WO2014083544A1 - Poudre haute pureté destinée à la projection thermique - Google Patents

Poudre haute pureté destinée à la projection thermique Download PDF

Info

Publication number
WO2014083544A1
WO2014083544A1 PCT/IB2013/060514 IB2013060514W WO2014083544A1 WO 2014083544 A1 WO2014083544 A1 WO 2014083544A1 IB 2013060514 W IB2013060514 W IB 2013060514W WO 2014083544 A1 WO2014083544 A1 WO 2014083544A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
powder
particles
size
density
Prior art date
Application number
PCT/IB2013/060514
Other languages
English (en)
Inventor
Dominique Billieres
Alain Alimant
Howard Wallar
Original Assignee
Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Centre De Recherches Et D'etudes Europeen filed Critical Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority to AU2013350757A priority Critical patent/AU2013350757B2/en
Priority to CN201380071798.2A priority patent/CN104981431B/zh
Priority to CA2893458A priority patent/CA2893458C/fr
Priority to KR1020157016969A priority patent/KR102207879B1/ko
Priority to US14/648,539 priority patent/US10252919B2/en
Priority to EP13824014.8A priority patent/EP2925673B1/fr
Priority to EA201591036A priority patent/EA201591036A1/ru
Priority to SG11201504225QA priority patent/SG11201504225QA/en
Priority to BR112015012469-0A priority patent/BR112015012469B1/pt
Priority to JP2015544600A priority patent/JP6284947B2/ja
Priority to MX2015006834A priority patent/MX2015006834A/es
Publication of WO2014083544A1 publication Critical patent/WO2014083544A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/212Scandium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a plasma-deposited powder, a process for producing such a powder, and a coating obtained by plasma spraying said powder.
  • the internal surfaces of the chambers used for treating (for example plasma etching) semiconductors, for example silicon wafers, are conventionally protected with a ceramic coating applied by plasma spraying.
  • This coating must be highly resistant to plasmas including halogens or highly corrosive environments.
  • Plasma spraying requires, as a feed powder, a powder having a good fluidity and a particle morphology allowing a suitable heating during the projection.
  • the size of the particles must be sufficient for the particles to enter the plasma and to limit losses by vaporization.
  • very fine powders directly obtained by chemical or pyrolytic manufacturing processes are not suitable for plasma spraying without additional consolidation step to form larger (and porous) agglomerates, especially sintered agglomerates.
  • the resulting coating has porosity.
  • the total porosity of the sintered agglomerate coating is typically 2-3%, which would not be suitable for protecting the internal surfaces of a semiconductor etch chamber.
  • the sintered powders described in US6,916,534, US2007 / 077363 or US2008 / 0112873 can not lead to a very dense coating by thermal spraying.
  • coatings obtained from porous agglomerates lead, in time, to the release of particles when exposed to corrosive environments.
  • US 7,931,836 or US 2011/0129399 disclose a particle powder resulting from a plasma fusion to form liquid droplets that solidify in free fall.
  • more than about 90% of the raw material particles may be wholly or partially converted to liquid form.
  • the apparent density of the resulting powder is between 1.2 and 2.2 g / cm 3 .
  • the powders obtained by grinding a melt are not suitable either, because of the impurities that are added during the grinding step.
  • Rare earth oxides and / or hafnium oxide and / or yttrium aluminum oxides are known to have good intrinsic resistance to chemical attack. However, they have a high melting temperature and a low thermal diffusion. It is therefore difficult to obtain a very dense coating from these particles by plasma spraying.
  • An object of the invention is to provide a powder that can be efficiently projected by plasma, with good productivity, and which can lead to a very pure and extremely dense coating.
  • the invention provides a powder (hereinafter “feed powder”) of particles (hereinafter “feed particles”), more than 95% by number of said particles having a circularity greater than or equal to 0.85, said powder containing more than 99.8%> rare earth oxide and / or hafnium oxide and / or yttrium aluminum oxide, in percent by weight based on oxides, and having:
  • percentiles D n of the powder are the particle sizes corresponding to the percentages, by number, of n%, on the cumulative distribution curve of the particle size of the powder, the particle sizes being ranked in ascending order,
  • the density P ⁇ 5 o being the apparent density of the fraction of the particles having a size less than or equal to D 50
  • the density P being the apparent density of the powder.
  • a feed powder according to the invention is therefore a very pure powder, composed largely of spherical particles.
  • This powder is remarkable, in particular, for the small size dispersion of the particles, in that the apparent density of the particles having a size smaller than the median particle size D50 is substantially the same as that particles having a size greater than or equal to D 50 , and in that it comprises few very fine particles having a size less than or equal to 5 ⁇ .
  • a feed powder according to the invention may also comprise one or more of the following optional characteristics: More than 95%, preferably more than 99%, preferably more than 99.5% by number of said particles have a circularity greater than or equal to 0.87, preferably greater than or equal to 0.90.
  • the powder contains more than 99.9%, more than 99.950%, more than 99.990%, preferably more than 99.999% of a rare earth oxide and / or hafnium oxide and / or an yttrium-aluminum oxide, in particular YAG.
  • the quantity of the other oxides is therefore so small that it can not have any significant effect on the results obtained with a feed powder according to the invention.
  • Oxides account for more than 98%>, more than 99%, more than 99.5%>, more than 99.9%, more than 99.95%, more than 99.985% or more than 99.99% of the mass powder.
  • Said rare earth is chosen from the group formed by Yttrium (Y), Gadolinium (Gd), Scandium (Se), Dysprosium (Dy), Neodymium (Nd), and PYtterbium (Yb).
  • said rare earth is yttrium.
  • Said yttrium-aluminum oxide is an yttrium-aluminum oxide composite, preferably YAG (Yttrium-aluminum Garnet Y3Al5O12, comprising about 58% by weight of yttrium oxide) and / or YAP (perovskite). Yttrium-aluminum comprising about 68.9% by weight of yttrium oxide).
  • YAG Yttrium-aluminum Garnet Y3Al5O12, comprising about 58% by weight of yttrium oxide
  • YAP perovskite
  • the median particle size (D 50 ) of the powder is greater than 15 ⁇ and / or less than 30 ⁇ .
  • the percentile (D 10 ) of the particle sizes is greater than 1 ⁇ , preferably greater than 5 ⁇ , preferably greater than 10 ⁇ , or greater than 13 ⁇ .
  • the percentile 90 (D 90 ) of the particle sizes is less than 60 ⁇ , preferably less than 50 ⁇ , preferably less than 40 ⁇ .
  • the 99.5 percentile (D 9 9 i5 ) of the particle sizes is less than 80 ⁇ , preferably less than 60 ⁇ .
  • the size dispersion index (D 10 -D 10) / D 50 is preferably less than 2.2, preferably less than 2.0, preferably less than 1.8, preferably less than 1.5, of preferably less than 1, 3, preferably less than 1, 1, preferably less than 1, or of more preferably less than 0.9 and preferably greater than 0.4, preferably greater than 0.7, preferably greater than 0.8.
  • the powder has a monomodal dispersion type, i.e., a single main peak.
  • the percentage by number of the feed particles having a size of less than 10 ⁇ is preferably less than 5%, preferably less than 4.5%, preferably less than 4%, preferably less than 3%, preferably less than 2.5%, preferably less than 2%.
  • the percentage by number of the feed particles having a size of less than 5 ⁇ is preferably less than 4%, preferably less than 3%, preferably less than 2%, preferably less than 1.5%, preferably less than 1%.
  • the cumulative specific volume of the pores of radius less than 1 ⁇ is less than 8%, preferably less than 6%, preferably less than 5%, preferably less than 4%, preferably less than 3.5% of the apparent volume. powder.
  • the specific surface area is preferably less than 5 m 2 / g, preferably less than 3 m 2 / g, preferably less than 2 m 2 / g, preferably less than 1 m 2 / g, preferably less than 0 , 5 m 2 / g.
  • the apparent density dispersion index (P ⁇ 5 oP) / P is preferably less than 0.15, preferably less than 0.1.
  • the relative density of the feed powder is preferably greater than 0.4 and / or less than 0.8, preferably greater than 0.45 and / or less than 0.7
  • the apparent density of the powder is greater than 2.25 g / cm 3 , preferably greater than 2.30 g / cm 3 , preferably greater than 2.35 g / cm 3 , preferably greater than 2.40 g / cm 3 / cm 3 , still preferably greater than 2.45 g / cm 3 .
  • the invention also relates to a process for manufacturing a feed powder according to the invention comprising the following successive steps: a) granulation of particles so as to obtain a powder of granules having a median size D 50 of between 20 and 60 microns and comprising more than 99.8% rare earth oxide and / or hafnium oxide and / or yttrium aluminum oxide, in weight percent on the oxide basis; b) injecting said granule powder, via a carrier gas, through an injector to a plasma jet generated by a plasma gun, so as to obtain molten droplets; c) cooling said melt droplets, so as to obtain a feed powder according to the invention; d) optionally, granulometric selection, preferably by sieving or by pneumatic classification, of said feed powder.
  • steps a) and b) there is no intermediate step of consolidation, and in particular no sintering, between steps a) and b).
  • This lack of intermediate consolidation step advantageously improves the purity of the feed powder.
  • a method of manufacturing a powder according to the invention may also include one or more of the following optional features:
  • the granulation is preferably an atomization or spray drying ("spray drying” in English) or pelletization (pelletization).
  • the mineral composition of the granule powder comprises more than 99.9%, more than 99.95%, more than 99.99%, preferably more than 99.999% of an oxide of a rare earth and / or hafnium oxide and / or yttrium-aluminum oxide, in percent by weight based on the oxides.
  • the median circularity C 50 of the granule powder is preferably greater than 0.85, preferably greater than 0.90, preferably greater than 0.95, and even more preferably greater than 0.96.
  • the C 5 percentile is preferably greater than or equal to 0.85, preferably greater than or equal to 0.90.
  • the median aspect ratio A 50 of the granule powder is preferably greater than 0.75, preferably greater than 0.8.
  • the specific surface area of the granule powder is preferably less than 15 m 2 / g, preferably less than 10 m 2 / g, preferably less than 8 m 2 / g, preferably less than 7 m 2 / g.
  • the cumulative pore volume having a radius less than 1 ⁇ , measured by mercury porosimetry, of the granule powder is preferably less than 0.5 cm 3 / g, preferably less than 0.4 cm 3 / g, or preferably less than 0.3 cm 3 / g.
  • the bulk density of the granule powder is preferably greater than 0.5 g / cm 3 , preferably greater than 0.7 g / cm 3 , preferably greater than 0.90 g / cm 3 , preferably greater than 0 , 95 g / cm 3 , preferably less than 1.5 g / cm 3 , preferably less than 1.3 g / cm 3 , preferably less than 1.1 g / cm 3 .
  • the percentile (Di 0 ) of the particle sizes of said granule powder is preferably greater than 10 ⁇ , preferably greater than 15 ⁇ , preferably greater than 20 ⁇ .
  • the 90th percentile (D 90 ) of the particle sizes of said powder is preferably less than 90 ⁇ , preferably less than 80 ⁇ , preferably less than 70 ⁇ , preferably less than 65 ⁇ .
  • the granule powder preferably has a median size D 50 of between 20 and 60 microns.
  • the granule powder preferably has a Di 0 between 20 and 25 ⁇ and a D 90 between 60 and 65 ⁇ .
  • the 99.5 percentile (D 9 9 15 ) of the particle sizes of said granule powder is preferably less than 100 ⁇ , preferably less than 80 ⁇ , preferably less than 75 ⁇ .
  • the size dispersion index (D 90 - Di 0 ) / D 50 of said granule powder is preferably less than 2, preferably less than 1.5, preferably less than 1.2, more preferably less than 1, 1.
  • the diameter of (s) the orifice (s) of (the) injectors (s) is greater than 1.8 mm, preferably greater than 1.9 mm, preferably greater than or equal to 2.0 mm.
  • the flow rate of the carrier gas is less than 5.5 l / min, preferably less than 5.0 l / min, preferably less than 4.5 l / min, preferably less than 4.0 l / min, preferably less than or equal to 3.5 l / min.
  • the granule powder is injected into the plasma jet at a feed rate of 30 to 60 g / min per injector orifice.
  • the total granule feed rate (for all the injector orifices) is greater than 90 g / min, and preferably less than 180 g / min, preferably less than 160 g / min, preferably less than 140 g / min. / min, preferably less than or equal to 120 g / min.
