WO2014082506A1 - 触摸传感器的触摸检测方法、系统和触控终端 - Google Patents

触摸传感器的触摸检测方法、系统和触控终端 Download PDF

Info

Publication number
WO2014082506A1
WO2014082506A1 PCT/CN2013/085564 CN2013085564W WO2014082506A1 WO 2014082506 A1 WO2014082506 A1 WO 2014082506A1 CN 2013085564 W CN2013085564 W CN 2013085564W WO 2014082506 A1 WO2014082506 A1 WO 2014082506A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
self
capacitance
mutual capacitance
mode
Prior art date
Application number
PCT/CN2013/085564
Other languages
English (en)
French (fr)
Inventor
戴磊
钟镇宇
叶金春
王浩雷
陈小祥
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2014082506A1 publication Critical patent/WO2014082506A1/zh
Priority to US14/552,896 priority Critical patent/US9798428B2/en
Priority to US15/700,123 priority patent/US10241632B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041662Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using alternate mutual and self-capacitive scanning

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to a touch detection method of a touch sensor, a touch detection system of a touch sensor, and a touch control terminal.
  • Capacitive touch sensor touch detection technology currently has two methods: mutual capacitance detection and self capacitance detection. Because the mutual capacitance detection method has the characteristics of multi-touch, it has become the mainstream capacitive touch detection technology, but at the same time, mutual capacitance detection also has some defects, such as the suspension effect.
  • Suspension means that the touch terminal is placed on the surface of a highly insulated object; non-suspended means that the human body touches the touch terminal or the touch terminal has a large area of system ground.
  • the hovering effect refers to the phenomenon that the touch area is smaller than other fingers when touched with a larger finger, such as a thumb. As user experience requirements become higher and higher, the floating effect becomes an important drawback of product performance using mutual capacitance detection.
  • FIG. 1 shows the principle of the floating effect of mutual capacitance.
  • R h and C h are the impedance and capacitive reactance of the human body to the ground respectively, and the two fingers of the human touch different nodes respectively.
  • Figure 1 shows the schematic diagram of the mutual capacitance in the non-suspended state. In the non-suspended state, since the C h is large, the signal has a large coupling with the ground through R h and C h , thereby reducing the node by cutting off the magnetic induction line. Capacitance, and can detect the corresponding amount of change.
  • Figure 2 shows the schematic diagram of the mutual capacitance suspension state.
  • C h In the floating state, C h is very small, the signal can hardly pass, and the driving signal of D1 is capacitively coupled to the sensing line S1 through the A node, and the signal on S1 passes through C.
  • the node capacitance, the finger, and the B node are ultimately coupled to the sensing line S2 such that the capacitance detected on S2 is greater than the value in the non-suspended state.
  • the problem caused by the suspension effect is mainly manifested in the difficulty of the thumb pressing and the large-area judgment.
  • the split point means that in a floating state, a large area (such as a thumb) presses the capacitive touch screen, which is mistaken for a multi-finger touch due to signal cancellation.
  • the single finger is pressed for a large area, and the mutual capacitance detection is determined to be one finger (the thick line frame in FIG. 3), and this determination is correct.
  • the single finger is pressed for a large area, but is erroneously determined as two fingers (two thick line frames in FIG. 4).
  • the main methods for solving this problem are: using a metal casing, increasing the area of the device to the ground, and reducing the coupling capacitance of the drive, the induction, and the finger.
  • the metal casing has the limitation of having to be in contact with the finger, and the device has a product limitation on the ground area, and reducing the coupling capacitance of the driving, the sensing and the finger has an influence on the signal-to-noise ratio. Therefore, the current methods cannot solve the problem fundamentally.
  • the present invention provides a touch detection method for a touch sensor according to the above-mentioned drawbacks of the prior art, and improves the accuracy of the touch detection result of the touch sensor, in particular, whether the single-finger touch is distinguished when the touch terminal is in a large-area touch state in a floating state. Refers to the accuracy of the test results when touched.
  • a touch detection method of a touch sensor comprising the following steps:
  • Interval alternately sets the touch sensor to a mutual capacitance mode and a self capacitance mode to scan and detect the rows and columns of the touch sensor capacitance matrix;
  • the data obtained by sampling in the self-capacitance mode is further subjected to an envelope analysis to determine whether the touch state in the mutual capacitance mode is a single-finger touch or a multi-finger touch.
  • a single-finger touch outputs one touch coordinate; if it is a multi-finger touch, multiple touch coordinates are output.
  • the invention also provides a touch detection method of a touch sensor, the method comprising the following steps:
  • Interval alternately sets the touch sensor to a mutual capacitance mode and a self capacitance mode to scan and detect the rows and columns of the touch sensor capacitance matrix;
  • the scan detection result is initially determined to be that when the touch state is no touch, the data obtained by sampling in the self-capacitance mode is further subjected to an envelope analysis to determine whether there is a touch in the mutual capacitance mode, and if there is a touch, in the mutual capacitance mode.
  • the reference is not updated; if there is no touch, the reference is updated in mutual capacitance mode.
  • Interval alternately sets the touch sensor to a mutual capacitance mode and a self capacitance mode to scan and detect the rows and columns of the touch sensor capacitance matrix;
  • Envelope analysis is performed on the data obtained by sampling the self-capacitance mode to find all the envelopes
  • the invention also provides a touch detection method of a touch sensor, the method comprising the following steps:
  • Interval alternately sets the touch sensor to a mutual capacitance mode and a self capacitance mode to scan and detect the rows and columns of the touch sensor capacitance matrix;
  • the baseline update is resumed when no negative value is detected in mutual capacitance mode.
  • the invention also provides a touch detection system for a touch sensor, the system comprising:
  • the mutual capacitance sampling unit is respectively connected to the mutual capacitance decoding unit and the control unit for sampling the mutual capacitance signal;
  • the mutual capacitance decoding unit is respectively connected to the mutual capacitance sampling unit and the control unit for decoding the mutual capacitance signal;
  • the self-capacitance sampling unit is respectively connected to the self-capacitance decoding unit and the control unit for sampling the self-capacitance signal;
  • the self-capacitance decoding unit is respectively connected to the self-capacitance sampling unit and the control unit for decoding the self-capacitance signal;
  • the control unit is respectively connected with the mutual capacitance sampling unit, the mutual capacitance decoding unit, the self capacitance sampling unit and the self capacitance decoding unit, and is used for controlling the interval detection of the mutual capacitance mode and the self capacitance mode.
  • the invention also provides a touch terminal, which comprises a touch detection system of the above touch sensor.
  • the invention alternately detects the mutual capacitance mode and the self-capacitance mode interval, and utilizes the detection characteristic in the self-capacitance mode to improve the accuracy of the touch detection result of the touch sensor, in particular, distinguishing the single finger when the touch terminal is in a large-area touch state in a floating state. Touch or multi-finger touch detection accuracy.
  • FIG. 1 is a schematic diagram showing the working principle of the mutual capacitance mode in a non-suspended state
  • FIG. 2 is a schematic diagram of a working principle in a floating state of a mutual capacitance mode
  • FIG. 3 is a schematic diagram showing the effect of a single-finger large-area touch in a non-suspended state in a mutual capacitance mode
  • FIG. 4 is a schematic diagram showing the effect of a single-finger large-area touch in a floating state of a mutual capacitance mode
  • FIG. 5 is a schematic diagram of the working principle in a self-capacitance mode suspension state
  • FIG. 6 is a flowchart of a touch detection method of a touch sensor according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of alternate detection of mutual capacitance mode and self capacitance mode
  • FIG. 8 is an envelope state diagram of data sampled in a self-capacitance mode when a single-finger touch is in a floating state
  • FIG. 10 is a schematic diagram of envelope analysis in a self-capacitance mode according to Embodiment 1 of the present invention.
  • FIG. 11 is a block diagram showing the structure of a touch detection system of a touch sensor according to Embodiment 2 and Embodiment 4 of the present invention.
  • FIG. 12 is a flowchart of a touch detection method of a touch sensor according to Embodiment 3 of the present invention.
  • FIG. 13 is a schematic diagram showing the effect of a large area pressing capacitive touch screen in a floating state of a mutual capacitance mode
  • FIG. 14 is a flowchart of a touch detection method of a touch sensor according to Embodiment 5 of the present invention.
  • FIG. 15 is a structural block diagram of a touch detection system of a touch sensor according to Embodiment 6 of the present invention.
  • FIG. 16 is a flowchart of a touch detection method of a touch sensor according to Embodiment 7 of the present invention.
  • FIG. 17 is a block diagram showing the structure of a touch detection system of a touch sensor according to Embodiment 8 of the present invention.
  • FIG. 5 is a schematic diagram of the operation principle in the self-capacitance mode floating state.
  • the touch result detected in the self-capacitance mode is that the capacitance is increased rather than decreased.
  • C h also increases, and the amount of change detected in the self-capacitance mode is also reduced to some extent, but does not cause the opposite change as in the mutual capacitance mode.
  • the embodiment of the invention utilizes the detection characteristics in the self-capacitance mode, and the self-capacitance mode and the mutual capacitance mode alternately collect data to improve the floating effect caused by the mutual capacitance mode detection, and reduce the time taken by the self-capacitance mode sampling, and reasonably and effectively The detection time is utilized.
  • FIG. 6 is a flowchart of a touch detection method of a touch sensor according to Embodiment 1 of the present invention.
  • the detection characteristics in the self-capacitance mode are utilized to solve the problem that the mutual capacitance mode is split in the floating state, and the user experience is improved.
  • the method comprises the following steps:
  • Step S101 The touch sensors are alternately set to a mutual capacitance mode and a self capacitance mode.
  • the driving and sensing of the mutual capacitance mode and the self-capacitance mode are divided into groups to scan and detect the rows and columns of the touch sensor capacitance matrix, and the two are alternately collected between the groups. Since each group of samples in the mutual capacitance mode requires a certain amount of time for decoding, the interval is used for sampling in the self-capacitance mode.
  • decoding is performed after a set of samples in mutual capacitance mode is completed, a set of samples in self-capacitance mode is performed.
  • another set of samples in the mutual capacitance mode is performed and alternated at this interval, thereby reducing the time overhead in sampling in the self-capacitance mode.
  • Step S102 The detection in the mutual capacitance mode is determined to be a multi-finger touch.
  • the detection of the multi-finger touch in the mutual capacitance mode includes two situations: one is a normal multi-finger touch, that is, the user uses two or more fingers to touch; the other is a single finger comparison.
  • the large-area pressing is judged to be a multi-finger touch (for example, a thumb press break point).
  • Step S103 performing envelope analysis on the data sampled in the self-capacitance mode.
  • This step and subsequent steps need to determine whether the touch state in the mutual capacitance mode is a single-finger touch or a multi-finger touch by the envelope analysis in the self-capacitance mode.
  • Step S104 It is determined whether it is an envelope, and if so, step S105 is performed, otherwise, step S106 is performed.
  • This step determines whether it is an envelope or multiple envelopes. If it is an envelope, it is determined that the touch state in the mutual capacitance mode is a single-finger touch, and step S105 is performed; otherwise, it is a plurality of envelopes, and it is determined that the touch state in the mutual capacitance mode is a multi-finger touch, and step S106 is performed. As shown in FIG.
  • the envelope state diagram of the data obtained by sampling in the self-capacitance mode when the single-finger touch is in a floating state, the data obtained by sampling in the self-capacitance mode when the single-finger touch is present shows a single envelope state;
