WO2014083083A1 - Dispositif électrique et installation électrique équipée d'un dispositif électrique - Google Patents

Dispositif électrique et installation électrique équipée d'un dispositif électrique Download PDF

Info

Publication number
WO2014083083A1
WO2014083083A1 PCT/EP2013/074909 EP2013074909W WO2014083083A1 WO 2014083083 A1 WO2014083083 A1 WO 2014083083A1 EP 2013074909 W EP2013074909 W EP 2013074909W WO 2014083083 A1 WO2014083083 A1 WO 2014083083A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical
output
arrangement
voltage
output signal
Prior art date
Application number
PCT/EP2013/074909
Other languages
German (de)
English (en)
Inventor
Ralf Bartling
Original Assignee
Kostal Industrie Elektrik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kostal Industrie Elektrik Gmbh filed Critical Kostal Industrie Elektrik Gmbh
Publication of WO2014083083A1 publication Critical patent/WO2014083083A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to an electrical arrangement to which a generator and an energy store can be connected, each of which can feed a DC voltage into the arrangement, and which has an inverter, which has a single or multi-phase output voltage
  • the arrangement controls a plurality of electromechanical switches, so that the output voltage is applied to the power supply network in a first mode, and in a second mode at the local Installation is present and disconnected from the power supply network.
  • the invention also relates to an electrical system having such an electrical arrangement.
  • Example wind power or photovoltaic systems usually have an arrangement with an inverter, which outputs a voltage in the height and frequency of the usual mains AC voltage. It is usually envisaged that the electrical output power of the inverter au bers in a local consumer network can also be wholly or partially fed into a public power grid.
  • a photovoltaic system can generate an electric power during the light hours of the day, which goes far beyond the electrical power requirements of the local installation, so that excess electrical energy can be fed into a public power grid. In the rest of the time it may be necessary to compensate
  • Buffering capacity of the energy storage is exceeded or if this is profitable due to daytime electricity tariffs.
  • Power supply network briefly referred to in this text as network operation, and secondly the decoupled from the power supply network operation, which is named here as island operation.
  • the island operation allows in a power failure operation of consumers of a local installation over a period of time from the energy of a generator and / or an energy storage.
  • mains operation the mains voltage and the mains frequency of
  • the inverter operates as a power source and feeds depending on the amount of energy from the
  • Photovoltaic generator or from an energy storage electrical energy into the power grid are Photovoltaic generator or from an energy storage electrical energy into the power grid.
  • Inverter to provide a preferably three-phase power supply, as provided in the network operation of the power supply network. Load fluctuations, for example, by the switching on and off of connected consumers, must from the
  • Inverter completely regulated. The goal is to ensure a voltage supply independent of the output current.
  • the inverter is to be regarded here as a voltage source.
  • Island operation, or a reduced power delivery of the generator and / or the energy storage can be done in various advantageous ways by at least one electrical variable of the output voltage is varied in a characteristic manner, without the function of the power supply is significantly impaired.
  • Signaling types can advantageously be automatically detected by detection means within the local installation and trigger appropriate measures regarding energy-saving operation of consumers belonging to the local installation.
  • a shutdown can be done either immediately or after a predetermined time. It can also
  • Supply voltage can be provided. Many consumers with a high power consumption exhibit the electrical behavior of an ohmic
  • the power consumption can be effectively limited by a voltage reduction, since the power consumption drops quadratically with voltage reduction (P ⁇ U 2 ).
  • a voltage tolerance of ⁇ 10% is permissible. With this voltage change results in a power variation of about ⁇ 20%.
  • a voltage reduction is an effective measure for power reduction. It can even be an even larger
  • Voltage reduction can be provided because with respect to the island network not necessarily applicable to a power supply network
  • a voltage reduction reaches important consumers such as emergency lighting, telecommunications equipment, refrigerators, as long as possible to keep in operation.
  • Such consumers are usually equipped with electronic switching power supplies that allow a much larger voltage variance without having functional limitations.
  • Island mode of the electrical arrangement, and in particular a final energy supply of the energy storage are signaled by a cyclic voltage variation.