  • the cooling of the melt droplets is such that, up to 500 ° C, the average cooling rate is between 50 000 and 200 000 ° C / s, preferably between 80 000 and 150 000 ° C / s.
  • the invention also relates to a plasma torch for producing, preferably with a method according to the invention, a feed powder according to the invention, said torch comprising a plasma gun configured to generate a plasma jet along an axis X , and an injector for injecting a powder of granules into said plasma jet, said X axis forming an angle ⁇ less than 30 °, less than 20 °, less than 10 °, less than 5 °, preferably zero, with a line vertical.
  • a plasma torch according to the invention advantageously produces a feed powder which is very pure and dense, with few satellites, the apparent density of the powder reaching 2.3 g / cm 3 and more, to be compared with the preferred density.
  • a plasma torch according to the invention may further comprise one or more of the following optional features:
  • the plasma torch comprises at least one nozzle arranged to inject a cooling fluid, preferably air, so as to cool the droplets resulting from the heating of the granule powder injected into the plasma jet.
  • the cooling fluid is preferably injected downstream of the plasma jet (as shown in FIG. 2) and the angle ⁇ between the path of said droplets and the path of the cooling fluid is preferably less than or equal to 80 °. , preferably less than or equal to 60 ° and / or greater than or equal to 10 °, preferably greater than or equal to 20 °, preferably greater than or equal to 30 °.
  • the injection axis Y of any nozzle and the X axis of the plasma jet are secant.
  • the distance d between the outer surface of an anode of the plasma gun and the cooling zone by the injected cooling fluid is between 50 mm and 400 mm, preferably between 100 mm and 300 mm.
  • the torch comprises a plurality of said nozzles, preferably regularly spaced about said axis X, preferably so as to generate a substantially conical or annular cooling fluid flow around the X axis.
  • the invention also relates to a thermal spraying method comprising a step of plasma spraying a feed powder according to the invention on a substrate in order to obtain a coating.
  • the invention also relates to a body comprising a substrate and a coating covering, at least partially, said substrate, said coating comprising more than 99.8% of a rare earth oxide and / or hafnium oxide and / or an oxide of yttrium-aluminum, in weight percent on the oxide basis, and having a porosity of less than or equal to 1.5%, measured in a photograph of a polished section of said coating.
  • the porosity of the coating is less than 1%.
  • the coating comprises more than 99.9%, more than 99.95%, more than 99.97%, more than 99.98%, more than 99.99%, preferably more than 99.999%.
  • rare earth oxide and / or hafnium oxide and / or yttrium-aluminum oxide in weight percent based on the oxides.
  • Such a coating can be manufactured with a thermal spraying method according to the invention.
  • the substrate may be a wall of an oven used in semiconductor processing.
  • the furnace may contain semiconductors, in particular silicon wafers.
  • the furnace may be equipped with chemical vapor deposition (CVD) means or physical vapor deposition (PVD) means. Definitions
  • Impurities are the inevitable constituents, involuntarily and necessarily introduced with the raw materials or resulting from reactions between the constituents. Impurities are not necessary constituents but only tolerated constituents.
  • the level of purity is preferably measured by GDMS (Glow Discharge Mass Spectroscopy) which is more accurate than PAES-ICP (Inductively Coupled Plasma Atomic Emission Spectrometer).
  • the "circularity" of the particles of the powder is conventionally determined in the following way:
  • the powder is dispersed on a flat pane.
  • the images of the individual particles are obtained by scanning the dispersed powder under an optical microscope, while keeping the particles in focus, the powder being illuminated by the underside of the glass. These images can be analyzed using a device of the Morphologi G3 type marketed by Malvern.
  • the PD perimeter of the disk D having an area equal to the area A p of the particle P' on an image of this particle is determined. .
  • the perimeter P p of this particle is also determined.
  • the circularity is equal to the ratio of PD / P p . So
  • the powder is poured onto a flat pane and observed as explained above.
  • the number of particles counted should be greater than 250 so that the measured percentile is substantially the same, regardless of how the powder is poured onto the glass.
  • the shape ratio A of a particle is defined as the ratio of the width of the particle (its largest dimension perpendicular to the direction of its length) and its length (its largest dimension).
  • the powder is poured onto a flat pane and observed as explained previously, to measure the lengths and widths of the particles.
  • the number of particles counted should be greater than 250 so that the measured percentile is substantially the same, regardless of how the powder is poured onto the glass.
  • the percentiles or "percentiles" 10 (P 10 ), 50 (P 50 ), 90 (P90) and 99.5 (P, s), and more generally "n" P n of a property P of the particles of a particle powder are the values of this property corresponding to the percentages, by number, of 10%, 50%, 90%, 99.5% and n%, respectively, on the cumulative distribution curve relating to this property of the particles of the powder, the values relating to this property being ranked in ascending order.
  • the percentiles D n , A n , and C n are relative to the size, the aspect ratio and the circularity, respectively.
  • 10% by number of the particles of the powder have a size less than D 10 and 90% of the particles in number have a size greater than or equal to Di 0 .
  • the percentiles for size can be determined using a particle size distribution using a laser granulometer.
  • 5% by number of particles of the powder have this circularity less than the C 5 percentile.
  • 95% by number of particles of this powder have a circularity greater than or equal to C 5 .
  • the percentile 50 is classically called the "median” percentile.
  • C50 is conventionally called “median circularity”.
  • D50 is conventionally called “median size”.
  • the A50 percentile also conventionally refers to the "median form ratio”.
  • particle size is meant the size of a particle conventionally given by a particle size distribution characterization performed with a laser granulometer.
  • the laser granulometer used can be a Partica LA-950 from the company HORIBA.
  • the percentage or fraction by number of particles having a size smaller than or equal to a maximum size determined can be carried out using a laser granulometer.
  • the cumulative specific volume of pores with a radius of less than 1 ⁇ , as a percentage of the apparent volume of powder, is conventionally measured by mercury porosimetry according to the ISO 15901-1 standard. It can be measured with a MICROMERITICS porosimeter.
  • the "bulk density" (P) of a particle powder is conventionally defined as the ratio of the mass of the powder divided by the sum of the apparent volumes of said particles. In practice, it can be measured with a MICROMERITICS porosimeter at a pressure of 3.5 kPa.
  • the apparent volume of a particle powder is conventionally defined as the sum of the apparent volumes of said particles. In practice, the apparent volume of a particle powder is calculated by the mass of the powder divided by its apparent density.
  • the "relative density" of a powder is equal to its apparent density divided by its actual density.
  • the actual density can be measured by helium pycnometry.
  • the "porosity" of a coating can be evaluated by image analysis of a polished cross-section of the coating.
  • the coated substrate is sectioned using a laboratory cutting machine, for example using a Struers Discotom apparatus with an alumina cutting disc.
  • the coating sample is then mounted in a resin, for example using a resin cold mounting type Struers Durocit.
  • the mounted sample is then polished using polishing media of increasing fineness.
  • Abrasive paper or, preferably, polishing discs can be used with a suitable polishing slurry.
  • a typical polishing procedure begins with dressing the sample (for example with a Struers Piano 220 Abrasive Disc), then changing the polishing sheets associated with the abrasive suspensions.
  • the size of abrasive grains is decreased at each fine polishing step, the size of the diamond abrasives starting for example at 9 microns, then at 3 microns, to finish at 1 micron (Struers DiaPro series).
  • the polishing is stopped as soon as the porosity observed under optical microscope remains constant.
  • the samples are thoroughly cleaned between the steps, for example with water.
  • a final polishing step after the diamond polishing step of 1 ⁇ , is performed using colloidal silica (OP-U Struers, 0.04 ⁇ ) associated with a soft felt type sheet. After cleaning, the polished sample is ready for observation under the light microscope or SEM (Scanning Electron Microscope). Because of its superior resolution and outstanding contrast, SEM is preferred for producing images for analysis.
  • the porosity can be determined from the images using image analysis software (eg ImageJ, NIH), adjusting the thresholding. The porosity is given as a percentage of the surface of the cross section of the coating.
  • Specific surface area is conventionally measured by the BET method (Brunauer Emmet Teller), as described in the Journal of the American Chemical Society 60 (1938), pages 309-316.
  • the "granulation" operation is a process of agglomeration of particles using a binder, for example a binder polymer, to form agglomerated particles, which may optionally be granules.
  • the granulation comprises, in particular, atomization or spray drying and / or the use of a granulator or a pelletizer, but is not limited to these methods. .
  • a "granule” is an agglomerated particle having a circularity of 0.8 or more.
  • a consolidation step (which is optional, and is not preferred in the invention) is an operation to replace, in the granules, the links due to organic binders by diffusion bonds: it is generally carried out by a heat treatment, but without total melting of the granules.
  • the "deposition efficiency" of a plasma spraying method is defined as the ratio, in percent by mass, of the amount of material deposited on the substrate divided by the amount of feed powder injected into the plasma jet.
  • Processing productivity is defined as the amount of material deposited per unit of time.
  • the properties of the powder can be evaluated by the characterization methods used in the examples.
  • FIG. 1 schematically represents a process for manufacturing a spray-dried powder only (SDO or "spray-dried only”);
  • FIG. 2 diagrammatically represents a plasma torch for the manufacture of a feed powder according to the invention;
  • FIG. 3 schematically represents a method for manufacturing a feed powder according to the invention;
  • FIG. 4 illustrates the method that is used to evaluate the circularity of a particle,
  • FIG. 5 is a photograph of the spray-dried powder G3 powder (SDO) only according to the invention,
  • FIG. 6 is a photograph of particle powder G4;
  • FIG. 7 is a photograph of the powder obtained according to example II illustrating the invention.
  • FIG. 1 illustrates an embodiment of step a) of a method for manufacturing a feed powder according to the invention. Any known method of granulation can be used. In particular, those skilled in the art know how to prepare a slip suitable for granulation.
  • a binder mixture is prepared by adding PVA (polyvinyl alcohol) 2 in deionized water 4. This binder mixture 6 is then filtered through a filter of 5 ⁇ 8. Yttrium powder (for example of purity 99.99%), with a median size of 1 ⁇ , is mixed in the filtered binder mixture to form a slurry 12.
  • the slip may comprise by weight, for example, 55% of yttrium oxide and 0.55%> PVA, the 100% complement consisting of water.
  • This slip is injected into an atomizer 14 to obtain a powder of granules 16 having a D 10 of 20 ⁇ and a D 90 of 63 ⁇ .
  • the person skilled in the art knows how to adapt the atomizer to obtain the desired granulometric distribution.
  • the granules are agglomerates of particles of an oxide material having a median size of less than 3 ⁇ , preferably less than 2 ⁇ , preferably less than 1.5 ⁇ .
  • the granule powder can be sieved (5 mm sieve 18, for example) to eliminate the possible presence of residues fallen from the walls of the atomizer.
  • the resulting powder is a "spray-dried only” (SDO) granule powder.
  • FIG. 2 and 3 illustrate an embodiment of step b) of melting a method of manufacturing a feed powder according to the invention.
