圧が印加されると歪みを生じる圧電セラミックスで形成されており、交流電圧(周波電圧)が印加されると、面方向において、規則的に歪みと回復(伸縮運動)を繰り返す。これに対して、変位拡大素子13と圧電素子12との間には、空隙部14が形成されているため、変位拡大素子13の尾根状凸部は、圧電素子12に固定された部位に比べて、変形し易い構造を有している。そのため、圧電素子12が面方向で伸縮することにより、変位拡大素子13の尾根状凸部の形状が変形し、圧電素子の面方向に垂直な方向に変位(上下動)する。
 例えば、図4に示すように、尾根状凸部23の側部に突起23bを形成したシンバル型圧電アクチュエータ21では、圧電素子22が面方向で伸張した状態(図4(a))では、尾根状凸部の23aの高さは低く、側部の傾斜が小さくなるため、突起23bは圧電素子面に対して略垂直方向に起立している。これに対して、圧電素子22が面方向で縮んだ状態(図4(b))では、尾根状凸部の23aの高さは高く、側部の傾斜が大きくなるため、突起23bは圧電素子面に対して略平行に寝ている。すなわち、突起は、圧電素子の振動により起立した状態と寝た状態との変位運動を繰り返す。そのため、突起を備えたシンバル型圧電アクチュエータは、突起によって、接触する非振動体(移動体)を掻き出す駆動機構として利用でき、リニアモータなどにも利用可能である。
 従来のシンバル型圧電アクチュエータでは、変位拡大素子として、圧電素子の伸縮を吸収することなく(又は伸縮により撓むことなく)、変位できる点から、金属材料が使用されている。しかし、金属で形成された弾性体は、比重が重く、硬質であるため、自身の振動性が低い点、成形性が低く、小型化が困難であり、突起を有する複雑な形状では生産性が低下する点、錆により劣化する点、添加剤の配合などによる特性の改良が困難である点、絶縁性が確保できない点などの欠点も有している。
 さらに、圧電アクチュエータとしては、ランジュバン振動子も知られている。ランジュバン振動子は、圧電性を示す水晶を2つの金属ブロックでサンドイッチした構造を有しており、低い周波数で共振させることができ、超音波の発生及び検出に広く使用されている。このランジュバン振動子の性能を更に向上させるため、今日までに種々の改良が試みられている。
 特開平5-236598号公報(特許文献7)には、高剛性材料で形成されたフロントマスと、一端が前記高剛性材料の一端に接合し入力電気信号を超音波に変換する圧電セラミックと、一端が前記圧電セラミックの他端に接合し高剛性材料で形成されたリアマスと、前記フロントマスと前記圧電セラミックと前記リアマスとを互いに締め付けるボルト及びナットと、前記フロントマスの他端に接合され水と前記フロントマスとのインピーダンス整合をとるための音響整合板とを有する音響整合板付きボルト締めランジュバン振動子において、前記音響整合板が、前記圧電セラミックのキュリー温度より高いガラス転移温度を有する合成樹脂であるランジュバン振動子が開示されている。この文献には、フロントマス及びリアマスを、アルミ合金、チタン合金、ステンレス鋼などの高剛性材料で形成することが記載されている。
 特開2009-77130号公報(特許文献8)には、圧電素子と、前記圧電素子を挟持する一対の挟持部材と、一方の前記挟持部材に固定され、この一方の挟持部材よりも硬度の低い緩衝部材と、他方の前記挟持部材に固定されていると共に超音波の送受信部を端部に有し、かつ固有音響インピーダンスの値が前記他方の挟持部材と水との間の値を示す音響整合部材とを備えた超音波振動子が開示されている。この文献には、一方の挟持部材としての裏打板、及び他方の挟持部材としての前面板は、ステンレス鋼で形成すること、前面板は裏打板よりも軽くて軟らかいアルミ合金などに変更することでQ値(共振の鋭さを表す量)を低減できることが記載されている。
 特開平5-37999号公報(特許文献9)には、一対の圧電振動子の両側に共振ブロックを対称に設けたランジュバン振動子構造を備えており、前記共振ブロックをプラスチックで構成した広帯域超音波探触子が開示されている。この文献には、広帯域特性をもたらす共振ブロックは、エポキシコンパウンド材料で構成することが記載され、他にプラスチック材料の例は記載されていない。
 特開2007-274191号公報(特許文献10)には、前面板と、裏打板と、前記前面板と前記裏打板との間に配設された圧電セラミック体とが、軸芯ボルトにより一体に固定されてなる超音波振動子であって、前記前面板が樹脂製である超音波振動子が開示されている。この文献には、前面板の材料として、切削加工性に優れたポリプロピレン系樹脂、透明性に優れたポリカーボネート樹脂、両性能に優れたアクリル系樹脂が好ましいことが記載されている。
 しかし、特許文献7~10の超音波振動子では、表面での振動速度が低く、未だ出力特性が十分ではない。
特開平5-300764号公報(請求項1、図1及び3) 特公平7-89746号公報(請求項1、第2頁第4欄19~21行) 特開2006-311794号公報(請求項1、段落[0004]~[0006][0021][0022]) 特開2001-327919号公報(請求項1、段落[0010][0022][0026]) 特許第4353690号公報(請求項1) 特開昭60-81568号公報(特許請求の範囲) 特開平5-236598号公報(特許請求の範囲、段落[0003]) 特開2009-77130号公報(特許請求の範囲、段落[0015][0047]) 特開平5-37999号公報(特許請求の範囲、段落[0012]、実施例) 特開2007-274191号公報(特許請求の範囲、段落[0013]、実施例)
 従って、本発明の目的は、樹脂で形成されているにも拘わらず、屈曲振動(楕円運動)伝達性に優れるアクチュエータ用弾性体及びこの弾性体を備えた圧電アクチュエータを提供することにある。
 本発明の他の目的は、成形性や軽量性に優れ、小型化や複雑な形状への加工性に優れるアクチュエータ用弾性体及びこの弾性体を備えた圧電アクチュエータを提供することにある。
 本発明のさらに他の目的は、電気絶縁性及び耐蝕性に優れるアクチュエータ用弾性体及びこの弾性体を備えた圧電アクチュエータを提供することにある。
 本発明の別の目的は、電気機械変換素子の振動(又は伸縮)による変位を大きく拡大できる変位拡大素子及びこの変位拡大素子を備えた変位拡大型圧電アクチュエータを提供することにある。
 本発明のさらに別の目的は、低電流(又は低電圧)でも表面を高速に振動させることができるランジュバン振動子を提供することにある。
 本発明の他の目的は、エネルギー損失を低減でき、高効率で超音波を送受信できるランジュバン振動子を提供することにある。
 本発明のさらに他の目的は、低周波数で使用する用途でも小型化でき、共振波長を容易に制御できるランジュバン振動子を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、圧電素子などの電気機械変換素子を備えたアクチュエータの弾性体を熱可塑性樹脂及び充填材で形成することにより、樹脂で形成されているにも拘わらず、屈曲振動するアクチュエータにおいて、屈曲振動伝達性を向上できること、変位拡大型アクチュエータにおいて、電気機械変換素子の振動(又は伸縮)による変位を大きく拡大できること、ランジュバン振動子において、低電流(又は低電圧)でも表面を高速に振動させることを見いだし、本発明を完成した。
 すなわち、本発明の弾性体は、交流電圧の印加により伸縮する電気機械変換素子に固定され、かつ以下の(1)~(3)のいずれかのアクチュエータに用いられる弾性体であって、熱可塑性樹脂及び充填材を含む。
(1)非振動体と接触させて用いられ、前記電気機械変換素子の伸縮により屈曲振動し、アクチュエータ自身又は非振動体を駆動させるためのアクチュエータ
(2)前記電気機械変換素子の伸縮による変位を拡大する機構を備えたアクチュエータ
(3)前記電気機械変換素子を挟持する共振部材のうち、少なくとも一方の共振部材として前記電気機械変換素子の伸縮による振動の周波数を低下させる部材を用いたアクチュエータ。
 前記電気機械変換素子は圧電素子であってもよい。前記充填材は、繊維状充填材であってもよい。前記繊維状充填材の配向方向は電気機械変換素子の伸縮方向に対して平行であってもよい。前記繊維状充填材は、炭素繊維、ガラス繊維及びアラミド繊維からなる群より選択された少なくとも1種であってもよく、0.1~50μmの平均繊維径及び1μm~2mmの平均繊維長を有していてもよい。前記充填材の割合は、熱可塑性樹脂100重量部に対して10~60重量部程度である。
 本発明の弾性体は、アクチュエータが超音波モータであり、圧電素子と固定された側の反対側に、非振動体と接触するための複数の凸部を有していてもよい。特に、本発明の弾性体は、前記圧電アクチュエータがリニア型超音波モータであり、かつ複数の凸部の断面形状が鋸歯状であってもよい。また、本発明の弾性体は、前記圧電アクチュエータがロータ型超音波モータであり、かつ櫛歯部を有する形状であってもよい。
 本発明の弾性体は、アクチュエータが圧電素子の伸縮による変位を拡大する機構を備えたアクチュエータであり、固定した圧電素子との間で空隙部を形成するための凸部を有する板状であってもよい。前記凸部は、屈曲又は湾曲して形成された一方向に延びる尾根状凸部であってもよい。この尾根状凸部の稜線方向に垂直な方向の断面形状が台形状であってもよい。前記尾根状凸部の側部は突起を有していてもよい。
 本発明の弾性体は、ランジュバン振動子の共振部材であってもよい。
 本発明には、圧電素子及び前記弾性体を備えた圧電アクチュエータも含まれる。
 本発明の圧電アクチュエータは、回転体と接触させて用いられ、圧電素子の伸縮により屈曲振動し、アクチュエータ自身又は回転体を回転させるためのロータ型超音波モータであってもよい。
 本発明の圧電アクチュエータは、弾性体が変位拡大素子であり、かつシンバル型又はムーニー型圧電アクチュエータあってもよい。
 本発明の圧電アクチュエータは、圧電素子と、この圧電素子を挟持する一対の共振部材とを有するランジュバン振動子であって、前記一対の共振部材のうち、少なくとも一方の共振部材が、前記弾性体であってもよい。一般的に、一方の共振部材に樹脂を用いると、金属に比べて超音波の吸収が大きくなり、振動しないと想定されるが、前記弾性体を用いると、意外にも超音波を減衰することなく、高効率で振動できる。一対の共振部材は、互いに異系統の樹脂を含んでいてもよいが、同種の樹脂を含んでいるのが好ましい。圧電素子と、一方の共振部材及び/又は他方の共振部材とは、接合手段(ネジなど)で圧接(又は圧着)してもよい。
 なお、本明細書において、「弾性体」とは、熱可塑性樹脂及び充填材を含む組成物で形成され、圧電素子などの電気機械変換素子に固定されて使用され、かつ電気機械変換素子の振動(伸縮)を伝達可能な成形体を意味し、超音波モータの弾性体に限定されず、変位拡大型アクチュエータの変位拡大素子、ランジュバン振動子の共振部材を含む意味で用いる。
 本発明では、屈曲振動するアクチュエータの弾性体が、熱可塑性樹脂及び充填材を含むため、樹脂で形成されているにも拘わらず、屈曲振動(楕円運動)伝達性を向上できる。特に、繊維状充填材の配向方向を電気機械変換素子の伸縮電方向(圧電素子と弾性体との接触面に対して平行)にすることにより、電気機械変換素子との音響インピーダンス差を抑制し、電気機械変換素子からのエネルギー注入効率が高まるためか、振動のヒステリシスを抑制し、損失を極小化できる。
 また、本発明では、変位拡大型アクチュエータの変位拡大素子が熱可塑性樹脂で形成されているため、電気機械変換素子の伸縮による変位を大きく拡大でき、熱可塑性樹脂と繊維状充填材とが組み合わされているため、従来の金属材料よりも変位を拡大できる。特に、金属よりも比重が小さいにも拘わらず、金属と同等以上の変位拡大機能(振動速度)を示し、重量当たりの機能が高く、軽量化が要求される用途に適してる。例えば、同一の共振周波数では、金属材料に比べて小型化できる。さらに、電気絶縁性及び耐蝕性も向上できる。
 また、本発明では、ランジュバン振動子の電気機械変換素子を挟持する一対の共振部材のうち、少なくとも一方の共振部材を、特定の熱可塑性樹脂及び繊維状充填材で形成するため、低電流(又は低電圧)でも表面を高速に振動させることができ、最高振動速度も大きい。特に、本発明では、エネルギー損失を著しく低減できるため、高効率で超音波を送受信できる。また、本発明では、小型でかつ軽量性に優れ、低周波数で使用する場合でも小型化が容易である。さらに、本発明では、繊維状充填材の配向や含有量を調整することなどにより、共振波長(又は音速)を容易にコントロールできる。
 さらに、樹脂で形成されているため、いずれのアクチュエータにおいても、成形性や軽量性に優れ、小型化や複雑な形状への加工性も向上できる。また、電気絶縁性及び耐蝕性も向上できる。
図1は、ロータ型超音波モータの概略側面図である。 図2は、図1のロータ型超音波モータを構成する弾性体の概略斜視図である。 図3は、シンバル型圧電アクチュエータの概略斜視図である。 図4は、突起を形成したシンバル型圧電アクチュエータの変位機構を説明するための概略図である。 図5は、弾性体の振動速度の測定方法を説明するための概略図である。 図6は、本発明のリニア型超音波モータの一例を示す概略側面図である。 図7は、図6のリニア型超音波モータを構成するステータの概略斜視図である。 図8は、本発明のランジュバン振動子の一例を示す概略断面図である。 図9は、実施例1及び比較例1で得られた弾性体の振動速度を示すグラフである。 図10は、実施例2及び3で得られた弾性体の振動速度を示すグラフである。 図11は、実施例で作製したシンバル型圧電アクチュエータの概略斜視図である。 図12は、実施例のランジュバン振動子を評価するための実験系を示す模式図である。 図13は、実施例のランジュバン振動子の電流と振動速度との関係を示すグラフである。
 [アクチュエータ用弾性体]