  • the envelope state diagram of the data sampled by the self-capacitance mode in the multi-finger touch state in the floating state, the data obtained by sampling in the self-capacitance mode when the multi-finger touch is present exhibits multiple envelope states.
  • the abscissa is the drive line number
  • the ordinate is the detection signal change amount.
  • the envelope analysis can be performed by the following method:
  • the signal change amount is the change amount of the detected capacitance value relative to the reference value
  • the reference value refers to the original detection data value sampled by the capacitive touch screen driving IC under the condition that no electromagnetic interference, ambient temperature and humidity are stable, Is an unsigned quantity.
  • A2. Determine whether the maximum value of the found signal change amount is greater than a set first threshold value
  • the first threshold is set according to the actual debugging result in the design process, and can be no longer changed after being set.
  • A5. Determine whether there is a point larger than the set first threshold value except the above envelope area
  • this step only needs to judge whether there is more than the set first in addition to the above envelope area. The point of the threshold.
  • step S105 If A5 does not find a point other than the point A that is greater than the set first threshold, it is illustrated as an envelope. In fact, there is only one touch point, and step S105 needs to be performed to perform point combination; otherwise, there are actually multiple Touching the point, without performing point merging, step S106 is performed.
  • Step S105 Single finger touch, outputting a touch coordinate.
  • Step S106 Multi-finger touch, outputting a plurality of touch coordinates.
  • This step is performed according to the normal touch workflow, and outputs multiple touch coordinates.
  • the mutual capacitance mode and the self-capacitance mode interval are alternately detected, and each of the capacitors is sampled by using the intermittent decoding after the sampling of the other party, for example, the self-capacitance mode sampling is performed while the mutual capacitance mode is decoded, and the self-capacitance mode is decoded simultaneously.
  • the mutual capacitance mode sampling reduces the time taken by the self-capacitance mode sampling, reasonably and effectively utilizes the detection time, and improves the working efficiency; meanwhile, the detection characteristic under the self-capacitance mode is used to improve the touch detection result of the touch sensor.
  • FIG. 11 is a structural block diagram of a touch detection system of a touch sensor according to Embodiment 2 of the present invention.
  • the detection characteristics in the self-capacitance mode are utilized to solve the problem that the mutual capacitance mode is split in the floating state, and the user experience is improved.
  • the touch detection system of the touch sensor provided in this embodiment includes a mutual capacitance sampling unit 1, a mutual capacitance decoding unit 2, a self capacitance sampling unit 3, a self capacitance decoding unit 4, a control unit 5, a mutual capacitance detection determination unit 6, and a self capacitance package.
  • Network analysis unit 7 The touch detection system of the touch sensor provided in this embodiment includes a mutual capacitance sampling unit 1, a mutual capacitance decoding unit 2, a self capacitance sampling unit 3, a self capacitance decoding unit 4, a control unit 5, a mutual capacitance detection determination unit 6, and a self capacitance package.
  • the mutual capacitance sampling unit 1 is respectively connected to the mutual capacitance decoding unit 2 and the control unit 3 for mutual capacitance signal sampling;
  • the mutual capacitance decoding unit 2 is respectively connected with the mutual capacitance sampling unit 1 and the control unit 5 for mutual capacitance signal decoding;
  • the self-capacitance sampling unit 3 is connected to the self-capacitance decoding unit 4 and the control unit 5 for self-capacitance signal sampling;
  • the self-capacitance decoding unit 4 is respectively connected to the self-capacitance sampling unit 3 and the control unit 5 for self-capacitance signal decoding;
  • the control unit 5 is respectively connected to the mutual capacitance sampling unit 1, the mutual capacitance decoding unit 2, the self capacitance sampling unit 3 and the self capacitance decoding unit 4, and is used for controlling the alternate detection of the mutual capacitance mode and the self capacitance mode;
  • the mutual capacitance detection determining unit 6 is respectively connected to the mutual capacitance decoding unit 2 and the control unit 5, for
  • the self-capacitance envelope analysis unit 7 is connected to the self-capacitance decoding unit 4 and the control unit 5, respectively, for determining the touch shape in the mutual capacitance mode. Whether it is a single-finger touch or a multi-finger touch, and sends a second signal to the control unit 5 when it is determined to be a single-finger touch; the control unit 5 is also connected to the mutual capacitance detection determining unit 6 and the self-capacitance envelope analyzing unit 7, respectively, for The self-capacitance envelope analysis unit 7 is controlled to operate when receiving the first signal transmitted by the mutual capacitance detection determination unit 6, and controls to output one touch coordinate upon receiving the second signal transmitted from the self-capacitance envelope analysis unit 7.
  • Embodiment 1 can be applied to the system of the embodiment, and the interval between the mutual capacitance mode and the self-capacitance mode is alternately detected, which reduces the time taken by the self-capacitance mode sampling, and utilizes the detection time reasonably and effectively, thereby improving the working efficiency.
  • the detection characteristics in the self-capacitance mode are used to improve the accuracy of the touch detection result of the touch sensor, especially when the touch area is in a floating state, and the detection result of the single-finger touch or the multi-finger touch is accurate when the large-area touch is in the floating state.
  • Sexuality solves the problem of mutual capacitance splitting in the floating state and improves the user experience.
  • FIG. 12 is a flowchart of a touch detection method of a touch sensor according to Embodiment 3 of the present invention.
  • the detection characteristics in the self-capacitance mode are utilized, and the problem of erroneously performing the reference update in the mutual capacitance mode floating cancellation point is solved.
  • the method comprises the following steps:
  • Step S301 The touch sensors are alternately set to the mutual capacitance mode and the self capacitance mode.
  • the driving and sensing of the mutual capacitance mode and the self-capacitance mode are divided into groups to scan and detect the rows and columns of the touch sensor capacitance matrix, and the two are alternately collected between the groups. Since each group of samples in the mutual capacitance mode requires a certain amount of time for decoding, the interval is used for sampling in the self-capacitance mode.
  • decoding is performed after a set of samples in mutual capacitance mode is completed, a set of samples in self-capacitance mode is performed.
  • another set of samples in the mutual capacitance mode is performed and alternated at this interval, thereby reducing the time overhead in sampling in the self-capacitance mode.
  • Step S302 The detection in the mutual capacitance mode determines that there is no touch.
  • the self-capacitance mode in the floating state, a large area presses the capacitive touch screen, and the data does not reach the set threshold due to signal cancellation, and the scan detection result in the mutual capacitance mode initially determines that the touch state is no touch, thereby erroneously
  • the benchmark update when the finger leaves the touch screen, causes a dot (ie, no touch action, a false detection of the touch point occurs). Since the self-capacitance mode is less affected by the suspension, the self-capacitance mode can accurately recognize the touch when the self-capacitance mode is suspended. This embodiment will determine whether there is a touch by self-capacitance envelope analysis of the subsequent steps.
  • Step S303 Perform envelope analysis on the data obtained by sampling in the self-capacitance mode.
  • This step and subsequent steps need to determine whether there is a touch or no touch by self-capacitance mode envelope analysis.
  • Step S304 determining whether there is a touch, if yes, executing step S305, otherwise, performing step S306.
  • This step determines whether there is a touch in the mutual capacitance mode through the self-capacitance mode. If there is a touch, step S305 is performed, and the reference is not updated in the mutual capacitance mode; otherwise, if there is no touch, step S306 is performed, and the reference is updated in the mutual capacitance mode.
  • the envelope analysis and judgment in the self-capacitance mode can be performed by the following method:
  • the signal change amount is the change amount of the detected capacitance value relative to the reference value
  • the reference value refers to the original detection data value sampled by the capacitive touch screen driving IC under the condition that no electromagnetic interference, ambient temperature and humidity are stable, Is an unsigned quantity.
  • A2. Determine whether the maximum value of the found signal change amount is greater than a set first threshold value
  • the first threshold is set according to the actual debugging result in the design process, and can be no longer changed after being set.
  • Step S305 The reference is not updated in the mutual capacitance mode.
  • the reference After the self-capacitance mode detection determines that there is a touch, the reference cannot be updated temporarily in the mutual capacitance mode, thereby preventing the reference update from being erroneously performed when the mutual capacitance is suspended.
  • Step S306 The reference is updated in the mutual capacitance mode.
  • the reference update can be performed in the mutual capacitance mode.
  • the mutual capacitance mode and the self-capacitance mode interval are alternately detected, and each of the capacitors is sampled by using the intermittent decoding after the sampling of the other party, for example, the self-capacitance mode sampling is performed while the mutual capacitance mode is decoded, and the self-capacitance mode is decoded simultaneously.
  • the mutual capacitance mode sampling reduces the time taken by the self-capacitance mode sampling, utilizes the detection time reasonably and effectively, and improves the working efficiency.
  • the detection characteristic of the self-capacitance mode is used to solve the mutual capacitance mode floating cancellation point. The problem of incorrectly updating the reference improves the accuracy of the touch detection result of the touch sensor.
  • FIG. 11 is a structural block diagram of a touch detection system of a touch sensor according to Embodiment 4 of the present invention.
  • the detection characteristics in the self-capacitance mode are utilized, and the problem of erroneously performing the reference update in the mutual capacitance mode floating cancellation point is solved.
  • the touch detection system of the touch sensor provided in this embodiment includes a mutual capacitance sampling unit 1, a mutual capacitance decoding unit 2, a self capacitance sampling unit 3, a self capacitance decoding unit 4, a control unit 5, a mutual capacitance detection determination unit 6, and a self capacitance package.
  • Network analysis unit 7 The touch detection system of the touch sensor provided in this embodiment includes a mutual capacitance sampling unit 1, a mutual capacitance decoding unit 2, a self capacitance sampling unit 3, a self capacitance decoding unit 4, a control unit 5, a mutual capacitance detection determination unit 6, and a self capacitance package.
  • the mutual capacitance sampling unit 1 is respectively connected to the mutual capacitance decoding unit 2 and the control unit 3 for mutual capacitance signal sampling;
  • the mutual capacitance decoding unit 2 is respectively connected with the mutual capacitance sampling unit 1 and the control unit 5 for mutual capacitance signal decoding;
  • the self-capacitance sampling unit 3 is connected to the self-capacitance decoding unit 4 and the control unit 5 for self-capacitance signal sampling;
  • the self-capacitance decoding unit 4 is respectively connected to the self-capacitance sampling unit 3 and the control unit 5 for self-capacitance signal decoding;
  • the control unit 5 is respectively connected to the mutual capacitance sampling unit 1, the mutual capacitance decoding unit 2, the self capacitance sampling unit 3 and the self capacitance decoding unit 4, and is used for controlling the alternate detection of the mutual capacitance mode and the self capacitance mode;
  • the mutual capacitance detection determining unit 6 is respectively connected to the mutual capacitance decoding unit 2 and the control unit 5, for
  • Embodiment 3 can be applied to the system of the embodiment, and the interval between the mutual capacitance mode and the self-capacitance mode is alternately detected, thereby reducing the time taken by the self-capacitance mode sampling, and the detection time is reasonably and effectively utilized, thereby improving the working efficiency.
  • the detection characteristic in the self-capacitance mode is used to solve the problem that the reference update is erroneously performed in the mutual capacitance mode floating cancellation point, and the accuracy of the touch detection result of the touch sensor is improved.
