WO2014082436A1 - 外亚甲基四氢苯酐的制备和精制方法 - Google Patents

外亚甲基四氢苯酐的制备和精制方法 Download PDF

Info

Publication number
WO2014082436A1
WO2014082436A1 PCT/CN2013/076640 CN2013076640W WO2014082436A1 WO 2014082436 A1 WO2014082436 A1 WO 2014082436A1 CN 2013076640 W CN2013076640 W CN 2013076640W WO 2014082436 A1 WO2014082436 A1 WO 2014082436A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
anhydride
exo
solvent
methylenetetrahydrophthalic
Prior art date
Application number
PCT/CN2013/076640
Other languages
English (en)
French (fr)
Inventor
陈刚
宿磊
石坚
Original Assignee
成都科瑞德医药投资有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都科瑞德医药投资有限责任公司 filed Critical 成都科瑞德医药投资有限责任公司
Publication of WO2014082436A1 publication Critical patent/WO2014082436A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/93Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention belongs to the field of compound synthesis, and specifically relates to a process for preparing exo-methylenetetrahydrophthalic anhydride, a method for purifying the same, and a use thereof for a method for preparing tandospirone or an analogue thereof.
  • Tandospirone is the third generation anti-anxiety drug after benzodiazepine (BDZ). It acts as a serotonin 1A (5-HT 1A ) receptor agonist, highly selective and concentrated in the hippocampus of the emotional center.
  • the serotonin 1A (5-HT 1A ) receptor binds to the limbic system of the septum, the internucleus of the foot, the amygdala, and the nucleus of the nucleus.
  • Tandospirone. 1A and 5-HT receptor affinity is strong, weak affinity to other receptors, inhibiting serotonergic hyperactivity nerve activity by binding to 5-HT receptors.
  • the 1A selectively the 5-HT
  • the 1A receptor produces a significant down-regulation, which promotes the equilibrium of the binding of serotonin to the 5-HUP 5-11 ⁇ receptor in the postsynaptic membrane, thereby achieving an anxiolytic effect and having an anti-anxiety effect. High selectivity and low adverse reactions.
  • tandospirone can also be used to treat depression, anxiety, sleep disorders and other diseases associated with emotional central activities without causing adverse reactions such as sedation, lethargy, convulsions, muscle relaxation, etc., and after continuous administration for a long time, It will accumulate in the body and has a very high clinical value.
  • the tannic acid salt of tandospirone (having the structure shown in Formula 1) is used, and the compound includes exo-methylene hexahydrophthalic anhydride amide (referred to as snail ring) (A), four carbons.
  • A exo-methylene hexahydrophthalic anhydride amide
  • B Atomic hydrocarbon chain bridge
  • piperazin abbreviation
  • the preparation methods of tandospirone are mostly focused on how to efficiently condense piperazine pyriazine, anthracene hydrocarbon bridge and exo-methylene hexahydrophthalic anhydride amide to prepare tandospirone (EP 0680961A1; US4507303A).
  • the preparation method of the exo-methylene hexahydrophthalic anhydride amide is relatively simple, and the preparation of the exo-methylenetetrahydrophthalic anhydride by hydrogenation reduction and amination reaction is mostly carried out.
  • exo-methylenetetrahydrophthalic anhydride also known as spiro ketone ring
  • exo-methylenetetrahydrophthalic anhydride is not only an important structural nucleus of tandospirone or its analogues (such as lurasidone), but also in the preparation of tandospirone. Key intermediates.
  • exo-methylenetetrahydrophthalic anhydride is widely used in the preparation of compounds in the fields of electronics, synthetic resins, petroleum industry, pesticides, etc.
  • Document 1 (Element of Organometal ic Chemistry, 1974: 92-94) discloses a method for understanding polydicyclopentadiene, which adopts dicyclopentane The diene was heated to 180 ° C and distilled at a high temperature to obtain monocyclopentadiene, but the yield was less than 50%.
  • W02010133232 discloses the use of freshly prepared cyclopentadiene and maleic anhydride in a cycloaddition reaction in an ice bath environment, but the yield of endomethylenetetrahydrophthalic anhydride produced is only about 70%.
  • W02010101882 and Document 2 (Chem.
  • CN101880274A discloses a method for preparing exo-methylenetetrahydrophthalic anhydride by using sodium light illumination transformation instead of high temperature transformation, but this method cannot ensure sufficient irradiation area, irradiation energy and uniformity of irradiation of sodium light source in industrial large-scale production. Such problems have made it a great limitation in industrial applications.
  • Document 3 (Tetrahedron Letters), 2006, 47: 1145-1151) discloses a method for preparing exo-methylenetetrahydrophthalic anhydride using a terpene hydrocarbon ether, but the method has a long synthetic route, expensive raw materials, and reaction conditions. Harsh and other defects, not of industrial application value.
