WO2014084128A1 - 分離装置及び分離方法 - Google Patents

分離装置及び分離方法 Download PDF

Info

Publication number
WO2014084128A1
WO2014084128A1 PCT/JP2013/081468 JP2013081468W WO2014084128A1 WO 2014084128 A1 WO2014084128 A1 WO 2014084128A1 JP 2013081468 W JP2013081468 W JP 2013081468W WO 2014084128 A1 WO2014084128 A1 WO 2014084128A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
water
treated
separation
oxygen
Prior art date
Application number
PCT/JP2013/081468
Other languages
English (en)
French (fr)
Inventor
和幸 川村
宏之 関野
国司 洋介
磯上 尚志
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構, 株式会社日立製作所 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to JP2014550156A priority Critical patent/JP6139563B2/ja
Priority to NO13859233A priority patent/NO2927195T3/no
Priority to EP13859233.2A priority patent/EP2927195B1/en
Publication of WO2014084128A1 publication Critical patent/WO2014084128A1/ja
Priority to US14/723,369 priority patent/US20150259229A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0073Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/12Inert solids used as ballast for improving sedimentation

Definitions

  • the present invention relates to a separation apparatus and a separation method for separating unnecessary substances contained in water to be treated.
  • an inorganic flocculant of polyvalent ions such as aluminum and a powdered magnetic substance are used.
  • a method of adding to the water to be treated and stirring is known.
  • the object to be removed in the water to be treated aggregates with the magnetic material to generate a magnetic aggregate (hereinafter referred to as a floc). Therefore, by collecting the floc using a drum with a built-in magnet.
  • the object to be removed can be separated from the water to be treated (see, for example, Patent Document 1).
  • an object of the present invention is to provide a separation apparatus that has a low risk of explosion and can process an object to be removed at low cost.
  • an acquisition unit that acquires water to be treated including an object to be removed, a separation unit that separates the object to be removed from the water to be treated, and a separation unit
  • An oxygen removing unit that removes oxygen in the interior, a removal object discharging unit that discharges the object to be removed separated from the water to be treated, and a process of discharging the treated water remaining after the object to be removed is separated from the water to be treated
  • a separation device including a water discharge unit is provided. According to the separation device, since the object to be removed can be separated in a state where the oxygen inside the separation part is removed, explosion can be prevented even if the water to be treated contains oil.
  • the separation unit generates an agglomerate in which the object to be removed is agglomerated by stirring the storage part that stores the flocculant that aggregates the object to be removed contained in the water to be treated, and the flocculant and the water to be treated. And an aggregating part that collects the agglomerated material and sends it to an object discharging part. Since the separation unit can generate aggregates in an environment from which oxygen has been removed, it is possible to prevent the aggregates sent to the removal target discharge unit from coming into contact with oxygen in the atmosphere.
  • the separation device may further include a reflux unit that refluxes at least a part of the treated water to the storage unit in an oxygen-free state, and the storage unit may dissolve the flocculant in the treated water refluxed by the reflux unit.
  • the acquisition unit may acquire oil field associated water produced together with crude oil as treated water, and the removal target discharging unit may discharge the removal target to a pipeline carrying the crude oil. Since the object to be removed is not exposed to oxygen in the atmosphere, the object to be removed can be efficiently transported to a production facility on land without corroding the pipeline.
  • the above-described oxygen removing unit removes oxygen by supplying an inert gas to the inside of the separating unit, for example.
  • an inert gas By supplying the inert gas to the separation unit, the inside of the separation unit can be brought into a stable state in which a chemical reaction hardly occurs.
  • the separation unit that executes the step of obtaining the water to be treated including the object to be removed, the step of separating the object to be removed from the water to be treated, and the step of separating the object to be removed.
  • a separation method comprising a step of removing oxygen, a step of discharging a material to be removed separated from the water to be treated, and a step of discharging the treated water remaining after the material to be removed is separated from the water to be treated.
  • the present invention it is possible to remove an object to be removed such as oil and suspended solids from water to be treated containing oil without using an expensive explosion-proof facility.
  • the treatment is performed without touching oxygen in the atmosphere. By discharging, it is possible to process at low cost.
  • the remaining treated water from which the object to be removed is separated from the water to be treated does not contain oxygen, there is also an effect that the treated water can be reused for dissolving the flocculant used for separating the object to be removed.
  • the structural example of the separation apparatus which concerns on 1st Embodiment is shown.
  • the structural example of the separation apparatus which concerns on 2nd Embodiment is shown.
  • the structural example of the storage part and aggregation part periphery which concerns on 3rd Embodiment is shown.
  • FIG. 1 shows a configuration example of a separation apparatus 100 according to the first embodiment.
  • the separation apparatus 100 includes an acquisition unit 10, a separation unit 20, an oxygen removal unit 30, a removal object discharge unit 40, and a treated water discharge unit 50, and separates a removal object such as oil and floating substances contained in the treatment water. To do.
  • Separation apparatus 100 further includes a control panel 110.
  • Various sensors and wiring of the electromagnetic valve are pulled out to the outside and connected to the control panel 110 while maintaining the hermeticity of the hermetic container 500.
  • the control panel 110 is controlled by a control device such as a computer connected to the outside.
  • the obtaining unit 10 obtains water to be treated such as oil field associated water containing the object to be removed.
  • the acquisition unit 10 acquires the remaining oil field associated water obtained by removing the associated gas and crude oil from the fluid produced from the oil well by a separator (not shown).
  • the acquisition part 10 has the to-be-processed water tank 11 and the water pump 12 which store the acquired to-be-processed water, for example.
  • the acquisition unit 10 supplies the water to be treated stored in the water tank 11 to be treated to the separation unit 20 by the water pump 12.
  • the separation unit 20 includes a storage unit 60, an aggregation unit 70, a recovery unit 80, and a reflux unit 90 in a sealed casing, and separates the object to be removed from the water to be treated including the object to be removed.
  • the water to be treated sent from the acquisition unit 10 is agitated with the flocculant and the magnetic substance introduced from the storage unit 60 in the aggregation unit 70.
  • the aggregating unit 70 agitates the water to be treated, the aggregating agent, and the magnetic material to generate a floc having magnetism. At least a part of the flocs generated in the aggregating unit 70 is collected in the collecting unit 80 and sent to the removal object discharging unit 40.
  • the separation unit 20 can separate the object to be removed from the water to be treated.
  • the detailed configuration of the separation unit 20 will be described later.
  • the oxygen removing unit 30 is connected to an exhaust pipe 310 and an air supply pipe 320 that communicate with the inside of the sealed container 500 that seals the separation unit 20.
  • the oxygen removing unit 30 includes an exhaust pump 31, an exhaust valve 32, an air supply pump 33b, an air supply pump 33c, an air supply valve 34a, an air supply valve 34b, an air supply valve 34c, a regulator 35, and a gas concentration sensor 36.
  • the oxygen removing unit 30 exhausts the gas inside the sealed container 500 through the exhaust pipe 310 while supplying the gas through the air supply pipe 320.
  • the oxygen removing unit 30 removes oxygen that has adhered to the flocculant and the magnetic material taken into the storage unit 60 from the outside and has flowed into the separation unit 20. At this time, the oxygen removing unit 30 can efficiently reduce the oxygen gas concentration inside the sealed container 500 by suctioning with the exhaust pump 31 provided as necessary.
  • the oxygen removing unit 30 preferably removes oxygen until the oxygen concentration inside the sealed container 500 becomes 50 ppb or less, and more preferably removes oxygen until the oxygen concentration becomes 10 ppb or less.
  • the oxygen removing unit 30 uses, for example, an inert gas such as nitrogen, carbon dioxide, or argon filled in the high pressure cylinder 37, or an oxygen-free gas such as an oil field-associated gas. Then, the air is supplied to the sealed container 500 through the regulator 35 and the air supply valve 34a. Further, during maintenance, the oxygen removing unit 30 supplies the air pressurized by the air supply pump 33b to the sealed container 500 via the air supply valve 34b, thereby replacing the inert gas in the container with air. May be. The oxygen removing unit 30 may pressurize the accompanying gas separated by the separator by the air supply pump 33c and then supply the gas to the sealed container 500 through the air supply valve 34c.
  • an inert gas such as nitrogen, carbon dioxide, or argon filled in the high pressure cylinder 37
  • an oxygen-free gas such as an oil field-associated gas.