  • Signaling is also easily recognizable as a hint to human users. This allows either the detection means automatically or the user to initiate a suitable response to the signaled mode by manual means.
  • a frequency change of the output voltage can be provided. Frequency changes in the
  • the per mil range does not generally have a direct effect on the operation of electrical consumers and therefore can not be directly perceived by a user.
  • an electronic detection means such frequency changes are easily recognizable and evaluated.
  • Figures 1 and 2 each show in the form of a block diagram of the structure of an electrical system, the electrical energy for supplying a local installation, which is about the entirety of the electrical systems and consumers of a
  • FIG. 3 shows details of the local installation.
  • FIGS. 4 to 6 each show examples of possible output signals in a diagram.
  • the photovoltaic generator 10 is made from a plurality of, not shown here, photovoltaic modules, which in turn each have a plurality of solar cells.
  • Photovoltaic generator 10 converts radiant energy of the sun into electrical energy, wherein the output electrical power can vary depending on the current incidence of light during the day.
  • the energy store 11 is provided, which preferably consists of an interconnection of accumulators with a total capacity of the order of several kilowatt hours.
  • the energy storage device 1 1 can be charged by the electrical energy emitted by the photovoltaic generator 10.
  • the power requirement of the local installation 3 exceeds the output power of the solar generator 10, it can compensate for the lack of power.
  • Both the photovoltaic generator 10 and the energy storage 1 1 is within the electrical assembly 5 each have a DC / DC converter 8, 9 associated with which the output from the photovoltaic generator 10 and the energy storage 1 1 voltages to the required for feeding into the public power supply system 1 Bring tension level.
  • the output voltages of the DC / DC converters 8, 9 are converted by a DC / AC converter 7, which is referred to below as the inverter 7, into a multi-phase AC voltage suitable for supplying the local installation 3 or for feeding into the power supply network 1.
  • the DC / DC converter 9 is bidirectional in order to allow charging of the energy storage device 1 1 from the output voltage of the DC / DC converter 8.
  • the output voltage U of the inverter 7 is connected via a
  • Disconnector 30 is guided on a first output line 13, which via a Solar energy meter 4 is connected to a connection node 6 of the main line 12.
  • the solar energy meter 4 is used to determine the energy supplied by the photovoltaic generator 10 and the energy storage device 1 1 in the local installation 3 and the power supply network 1.
  • a bidirectional measuring electronic energy meter 2 is looped in, both those from the public power grid 1 and fed into the public power grid 1
  • the output of the inverter 7 is also connected to a second one
  • Output line 14 connected to switch contacts of a
  • the electrical arrangement 5 has a not shown here
  • the electrical arrangement 5 thus controls in particular a switching device 20, which has two controllable electromechanical switches 21, 22, designed as contactors or relays, as well as a switched into the output line 1 3
  • Disconnector 30 which consists of at least two electromechanical
  • FIG. 1 illustrates the network operation of the electrical installation as standard operating mode.
  • the circuit breaker 30 is closed here, so that the output of the inverter 7 now via the counter 4 am
  • Connection node 6 of the main line 12 is connected.
  • the main line is also connected to the local installation 3, so that the local installation 3 can be supplied from the power supply network 1 as well as by the arrangement 5 with electrical energy.
  • the inverter 7 behaves like a power source
  • Mains voltage and mains frequency are impressed by the power supply network 1. In this respect, a control or regulation of the mains voltage and mains frequency is not required and not at all possible.
  • the task of the inverter 7 is to phase in its output current
  • Mains voltage waveform in the power supply network 1 feed.
  • the inverter 7 can also feed reactive power into the power grid 1, so that between the mains voltage and the output current
  • FIG. 2 is intended to illustrate the island operation of the electrical installation, in which the consumers of the local installation 3 are operated completely independently of the power supply network 1.
  • the local installation 3 is completely disconnected from the power supply network 1, because in the case of a failure of the generating units in
  • Power supply network 1 the on the power supply network. 1 remaining loads (outside the local installation 3) would otherwise short the output voltage of the inverter 7.
  • the inverter 7 is operated as a voltage source, which means that the grid voltage and grid frequency are now controlled by the inverter 7. Only the same amount of electricity is needed in the local area