  • the preparation method of the existing exo-methylenetetrahydrophthalic anhydride usually comprises the following steps (the reaction process is shown in Fig. 1):
  • depolymerization 1) depolymerizing dicyclopentadiene at a high temperature to obtain cyclopentadiene (referred to as "depolymerization");
  • D-A reaction 2) a cycloaddition reaction of freshly prepared cyclopentadiene with maleic anhydride to obtain endomethylenetetrahydrophthalic anhydride (referred to as "D-A reaction");
  • Cyclopentadiene is often present in the form of a dimer (ie, dicyclopentadiene) and can only be stored for a short period of time at low temperatures, and with increasing storage time or elevated storage temperature (eg, room temperature conditions) It is easy to polymerize to form dicyclopentadiene. Therefore, freshly prepared cyclopentadiene must be used in the reaction to participate in the cycloaddition reaction.
  • the average yield of cyclopentadiene is less than 50%, resulting in a very low utilization rate of dicyclopentadiene and a large amount of waste that pollutes the environment.
  • the existing depolymerization methods of dicyclopentadiene include liquid phase depolymerization and gas phase depolymerization, both of which require huge equipment and materials input, and consume large amounts of energy, and generate a large amount in the depolymerization process. Polymers or cokes, which pollute the environment and have great safety hazards.
  • liquid phase depolymerization is more commonly used, but it is prone to multimerization during the depolymerization process, resulting in a large amount of waste that is difficult to dispose, which poses a great threat to production equipment and the environment, and has a low yield. High cost and other defects.
  • the gas phase depolymerization method has a high conversion rate, but in the process of depolymerization, the coking of the material is easily caused to block the reactor, thereby causing great safety hazards and environmental threats. Limited in industrial applications.
  • the crude product of the crude methylenetetrahydrophthalic anhydride has a low purification yield (only about 31.4%), and a large amount of organic solvent (such as toluene) which is highly toxic is used for a plurality of purifications, resulting in a large amount of organic solvent. Large losses, high energy consumption, long production cycle, high production costs, serious environmental pollution, and harmful to the health of the operators.
  • organic solvent such as toluene
  • the preparation method of the exo-methylenetetrahydrophthalic anhydride is improved, the preparation process and operation thereof are simplified, the production cycle is shortened, the yield and quality of the exo-methylenetetrahydrophthalic anhydride are increased, the production cost is reduced, and the amount of the toxic and harmful organic solvent is reduced. And loss, protecting people's health and environmental protection, have very important research value.
  • the object of the present invention is to provide a method for preparing exo-methylenetetrahydrophthalic anhydride (structure shown in Formula 2), comprising the steps of: placing dicyclopentadiene, maleic anhydride in a reaction vessel, adding a solvent, Sealed, stirred, heated to 100 ° C -220 ° C, until the reaction is complete, to obtain a reaction solution containing exo-methylenetetrahydrophthalic anhydride, crystallization, separation, drying, ie
  • the heating temperature in the preparation method is from 120 ° C to 200 ° C, preferably from 140 ° C to 160 ° C.
  • the molar ratio of maleic anhydride: dicyclopentadiene in the preparation method is 1:0-6, preferably 1:1-4.
  • the solvent described in the preparation method is selected from the group consisting of chloroform, chloroform, dichloroacetic acid, petroleum ether, n-hexyl hydrazine, cyclohexanthene, diethyl ether, dipropyl ether, diisopropyl ether, Any of tetrahydrofuran, dioxane, methanol, ethanol, isopropanol, ethyl acetate, butyl acetate, ethyl butyrate, dimethylformamide (DMF), dimethyl sulfoxide (DMS0) or Its combination.
  • DMF dimethylformamide
  • DMS0 dimethyl sulfoxide
  • the weight ratio of maleic anhydride to solvent in the preparation method is 5: 1-1 : 60 , preferably 1 : 1-1 : 40.
  • the separation mode is selected from any one of filtration and centrifugation or a combination thereof.
  • the crystallization temperature described in the preparation method is _25 ° C to room temperature.
  • Another object of the present invention is to provide a method for purifying exo-methylenetetrahydrophthalic anhydride, comprising the steps of: adding a solvent to a crude exomethyltetrahydrophthalic anhydride to be purified, heating, stirring, and finishing.
  • the solvent in the purification method is selected from the group consisting of chloroform, chloroform, dichloroacetic acid, petroleum ether, n-hexyl hydrazine, cyclohexamidine, diethyl ether, dipropyl ether, diisopropyl ether, tetrahydrofuran, Any one or a combination of dioxane, methanol, ethanol, isopropanol, ethyl acetate, butyl acetate, ethyl butyrate, dimethylformamide (DM)
  • the weight-to-volume ratio of the exo-methylenetetrahydrophthalic anhydride to the solvent to be purified in the purification method is 1:0. 2-1:30, preferably 1:10-1:20.