  • FIG. 14 is a flowchart of a touch detection method for an anti-jamming touch sensor according to Embodiment 5 of the present invention.
  • the palm suppression is performed by using the detection characteristic in the self-capacitance mode, and the palm suppression refers to accurately distinguishing the palm touch and the finger touch on the larger-sized capacitive screen application, so as to eliminate the point touched by the palm, and the finger The operation is not affected, to prevent palm interference.
  • the method comprises the following steps:
  • Step S501 alternately setting the touch sensor to a mutual capacitance mode and a self capacitance mode.
  • the driving and sensing of the mutual capacitance mode and the self-capacitance mode are divided into groups to scan and detect the rows and columns of the touch sensor capacitance matrix, and the two are alternately collected between the groups. Since each group of samples in the mutual capacitance mode requires a certain amount of time for decoding, the interval is used for sampling in the self-capacitance mode.
  • decoding is performed after a set of samples in mutual capacitance mode is completed, a set of samples in self-capacitance mode is performed.
  • Step S502 Envelope analysis is performed on the data obtained by sampling the self-capacitance mode to find all the envelopes.
  • the envelope analysis can be performed by the following method:
  • the signal change amount is the change amount of the detected capacitance value relative to the reference value
  • the reference value refers to the original detection data value sampled by the capacitive touch screen driving IC under the condition that no electromagnetic interference, ambient temperature and humidity are stable, Is an unsigned quantity.
  • the first threshold is set according to the actual debugging result in the design process, and can be no longer changed after being set.
  • Step S503 determining whether the width of the envelope area exceeds the set second threshold, and if yes, executing step S504; otherwise, ending the workflow of the embodiment.
  • step S504 is performed, and the corresponding region of the data obtained by sampling the mutual capacitance mode is performed. Coordinate operation is not performed; otherwise, step S505 is performed to perform coordinate calculation on the corresponding region of the data sampled in the mutual capacitance mode.
  • the second threshold is set according to the actual debugging result in the design process, and can be no longer changed after being set.
  • Step S504 No coordinate calculation is performed.
  • Step S505 Perform coordinate calculation.
  • This step is performed according to the normal touch workflow, and the coordinate calculation is performed.
  • the mutual capacitance mode and the self-capacitance mode interval are alternately detected, and each of the capacitors is sampled by using the intermittent decoding after the sampling of the other party, for example, the self-capacitance mode sampling is performed while the mutual capacitance mode is decoded, and the self-capacitance mode is decoded simultaneously.
  • the mutual capacitance mode sampling reduces the time taken by the self-capacitance mode sampling, utilizes the detection time reasonably and effectively, and improves the working efficiency.
  • the palm suppression is performed by using the detection characteristic in the self-capacitance mode, and the point touched by the palm is eliminated. The operation of the finger is not affected, and the accuracy of the touch detection result of the touch sensor is improved.
  • FIG. 15 is a structural block diagram of a touch detection system of a touch sensor according to Embodiment 6 of the present invention.
  • the palm suppression is performed by using the detection characteristic in the self-capacitance mode, and the point touched by the palm is eliminated, and the operation of the finger is not affected.
  • the touch detection system of the touch sensor provided in this embodiment includes a mutual capacitance sampling unit 1, a mutual capacitance decoding unit 2, a self capacitance sampling unit 3, a self capacitance decoding unit 4, a control unit 5, and a self capacitance envelope analysis unit 7.
  • the mutual capacitance sampling unit 1 is respectively connected to the mutual capacitance decoding unit 2 and the control unit 3 for mutual capacitance signal sampling;
  • the mutual capacitance decoding unit 2 is respectively connected with the mutual capacitance sampling unit 1 and the control unit 5 for mutual capacitance signal decoding;
  • the self-capacitance sampling unit 3 is connected to the self-capacitance decoding unit 4 and the control unit 5 for self-capacitance signal sampling;
  • the self-capacitance decoding unit 4 is respectively connected to the self-capacitance sampling unit 3 and the control unit 5 for self-capacitance signal decoding;
  • the control unit 5 is respectively connected with the mutual capacitance sampling unit 1, the mutual capacitance decoding unit 2, the self capacitance sampling unit 3 and the self capacitance decoding unit 4 for controlling the alternate detection of the mutual capacitance mode and the self capacitance mode;
  • the unit 7 is connected to the self-capacitance decoding unit 4 and the control unit 5, respectively,
  • the volume envelope analysis unit 7 is connected to control the coordinate processing of the corresponding region of the data sampled in the mutual capacitance mode when receiving the fifth signal transmitted by the self-capacitance envelope analysis unit 7.
  • Embodiment 5 can be applied to the system of the embodiment, and the interval between the mutual capacitance mode and the self-capacitance mode is alternately detected, thereby reducing the time taken by the sampling of the self-capacitance mode, reasonably and effectively utilizing the detection time, and improving the working efficiency.
  • the palm suppression is performed by using the detection characteristic in the self-capacitance mode, the point touched by the palm is eliminated, and the operation of the finger is not affected, and the accuracy of the touch detection result of the touch sensor is improved.
  • FIG. 16 is a flowchart of a touch detection method for an anti-jamming touch sensor according to Embodiment 7 of the present invention.
  • This embodiment utilizes the detection characteristics in the self-capacitance mode to achieve the purpose of waterproof interference.
  • the characteristics of the mutual capacitance detection technology determine that it is easily interfered by water film, water droplets, sweat, etc., and this interference will cause a reference error and thus a point.
  • the method comprises the following steps:
  • Step S701 The touch sensors are alternately set to the mutual capacitance mode and the self capacitance mode.
  • the driving and sensing of the mutual capacitance mode and the self-capacitance mode are divided into groups to scan and detect the rows and columns of the touch sensor capacitance matrix, and the two are alternately collected between the groups. Since each group of samples in the mutual capacitance mode requires a certain amount of time for decoding, the interval is used for sampling in the self-capacitance mode.
  • decoding is performed after a set of samples in mutual capacitance mode is completed, a set of samples in self-capacitance mode is performed.
  • another set of samples in the mutual capacitance mode is performed and alternated at this interval, thereby reducing the time overhead in sampling in the self-capacitance mode.
  • Step S702 It is determined whether a negative value is detected in the mutual capacitance mode, and a positive value is detected in the self capacitance mode. If yes, step S703 is performed; otherwise, step S704 is performed.
  • Step S703 Turn off the reference update.
  • the negative value is detected in the mutual capacitance mode, and the positive value is detected in the self-capacitance mode. At this time, the water state can be entered and the reference update is turned off.
  • step S703 the workflow of the embodiment is ended.
  • Step S704 It is determined whether there is no negative value detected in the mutual capacitance mode. If yes, step S705 is performed; otherwise, the workflow of the embodiment is ended.
  • Step S705 Resume the baseline update.
  • the mutual capacitance mode and the self-capacitance mode interval are alternately detected, and each of the capacitors is sampled by using the intermittent decoding after the sampling of the other party, for example, the self-capacitance mode sampling is performed while the mutual capacitance mode is decoded, and the self-capacitance mode is decoded simultaneously.
  • the mutual capacitance mode sampling reduces the time taken by the self-capacitance mode sampling, utilizes the detection time reasonably and effectively, and improves the working efficiency.
  • the detection characteristic under the self-capacitance mode is used to achieve the purpose of waterproof interference and improve the touch. The accuracy of the sensor's touch detection results.
  • FIG. 17 is a structural block diagram of a touch detection system of a touch sensor according to Embodiment 8 of the present invention.
  • This embodiment utilizes the detection characteristics in the self-capacitance mode to achieve the purpose of waterproof interference.
  • the touch detection system of the touch sensor provided in this embodiment includes a mutual capacitance sampling unit 1, a mutual capacitance decoding unit 2, a self capacitance sampling unit 3, a self capacitance decoding unit 4, a control unit 5, a mutual capacitance detection determination unit 6, and a self capacitance detection.
  • Decision unit 8 The touch detection system of the touch sensor provided in this embodiment includes a mutual capacitance sampling unit 1, a mutual capacitance decoding unit 2, a self capacitance sampling unit 3, a self capacitance decoding unit 4, a control unit 5, a mutual capacitance detection determination unit 6, and a self capacitance detection.
  • Decision unit 8 includes a mutual capacitance sampling unit 1, a mutual capacitance decoding unit 2, a self capacitance sampling unit 3, a self capacitance decoding unit 4, a control unit 5, a mutual capacitance detection determination unit 6, and a self capacitance detection.
  • the mutual capacitance sampling unit 1 is respectively connected to the mutual capacitance decoding unit 2 and the control unit 3 for mutual capacitance signal sampling;
  • the mutual capacitance decoding unit 2 is respectively connected with the mutual capacitance sampling unit 1 and the control unit 5 for mutual capacitance signal decoding;
  • the self-capacitance sampling unit 3 is connected to the self-capacitance decoding unit 4 and the control unit 5 for self-capacitance signal sampling;
  • the self-capacitance decoding unit 4 is respectively connected to the self-capacitance sampling unit 3 and the control unit 5 for self-capacitance signal decoding;
  • the control unit 5 is respectively connected to the mutual capacitance sampling unit 1, the mutual capacitance decoding unit 2, the self capacitance sampling unit 3 and the self capacitance decoding unit 4, and is used for controlling the alternate detection of the mutual capacitance mode and the self capacitance mode;
  • the mutual capacitance detection determining unit 6 is respectively connected to the mutual capacitance decoding unit 2 and the control unit 5, for
  • the self-capacitance detection determining unit 8 is connected to the self-capacitance decoding unit 4 and the control unit 5, respectively, for detecting in the self-capacitance mode.
  • the eighth signal is sent to the control unit 5 when the value is forward; the control unit 5 is also connected to the mutual capacitance detection determining unit 6 and the self-capacitance detection determining unit 8, respectively, for receiving the sixth transmission by the mutual capacitance detection determining unit 6.
  • the signal and the eighth signal transmitted by the self-capacitance detection determining unit 8 control the off reference update, and the control restores the reference update when receiving the seventh signal transmitted by the mutual capacitance detection determining unit 6.
  • Embodiment 7 can be applied to the system of the embodiment, and the interval between the mutual capacitance mode and the self-capacitance mode is alternately detected, thereby reducing the time occupied by the self-capacitance sampling, reasonably and effectively utilizing the detection time, and improving the working efficiency; At the same time, the detection characteristics under the self-capacitance mode are used to achieve the purpose of waterproof interference, and the accuracy of the touch detection result of the touch sensor is improved.
  • This embodiment provides a touch control terminal, which includes the touch detection system of the touch sensor provided in the second embodiment, the fourth embodiment, the sixth embodiment, or the eighth embodiment.
  • Incorrect refusal of baseline update, palm suppression, or Waterproof interference and other functions improve the accuracy of touch detection results of touch sensors.
  • the touch terminal can also integrate the touch detection systems of any two or more touch sensors provided in Embodiment 2, Embodiment 4, Embodiment 6, and Embodiment 8 to implement a combination of the above functions, for example,
  • the touch detection system of the touch sensor of the above four embodiments is integrated, and at the same time, the mutual capacitance is removed, the mutual update of the mutual capacitance is prevented, the reference update is performed, the palm is suppressed, or Waterproof interference and other functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Electronic Switches (AREA)