  • problematic in island operation is that this mode is usually usually maintained only for a limited period of time, depending on the dimensions of the
  • Photovoltaic generator 10 and the energy storage 1 1, the current energy input into the photovoltaic generator 10 and the state of charge of the energy storage device 1 1, as well as the current power consumption of the consumer in the local installation. 3
  • the parameter of the instantaneous power consumption of the consumers of the local installation 3 can be influenced most easily in the case of a given electrical system.
  • the output signal AS results simply by a targeted influencing of an electrical variable of the output voltage U. This results in particular in the advantage that no additional lines must be installed, since the information is implicitly transmitted via the output line 14 with.
  • FIG. 3 illustrates some possible implementation details of a local installation 3.
  • three consumers V1, V2, V3, which can be operated on the local installation 3 are shown.
  • Solid lines represent fixed cable connections
  • dashed lines represent separable electrical connections, which are preferably made on unillustrated plugs and sockets.
  • the consumers V1 and V2 are each assigned a detection means D1 or D2, which can detect signaling by an output signal AS of the electrical arrangement 5.
  • the detection means D1, D2 react to at least one and ideally to each of the provided signaling modes, which in particular a frequency variation, or a reduction or variation of the voltage level the output voltage U can use. It can also be provided that different types of signaling lead to different reactions of the detection means D1, D2 with different influencing of the associated consumers V1, V2.
  • the detection means D1 is shown here as a permanently installed part of the local installation 3, which can influence and, in particular, switch off a consumer V1 which can be connected, for example, via a plug connection in the presence of a drive signal AS.
  • the detection means D2 is an integral part of an "intelligent" consumer V2, so that the detection means D2 in the presence of a
  • Actuator signal AS the consumer V2 on a specific, internally defined in the consumer V2 way, can influence.
  • consumer V3 is not connected to any internal or external detection means. By lowering the output voltage U through the electrical arrangement 5, however, this consumer V3 can also be operated with a reduced electrical power.
  • FIGS. 4 to 6 The types of signaling proposed here are further illustrated in FIGS. 4 to 6 by a respective diagram.
  • the output voltage U is proportional to the percentage
  • Discharge value of the energy storage 1 1 applied Two possible courses of a reduction in the output voltage U are shown by way of example. According to the solid line, the output voltage is lowered by about 20% given an 80% discharge of the energy store 11.
  • the additional dashed line indicates that as an alternative to the previous one Strategy, from a predetermined discharge state, here 50%, also a continuous voltage reduction can be initiated, in which the output voltage U gradually reaches a voltage of 80% of the nominal voltage with increasing discharge of the energy storage 1 1 from initially 100%.
  • a predetermined discharge state here 50%
  • a continuous voltage reduction can be initiated, in which the output voltage U gradually reaches a voltage of 80% of the nominal voltage with increasing discharge of the energy storage 1 1 from initially 100%.
  • other courses of a discharge-dependent voltage reduction can be provided.
  • a phase-selective voltage reduction can be realized.
  • Two exemplary courses are sketched in FIG. 5 by a solid and a dashed line.
  • the adjustment of the output frequency takes place in only a small range of, for example ⁇ 0.5 Hz, so that the energy transfer itself is not affected.
  • This form of regulation is based on the so-called primary control in the interconnected grid.
  • the energy state of the network is signaled by means of frequency variation.
  • a delay in the energy consumption of a device has the advantage that, under certain circumstances, energy can be recovered from a solar generator through the natural course of day photovoltaic energy generation and thus a collapse the entire energy supply can be avoided. If neither of the above measures is successful, the user should be made aware of the approaching end of the power supply.
  • Plotted is the output voltage U against the time t.
  • the value of the output voltage U here shows a cyclic variation of about 10% with a period of, for example, one second. The cyclic change makes it clear that a critical energy state has been reached.
  • the goal here is for the user to bring important systems to a safe state before the power supply collapses completely.
  • important systems can be about information technology
  • Facilities computers, routers or the like
  • medical monitoring and therapy facilities apply.