  • An SDO granule powder 20 for example, as manufactured according to the method illustrated in FIG. 1, is injected by an injector 21 into a plasma jet 22 produced by a plasma gun 24, for example an HP ProPlasma.
  • Conventional plasma injection and projection techniques can be used to mix the SDO granule powder with a carrier gas and to inject the resulting mixture into the hot plasma core.
  • the injected granule powder does not need to be consolidated. In the absence of any intermediate consolidation step, i.e. in the preferred embodiment, the injection must be done gently to avoid breakage of granules.
  • the skilled person can adapt the injection parameters for a smooth injection of the granules, and choose the granules so that the feed powder obtained at the end of steps c) or d) has a composition and a particle size distribution according to the invention.
  • a gentle injection is not conventional. Indeed, it is generally considered preferable to inject the particles so as to disperse them in a highly viscous plasma jet which flows at a very high speed.
  • the injected particles come into contact with such a plasma jet, they are subjected to violent shocks, which can break them into pieces.
  • the particles to be dispersed are generally injected with a high speed, so as to benefit from a high kinetic energy.
  • the particles to be injected must also have a high mechanical resistance to resist these shocks.
  • unconsolidated granules are injected into a plasma torch, possibly a conventional torch, the parameters of which are adjusted to such a degree. so that the speed of the plasma jet and the speed of the injected granules are low, preferably, are as low as possible.
  • the plasma jet velocity can be reduced by using a large diameter anode and / or by reducing the rate of flow of the primary gas.
  • the speed of the granules is determined by the flow rate of the carrier gas.
  • the energy of the plasma jet determined by the flow rate of the secondary gas, must be high enough to melt the granules.
  • the granule powder is injected with a carrier gas, preferably without any liquid.
  • Table 1 presents the preferred ranges for the parameters of the melting step b).
  • the granules are melted into droplets 25. This fusion advantageously makes it possible to reduce the level of impurities.
  • the droplets are rapidly cooled by the surrounding cold air, but also by a forced circulation 26 of a cooling gas, preferably air. Air advantageously limits the reducing effect of hydrogen.
  • the forced cooling is generated by a set of nozzles 28 disposed about the X-axis of the plasma jet 22, so as to create a substantially conical or annular flow of cooling gas.
  • the plasma gun 24 is oriented vertically towards the ground.
  • the angle between the vertical and the X axis of the plasma gun is less than 10 °, preferably less than 5 °.
  • the flow of cooling gas is perfectly centered with respect to the axis X of the plasma jet.
  • the minimum distance d between the external surface of the anode and the cooling zone (where the droplets come into contact with the injected cooling fluid) is between 50 mm and 400 mm, preferably between 100 mm and 300 mm. mm.
  • the forced cooling limits the generation of satellites, resulting from the contact between very large hot particles and small particles suspended in the densification chamber 32. Moreover, such a cooling operation makes it possible to reduce the overall size of the treatment equipment, especially the size of the collection chamber.
  • the cooling of the droplets 25 makes it possible to obtain feed particles 30, which can be extracted in the lower part of the densification chamber 32.
  • the densification chamber can be connected to a cyclone 34, the exhaust gases of which are directed to a dust collector 36, so as to separate very fine particles 40. These very fine particles can result from the disintegration of the fragile granules in the plasma jet, although the preferred method of the invention can limit these decays .
  • certain feed particles in accordance with the invention may also be collected in the cyclone. Preferably, these feed particles can be separated, in particular with an air separator.
  • the collected feed particles 38 can be filtered, so that the median size D50 is between 10 and 40 microns.
  • the characteristics of a column are preferably, but not necessarily, combined.
  • the characteristics of the two columns can also be combined
  • Table 1 The most preferred characteristics are in particular suitable for a powder injection rate of 120 g / min (powder of yttrium oxide granules).
  • the speed and temperature of the droplets are evaluated by a SprayWatch system, from the Oseir Company, placed 100 mm downstream of the injection of the powder, with an injection rate of 40 g / min.
  • the cooling rate is estimated for a powder having a median size D 50 of between 10 and 40 microns under an air flow.
  • the plasma torch "ProPlasmaHP” is sold by Saint-Gobain Coating Solution. This torch corresponds to the Tl torch described in WO2010 / 103497, incorporated by reference. Feeding powder
  • a feed powder according to the invention is very homogeneous from one feed particle to another.
  • a pure yttrium oxide feed powder according to the invention may have a bulk density of 2.30 g / cm 3 to 2.60 g / cm 3 .
  • the cumulative specific volume of the pores of radius less than 1 ⁇ , measured according to the ISO 15901-1 standard, may be less than 20 ⁇ 10 3 cm 3 / g.
  • the inventors have found that, surprisingly, most of the particles having a size less than 20 microns are full, that is to say without a central cavity, whereas most of the particles having a larger than 20 microns are hollow with a very dense wall. This observation may explain why, surprisingly, the apparent density dispersion index of a feed powder according to the invention is less than 0.2.
  • the hollow particles usually have a shell that is about 5 to 10 microns thick.
  • the median size of the D50 particles being less than 40 microns and the size dispersion index (D9o-Dio) / D 50 being less than 3, the hollow particles are thus efficiently melted in the plasma jet, in the same way as the finest full particles.
  • the percentage of particles injected into the plasma jet which are completely melted is therefore very high, which can lead, in particular for a Y 2 O 3 coating, to a porosity of less than or equal to 1%.
  • the median size of the D 50 particles being greater than or equal to 10 microns and the size dispersion index (D9 0 -D 10 ) / D 5 o being less than 3, the feed powder contains substantially no particles very fines.
  • the kinetic energy of the particles is therefore also suitable for good penetration into the plasma jet.
  • the size dispersion index is preferably greater than or equal to 0.4 in order to avoid excessive costs.
  • the low apparent density dispersion index and the specific size distribution of a feed powder according to the invention advantageously leads to a very homogeneous and very dense coating when this feed powder is sprayed with a plasma torch.
  • Deposition of particles to effect coating with a plasma gun is a conventional technique. Any known technique can be used. The following table provides the preferred settings.
  • the metal substrates may be cooled, for example with air, for example by cooling nozzles mounted on the plasma torch to maintain the substrate temperature below 300 ° C, preferably below 150 ° C.
  • preheating may be performed to improve adhesion (as described, for example, in US Pat. No. 7,329,467).
  • the feed powders II to 15, C1 and C2 were manufactured according to the invention with a plasma torch similar to the plasma torch shown in FIG. 2, from a source of Y 2 0 3 powder. pure having a median diameter D 50 of 1.2 micron, measured with a Horiba laser particle analyzer, and a chemical purity of 99.999% Y 2 0 3 .
  • a binder mixture is prepared by adding PVA (polyvinyl alcohol) binder 2 in deionized water 4. This binder mixture is then filtered through a filter of 5 ⁇ 8. The oxide of Yttrium powder is mixed in the filtered binder mixture to form a slurry 12.
  • the slurry is prepared so as to comprise, as a percentage by weight, 55% of yttrium oxide and 0.55% of PVA, the complement 100% being deionized water.
  • the slurry is mixed intensively using a high shear mixer.
  • the granules G3 and G6 are then obtained by atomizing the slip, using an atomizer.
  • the slurry is atomized in the chamber of a GEA Niro SD 6.3 R atomizer, the slurry being introduced at a flow rate of approximately 0.38 l / min.
  • the speed of the rotary atomizing wheel is adjusted to obtain the sizes of the targeted granules.
  • the speed of this wheel is higher for the manufacture of G3 granules than for the manufacture of G6 granules.
  • the air flow rate is adjusted to maintain the inlet temperature at 295 ° C and the outlet temperature close to 125 ° C so that the residual moisture of the granules is between 0.5% and 1%.
  • step b) the granules of step a) are injected into a plasma produced with a plasma gun.
  • 7 Silvent 202 IL nozzles, sold by Silvent were attached to a Silvent 463 annular nozzle holder, sold by Silvent.
  • the nozzles are regularly spaced along the annular nozzle holder, so as to generate a substantially conical airflow.
  • the powder collection yield in chamber 38 is the ratio of the amount of feed particles collected in chamber 38 to the total amount of granules injected into the plasma.
  • the powder II has the best compromise between the yield, which must be as high as possible, and the percentages of very fine particles ( ⁇ 10 ⁇ and ⁇ 5 ⁇ ), which must be as low as possible, with an acceptable bulk density.
  • the powder is used to illustrate the effect of the size dispersion index. This powder was obtained from G6 granules by plasma treatment.
  • the comparative feed powder G3 was manufactured in the same step a) as II and 15, but it did not undergo steps b) and c) before it was sprayed to form a coating.
  • Comparative feed powder G4 was manufactured as G3, but after the spray-drying step, the powder was sintered in air at 1600 ° C for a period of two hours.
  • Table 3 shows that soft injection parameters, with a large injector diameter and a low flow rate of the argon carrier gas, help to reduce the amount of very fine particles in the pure yttrium oxide feed powder. , which are harmful to the final coating. A small amount of very fine particles also facilitates the application of the thermal spray coating. It improves flowability and deposit efficiency.
  • Coatings on an aluminum substrate were obtained using feed powders II, 15, Cl, C2, G3 and G4.
  • the plasma projection parameters are summarized in Table 4.
  • the porosity of the coatings was measured by scanning electron microscope (SEM) scanning electron microscopy on polished sections of samples having an average thickness of 0.4 mm.
  • Table 4 The coatings of the examples of the invention are very dense and are manufactured with good deposition efficiency and good projection productivity.
  • Comparative Examples 3 * and 4 * show, respectively, that the use of an unconsolidated feed powder or a sintered feed powder instead of feed powder according to the invention (powder of feeding resulting from plasma melting of unconsolidated granules: II and 15) significantly increases the porosity of the coating.
  • Examples 5 and 6 * show that an increase in size dispersion index increases the porosity of the coating.
  • Comparative Example 7 * shows that the use of a powder having a high fraction of particles having a size less than or equal to 5 microns increases the porosity of the coating.
  • the invention provides a feed powder having size and bulk density distributions imparting a very high density to the coating.
  • this feed powder can be efficiently projected by plasma and with good productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Abrégé Poudre de particules, plus de 95% en nombre desdites particules présentant une circularité supérieure ou égale à 0,85, ladite poudre contenant plus de 99,8% d'un oxyde de terre rare et/ou d'oxyde d'hafnium et/ou d'un oxyde d'yttrium-aluminium, en pourcentage par masse sur la base des oxydes, et ayant: -une taille médiane de particule D 50 comprise entre 10 et 40 microns et un indice de dispersion de taille (D 90 –D 10 )/D 50 inférieur à 3; -un pourcentage ennombrede particules ayant une taille inférieure ou égale à 5µm qui est inférieur à 5%; -un indice de dispersion de densité apparente (P <50 –P)/P inférieur à 0,2, le volume spécifique cumulé des pores ayant un rayon inférieur à 1 µmétant inférieur 1 à 10% du volume apparent de la poudre, dans laquelle les percentiles D n de la poudre sont les tailles de particule correspondant aux pourcentages, en nombre, de n%, sur la courbe de distribution cumulée de la taille des particules de la poudre, les tailles de particule étant classées par ordre croissant, la densité P <50 étant la densité apparente de la fraction des particules ayant une taille 20 inférieure ou égale à D 50, et la densité P étant la densité apparente de la poudre.