Abstract

本发明涉及触控技术领域,提供了一种触摸传感器的触摸检测方法,所述方法包括如下步骤:间隔交替将触摸传感器设置为互电容模式和自电容模式,对触摸传感器电容矩阵的行和列进行扫描检测;互电容模式下扫描检测结果初步判断触摸状态为多指触摸时,进一步对自电容模式下采样得到的数据进行包络分析,判断互电容模式下触摸状态是单指触摸还是多指触摸,若为单指触摸,则输出一个触摸坐标;若为多指触摸,则输出多个触摸坐标。本发明还提供了一种触摸传感器的触摸检测系统和触控终端。本发明提高了触摸传感器的触摸检测结果的准确性,特别是触控终端悬浮状态下大面积触摸时区分单指触摸还是多指触摸时的检测结果的准确性。

Description

触摸传感器的触摸检测方法、系统和触控终端 技术领域
本发明涉及触控技术领域,特别是涉及触摸传感器的触摸检测方法、触摸传感器的触摸检测系统和触控终端。
背景技术
   电容触摸传感器触摸检测技术目前主要有互电容检测和自电容检测两种方式。由于互电容检测方式有着多点触摸的特点,使其成为了主流的电容触摸检测技术,但同时互电容检测也存在一些缺陷,例如悬浮效应。悬浮是指触控终端放置于高绝缘的物体表面;非悬浮是指人体接触到触控终端或触控终端上有大面积系统地。悬浮效应是指用更大的手指,比如大拇指触摸时,出现触摸面积反而比其他手指更小的现象。随着用户体验要求越来越高,悬浮效应成了采用互电容检测的产品性能的重要缺陷。
   互电容的悬浮效应原理如图1和图2所示,图中,Rh和Ch分别为人体对地的阻抗和容抗,人的两指分别触摸不同的节点。图1所示为互电容非悬浮状态下的原理示意图,在非悬浮状态下,由于Ch较大,信号通过Rh和Ch与地有较大的耦合,从而通过截断磁感应线减小节点电容,并能检测到相应的变化量。图2所示为互电容悬浮状态下的原理示意图,在悬浮状态下,Ch非常小,信号几乎不能通过,D1的驱动信号通过A节点电容耦合到感应线S1,S1上的信号又通过C节点电容、手指、B节点最终耦合到感应线S2上,从而使S2上检测到的电容比非悬浮状态下的值大。当有大拇指或大面积按压时,由于这种悬浮效应,将产生按压中心的位置电容增大、周围的电容减小的这种与预期相反的现象。
悬浮效应产生的问题主要表现在大拇指按压拆点和大面积判断困难。拆点是指在悬浮状态下,较大面积(如大拇指)按压电容触摸屏,由于信号相消,导致误认为是多指触摸。如图3所示,在非悬浮状态下,单指较大面积按压,通过互电容检测判定为一个手指(图3中的粗线框),这种判定是正确的。但在悬浮状态下,如图4所示,单指较大面积按压,却错误地判定为两个手指(图4中的两个粗线框)。目前解决该问题的方法主要有:采用金属外壳,加大设备对地面积,减小驱动、感应和手指的耦合电容。金属外壳具有必须与手指接触的局限性,加大设备对地面积具有产品的局限性,而减小驱动、感应和手指的耦合电容又会对信噪比有影响。因此,目前现有的方法都无法从根本上解决该问题。
技术问题
本发明针对现有技术的上述缺陷,提供一种触摸传感器的触摸检测方法,提高了触摸传感器的触摸检测结果的准确性,特别是触控终端悬浮状态下大面积触摸时区分单指触摸还是多指触摸时的检测结果的准确性。
技术解决方案
   本发明采用如下技术方案:
   一种触摸传感器的触摸检测方法,所述方法包括如下步骤:
   间隔交替将触摸传感器设置为互电容模式和自电容模式,对触摸传感器电容矩阵的行和列进行扫描检测;
   互电容模式下扫描检测结果初步判断触摸状态为多指触摸时,进一步对自电容模式下采样得到的数据进行包络分析,判断互电容模式下触摸状态是单指触摸还是多指触摸,若为单指触摸,则输出一个触摸坐标;若为多指触摸,则输出多个触摸坐标。本发明还提供了一种触摸传感器的触摸检测方法,所述方法包括如下步骤:
   间隔交替将触摸传感器设置为互电容模式和自电容模式,对触摸传感器电容矩阵的行和列进行扫描检测;
   互电容模式下扫描检测结果初步判断触摸状态为没有触摸时,进一步对自电容模式下采样得到的数据进行包络分析,判断互电容模式下是否有触摸,若有触摸,则在互电容模式下不更新基准;若无触摸,则在互电容模式下更新基准。本发明还提供了一种触摸传感器的触摸检测方法,所述方法包括如下步骤:
   间隔交替将触摸传感器设置为互电容模式和自电容模式,对触摸传感器电容矩阵的行和列进行扫描检测;
   通过对自电容模式下采样得到的数据进行包络分析,找出所有的包络;
   判断包络区域的宽度是否超过设定的第二阈值,若超过,判定所述包络对应的触摸为手掌触摸,所述互电容模式下采样得到的数据的相应区域是非法数据,对所述互电容模式下采样得到的数据的相应区域不进行坐标运算;否则,所述包络对应的触摸为手指触摸,所述互电容模式下采样得到的数据的相应区域是合法数据,对所述互电容模式下采样得到的数据的相应区域进行坐标运算。本发明还提供了一种触摸传感器的触摸检测方法,所述方法包括如下步骤:
   间隔交替将触摸传感器设置为互电容模式和自电容模式,对触摸传感器电容矩阵的行和列进行扫描检测;
   当互电容模式下检测到负向值、自电容模式下检测到正向值时,关闭基准更新;
   当互电容模式下检测到没有负向值时,恢复基准更新。本发明还提供了一种触摸传感器的触摸检测系统,所述系统包括:
   互电容采样单元,分别与互电容解码单元和控制单元连接,用于互电容信号采样;
   互电容解码单元,分别与互电容采样单元和控制单元连接,用于互电容信号解码;
   自电容采样单元,分别与自电容解码单元和控制单元连接,用于自电容信号采样;
   自电容解码单元,分别与自电容采样单元和控制单元连接,用于自电容信号解码;
   控制单元,分别与互电容采样单元、互电容解码单元、自电容采样单元和自电容解码单元连接,用于控制互电容模式和自电容模式的间隔交替检测。
   本发明还提供了一种触控终端,所述触控终端包括上述触摸传感器的触摸检测系统。
有益效果
本发明通过互电容模式和自电容模式间隔交替检测,利用自电容模式下的检测特性,提高了触摸传感器的触摸检测结果的准确性,特别是触控终端悬浮状态下大面积触摸时区分单指触摸还是多指触摸时的检测结果的准确性。
附图说明
   图1为互电容模式非悬浮状态下的工作原理示意图;
   图2为互电容模式悬浮状态下的工作原理示意图;
   图3为互电容模式非悬浮状态下单指较大面积触摸的效果示意图;
   图4为互电容模式悬浮状态下单指较大面积触摸的效果示意图;
   图5为自电容模式悬浮状态下的工作原理示意图;
   图6为本发明实施例1一种触摸传感器的触摸检测方法的流程图;
   图7为互电容模式和自电容模式交替检测示意图;
   图8为悬浮状态下单指触摸时自电容模式下采样得到的数据的包络状态图;
   图9为悬浮状态下多指触摸时自电容模式下采样得到的数据的包络状态图;
   图10为本发明实施例1中自电容模式下包络分析示意图;
   图11为本发明实施例2和实施例4一种触摸传感器的触摸检测系统的结构框图;
   图12为本发明实施例3一种触摸传感器的触摸检测方法的流程图;
   图13为互电容模式悬浮状态下较大面积按压电容触摸屏的效果示意图;
   图14为本发明实施例5一种触摸传感器的触摸检测方法的流程图;
   图15为本发明实施例6一种触摸传感器的触摸检测系统的结构框图;
   图16为本发明实施例7一种触摸传感器的触摸检测方法的流程图;
图17为本发明实施例8一种触摸传感器的触摸检测系统的结构框图。
本发明的实施方式
   为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
   图5是自电容模式悬浮状态下的工作原理示意图,请参阅图5所示,与互电容模式下的检测相反,自电容模式下检测到的触摸结果是电容增大,而不是减小。手指与屏耦合面积越大,检测到的变化量就越大。在悬浮状态下,Ch同样会增大,自电容模式下检测到的变化量也会在一定程度上减小,但不会像互电容模式那样产生相反的变化量。本发明实施例利用自电容模式下的检测特性,自电容模式和互电容模式交替采集数据,以改善互电容模式检测带来的悬浮效应,并减少自电容模式采样所占用的时间,合理有效地利用了检测时间。
   说明:以下实施例中的“多个”为≥2个。
   实施例1:
   请参阅图6所示,为本发明实施例1一种触摸传感器的触摸检测方法的流程图。本实施例利用自电容模式下的检测特性,解决了互电容模式在悬浮状态下拆点的问题,提高了用户体验。本方法包括下述步骤:
   步骤S101:间隔交替将触摸传感器设置为互电容模式和自电容模式。
   如图7所示,互电容模式和自电容模式的驱动和感应均分成多组对触摸传感器电容矩阵的行和列进行扫描检测,并且两者在组间进行交替采集。由于互电容模式下每组采样完成后需要一定的时间进行解码,利用这个间歇进行自电容模式下的采样。当互电容模式下的一组采样完成后进行解码时,进行自电容模式下的一组采样 ,当自电容模式下的一组采样完成后进行解码时,进行互电容模式下的另一组采样,并按此间隔交替进行,从而减少自电容模式采样时的时间开销。
   步骤S102:互电容模式下检测判定为多指触摸。
   本步骤中,互电容模式下检测判定为多指触摸包括两种情形:一种是正常的多指触摸,也即用户使用两个或者两个以上的手指进行触摸;另一种是单指较大面积按压被判定为多指触摸(例如大拇指按压拆点)。此时,需要通过后续步骤进行识别,以判定是正常的多指触摸还是错误判断为多指触摸。
   步骤S103:对自电容模式下采样得到的数据进行包络分析。
   本步骤以及后续步骤需要通过自电容模式下的包络分析判断互电容模式下触摸状态是单指触摸还是多指触摸。
   步骤S104:判断是否为一个包络,若是,执行步骤S105,否则,执行步骤S106。