  • the oxygen removing unit 30 fills the separation unit 20 with an inert gas so that the pressure inside the separation unit 20 is higher than the pressure outside the separation unit 20.
  • the pressure inside the separation unit 20 is preferably 2 Pascals or more and 50 Pascals or less, and more preferably 5 Pascals or more and 10 Pascals or less.
  • the exhaust pipe 310 and the air supply pipe 320 are provided at positions as far as possible from each other in the sealed container 500.
  • the exhaust pipe 310 and the air supply pipe 320 are preferably provided in the vicinity of the two most distant corners of the sealed container 500.
  • Separation apparatus 100 may have a stirring unit (not shown) having a fan for stirring the gas inside sealed container 500.
  • the separation device 100 includes the stirring unit, the exhaust pipe 310 and the air supply pipe 320 can be brought close to each other, and a plurality of gases having different specific gravity can be supplied as oxygen-free gas.
  • the power supplied to the non-explosion-proof sensors among the various sensors and electromagnetic valves in the separating apparatus 100 is shut off via the control panel 110.
  • the exhaust valve 32 is opened, the supply valve 34a, the supply valve 34b, and the supply valve 34c are closed, and the gas in the sealed container 500 is stirred by the fan of the stirring unit.
  • the air supply valve 34a is opened and nitrogen is sent from the high-pressure cylinder 37 to the inside of the sealed container 500, whereby the oxygen-containing air inside the sealed container 500 is replaced with nitrogen.
  • starting energization of various sensors and electromagnetic valves prevents explosion even if the various sensors and electromagnetic valves are not explosion-proof. be able to.
  • the air supply valve 34a is closed and the air supply valve 34c is opened, and the associated gas is sealed in the sealed container 500.
  • nitrogen inside the sealed container 500 is replaced with the accompanying gas.
  • the gas concentration sensor 36 can be used to detect the completion of the replacement with the accompanying gas, but when a predetermined amount of the accompanying gas (for example, about 10 times the volume of the sealed container 500) is simply supplied. It may be determined that the replacement is complete.
  • the separation unit 20 can be maintained in an oxygen-free state by closing the exhaust valve 32 and maintaining the pressure inside the sealed container 500 higher than the external pressure. According to the above method, since the separation unit 20 can be operated in an accompanying gas atmosphere, it becomes possible to collect flocs in an environment closer to the underground, and more reliably prevent the development of corrosiveness. it can.
  • the removal object discharge unit 40 includes a discharge pump 41 and a discharge valve 42 and discharges the removal object separated in the separation unit 20 to the outside.
  • the to-be-removed object discharge part 40 discharges to-be-removed object with respect to the pipeline 300 which conveys the crude oil produced with the oil field accompanying water contained in to-be-processed water. Since the object to be removed is separated from the water to be treated in the separation unit 20 in a state where oxygen is removed, it is not in contact with oxygen gas. Therefore, even if an object to be removed enters the pipeline 300, the pipeline 300 does not corrode.
  • the treated water discharge unit 50 includes a discharge pump 51 and a discharge valve 52, and discharges treated water after the object to be removed is separated in the separation unit 20 to the outside. For example, when the separation device 100 is on the sea, the treated water discharge unit 50 discharges the treated water to the sea.
  • the treated water discharge unit 50 may discharge the processed water to a moving body such as a ship that carries the treated water. It is preferable that the treated water discharge unit 50 further includes a trap that prevents a reverse flow of the discharged treated water.
  • the oxygen removing unit 30 removes oxygen from the inside of the separating unit 20
  • the material to be removed and the treated water are separated from the water to be treated in the state where the oxygen in the separating unit 20 is removed. Therefore, oxygen is not contained in the separated object to be removed and treated water. Therefore, even if volatile oil is contained in the water to be separated by the separation unit 20, there is no risk of explosion, so the cost of the explosion-proof equipment can be reduced, and various types that are not explosion-proof specifications. Sensors can be used to control equipment. Further, since oxygen is not bonded to the object to be removed, even if the object discharging unit 40 discharges the object to be removed to the pipeline 300, the pipeline 300 is not corroded.
  • the storage unit 60 has a tank that stores a flocculant that aggregates the object to be removed contained in the water to be treated and a magnetic material.
  • the storage unit 60 includes an inorganic flocculant tank 61, a polymer flocculant tank 62, a magnetic substance stirring tank 63, a polymer flocculant stirring tank 64, a pump 65, a pump 66, a pump 68, and a new one.
  • a magnetic tank 67 is provided.
  • the inorganic flocculant tank 61 stores inorganic flocculants such as PAC (polyaluminum chloride), ferric sulfate, ferric chloride, and aluminum sulfate.
  • the polymer flocculant tank 62 stores an anionic flocculant such as polyacrylamide.
  • the powdery polymer flocculant stored in the polymer flocculant tank 62 is dissolved in water containing no oxygen in the polymer flocculant stirring tank 64 and then, for example, the second polymer in the agglomeration unit 70 using the pump 66. It is put into the agglomeration part 72 and stirred with the water to be treated.
  • the inorganic flocculant is measured as it is by a measuring means (not shown) and then fed into the first aggregating unit 71 in the aggregating unit 70 using the pump 68. Stir with treated water.
  • the inorganic flocculant is in a powder form, it is dissolved in water that does not contain oxygen, as with the polymer flocculant, and then mixed with the water to be treated introduced from the acquisition unit 10.
  • a new magnetic material is normally put into a system through a hopper (not shown) and stored in a new magnetic material tank 67 as represented by magnetite particles.
  • the magnetic material recovered in the recovery unit 80 after being used for removing the object to be removed has various properties depending on the specifications of the recovery unit 80, but when it is liquid, it is recovered through the reflux valve 93.
  • These magnetic substances are dispersed in water containing no oxygen in the magnetic substance agitation tank 63, and are mixed and stirred together with the water to be treated and the inorganic flocculant in the first aggregation part 71. Water that does not contain oxygen may be introduced from the outside of the sealed container 500, but the treated water can also be recycled in the sealed container.
  • the aggregating unit 70 includes a first aggregating unit 71 and a second aggregating unit 72, and stirs the aggregating agent introduced from the storage unit 60 and the water to be treated introduced from the acquisition unit 10, thereby treating water to be treated.
  • the flocs in which the objects to be removed contained are agglomerated.
  • to-be-treated water is introduced from the acquisition unit 10 into the first aggregating unit 71, and the inorganic aggregating agent and the magnetic substance are introduced from the inorganic aggregating agent tank 61 and the magnetic substance agitation tank 63, respectively. It is stirred later.
  • the water to be treated, the inorganic flocculant, and the magnetic material are stirred in the first aggregating portion 71, whereby the surface charge of the object to be removed whose surface is negatively charged is neutralized by the inorganic flocculant, and includes the magnetic material. And the to-be-removed object are aggregated, and a magnetic floc is generated.
  • the primary treated water containing the floc formed by the first aggregation unit 71 is sent to the second aggregation unit 72.
  • the second flocculent part 72 is charged with the polymer flocculant from the polymer flocculant stirring tank 64.
  • the introduced polymer flocculant is agitated with the primary treated water introduced from the first flocculating unit 71.
  • the second aggregating part 72 may be loaded with a recovered magnetic material.
  • the input amount of the polymer flocculant from the polymer flocculant stirring tank 64 is determined in accordance with the amount of the inorganic flocculant and the recovered magnetic material that are input to the first aggregating unit 71.
  • the computer monitors the amount of the inorganic flocculant and the recovered magnetic material introduced into the first agglomeration unit 71, and controls the pump 66 for introducing the polymer flocculant according to the value obtained by the monitoring.
  • the magnetic flocs contained in the primary treated water from the first agglomeration part 71 grow by stirring at a speed slower than the agitation speed in the first agglomeration part 71, and a larger magnetic property is obtained. Secondary treated water containing floc is generated.
  • the second agglomeration part 72 has a plurality of tanks, and a larger magnetic floc may be generated by performing the agglomeration process a plurality of times.
  • the recovery unit 80 includes a magnetic separation unit 81, a scraper 82, a flock transfer pump 83, and a magnetic body recovery unit 84.
  • the collection unit 80 collects the magnetic floc by a magnetic collection body and sends it to the removal object discharge unit 40.
  • the magnetic separation unit 81 has a magnetic separation tank 81a and a magnetic drum 81b.
  • the secondary separation water containing the magnetic flocs generated in the second aggregation unit 72 is injected into the magnetic separation tank 81a.