 本発明のアクチュエータ用弾性体は、交流電圧の印加により面方向に伸縮する板状の電気機械変換素子(特に交流電圧の印加により振動を発生するための圧電素子)に固定され、各種のアクチュエータ(超音波モータ、変位拡大型アクチュエータ、ランジュバン振動子)として用いられる。前記弾性体は、熱可塑性樹脂及び充填材(特に繊維状充填材)を含むため、各種アクチュエータの特性を向上できる。
 なお、本発明のアクチュエータ用弾性体は、熱可塑性樹脂及び充填材を主成分として含み(実質的に熱可塑性樹脂及び充填剤で形成されており)、熱可塑性樹脂及び充填材の総量は、弾性体全体に対して、通常80重量%以上(例えば、80~100重量%)、好ましくは90重量%以上(例えば、90~99重量%)、さらに好ましくは95重量%以上(特に99重量%以上)であり、熱可塑性樹脂及び充填材のみで形成されていてもよい。
 (熱可塑性樹脂)
 熱可塑性樹脂は、振動伝達性に優れる必要があり、具体的には、板状に成形した弾性体の両面を板状圧電素子で挟んで固定し、圧電素子に周波電圧を印加して共振周波数で振動させ、電圧を上げたとき、最大の振動速度が300mm/秒以上であり、好ましくは500mm/秒以上(例えば、500~1500mm/秒程度)、さらに好ましくは700mm/秒以上(例えば、700~1000mm/秒程度)程度である。前記振動速度が300mm/秒未満であると、移動体への振動伝達性(又は弾性体自身の駆動性)が低いため、移動体(又は弾性体自身)の駆動が困難となる。
 本発明では、熱可塑性樹脂の振動速度は、図5に示す方法で測定できる。すなわち、熱可塑性樹脂を10cm角、厚み3mmの平板に射出成形し、得られた成形体を切削加工により、1cm×3cmに切り出して、樹脂弾性体31を得る。得られた樹脂弾性体31を、図5に示すように、2枚の板状圧電素子32(富士セラミックス社製「C-123」、1cm×2cm×1mm)で挟んで、接着剤(ハンツマン・ジャパン(株)製「Araldite(アラルダイト)スタンダード」)で貼り合わせ、24時間養生して硬化させる。さらに、圧電素子32の電極に銅線33をハンダ付けし、共振周波数において振動を行う。振動はレーザードップラー計により、振動の最大速度を測定する。電圧を上昇させると、振動速度の増大が観察されるが、樹脂弾性体の力学的性質に対応した特定の電圧以上では振動速度の停滞又は減少が見られるが、その最大速度を振動速度とする。
 熱可塑性樹脂のガラス転移温度(Tg)は30℃以上であり、成形性などの点から、例えば、50~450℃、好ましくは70~350℃、さらに好ましくは75~300℃(特に80~200℃)程度であってもよい。さらに、70℃以上であってもよく、例えば、75~450℃、好ましくは80~430℃(例えば、100~400℃)、さらに好ましくは80~300℃(特に80~160℃)程度であってもよい。ガラス転移温度は、圧電素子のキュリー温度よりも高い温度であるのが好ましい。超音波モータや変位拡大型アクチュエータなどの圧電アクチュエータを作動させると、振動による発熱、雰囲気温度の上昇、摩擦による蓄熱などにより、弾性体の温度が上昇し、振動性が低下する。さらに、弾性体の摩擦係数も低下し、移動体への振動伝達性が低下するが、ガラス転移温度が低すぎると、このような振動伝達性の低下が顕著となる。さらに、ガラス転移温度が低すぎると、高温での耐摩耗性も低下し、摩擦熱による高温の状態において摩耗や破損が発生し易い。一方、ガラス転移温度が高すぎると、成形温度が高くなり、分解温度に近づくため、加工が困難となる。本発明で使用する熱可塑性樹脂は、適度な弾性率を有することにより、弾性体の振動性にも優れ、特に、超音波モータにおける櫛歯状弾性体の場合、非振動体(特に移動体)と接触する先端部における振動性が大きくなるため、駆動力を向上できる。また、変位拡大型アクチュエータでは、変位拡大機能に優れ、例えば、リニアモータなどに利用される場合、非振動体(特に移動体)と接触する先端部における振動性が大きくなるため、駆動力を向上できる。
 なお、本明細書では、ガラス転移温度は、ASTM 3418のDSC法に準拠して測定できる。
 熱可塑性樹脂の密度(比重)は、例えば、3g/cm以下であってもよく、好ましくは0.8~2.5g/cm、さらに好ましくは0.9~2g/cm(特に1~1.5g/cm)程度であってもよい。密度が大きすぎると、振動性が低下するため、移動体の駆動伝達性が低下する。密度の測定方法としては、ISO 1183に準拠した方法で測定できる。本発明では、変位拡大型アクチュエータの変位拡大素子を低比重の熱可塑性樹脂で形成しても、高比重の金属で形成された素子と同等以上の変位拡大機能を有しており、比重換算の変位拡大機能が高い。
 熱可塑性樹脂は、前記特性を充足すればよく、特に限定されないが、振動エネルギーの減衰及び損失を抑制でき、耐熱性や耐摩耗性に優れる点から、硬質樹脂が好ましい。硬質樹脂としては、例えば、環状オレフィン系樹脂、スチレン系樹脂(シンジオタクチックポリスチレン樹脂など)、ポリアセタール系樹脂(ポリオキシメチレンなど)、ポリアリールケトン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリアルキレンアリレート、ポリアリレート樹脂、ポリグリコール酸系樹脂、液晶ポリエステルなど)、ポリカーボネート系樹脂、ポリオキシベンゾイルエステル系樹脂、ポリベンズイミダゾール系樹脂、ポリアミドイミド樹脂、ポリアミド系樹脂(脂肪族ポリアミド樹脂、芳香族ポリアミド樹脂など)、ポリイミド系樹脂、ポリエーテルイミド系樹脂、液晶ポリマー、フッ素樹脂(ポリテトラフルオロエチレンなど)などが挙げられる。これらの熱可塑性樹脂は、単独で又は二種以上組み合わせて使用できる。
 これらの熱可塑性樹脂のうち、振動エネルギーの減衰及び損失を抑制でき、変位拡大機能が大きく、耐熱性や耐摩耗性に優れる点から、硬質樹脂又はエンジニアリングプラスチックを好ましく利用でき、例えば、エチレン-ノルボルネン共重合体などの環状オレフィン系樹脂、シンジオタクチックポリスチレン樹脂、ポリカーボネート系樹脂、脂肪族ポリアミドなどのポリアミド系樹脂、ポリアリールケトン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンスルフィド樹脂、ポリグリコール酸系樹脂、液晶ポリエステルなどが汎用される。
 さらに、これらの熱可塑性樹脂のうち、耐熱性、耐摩耗性、電気絶縁性に優れる点から、エチレン-ノルボルネン共重合体などの環状オレフィン系樹脂、ビスフェノールA型ポリカーボネートなどのポリカーボネート、ナイロンMXD6などの芳香族ポリアミド系樹脂、ポリアリールケトン樹脂、ポリフェニレンスルフィド樹脂などが汎用され、ポリアリールケトン樹脂、ポリフェニレンスルフィド樹脂が好ましく、屈曲振動伝達性に優れる点から、ポリフェニレンスルフィド樹脂が特に好ましい。
 さらに、これらの熱可塑性樹脂は、振動伝達性や変位拡大機能が高い点から、結晶性樹脂であってもよい。結晶性樹脂としては、例えば、環状オレフィン系樹脂、シンジオタクチックポリスチレン、ポリアセタール系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリフェニレンスルフィド系樹脂、ポリアリールケトン系樹脂などが挙げられる。これらの結晶性樹脂は、単独で又は二種以上組み合わせて使用できる。特に、これらの結晶性樹脂は、金属と比較して軽量化でき圧電素子との密着性に優れ、熱硬化性樹脂と異なり未反応の硬化性モノマーを含有せずエネルギー損失を低減でき、非結晶樹脂と比較して分子構造が変形しにくく、機械的損失(tanδ)が小さくエネルギー損失を低減できる。従って、ランジュバン振動子では、同じ電流(又は電圧)を印加しても、従来の材料と比較して高効率に超音波を送受信できる。
 なかでも、耐熱性、耐摩耗性、電気絶縁性に特に優れる点から、ポリアリールケトン樹脂、ポリフェニレンスルフィド樹脂が好ましく、振動伝達性や変位拡大機能に特に優れる点から、ポリフェニレンスルフィド樹脂が特に好ましい。
 (1)ポリアリールケトン樹脂
 ポリアリールケトン樹脂は、アリール骨格がエーテル結合及びケトン結合で結合された芳香族ポリエーテルケトンであり、ポリエーテルケトン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリエーテルケトンケトン系樹脂に分類される。アリール骨格は、通常、フェニレン基であるが、他のアリーレン基、例えば、置換フェニレン基(例えば、C1-5アルキル基などの置換基を有するアルキルフェニレン基や、フェニル基などの置換基を有するアリールフェニレン基)や、式-Ar-X-Ar-(式中、Arはフェニレン基を示し、XはS、SO又は直接結合を示す)で表される基などであってもよい。ポリアリールケトン樹脂のアリール骨格中において、他のアリーレン基の割合は、例えば、50モル%以下(特に30モル%以下)であってもよい。これらのポリアリールケトン樹脂は、単独で又は二種以上組み合わせて使用できる。これらのポリアリールケトン樹脂のうち、耐衝撃性などの機械的特性に優れる点から、エーテル結合の割合が多いポリエーテルエーテルケトン系樹脂が好ましい。
 ポリエーテルエーテルケトン系樹脂は、ジハロゲノベンゾフェノンとヒドロキノンとの重縮合により得られるポリエーテルエーテルケトンが、VICTREX社製の商品名「PEEK」シリーズ、EVONIK社製の「VESTAKEEP」シリーズとして市販されているが、フェニレン基が置換基(例えば、C1-3アルキル基など)を有するポリエーテルエーテルケトンや、フェニレン基がナフチレン基などの他のアリール骨格であるポリエーテルエーテルケトンなどであってもよい。
 ポリアリールケトン樹脂(特にポリエーテルエーテルケトン系樹脂)の重量平均分子量は、GPC(ポリスチレン換算)において、例えば、5000~30000、好ましくは6000~25000、さらに好ましくは8000~20000程度である。
 ポリアリールケトン樹脂(特にポリエーテルエーテルケトン系樹脂)の体積フローレート(MVR)は、ISO 1133に準拠して(380℃/5kg)、例えば、10~200cm/10分、好ましくは30~150cm/10分、さらに好ましくは50~100cm/10分程度であってもよい。
 ポリアリールケトン樹脂(特にポリエーテルエーテルケトン系樹脂)(充填材を含まない樹脂単体)は、ISO 527-1/-2に準拠した引張試験(50mm/分)において、振動伝達性や変位拡大機能などを向上できる点から、引張強度、破断強度、降伏伸度、破断伸度、引張弾性率が以下の範囲であってもよい。
 すなわち、引張強度は、例えば、10~300MPa、好ましくは50~200MPa、さらに好ましくは80~150MPa程度であってもよい。
 降伏伸度は、例えば、1~10%、好ましくは2~8%、さらに好ましくは3~6%程度であってもよい。
 破断伸度は、例えば、10%以上であってもよく、例えば、10~100%、好ましくは15~50%、さらに好ましくは20~40%程度であってもよい。
 引張弾性率は、例えば、1000~10000MPa、好ましくは2000~5000MPa、さらに好ましくは3000~4000MPa程度であってもよい。
 (2)ポリフェニレンスルフィド系樹脂
 ポリフェニレンスルフィド系樹脂(ポリフェニレンチオエーテル系樹脂)としては、ポリフェニレンスルフィド骨格-(Ar-S)-[式中、Arはフェニレン基を示す]を有する単独重合体及び共重合体が含まれる。共重合体は、フェニレン基(-Ar-)に加えて、例えば、置換フェニレン基(例えば、C1-5アルキル基などの置換基を有するアルキルフェニレン基や、フェニル基などの置換基を有するアリールフェニル基)や、式-Ar-X-Ar-(式中、Arはフェニレン基を示し、XはO、SO、CO、又は直接結合を示す)で表される基などを含んでいてもよい。ポリフェニレンスルフィド系樹脂は、このようなフェニレン基で構成されるフェニレンスルフィド基のうち、同一の繰返し単位を用いたホモポリマーであってもよく、組成物の加工性の点から、異種繰返し単位を含むコポリマーであってもよい。
 ホモポリマーとしては、p-フェニレンスルフィド基を繰返し単位とする実質上線状のものが好ましく用いられる。コポリマーは、前記フェニレンスルフィド基のうち、異なる2種以上を組み合わせて使用できる。これらのうち、コポリマーとしては、p-フェニレンスルフィド基を主繰返し単位とし、m-フェニレンスルフィド基を含む組み合わせが好ましく、耐熱性、成形性、機械的特性等の物性上の点から、p-フェニレンスルフィド基を60モル%(好ましくは70モル%)以上含む実質上線状のコポリマーが特に好ましい。
 ポリフェニレンスルフィド樹脂は、比較的低分子量の線状ポリマーを酸化架橋又は熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマーであってもよく、2官能性モノマーを主体とするモノマーから縮重合によって得られる実質的に線状構造の高分子量ポリマーであってもよい。得られる成形物の物性の点からは、縮重合によって得られる実質的に線状構造ポリマーの方が好ましい。又、ポリフェニレンスルフィド樹脂としては、前記のポリマーの他に、3個以上の官能基を有するモノマーを組み合わせて重合した分岐又は架橋ポリフェニレンスルフィド樹脂や、この樹脂を前記の線状ポリマーにブレンドした樹脂組成物も用いることができる。
 ポリフェニレンスルフィド樹脂としては、ポリフェニレンスルフィド(ポリ-1,4-フェニレンスルフィドなど)やポリビフェニレンスルフィド(PBPS)の他、ポリフェニレンスルフィドケトン(PPSK)、ポリビフェニレンスルフィドスルホン(PPSS)なども使用できる。ポリフェニレンスルフィド樹脂は、単独で又は二種以上組み合わせて使用できる。
 ポリフェニレンスルフィド樹脂の数平均分子量は、GPC(ポリスチレン換算)において、例えば、500~100000、好ましくは700~50000、さらに好ましくは1000~30000程度である。
 ポリフェニレンスルフィド樹脂(充填材を含まない樹脂単体)のメルトフローレート(MFR)は、JIS K7315-1に準拠して(315℃、荷重5kg)、例えば、1~10000g/10分、好ましくは5~5000g/10分、さらに好ましくは10~3000g/10分(特に20~2000g/10分)程度であってもよい。