   本步骤判断是一个包络还是多个包络。若为一个包络,则判定互电容模式下触摸状态为单指触摸,执行步骤S105;否则,即为多个包络,判定互电容模式下触摸状态为多指触摸,执行步骤S106。如图8所示,为悬浮状态下单指触摸时自电容模式下采样得到的数据的包络状态图,单指触摸时自电容模式下采样得到的数据呈现出单个包络状态;如图9所示,为悬浮状态下多指触摸时自电容模式下采样得到的数据的包络状态图,多指触摸时自电容模式下采样得到的数据呈现出多个包络状态。图8和图9中,横坐标为驱动线序号,纵坐标为检测信号变化量。具体地,可通过如下方法进行包络分析:
   A1、查找信号变化量的最大值的点(如图10中点A);
   其中,信号变化量是检测到的电容值相对基准值的变化量,基准值是指在无任何电磁干扰、环境温度及湿度稳定的条件下,电容触摸屏驱动IC所采样到的原始检测数据值,为无符号量。
   A2、判断查找到的信号变化量的最大值是否大于设定的第一阈值;
   其中,第一阈值在设计过程中根据实际调试的结果进行设定,设定好后可不再更改。
   A3、若查找到的信号变化量的最大值大于设定的第一阈值,判定存在包络,需要进行包络的分割;
   A4、从所述信号变化量的最大值的点(如图10中点A)往左右两个方向进行查找,找出所述包络的边界(如图10中点B、点C),得到包络区域;
   A5、判断除上述包络区域外是否还有大于设定的第一阈值的点;
   因为只需区分出是一个包络还是多个包络,而无需判断多于一个包络时的包络数,所以本步骤只需判断除上述包络区域外是否还有大于设定的第一阈值的点。
   A6、若没有大于设定的第一阈值的点,判定为一个包络,否则,判定为多个包络。
   若A5没有找到除点A外的大于设定的第一阈值的点,则说明为一个包络,实际上只有一个触摸点,需要执行步骤S105,进行点合并;否则,说明实际上存在多个触摸点,无需进行点合并,执行步骤S106。
   步骤S105:单指触摸,输出一个触摸坐标。
   本步骤将互电容检测到的多个数据合并为一个触摸点,输出一个触摸坐标,从而达到抑制互电容检测的悬浮效应的目的。
   步骤S106:多指触摸,输出多个触摸坐标。
   本步骤按平时正常的触摸工作流程进行,输出多个触摸坐标。
   本实施例通过互电容模式和自电容模式间隔交替检测,各自利用对方采样完成后解码的间歇进行电容采样,例如在互电容模式解码的同时进行自电容模式采样,在自电容模式解码的同时进行互电容模式采样,从而减少了自电容模式采样所占用的时间,合理有效地利用了检测时间,提高了工作效率;同时,利用自电容模式下的检测特性,提高了触摸传感器的触摸检测结果的准确性,特别是触控终端悬浮状态下大面积触摸时区分单指触摸还是多指触摸时的检测结果的准确性,解决了互电容在悬浮状态下拆点的问题,提高了用户体验。
   实施例2:
   请参阅图11所示,为本发明实施例2一种触摸传感器的触摸检测系统的结构框图。本实施例利用自电容模式下的检测特性,解决了互电容模式在悬浮状态下拆点的问题,提高了用户体验。
   本实施例提供的触摸传感器的触摸检测系统包括互电容采样单元1、互电容解码单元2、自电容采样单元3、自电容解码单元4、控制单元5、互电容检测判定单元6和自电容包络分析单元7。互电容采样单元1分别与互电容解码单元2和控制单元3连接,用于互电容信号采样;互电容解码单元2分别与互电容采样单元1和控制单元5连接,用于互电容信号解码;自电容采样单元3分别与自电容解码单元4和控制单元5连接,用于自电容信号采样;自电容解码单元4分别与自电容采样单元3和控制单元5连接,用于自电容信号解码;控制单元5分别与互电容采样单元1、互电容解码单元2、自电容采样单元3和自电容解码单元4连接,用于控制互电容模式和自电容模式的间隔交替检测;互电容检测判定单元6分别与互电容解码单元2和控制单元5连接,用于根据互电容模式下扫描检测结果初步判断触摸状态是否为多指触摸,并在判定为多指触摸时发送第一信号给控制单元5;自电容包络分析单元7分别与自电容解码单元4和控制单元5连接,用于判断互电容模式下触摸状态是单指触摸还是多指触摸,并在判定为单指触摸时发送第二信号给控制单元5;控制单元5还分别与互电容检测判定单元6和自电容包络分析单元7连接,用于在接收到互电容检测判定单元6发送的第一信号时控制自电容包络分析单元7工作,以及在接收到自电容包络分析单元7发送的第二信号时控制输出一个触摸坐标。
   实施例1提供的方法可应用于本实施例的系统,通过互电容模式和自电容模式间隔交替检测,减少了自电容模式采样所占用的时间,合理有效地利用了检测时间,提高了工作效率;同时,利用自电容模式下的检测特性,提高了触摸传感器的触摸检测结果的准确性,特别是触控终端悬浮状态下大面积触摸时区分单指触摸还是多指触摸时的检测结果的准确性,解决了互电容在悬浮状态下拆点的问题,提高了用户体验。
   实施例3:
   请参阅图12所示,为本发明实施例3一种触摸传感器的触摸检测方法的流程图。本实施例利用自电容模式下的检测特性,解决了互电容模式悬浮消点时错误地进行基准更新的问题。本方法包括下述步骤:
   步骤S301:间隔交替将触摸传感器设置为互电容模式和自电容模式。
   如图7所示,互电容模式和自电容模式的驱动和感应均分成多组对触摸传感器电容矩阵的行和列进行扫描检测,并且两者在组间进行交替采集。由于互电容模式下每组采样完成后需要一定的时间进行解码,利用这个间歇进行自电容模式下的采样。当互电容模式下的一组采样完成后进行解码时,进行自电容模式下的一组采样 ,当自电容模式下的一组采样完成后进行解码时,进行互电容模式下的另一组采样,并按此间隔交替进行,从而减少自电容模式采样时的时间开销。
   步骤S302:互电容模式下检测判定为没有触摸。
   如图13所示,在悬浮状态下,较大面积按压电容触摸屏,由于信号相消,数据没有达到设定的阈值,互电容模式下扫描检测结果会初步判断触摸状态为没有触摸,从而错误地基准更新,当手指从触摸屏上离开后,导致冒点(即没有触摸动作,出现触摸点的误检测现象)。由于自电容模式受到悬浮的影响很小,互电容模式下悬浮消点时,自电容模式还能准确地识别到有触摸。本实施例将通过后续步骤的自电容包络分析,确定是否有触摸。
   步骤S303:对通过自电容模式下采样得到的数据进行包络分析。
   本步骤以及后续步骤需要通过自电容模式包络分析判断是有触摸还是没有触摸。
   步骤S304:判断是否有触摸,若是,执行步骤S305,否则,执行步骤S306。
   本步骤通过自电容模式判断互电容模式下是否有触摸。若有触摸,执行步骤S305,互电容模式下不更新基准;否则,即为没有触摸,执行步骤S306,互电容模式下更新基准。具体地,可通过如下方法进行自电容模式下的包络分析和判断:
   A1、查找信号变化量的最大值的点(如图10中点A);
   其中,信号变化量是检测到的电容值相对基准值的变化量,基准值是指在无任何电磁干扰、环境温度及湿度稳定的条件下,电容触摸屏驱动IC所采样到的原始检测数据值,为无符号量。
   A2、判断查找到的信号变化量的最大值是否大于设定的第一阈值;
   其中,第一阈值在设计过程中根据实际调试的结果进行设定,设定好后可不再更改。
   A3、若查找到的信号变化量的最大值大于设定的第一阈值,判定存在包络,也即有触摸;否则,判定无触摸。
   步骤S305:互电容模式下不更新基准。
   通过自电容模式检测判定有触摸后,互电容模式下暂时不能更新基准,从而防止互电容悬浮消点时错误地进行基准更新。
   步骤S306:互电容模式下更新基准。
   通过自电容模式检测判定确实没有触摸后,互电容模式下可以进行基准更新。
   本实施例通过互电容模式和自电容模式间隔交替检测,各自利用对方采样完成后解码的间歇进行电容采样,例如在互电容模式解码的同时进行自电容模式采样,在自电容模式解码的同时进行互电容模式采样,从而减少了自电容模式采样所占用的时间,合理有效地利用了检测时间,提高了工作效率;同时,利用自电容模式下的检测特性,解决了互电容模式悬浮消点时错误地进行基准更新的问题,提高了触摸传感器的触摸检测结果的准确性。
   实施例4:
   请参阅图11所示,为本发明实施例4一种触摸传感器的触摸检测系统的结构框图。本实施例利用自电容模式下的检测特性,解决了互电容模式悬浮消点时错误地进行基准更新的问题。
   本实施例提供的触摸传感器的触摸检测系统包括互电容采样单元1、互电容解码单元2、自电容采样单元3、自电容解码单元4、控制单元5、互电容检测判定单元6和自电容包络分析单元7。互电容采样单元1分别与互电容解码单元2和控制单元3连接,用于互电容信号采样;互电容解码单元2分别与互电容采样单元1和控制单元5连接,用于互电容信号解码;自电容采样单元3分别与自电容解码单元4和控制单元5连接,用于自电容信号采样;自电容解码单元4分别与自电容采样单元3和控制单元5连接,用于自电容信号解码;控制单元5分别与互电容采样单元1、互电容解码单元2、自电容采样单元3和自电容解码单元4连接,用于控制互电容模式和自电容模式的间隔交替检测;互电容检测判定单元6分别与互电容解码单元2和控制单元5连接,用于根据互电容模式下扫描检测结果初步判断是否有触摸,并在判定为没有触摸时发送第三信号给控制单元5;自电容包络分析单元7分别与自电容解码单元4和控制单元5连接,用于判断互电容模式下是否有触摸,并在判定为有触摸时发送第四信号给控制单元5;控制单元5还分别与互电容检测判定单元6和自电容包络分析单元7连接,用于在接收到互电容检测判定单元6发送的第三信号时控制自电容包络分析单元7工作,以及在接收到自电容包络分析单元7发送的第四信号时控制互电容模式下不更新基准。
   实施例3提供的方法可应用于本实施例的系统,通过互电容模式和自电容模式间隔交替检测,减少了自电容模式采样所占用的时间,合理有效地利用了检测时间,提高了工作效率;同时,利用自电容模式下的检测特性,解决了互电容模式悬浮消点时错误地进行基准更新的问题,提高了触摸传感器的触摸检测结果的准确性。