Description

Poudre haute pureté destinée à la projection thermique Domaine technique
L'invention concerne une poudre apte à être déposée par plasma, un procédé pour fabriquer de telle poudre, et un revêtement obtenu par projection plasma de ladite poudre. Etat de la technique
Les surfaces internes des chambres utilisées pour traiter (par exemple par gravure plasma (en anglais « plasma etch »)) des semi- conducteurs, par exemple des plaquettes de silicium, sont classiquement protégées avec un revêtement céramique appliqué par projection plasma. Ce revêtement doit être hautement résistant aux plasmas comprenant des halogènes ou aux environnements hautement corrosifs. La projection plasma requiert, comme poudre d'alimentation, une poudre présentant une bonne fluidité et une morphologie de particule permettant un chauffage adapté pendant la projection. En particulier, la taille des particules doit être suffisante pour que les particules pénètrent dans le plasma et pour limiter les pertes par vaporisation. Par exemple, les poudres très fines directement obtenues par des procédés de fabrication chimique ou pyrolytique ne sont pas adaptées pour la projection plasma sans étape additionnelle de consolidation pour former de plus gros (et poreux) agglomérats, en particulier des agglomérats frittés. Puisque la projection plasma ne mène pas à la fusion de tous les agglomérats, le revêtement résultant présente une porosité. La porosité totale du revêtement obtenu par projection d'agglomérats frittés est typiquement de 2-3%, ce qui ne serait pas approprié pour protéger les surfaces internes d'une chambre de gravure pour semiconducteurs. En particulier, les poudres frittées décrites dans US6,916,534, US2007/077363 ou US2008/0112873 ne peuvent pas mener à un revêtement très dense par projection thermique. De plus, les revêtements obtenus à partir d'agglomérats poreux conduisent, dans le temps, à la libération de particules quand ils sont exposés à des environnements corrosifs.
US 7,931,836 ou US 2011/0129399 divulguent une poudre de particules résultant d'une fusion plasmique pour former des gouttelettes liquides qui se solidifient en chute libre. Dans certains modes de réalisation, plus d'environ 90% des particules de matière première peuvent être totalement ou partiellement transformées sous forme liquide. La densité apparente de la poudre résultante est comprise entre 1,2 et 2,2 g/cm3. Dans l'application citée ci-dessus, les poudres obtenues par broyage d'une masse fondue ne sont pas appropriées non plus, à cause des impuretés qui sont ajoutées durant l'étape de broyage.
Les oxydes de terres rares et/ou l'oxyde d'hafnium et/ou les oxydes d'yttrium-aluminium sont connus pour présenter une bonne résistance intrinsèque aux attaques chimiques. Cependant, ils ont une haute température de fusion et une faible diffusion thermique. Il est donc difficile d'obtenir un revêtement très dense à partir de ces particules par projection plasma.
Un objet de l'invention est de fournir une poudre qui puisse être efficacement projetée par plasma, avec une bonne productivité, et qui puisse conduire à un revêtement très pur et extrêmement dense.
Résumé de l'invention
Dans ce but, l'invention fournit une poudre (ci-après « poudre d'alimentation ») de particules (ci-après « particules d'alimentation »), plus de 95% en nombre desdites particules présentant une circularité supérieure ou égale à 0,85, ladite poudre contenant plus de 99,8%> d'un oxyde de terre rare et/ou d'oxyde d'hafnium et/ou d'un oxyde d'yttrium-aluminium, en pourcentage par masse sur la base des oxydes, et ayant :
une taille médiane de particule D50 comprise entre 10 et 40 microns et un indice de dispersion de taille (D90 - Di0)/D50 inférieur à 3 ;
un pourcentage en nombre de particules ayant une taille inférieure ou égale à 5 μιη qui est inférieur à 5%> ;
- un indice de dispersion de densité apparente (P<5o - P)/P inférieur à 0,2, le volume spécifique cumulé des pores ayant un rayon inférieur à 1 μιη étant inférieur à 10% du volume apparent de la poudre,
dans laquelle les percentiles Dn de la poudre sont les tailles de particule correspondant aux pourcentages, en nombre, de n%, sur la courbe de distribution cumulée de la taille des particules de la poudre, les tailles de particule étant classées par ordre croissant,
la densité P<5o étant la densité apparente de la fraction des particules ayant une taille inférieure ou égale à D50, et la densité P étant la densité apparente de la poudre.
Une poudre d'alimentation selon l'invention est donc une poudre très pure, composée en grande partie de particules sphériques. Cette poudre est remarquable, en particulier, par la faible dispersion de taille des particules, en ce que la densité apparente des particules ayant une taille inférieure à la taille médiane de particule D50 est sensiblement la même que celle des particules ayant une taille supérieure ou égale à D50, et en ce qu'elle comprend peu de particules très fines ayant une taille inférieure ou égale à 5 μιη.
Une poudre d'alimentation d'après l'invention peut aussi comprendre une ou plusieurs des caractéristiques optionnelles suivantes : - Plus de 95%, de préférence plus de 99%, de préférence plus de 99,5% en nombre desdites particules ont une circularité supérieure ou égale à 0,87, de préférence supérieure ou égale à 0,90.
La poudre contient plus de 99,9%, plus de 99,950%), plus de 99,990%), de préférence plus de 99,999%) d'un oxyde de terre rare et/ou d'oxyde d'hafnium et/ou d'un oxyde d'yttrium- aluminium, en particulier de YAG. La quantité des autres oxydes est donc si faible qu'elle ne peut avoir d'avoir d'effet significatif sur les résultats obtenus avec une poudre d'alimentation selon l'invention.
Les oxydes représentent plus de 98%>, plus de 99%, plus de 99,5%>, plus de 99,9%, plus de 99,95%, plus de 99,985% ou plus de 99,99% de la masse de la poudre. - Ladite terre rare est choisie dans le groupe formé par l'Yttrium (Y), le Gadolinium (Gd), le Scandium (Se), le Dysprosium (Dy), le Néodyme (Nd), et PYtterbium (Yb). De préférence, ladite terre rare est l'yttrium.
Ledit oxyde d'yttrium-aluminium est un composite oxyde d'yttrium-aluminium, de préférence le YAG (Yttrium-Aluminium Garnet Y3AI5O12, comprenant environ 58% en masse d'oxyde d'yttrium) et/ou le YAP (pérovskite d'Yttrium-Aluminium comprenant environ 68,9% en masse d'oxyde d'yttrium).
La taille médiane des particules (D50) de la poudre est supérieure à 15 μιη et/ou inférieure à 30 μπι.
Le percentile 10 (D10) des tailles de particule est supérieur à 1 μιη, de préférence supérieur à 5 μιη, de préférence supérieur à 10 μιη, ou encore supérieur à 13 μιη.
Le percentile 90 (D90) des tailles de particule est inférieur à 60 μιη, de préférence inférieur à 50 μιη, de préférence inférieur à 40 μιη.
Le percentile 99,5 (D99i5) des tailles de particule est inférieur à 80 μιη, de préférence inférieur à 60 μιη. - L'indice de dispersion de taille (D9o-Dio)/D50 est de préférence inférieur à 2,2, de préférence inférieur à 2,0, de préférence inférieur à 1 ,8, de préférence inférieur à 1 ,5, de préférence inférieur à 1 ,3, de préférence inférieur à 1 , 1 , de préférence inférieur à 1 , ou de préférence encore inférieur à 0,9 et de préférence supérieur à 0,4, de préférence supérieur 0,7, de préférence supérieur à 0,8.
De préférence, la poudre présente un type de dispersion monomodal, c'est-à-dire un seul pic principal. - Le pourcentage en nombre des particules d'alimentation ayant une taille inférieure à 10 μιη est de préférence inférieur à 5%, de préférence inférieur à 4,5%, de préférence inférieur à 4%, de préférence inférieur à 3%, de préférence inférieur à 2,5%, de préférence inférieur à 2%.
Le pourcentage en nombre des particules d'alimentation ayant une taille inférieure à 5 μιη est de préférence inférieur à 4% de préférence inférieur à 3%, de préférence inférieur à 2%, de préférence inférieur à 1,5%, de préférence inférieur à 1%.
Le volume spécifique cumulé des pores de rayon inférieur à 1 μιη est inférieur à 8%, de préférence inférieur à 6%, de préférence inférieur à 5%, de préférence inférieur à 4%, de préférence inférieur à 3,5% du volume apparent de la poudre. - La surface spécifique est de préférence inférieure à 5 m2/g, de préférence inférieure à 3 m2/g, de préférence inférieure à 2 m2/g, de préférence inférieure à 1 m2/g, de préférence inférieure à 0,5 m2/g.
L'indice de dispersion de densité apparente (P<5o-P)/P est de préférence inférieur à 0,15, de préférence inférieur à 0,1. - La densité relative de la poudre d'alimentation est de préférence supérieure à 0,4 et/ou inférieure à 0,8, de préférence supérieure à 0,45 et/ou inférieure à 0,7
La densité apparente de la poudre est supérieure à 2,25 g/cm3, de préférence supérieure à 2,30 g/cm3, de préférence supérieure à 2,35 g/cm3, de préférence supérieure à 2,40 g/cm3, encore de préférence supérieure à 2,45 g/cm3.
L'invention concerne encore un procédé de fabrication d'une poudre d'alimentation selon l'invention comprenant les étapes successives suivantes : a) granulation de particules de façon à obtenir une poudre de granules ayant une taille médiane D50 comprise entre 20 et 60 microns et comprenant plus de 99,8% d'un oxyde de terre rare et/ou d'oxyde d'hafnium et/ou d'un oxyde d'yttrium- aluminium, en pourcentage en masse sur la base des oxydes ; b) injection de ladite poudre de granules, via un gaz vecteur, à travers un injecteur jusqu'à un jet de plasma généré par un pistolet à plasma, de façon à obtenir des gouttelettes en fusion ; c) refroidissement desdites gouttelettes en fusion, de façon à obtenir une poudre d'alimentation selon l'invention ; d) optionnellement, sélection granulométrique, de préférence par tamisage ou par classification pneumatique, de ladite poudre d'alimentation.
De préférence, il n'y a pas d'étape intermédiaire de consolidation, et en particulier pas de frittage, entre les étapes a) et b). Cette absence d'étape de consolidation intermédiaire améliore avantageusement la pureté de la poudre d'alimentation.
Un procédé de fabrication d'une poudre selon l'invention peut aussi comprendre une ou plusieurs des caractéristiques optionnelles suivantes :
A l'étape a), la granulation est de préférence un procédé d'atomisation ou séchage par pulvérisation (« spray drying » en anglais) ou de pelletisation (transformation en pellets).
A l'étape a), la composition minérale de la poudre de granules comprend plus de 99,9%, plus de 99,95%, plus de 99,99%, de préférence plus de 99,999%) d'un oxyde d'une terre rare et/ou d'oxyde d'hafnium et/ou d'un oxyde d'yttrium-aluminium, en pourcentage en masse sur la base des oxydes.
La circularité médiane C50 de la poudre de granules est de préférence supérieure à 0,85, de préférence supérieure à 0,90, de préférence supérieure à 0,95, et encore de préférence supérieure à 0,96.
Le centile C5 est de préférence supérieur ou égal à 0,85, de préférence supérieur ou égal à 0,90.
Le rapport de forme médian A50, de la poudre de granules est de préférence supérieur à 0,75, de préférence supérieur à 0,8.
La surface spécifique de la poudre de granules est de préférence inférieure à 15 m2/g, de préférence inférieure à 10 m2/g, de préférence inférieure à 8 m2/g, de préférence inférieure à 7 m2/g.
Le volume cumulé des pores ayant un rayon inférieur à 1 μιη, mesuré par porosimétrie au mercure, de la poudre de granules est de préférence inférieur à 0,5 cm3/g, de préférence inférieur à 0,4 cm3/g ou encore de préférence inférieur à 0,3 cm3/g. La densité apparente de la poudre de granules est de préférence supérieure à 0,5 g/cm3, de préférence supérieure à 0,7 g/cm3, de préférence supérieure à 0,90 g/cm3, de préférence supérieure à 0,95 g/cm3, de préférence inférieure à 1,5 g/cm3, de préférence inférieure à 1,3 g/cm3, de préférence inférieure à 1,1 g/cm3.
Le percentile 10 (Di0) des tailles de particule de ladite poudre de granules est de préférence supérieur à 10 μιη, de préférence supérieur à 15 μιη, de préférence supérieur à 20 μιη.
Le percentile 90 (D90) des tailles de particule de ladite poudre est de préférence inférieur à 90 μιη, de préférence inférieur à 80 μιη, de préférence inférieur à 70 μιη, de préférence inférieur à 65 μιη.
La poudre de granules a de préférence une taille médiane D50 comprise entre 20 et 60 microns.
La poudre de granules a de préférence un Di0 compris entre 20 et 25 μιη et un D90 compris entre 60 et 65 μιη.
Le percentile 99,5 (D99i5) des tailles de particule de ladite poudre de granules est de préférence inférieur à 100 μιη, de préférence inférieur à 80 μιη, de préférence inférieur à 75 μιη.
L'indice de dispersion de taille (D90 - Di0) / D50 de ladite poudre de granules est de préférence inférieur à 2, de préférence inférieur à 1 ,5, de préférence inférieur à 1,2, encore de préférence inférieur à 1 , 1.
A l'étape b), le diamètre de(s) l'orifice(s) du (des) injecteurs(s) est supérieur à 1,8 mm, de préférence supérieur à 1,9 mm, de préférence supérieur ou égal à 2,0 mm.
Le débit du gaz vecteur (par orifice d'injecteur (c'est-à-dire par « ligne de poudre »)) est inférieur à 5,5 1/min, de préférence inférieur à 5,0 1/min, de préférence inférieur à 4,5 1/min, de préférence inférieur à 4,0 1/min, de préférence inférieur ou égal à 3,5 1/min.
La poudre de granules est injectée dans le jet de plasma à un débit d'alimentation de 30 à 60 g/min par orifice d'injecteur.
Le débit d'alimentation total en granules (pour tous les orifices d'injecteur) est supérieur à 90 g/min, et de préférence inférieur à 180 g/min, de préférence inférieur à 160 g/min, de préférence inférieur à 140 g/min, de préférence inférieur ou égal à 120 g/min. De préférence, à l'étape c), le refroidissement des gouttelettes en fusion est tel que, jusqu'à 500°C, la vitesse de refroidissement moyenne est comprise entre 50 000 et 200 000 °C/s, de préférence comprise entre 80 000 et 150 000 °C/s.
L'invention concerne encore une torche à plasma pour fabriquer, de préférence avec un procédé selon l'invention, une poudre d'alimentation selon l'invention, ladite torche comprenant un pistolet à plasma configuré pour générer un jet de plasma selon un axe X, et un injecteur pour injecter une poudre de granules dans ledit jet de plasma, ledit axe X formant un angle a inférieur à 30°, inférieur à 20°, inférieur à 10°, inférieur à 5°, de préférence nul, avec une ligne verticale.
Une torche à plasma selon l'invention produit avantageusement une poudre d'alimentation qui est très pure et dense, avec peu de satellites, la densité apparente de la poudre atteignant 2,3 g/cm3 et plus, à comparer avec la densité préférée de 1,8 g/cm3 et la valeur de 2,2 g/cm3 pour un exemple divulgué dans US 7,931,836 et US 2011/0129399.