 ポリフェニレンスルフィド樹脂(充填材を含まない樹脂単体)は、ISO 527-1/-2に準拠した引張試験(50mm/分)において、振動伝達性や変位拡大機能などを向上できる点から、引張強度、破断伸度、引張弾性率が以下の範囲であってもよい。
 すなわち、引張強度は、例えば、10~300MPa、好ましくは50~250MPa、さらに好ましくは60~200MPa程度であってもよい。
 破断伸度は、例えば、1~30%、好ましくは1~20%、さらに好ましくは1~15%程度であってもよい。
 引張弾性率は、例えば、1000~10000MPa、好ましくは2000~5000MPa、さらに好ましくは3000~4000MPa程度であってもよい。
 (充填材)
 本発明の弾性体は、屈曲振動の伝達性や変位拡大機能の向上に加えて、耐衝撃性、寸法安定性、剛性などの機械的特性も改良するため、前記熱可塑性樹脂に加えて充填材を含む。充填材は、有機系充填材であってもよく、無機系充填材であってもよい。充填材の形状も、特に限定されず、繊維状充填材であってもよく、粒状又は板状充填材であってもよい。
 繊維状充填材には、無機系繊維状充填材、有機系繊維状充填材が含まれる。無機系繊維状充填材としては、例えば、セラミックス繊維(例えば、ガラス繊維、炭素繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、チタン酸カリウム繊維など)、金属繊維(例えば、ステンレス繊維、アルミニウム繊維、チタン繊維、銅繊維、真鍮繊維など)などが挙げられる。有機系繊維状充填材としては、例えば、アラミド繊維、フッ素樹脂繊維、アクリル繊維などの高融点有機繊維などが挙げられる。これらの繊維状充填材は、単独で又は二種以上組み合わせて使用できる。
 粒状又は板状充填材としては、例えば、カーボンブラック、グラファイト、炭化ケイ素、シリカ、窒化ケイ素、窒化ホウ素、石英粉末、ハイドロタルサイト、ガラス類(ガラスフレーク、ガラスビーズ、ガラス粉、ミルドガラスファイバーなど)、炭酸塩(炭酸カルシウム、炭酸マグネシウムなど)、ケイ酸塩(ケイ酸カルシウム、ケイ酸アルミニウム、タルク、マイカ、カオリン、クレー、ケイ藻土、ウォラストナイトなど)、金属酸化物(酸化鉄、酸化チタン、酸化亜鉛、アルミナなど)、硫酸塩(硫酸カルシウム、硫酸バリウムなど)、各種金属粉や金属箔などが挙げられる。これらの粒状又は板状充填材は、単独で又は二種以上組み合わせて使用できる。
 これらの充填材(特に無機系繊維)は、必要に応じて、収束剤又は表面処理剤(例えば、エポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物などの官能性化合物)で表面処理してもよい。充填材の処理は、充填材の添加と同時に行ってもよく、添加前に予め行ってもよい。収束剤又は表面処理剤の使用量は、充填材に対して5重量%以下、好ましくは0.05~2重量%程度である。
 これらの充填材のうち、配向状態を調整して屈曲振動の伝達性や変位拡大機能を向上できる点から、繊維状充填材が好ましく、なかでもガラス繊維や炭素繊維などの無機系繊維、アラミド繊維などの有機系繊維が汎用され、耐熱性が高く、振動伝達性や変位拡大機能及び機械的特性を向上できる点から、無機系繊維が好ましく、軽量性及び柔軟性にも優れる点から、炭素繊維が特に好ましい。繊維状充填材は、弾性体中で少なくとも一部が配向していればよく、長繊維だけでなく、ウイスカーなどの短繊維も含む。
 繊維状充填材の平均繊維径は、例えば、0.1~50μm、好ましくは1~30μm、さらに好ましくは2~20μm程度である。繊維径が小さすぎると、振動伝達性や変位拡大機能及び機械的特性を向上するのが困難となる。一方、繊維径が大きすぎても、振動伝達性や変位拡大機能及び機械的特性を向上するのが困難となる。
 繊維状充填材の平均繊維長は、例えば、1μm~2mm、好ましくは10μm~1.5mm、さらに好ましくは100μm~1mm程度である。繊維長が小さすぎると、振動伝達性や変位拡大機能及び機械的特性を向上するのが困難となる。一方、繊維長が大きすぎると、繊維状充填材を配向させるのが困難となり、振動伝達性や変位拡大機能が低下する。
 繊維状充填材の平均アスペクト比は、例えば、3~500、好ましくは5~100、さらに好ましくは10~50程度である。アスペクト比が小さすぎると、振動伝達性や変位拡大機能及び機械的特性を向上するのが困難となる。一方、アスペクト比が大きすぎると、繊維状充填材を配向させるのが困難となり、振動伝達性や変位拡大機能が低下する。
 本明細書では、繊維状充填材の平均繊維径は、目視や、光学顕微鏡、走査型電子顕微鏡(SEM)などの各種観察装置で計測できるが、光学顕微鏡を用いて任意の10カ所以上の平均値として求めるのが好適である。
 平均繊維長は、弾性体の任意の位置から無作為に約5gの試料を切出し、650℃で灰化して繊維を取り出した繊維の一部(約500本)から前記観察装置を用いて求めた。
 本発明では、繊維状充填材は、屈曲振動伝達性や変位拡大機能を向上させる点から、弾性体中において、一定の方向に配向されているのが好ましく、電気機械変換素子(特に圧電素子)と弾性体との接触面の面方向に対して平行(圧電素子の振動方向に対して平行)に配向されているのが特に好ましい。本発明の弾性体は、複数の層を積層してもよいが、各層の繊維状充填材の配向方向は同一の方向であるのが好ましく、通常、単層の弾性体中で繊維状充填材が一定の方向に配向されている。
 電気機械変換素子(特に圧電素子)の伸縮方向(振動方向)は、適宜選択でき、例えば、電気機械変換素子と弾性体との接触面に対して垂直な方向(板状圧電素子の場合、厚み方向)であってもよいが、弾性体に屈曲振動を発生させ易い点から、電気機械変換素子と弾性体との接触面の面方向(板状圧電素子の場合、通常、面方向)が好ましく、さらに板状電気機械変換素子の面形状が長方形状である場合、長手方向が好ましく、リング状弾性体(ロータ型超音波モータ)の場合、円周方向が好ましい。繊維状充填材が電気機械変換素子の伸縮方向に対して平行であれば、屈曲振動の伝達性や変位拡大機能が向上する理由は明らかではないが、伸縮方向に対して繊維状充填材が平行に配向している場合、繊維状充填材に対して曲げ方向の応力が働くことになる。そのため、繊維状充填材の効果によりtanδ(損失係数)が小さくなり、特性が向上すると考えられる。特に、変位拡大素子では尾根状凸部が変形し易くなると考えられる。これに対して、繊維状充填材の配向方向が振動方向に対して平行で無い場合、伸縮振動(駆動子の屈曲振動)での繊維状充填材の変形の割合は小さく、繊維状充填材間の距離の変動によって変形する割合が増加する。そのため、繊維状充填材によるtanδ減少の効果は少なくなると推定される。
 なお、電気機械変換素子(特に圧電素子)の振動方向は、リング状弾性体の場合、生産性に優れる点から、電気機械変換素子と弾性体との接触面に対して垂直な方向であってもよい。
 本発明では、電気機械変換素子(特に圧電素子)に印加する交流の周波数と、電気機械変換素子を固定した弾性体における繊維状充填材の配向方向の共振周波数とが同一であるのが好ましく、tanδが小さい。共振周波数を外れると、弾性体に投入されたエネルギーは、熱エネルギーに変換される割合が大きくなり、非振動体に伝達される振動エネルギーや変位拡大機能が著しく減少する。
 充填材(特に繊維状充填材)の割合は、熱可塑性樹脂100重量部に対して、例えば、5~100重量部、好ましくは10~60重量部、さらに好ましくは15~50重量部(特に20~40重量部)程度である。充填材の割合が多すぎると、耐衝撃性や耐久性が低下する。
 (他の添加剤)
 本発明の弾性体は、熱可塑性樹脂で形成されているため、慣用の樹脂用添加剤を配合して、機械的特性や意匠性などを容易に改良できる。樹脂用添加剤としては、例えば、着色剤(染顔料)、滑剤、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤、耐光安定剤など)、帯電防止剤、難燃剤、難燃助剤、アンチブロッキング剤、可塑剤、防腐剤などが挙げられる。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。
 [弾性体の特性及び製造方法]
 本発明の弾性体は、ISO 527-1/-2に準拠した引張試験(50mm/分)において、引張弾性率は1~300GPa程度の範囲から選択できるが、振動伝達性や変位拡大機能を向上できる点から、例えば、1.5~100GPa、好ましくは2~50GPa、さらに好ましくは3~10GPa程度であってもよい。引張弾性率が小さすぎると、振動伝達性や変位拡大機能が低下し、引張弾性率が大きすぎると、成形加工が困難となる。
 (超音波モータ用弾性体)
 本発明の弾性体の形状は、アクチュエータ(特に圧電アクチュエータ)の種類に応じて選択でき、例えば、超音波モータの場合、板状(方形の平板状、円板状など)、棒状などの二次元形状、円筒状又はリング状、円柱状などの三次元形状であってもよく、リニア型超音波モータの場合、板状又は棒状(特に棒状)であってもよく、ロータ型超音波モータの場合、リング状又は円柱状(特にリング状)であってもよい。
 さらに、超音波モータは、電気機械変換素子(特に圧電素子)から伝達された屈曲振動により非振動体(特に移動体)を効率良く駆動できる点から、電気機械変換素子(特に圧電素子)と固定された側の反対側に、凸部(歯部)が形成されているのが好ましく、複数の凸部(歯部)が形成されているのが特に好ましい。
 前記凸部の平面形状としては、例えば、四角形状(正方形状、長方形状など)、三角形状、円形状、楕円形状などが挙げられる。これらの形状のうち、長方形状などの四角形状が好ましい。前記凸部の断面形状(弾性体の厚み方向の断面形状)としては、例えば、四角形状(正方形状、長方形状など)、三角形状、波形状などが挙げられる。これらの形状のうち、長方形状の四角形状や、三角形状などが好ましい。特に、リニア型超音波モータの場合、三角形状、特に、凸部の突出方向(圧電素子と弾性体との接触面に対して垂直な方向)において左右非対称な三角形状(非二等辺三角形状)が好ましく、このような三角形状が間隔をおいて複数連なった鋸歯状であってもよい。また、ロータ型超音波モータの場合、四角形状、特に、凸部の突出方向において左右対称な四角形状(長方形状や正方形状など)が好ましい。
 凸部の数は、弾性体の屈曲振動で移動体を駆動するために、複数であればよく、リニア型超音波モータでは、例えば、2以上(例えば、2~10個)程度であり、ロータ型超音波モータでは、例えば、10以上(例えば、10~20個)程度の凸部を規則的に形成してもよい。
 図6は、本発明のリニア型超音波モータの一例を示す概略側面図であり、図7は、図6のリニア型超音波モータを構成するステータの概略斜視図である。このモータ41は、面形状が長方形である板状基部43a及びこの板状基部の下部に形成され、かつ幅方向に間隔をおいて延びる断面三角形状の二つの凸部(鋸歯部)43bを有する板状弾性体43と、この板状弾性体43の長さ方向の一部に積層された板状の圧電素子42と、前記板状弾性体の凸部43bの先端と接触して配設され、前記板状弾性体と同一幅の板状移動体45とを備えている。なお、圧電素子42の表面には、圧電素子に電圧を印加するための一対の電極42a,42bが形成されており、圧電素子の振動部分(一対の電極が圧電素子の厚み方向で対向する部分)と弾性体43との中心軸を一致させている。超音波モータ41でも、圧電素子42と板状弾性体43とは固定されてステータ44を形成しているのに対して、移動体45は移動可能に配設されており、圧電素子42で発生した超音波振動が、板状弾性体43を介して移動体45の直進運動に変換される。詳しくは、圧電素子42に交流電圧を印加することにより長手方向に振動させると、弾性体は、圧電素子との接触部側では、圧電素子の振動に伴って長手方向に伸縮する一方で、前記接触部との反対側では、伸縮が抑制されることにより、屈曲振動が起こって、反対側に形成された凸部を一方向に掻き出す運動となり、移動体を一方向に直進運動させる。特に、圧電素子42の積層位置、弾性体の凸部43bの形成位置、凸部の断面三角形状を非対称(板状弾性体の長さ方向の中心軸に対して非対称)に形成することにより、前記の運動を推進している。
 弾性体の形状や大きさは、周波数や種類の違いに応じて選択でき、特に限定されないが、例えば、以下に示すような範囲で、弾性体を調製してもよい。
 図6に示すようなリニア型超音波モータの場合、弾性体は、幅方向に間隔をおいて延びる断面三角形状の凸部を2以上(例えば、2~5個、好ましくは2~3個、さらに好ましくは2個程度)形成してもよく、凸部の断面三角形状は鋸歯状であってもよい。鋸歯状などの凸部の高さは、0.5~10mm、好ましくは1~8mm、さらに好ましくは2~5mm程度である。凸部の高さは、周波数に応じて選択できるが、弾性体の厚みに対して、0.1~1.5倍、好ましくは0.2~1.0倍、さらに好ましくは0.3~0.8倍程度である。
 弾性体の厚みは、例えば、1~40mm、好ましくは2~30mm、さらに好ましくは3~20mm程度である。弾性体の厚みは、圧電素子の厚みに対して、例えば、1~10倍、好ましくは1.5~8倍、さらに好ましくは2~5倍程度である。
 電気機械変換素子(特に圧電素子)は、板状弾性体の少なくとも一部に固定するのが好ましい。例えば、弾性体の長手方向の長さは、電気機械変換素子の長さ(振動部分の長さ)に対して、例えば、1.5~2.5倍(特に1.8~2.2倍)程度であってもよい。弾性体の長手方向の長さは、例えば、9~200mm(特に15~100mm)程度であってもよい。電気機械変換素子の振動部分の長さは、例えば、5~100mm(特に10~50mm)程度であってもよい。
 弾性体の厚みは、長手方向の長さに対して、例えば、0.05~0.4倍(特に0.1~0.3倍)程度であってもよい。弾性体の厚みは、例えば、1~40mm(特に3~20mm)程度であってもよい。