Abstract

L'invention concerne un dispositif électrique qui peut être relié à un générateur et à un accumulateur d'énergie respectivement aptes à injecter une tension continue dans le dispositif, et qui présente un onduleur, lequel génère en tant que tension de sortie une tension alternative monophasée ou multiphasée que le dispositif cède par l'intermédiaire d'au moins une ligne sortante ; la tension de sortie ayant un niveau de tension et une fréquence tels qu'elle soit appropriée à l'alimentation d'une installation locale et à l'injection dans un secteur d'alimentation ; le dispositif assurant la commande de plusieurs commutateurs électromécaniques de telle façon que la tension de sortie soit appliquée dans un premier mode de fonctionnement (mode secteur) au secteur d'alimentation, et dans un deuxième mode de fonctionnement (mode îlot) à l'installation locale et soit coupée du secteur d'alimentation ; dans le deuxième mode de fonctionnement, le dispositif générant un signal de sortie et le délivrant par l'intermédiaire d'une ligne sortante reliée dans le deuxième mode de fonctionnement à l'installation locale ; le signal de sortie signalant de manière générale la présence du deuxième mode de fonctionnement ou la présence d'une aptitude réduite du générateur et/ou de l'accumulateur d'énergie à fournir de l'énergie. L'invention concerne également une installation électrique présentant un tel dispositif électrique.
PCT/EP2013/074909 2012-11-29 2013-11-27 Dispositif électrique et installation électrique équipée d'un dispositif électrique WO2014083083A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012023426.0A DE102012023426A1 (de) 2012-11-29 2012-11-29 Elektrische Anordnung und elektrische Anlage mit einer elektrischen Anordnung
DE102012023426.0 2012-11-29

Publications (1)

Publication Number Publication Date
WO2014083083A1 true WO2014083083A1 (fr) 2014-06-05

Family

ID=49674313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/074909 WO2014083083A1 (fr) 2012-11-29 2013-11-27 Dispositif électrique et installation électrique équipée d'un dispositif électrique

Country Status (2)

Country Link
DE (1) DE102012023426A1 (fr)
WO (1) WO2014083083A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113065234A (zh) * 2021-03-17 2021-07-02 广东电网有限责任公司计量中心 一种智能电表的批次可靠性风险等级评估方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014007639A1 (de) * 2014-05-22 2015-11-26 AMK Arnold Müller GmbH & Co. KG System zur Einspeisung elektrischer Energie in ein Stromversorgungsnetz
DE102014007640A1 (de) * 2014-05-22 2015-11-26 AMK Arnold Müller GmbH & Co. KG System zur Einspeisung elektrischer Energie in ein Stromversorgungsnetz und Betriebsverfahren für ein solches System
DE102016124602A1 (de) * 2016-12-16 2018-06-21 Innogy Se Netzersatzanlage, Umrichter für eine Netzersatzanlage sowie Verfahren zum Betreiben einer Netzersatzanlage
AT520273A1 (de) * 2017-07-20 2019-02-15 Xelectrix Power Gmbh Stromversorgungsanlage sowie Raupenfahrzeug
DE102020114775A1 (de) 2020-06-03 2021-12-09 Westnetz Gmbh Verfahren zum Ändern einer Referenzleistung einer Erzeugungsanlage in einem elektrischen Inselnetz, Erzeugungsanlage und elektrisches Inselnetz
DE102020114764A1 (de) 2020-06-03 2021-12-09 Westnetz Gmbh Sendeverfahren für eine frequenzbildende Anlage, Empfangsverfahren für eine Erzeugungsanlage oder Schalteinrichtung, frequenzbildende Anlage, Erzeugungsanlage, Schalteinrichtung und elektrisches Netz

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010015254U1 (de) * 2010-11-09 2011-01-27 Feuchtgruber, Raimund Steuereinrichtung zum Steuern einer Energiezuteilung als auch Vorrichtung zum Bereitstellen von elektrischer Energie an einen gebäudezugeordneten Verbraucherverbund
US20110121652A1 (en) * 2006-12-06 2011-05-26 Guy Sella Pairing of components in a direct current distributed power generation system
EP2337184A2 (fr) * 2009-12-15 2011-06-22 Samsung SDI Co., Ltd. Système de stockage d'énergie raccordé au réseau et son procédé de commande
US7977818B1 (en) * 2011-01-25 2011-07-12 Wahl Eric R Safety device for plug and play solar energy system
EP2485359A1 (fr) * 2009-09-28 2012-08-08 Panasonic Corporation Système d'alimentation en énergie du type à interconnexion avec un réseau électrique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5071598A (en) * 1996-11-14 1998-06-03 Brian Tolley Corporation Limited Improvements relating to signalling in electricity distribution systems
DE10207856A1 (de) * 2002-02-19 2003-12-18 Inst Solare Energieversorgungstechnik Iset Verfahren und Vorrichtung zur Messung der Impedanz eines elektrischen Energieversorgungsnetzes
DE102007030451B4 (de) * 2007-06-29 2013-07-18 Diehl Ako Stiftung & Co. Kg Stromversorgungsvorrichtung
US9583942B2 (en) * 2011-04-20 2017-02-28 Reliance Controls Corporation Transfer switch for automatically switching between alternative energy source and utility grid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110121652A1 (en) * 2006-12-06 2011-05-26 Guy Sella Pairing of components in a direct current distributed power generation system
EP2485359A1 (fr) * 2009-09-28 2012-08-08 Panasonic Corporation Système d'alimentation en énergie du type à interconnexion avec un réseau électrique
EP2337184A2 (fr) * 2009-12-15 2011-06-22 Samsung SDI Co., Ltd. Système de stockage d'énergie raccordé au réseau et son procédé de commande
DE202010015254U1 (de) * 2010-11-09 2011-01-27 Feuchtgruber, Raimund Steuereinrichtung zum Steuern einer Energiezuteilung als auch Vorrichtung zum Bereitstellen von elektrischer Energie an einen gebäudezugeordneten Verbraucherverbund
US7977818B1 (en) * 2011-01-25 2011-07-12 Wahl Eric R Safety device for plug and play solar energy system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113065234A (zh) * 2021-03-17 2021-07-02 广东电网有限责任公司计量中心 一种智能电表的批次可靠性风险等级评估方法及系统