Une torche à plasma selon l'invention peut encore comprendre une ou plusieurs des caractéristiques optionnelles suivantes :
De préférence, la torche à plasma comprend au moins une buse agencée de façon à injecter un fluide de refroidissement, de préférence de l'air, de façon à refroidir les gouttelettes résultant du chauffage de la poudre de granules injectée dans le jet de plasma. Le fluide de refroidissement est de préférence injecté vers l'aval du jet de plasma (comme représenté sur la figure 2) et l'angle γ entre le trajet desdites gouttelettes et le trajet du fluide de refroidissement est de préférence inférieur ou égal à 80°, de préférence inférieur ou égal à 60° et/ou supérieur ou égal à 10°, de préférence supérieur ou égal à 20°, de préférence supérieur ou égal à 30°. De préférence, l'axe d'injection Y de n'importe quelle buse et l'axe X du jet de plasma sont sécants.
De préférence, la distance d entre la surface externe d'une anode du pistolet à plasma et la zone de refroidissement par le fluide de refroidissement injecté est comprise entre 50 mm et 400 mm, de préférence comprise entre 100 mm et 300 mm.
De préférence, la torche comprend plusieurs dites buses, de préférence régulièrement espacées autour dudit axe X, de préférence de façon à générer un flux de fluide de refroidissement substantiellement conique ou annulaire autour de l'axe X. L'invention concerne également un procédé de projection thermique comprenant une étape de projection plasma d'une poudre d'alimentation selon l'invention sur un substrat afin d'obtenir un revêtement.
L'invention concerne également un corps comprenant un substrat et un revêtement recouvrant, au moins partiellement, ledit substrat, ledit revêtement comprenant plus de 99,8% d'un oxyde de terre rare et/ou d'oxyde d'hafnium et/ou d'un oxyde d'yttrium-aluminium, en pourcentage en masse sur la base des oxydes, et présentant une porosité inférieure ou égale à 1,5% , mesurée sur une photographie d'une section polie dudit revêtement. De préférence, la porosité du revêtement est inférieure à 1%. De préférence, le revêtement comprend plus de 99,9%, plus de 99,95%, plus de 99,97%, plus de 99,98%), plus de 99,99%, de préférence plus de 99,999%) d'un oxyde de terre rare et/ou d'oxyde d'hafnium et/ou d'un oxyde d'yttrium-aluminium, en pourcentage en masse sur la base des oxydes.
Un tel revêtement peut être fabriqué avec un procédé de projection thermique selon l'invention.
Le substrat peut être une paroi d'un four utilisé dans le traitement de semi- conducteurs.
Le four peut contenir des semi-conducteurs, en particulier des plaquettes de silicium. Le four peut être équipé de moyens de dépôt chimique en phase vapeur (CVD) ou de moyens de dépôt physique en phase vapeur (PVD). Définitions
Les « impuretés » sont les constituants inévitables, involontairement et nécessairement introduits avec les matières premières ou résultant des réactions entre les constituants. Les impuretés ne sont pas des constituants nécessaires mais seulement des constituants tolérés. Le niveau de pureté est préférablement mesuré par GDMS (spectroscopie de masse à décharge luminescente) qui est plus précise que PAES-ICP (spectromètre d'émission atomique à plasma inductif couplé).
La « circularité » des particules de la poudre est conventionnellement déterminée de la façon suivante : La poudre est dispersée sur une vitre plane. Les images des particules individuelles sont obtenues en scannant la poudre dispersée sous un microscope optique, tout en gardant les particules au point, la poudre étant illuminée par le dessous de la vitre. Ces images peuvent être analysées en utilisant un appareil du type Morphologi G3 commercialisé par la société Malvern. Comme représenté sur la figure 4, pour évaluer la « circularité » C d'une particule P', on détermine le périmètre PD du disque D présentant une aire égale à l'aire Ap de la particule P' sur une image de cette particule. On détermine par ailleurs le périmètre Pp de cette particule. La circularité est égale au rapport de PD/Pp. Ainsi
C = - . Plus la particule est de forme allongée, plus la circularité est faible.
Le manuel d'utilisation du SYSMEX FPIA 3000 décrit également cette procédure (voir « detailed spécification sheets » sur www.malvern.co.uk).
Pour déterminer un percentile de circularité (décrit ci-après), la poudre est versée sur une vitre plane et observée comme expliqué précédemment. Le nombre de particules comptées devrait être supérieur à 250 pour que le percentile mesuré soit sensiblement identique, quelle que soit la façon dont la poudre est versée sur la vitre.
Le rapport de forme A d'une particule est défini comme le rapport de la largeur de la particule (sa plus grande dimension perpendiculairement à la direction de sa longueur) et de sa longueur (sa plus grande dimension).
Pour déterminer un percentile de rapport de forme, la poudre est versée sur une vitre plane et observée comme expliqué précédemment, pour mesurer les longueurs et les largeurs des particules. Le nombre de particules comptées devrait être supérieur à 250 pour que le percentile mesuré soit sensiblement identique, quelle que soit la façon dont la poudre est versée sur la vitre.
Les percentiles ou « centiles » 10 (P10), 50 (P50), 90 (P90) et 99,5 (P ,s), et plus généralement « n » Pn d'une propriété P des particules d'une poudre de particules sont les valeurs de cette propriété correspondant aux pourcentages, en nombre, de 10 %, 50 %, 90 %, 99,5 % et n%, respectivement, sur la courbe de distribution cumulée relative à cette propriété des particules de la poudre, les valeurs relatives à cette propriété étant classées par ordre croissant. En particulier, les percentiles Dn, An, et Cn sont relatifs à la taille, au rapport de forme et à la circularité, respectivement.
Par exemple, 10 %, en nombre, des particules de la poudre ont une taille inférieure à D10 et 90 % des particules en nombre ont une taille supérieure ou égale à Di0. Les percentiles relatifs à la taille peuvent être déterminés à l'aide d'une distribution granulométrique réalisée à l'aide d'un granulomètre laser. De même, 5% en nombre de particules de la poudre ont cette circularité inférieure au percentile C5. En d'autres mots, 95% en nombre de particules de cette poudre ont une circularité supérieure ou égale à C5.
Le percentile 50 est classiquement appelé le percentile « médian ». Par exemple, C50 est conventionnellement appelé « circularité médiane ». De même, le percentile D50 est conventionnellement appelé « taille médiane ». Le percentile A50 se réfère aussi conventionnellement au « rapport de forme médian ».
Par « taille d'une particule », on entend la taille d'une particule donnée classiquement par une caractérisation de distribution granulométrique réalisée avec un granulo mètre laser. Le granulomètre laser utilisé peut être un Partica LA-950 de la société HORIBA.
Le pourcentage ou la fraction en nombre de particules ayant une taille inférieure ou égale à une taille maximale déterminée peut être réalisée à l'aide d'un granulomètre laser.
Le volume spécifique cumulé des pores de rayon inférieur à 1 μιη, en pourcentage du volume apparent de poudre, est conventionnellement mesuré par porosimétrie au mercure suivant la norme ISO 15901-1. Il peut être mesuré avec un porosimètre MICROMERITICS.
La « densité apparente » {« bulk density » en anglais) P d'une poudre de particules est conventionnellement définie comme le rapport de la masse de la poudre divisée par la somme des volumes apparents desdites particules. En pratique, elle peut être mesurée avec un porosimètre MICROMERITICS à une pression de 3,5kPa.
Le volume apparent d'une poudre de particules est conventionnellement défini comme la somme des volumes apparents desdites particules. En pratique, le volume apparent d'une poudre de particules est calculé par la masse de la poudre divisée par sa densité apparente.
La « densité relative » d'une poudre est égale à sa densité apparente divisée par sa densité réelle. La densité réelle peut être mesurée par pycnométrie à l'hélium.
La « porosité » d'un revêtement peut être évaluée par analyse d'images d'une coupe transversale polie du revêtement. Le substrat revêtu est sectionné en utilisant une machine de découpe de laboratoire, par exemple en utilisant un appareil Struers Discotom avec un disque de coupe à base d'alumine. L'échantillon du revêtement est ensuite monté dans une résine, par exemple en utilisant une résine de montage à froid du type Struers Durocit. L'échantillon monté est ensuite poli en utilisant des médias de polissage de finesse croissante. On peut utiliser du papier abrasif ou, de préférence, des disques de polissage avec une suspension de polissage appropriée. Une procédure de polissage classique commence par un dressage de l'échantillon (par exemple avec un disque abrasif Struers Piano 220), puis en changeant les draps de polissage associés aux suspensions abrasives. La taille de grains abrasifs est diminuée à chaque étape de polissage fin, la taille des abrasifs au diamant commençant par exemple à 9 microns, puis à 3 microns, pour terminer à 1 micron (série Struers DiaPro). Pour chaque taille de grain abrasif, le polissage est arrêté dès que la porosité observée sous microscope optique reste constante. Les échantillons sont soigneusement nettoyés entre les étapes, par exemple avec de l'eau. Une étape de polissage finale, après l'étape de polissage au diamant de 1 μιη, est effectuée à l'aide de silice colloïdale (OP-U Struers, 0,04μιη) associée à un drap de type feutre doux. Après le nettoyage, l'échantillon poli est prêt pour l'observation au microscope optique ou au MEB (microscope électronique à balayage). En raison de sa résolution supérieure et du contraste remarquable, le MEB est préféré pour la production d'images destinées à être analysées. La porosité peut être déterminée à partir des images en utilisant un logiciel d'analyse d'images (par exemple ImageJ, NIH), en ajustant le seuillage. La porosité est donnée en pourcentage de la surface de la section transversale du revêtement.
La «surface spécifique» est classiquement mesurée par la méthode BET (Brunauer Emmet Teller), comme décrit dans le Journal of American Chemical Society 60 (1938), pages 309 à 316.
L'opération de "granulation" est un procédé d'agglomération de particules à l'aide d'un liant, par exemple un polymère liant, pour former des particules agglomérées, qui peuvent éventuellement être des granules. La granulation comprend, en particulier, l'atomisation ou séchage par pulvérisation (en anglais « spray- drying ») et/ou l'utilisation d'un granulateur ou d'un appareil de pelletisation, mais n'est pas limitée à ces procédés.
- Un "granule" est une particule agglomérée ayant une circularité de 0,8 ou plus.
- Une étape de consolidation (qui est optionnelle, et n'est pas préférée dans l'invention) est une opération visant à remplacer, dans les granules, les liens dus à des liants organiques par des liens de diffusion: elle est généralement réalisée par un traitement thermique, mais sans fusion totale des granules.
Le "rendement de dépôt" d'un procédé de projection plasma est défini comme le rapport, en pourcentage en masse, de la quantité de matière déposée sur le substrat divisée par la quantité de poudre d'alimentation injectée dans le jet de plasma.
La «productivité de projection » est définie comme la quantité de matière déposée par unité de temps.
Les débits en 1/min sont « standards », c'est à dire mesurés à une température de 20° C, sous une pression de 1 atm. - «Comportant un» ou « comprenant un » doivent être compris comme «comportant au moins un», sauf indication contraire.
Sauf indication contraire, tous les pourcentages de composition sont des pourcentages en masse sur la base de la masse des oxydes.
Les propriétés de la poudre peuvent être évaluées par les méthodes de caractérisation utilisées dans les exemples.
Description rapide des figures
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description qui va suivre et à l'examen des dessins annexés, dans lesquels : la figure 1 représente schématiquement un procédé de fabrication d'une poudre séchée par pulvérisation seulement (SDO ou « spray-dried only »); la figure 2 représente schématiquement une torche à plasma pour la fabrication d'une poudre d'alimentation selon l'invention; la figure 3 représente schématiquement un procédé pour fabriquer une poudre d'alimentation selon l'invention; - la figure 4 illustre la méthode qui est utilisée pour évaluer la circularité d'une particule, la figure 5 est une photographie de la poudre G3 de particules (SDO) séchée par pulvérisation seulement selon l'invention, la figure 6 est une photographie de la poudre de particules G4, - la figure 7 est une photographie de la poudre obtenue selon l'exemple II illustrant l'invention. Description détaillée
Procédé de fabrication d'une poudre d'alimentation
La figure 1 illustre un mode de réalisation de l'étape a) d'un procédé de fabrication d'une poudre d'alimentation selon l'invention. Tout procédé connu de granulation peut être utilisé. En particulier, l'homme de l'art sait comment préparer une barbotine adaptée à une granulation.
Dans un mode de réalisation, un mélange liant est préparé par addition de PVA (alcool polyvinylique) 2 dans de l'eau désionisée 4. Ce mélange liant 6 est ensuite filtré à travers un filtre de 5 μιη 8. De l'oxyde d'yttrium en poudre 10 (par exemple de pureté 99,99%), avec une taille médiane de 1 μιη, est mélangé dans le mélange liant filtré pour former une barbotine 12. La barbotine peut comporter en masse, par exemple, 55% d'oxyde d'yttrium et 0,55%> de PVA, le complément à 100% étant constitué d'eau. Cette barbotine est injectée dans un atomiseur 14 pour obtenir une poudre de granules 16 ayant un D10 de 20 μιη et un D90 de 63 μιη. L'homme de l'art sait adapter l'atomiseur pour obtenir la distribution granulo métrique souhaitée.
De préférence, les granules sont des agglomérats de particules d'un matériau oxyde présentant une taille médiane inférieure à 3 μιη, de préférence inférieure à 2 μιη, de préférence inférieure à 1,5 μιη.
La poudre de granules peut être tamisée (Tamis de 5 mm 18, par exemple) afin d'éliminer la présence éventuelle de résidus tombés des parois de l'atomiseur.
La poudre résultante 20 est une poudre de granules « séchée par pulvérisation seulement » (« Spray-dried only » ou SDO).