 さらに、屈曲振動の伝達性などの点から、弾性体と電気機械変換素子の振動部分とは中心軸を略一致させるのが好ましい。
 一方、弾性体がリング状であるロータ型超音波モータの場合、弾性体は、非振動体との接触部において、弾性体の屈曲振動を非振動体に伝達するための凸部を有していなくてもよく、前記凸部を有していない弾性体は振動伝達性を有してはいるものの、凸部を形成することにより、振動伝達性を向上できる。ロータ型超音波モータの場合、凸部を有する弾性体は、リングの周方向に微小な凸部が規則的に形成された形状(櫛歯部を有する形状)であってもよい。櫛歯部を有する形状において、凸部(櫛歯部)が長方形状などの四角形状であり、凸部間にスリット部が形成されている場合、凸部の幅は、例えば、0.1~30mm、好ましくは0.2~15mm、さらに好ましくは0.5~10mm(特に0.5~5mm)程度であり、凸部の高さは、例えば、0.1~30mm、好ましくは0.2~15mm(例えば、0.5~10mm)、さらに好ましくは0.5~5mm(特に0.5~3mm)程度であってもよい。また、スリットの深さは、例えば、0.1~30mm、好ましくは0.2~15mm(例えば、0.5~10mm)、さらに好ましくは0.5~5mm(特に0.5~3mm)程度であってもよい。さらに、凸部の幅とスリット部の幅との比(凸部の幅/スリット部の幅)は、例えば、0.01~100、好ましくは0.1~10、さらに好ましくは0.3~30程度である。
 本発明の弾性体は、超音波モータの種類及び形状に応じて、慣用の成形方法、例えば、押出成形、射出成形、圧縮成形などで製造できる。これらの成形方法のうち、押出成形や射出成形などが汎用され、鋸歯形状や櫛歯形状など三次元形状の場合、通常、射出成形や切削加工で成形できる。本発明では、弾性体が樹脂で形成されているため、成形加工性に優れている。
 なお、弾性体(特に、リニア型超音波モータの弾性体)の凸部には充填材が含まれていなくてもよい。例えば、リニア型超音波モータの弾性体の場合、凸部を一体成形せずに、充填材を含まない凸部を別途、押出成形や射出成形などにより成形し、弾性体の板状基部に接合してもよい。
 特に、繊維状充填材を一定の方向(特に圧電素子の振動方向に対して平行な方向)に配向する方法としては、簡便性の点から、押出成形や射出成形を利用するのが好ましい。押出成形や射出成形では、繊維状充填材は、容易に樹脂の流動方向に配向させることが可能である。繊維状充填材を一定の方向に配向させる方法は、樹脂の種類に応じて適宜選択でき、特に限定されないが、例えば、押出成形では、溶融混練に供する樹脂組成物を80~180℃(特に100~160℃)で所定時間(例えば、2~5時間程度)予備乾燥し、220~420℃(特に320~400℃)で溶融混練してもよい。射出成形では、シリンダー温度が220~420℃(特に320~400℃)程度であってもよく、金型温度が40~250℃(特に100~220℃)程度であってもよい。そのため、リニア型超音波モータの弾性体では、押出成形や射出成形により繊維状充填材を樹脂の流動方向に配向させた基部を作製した後、別途作製した凸部を接合する方法が好ましい。
 (変位拡大素子)
 本発明の弾性体が変位拡大型アクチュエータの変位拡大素子である場合、変位拡大素子の形状は、固定した電気機械圧電素子との間で空隙部を形成するための(形成可能な)凸部を有する板状である。変位拡大素子は、このような凸部を有するため、固定した電気機械圧電素子との間で空隙部を形成でき、電気機械変換素子の伸縮による凸部の変位を拡大できる。
 凸部の大きさは、変位拡大型アクチュエータの種類に応じて選択できる。凸部の高さは、空隙部の高さ(最大高さ)が、例えば、0.1~10mm、好ましくは0.2~5mm、さらに好ましくは0.3~3mm(特に0.5~2mm)程度となる高さが好ましい。
 前記凸部は、電気機械圧電素子との間で空隙部を形成できれば、形状は特に限定されず、電気機械圧電素子との間で密閉された空隙部を形成(内包)するための凸部であってもよく、図3に示す凸部のように、電気機械圧電素子との間で密閉されない空隙部を形成するための凸部であってもよい。
 電気機械圧電素子との間で密閉された空隙部を形成するための凸部の形状としては、例えば、半球状、円錐状、截頭円錐状、多角錐状(三角錐状や四角錐状など)、截頭多角錐状、円柱状、多角柱状などの形状に板面の一部が突出した形状(又はこれらの形状に屈曲又は湾曲した中空の形状)が挙げられる。具体的には、凸部の形状は、例えば、特開2012-34019号公報に記載の形状などであってもよい。
 これらの凸部のうち、変位拡大機能が大きく、射出成形において電気機械変換素子と一体化したアクチュエータを簡便に製造でき、加工性及び生産性に優れる点から、両側部が開放された尾根状凸部(又は山脈状凸部)、すなわち屈曲又は湾曲して形成された一方向に延びる尾根状凸部が好ましい。
 尾根状凸部の尾根方向(稜線方向)に垂直な断面形状は、屈曲形状又は湾曲形状である。屈曲形状としては、例えば、三角形状、正方形状、長方形状、台形状などが挙げられる。湾曲形状としては、例えば、略半円形状、波形形状などが挙げられる。これらのうち、変位拡大機能が大きい点から、台形状(特に、電気機械変換素子との接触側から非接触側に向かって幅が狭くなる台形状)が好ましい。凸部の形状が台形状であるアクチュエータは、シンバル型アクチュエータとして知られている。
 尾根状凸部の高さは、空隙部の高さ(最大高さ)が、例えば、0.1~5mm、好ましくは0.3~3mm(例えば、0.4~2mm)、さらに好ましくは0.5~1.5mm(特に0.8~1.2mm)程度となる高さが好ましい。また、尾根状凸部の幅(稜線方向に垂直な方向の幅)は、例えば、空隙部の幅(最大幅)が、例えば、1~30mm、好ましくは2~20mm、さらに好ましくは3~15mm(特に5~10mm)程度である。空隙部の幅は、電気機械変換素子(特に圧電素子)の長さ(稜線方向に垂直な方向の長さ)に対して、例えば、0.1~0.9倍、好ましくは0.2~0.8倍、さらに好ましくは0.3~0.7倍程度である。尾根状凸部の稜線方向の長さは、例えば、1~100mm、好ましくは2~30mm、好ましくは3~20mm(特に5~15mm)程度である。
 尾根状凸部の前記断面形状が台形状である場合、側部の傾斜角は、例えば、50~80°、好ましくは10~70°、さらに好ましくは20~60°(特に30~50°)程度である。傾斜角が大きすぎると、凸部の上下動の幅が小さくなり、変位拡大機能が低下し、傾斜角が小さすぎると、凸部を変形させるのが困難となり、変位拡大機能が低下する。
 凸部(特に尾根状凸部)が形成される部位は、特に限定されないが、通常、略中央部(尾根状凸部の場合、稜線方向に垂直な方向の略中央部)に形成される。
 変位拡大素子の平面形状は、四角形状(正方形状、長方形状など)、三角形状、円形状、楕円形状などが挙げられる。これらの形状のうち、長方形状などの四角形状が好ましい。
 変位拡大素子の厚みは、例えば、0.3~5mm、好ましくは0.5~3mm、さらに好ましくは0.6~2mm(特に0.8~1.5mm)程度である。変位拡大素子の厚みは、電気機械変換素子の厚みに対して、例えば、0.1~10倍、好ましくは0.3~5倍、さらに好ましくは0.3~3倍(特に0.5~2倍)程度である。
 変位拡大素子は、接触する非振動体(移動体)を掻き出す駆動機構として利用される場合などには、突起を有していてもよい。突起は、変位拡大素子の凸部に形成され、例えば、前記断面形状が台形状である突起では、図4に示されるように、側部に形成されていてもよい。
 突起の形状は、三角柱状や四角柱状などの多角柱状、略半円柱状、三角錐状や四角錐状などの多角錐状などであってもよい。これらのうち、三角柱状などの多角柱状が好ましい。
 突起の断面形状(尾根状凸部の場合、稜線方向に垂直な断面形状)は、例えば、四角形状(正方形状、長方形状など)、三角形状、波形状などが挙げられる。これらの形状のうち、三角形状などの多角形状が好ましい。
 突起の数は、アクチュエータの種類に応じて選択でき、単数であってもよく、複数であってもよい。
 突起の高さは、例えば、凸部の高さに対して、通常、1倍以上であり、例えば、1.2~10倍、好ましくは1.5~8倍、さらに好ましくは2~5倍程度である。
 本発明の変位拡大素子は、変位拡大型圧電アクチュエータの種類及び形状に応じて、慣用の成形方法、例えば、押出成形、射出成形、圧縮成形などで製造できる。これらの成形方法のうち、押出成形や射出成形などが汎用され、鋸歯形状や櫛歯形状など三次元形状の場合、通常、射出成形や切削加工で成形できる。本発明では、弾性体が樹脂で形成されているため、成形加工性に優れている。
 なお、変位拡大素子が充填材を含み、突起を有する場合、突起には充填材が含まれていなくてもよい。例えば、前記断面形状が台形状の尾根状凸部を有する素子の場合、突起を一体成形せずに、充填材を含まない突起を別途、押出成形や射出成形などにより成形し、尾根状凸部の側部に接合してもよい。
 繊維状充填材を一定の方向に配向する方法としては、超音波モータ用弾性体の項で例示された方法と同様の方法を利用できる。突起を有する変位拡大素子では、押出成形や射出成形により繊維状充填材を樹脂の流動方向に配向させた基部を作製した後、別途作製した突起を接合する方法が好ましい。
 (ランジュバン振動子用弾性体)
 本発明の弾性体がランジュバン振動子用弾性体である場合、この弾性体は共振部材を形成し、共振部材の形状は、慣用のランジュバン振動子の共振部材であるフロント部材(又はフロントマス)やリア部材(又はリアマス)で用いられる形状であってもよい。
 図8に示すランジュバン振動子(超音波振動子)は、いわゆるボルト締めランジュバン振動子であり、水や空気などの媒質中で超音波を発生及び検出する装置として有用である。このランジュバン振動子は、圧電(ピエゾ)素子51と、この圧電素子を挟持(サンドイッチ)する一対の共振部材52,53とを備えている。詳細には、ランジュバン振動子は、圧電素子51と、この圧電素子の一方の面に固定され、かつ超音波の送受信部を有する第1の共振部材(フロント部材又はフロントマス)52と、前記圧電素子の他方の面に固定され、かつ前記圧電素子に前記第1の共振部材52を圧接(又は圧着)するための第2の共振部材(リア部材又はリアマス)53とを備えている。また、界面での超音波の減衰を防止したり、振動に対する耐久性を向上するため、圧電素子51と、一対の共振部材52,53とを接合手段(ネジ又は軸芯ボルトなど)54により一体化している。
 このようなランジュバン振動子において、フロント部材52に熱可塑性樹脂及び充填材を含有させることにより、低電流(又は低電圧)でもフロント部材52の表面を高速で振動させることができる。
 圧電素子51は、発振器から発振された交流電圧を印加するため、圧電層に加えて電極板を有する場合が多く、通常、圧電層と電極板とを交互に繰り返して積層した積層体である。圧電層の積層数、及び電極板の積層数は、特に制限されず、互いに同一又は異なって、例えば、1~10個、好ましくは1~8個、さらに好ましくは1~6個(例えば、1~4個)程度である。
 図8に示す例では、それぞれ径方向の中心部に貫通孔を有する円形薄片状の電極板512及び円板状の圧電層511をこの順にネジ(ネジ棒)54に挿通し、3つの電極板512の間に2つの圧電層511を介在させて積層体を形成している。3つの電極板512は、それぞれ摘み部513を有しており、これらの摘み部にリード線を取付けて発振器(及び必要により増幅器)と接続することにより、圧電層511に交流電圧を印加できる。
 フロント部材(又は前面板)52は、圧電素子51との密着性が高く、圧電素子51の振動を減衰させることなく先端部まで伝播し、媒体に向けて強力な超音波を放射できる。この例では、フロント部材52は円柱状であり、圧電素子51との接合面に、接合手段54の雄ネジ部に対応する雌ネジ部を有する孔部が形成されており、この孔部に、圧電素子51を貫通したネジ54を螺合(又は螺着)することにより、圧電素子51との密着性を向上し、圧電素子51の耐久性の向上も図っている。
 なお、フロント部材52の形状は、特に制限されず、例えば、円柱状、円錐台状、角柱状、角錐台状、半球状であってもよく、これらの形状を組み合わせた形状(頂部が円錐台状の円柱体など)であってもよい。
 圧電素子51との接合面には、必ずしも孔部を設ける必要はないが、ネジなどの接合手段で接合する場合、孔部(ネジ孔)を形成してもよい。孔部は、ネジなどの接合部材を収容可能な大きさに形成されている。孔部の孔径は、フロント部材52の径方向の長さを100としたとき、例えば、1~60、好ましくは5~50、さらに好ましくは10~40程度である。また、孔部の深さは、フロント部材52の厚みを100としたとき、例えば、1~70、好ましくは5~60、さらに好ましくは10~50程度である。
 本発明では、リア部材53を本発明の弾性体で形成してもよいが、フロント部材52の表面を低電流で高速に振動できる点から、フロント部材52を本発明の弾性体(熱可塑性樹脂及び充填材を含む弾性体)で形成するのが好ましい。
 フロント部材52の厚み(軸方向の長さ)は、共振波長に応じて適宜選択でき、例えば、100mm以下、好ましくは10~70mm、さらに好ましくは20~60mm(例えば、30~50mm)程度である。本発明では、共振波長を短くできるため、フロント部材52の厚みを小さくして小型化できる。また、フロント部材52の径方向の長さは、例えば、1~50mm、好ましくは5~40mm、さらに好ましくは10~30mm程度である。
 フロント部材52の音響インピーダンスは、室温(温度15~25℃程度)において、JIS A1405に準拠して、1~10N・s/m程度の範囲から選択でき、例えば、3~9N・s/m、好ましくは4~8N・s/m、さらに好ましくは5~7N・s/m程度である。本発明では、水や生体などの媒質との音響インピーダンスの差が小さいため、界面で超音波が反射することなく、高効率に超音波を送受信できる。しかも、音響整合層が不要であり、装置を小型化できる。