  • the magnetic drum 81b contains a magnet, and at least a part thereof is immersed in the secondary treated water in the magnetic separation tank 81a. When the secondary treated water comes into contact with the magnetic drum 81b, the magnetic substance contained in the floc in the secondary treated water is attracted to the magnetic drum 81b by the magnetic force of the magnet.
  • the scraper 82 scrapes off the magnetic floc taken out of the magnetic separation tank 81a as the magnetic drum 81b rotates.
  • the scraper 82 is a plate made of, for example, rubber, and at least a part thereof is in contact with the surface of the magnetic drum 81b.
  • the flock transfer pump 83 accelerates the magnetic floc scraped off by the scraper 82 and sends it to the magnetic body recovery unit 84.
  • the magnetic body recovery unit 84 includes a magnetic body recovery tank 84a into which the magnetic floc is sent via the flock transfer pump 83, and a magnetic drum 84b that rotates inside the magnetic body recovery tank 84a and contains a permanent magnet.
  • the flocs sent to the magnetic material recovery tank 84a via the flock transfer pump 83 are decomposed by shearing force generated by passing around the magnetic drum 84b while being accelerated by the flock transfer pump 83.
  • flocs having a magnetic force necessary for aggregation in the aggregation unit 70 are collected by the magnetic drum 84b and sent to the magnetic substance agitation tank 63 via the reflux unit 90.
  • the magnetic body recovery unit 84 selects flocs having a magnetic force greater than or equal to a predetermined strength and sends them to the reflux unit 90.
  • the floc that has not been recovered by the magnetic drum 84b is sent to the removal object discharge section 40 as sludge.
  • the magnetic drum 84b preferably includes a magnet having a magnetic force stronger than that of the magnetic drum 81b in order to send a floc having a sufficiently strong magnetism to the magnetic substance stirring tank 63.
  • the recovery unit 80 sends a part of the secondary treated water from which the magnetic floc has been removed to the storage unit 60 via the reflux unit 90, and sends the remaining secondary treated water to the treated water discharge unit 50.
  • the recovery unit 80 sends secondary treatment water in an amount corresponding to the amount of water necessary for dissolving the flocculant in the storage unit 60 to the reflux unit 90.
  • the recovery unit 80 may send the secondary treated water to the reflux unit 90 when the quality of the secondary treated water satisfies the water quality requirements for dissolution of the flocculant in the storage unit 60 or aggregation in the aggregation unit 70. .
  • the recirculation unit 90 recirculates at least a part of the secondary treated water from which the magnetic floc has been removed to the storage unit 60 in an oxygen-free state via the recirculation valve 91 and the recirculation valve 92, and the magnetic substance stirring tank 63 and the polymer It sends to the flocculant stirring tank 64.
  • the reflux unit 90 is, for example, based on either the amount of the inorganic flocculant stored in the new magnetic substance tank 67 and the amount of the polymer flocculant stored in the polymer flocculant tank 62.
  • the amount of secondary treated water refluxed to 60 is controlled.
  • the reflux unit 90 sends the floc containing the magnetic material recovered by the magnetic material recovery unit 84 to the magnetic material agitation tank 63 via the reflux valve 93.
  • the reflux unit 90 controls, for example, the amount of floc that returns to the storage unit 60 based on the amount of the new magnetic material stored in the new magnetic material tank 67.
  • the oxygen concentration inside the separation unit 20 is smaller than a predetermined value, the period until the secondary treated water is injected into the inorganic flocculant tank 61 and the polymer flocculant tank 62 through the reflux unit 90 In addition, the secondary treated water does not come into contact with oxygen. Therefore, even when secondary treated water is used in the storage unit 60, oxygen does not enter the aggregation unit 70. Similarly, since the recovered magnetic material sent to the magnetic substance agitating tank 63 by the reflux unit 90 does not contain oxygen, even when the recovered magnetic material is put into the aggregating unit 70, oxygen is entered into the aggregating unit 70. Absent.
  • the separation apparatus 100 may include a control unit such as a computer or a sequencer that controls the acquisition unit 10, the separation unit 20, the oxygen removal unit 30, the removal target discharge unit 40, and the treated water discharge unit 50.
  • a control unit such as a computer or a sequencer that controls the acquisition unit 10, the separation unit 20, the oxygen removal unit 30, the removal target discharge unit 40, and the treated water discharge unit 50.
  • a computer executes a program stored in a storage medium, a process of obtaining water to be treated including a material to be removed, a process of separating the material to be removed from the water to be treated, and oxygen from the separation unit 20 are removed. It is possible to execute a step, a step of discharging the object to be removed separated in the separation unit 20, and a step of discharging the treated water remaining after the object to be removed is separated from the water to be treated.
  • the separation apparatus 100 since oxygen is removed from the separation unit 20 that separates the object to be removed from the water to be treated, explosion in the separation unit 20 can be prevented. Moreover, since the treated water separated from the treated water in the separation unit 20 does not contain oxygen, the treated water can be reused as water for dissolving the flocculant. Further, since the object to be removed does not contain oxygen, it can be discharged using the pipeline 300.
  • FIG. 2 shows a configuration example of the separation device 100 according to the second embodiment.
  • the separation unit 20 is sealed, and the oxygen removal unit 30 removes oxygen from only the separation unit 20.
  • the casing including the acquisition unit 10, the separation unit 20, and the object discharge unit 40 is sealed, and the oxygen removal unit 30 includes the acquisition unit 10 and the separation unit 20.
  • oxygen is removed from the sealed space including the object discharge unit 40.
  • the acquisition unit 10 acquires oil field-associated water in which a material to be removed is included as water to be treated.
  • the acquisition unit 10 includes a water tank 11 to be treated and a water feed pump 12 that stores the remaining accompanying water obtained by removing the accompanying gas and crude oil from the fluid produced from the oil well by a separator (not shown). .
  • the acquisition unit 10 supplies the water to be treated stored in the water tank 11 to be treated to the separation unit 20 by the water pump 12.
  • the oxygen removal unit 30 removes oxygen from the sealed space including the acquisition unit 10
  • the water to be treated before separating the object to be removed does not come into contact with oxygen, so that inflow of oxygen into the separation unit 20 can be prevented.
  • the oxygen removing unit 30 removes oxygen from the sealed space including the removal target discharging unit 40
  • the oxygen removal unit 30 comes into contact with the oxygen after the separation target is separated in the separation unit 20 and sent to the pipeline 300. Therefore, the object to be removed combined with oxygen can be prevented from entering the pipeline 300.
  • FIG. 3 shows a configuration example around the storage unit 60 and the aggregation unit 70 according to the third embodiment.
  • Inert gas is supplied from the high-pressure cylinder 120 to the polymer flocculant tank 62 and the new magnetic substance tank 67 in FIG. 3 via the regulator 121 and the valves 122 and 123.
  • An inert gas is supplied to the polymer flocculant tank 62 and the new magnetic substance tank 67 each time a new flocculant is introduced from the outside, and the air containing oxygen that has flowed in when the flocculant is charged is removed. Oxygen can be prevented from flowing into 20.
  • the new magnetic body, the inorganic flocculant, and the recovered magnetic body are charged into the first aggregating unit 71, and the polymer flocculant and the recovered magnetic body are charged into the second aggregating unit 72. It was.
  • these aggregating agents and magnetic substances may be introduced into either the first aggregating part 71 or the second aggregating part 72.
  • the computer controls the pump to monitor the amount of recovered magnetic material, and an amount of new magnetic material corresponding to the amount of recovered magnetic material is input to either the first aggregating unit 71 or the second aggregating unit 72 May be.
  • the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment.
  • the object to be removed is removed by generating a magnetic floc using an aggregating agent containing magnetic particles, but the same effect can be obtained in a configuration in which the object to be removed is removed by another method. It is apparent from the description of the scope of the claims that the embodiments with the above-described modifications and improvements can be included in the technical scope of the present invention.
  • polymer flocculant stirring tank 65 ... metering section, 66 ... metering section, 67 ... New magnetic substance tank, 70 ... aggregating part, 71 ... first aggregating part, 72 ... second aggregating part, 80 ⁇ Recovery part, 81 ... magnetic separation part, 81a ... magnetic separation tank, 81b ... magnetic drum, 82 ... scraper, 83 ... flock transfer pump, 84 ... magnetic substance recovery part, 84a ... Magnetic body recovery tank, 84b ... Magnetic drum, 90 ... Refluxing part, 91 ... Reflux valve, 92 ... Reflux valve, 93 ... Reflux valve, 100 ... Separation device 110 ... Control panel 111 ... High pressure cylinder 112 ... Regulator 120 ... High pressure cylinder 121 ... Regulator 122 ... Valve 123 ... Valve 200 ... pipeline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