  • the crystallization temperature in the purification method is _25 ° C to room temperature.
  • the present invention defines the terms as follows:
  • the endomethylene tetrahydrophthalic anhydride described in the present invention is also referred to as norbornene dianhydride.
  • the series reaction according to the present invention is a step-by-step process of depolymerization of dicyclopentadiene, cycloaddition reaction of cyclopentadiene with maleic anhydride, and transformation of endomethylene tetrahydrophthalic anhydride. That is to say, the method performs the depolymerization, cycloaddition, and transformation three-step reaction continuously in a closed reaction vessel, and does not need to separately depolymerize the dicyclopentadiene, without adding other raw materials, and without separating the intermediate product formed by the reaction, The preparation of exo-methylenetetrahydrophthalic anhydride is performed efficiently at one time.
  • the tandospirone analog according to the present invention means a compound having a structural formula containing a snail ketone structure as shown in Formula 3, for example, a compound such as lurasidone or a combination thereof.
  • X represents a N atom or a 0-indenyl group, an alkenyl group, a hydrocarbon, a spirocyclic ketone or the like.
  • the invention relates to a percentage between liquid and liquid, the percentage being volume/volume percentage; the invention relates to a percentage between liquid and solid, the percentage being volume/weight percentage; When referring to the percentage between solid and liquid, the percentage is weight/volume percentage; the balance is weight/weight percentage.
  • the invention combines the depolymerization of dicyclopentadiene, the cycloaddition of cyclopentadiene with maleic anhydride, and the three-step reaction of the conversion of endomethylene tetrahydrophthalic anhydride in one step, and the method does not need to separately perform dicyclopentane.
  • the depolymerization of the diene does not require the addition of other raw materials, and the intermediate product formed by the separation reaction is not required, which effectively solves the problem of the depolymerization of the dicyclopentadiene which is present in the preparation method of the existing exo-methylenetetrahydrophthalic anhydride, and the conversion rate is low.
  • the crude methylenetetrahydrophthalic anhydride obtained by the invention has high quality, and the purification method of the exo-methylenetetrahydrophthalic anhydride is effectively solved by optimizing the purification method of the exo-methylenetetrahydrophthalic anhydride and the process parameters thereof.
  • the existing refined solvent has the advantages of high toxicity, large dosage, large loss, environmental pollution and damage to human health, and has the advantages of environmental protection and high efficiency.
  • the present invention has the following beneficial technical effects: 1.
  • the preparation method of the present invention omits the complicated depolymerization step of dicyclopentadiene, and depolymerization of dicyclopentadiene, cycloaddition between cyclopentadiene and maleic anhydride, and endomethylene tetrahydrogen
  • the three-step reaction of phthalic anhydride is carried out in series and efficiently, without the need for separation of intermediate products, which significantly simplifies the preparation process of exo-methylenetetrahydrophthalic anhydride, shortens the production cycle, and improves the utilization and reaction of dicyclopentadiene. Efficiency and quality of the crude exomethyltetrahydrophthalic anhydride produced.
  • the preparation method of the present invention shortens the preparation time by about 50% compared with the prior preparation method, and is advantageous for industrial applications.
  • the preparation method of the present invention significantly improves the utilization of dicyclopentadiene.
  • the method of the present invention is a method of the present invention, in which the molar ratio of the desired dicyclopentadiene is 4. 3: 0.2, the method of the present invention. Increased utilization of dicyclopentadiene by more than 21 times.
  • the preparation method of the present invention significantly reduces the amount of solvent used in the preparation process and avoids solvent loss.
  • the preparation method of the existing exo-methylenetetrahydrophthalic anhydride has a solvent ratio of the solvent to the raw material of up to 300 mL/m O l, and in the preparation method of the present invention
  • the ratio of solvent to raw material can be as low as 20 mL/mol, that is, the solvent dosage is only 1/15 of the existing method.
  • the preparation method of the present invention significantly increases the yield of exo-methylenetetrahydrophthalic anhydride.
  • the yield of the crude methylenetetrahydrophthalic anhydride in the preparation method of the present invention is as high as 88.5%, which is significantly higher than the yield of the existing preparation method of only about 20%.
  • the refining method of the present invention improves the refining process and the refining solvent, and remarkably improves the refining yield.
  • the refining yield of the refining method of the present invention is 47.1%, which is significantly higher than the existing refining yield of only about 32%.
  • the preparation method and the purification method of the present invention remarkably improve the yield of the outer methylenetetrahydrophthalic anhydride.