 リア部材(又は裏打板)53は、フロント部材52とともに圧電素子51を挟持(サンドイッチ)することにより、フロント部材52を圧電素子51に圧接させている。この例では、リア部材53は、フロント部材52と同一の形状であり、同一の寸法である。なお、リア部材53は、図8に示す形状及び寸法に限定されず、フロント部材52と同様に、種々の形状及び寸法に設計変更できる。
 フロント部材52とリア部材53との厚み比は、特に制限されず、前者/後者=1/3~3/1程度の範囲から選択でき、超音波を前方に放射する点から、例えば、1/1~3/1、好ましくは1.2/1~2.8/1、さらに好ましくは1.5/1~2.5/1程度である。
 リア部材53の主材としては、樹脂、金属(アルミニウム、マグネシウム、ベリリウム、チタンなどの軽金属、ステンレスなどの重金属など)、セラミックスなどが例示できる。これらの主材のうち、樹脂が好ましい。樹脂としては、熱硬化性樹脂であってもよいが、通常、熱可塑性樹脂である。熱可塑性樹脂としては、例えば、フロント部材12と同様の樹脂に加えて、(メタ)アクリル系樹脂、ポリオレフィン系樹脂(ポリエチレン系樹脂、ポリプロピレン系樹脂など)、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリC2-4アルキレンC6-10アリレートなど)、ポリカーボネート樹脂、ポリアミド系樹脂、ポリウレタン系樹脂などが例示できる。
 リア部材53の主材も、フロント部材52と同様、ポリフェニレンスルフィド系樹脂、ポリアリールケトン樹脂、特にポリフェニレンスルフィド系樹脂が好ましい。リア部材53の樹脂は、フロント部材52の樹脂と同種又は異系統の樹脂であってもよいが、特に同種の樹脂であるのが好ましい。
 リア部材53の樹脂は、フロント部材52と同様、充填材及び/又は他の添加剤と組み合わせて使用してもよい。充填材及び他の添加剤としては、それぞれアクチュエータ用弾性体の項で例示した成分が挙げられ、好ましい成分も同様である。
 リア部材53は、圧電素子51と反対の面に、必要により任意の層(緩衝層、保護層など)を積層してもよい。
 [アクチュエータ]
 本発明のアクチュエータは、交流電圧の印加により面方向に伸縮する板状の電気機械変換素子と、この電気機械変換素子に固定された前記弾性体とを備えていればよい。
 電気機械変換素子は、電歪素子(又は磁歪素子)であってもよいが、振動伝達性や変位拡大機能に優れる点から、圧電素子が好ましい。圧電素子は、変位拡大機能を更に向上させるため、積層型圧電素子であってもよい。
 圧電(ピエゾ)素子は、超音波振動を発生できれば特に限定されないが、圧電高分子膜(ポリフッ化ビニリデン、フッ化ビニリデン-三フッ化エチレン共重合体などのフッ素樹脂など)、圧電金属薄膜(酸化亜鉛の蒸着膜など)であってもよいが、通常、圧電セラミックス層である。圧電セラミックス層は、圧電性を示すセラミックス、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛、チタン酸鉛、チタン酸バリウムなどのABO型ペロブスカイト酸化物などを含んでいる。これらのセラミックスは、単独で又は二種以上組み合わせて使用できる。
 圧電層511は、圧電高分子膜(ポリフッ化ビニリデン、フッ化ビニリデン-三フッ化エチレン共重合体などのフッ素樹脂など)、圧電金属薄膜(酸化亜鉛の蒸着膜など)であってもよいが、通常、圧電セラミックス層である。
 本発明のアクチュエータは、通常、圧電アクチュエータであり、例えば、超音波モータ、変位拡大型圧電アクチュエータ、ランジュバン振動子などであってもよい。
 (超音波モータ)
 本発明の超音波モータは、非振動体と接触させて用いられ、前記電気機械変動素子(特に圧電素子)の振動により弾性体が屈曲振動(楕円運動)して、前記弾性体(アクチュエータ)自身又は前記非振動体を駆動させる。弾性体が屈曲振動する圧電アクチュエータとしては、ロータ型超音波モータやリニア型超音波モータなどの超音波モータなどが挙げられる。これらのうち、非振動体が移動体であり、移動体を駆動させる圧電アクチュエータ(特に、ロータ型超音波モータやリニア型超音波モータなどの超音波モータ)が汎用される。
 超音波モータにおいて、非振動体(移動体)としても、超音波モータの種類に応じて、慣用の非振動体、板状又は棒状移動体(スライダ)、ロータ(回転体)を利用できるが、リニア型超音波モータに利用される板状移動体、ロータ型超音波モータに利用される回転体が好ましい。非振動体(移動体)の材質は、特に限定されず、慣用の金属材料や樹脂などで形成でき、通常、ステンレス、アルミニウム、真鍮などの金属で形成されている。移動体の表面には、非振動体(移動体)との摺動性を向上させるために、シリコーンやフッ素樹脂などで構成された被膜が形成されていてもよい。
 弾性体と電気機械変動素子(特に圧電素子)との固定方法としては、切削加工した弾性体と電気機械変動素子とを接着剤を用いて固定する方法、切削加工した弾性体の樹脂表面を融解し電気機械変動素子と融着させる方法、電気機械変動素子を金型内に設置した後、融解した樹脂を金型内に流し、電気機械変動素子を封止する方法(インサート成形法)などが挙げられる。
 (変位拡大型アクチュエータ)
 本発明の変位拡大型圧電アクチュエータは、交流電圧の印加により面方向に伸縮する板状の電気機械変換素子の伸縮による変位を拡大する機構を備えたアクチュエータであり、前記電気機械変換素子と、この電気機械変換素子に固定された前記変位拡大素子とを備えていればよい。変位拡大素子は、通常、非振動体と接触させて用いられ、前記電気機械変換素子の伸縮による変位を拡大して、前記変位拡大素子自身又は前記非振動体を駆動させる。
 変位拡大素子は、少なくとも凸部の裏側の凹部を塞ぐように、変位拡大素子の板面と板状電気機械変換素子(特に圧電素子)とが固定され、変位拡大素子と電気機械変換素子との間に前記凸部に起因する空隙部が形成されていればよい。変位拡大素子と電気機械変換素子との固定方法としては、例えば、切削加工した変位拡大素子と電気機械変換素子とを接着剤を用いて固定する方法、切削加工した変位拡大素子の樹脂表面を融解し電気機械変換素子と融着させる方法、電気機械変換素子を金型内に設置した後、融解した樹脂を金型内に流し、電気機械変換素子を封止する方法(インサート成形法)などが挙げられる。
 また、変位拡大素子は、板状電気機械変換素子の片方の面に固定されていてもよく、両方の面に固定されていてもよい。
 変位拡大素子が電気機械圧電素子との間で密閉された空隙部を形成するための凸部を有する場合、電気機械変換素子の大きさは、密閉した空隙部を形成できればよく、特に限定されない。特に、板状電気機械変換素子の片方の面に変位拡大素子が固定されている場合、電気機械変換素子の大きさは、変位拡大素子よりも小さい方が好ましく、例えば、電気機械変換素子の径は、変位拡大素子の径に対して0.3~0.7倍(特に0.4~0.6倍)程度であってもよい。一方、板状電気機械変換素子の両方の面に変位拡大素子が固定されている場合、電気機械変換素子の大きさは、変位拡大素子と略同一以上の大きさが好ましく、例えば、電気機械変換素子の径は、変位拡大素子の径に対して0.9~1.5倍(特に1~1.2倍)程度であってもよい。
 変位拡大素子が尾根状凸部を有する場合、電気機械変換素子の大きさは、尾根状凸部を凹部側から跨いで空隙部を形成できればよく、稜線方向における電気機械変換素子の長さは、変位拡大素子の長さに対して0.5~1.5倍(特に0.8~1.2倍)程度であり、通常、変位拡大素子の長さと略同一である。稜線方向に垂直な方向の長さについては、板状電気機械変換素子の片方の面に変位拡大素子が固定されている場合、電気機械変換素子の長さは、変位拡大素子よりも短い方が好ましく、例えば、電気機械変換素子の長さは、変位拡大素子の長さに対して0.3~0.7倍(特に0.4~0.6倍)程度であってもよい。一方、稜線方向に垂直な方向の長さについて、板状電気機械変換素子の両方の面に変位拡大素子が固定されている場合、電気機械変換素子の長さは、変位拡大素子と略同一以上の長さが好ましく、例えば、電気機械変換素子の長さは、変位拡大素子の長さに対して0.9~1.5倍(特に1~1.2倍)程度であってもよい。
 尾根状凸部を有する変位拡大素子において、稜線方向に垂直な方向における変位拡大素子の長さは、例えば、5~300mm、好ましくは10~100mm、さらに好ましくは20~50mm(特に25~40mm)程度である。稜線方向に垂直な方向における電気機械変換素子の長さは、例えば、5~100mm、好ましくは10~50mm、さらに好ましくは10~30mm程度であってもよい。
 非振動体(移動体)としては、アクチュエータの種類に応じて、慣用の非振動体、例えば、リニア型モータなどの板状又は棒状移動体(スライダ)、ロータ(回転体)などが利用できる。非振動体(移動体)の材質は、特に限定されず、慣用の金属材料や樹脂などで形成でき、通常、ステンレス、アルミニウム、真鍮などの金属で形成されている。
 さらに、振動の伝達性などの点から、変位拡大素子と電気機械変換素子の振動部分とは中心軸を略一致させるのが好ましい。
 (ランジュバン振動子)
 本発明のランジュバン振動子は、電気機械変換素子を挟持する共振部材により、前記電気機械変換素子の伸縮による振動の周波数を低下させる部材を用いたアクチュエータであり、慣用のランジュバン振動子であってもよい。
 図8に示すランジュバン振動子において、圧電素子で形成された圧電層511の形状は、特に制限されず、例えば、円柱状、円錐台状、角柱状、角錐台状などであってもよく、これらの形状を組み合わせた形状(円柱と円錐台とを直列に接続した形状など)であってもよい。
 圧電層511の厚みは、発振周波数に応じて適宜選択でき、例えば、500μm~10mm、好ましくは1~7mm、さらに好ましくは2~5mm程度である。
 電極板512の形状は、薄片状であれば特に制限されず、矩形などの多角形、円形、楕円形などであってもよい。電極板512は、必ずしも摘み部を有している必要はないが、リード線の取付けを容易にするため、電極板112の端部(又は周縁部)に摘み部(延出片、折り返し片など)を有していてもよい。電極板512の厚みは、例えば、10~500μm、好ましくは30~300μm、さらに好ましくは50~150μm程度である。
 電極板512は、導電材で形成すればよく、導電材としては、金属、例えば、金、銀、銅、白金、アルミニウムなどが例示できる。これらの導電材は、単独で又は二種以上組み合わせて使用できる。
 共振部材を接着剤で接着する場合などには、圧電素子51(圧電層511及び/又は電極板512)に孔部を形成しなくてもよいが、共振部材をネジ(又は軸芯ボルト)などの圧接手段で圧接する場合には、圧電素子51(圧電層511及び/又は電極板512)に孔部を形成してもよい。孔部は、フロント部材52及びリア部材53の接合面にそれぞれ形成してもよく、それぞれの孔部は連通して圧電素子51全体を貫通する貫通孔であってもよい。なお、孔部は、ネジなどの接合部材を挿通可能な大きさであればよい。
 本発明のランジュバン振動子の共振周波数は、用途に応じて適宜選択でき、例えば、10~1000kHz、好ましくは15~900kHz、さらに好ましくは20~800kHz程度である。また、超音波振動子は、26、38、78、100、130、160、200、430、750、950kHzから選択された少なくとも一種の周波数で使用してもよい。本発明では、低周波数で使用する用途に適用する場合でも、ランジュバン振動子を小型化できる。
 ランジュバン振動子に印加する電流は、例えば、30~250mA、好ましくは50~220mA、さらに好ましくは70~210mA(例えば、80~200mA)程度である。本発明では、低電流であっても、表面を高速で振動させることができ、高効率に超音波を送受信できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例及び比較例で使用した材料の各成分の略号は下記の通りである。
 [材料の略号]
 CF含有PEEK:平均繊維径約7μmの炭素繊維30重量%含有ポリエーテルエーテルケトン、日本エクストロン(株)製「PEEK/CF:黒」、押出成形により炭素繊維が長さ方向に配向した断面円形の棒状成形体、ガラス転移温度(Tg)143℃
 PEEK:ポリエーテルエーテルケトン、日本エクストロン(株)製「ナチュラルカラー(無充填)」、断面円形の棒状成形体、比重1.45、Tg143℃
 CF含有PPS:平均繊維径約7μmの炭素繊維30重量%含有ポリフェニレンスルフィド、日本エクストロン(株)製「PPS/CF:黒」、押出成形により炭素繊維が長さ方向に配向した断面円形の棒状成形体、比重1.45、Tg90℃
 PPS:ポリフェニレンスルフィド、日本エクストロン(株)製「丸棒PPS N」、比重1.34、ガラス転移温度(Tg)90℃
 GF含有PA:ガラス繊維50重量%含有ナイロンMXD6、日本エクストロン(株)製「MXD-6:黒[レニー(登録商標)]」、押出成形によりガラス繊維が長さ方向に配向した断面円形の棒状成形体、比重1.65、Tg75℃
 GF含有PC:ガラス繊維20重量%含有ビスフェノールA型ポリカーボネート、白石工業(株)製「PC丸棒GF-20(黒)」、押出成形によりガラス繊維が長さ方向に配向した断面円形の棒状成形体、比重1.41、Tg160℃
 GF含有PES:ガラス繊維30重量%含有ポリエーテルスルホン、白石工業(株)製「ポリエーテルサルフォン丸棒GF-30」、押出成形によりガラス繊維が長さ方向に配向した断面円形の棒状成形体、比重1.6、Tg217℃
 PE:ポリエチレン、芝軽粗材(株)製「PE丸棒」、断面円形の棒状成形体、比重0.91、Tg-125℃
 ABS:ABS樹脂、白石工業(株)製「ABS丸棒 ナチュラル」、断面円形の棒状成形体、比重1.05、Tg100℃
 PC1:ビスフェノールA型ポリカーボネート、芝軽粗材(株)製「PC(丸棒)」、断面円形の棒状成形体、比重1.2、Tg160℃
 PC2:ポリカーボネート、白石工業(株)製「ポリカーボネイト丸棒」
 PMMA:ポリメタクリル酸メチル、白石工業(株)製「アクリル注型丸棒(透明)」