【課題】被処理水から被除去物を分離する間の爆発の危険性を低下させる。 【解決手段】被除去物を含む被処理水を取得する取得部10と、被処理水から被除去物を分離する分離部20と、分離部20の内部の酸素を除去する酸素除去部30と、被処理水から分離された被除去物を排出する被除去物排出部40と、被処理水から被除去物が分離されて残る処理水を排出する処理水排出部50とを備える。分離部20は、例えば、被処理水に含まれる被除去物を凝集させる凝集剤を貯蔵する貯蔵部60と、凝集剤と被処理水とを撹拌することにより、被除去物が凝集した凝集物を生成する凝集部70と、凝集物を回収して被除去物排出部40に送る回収部80とを有する。

Description

分離装置及び分離方法
 本発明は、被処理水に含まれる不要な物質を分離する分離装置及び分離方法に関するものである。
 従来、被処理水に含まれる不要物質(例えば、エマルジョン化して残留した油分や浮遊物質)を分離して除去するために、アルミニウム等の多価イオンの無機凝集剤と粉末状の磁性体とを被処理水に添加して撹拌する方法が知られている。この方法によれば、被処理水中の被除去物が磁性体と凝集して磁性を有する凝集物(以下、フロック)が生成されるので、磁石を内蔵したドラムを用いてフロックを回収することにより、被処理水から被除去物を分離することができる(例えば、特許文献1を参照)。
特開2012-040536号公報
 しかしながら、油田で生産された原油に随伴して発生する油田随伴水を含む被処理水から油分等の被除去物を除去する場合には、油田随伴水に含まれる揮発成分に起因する爆発を防ぐために、揮発成分の濃度管理を厳重に行ったり防爆設備を設けたりする必要があった。その結果、被除去物を被処理水から分離する分離装置においては、爆発を防ぐために高いコストを要していた。
 また、分離装置が海上油田で用いられる場合には、油田随伴水から分離された被除去物を、輸送船を用いて陸上の処理施設に輸送しなければならないという問題もあった。陸地から遠く離れた海上油田で生成された被除去物を海上輸送するには、多大なコストを要していた。
 そこで、本発明はこれらの点を鑑みてなされたものであり、爆発の危険性が低く、かつ、被除去物を低コストで処理することができる分離装置を提供することを目的とする。
 上記の課題を解決するために、本発明の第1の態様においては、被除去物を含む被処理水を取得する取得部と、被処理水から被除去物を分離する分離部と、分離部の内部の酸素を除去する酸素除去部と、被処理水から分離された被除去物を排出する被除去物排出部と、被処理水から被除去物が分離されて残る処理水を排出する処理水排出部とを備える分離装置を提供する。当該分離装置によれば、分離部の内部の酸素が除去された状態で被除去物を分離できるので、被処理水に油分が含まれている場合であっても爆発を防ぐことができる。
 上記の分離部は、被処理水に含まれる被除去物を凝集させる凝集剤を貯蔵する貯蔵部と、凝集剤と被処理水とを撹拌することにより、被除去物が凝集した凝集物を生成する凝集部と、凝集物を回収して被除去物排出部に送る回収部とを有する。分離部は、酸素が除去された環境下で凝集物を生成することができるので、被除去物排出部に送られる凝集物が大気中の酸素に触れることを防止できる。
 上記の分離装置は、処理水の少なくとも一部を無酸素状態で貯蔵部に還流する還流部をさらに備え、貯蔵部は、還流部によって還流された処理水に凝集剤を溶解させてもよい。無酸素状態で還流された処理水を用いて凝集剤を溶解させることにより、分離部に酸素が流入することを防ぐとともに、処理水を有効に活用することができる。
 上記の取得部は、原油とともに生産される油田随伴水を被処理水として取得し、被除去物排出部は、上記の原油を搬送するパイプラインに対して被除去物を排出してもよい。被除去物は、大気中の酸素に触れていないためパイプラインを腐食することなく、パイプラインを用いて効率よく被除去物を陸上の生産施設に搬送することができる。
 上記の酸素除去部は、例えば、不活性気体を分離部の内部に供給することにより酸素を除去する。不活性気体が分離部に供給されることで、分離部の内部を、化学反応が発生しづらい安定した状態にすることができる。
 本発明の第2の態様においては、被除去物を含む被処理水を取得する工程と、被処理水から被除去物を分離する工程と、被除去物を分離する工程を実行する分離部から酸素を除去する工程と、被処理水から分離された被除去物を排出する工程と、被処理水から被除去物が分離されて残る処理水を排出する工程とを備える分離方法を提供する。当該分離方法によれば、分離部の内部の酸素が除去した状態で被除去物を分離できるので、被処理水に油分が含まれている場合であっても爆発を防ぐことができる。
 本発明によれば、コストの高い防爆設備を用いることなく、油分を含む被処理水から油分や浮遊物質等の被除去物を除去できるという効果を奏する。また、被処理水から分離された被除去物を分離する過程で、大気中の酸素に触れることなく処理を行うため、被除去物が腐食性を発現することなく、被除去物をパイプラインに排出することにより低コストで処理することができるという効果を奏する。さらに、被処理水から被除去物が分離された残りの処理水も酸素を含まないので、被除去物の分離に用いる凝集剤の溶解に処理水を再利用できるという効果も奏する。
第1の実施形態に係る分離装置の構成例を示す。 第2の実施形態に係る分離装置の構成例を示す。 第3の実施形態に係る貯蔵部及び凝集部周辺の構成例を示す。
<第1の実施形態>
[分離装置100の構成例]
 図1は、第1の実施形態に係る分離装置100の構成例を示す。分離装置100は、取得部10、分離部20、酸素除去部30、被除去物排出部40及び処理水排出部50を備え、被処理水に含まれる油分及び浮遊物質等の被除去物を分離する。分離装置100は、制御盤110をさらに備える。各種のセンサ及び電磁式バルブの配線は、密閉容器500の密閉性を保持した状態で外部に引き出されて制御盤110に接続される。制御盤110は、外部に接続されたコンピュータ等の制御装置により制御される。
 取得部10は、被除去物が含まれている油田随伴水のような被処理水を取得する。例えば、取得部10は、セパレータ(図示せず)により、油井から産出される流体から随伴ガスおよび原油を除去した残りの油田随伴水を取得する。取得部10は、例えば、取得した被処理水を蓄える被処理水タンク11と送水ポンプ12とを有する。取得部10は、被処理水タンク11に蓄えられた被処理水を送水ポンプ12によって分離部20に送水する。
 分離部20は、密閉された筐体内に貯蔵部60、凝集部70、回収部80及び還流部90を有し、被除去物を含む被処理水から被除去物を分離する。まず、取得部10から送られた被処理水は、凝集部70において、貯蔵部60から投入された凝集剤及び磁性体と撹拌される。凝集部70は、被処理水、凝集剤及び磁性体を撹拌することにより、磁性を有するフロックを生成する。凝集部70において生成されたフロックの少なくとも一部は、回収部80において回収され、被除去物排出部40に送られる。以上の手順により、分離部20は、被処理水から被除去物を分離することができる。分離部20の詳細な構成については後述する。
 酸素除去部30は、分離部20を密閉する密閉容器500の内部に連通する排気管310及び給気管320と接続されている。酸素除去部30は、排気ポンプ31、排気バルブ32、給気ポンプ33b、給気ポンプ33c、給気バルブ34a、給気バルブ34b、給気バルブ34c、レギュレータ35及びガス濃度センサ36を有する。
 酸素除去部30は、給気管320を介して気体を供給しながら、排気管310を介して密閉容器500の内部の気体を排気する。酸素除去部30は、外部から貯蔵部60に取り込まれる凝集剤及び磁性体に付着して分離部20に流入した酸素を除去する。この時、酸素除去部30は、必要に応じて設けられた排気ポンプ31によって吸引することで、密閉容器500の内部の酸素ガス濃度を効率よく下げることができる。酸素除去部30は、密閉容器500の内部の酸素濃度が50ppb以下になるまで酸素を除去することが好ましく、酸素濃度が10ppb以下になるまで酸素を除去することがさらに好ましい。
 密閉容器500の内部から酸素を除去するために、酸素除去部30は、例えば、高圧ボンベ37に充填された窒素、二酸化炭素若しくはアルゴン等の不活性気体、又は油田随伴ガスなどの無酸素ガスを、レギュレータ35及び給気バルブ34aを介して密閉容器500に供給する。さらに、メンテナンス時など、酸素除去部30は、給気ポンプ33bにおいて加圧した空気を、給気バルブ34bを介して密閉容器500に供給することで、容器内の不活性気体を空気に置換してもよい。酸素除去部30は、セパレータで分離した随伴ガスを給気ポンプ33cにより加圧した後に、給気バルブ34cを介して密閉容器500に供給してもよい。