Also Published As

Publication number Publication date
DE102012023426A1 (de) 2014-03-13

Similar Documents

Publication Publication Date Title
WO2014083083A1 (fr) Dispositif électrique et installation électrique équipée d'un dispositif électrique
EP2924839B1 (fr) Régime de secours monophasé d'un onduleur triphasé et onduleur correspondant
DE102009025363B9 (de) Anfahrquelle Wechselrichter
EP2386121B1 (fr) Alimentation en energie electrique avec un générateur photovoltaique pour l'alimentation directe d'une installation de transport de courant continu a haute tension
DE102012023424B4 (de) Energieverteilungsanlage mit einer Steuervorrichtung
EP2463980B1 (fr) Fonctionnement d'un générateur d'énergie dans un réseau d'alimentation en énergie
EP3336998B1 (fr) Installation auxiliaire d'alimentation, convertisseur pour une installation auxiliaire d'alimentation ainsi que procédé de fonctionnement d'une installation auxiliaire d'alimentation
DE102011085676A1 (de) Einspeiseeinheit und Stromerzeugungs- und Verbrauchsanordnung
EP2761716A2 (fr) Installation photovoltaïque comportant une sécurité contre l'injection dans un réseau électrique public
DE102011000394A1 (de) Lokale Energieversorgungsanlage
WO2016207026A1 (fr) Procédé de stabilisation d'un réseau électrique alternatif
WO2020099055A1 (fr) Installation de transformation d'un réseau de distribution électrique ainsi que procédé de fonctionnement d'une installation de transformation
EP3647108A1 (fr) Système de charge pour véhicules automobiles doté d'une pluralité de sources d'énergie
WO2012104333A1 (fr) Procédé de fourniture de courant réactif au moyen d'un convertisseur et ensemble convertisseur et installation d'alimentation en énergie
EP3472913B1 (fr) Unité d'alimentation en énergie électrique et commande afférente
EP4010956A1 (fr) Système d'alimentation en énergie doté d'un dispositif de couplage
EP3413422B1 (fr) Station de réseau local pourvue de sorties basse tension variables
DE102013011427A1 (de) Elektrische Anordnung mit einem Wechselrichter und Zwischenschaltgerät für die elektrische Anordnung
DE102018111154B4 (de) Ladesystem
DE202011102374U1 (de) Energiespeicher- und/oder Versorgungsvorrichtung
DE102011122580A1 (de) Verfahren zum Betreiben eines elektrischen Versorgungsnetzes und zugehörige Steuereinheit
DE102012002599B4 (de) Energieerzeugungsanlage mit Wechselrichter und Energiespeichersystem
EP3682522B1 (fr) Procédé pour faire fonctionner un accumulateur d'énergie
EP3596792B1 (fr) Réseau électrique d' alimentation en énergie et méthode pour son fonctionnement
DE202012013242U1 (de) Batteriewechselrichter und Vorrichtung zur Versorgung eines Hauses mit elektrischer Energie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796078

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13796078

Country of ref document: EP

Kind code of ref document: A1