Les figures 2 et 3 illustrent un mode de réalisation de l'étape b) de fusion d'un procédé de fabrication d'une poudre d'alimentation selon l'invention. Une poudre de granules SDO 20, par exemple, telle que fabriquée selon le procédé illustré sur la figure 1, est injectée par un injecteur 21 dans un jet de plasma 22 produit par un pistolet à plasma 24, par exemple un ProPlasma HP. Les techniques classiques d'injection et de projection plasma peuvent être utilisées, de manière à mélanger la poudre de granules SDO avec un gaz vecteur et à injecter le mélange résultant dans le cœur du plasma chaud. Toutefois, la poudre de granules injectée n'a pas besoin d'être consolidée. En l'absence de toute étape de consolidation intermédiaire, c'est-à-dire dans le mode de réalisation préféré, l'injection doit être faite en douceur pour éviter toute rupture de granules. L'homme du métier sait adapter les paramètres d'injection pour une injection en douceur des granules, et choisir les granules de telle sorte que la poudre d'alimentation obtenue à l'issue des étapes c) ou d) ait une composition et une distribution granulométrique selon l'invention.
Le recours à une injection en douceur n'est pas conventionnel. En effet, il est généralement considéré comme préférable d'injecter les particules de façon à les disperser dans un jet de plasma très visqueux et qui s'écoule à une vitesse très élevée. Lorsque les particules injectées entrent en contact avec un tel jet de plasma, elles sont soumises à des chocs violents, ce qui peut les briser en morceaux. Pour pénétrer dans le jet de plasma, les particules à disperser sont donc généralement injectées avec une vitesse élevée, de manière à bénéficier d'une énergie cinétique élevée. Les particules à injecter doivent également présenter une résistance mécanique élevée pour résister à ces chocs.
Contrairement à la technique classique, dans le mode de réalisation préféré de l'invention, des granules non consolidées, et en particulier des granules non frittées, sont injectés dans une torche à plasma, éventuellement une torche classique, dont les paramètres sont réglés de telle sorte que la vitesse du jet de plasma et la vitesse des granules injectés soient faibles, de préférence, soient aussi faibles que possible. L'homme de l'art sait que la vitesse du jet de plasma peut être réduite en utilisant une anode de grand diamètre et/ou en réduisant la vitesse d'écoulement du gaz primaire. L'homme de l'art sait aussi que la vitesse des granules est déterminée par le débit du gaz vecteur. Bien sûr, l'énergie du jet de plasma, déterminée par le débit du gaz secondaire, doit être suffisamment élevée pour faire fondre les granules.
La poudre de granules est injectée avec un gaz vecteur, de préférence sans aucun liquide. Le tableau 1 présente les gammes préférées pour les paramètres de l'étape b) de fusion.
Dans le jet de plasma 22, les granules sont fondus en gouttelettes 25. Cette fusion permet avantageusement de réduire le taux d'impuretés.
A leur sortie de la zone chaude du jet de plasma, les gouttelettes sont rapidement refroidies par l'air froid environnant, mais aussi par une circulation forcée 26 d'un gaz de refroidissement, de préférence de l'air. L'air limite avantageusement l'effet réducteur de l'hydrogène. De préférence, le refroidissement forcé est généré par un ensemble de buses 28 disposées autour de l'axe X du jet de plasma 22, de manière à créer un écoulement sensiblement conique ou annulaire de gaz de refroidissement. Le pistolet à plasma 24 est orienté verticalement vers le sol. De préférence, l'angle entre la verticale et l'axe X du pistolet à plasma est inférieur à 10°, de préférence inférieur à 5°. Avantageusement, le flux de gaz de refroidissement est donc parfaitement centré par rapport à l'axe X du jet de plasma. De préférence, la distance d minimale entre la surface externe de l'anode et la zone de refroidissement (où les gouttelettes entrent en contact avec le fluide de refroidissement injecté) est comprise entre 50 mm et 400 mm, de préférence entre 100 mm et 300 mm.
Avantageusement, le refroidissement forcé limite la génération de satellites, résultant du contact entre de très grosses particules chaudes et de petites particules en suspension dans la chambre de densifîcation 32. De plus, une telle opération de refroidissement permet de réduire la taille globale de l'équipement de traitement, en particulier la taille de la chambre de collecte.
Le refroidissement des gouttelettes 25 permet d'obtenir des particules d'alimentation 30, qui peuvent être extraites dans la partie inférieure de la chambre de densifîcation 32. La chambre de densifîcation peut être connectée à un cyclone 34, dont les gaz d'échappement sont dirigés vers un collecteur de poussières 36, de façon à séparer de très fines particules 40. Ces particules très fines peuvent résulter de la désintégration des granules fragiles dans le jet de plasma, bien que le procédé préféré de l'invention permette de limiter ces désintégrations. Selon la configuration, certaines particules d'alimentation conformes à l'invention peuvent également être collectées dans le cyclone. De préférence, ces particules d'alimentation peuvent être séparées, en particulier avec un séparateur d'air.
Eventuellement, les particules d'alimentation collectées 38 peuvent être filtrées, de sorte que la taille médiane D50 soit comprise entre 10 et 40 microns.
Le tableau suivant fournit les paramètres préférés pour fabriquer une poudre d'alimentation selon l'invention.
Les caractéristiques d'une colonne sont de préférence, mais pas nécessairement, combinées. Les caractéristiques des deux colonnes peuvent être également combinées
Figure imgf000018_0001
Tableau 1 Les caractéristiques les plus préférées sont en particulier adaptées pour un débit d'injection de poudre de 120g/min (poudre de granules d'oxyde d'yttrium).
La vitesse et la température des gouttelettes sont évaluées par un système SprayWatch, de la Société Oseir, disposé 100 mm en aval de l'injection de la poudre, avec un débit d'injection de 40 g/min.
La vitesse de refroidissement est estimée pour une poudre ayant une taille médiane D50 entre 10 à 40 microns, sous flux d'air.
La torche à plasma "ProPlasmaHP" est vendue par Saint-Gobain Coating Solution. Cette torche correspond à la torche Tl décrite dans WO2010/103497, incorporé par référence. Poudre d'alimentation
Les inventeurs ont découvert que, de façon surprenante, une poudre d'alimentation selon l'invention est très homogène d'une particule d'alimentation à une autre.
Une poudre d'alimentation pure d'oxyde d'yttrium selon l'invention peut présenter une densité apparente de 2,30 g/cm3 à 2,60 g/cm3. Le volume spécifique cumulé des pores de rayon inférieur à 1 μιη, mesuré selon la norme ISO 15901-1, peut être inférieur à 20.10 3 cm3/g.
Sans être limité par cette théorie, les inventeurs ont constaté que, de façon surprenante, la plupart des particules ayant une taille inférieure à 20 microns sont pleines, c'est-à-dire sans cavité centrale, alors que la plupart des particules ayant une taille supérieure à 20 microns sont creuses avec une paroi très dense. Cette observation peut expliquer pourquoi, de façon surprenante, l'indice de dispersion de densité apparente d'une poudre d'alimentation selon l'invention est inférieur à 0,2.
Les particules creuses présentent habituellement une coque qui a une épaisseur d'environ 5 à 10 microns. La taille médiane des particules D50 étant inférieure à 40 microns et l'indice de dispersion de taille (D9o-Dio)/D50 étant inférieur à 3, les particules creuses sont donc efficacement fondues dans le jet de plasma, de la même manière que les particules les plus fines pleines. Le pourcentage de particules injectées dans le jet de plasma qui sont complètement fondues est donc très élevé, ce qui peut conduire, en particulier pour un revêtement d'Y203, à une porosité inférieure ou égale à 1%.
La taille médiane des particules D50 étant supérieure ou égale à 10 microns et l'indice de dispersion de taille (D90-D10)/D5o étant inférieur à 3, la poudre d'alimentation ne contient sensiblement pas de particules très fines. Avantageusement, l'énergie cinétique des particules est donc également adaptée pour une bonne pénétration dans le jet de plasma. L'indice de dispersion de taille est de préférence supérieur ou égal à 0,4, afin d'éviter des coûts excessifs.
Le faible indice de dispersion de densité apparente et la distribution de taille spécifique d'une poudre d'alimentation selon l'invention conduit avantageusement à un revêtement très homogène et très dense lorsque cette poudre d'alimentation est projetée avec une torche à plasma.
Enfin, la distribution de taille particulière d'une poudre d'alimentation selon l'invention lui confère avantageusement une coulabilité tout à fait adaptée à la projection plasma. .
Dépôt par plasma
Le dépôt de particules afin de réaliser un revêtement à l'aide d'un pistolet à plasma est une technique classique. Toute technique connue peut être utilisée. Le tableau suivant fournit les paramètres préférés.
Figure imgf000021_0001
Tableau 2
Les substrats métalliques peuvent être refroidis, par exemple avec de l'air, par exemple par des buses de refroidissement montées sur la torche à plasma pour maintenir la température du substrat inférieure à 300°C, de préférence inférieure à 150°C. Dans le cas de substrats en céramique, un préchauffage peut être effectué pour améliorer l'adhérence (comme décrit, par exemple, dans le brevet américain n° 7,329,467). Exemples
Les exemples suivants sont fournis à des fins d'illustration et ne limitent pas la portée de l'invention.
Les poudres d'alimentation II à 15, Cl et C2 ont été fabriquées selon l'invention avec une torche à plasma semblable à la torche à plasma représentée sur la figure 2, à partir d'une source de poudre d'Y203 pure ayant un diamètre médian D50 de 1 ,2 micron, mesuré avec un analyseur de particules laser Horiba, et une pureté chimique de 99,999% d'Y203.
A l'étape a), un mélange liant est préparé par addition de PVA (alcool polyvinylique) liant 2 dans de l'eau déionisée 4. Ce mélange liant est ensuite filtré à travers un filtre de 5 μιη 8. L'oxyde d'yttrium en poudre 10 est mélangé dans le mélange liant filtré pour former une barbotine 12. La barbotine est préparée de façon à comprendre, en pourcentage en masse, 55% d'oxyde d'yttrium et 0,55%> de PVA, le complément à 100% étant de l'eau déionisée. La barbotine est mélangée intensivement à l'aide d'un mélangeur à vitesse de cisaillement élevée.
Les granules G3 et G6 sont ensuite obtenus par atomisation de la barbotine, en utilisant un atomiseur. En particulier, la barbotine est atomisée dans la chambre d'un atomiseur GEA Niro SD 6,3 R, la barbotine étant introduite à un débit d'environ 0,38 1/min.
La vitesse de la roue d' atomisation rotative, entraînée par un moteur Niro FS 1 , est réglée pour obtenir les tailles des granules ciblées. La vitesse de cette roue est plus élevée pour la fabrication des granules G3 que pour la fabrication des granules G6. Le débit d'air est ajusté pour maintenir la température d'entrée à 295°C et la température de sortie proche de 125°C de sorte que l'humidité résiduelle des granules est comprise entre 0,5%> et 1%.
À l'étape b), les granules de l'étape a) sont injectés dans un plasma produit avec un pistolet à plasma. Pour refroidir les gouttelettes, 7 buses Silvent 202 IL, vendues par Silvent, ont été fixées sur un porte-buse annulaire Silvent 463, vendu par Silvent. Les buses sont espacées régulièrement le long du porte-buse annulaire, de manière à générer un flux d'air sensiblement conique.
Le rendement de collecte de poudre dans la chambre 38 est le rapport entre la quantité de particules d'alimentation collectée dans la chambre 38 et la quantité totale de granules injectés dans le plasma.
La poudre II présente le meilleur compromis entre le rendement, qui doit être aussi élevé que possible, et les pourcentages de particules très fines (<10 μιη et <5 μιη), qui doivent être aussi faibles que possible, avec une densité apparente acceptable. La poudre 15 est utilisée pour illustrer l'effet de l'indice de dispersion de taille. Cette poudre a été obtenue à partir de granules G6 par traitement plasma.
La poudre d'alimentation comparative G3 a été fabriquée selon la même étape a) que II et 15, mais elle n'a pas subi les étapes b) et c) avant sa projection pour former un revêtement. La poudre d'alimentation comparative G4 a été fabriquée comme G3, mais après l'étape de séchage par pulvérisation (« spray-drying »), la poudre a été frittée sous air à 1600°C, pendant une durée de deux heures.
Figure imgf000024_0001
Figure imgf000025_0001
Tableau 3
Le tableau 3 montre que des paramètres d'injection douce, avec un grand diamètre d'injecteur et un faible débit du gaz vecteur argon, aident à réduire la quantité de particules très fines dans la poudre d'alimentation d'oxyde d'yttrium pur, qui sont nuisibles au revêtement final. Une faible quantité de particules très fines facilite aussi l'application du revêtement par projection thermique. Elle améliore la coulabilité et le rendement de dépôt.
Les revêtements sur un substrat d'aluminium ont été obtenus en utilisant des poudres d'alimentation II, 15, Cl, C2, G3 et G4. Les paramètres de projection plasma sont résumés dans le tableau 4.
La porosité des revêtements a été mesurée par analyse d'images obtenues par microscopie électronique à balayage {« scanning électron microscope » SEM) sur des sections polies d'échantillons ayant une épaisseur moyenne de 0,4 mm.
* : hors invention
Tableau 4 Les revêtements des exemples de l'invention sont très denses et sont fabriqués avec un bon rendement de dépôt et une bonne productivité de projection.
Les exemples comparatifs 3* et 4* montrent, respectivement, que l'utilisation d'une poudre d'alimentation non-consolidée ou d'une poudre d'alimentation frittée au lieu de poudre d'alimentation selon l'invention (poudre d'alimentation résultant d'une fusion par plasma de granules non consolidés : Il et 15) augmente considérablement la porosité du revêtement.
Les exemples 5 et 6* montrent qu'une augmentation de l'indice de dispersion de taille augmente la porosité du revêtement.
L'exemple comparatif 7 * montre que l'utilisation d'une poudre ayant une fraction élevée de particules ayant une taille inférieure ou égale à 5 microns augmente la porosité du revêtement.
Il est maintenant clair que l'invention fournit une poudre d'alimentation présentant des distributions de taille et de densité apparente conférant une très haute densité au revêtement. En outre, cette poudre d'alimentation peut être efficacement projetée par plasma et avec une bonne productivité.
Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et représentés.