 酸素除去部30は、不活性気体を分離部20に充填することにより、分離部20の内部の気圧を分離部20の外部の気圧よりも高い陽圧状態にすることが好ましい。例えば、分離部20の内部の気圧は、2パスカル以上50パスカル以下であることが好ましく、5パスカル以上10パスカル以下であることがさらに好ましい。分離部20の内部を陽圧状態にすることで、外部からの酸素の流入を防ぐことができる。
 酸素を効率よく除去するために、排気管310及び給気管320は、密閉容器500において互いにできるだけ離れた位置に設けられていることが好ましい。例えば、排気管310及び給気管320は、密閉容器500の最も離れた2つの角の付近にそれぞれ設けられることが好ましい。分離装置100は、密閉容器500の内部の気体を撹拌するためのファンを有する撹拌部(図示せず)を有してもよい。分離装置100が撹拌部を有することにより、排気管310及び給気管320を近接させることができるとともに、比重が異なる複数の気体を無酸素ガスとして供給することができる。
 以下、分離部20から酸素を除去するための手順を説明する。
 まず、分離装置100の運転に先立ち、制御盤110を介して、分離装置100における各種センサ及び電磁式バルブのうち防爆仕様でないものに供給される電源を遮断する。次に、密閉容器500を密閉状態にした後に、排気バルブ32を開いて給気バルブ34a、給気バルブ34b及び給気バルブ34cを閉じて、撹拌部のファンにより密閉容器500内の気体を撹拌する。続いて、給気バルブ34aを開いて高圧ボンベ37から窒素を密閉容器500の内部に送ることで、密閉容器500の内部の酸素を含む空気を窒素に置換する。密閉容器500の内部の空気を窒素に置換した後に、各種のセンサ及び電磁式バルブに通電を開始することで、各種のセンサ及び電磁式バルブが防爆仕様でない場合であっても、爆発を防止することができる。
 次いで、排気バルブ32の後段に設けられたガス濃度センサ36において測定された酸素濃度が1%未満になった時点で給気バルブ34aを閉じて給気バルブ34cを開いて随伴ガスを密閉容器500の内部に導入することで、密閉容器500の内部の窒素を随伴ガスに置換する。ガス濃度センサ36を用いて、随伴ガスへの置換が完了したことを検出することができるが、簡易的に所定量(例えば密閉容器500の容積の約10倍)の随伴ガスを供給した時点で置換が完了したと判断してもよい。
 続いて、排気バルブ32を閉じて密閉容器500の内部の圧力を外気圧よりも高い状態に保持することで、分離部20を無酸素状態に保持することができる。上記の方法によれば、随伴ガス雰囲気下で分離部20を動作させることができるので、より地下に近い環境下でフロックの回収が可能になり、より確実に腐食性の発現を防止することができる。
 なお、配線の接続端子などの導電部の腐食を防ぐために、制御盤110を密閉した状態で、レギュレータ112を介して、高圧ボンベ111に蓄えられた腐食性成分及び可燃性成分を含まない空気又は窒素若しくは二酸化炭素などの不活性気体を供給し、制御盤110の内部の気圧を外気圧よりも高い状態に保持することが好ましい。
 被除去物排出部40は、排出ポンプ41及び排出バルブ42を有し、分離部20において分離された被除去物を外部に排出する。例えば、被除去物排出部40は、被処理水に含まれる油田随伴水とともに生産された原油を搬送するパイプライン300に対して被除去物を排出する。被除去物は、酸素が除去された状態の分離部20において被処理水から分離されるので酸素ガスと接触していない。したがって、被除去物がパイプライン300に混入してもパイプライン300は腐食しない。
 処理水排出部50は、排出ポンプ51及び排出バルブ52を有し、分離部20において被除去物が分離された後の処理水を外部に排出する。例えば、分離装置100が海上にある場合には、処理水排出部50は海に処理水を排出する。処理水排出部50は、処理水を運搬する船舶等の移動体に排出してもよい。処理水排出部50は、排出した処理水の逆流を防ぐトラップをさらに有することが好ましい。
 以上のとおり、酸素除去部30が分離部20の内部から酸素を除去することにより、分離部20においては、内部の酸素が除去された状態で被処理水から被除去物と処理水が分離されるので、分離された被除去物及び処理水には酸素が含まれない。したがって、分離部20で分離処理する被処理水に揮発性の油分が含まれていたとしても爆発の危険性がないので、防爆設備のコストを下げることができる他、防爆仕様となっていない多様なセンサ類を設備の制御に使用できる。また、被除去物に酸素が結合していないので、被除去物排出部40が被除去物をパイプライン300に排出したとしても、パイプライン300が腐食しない。
[分離部20の構成例]
 以下、分離部20の詳細な構成、及び、被除去物を分離する詳細な手順について説明する。
 貯蔵部60は、被処理水に含まれている被除去物を凝集させる凝集剤および磁性体を貯蔵するタンクを有する。図1に示す例においては、貯蔵部60は、無機凝集剤タンク61、高分子凝集剤タンク62、磁性体撹拌槽63、高分子凝集剤撹拌槽64、ポンプ65、ポンプ66、ポンプ68及び新規磁性体タンク67を有する。
 無機凝集剤タンク61は、例えばPAC(ポリ塩化アルミニウム)、硫酸第二鉄、塩化第二鉄、硫酸アルミニウム等の無機凝集剤を貯蔵する。高分子凝集剤タンク62は、例えばポリアクリルアミドのようなアニオン系の凝集剤を貯蔵する。高分子凝集剤タンク62に貯蔵された粉末の高分子凝集剤は、高分子凝集剤撹拌槽64で酸素を含まない水に溶解された後に、例えばポンプ66を用いて凝集部70中の第2凝集部72に投入されて、被処理水と撹拌される。無機凝集剤が液状の状態で供給される場合は、そのままの状態で計量手段(図示せず)により計量されてからポンプ68を用いて凝集部70中の第1凝集部71に投入され、被処理水と撹拌される。なお、無機凝集剤が粉末状の場合、高分子凝集剤と同様に酸素を含まない水に溶解された後、取得部10から導入された被処理水に混合される。
 磁性体は、マグネタイト粒子に代表されるように、通常、新規のものは粉末状態で、ホッパー(図示せず)を通して系内に投入され、新規磁性体タンク67に蓄えられる。被除去物の除去に用いられた後に回収部80において回収された磁性体は、その回収部80の仕様によりさまざまな性状を呈すが、液状の場合、還流バルブ93を通して回収される。これらの磁性体は、磁性体撹拌槽63で、酸素を含まない水に分散され、第1凝集部71で、被処理水及び無機凝集剤とともに混合撹拌される。酸素を含まない水は、密閉容器500の外部から導入してもよいが、処理水を密閉容器内でリサイクルすることも可能である。
 凝集部70は、第1凝集部71及び第2凝集部72を有し、貯蔵部60から投入された凝集剤と取得部10から導入された被処理水とを撹拌することにより、被処理水に含まれている被除去物が凝集したフロックを生成する。具体的には、第1凝集部71には、取得部10から被処理水が導入されるとともに、無機凝集剤タンク61及び磁性体撹拌槽63のそれぞれから無機凝集剤及び磁性体が投入された後に撹拌される。第1凝集部71において被処理水、無機凝集剤及び磁性体が撹拌されることにより、表面が負に帯電した被除去物の表面電荷が無機凝集剤によって中和され、磁性体を含む凝集剤と被除去物とが凝集し、磁性を有するフロックが生成される。
 第1凝集部71で形成されたフロックを含む一次処理水は、第2凝集部72に送られる。第2凝集部72には、高分子凝集剤撹拌槽64から高分子凝集剤が投入される。投入された高分子凝集剤は、第1凝集部71から導入された一次処理水と撹拌される。第2凝集部72には、回収磁性体を投入してもよい。
 高分子凝集剤撹拌槽64からの高分子凝集剤の投入量は、第1凝集部71に投入された無機凝集剤及び回収磁性体の量に応じて決定される。例えば、コンピュータにより、第1凝集部71に投入された無機凝集剤及び回収磁性体の量をモニタリングし、モニタリングにより得られた値に応じて、高分子凝集剤を投入するポンプ66を制御する。
 第2凝集部72においては、第1凝集部71における撹拌速度よりも遅い速度で撹拌することにより、第1凝集部71からの一次処理水に含まれていた磁性フロックが成長し、より大きな磁性フロックを含む二次処理水が生成される。第2凝集部72が複数の槽を有し、複数回に渡って凝集処理を施すことにより、さらに大きな磁性フロックを生成してもよい。
 回収部80は、磁気分離部81、スクレーパ82、フロック移送ポンプ83及び磁性体回収部84を有する。回収部80は、磁性を有する回収体により磁性フロックを回収して被除去物排出部40に送る。