 ガラスエポキシ:平均繊維径10μmのガラス繊維約40重量%含有エポキシ樹脂、村上電業(株)製「エポキシガラス(ガラエポ)丸棒」
 アルミニウム:合金規格番号A5052
 PZT:(株)富士セラミックス製「C-216」。
 これらの材料を用いて、超音波モータ、変位拡大型アクチュエータ、ランジュバン振動子を作製し、以下の実験を行った。
 (A)超音波モータに関する実験
 [最大振動速度]
 図6に示す弾性体43と同一形状の弾性体を作製し、接着剤(ハンツマン・ジャパン(株)製「Araldite スタンダード」)を用いて、PZTで形成した圧電素子(圧電振動子)と貼り合わせてステータを作製し、レーザードップラー評価装置(グラフテック社製「AT500-05」)を用いて、振動速度を評価した。詳しくは、共振条件の交流電圧を圧電振動子に印加し、長手方向に振動させる。このとき、樹脂で形成された弾性体の上部が伸縮することになる一方で、足(凸部)が形成された下部は伸縮しないため、ステータの屈曲振動が実現される。この屈曲振動が足に伝達されることにより、足が地面(非振動体)を引っかくことでリニアモータが前進する。このときの振動速度は、レーザードップラー効果を用いた前記評価装置で評価し、共振条件での樹脂の端部(鋸歯部43bのうち、圧電素子の下部に位置する鋸歯部の先端の中央部)の最大振動速度(振動速度:mm/秒)と電圧との関係を求めた。
 なお、ファンクションジェネレータ(NF回路設計ブロック社製「WAVE FACTORY 1946」)で発生させた交流電圧を、アンプ(NF回路設計ブロック社製「HSA4101T」)にて昇圧し、共振周波数において駆動させた。印加電圧及び周波数はそれぞれの材質・形状で、最も振動する値に合わせた。
 [回転試験]
 図1及び2に記載のロータ型超音波モータ、又は図1及び2において櫛歯部が形成されていないロータ型超音波モータを用いて、回転特性を評価した。ロータの一部に印を付けて回転させ、その印の単位時間内の回転数を用いて回転特性とした。弾性体と圧電素子とは、接着剤(ハンツマン・ジャパン(株)製「Araldite スタンダード」)を用いて貼り合わせた。
 8分割に分割した電極の隣り合わせた電極に順次位相を90°遅らせた交流電圧を印加した。詳しくは、ファンクションジェネレータ(NF回路設計ブロック社製「WAVE FACTORY 1946」)で発生させた交流電圧を、アンプ(NF回路設計ブロック社製「HSA4101T」)にて昇圧し、トランスにて位相を180°分離することで、90°ずつずれた4つの周波電圧を印加した。
 なお、2種類のロータ型超音波モータのサイズは、以下の通りである。
 (櫛歯なしロータ型弾性体)
 圧電振動子:PZT製、内径6mm、外径10mm、厚み0.5mm
 弾性体:内径4mm、外径10mm、厚み2mm
 ロータ:アルミニウム製、内径4mm、外径10mm、厚み5mm
 電源:周波数はそれぞれの材質で最も振動する値に合わせた。
 (櫛歯付きロータ型弾性体)
 圧電振動子:PZT製、内径6mm、外径10mm、厚み0.5mm
 弾性体:内径4mm、外径10mm、厚み2mm
 櫛歯形状:幅0.5mm、深さ1mmのスリットを等間隔で16箇所に形成
 ロータ:アルミニウム製、内径4mm、外径10mm、厚み5mm
 電源:周波数はそれぞれの材質で最も振動する値に合わせた。
 実施例1
 CF含有PEEKを用いて、炭素繊維の配向方向が、圧電素子と弾性体との接触面に対して平行であり、かつ弾性体の長手方向に平行となるように切削加工して、図6に示す弾性体43と同一形状の弾性体を作製した。
 比較例1
 PEEKを切削加工して、図6に示す弾性体43と同一形状の弾性体を作製した。
 実施例1及び比較例1で得られた弾性体を用いて、リニア型超音波モータを作製し、最大振動速度を評価した結果を図9に示す。図9の結果から明らかなように、同じ電圧を印加した際の最大振動速度が、比較例1の弾性体よりも実施例1の弾性体で向上していた。
 実施例2
 CF含有PPSを用いて、炭素繊維の配向方向が、圧電素子と弾性体との接触面に対して平行あり、かつ弾性体の長手方向に平行となるように切削加工して、図6に示す弾性体43と同一形状の弾性体を作製した。
 実施例3
 CF含有PPSを用いて、炭素繊維の配向方向が、圧電素子と弾性体との接触面に対して垂直となるように切削加工して、図6に示す弾性体を作製した。
 実施例2及び3で得られた弾性体を用いて、リニア型超音波モータを作製し、最大振動速度を評価した結果を図10に示す。図10の結果から明らかなように、実施例2の弾性体は、実施例3の弾性体よりも高電圧での最大振動速度が向上していた。
 実施例4
 CF含有PEEKを用いて、炭素繊維の配向方向が、圧電素子と弾性体との接触面に対して垂直となるように切削加工して、図1及び2に示す櫛歯付きロータ型弾性体を作製した。得られた弾性体を用いて、ロータ型超音波モータを作製し、回転試験を行った結果、1.7rpmで回転した。
 実施例5
 CF含有PPSを用いて、炭素繊維の配向方向が、圧電素子と弾性体との接触面に対して垂直となるように切削加工して、図1及び2に示す櫛歯付きロータ型弾性体を作製した。得られた弾性体を用いて、ロータ型超音波モータを作製し、回転試験を行った結果、1.8rpmで回転した。
 実施例6
 CF含有PEEKを用いて、炭素繊維の配向方向が、圧電素子と弾性体との接触面に対して垂直となるように切削加工して、図1及び2において櫛歯部が形成されていない櫛歯なしロータ型弾性体を作製した。得られた弾性体を用いて、ロータ型超音波モータを作製し、回転試験を行った結果、0.7rpmで回転した。
 実施例7
 CF含有PPSを用いて、炭素繊維の配向方向が、圧電素子と弾性体との接触面に対して垂直となるように切削加工して、図1及び2において櫛歯部が形成されていない櫛歯なしロータ型弾性体を作製した。得られた弾性体を用いて、ロータ型超音波モータを作製し、回転試験を行った結果、0.8rpmで回転した。
 実施例8
 GF含有PAを用いて、ガラス繊維の配向方向が、圧電素子と弾性体との接触面に対して垂直となるように切削加工して、図1及び2において櫛歯部が形成されていない櫛歯なしロータ型弾性体を作製した。得られた弾性体を用いて、ロータ型超音波モータを作製し、回転試験を行った結果、0.5rpmで回転した。
 実施例9
 GF含有PCを用いて、ガラス繊維の配向方向が、圧電素子と弾性体との接触面に対して垂直となるように切削加工して、図1及び2において櫛歯部が形成されていない櫛歯なしロータ型弾性体を作製した。得られた弾性体を用いて、ロータ型超音波モータを作製し、回転試験を行った結果、0.4rpmで回転した。
 比較例2
 PEを切削加工して、図1及び2において櫛歯部が形成されていない櫛歯なしロータ型弾性体を作製した。得られた弾性体を用いて、ロータ型超音波モータを作製し、回転試験を行ったが、回転しなかった。
 比較例3
 ABSを切削加工して、図1及び2において櫛歯部が形成されていない櫛歯なしロータ型弾性体を作製した。得られた弾性体を用いて、ロータ型超音波モータを作製し、回転試験を行ったが、回転しなかった。
 (B)変位拡大型アクチュエータに関する実験
 [最大振動速度]
 厚み1mmであり、図11に示す形状の変位拡大素子63を作製し、接着剤(ハンツマン・ジャパン(株)製「Araldite スタンダード」)を用いて、PZTで形成した厚み0.5mmの圧電素子(圧電振動子)62と貼り合わせて、シンバル型圧電アクチュエータ61を作製した。このアクチュエータでは、前記圧電素子62に交流電圧が印加されると、圧電素子が長手方向に伸縮し、その伸縮(振動)が変位拡大素子63の凸部63aの圧電素子面に対して垂直方向の振動(変位)に変換される。前記垂直方向の振動速度を、レーザードップラー評価装置(グラフテック社製「AT500-05」)を用いて評価した。また、オシロスコープ(Tektoronix社製「TDS2014」)に表示された振動速度の振幅から最大振動速度を読み取り、最大振動速度と電流との関係を求めた。
 なお、ファンクションジェネレータ(NF回路設計ブロック社製「WAVE FACTORY 1946」)で発生させた交流電圧を、アンプ(NF回路設計ブロック社製「HSA4101T」)にて昇圧し、共振周波数において駆動させた。印加電圧及び周波数はそれぞれの材質・形状で、最も振動する値に合わせた。
 実施例10
 CF含有PPSを用いて、炭素繊維の配向方向と変位拡大素子の長手方向が平行となるように切削加工して、図11に示す変位拡大素子63と同一形状の変位拡大素子を作製した。
 実施例11
 GF含有PAを用いて、ガラス繊維の配向方向と変位拡大素子の長手方向が平行となるように切削加工して、図11に示す変位拡大素子63と同一形状の変位拡大素子を作製した。
 実施例12
 GF含有PCを用いて、ガラス繊維の配向方向と変位拡大素子の長手方向が平行となるように切削加工して、図11に示す変位拡大素子63と同一形状の変位拡大素子を作製した。
 実施例13
 GF含有PESを用いて、ガラス繊維の配向方向と変位拡大素子の長手方向が平行となるように切削加工して、図11に示す変位拡大素子63と同一形状の変位拡大素子を作製した。
 比較例4
 アルミニウムを切削加工して、図11に示す変位拡大素子63と同一形状の変位拡大素子を作製した。
 比較例5
 PC1を切削加工して、図11に示す変位拡大素子63と同一形状の変位拡大素子を作製した。
 比較例6
 ABSを切削加工して、図11に示す変位拡大素子63と同一形状の変位拡大素子を作製した。
 比較例7
 PEを切削加工して、図11に示す変位拡大素子63と同一形状の変位拡大素子を作製した。
 実施例及び比較例で得られた変位拡大素子を用いて、変位拡大型圧電アクチュエータを作製し、最大振動速度を測定した。測定値のうち、最も高い値を示す電流における最大振動速度を最高速度とした。さらに、この最大振動速度(最高速度)について、比重当たりに換算した最大振動速度(比重換算速度)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例の変位拡大型アクチュエータは、比重換算速度が優れていた。
 (C)ランジュバン振動子に関する実験
 [圧電素子]
 PZT製の圧電層(富士セラミックス社製、C-216、厚み4mm)
 銅製の電極板(タフピッチ銅箔、厚み100μm)
 [フロントマス及びリアマス]
 表2に示す材料を用いて、フロントマス及びリアマスとして、それぞれ外径20mm×長さ40mmの円柱状の成形体を用いた。
 [ネジ]
 ISO M8、長さ40mm
 [超音波振動子]
 図8に示すランジュバン振動子と同一形状の振動子を作製した。すなわち、ネジ54に、電極板512及び圧電層511を交互に挿通して、圧電素子51(電極板512/圧電層511/電極板512/圧電層511/電極板512)を得た。なお、前方の圧電層と後方の圧電層とは分極方向を逆向き(衝突方向)にしている。圧電素子51の一方の表面から突出したネジ54を、フロントマス52の孔部に螺合し、他方の表面から突出したネジ54を、リアマス53の孔部に螺合して、圧電素子51をフロントマス52及びリアマス53で挟んで密着させることにより、ランジュバン振動子を得た。
 実施例14~15及び比較例8~11(振動速度の測定)
 以下の表2に示す材料を用いてフロントマス及びリアマスを作製した実施例及び比較例のランジュバン振動子の振動速度を、図12に示す実験系により評価した。すなわち、共振周波数で振動する交流電圧を発振器55から発振して増幅器56で増幅し、超音波振動子の電極間に印加し、圧電素子51を厚み振動させた。その振動をフロントマス52に伝達させ、外部に超音波を放出させて、フロントマス52の振動速度を、レーザードップラー装置57(グラフテック社製「AT500-05」)を用いて評価した。なお、オシロスコープ58で電流が極大化する周波数を確認し、その周波数を共振周波数とした。図12に示す実験系で評価したフロントマス表面の振動速度の印加電流依存性を図13に示し、最高振動速度を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図12及び表2から明らかなように、実施例は、比較例に比べて低電流でも振動子表面を高速に振動させることができ、かつ最高振動速度も大きい。例えば、実施例14は、繊維を含有しているが、熱硬化性樹脂である比較例11に比べて最高振動速度が大きい。
 本発明の弾性体は、各種の電気機器、計測機、光学機器などのアクチュエータ、特に、圧電アクチュエータ、例えば、超音波モータ、変位拡大型圧電アクチュエータ、ランジュバン振動子などに利用できる。
 詳しくは、本発明の弾性体は、超音波モータとして、例えば、リニア型やロータ型の超音波モータなどに利用できる。
 また、本発明の弾性体は、変位拡大型圧電アクチュエータとして、非振動体が移動体であり、移動体を駆動させる圧電アクチュエータ(特に、リニア型超音波モータなどの超音波モータ)の変位拡大素子として利用できる。また、長距離を移動させる用途などでは、変位拡大素子自体が移動体である圧電アクチュエータの変位拡大素子としても利用できる。さらに、変位拡大型圧電アクチュエータのうち、シンバル型圧電アクチュエータ、ムーニー型圧電アクチュエータに適しており、シンバル型圧電アクチュエータに特に適している。
 さらに、本発明の弾性体は、ランジュバン振動子として、計測機(流量計、水深計、積雪計など)、魚群探知機、探触子、洗浄機、加工機(カッター、溶接機など)のランジュバン振動子の共振部材などに好適に利用できる。
 1,41…超音波モータ
 11,21…圧電アクチュエータ
 2,12,22,42,51…圧電素子
 3,43…弾性体
 13,23…変位拡大素子
 13a,23a…凸部
 14,24…空隙部
 23b…突起
 4,44…ステータ
 5,45…移動体
 511…圧電層
 512…電極板
 513…摘み部
 52…フロント部材(フロントマス)
 53…リア部材(リアマス)
 54…軸芯ボルト
 55…発振器
 56…増幅器
 57…レーザードップラー装置
 58…オシロスコープ