Claims

REVENDICATIONS
1. Poudre de particules, plus de 95% en nombre desdites particules présentant une circularité supérieure ou égale à 0,85, ladite poudre contenant plus de 99,8% d'un oxyde de terre rare et/ou d'oxyde d'hafhium et/ou d'un oxyde d'yttrium-aluminium, en pourcentage par masse sur la base des oxydes, et ayant :
une taille médiane de particule D50 comprise entre 10 et 40 microns et un indice de dispersion de taille (D90 - Di0)/D50 inférieur à 3 ;
un pourcentage en nombre de particules ayant une taille inférieure ou égale à 5 μιη qui est inférieur à 5% ;
- un indice de dispersion de densité apparente (P<5o - P)/P inférieur à 0,2, le volume spécifique cumulé des pores ayant un rayon inférieur à 1 μιη étant inférieur à 10%) du volume apparent de la poudre,
dans laquelle les percentiles Dn de la poudre sont les tailles de particule correspondant aux pourcentages, en nombre, de n%>, sur la courbe de distribution cumulée de la taille des particules de la poudre, les tailles de particule étant classées par ordre croissant, la densité P<5o étant la densité apparente de la fraction des particules ayant une taille inférieure ou égale à D50, et la densité P étant la densité apparente de la poudre.
2. Poudre selon la revendication précédente, dans laquelle
la taille médiane des particules D50 est supérieure à 15 μιη, et/ou
l'indice de dispersion de taille (D9o-Dio)/D50 est inférieur à 2,2 et/ou supérieur à
0,4, et/ou
le pourcentage en nombre de particules ayant une taille inférieure à 10 micromètres, est inférieur à 3%, et/ou
la surface spécifique est inférieure à 3 m2/g, et/ou
l'indice de dispersion de densité (P<5o-P)/P est inférieur à 0,15.
3. Poudre selon l'une quelconque des revendications précédentes, dans laquelle
la taille médiane des particules D50 est inférieure à 30 μιη, et/ou
l'indice de dispersion de taille (D9o-Dio)/D50 est inférieur à 1 ,3, et/ou
le pourcentage en nombre des particules ayant une taille inférieure à 10 micromètres, est inférieur à 2%, et/ou
la surface spécifique est inférieure à lm2/g, et/ou
l'indice de dispersion de densité apparente (P<5o-P)/P est inférieur à 0,1.
4. Poudre selon l'une quelconque des revendications précédentes, dans laquelle l'indice de dispersion de taille (D9o-Dio)/D50 est supérieur à 0,7, et/ou
la surface spécifique est inférieure à 0,5 m2/g.
5. Poudre selon l'une quelconque des revendications précédentes, dans laquelle la densité relative des particules est supérieure à 0,4.
6. Poudre selon la revendication précédente, dans laquelle la densité apparente des particules est supérieure à 2,25.
7. Procédé de fabrication d'une poudre selon l'une quelconque des revendications précédentes, en particulier destinée à être utilisée en tant que poudre d'alimentation pour une projection thermique, ledit procédé comprenant les étapes suivantes:
a) granulation de particules de façon à obtenir une poudre de granules ayant une taille médiane D50 comprise entre 20 et 60 microns et comprenant plus de 99,8% d'un oxyde de terre rare et/ou d'oxyde d'hafnium et/ou d'un oxyde d'yttrium- aluminium, en pourcentage en masse sur la base des oxydes ;
b) injection de ladite poudre de granules, via un gaz vecteur, à travers un injecteur jusqu'à un jet de plasma généré par un pistolet à plasma, de façon à obtenir des gouttelettes en fusion ;
c) refroidissement desdites gouttelettes en fusion, de façon à obtenir une poudre d'alimentation selon l'une quelconque des revendications précédentes ;
d) optionnellement, sélection granulométrique, de préférence par tamisage ou par classification pneumatique, de ladite poudre d'alimentation.
8. Procédé selon la revendication immédiatement précédente, dans lequel ledit pistolet à plasma est configuré pour générer ledit jet de plasma autour d'un axe X formant un angle a inférieur à 30° avec une ligne verticale.
9. Procédé selon l'une quelconque des deux revendications immédiatement précédentes, dans lequel un fluide de refroidissement, de préférence de l'air, est injecté dans ledit jet de plasma de manière à refroidir lesdites gouttelettes, le fluide de refroidissement étant injecté vers l'aval du jet de plasma, et l'angle γ entre le trajet des gouttelettes et le trajet du fluide de refroidissement étant inférieur ou égal à 80°.
10. Procédé selon la revendication immédiatement précédente, dans lequel un flux annulaire de fluide de refroidissement est généré autour de l'axe X.
11. Procédé selon l'une des deux revendications immédiatement précédentes, dans lequel la distance minimale entre une surface extérieure d'une anode dudit pistolet à plasma et la zone où les gouttelettes entrent en contact avec ledit gaz de refroidissement est comprise entre 50 mm et 400 mm.
12. Procédé selon l'une des cinq revendications immédiatement précédentes, dans lequel la granulation comprend une atomisation.
13. Procédé de projection thermique comprenant une étape de projection thermique d'une poudre selon l'une quelconque des revendications 1 à 6 ou fabriquée selon l'une quelconque des revendications 7 à 12.
14. Chambre de traitement pour semi-conducteurs, ladite chambre comprenant une paroi protégée par un revêtement, ledit revêtement comprenant plus de 99,95% d'un oxyde de terre rare et/ou d'un composé de lanthanide, en pourcentage en masse sur la base des oxydes, et présentant une porosité inférieure ou égale à 1,5%, ledit revêtement étant obtenu par projection thermique d'une poudre selon l'une quelconque des revendications 1 à 6 ou fabriqué suivant un procédé selon l'une quelconque des revendications de 7 à 12.
PCT/IB2013/060514 2012-11-29 2013-11-29 Poudre haute pureté destinée à la projection thermique WO2014083544A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2013350757A AU2013350757B2 (en) 2012-11-29 2013-11-29 Highly pure powder intended for thermal spraying
CN201380071798.2A CN104981431B (zh) 2012-11-29 2013-11-29 用于热喷涂的高纯粉末
CA2893458A CA2893458C (fr) 2012-11-29 2013-11-29 Poudre haute purete destinee a la projection thermique
KR1020157016969A KR102207879B1 (ko) 2012-11-29 2013-11-29 용사를 위한 고순도 분말
US14/648,539 US10252919B2 (en) 2012-11-29 2013-11-29 Highly pure powder intended for thermal spraying
EP13824014.8A EP2925673B1 (fr) 2012-11-29 2013-11-29 Poudre haute pureté destinée à la projection thermique
EA201591036A EA201591036A1 (ru) 2012-11-29 2013-11-29 Высокочистый порошок, предназначенный для термического напыления
SG11201504225QA SG11201504225QA (en) 2012-11-29 2013-11-29 Highly pure powder intended for thermal spraying
BR112015012469-0A BR112015012469B1 (pt) 2012-11-29 2013-11-29 Pó formado de partículas, mais do que 95% em número de ditas partículas exibindo uma circularidade superior ou igual a 0,85, processo para a fabricação de um pó, processo de pulverização térmica e câmara de tratamento para semicondutores
JP2015544600A JP6284947B2 (ja) 2012-11-29 2013-11-29 溶射の為に意図された高純度粉末
MX2015006834A MX2015006834A (es) 2012-11-29 2013-11-29 Polvo altamente puro para rocio termico.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1261421A FR2998561B1 (fr) 2012-11-29 2012-11-29 Poudre haute purete destinee a la projection thermique
FR1261421 2012-11-29
US201261734744P 2012-12-07 2012-12-07
US61/734,744 2012-12-07

Publications (1)

Publication Number Publication Date
WO2014083544A1 true WO2014083544A1 (fr) 2014-06-05

Family

ID=47902120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/060514 WO2014083544A1 (fr) 2012-11-29 2013-11-29 Poudre haute pureté destinée à la projection thermique