 磁気分離部81は、磁気分離槽81a及び磁気ドラム81bを有する。磁気分離槽81aには、第2凝集部72で生成された磁性フロックを含む二次処理水が注入される。磁気ドラム81bは、磁石を内蔵しており、少なくとも一部が磁気分離槽81a内の二次処理水に浸されている。二次処理水が磁気ドラム81bに接触すると、磁石の磁気力によって、二次処理水内のフロックに含まれている磁性体が磁気ドラム81bに吸着される。
 スクレーパ82は、磁気ドラム81bの回転に伴って磁気分離槽81aの外に出された磁性フロックを掻き取る。スクレーパ82は、例えばゴムにより形成された板であり、少なくとも一部が磁気ドラム81bの表面に接する。
 フロック移送ポンプ83は、スクレーパ82によって掻き取られた磁性フロックを加速させて磁性体回収部84に送出する。磁性体回収部84は、フロック移送ポンプ83を介して磁性フロックが送り込まれる磁性体回収槽84aと、磁性体回収槽84aの内部で回転し、永久磁石を内蔵する磁気ドラム84bとを有する。フロック移送ポンプ83を介して磁性体回収槽84aに送られたフロックは、フロック移送ポンプ83により加速された状態で磁気ドラム84bの周辺を通過することにより生じるせん断力によって分解される。
 分解されたフロックのうち、凝集部70における凝集に必要な磁力を有するフロックは磁気ドラム84bにより回収され、還流部90を介して磁性体撹拌槽63に送られる。例えば、磁性体回収部84は、所定の強度以上の磁力を帯びたフロックを選別して還流部90に送る。分解されたフロックのうち、磁気ドラム84bにより回収されなかったフロックは、汚泥として被除去物排出部40に送られる。磁気ドラム84bは、十分な強度の磁性を有するフロックを磁性体撹拌槽63に送るために、磁気ドラム81bよりも強い磁力を有する磁石を有することが好ましい。
 回収部80は、磁性フロックが除去された二次処理水の一部を、還流部90を介して貯蔵部60に送り、残りの二次処理水を処理水排出部50に送る。回収部80は、例えば、貯蔵部60における凝集剤の溶解に必要な水量に応じた量の二次処理水を還流部90に送る。回収部80は、二次処理水の水質が、貯蔵部60における凝集剤の溶解又は凝集部70における凝集に必要な水質条件を満たす場合に、二次処理水を還流部90に送ってもよい。
 還流部90は、磁性フロックが除去された二次処理水の少なくとも一部を、還流バルブ91及び還流バルブ92を介して無酸素状態で貯蔵部60に還流し、磁性体撹拌槽63及び高分子凝集剤撹拌槽64に送る。還流部90は、例えば、新規磁性体タンク67に貯蔵されている無機凝集剤の量、及び高分子凝集剤タンク62に貯蔵されている高分子凝集剤の量のいずれかに基づいて、貯蔵部60に還流する二次処理水の量を制御する。
 また、還流部90は、磁性体回収部84が回収した磁性体を含むフロックを、還流バルブ93を介して磁性体撹拌槽63に送る。還流部90は、例えば、新規磁性体タンク67に貯蔵されている新規磁性体の量に基づいて、貯蔵部60に還流するフロックの量を制御する。
 分離部20の内部の酸素濃度が所定の値よりも小さくなっているので、二次処理水が還流部90を介して無機凝集剤タンク61及び高分子凝集剤タンク62に注入されるまでの間に、二次処理水が酸素に触れることがない。したがって、貯蔵部60において二次処理水を用いた場合であっても、凝集部70に酸素が入らない。同様に、還流部90が磁性体撹拌槽63に送った回収磁性体も酸素を含まないので、回収磁性体が凝集部70に投入された場合であっても、凝集部70には酸素が入らない。
[コンピュータによる制御]
 なお、分離装置100は、取得部10、分離部20、酸素除去部30、被除去物排出部40及び処理水排出部50を制御するコンピュータやシーケンサ等の制御手段を有してもよい。例えば、コンピュータが記憶媒体に記憶されたプログラムを実行することにより、被除去物を含む被処理水を取得する工程、被処理水から被除去物を分離する工程、分離部20から酸素を除去する工程、分離部20において分離された被除去物を排出する工程、及び、被処理水から被除去物が分離されて残る処理水を排出する工程を実行することができる。
 以上のとおり、第1の実施形態に係る分離装置100においては、被処理水から被除去物を分離する分離部20から酸素が除去されているので、分離部20における爆発を防ぐことができる。また、分離部20において被処理水から分離された処理水には酸素が含まれないので、凝集剤を溶かす水として処理水を再利用することができる。また、被除去物にも酸素が含まれないので、パイプライン300を用いて排出することができる。
<第2の実施形態>
 図2は、第2の実施形態に係る分離装置100の構成例を示す。第1の実施形態に係る分離装置100においては、分離部20が密閉され、酸素除去部30は分離部20のみから酸素を除去した。これに対して、図2に示す分離装置100においては、取得部10、分離部20及び被除去物排出部40を含む筐体が密閉され、酸素除去部30は、取得部10、分離部20及び被除去物排出部40を含む密閉空間から酸素を除去する。
 第1の実施形態と同様に、取得部10は、被除去物が含まれている油田随伴水を被処理水として取得する。取得部10は、セパレータ(図示せず)により、油井から産出される流体から随伴ガスおよび原油を除去した残りの随伴水を、被処理水として蓄える被処理水タンク11と送水ポンプ12とを有する。取得部10は、被処理水タンク11に蓄えられた被処理水を送水ポンプ12によって分離部20に送水する。
 酸素除去部30が取得部10を含む密閉空間から酸素を除去することにより、被除去物を分離する前の被処理水が酸素に触れないので、分離部20への酸素の流入を防止できる。また、酸素除去部30が被除去物排出部40を含む密閉空間から酸素を除去することにより、分離部20において被除去物が分離されてからパイプライン300に送られるまでの間に酸素に触れないので、酸素と結合した被除去物がパイプライン300に入ることを防止できる。
<第3の実施形態>
 図3は、第3の実施形態に係る貯蔵部60及び凝集部70の周辺の構成例を示す。図3における高分子凝集剤タンク62及び新規磁性体タンク67には、レギュレータ121並びにバルブ122及びバルブ123を介して、高圧ボンベ120から不活性気体が供給される。高分子凝集剤タンク62及び新規磁性体タンク67に外部から新規の凝集剤を投入するたびに不活性気体を供給し、凝集剤の投入時に流入した酸素を含む空気を除去することにより、分離部20に酸素が流入することを防ぐことができる。
<第4の実施形態>
 上記の実施形態に係る分離装置100においては、新規磁性体、無機凝集剤及び回収磁性体が第1凝集部71に投入され、高分子凝集剤及び回収磁性体が第2凝集部72に投入されていた。これに対して、これらの凝集剤及び磁性体は、第1凝集部71及び第2凝集部72のいずれに投入されてもよい。例えば、コンピュータがポンプを制御することにより、回収磁性体の量を監視し、回収磁性体の量に応じた量の新規磁性体を第1凝集部71及び第2凝集部72のいずれかに投入してもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。例えば、上記の実施形態においては、磁性粒子を含む凝集剤を用いて磁性フロックを生成することにより被除去物を除去したが、他の方法によって被除去物を除去する構成においても同等の作用効果を奏し、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
10・・・取得部、11・・・被処理水タンク、12・・・送水ポンプ、20・・・分離部、30・・・酸素除去部、31・・・排気ポンプ、32・・・排気バルブ、33・・・給気ポンプ、34・・・給気バルブ、35・・・レギュレータ、36・・・ガス濃度センサ、37・・・高圧ボンベ、40・・・被除去物排出部、41・・・排出ポンプ、42・・・排出バルブ、50・・・処理水排出部、51・・・排出ポンプ、52・・・排出バルブ、60・・・貯蔵部、61・・・無機凝集剤タンク、62・・・高分子凝集剤タンク、63・・・磁性体撹拌槽、64・・・高分子凝集剤撹拌槽、65・・・計量部、66・・・計量部、67・・・新規磁性体タンク、70・・・凝集部、71・・・第1凝集部、72・・・第2凝集部、80・・・回収部、81・・・磁気分離部、81a・・・磁気分離槽、81b・・・磁気ドラム、82・・・スクレーパ、83・・・フロック移送ポンプ、84・・・磁性体回収部、84a・・・磁性体回収槽、84b・・・磁気ドラム、90・・・還流部、91・・・還流バルブ、92・・・還流バルブ、93・・・還流バルブ、100・・・分離装置、110・・・制御盤、111・・・高圧ボンベ、112・・・レギュレータ、120・・・高圧ボンベ、121・・・レギュレータ、122・・・バルブ、123・・・バルブ、200・・・パイプライン