Claims (17)

  1.  交流電圧の印加により伸縮する電気機械変換素子に固定され、かつ以下の(1)~(3)のいずれかのアクチュエータに用いられる弾性体であって、熱可塑性樹脂及び充填材を含む弾性体。
    (1)非振動体と接触させて用いられ、前記電気機械変換素子の伸縮により屈曲振動し、アクチュエータ自身又は非振動体を駆動させるためのアクチュエータ
    (2)前記電気機械変換素子の伸縮による変位を拡大する機構を備えたアクチュエータ
    (3)前記電気機械変換素子を挟持する共振部材のうち、少なくとも一方の共振部材として前記電気機械変換素子の伸縮による振動の周波数を低下させる部材を用いたアクチュエータ
  2.  電気機械変換素子が圧電素子である請求項1記載の弾性体。
  3.  充填材が繊維状充填材である請求項1又は2記載の弾性体。
  4.  繊維状充填材の配向方向が電気機械変換素子の伸縮方向に対して平行である請求項3記載の弾性体。
  5.  繊維状充填材が、炭素繊維、ガラス繊維及びアラミド繊維からなる群より選択された少なくとも1種であり、かつ0.1~50μmの平均繊維径及び1μm~2mmの平均繊維長を有する請求項3又は4記載の弾性体。
  6.  充填材の割合が、熱可塑性樹脂100重量部に対して10~60重量部である請求項1~5のいずれかに記載の弾性体。
  7.  アクチュエータが超音波モータであり、圧電素子と固定された側の反対側に、非振動体と接触するための複数の凸部を有する請求項2~6のいずれかに記載の弾性体。
  8.  アクチュエータがリニア型超音波モータであり、かつ複数の凸部の断面形状が鋸歯状である請求項7記載の弾性体。
  9.  アクチュエータがロータ型超音波モータであり、かつ櫛歯部を有する形状である請求項7記載の弾性体。
  10.  アクチュエータが圧電素子の伸縮による変位を拡大する機構を備えたアクチュエータであり、固定した圧電素子との間で空隙部を形成するための凸部を有する板状である請求項2~6のいずれかに記載の弾性体。
  11.  凸部が、屈曲又は湾曲して形成された一方向に延びる尾根状凸部であり、この尾根状凸部の稜線方向に垂直な方向の断面形状が台形状であり、かつ前記尾根状凸部の側部が突起を有する請求項10記載の弾性体。
  12.  ランジュバン振動子の共振部材である請求項1~6のいずれかに記載の弾性体。
  13.  圧電素子及び請求項2~12のいずれかに記載の弾性体を備えた圧電アクチュエータ。
  14.  回転体と接触させて用いられ、圧電素子の伸縮により屈曲振動し、アクチュエータ自身又は回転体を回転させるためのロータ型超音波モータである請求項13記載の圧電アクチュエータ。
  15.  弾性体が変位拡大素子であり、かつシンバル型又はムーニー型圧電アクチュエータである請求項13記載の圧電アクチュエータ。
  16.  圧電素子と、この圧電素子を挟持する一対の共振部材とを有するランジュバン振動子であって、前記一対の共振部材のうち、少なくとも一方の共振部材が、請求項12記載の弾性体である請求項13記載の圧電アクチュエータ。
  17.  一対の共振部材が、互いに同種の樹脂を含み、かつ圧電素子と、一方の共振部材及び/又は他方の共振部材とが、接合手段により圧接されている請求項16記載の圧電アクチュエータ。
PCT/JP2013/081696 2012-11-29 2013-11-26 アクチュエータ用弾性体及び圧電アクチュエータ WO2014084183A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014550186A JPWO2014084183A1 (ja) 2012-11-29 2013-11-26 アクチュエータ用弾性体及び圧電アクチュエータ