   实施例5:
   请参阅图14所示,为本发明实施例5一种抗干扰的触摸传感器的触摸检测方法的流程图。本实施例利用自电容模式下的检测特性进行手掌抑制,手掌抑制是指在较大尺寸的电容屏应用上,准确地分辨出手掌触摸与手指触摸,达到消除手掌触摸出来的点、而手指的操作不受影响的目的,防止手掌干扰。本方法包括下述步骤:
   步骤S501:间隔交替将触摸传感器设置为互电容模式和自电容模式。
   如图7所示,互电容模式和自电容模式的驱动和感应均分成多组对触摸传感器电容矩阵的行和列进行扫描检测,并且两者在组间进行交替采集。由于互电容模式下每组采样完成后需要一定的时间进行解码,利用这个间歇进行自电容模式下的采样。当互电容模式下的一组采样完成后进行解码时,进行自电容模式下的一组采样 ,当自电容模式下的一组采样完成后进行解码时,进行互电容模式下的另一组采样,并按此交替循环进行,从而减少自电容模式采样时的时间开销。
   步骤S502:通过对自电容模式下采样得到的数据进行包络分析,找出所有的包络。
   具体地,可通过如下方法进行包络分析:
   A1、查找信号变化量的最大值的点(如图10中点A);
   其中,信号变化量是检测到的电容值相对基准值的变化量,基准值是指在无任何电磁干扰、环境温度及湿度稳定的条件下,电容触摸屏驱动IC所采样到的原始检测数据值,为无符号量。A2、判断查找到的信号变化量的最大值是否大于设定的第一阈值;
   其中,第一阈值在设计过程中根据实际调试的结果进行设定,设定好后可不再更改。
   A3、若查找到的信号变化量的最大值大于设定的第一阈值,判定存在包络,需要进行包络的分割;
   A4、从信号变化量的最大值的点(如图10中点A)往左右两个方向进行查找,找出包络的边界(如图10中点B、点C),得到包络区域。
   步骤S503:判断包络区域的宽度是否超过设定的第二阈值,若是,执行步骤S504,否则,结束本实施例的工作流程。
   本步骤中,若判断包络区域的宽度超过设定的第二阈值,则说明该包络对应的触摸为手掌触摸,此时执行步骤S504,对该互电容模式下采样得到的数据的相应区域不进行坐标运算;否则,执行步骤S505,对该互电容模式下采样得到的数据的相应区域进行坐标运算。其中,第二阈值在设计过程中根据实际调试的结果进行设定,设定好后可不再更改。
   步骤S504:不进行坐标运算。
   本步骤中,由于触摸为手掌触摸,该互电容模式下采样得到的数据的相应区域是非法数据,对该互电容模式下采样得到的数据的相应区域不进行坐标运算。
   步骤S505:进行坐标运算。
   本步骤按平时正常的触摸工作流程进行,进行坐标运算。
   本实施例通过互电容模式和自电容模式间隔交替检测,各自利用对方采样完成后解码的间歇进行电容采样,例如在互电容模式解码的同时进行自电容模式采样,在自电容模式解码的同时进行互电容模式采样,从而减少了自电容模式采样所占用的时间,合理有效地利用了检测时间,提高了工作效率;同时,利用自电容模式下的检测特性进行手掌抑制,消除手掌触摸出来的点,而手指的操作不受影响,提高了触摸传感器的触摸检测结果的准确性。
   实施例6:
   请参阅图15所示,为本发明实施例6一种触摸传感器的触摸检测系统的结构框图。本实施例利用自电容模式下的检测特性进行手掌抑制,消除手掌触摸出来的点,而手指的操作不受影响。
   本实施例提供的触摸传感器的触摸检测系统包括互电容采样单元1、互电容解码单元2、自电容采样单元3、自电容解码单元4、控制单元5和自电容包络分析单元7。互电容采样单元1分别与互电容解码单元2和控制单元3连接,用于互电容信号采样;互电容解码单元2分别与互电容采样单元1和控制单元5连接,用于互电容信号解码;自电容采样单元3分别与自电容解码单元4和控制单元5连接,用于自电容信号采样;自电容解码单元4分别与自电容采样单元3和控制单元5连接,用于自电容信号解码;控制单元5分别与互电容采样单元1、互电容解码单元2、自电容采样单元3和自电容解码单元4连接,用于控制互电容模式和自电容模式的间隔交替检测;自电容包络分析单元7分别与自电容解码单元4和控制单元5连接,用于找出所有的包络,并判断包络区域的宽度是否超过设定的第二阈值,若超过,判定包络对应的触摸为手掌触摸,互电容模式下采样得到的数据的相应区域是非法数据,发送第五信号给控制单元5;控制单元5还与自电容包络分析单元7连接,用于在接收到自电容包络分析单元7发送的第五信号时控制对互电容模式下采样得到的数据的相应区域不进行坐标运算。
   实施例5提供的方法可应用于本实施例的系统,通过互电容模式和自电容模式间隔交替检测,减少了自电容模式采样所占用的时间,合理有效地利用了检测时间,提高了工作效率;同时,利用自电容模式下的检测特性进行手掌抑制,消除手掌触摸出来的点,而手指的操作不受影响,提高了触摸传感器的触摸检测结果的准确性。
   实施例7:
   请参阅图16所示,为本发明实施例7一种抗干扰的触摸传感器的触摸检测方法的流程图。本实施例利用自电容模式下的检测特性,达到防水干扰的目的。互电容检测技术的特性决定了它容易受到水膜、水滴、汗液等的干扰,这种干扰将导致基准错误,从而冒点。本方法包括下述步骤:
   步骤S701:间隔交替将触摸传感器设置为互电容模式和自电容模式。
   如图7所示,互电容模式和自电容模式的驱动和感应均分成多组对触摸传感器电容矩阵的行和列进行扫描检测,并且两者在组间进行交替采集。由于互电容模式下每组采样完成后需要一定的时间进行解码,利用这个间歇进行自电容模式下的采样。当互电容模式下的一组采样完成后进行解码时,进行自电容模式下的一组采样 ,当自电容模式下的一组采样完成后进行解码时,进行互电容模式下的另一组采样,并按此间隔交替进行,从而减少自电容模式采样时的时间开销。
   步骤S702:判断是否互电容模式下检测到负向值、自电容模式下检测到正向值,若是,执行步骤S703,否则, 执行步骤S704。
   步骤S703:关闭基准更新。
   当屏上只有水时,互电容模式下检测到负向值,而自电容模式下检测到正向值,此时,可以进入有水态,关闭基准更新。
   步骤S703之后,结束本实施例的工作流程。
   步骤S704:判断是否互电容模式下检测到没有负向值,若是,执行步骤S705,否则,结束本实施例的工作流程。
   步骤S705:恢复基准更新。
   当互电容模式下检测到没有负向值时,说明此时屏上没有水,可以退出有水态,恢复基准更新。
   本实施例通过互电容模式和自电容模式间隔交替检测,各自利用对方采样完成后解码的间歇进行电容采样,例如在互电容模式解码的同时进行自电容模式采样,在自电容模式解码的同时进行互电容模式采样,从而减少了自电容模式采样所占用的时间,合理有效地利用了检测时间,提高了工作效率;同时,利用自电容模式下的检测特性,达到防水干扰的目的,提高了触摸传感器的触摸检测结果的准确性。
   实施例8:
   请参阅图17所示,为本发明实施例8一种触摸传感器的触摸检测系统的结构框图。本实施例利用自电容模式下的检测特性,达到防水干扰的目的。
   本实施例提供的触摸传感器的触摸检测系统包括互电容采样单元1、互电容解码单元2、自电容采样单元3、自电容解码单元4、控制单元5、互电容检测判定单元6和自电容检测判定单元8。互电容采样单元1分别与互电容解码单元2和控制单元3连接,用于互电容信号采样;互电容解码单元2分别与互电容采样单元1和控制单元5连接,用于互电容信号解码;自电容采样单元3分别与自电容解码单元4和控制单元5连接,用于自电容信号采样;自电容解码单元4分别与自电容采样单元3和控制单元5连接,用于自电容信号解码;控制单元5分别与互电容采样单元1、互电容解码单元2、自电容采样单元3和自电容解码单元4连接,用于控制互电容模式和自电容模式的间隔交替检测;互电容检测判定单元6分别与互电容解码单元2和控制单元5连接,用于在互电容模式下检测到负向值时发送第六信号给控制单元5,在互电容模式下检测到没有负向值时发送第七信号给控制单元5;自电容检测判定单元8分别与自电容解码单元4和控制单元5连接,用于在自电容模式下检测到正向值时发送第八信号给控制单元5;控制单元5还分别与互电容检测判定单元6和自电容检测判定单元8连接,用于在接收到互电容检测判定单元6发送的第六信号和自电容检测判定单元8发送的第八信号时控制关闭基准更新,以及接收到互电容检测判定单元6发送的第七信号时控制恢复基准更新。
   实施例7提供的方法可应用于本实施例的系统,通过互电容模式和自电容模式间隔交替检测,减少了自电容采样所占用的时间,合理有效地利用了检测时间,提高了工作效率;同时,利用自电容模式下的检测特性,达到防水干扰的目的,提高了触摸传感器的触摸检测结果的准确性。
   实施例9:
   本实施例提供了一种触控终端,该触控终端包括实施例2、实施例4、实施例6或者实施例8提供的触摸传感器的触摸检测系统,分别实现抑制互电容拆点、防止互电容悬浮消点时错误地进行基准更新、手掌抑制或者 防水干扰等功能,提高了触摸传感器的触摸检测结果的准确性。或者,该触控终端还可以集实施例2、实施例4、实施例6和实施例8提供的任意两个或者两个以上的触摸传感器的触摸检测系统于一体,实现上述功能的组合,例如集上述四个实施例的触摸传感器的触摸检测系统于一体,同时实现抑制互电容拆点、防止互电容悬浮消点时错误地进行基准更新、手掌抑制或者 防水干扰等功能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1.    一种触摸传感器的触摸检测方法,其特征在于,所述方法包括如下步骤:
       间隔交替将触摸传感器设置为互电容模式和自电容模式,对触摸传感器电容矩阵的行和列进行扫描检测;