Claims (6)

  1.  被除去物を含む被処理水を取得する取得部と、
     前記被処理水から前記被除去物を分離する分離部と、
     前記分離部の内部の酸素を除去する酸素除去部と、
     前記被処理水から分離された前記被除去物を排出する被除去物排出部と、
     前記被処理水から前記被除去物が分離されて残る処理水を排出する処理水排出部と
     を備える分離装置。
  2.  前記分離部は、
     前記被処理水に含まれる前記被除去物を凝集させる凝集剤を貯蔵する貯蔵部と、
     前記凝集剤と前記被処理水とを撹拌することにより、前記被除去物が凝集した凝集物を生成する凝集部と、
     前記凝集物を回収して前記被除去物排出部に送る回収部と
     を有する請求項1に記載の分離装置。
  3.  前記処理水の少なくとも一部を無酸素状態で前記貯蔵部に還流する還流部をさらに備え、
     前記貯蔵部は、前記還流部によって還流された前記処理水に前記凝集剤を溶解させる請求項2に記載の分離装置。
  4.  前記取得部は、原油とともに生産される油田随伴水を前記被処理水として取得し、
     前記被除去物排出部は、前記原油を搬送するパイプラインに対して前記被除去物を排出する請求項1から3のいずれか一項に記載の分離装置。
  5.  前記酸素除去部は、不活性気体を前記分離部の内部に供給することにより前記酸素を除去する請求項1から4のいずれか一項に記載の分離装置。
  6.  被除去物を含む被処理水を取得する工程と、
     前記被処理水から前記被除去物を分離する工程と、
     前記被除去物を分離する工程を実行する分離部から酸素を除去する工程と、
     前記被処理水から分離された前記被除去物を排出する工程と、
     前記被処理水から前記被除去物が分離されて残る処理水を排出する工程と
     を備える分離方法。
PCT/JP2013/081468 2012-11-28 2013-11-22 分離装置及び分離方法 WO2014084128A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014550156A JP6139563B2 (ja) 2012-11-28 2013-11-22 分離装置及び分離方法
NO13859233A NO2927195T3 (ja) 2012-11-28 2013-11-22
EP13859233.2A EP2927195B1 (en) 2012-11-28 2013-11-22 Separation device and separation method
US14/723,369 US20150259229A1 (en) 2012-11-28 2015-05-27 Separation Apparatus and Separation Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012259432 2012-11-28
JP2012-259432 2012-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/723,369 Continuation US20150259229A1 (en) 2012-11-28 2015-05-27 Separation Apparatus and Separation Method