Country Status (13)

Country Link
US (1) US10252919B2 (fr)
EP (1) EP2925673B1 (fr)
JP (1) JP6284947B2 (fr)
KR (1) KR102207879B1 (fr)
CN (1) CN104981431B (fr)
AU (1) AU2013350757B2 (fr)
BR (1) BR112015012469B1 (fr)
CA (1) CA2893458C (fr)
EA (1) EA201591036A1 (fr)
FR (1) FR2998561B1 (fr)
MX (1) MX2015006834A (fr)
SG (1) SG11201504225QA (fr)
WO (1) WO2014083544A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802387B2 (en) 2013-11-26 2017-10-31 Scoperta, Inc. Corrosion resistant hardfacing alloy
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US10329647B2 (en) 2014-12-16 2019-06-25 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
FR3077287A1 (fr) * 2018-01-31 2019-08-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre pour revetement de chambre de gravure
FR3077288A1 (fr) * 2018-01-31 2019-08-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre pour barriere thermique
FR3077286A1 (fr) * 2018-01-31 2019-08-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Barriere environnementale
TWI710665B (zh) * 2015-09-25 2020-11-21 日商福吉米股份有限公司 熔射用漿料、熔射被膜及熔射被膜之形成方法
US10851444B2 (en) 2015-09-08 2020-12-01 Oerlikon Metco (Us) Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
US10954588B2 (en) 2015-11-10 2021-03-23 Oerlikon Metco (Us) Inc. Oxidation controlled twin wire arc spray materials
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US11279996B2 (en) 2016-03-22 2022-03-22 Oerlikon Metco (Us) Inc. Fully readable thermal spray coating
CN115992337A (zh) * 2023-03-23 2023-04-21 国营川西机器厂 高温合金压气机叶片叶尖强化修复方法及修复用粉末
WO2023118767A1 (fr) 2021-12-23 2023-06-29 Saint-Gobain Centre De Recherche Et D'etudes Europeen Support de cuisson de poudre alcaline avec revêtement de porosité contrôlée
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998561B1 (fr) * 2012-11-29 2014-11-21 Saint Gobain Ct Recherches Poudre haute purete destinee a la projection thermique
US20170157582A1 (en) * 2014-07-02 2017-06-08 Corning Incorporated Spray drying mixed batch material for plasma melting
JP6706894B2 (ja) * 2015-09-25 2020-06-10 株式会社フジミインコーポレーテッド 溶射材料
JP7150603B2 (ja) * 2016-08-08 2022-10-11 日本製紙株式会社 セルロースナノファイバー分散液の評価方法
KR102085258B1 (ko) * 2016-09-08 2020-03-05 주식회사 세원하드페이싱 고유동성 용사용 입자 및 이의 제조 방법
US20200039835A1 (en) * 2017-02-03 2020-02-06 The South African Nuclear Energy Corporation Soc Limited Preparation process for rare earth metal fluorides
CN108408754B (zh) * 2018-02-05 2019-11-12 常州市卓群纳米新材料有限公司 一种有利于控制喷涂后颜色的耐等离子腐蚀热喷涂用造粒氧化钇的制备方法
JP7124798B2 (ja) * 2018-07-17 2022-08-24 信越化学工業株式会社 成膜用粉末、皮膜の形成方法、及び成膜用粉末の製造方法
WO2021173117A1 (fr) * 2020-02-25 2021-09-02 Hewlett-Packard Development Company, L.P. Support d'enregistrement imprimable
CN111270193B (zh) * 2020-04-01 2020-11-24 山东大学 一种热喷涂随动冷却装置
FR3127212A1 (fr) * 2021-09-17 2023-03-24 Framatome Procédé de fabrication d’une poudre d’oxyde métallique granulée et poudre d’oxyde métallique granulée correspondante
KR102416127B1 (ko) 2021-11-01 2022-07-05 (주)코미코 구상의 yof계 분말의 제조방법, 이를 통해 제조된 구상의 yof계 분말 및 yof계 코팅층

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167565A2 (fr) * 2000-06-29 2002-01-02 Shin-Etsu Chemical Co., Ltd. Procédé de dépôt par pulvérisation thermique et poudre d'oxyde de terre rare utilisée à cet effet
US6916534B2 (en) 2001-03-08 2005-07-12 Shin-Etsu Chemical Co., Ltd. Thermal spray spherical particles, and sprayed components
US20060116274A1 (en) * 2004-11-30 2006-06-01 Junya Kitamura Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
US20070077363A1 (en) 2005-09-30 2007-04-05 Junya Kitamura Thermal spray powder and method for forming a thermal spray coating
US20080112873A1 (en) 2006-10-31 2008-05-15 Fujimi Incorporated Thermal spray powder and method for forming thermal spray coating
WO2010103497A2 (fr) 2009-03-12 2010-09-16 Saint-Gobain Centre De Recherches Et D'etudes Europeen Torche a plasma avec injecteur lateral
US7931836B2 (en) 2005-10-21 2011-04-26 Sulzer Metco (Us), Inc. Method for making high purity and free flowing metal oxides powder

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450184A (en) * 1982-02-16 1984-05-22 Metco Incorporated Hollow sphere ceramic particles for abradable coatings
DE69717805T2 (de) * 1997-07-18 2003-09-04 Ansaldo Ricerche Srl Verfahren und Vorrichtung zur Herstellung von porösen keramischen Beschichtungen, insbesondere wärmedämmende Beschichtungen, auf metallische Substrate
JP3672833B2 (ja) * 2000-06-29 2005-07-20 信越化学工業株式会社 溶射粉及び溶射被膜
JP4044348B2 (ja) * 2001-03-08 2008-02-06 信越化学工業株式会社 溶射用球状粒子および溶射部材
US6767636B2 (en) * 2001-03-21 2004-07-27 Shin-Etsu Chemical Co., Ltd. Thermal spray rare earth oxide particles, sprayed components, and corrosion resistant components
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
KR100855537B1 (ko) * 2007-01-22 2008-09-01 주식회사 코미코 플라즈마 용사 코팅용 분말을 제조하는 방법
JP4341680B2 (ja) 2007-01-22 2009-10-07 セイコーエプソン株式会社 プロジェクタ
JP5669353B2 (ja) * 2008-12-25 2015-02-12 株式会社フジミインコーポレーテッド 溶射用スラリー、溶射皮膜の形成方法、及び溶射皮膜
JP5549834B2 (ja) * 2009-04-30 2014-07-16 住友大阪セメント株式会社 溶射膜及びその製造方法
FR2998561B1 (fr) * 2012-11-29 2014-11-21 Saint Gobain Ct Recherches Poudre haute purete destinee a la projection thermique

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167565A2 (fr) * 2000-06-29 2002-01-02 Shin-Etsu Chemical Co., Ltd. Procédé de dépôt par pulvérisation thermique et poudre d'oxyde de terre rare utilisée à cet effet
US6916534B2 (en) 2001-03-08 2005-07-12 Shin-Etsu Chemical Co., Ltd. Thermal spray spherical particles, and sprayed components
US20060116274A1 (en) * 2004-11-30 2006-06-01 Junya Kitamura Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
US20070077363A1 (en) 2005-09-30 2007-04-05 Junya Kitamura Thermal spray powder and method for forming a thermal spray coating
US7931836B2 (en) 2005-10-21 2011-04-26 Sulzer Metco (Us), Inc. Method for making high purity and free flowing metal oxides powder
US20110129399A1 (en) 2005-10-21 2011-06-02 Sulzer Metco (Us), Inc. High purity and free flowing metal oxides powder
US20080112873A1 (en) 2006-10-31 2008-05-15 Fujimi Incorporated Thermal spray powder and method for forming thermal spray coating
WO2010103497A2 (fr) 2009-03-12 2010-09-16 Saint-Gobain Centre De Recherches Et D'etudes Europeen Torche a plasma avec injecteur lateral

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 60, 1938, pages 309 - 316

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802387B2 (en) 2013-11-26 2017-10-31 Scoperta, Inc. Corrosion resistant hardfacing alloy
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US11111912B2 (en) 2014-06-09 2021-09-07 Oerlikon Metco (Us) Inc. Crack resistant hardfacing alloys
US10329647B2 (en) 2014-12-16 2019-06-25 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US10851444B2 (en) 2015-09-08 2020-12-01 Oerlikon Metco (Us) Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
TWI710665B (zh) * 2015-09-25 2020-11-21 日商福吉米股份有限公司 熔射用漿料、熔射被膜及熔射被膜之形成方法
US10954588B2 (en) 2015-11-10 2021-03-23 Oerlikon Metco (Us) Inc. Oxidation controlled twin wire arc spray materials
US11279996B2 (en) 2016-03-22 2022-03-22 Oerlikon Metco (Us) Inc. Fully readable thermal spray coating
FR3077286A1 (fr) * 2018-01-31 2019-08-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Barriere environnementale
WO2019149857A1 (fr) 2018-01-31 2019-08-08 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre pour barriere thermique
WO2019149856A1 (fr) 2018-01-31 2019-08-08 Saint-Gobain Centre De Recherches Et D'etudes Europeen Barriere environnementale
WO2019149854A1 (fr) 2018-01-31 2019-08-08 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre pour revetement de chambre de gravure
FR3077288A1 (fr) * 2018-01-31 2019-08-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre pour barriere thermique
FR3077287A1 (fr) * 2018-01-31 2019-08-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre pour revetement de chambre de gravure
US11390532B2 (en) 2018-01-31 2022-07-19 Saint-Gobain Centre De Recherches Et D'etudes Europeen Environmental barrier
US11731883B2 (en) 2018-01-31 2023-08-22 Saint-Gobain Centre De Recherches Et D'etudes Europeen Powder for coating an etch chamber
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
WO2023118767A1 (fr) 2021-12-23 2023-06-29 Saint-Gobain Centre De Recherche Et D'etudes Europeen Support de cuisson de poudre alcaline avec revêtement de porosité contrôlée
FR3131295A1 (fr) 2021-12-23 2023-06-30 Saint-Gobain Centre De Recherches Et D'etudes Europeen support de cuisson de poudre alcaline avec revêtement de porosité contrôlée
CN115992337A (zh) * 2023-03-23 2023-04-21 国营川西机器厂 高温合金压气机叶片叶尖强化修复方法及修复用粉末
CN115992337B (zh) * 2023-03-23 2023-07-11 国营川西机器厂 高温合金压气机叶片叶尖强化修复方法及修复用粉末

Also Published As

Publication number Publication date
US10252919B2 (en) 2019-04-09
JP6284947B2 (ja) 2018-02-28
EP2925673B1 (fr) 2019-01-30
US20150298986A1 (en) 2015-10-22
AU2013350757B2 (en) 2016-11-17
JP2016505486A (ja) 2016-02-25
CN104981431A (zh) 2015-10-14
AU2013350757A1 (en) 2015-06-18
EP2925673A1 (fr) 2015-10-07
KR102207879B1 (ko) 2021-01-27
KR20150089065A (ko) 2015-08-04
EA201591036A1 (ru) 2015-11-30
CA2893458C (fr) 2021-03-02
FR2998561B1 (fr) 2014-11-21
BR112015012469B1 (pt) 2021-07-13
SG11201504225QA (en) 2015-07-30
MX2015006834A (es) 2015-09-16
CA2893458A1 (fr) 2014-06-05
BR112015012469A2 (pt) 2017-08-29
FR2998561A1 (fr) 2014-05-30
CN104981431B (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
EP2925673B1 (fr) Poudre haute pureté destinée à la projection thermique
WO2019149854A1 (fr) Poudre pour revetement de chambre de gravure
JP6117195B2 (ja) プラズマ処理装置用部品およびプラズマ処理装置用部品の製造方法
WO2012073954A1 (fr) Composant pour appareil de gravure au plasma et son procédé de fabrication
EP3746405A1 (fr) Poudre pour barriere thermique
WO2019149856A1 (fr) Barriere environnementale
WO2019149850A1 (fr) Poudre pour barriere thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013824014

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2893458

Country of ref document: CA

Ref document number: 2015544600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14648539

Country of ref document: US

Ref document number: MX/A/2015/006834

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013350757

Country of ref document: AU

Date of ref document: 20131129

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157016969

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201591036

Country of ref document: EA

Ref document number: A201506307

Country of ref document: UA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015012469

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015012469

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150528