    互电容模式下扫描检测结果初步判断触摸状态为多指触摸时,进一步对自电容模式下采样得到的数据进行包络分析,判断互电容模式下触摸状态是单指触摸还是多指触摸,若为单指触摸,则输出一个触摸坐标;若为多指触摸,则输出多个触摸坐标。
  2. 根据权利要求1所述的方法,其特征在于,所述进一步对自电容模式下采样得到的数据进行包络分析,判断互电容模式下触摸状态是单指触摸还是多指触摸,若为单指触摸,则输出一个触摸坐标;若为多指触摸,则输出多个触摸坐标的步骤具体为:
       根据自电容模式下采样得到的数据分析其包络状态,判断是一个包络还是多个包络;
    若为一个包络,则判定互电容模式下触摸状态为单指触摸,将互电容检测到的多个数据合并为一个触摸点,输出一个触摸坐标;若为多个包络,则判定互电容模式下触摸状态为多指触摸,输出多个触摸坐标。
  3. 根据权利要求2所述的方法,其特征在于,所述根据自电容模式下采样得到的数据分析其包络状态,判断是一个包络还是多个包络的步骤具体为:
       查找信号变化量的最大值的点;
       判断查找到的信号变化量的最大值是否大于设定的第一阈值;
       若查找到的信号变化量的最大值大于设定的第一阈值,判定存在包络;
       从所述信号变化量的最大值的点往左右两个方向进行查找,找出所述包络的边界,得到包络区域;
       判断除上述包络区域外是否还有大于设定的第一阈值的点;
    若没有大于设定的第一阈值的点,判定为一个包络,否则,判定为多个包络。
  4. 一种触摸传感器的触摸检测方法,其特征在于,所述方法包括如下步骤:
       间隔交替将触摸传感器设置为互电容模式和自电容模式,对触摸传感器电容矩阵的行和列进行扫描检测;
    互电容模式下扫描检测结果初步判断触摸状态为没有触摸时,进一步对自电容模式下采样得到的数据进行包络分析,判断互电容模式下是否有触摸,若有触摸,则在互电容模式下不更新基准;若无触摸,则在互电容模式下更新基准。
  5. 根据权利要求4所述的方法,其特征在于,所述进一步对自电容模式下采样得到的数据进行包络分析,判断互电容模式下是否有触摸的步骤具体为:
       查找信号变化量的最大值的点;
       判断查找到的信号变化量的最大值是否大于设定的第一阈值;
    若查找到的信号变化量的最大值大于设定的第一阈值,判定有触摸;否则,判定无触摸。
  6. 一种触摸传感器的触摸检测方法,其特征在于,所述方法包括如下步骤:
       间隔交替将触摸传感器设置为互电容模式和自电容模式,对触摸传感器电容矩阵的行和列进行扫描检测;
       通过对自电容模式下采样得到的数据进行包络分析,找出所有的包络;
       判断包络区域的宽度是否超过设定的第二阈值,若超过,判定所述包络对应的触摸为手掌触摸,所述互电容模式下采样得到的数据的相应区域是非法数据,对所述互电容模式下采样得到的数据的相应区域不进行坐标运算;否则,所述包络对应的触摸为手指触摸,所述互电容模式下采样得到的数据的相应区域是合法数据,对所述互电容模式下采样得到的数据的相应区域进行坐标运算。
  7. 根据权利要求6所述的方法,其特征在于,所述通过对自电容模式下采样得到的数据进行包络分析,找出所有的包络的步骤具体为:
       查找信号变化量的最大值的点;
       判断查找到的信号变化量的最大值是否大于设定的第一阈值;
       若查找到的信号变化量的最大值大于设定的第一阈值,判定存在包络;
       从所述信号变化量的最大值的点往左右两个方向进行查找,找出所述包络的边界,得到包络区域。
  8. 一种触摸传感器的触摸检测方法,其特征在于,所述方法包括如下步骤:
       间隔交替将触摸传感器设置为互电容模式和自电容模式,对触摸传感器电容矩阵的行和列进行扫描检测;
       当互电容模式下检测到负向值、自电容模式下检测到正向值时,关闭基准更新;
    当互电容模式下检测到没有负向值时,恢复基准更新。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述间隔交替将触摸传感器设置为互电容模式和自电容模式,对触摸传感器电容矩阵的行和列进行扫描检测的步骤具体为:
    互电容模式和自电容模式的驱动和感应均分成多组对触摸传感器电容矩阵的行和列进行扫描检测,当互电容模式下的一组采样完成后进行解码时,进行自电容模式下的一组采样 ,当自电容模式下的一组采样完成后进行解码时,进行互电容模式下的另一组采样,并按此间隔交替进行。
  10. 一种触摸传感器的触摸检测系统,其特征在于,所述系统包括:
       互电容采样单元,分别与互电容解码单元和控制单元连接,用于互电容信号采样;
       互电容解码单元,分别与互电容采样单元和控制单元连接,用于互电容信号解码;
       自电容采样单元,分别与自电容解码单元和控制单元连接,用于自电容信号采样;
       自电容解码单元,分别与自电容采样单元和控制单元连接,用于自电容信号解码;
    控制单元,分别与互电容采样单元、互电容解码单元、自电容采样单元和自电容解码单元连接,用于控制互电容模式和自电容模式的间隔交替检测。
  11. 根据权利要求10所述的系统,其特征在于,所述系统还包括:
       互电容检测判定单元,分别与互电容解码单元和控制单元连接,用于根据互电容模式下扫描检测结果初步判断触摸状态是否为多指触摸,并在判定为多指触摸时发送第一信号给控制单元;
       自电容包络分析单元,分别与自电容解码单元和控制单元连接,用于判断互电容模式下触摸状态是单指触摸还是多指触摸,并在判定为单指触摸时发送第二信号给控制单元;
    所述控制单元还分别与互电容检测判定单元和自电容包络分析单元连接,用于在接收到互电容检测判定单元发送的第一信号时控制自电容包络分析单元工作,以及在接收到自电容包络分析单元发送的第二信号时控制输出一个触摸坐标。
  12. 根据权利要求10所述的系统,其特征在于,所述系统还包括:
       互电容检测判定单元,分别与互电容解码单元和控制单元连接,用于根据互电容模式下扫描检测结果初步判断是否有触摸,并在判定为没有触摸时发送第三信号给控制单元;
       自电容包络分析单元,分别与自电容解码单元和控制单元连接,用于判断互电容模式下是否有触摸,并在判定为有触摸时发送第四信号给控制单元;
    所述控制单元还分别与互电容检测判定单元和自电容包络分析单元连接,用于在接收到互电容检测判定单元发送的第三信号时控制自电容包络分析单元工作,以及在接收到自电容包络分析单元发送的第四信号时控制互电容模式下不更新基准。
  13. 根据权利要求10所述的系统,其特征在于,所述系统还包括:
       自电容包络分析单元,分别与自电容解码单元和控制单元连接,用于找出所有的包络,并判断包络区域的宽度是否超过设定的第二阈值,若超过,判定所述包络对应的触摸为手掌触摸,所述互电容模式下采样得到的数据的相应区域是非法数据,发送第五信号给控制单元;
    所述控制单元还与自电容包络分析单元连接,用于在接收到自电容包络分析单元发送的第五信号时控制对所述互电容模式下采样得到的数据的相应区域不进行坐标运算。
  14. 根据权利要求10所述的系统,其特征在于,所述系统还包括:
       互电容检测判定单元,分别与互电容解码单元和控制单元连接,用于在互电容模式下检测到负向值时发送第六信号给控制单元,在互电容模式下检测到没有负向值时发送第七信号给控制单元;
       自电容检测判定单元,分别与自电容解码单元和控制单元连接,用于在自电容模式下检测到正向值时发送第八信号给控制单元;
    所述控制单元还分别与互电容检测判定单元和自电容检测判定单元连接,用于在接收到互电容检测判定单元发送的第六信号和自电容检测判定单元发送的第八信号时控制关闭基准更新,以及接收到互电容检测判定单元发送的第七信号时控制恢复基准更新。
  15. 一种触控终端,其特征在于,所述触控终端包括权利要求10~14任一项所述的触摸传感器的触摸检测系统。
PCT/CN2013/085564 2012-11-27 2013-10-21 触摸传感器的触摸检测方法、系统和触控终端 WO2014082506A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/552,896 US9798428B2 (en) 2012-11-27 2014-11-25 Touch detecting method, touch detecting system and touch terminal for touch sensor
US15/700,123 US10241632B2 (en) 2012-11-27 2017-09-09 Touch detecting method, touch detecting system and touch terminal for touch sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210491121.1A CN102968235B (zh) 2012-11-27 2012-11-27 触摸传感器的触摸检测方法、系统和触控终端
CN201210491121.1 2012-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/552,896 Continuation US9798428B2 (en) 2012-11-27 2014-11-25 Touch detecting method, touch detecting system and touch terminal for touch sensor