Publications (1)

Publication Number Publication Date
WO2014084128A1 true WO2014084128A1 (ja) 2014-06-05

Family

ID=50827766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081468 WO2014084128A1 (ja) 2012-11-28 2013-11-22 分離装置及び分離方法

Country Status (5)

Country Link
US (1) US20150259229A1 (ja)
EP (1) EP2927195B1 (ja)
JP (1) JP6139563B2 (ja)
NO (1) NO2927195T3 (ja)
WO (1) WO2014084128A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129308A1 (ja) * 2015-02-09 2016-08-18 住友電気工業株式会社 水処理システム及び水処理方法
JP2017159291A (ja) * 2016-03-07 2017-09-14 伯東株式会社 原油含有廃液の処理方法及び原油含有廃液の処理設備

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686604A (zh) * 2020-06-12 2020-09-22 靳双玲 一种具有内壁自清理功能的涂料混合装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034347A1 (fr) * 2008-09-25 2010-04-01 Otv Sa Procédé de traitement d'eau de mer en vue de la production d'une eau d'injection de forage pétrolier sous-marin, et installation correspondante
US20120043264A1 (en) * 2010-08-23 2012-02-23 Hisashi Isogami Flocculation-magnetic separation system
JP2012061459A (ja) * 2010-08-19 2012-03-29 Shimizu Corp 加圧浮上分離装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803033A (en) * 1971-12-13 1974-04-09 Awt Systems Inc Process for removal of organic contaminants from a fluid stream
US3994802A (en) * 1975-04-16 1976-11-30 Air Products And Chemicals, Inc. Removal of BOD and nitrogenous pollutants from wastewaters
JPS63274408A (ja) * 1987-05-07 1988-11-11 Mitsubishi Heavy Ind Ltd セパレ−タ制御装置
GB0001649D0 (en) * 2000-01-26 2000-12-20 British Aerospace A fuel inerting system
US7243721B2 (en) * 2001-06-12 2007-07-17 Hydrotreat, Inc. Methods and apparatus for heating oil production reservoirs
JP4239781B2 (ja) * 2003-10-14 2009-03-18 株式会社日立プラントテクノロジー 生産物処理システム
US20110036771A1 (en) * 2007-01-09 2011-02-17 Steven Woodard Ballasted anaerobic system and method for treating wastewater
US8470172B2 (en) * 2007-01-09 2013-06-25 Siemens Industry, Inc. System for enhancing a wastewater treatment process
US7597144B2 (en) * 2007-08-27 2009-10-06 Hpd, Llc Process for recovering heavy oil utilizing one or more membranes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034347A1 (fr) * 2008-09-25 2010-04-01 Otv Sa Procédé de traitement d'eau de mer en vue de la production d'une eau d'injection de forage pétrolier sous-marin, et installation correspondante
US20100230366A1 (en) * 2008-09-25 2010-09-16 Otv Sa Seawater treatment method for the production of injection water for undersea oil drilling and corresponding installation
JP2012503724A (ja) * 2008-09-25 2012-02-09 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート 海底石油掘削用の圧入水を生産することを目的として海水を処理する方法、及び対応する装置
JP2012061459A (ja) * 2010-08-19 2012-03-29 Shimizu Corp 加圧浮上分離装置
US20120043264A1 (en) * 2010-08-23 2012-02-23 Hisashi Isogami Flocculation-magnetic separation system
CA2749435A1 (en) * 2010-08-23 2012-02-23 Hitachi Plant Technologies, Ltd. Flocculation-magnetic separation system
JP2012040536A (ja) 2010-08-23 2012-03-01 Hitachi Plant Technologies Ltd 凝集磁気分離装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927195A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129308A1 (ja) * 2015-02-09 2016-08-18 住友電気工業株式会社 水処理システム及び水処理方法
CN107207289A (zh) * 2015-02-09 2017-09-26 住友电气工业株式会社 水处理系统以及水处理方法
JPWO2016129308A1 (ja) * 2015-02-09 2017-11-16 住友電気工業株式会社 水処理システム及び水処理方法
CN107207289B (zh) * 2015-02-09 2020-09-01 住友电气工业株式会社 水处理系统以及水处理方法
JP2017159291A (ja) * 2016-03-07 2017-09-14 伯東株式会社 原油含有廃液の処理方法及び原油含有廃液の処理設備

Also Published As

Publication number Publication date
EP2927195A1 (en) 2015-10-07
EP2927195A4 (en) 2015-10-07
JPWO2014084128A1 (ja) 2017-01-05
US20150259229A1 (en) 2015-09-17
EP2927195B1 (en) 2018-02-28
JP6139563B2 (ja) 2017-05-31
NO2927195T3 (ja) 2018-07-28

Similar Documents

Publication Publication Date Title
JP6139563B2 (ja) 分離装置及び分離方法
EP3269687A1 (en) Method for treating scrubber effluent, and apparatus for treating scrubber effluent
JP2014018751A (ja) 磁性粉の洗浄装置及び洗浄方法
US20130255941A1 (en) Mobile water treatment and method
JP4466216B2 (ja) 磁気分離浄化方法及びその装置
JP5955043B2 (ja) 湿式塗装ブース循環水の塗料ミスト処理剤及び湿式塗装ブース循環水回収装置
JP4574640B2 (ja) 塗料廃液分離装置及び塗料廃液分離方法
WO2012102324A1 (ja) 凝集磁気分離装置
JP2013031810A (ja) 亜鉛含有排水の排水処理方法及び亜鉛含有排水の排水処理設備
EP2533914A1 (en) Method and system for decontaminating sand
JP2010207755A (ja) フッ素含有水の処理装置
AU2017211155A1 (en) Apparatus and process for flocculation of solids fractions of a solid-liquid mixture
US10391532B2 (en) System and method for treatment of contaminated sediments or soils using free radical chemical reaction and phase separation processes
JP2012233766A (ja) 放射性廃液中の放射性物質除去方法、および放射性廃液中の放射性物質除去システム
KR20200041881A (ko) 밸러스트형 청징을 이용한 고 농도의 고형물을 함유하는 액체 스트림의 처리
JP6730092B2 (ja) 放射性物質含有廃液の処理方法及び処理装置
CN111792759A (zh) 一种基于碳源回用的污水污泥调理工艺及系统
WO2013136429A1 (ja) 湿式塗装ブース循環水の塗料ミスト処理剤及び湿式塗装ブース循環水回収装置
JP6806332B2 (ja) 水処理装置及び水処理方法
TWI775008B (zh) 硫脲廢水之預處理裝置及預處理方法
KR101573624B1 (ko) 자기장을 이용한 준설토 처리장치
AU2017210503A1 (en) Apparatus and method for removing contaminants from water
US20190351469A1 (en) System and method for treatment of contaminated sediments using free radical chemical reaction and phase separation processes
KR20100003686A (ko) 고농도 유기 폐수의 처리장치
WO2018070481A1 (ja) 原油処理装置及び原油処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013859233

Country of ref document: EP