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012260656 2012-11-29
JP2012-260656 2012-11-29
JP2013-001111 2013-01-08
JP2013001111 2013-01-08
JP2013-141943 2013-07-05
JP2013-141941 2013-07-05
JP2013141941 2013-07-05
JP2013141943 2013-07-05

Publications (1)

Publication Number Publication Date
WO2014084183A1 true WO2014084183A1 (ja) 2014-06-05

Family

ID=50827819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081696 WO2014084183A1 (ja) 2012-11-29 2013-11-26 アクチュエータ用弾性体及び圧電アクチュエータ

Country Status (3)

Country Link
JP (1) JPWO2014084183A1 (ja)
TW (1) TW201444266A (ja)
WO (1) WO2014084183A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146515A (ja) * 2015-02-06 2016-08-12 株式会社ダイセル 超音波の送受信素子
CN107561822A (zh) * 2016-06-30 2018-01-09 佳能株式会社 光学部件、光学部件制造方法和相机
JP2018007398A (ja) * 2016-06-30 2018-01-11 株式会社ニコン 振動波モータ及び光学機器
EP4117307A4 (en) * 2020-03-03 2023-08-02 Panasonic Intellectual Property Management Co., Ltd. ULTRASOUND SENSOR

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6874595B2 (ja) * 2017-08-24 2021-05-19 Tdk株式会社 振動デバイス及び音響デバイス
TWI699958B (zh) * 2019-01-11 2020-07-21 精浚科技股份有限公司 摩擦驅動致動器及其緩衝支架

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114481A (ja) * 1985-11-13 1987-05-26 Matsushita Electric Ind Co Ltd 超音波モ−タ
JPS63141680A (ja) * 1986-12-04 1988-06-14 マルコン電子株式会社 圧電アクチユエ−タ
JPH0442787A (ja) * 1990-06-07 1992-02-13 Canon Inc 振動波モータ
JPH05236598A (ja) * 1992-02-06 1993-09-10 Nec Corp 音響整合板付きボルト締めランジュバン振動子
US5352950A (en) * 1990-03-30 1994-10-04 Canon Kabushiki Kaisha Vibration wave driven motor
JPH06338640A (ja) * 1993-05-27 1994-12-06 Omron Corp 圧電アクチュエータ、並びに当該圧電アクチュエータを用いたマニピュレータ、光走査装置、光センサ装置、流量制御器、ステージ装置、焦点調整機構及び光学装置
JP2011010424A (ja) * 2009-06-24 2011-01-13 Nikon Corp 振動アクチュエータ、光学機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114481A (ja) * 1985-11-13 1987-05-26 Matsushita Electric Ind Co Ltd 超音波モ−タ
JPS63141680A (ja) * 1986-12-04 1988-06-14 マルコン電子株式会社 圧電アクチユエ−タ
US5352950A (en) * 1990-03-30 1994-10-04 Canon Kabushiki Kaisha Vibration wave driven motor
JPH0442787A (ja) * 1990-06-07 1992-02-13 Canon Inc 振動波モータ
JPH05236598A (ja) * 1992-02-06 1993-09-10 Nec Corp 音響整合板付きボルト締めランジュバン振動子
JPH06338640A (ja) * 1993-05-27 1994-12-06 Omron Corp 圧電アクチュエータ、並びに当該圧電アクチュエータを用いたマニピュレータ、光走査装置、光センサ装置、流量制御器、ステージ装置、焦点調整機構及び光学装置
JP2011010424A (ja) * 2009-06-24 2011-01-13 Nikon Corp 振動アクチュエータ、光学機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146515A (ja) * 2015-02-06 2016-08-12 株式会社ダイセル 超音波の送受信素子
CN107561822A (zh) * 2016-06-30 2018-01-09 佳能株式会社 光学部件、光学部件制造方法和相机
JP2018007398A (ja) * 2016-06-30 2018-01-11 株式会社ニコン 振動波モータ及び光学機器
JP2018004912A (ja) * 2016-06-30 2018-01-11 キヤノン株式会社 光学部品、光学部品の製造方法およびカメラ
EP4117307A4 (en) * 2020-03-03 2023-08-02 Panasonic Intellectual Property Management Co., Ltd. ULTRASOUND SENSOR
JP7474995B2 (ja) 2020-03-03 2024-04-26 パナソニックIpマネジメント株式会社 超音波センサ

Also Published As

Publication number Publication date
TW201444266A (zh) 2014-11-16
JPWO2014084183A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2014084184A1 (ja) アクチュエータ用弾性体及び圧電アクチュエータ
WO2014084183A1 (ja) アクチュエータ用弾性体及び圧電アクチュエータ
Uchino Piezoelectric ultrasonic motors: overview
JP6186354B2 (ja) 圧電デバイス、および圧電デバイスの製造方法
TWI400964B (zh) 聲音產生裝置
WO2001031172A2 (en) Polymer-polymer bilayer actuator
JP5549164B2 (ja) 圧電発電機
KR20190039203A (ko) 압전 액츄에이터, 수중 음향 트랜스듀서 및 수중 음향 트랜스듀서의 제조 방법
Behera et al. Piezoelectric materials
Dong et al. Piezoelectric ring-morph actuators for valve application
KR20220140576A (ko) 적층 압전 소자 및 전기 음향 변환기
US20120098388A1 (en) Dome-shaped piezoelectric linear motor
JP2016052188A (ja) ロータ型超音波モータ
JP2013135592A (ja) 超音波モータ用弾性体及び超音波モータ
Ci et al. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes
Chilibon et al. PZT and PVDF bimorph actuators
CN115485870A (zh) 高分子压电薄膜
JP2006179578A5 (ja)
TW201014149A (en) Drive device
US20130034252A1 (en) Transducer module
US6700305B2 (en) Actuator using a piezoelectric element
JP2015198522A (ja) アクチュエータ用弾性体及びアクチュエータ
CN206134235U (zh) 一种致动装置和一种水声换能器
Dong et al. Ring type uni/bimorph piezoelectric actuators
Lee et al. 14 Manufacturing Technologies for Electroactive Composite Actuators and Sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857770

Country of ref document: EP

Kind code of ref document: A1