Publications (1)

Publication Number Publication Date
WO2014082506A1 true WO2014082506A1 (zh) 2014-06-05

Family

ID=47798405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085564 WO2014082506A1 (zh) 2012-11-27 2013-10-21 触摸传感器的触摸检测方法、系统和触控终端

Country Status (3)

Country Link
US (2) US9798428B2 (zh)
CN (1) CN102968235B (zh)
WO (1) WO2014082506A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114594880A (zh) * 2022-05-10 2022-06-07 上海海栎创科技股份有限公司 互电容信号的修正方法、识别判断方法及电子装置

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090174676A1 (en) 2008-01-04 2009-07-09 Apple Inc. Motion component dominance factors for motion locking of touch sensor data
US8594740B2 (en) 2008-06-11 2013-11-26 Pantech Co., Ltd. Mobile communication terminal and data input method
TWI493419B (zh) * 2013-03-15 2015-07-21 Novatek Microelectronics Corp 觸控裝置及其觸控偵測方法
TWI490748B (zh) * 2013-04-02 2015-07-01 Elan Microelectronics Corp 浮控式物件識別方法
CN105474154B (zh) * 2013-08-16 2019-05-14 苹果公司 用于用户接地校正的触摸面板电极结构
TWI509531B (zh) * 2013-09-13 2015-11-21 Apex Material Technology Corp Apparatus for identifying touch signal and method thereof
TWI503725B (zh) * 2013-10-09 2015-10-11 Ili Technology Corp 自互容檢測電路及具有自互容檢測電路的電容式觸控面板
CN104571901A (zh) * 2013-10-25 2015-04-29 中兴通讯股份有限公司 来电提示的转换方法及装置、移动终端
US9606664B2 (en) * 2013-11-13 2017-03-28 Dell Products, Lp Dynamic hover sensitivity and gesture adaptation in a dual display system
TWI552045B (zh) * 2013-12-05 2016-10-01 禾瑞亞科技股份有限公司 判斷錯誤近接事件的方法與裝置
US9310934B2 (en) * 2014-02-21 2016-04-12 Qualcomm Incorporated Systems and methods of moisture detection and false touch rejection on touch screen devices
CN104866147B (zh) * 2014-02-24 2018-01-23 原相科技股份有限公司 电容式手指导航模组及其制作方法
CN104063101B (zh) 2014-05-30 2016-08-24 小米科技有限责任公司 触摸屏控制方法和装置
CN105302383B (zh) * 2014-06-23 2018-07-31 炬芯(珠海)科技有限公司 一种电容触摸传感器抗干扰的方法和设备
TWI526952B (zh) * 2014-08-21 2016-03-21 義隆電子股份有限公司 電容式觸控裝置及其物件辨識方法
DE202015006142U1 (de) 2014-09-02 2015-12-09 Apple Inc. Elektronische Touch-Kommunikation
EP3175330B1 (en) 2014-09-22 2022-04-20 Apple Inc. Ungrounded user signal compensation for pixelated self-capacitance touch sensor panel
US10712867B2 (en) * 2014-10-27 2020-07-14 Apple Inc. Pixelated self-capacitance water rejection
TWI539346B (zh) * 2014-10-28 2016-06-21 宏碁股份有限公司 觸控顯示裝置及其觸控點偵測方法
US9489097B2 (en) * 2015-01-23 2016-11-08 Sony Corporation Dynamic touch sensor scanning for false border touch input detection
WO2016126525A1 (en) 2015-02-02 2016-08-11 Apple Inc. Flexible self-capacitance and mutual capacitance touch sensing system architecture
US9746975B2 (en) * 2015-03-27 2017-08-29 Synaptics Incorporated Capacitive measurement processing for mode changes
FI20150195A (fi) * 2015-06-26 2016-12-27 Leeluu Labs Oy Menetelmä kapasitiivisen sensorirakenteen kosketuksen havaitsemiseksi, ja kapasitiivinen sensorirakenne
JP6532128B2 (ja) * 2015-09-14 2019-06-19 株式会社東海理化電機製作所 操作検出装置
TWI628569B (zh) 2015-09-30 2018-07-01 蘋果公司 具有適應性輸入列之鍵盤
JP2017091224A (ja) * 2015-11-10 2017-05-25 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置
JP6027217B1 (ja) * 2015-12-14 2016-11-16 株式会社東海理化電機製作所 タッチ式入力装置
CN107045401B (zh) * 2016-02-06 2020-06-09 敦泰电子有限公司 一种内嵌式自容触控显示装置及水检测方法
CN107238788B (zh) * 2016-03-29 2019-12-27 深圳市汇顶科技股份有限公司 基于矩阵电容板的触控芯片测试系统及其测试方法
JP6685825B2 (ja) * 2016-05-02 2020-04-22 株式会社ジャパンディスプレイ 表示装置及び表示装置の駆動方法
TWI596524B (zh) * 2016-07-05 2017-08-21 友達光電股份有限公司 觸控結構及觸控顯示面板
US10303299B2 (en) * 2017-01-03 2019-05-28 Stmicroelectronics Asia Pacific Pte Ltd Use of groove analysis in a touch screen device to determine occurrence of an elongated touch by a single finger
US11243657B2 (en) 2017-06-28 2022-02-08 Huawei Technologies Co., Ltd. Icon display method, and apparatus
CN110036362B (zh) * 2017-07-18 2022-07-05 深圳市汇顶科技股份有限公司 触摸检测方法和触摸检测装置
WO2019014888A1 (zh) * 2017-07-20 2019-01-24 深圳市汇顶科技股份有限公司 检测触摸点的方法和触摸控制器
US10976278B2 (en) * 2017-08-31 2021-04-13 Apple Inc. Modifying functionality of an electronic device during a moisture exposure event
US10599257B2 (en) * 2018-07-12 2020-03-24 Stmicroelectronics Asia Pacific Pte Ltd Touch screen device having improved floating mode entry conditions
CN109189256B (zh) * 2018-07-16 2022-02-08 青岛海信移动通信技术股份有限公司 一种触控数据的处理方法、装置、移动终端和存储介质
EP3830680A1 (en) 2018-08-02 2021-06-09 Elo Touch Solutions Inc. Water immune projected-capacitive (pcap) touchscreen
CN109521908B (zh) * 2018-11-28 2021-12-24 广州朗国电子科技有限公司 智能白板单指与多指触摸模式的切换方法
CN109753180B (zh) * 2018-12-25 2020-12-15 深圳市德明利技术股份有限公司 触控识别中三指同轴拆点的判断方法、触控屏及电子设备
CN109782996B (zh) * 2018-12-25 2020-12-15 深圳市德明利技术股份有限公司 一种三指同轴拆点合并的方法、触控装置及触控显示装置
CN109814750B (zh) * 2018-12-25 2020-12-15 深圳市德明利技术股份有限公司 一种三指同轴拆点的判断方法、触控屏及触控显示装置
CN109739386B (zh) 2019-01-08 2021-10-15 京东方科技集团股份有限公司 触控传感器、触控模组及触控传感器裂纹检测方法
CN110221721A (zh) * 2019-05-14 2019-09-10 武汉华星光电技术有限公司 一种触控信号的处理方法、装置及存储介质
US10942602B1 (en) * 2019-10-30 2021-03-09 Stmicroelectronics Asia Pacific Pte Ltd. Electronic device with finger touch detection and related methods
CN110737365B (zh) * 2019-11-15 2022-09-27 南京信息工程大学 一种双指并拢划线变单指划线触摸区域计算的方法、装置及触控显示装置
US11662867B1 (en) 2020-05-30 2023-05-30 Apple Inc. Hover detection on a touch sensor panel
CN112684265B (zh) * 2020-12-11 2022-12-27 中微半导体(深圳)股份有限公司 一种应用于触摸的干扰检测系统及方法
CN113608639A (zh) * 2021-08-19 2021-11-05 东莞明轩技术有限公司 三维触控信号感应模块、三维触控面板及三维触控方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840293A (zh) * 2010-01-21 2010-09-22 宸鸿科技(厦门)有限公司 投射电容式触控面板的扫描方法
CN101887336A (zh) * 2010-07-15 2010-11-17 汉王科技股份有限公司 多点触控装置及对其进行多点触控检测的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825352A (en) * 1996-01-04 1998-10-20 Logitech, Inc. Multiple fingers contact sensing method for emulating mouse buttons and mouse operations on a touch sensor pad
US20100245286A1 (en) * 2009-03-25 2010-09-30 Parker Tabitha Touch screen finger tracking algorithm
CN101887332B (zh) * 2009-05-12 2013-03-06 联阳半导体股份有限公司 触控面板的定位方法及定位装置
TWI528250B (zh) * 2009-06-25 2016-04-01 Elan Microelectronics Corp Object Detector and Method for Capacitive Touchpad
US9069405B2 (en) * 2009-07-28 2015-06-30 Cypress Semiconductor Corporation Dynamic mode switching for fast touch response
CN102023768B (zh) * 2009-09-09 2013-03-20 比亚迪股份有限公司 触摸点定位方法、系统及显示终端
CN101833121B (zh) * 2010-04-09 2011-08-10 深圳市汇顶科技有限公司 一种双耦合型检测电路、雨量传感器及雨量识别方法
CN102375587B (zh) * 2010-08-15 2015-03-11 宸鸿科技(厦门)有限公司 侦测多触摸点的真坐标的触控面板及侦测方法
US8659566B2 (en) * 2011-10-14 2014-02-25 Himax Technologies Limited Touch sensing method and electronic apparatus using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840293A (zh) * 2010-01-21 2010-09-22 宸鸿科技(厦门)有限公司 投射电容式触控面板的扫描方法
CN101887336A (zh) * 2010-07-15 2010-11-17 汉王科技股份有限公司 多点触控装置及对其进行多点触控检测的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114594880A (zh) * 2022-05-10 2022-06-07 上海海栎创科技股份有限公司 互电容信号的修正方法、识别判断方法及电子装置

Also Published As

Publication number Publication date
US20150077394A1 (en) 2015-03-19
CN102968235B (zh) 2015-12-02
CN102968235A (zh) 2013-03-13
US9798428B2 (en) 2017-10-24
US10241632B2 (en) 2019-03-26
US20170371455A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2014082506A1 (zh) 触摸传感器的触摸检测方法、系统和触控终端
WO2012159290A1 (zh) 电容式多点触摸屏基准数据更新的方法及系统
WO2014023147A1 (zh) 电容触摸传感器、触控终端及其抗干扰方法和系统
WO2014012431A1 (zh) 一种用于触摸检测的噪声抑制方法、系统及触摸终端
WO2012129828A1 (zh) 触摸检测装置的降噪处理方法及系统
WO2016126078A1 (ko) 터치종류 판별방법 및 이를 수행하는 터치 입력 장치
US11448675B2 (en) Capacitance detection module, method and electronic device
WO2012022053A1 (en) Touch panel, touch input device and method for determining real coordinates of multiple touch points
WO2011095102A1 (zh) 一种电容式触摸传感器、触摸检测装置及触控终端
WO2013051752A1 (ko) 터치 감지 장치 및 방법
WO2013055137A1 (ko) 이벤트 기반 비전 센서를 이용한 동작 인식 장치 및 방법
WO2011021877A2 (ko) 터치입력 인식방법 및 장치
WO2017067291A1 (zh) 一种指纹识别的方法、装置及终端
WO2017067293A1 (zh) 一种指纹解锁的方法、装置和终端
WO2011016664A2 (ko) 터치입력 인식방법 및 장치
WO2014131268A1 (zh) 一种解锁手机屏幕的方法及系统
WO2016093526A1 (ko) 터치 스크린 패널
TW201227478A (en) Capacitive touch screen
WO2015180434A1 (zh) 一种数据库集群管理数据的方法、节点及系统
WO2020159106A1 (ko) 터치 장치
WO2013044776A1 (zh) 触摸终端中的交互方法及装置、网络应用中的交互方法及服务器、计算机存储介质
WO2016195308A1 (ko) 터치 압력을 감지하는 터치 입력 장치의 감도 보정 방법 및 컴퓨터 판독 가능한 기록 매체
WO2014014218A1 (ko) 터치패널의 분할 스캔 방법
WO2015058443A1 (zh) 一种实现浏览器中光标定位的方法及装置
WO2018076890A1 (zh) 数据备份的方法、装置、存储介质、服务器及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858428

Country of ref document: EP

Kind code of ref document: A1