  • the yield of the outer methylenetetrahydrophthalic anhydride produced by the preparation method and the purification method of the present invention is as high as 41.61%, which is significantly higher than the existing exo-methylenetetrahydrophthalic anhydride reported in the literature by only about 7%. Finished product yield.
  • the preparation method of the present invention omits the complicated depolymerization step of dicyclopentadiene, and the depolymerization reaction of dicyclopentadiene, the cycloaddition reaction between cyclopentadiene and maleic anhydride, and the internal methylene group.
  • the three-step reaction of tetrahydrophthalic anhydride is carried out in series and efficiently.
  • This method eliminates the need to separately depolymerize dicyclopentadiene without adding other raw materials, and does not need to separate the intermediate products formed by the reaction, which significantly simplifies the external
  • the preparation process of methyltetrahydrophthalic anhydride shortens the production cycle, improves the reaction efficiency, and significantly improves the utilization rate of dicyclopentadiene, reduces the amount and loss of solvent, and significantly increases the exo-methylenetetrahydrophthalic anhydride. Yield, purification yield and yield of finished products greatly reduce production costs.
  • the production method of the present invention is reduced by about 55% compared with the existing preparation method of exo-methylenetetrahydrophthalic anhydride; the refining method of the present invention is more The cost of the purification process of exo-methylenetetrahydrophthalic anhydride is reduced by about 30%.
  • the industrial application of the preparation method and the purification method of the present invention is broad.
  • the preparation method of the invention has the characteristics of simple process, stableness, mild reaction condition, and the like, and utilizes the series reaction step by step efficiently
  • the depolymerization, cycloaddition and transformation reactions are completed, which significantly reduces the influencing factors in the preparation method, enhances the controllability and operability of the reaction, and facilitates industrialized large-scale production.
  • the preparation method and the purification method of the present invention are environmentally friendly. Compared with the prior art, the preparation method of the invention avoids complicated reaction steps, and has high utilization rate of raw materials, low usage amount, less impurities generated by the reaction, and reduces discharge and recovery of chemical reagents and reaction wastes in the preparation process.
  • the treatment method of the invention reduces the environmental pollution; the preparation method of the invention does not need to separate the intermediate product, and the dosage of the organic solvent, the solvent loss, the solvent pollution, the solvent recovery consumption are significantly reduced; the refining method of the invention selects a more environmentally-friendly refining solvent instead of the toxicity.
  • the refined solvent because of the good quality of the reaction product, significantly reduces the number of purification, the amount of refined solvent, solvent loss, solvent pollution, solvent recovery and consumption, etc., is conducive to the safety and health of the operator, is environmentally friendly, and is suitable for industrial production. .
  • the preparation method of the invention simplifies the reaction step of exo-methylenetetrahydrophthalic anhydride, and does not require separation of intermediate products, shortens the reaction cycle, and significantly improves the utilization rate, reaction efficiency and quality of the reaction product of dicyclopentadiene. It can significantly reduce the amount of organic solvent and refined solvent, solvent loss, solvent pollution, solvent recovery and consumption, and has the advantages of high reaction efficiency, high yield, good quality, environmentally friendly solvent, low cost, and suitable for industrialized production.
  • Another object of the present invention is to provide a use of exo-methylenetetrahydrophthalic anhydride for the preparation of a solution of tandospirone or an analogue thereof, preferably the compound of the tandospirone is selected from the group consisting of a compound such as lurasidone. Any one or a combination thereof.
  • Another object of the present invention is to provide an application of exo-methylenetetrahydrophthalic anhydride for the preparation of compounds in the field of electronics, synthetic resins, petrochemicals, pesticides or pharmaceuticals.
  • FIG. 1 Comparison of the preparation method of the method of the present invention with the crude exomethyltetrahydrophthalic anhydride reported in the prior literature.
  • Fig. 2 shows the prior art preparation method and purification method of the exo-methylenetetrahydrophthalic anhydride, and the process flow of the preparation method and the purification method of the present invention. detailed description
  • the comparative method for preparing methylenetetrahydrophthalic anhydride includes the following steps:
  • the detection method adopts the high performance liquid chromatography method described in Example 17, wherein the chromatographic peak with a retention time of about 12 minutes is the main peak of exo-methylenetetrahydrophthalic anhydride (the examples 2-15 are all detected by this method), and the main peak is detected.
  • the retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • the main peak retention time is consistent with the control.
  • Example 16 The finished products of Examples 1-15 and Comparative Examples of the exo-methylenetetrahydrophthalic anhydride obtained in Example 16 were weighed as follows, and the results are shown in Table 2.
  • Example 10 98. 76% 0. 85% 0. 29 1. 24 Qualified powder 0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Indole Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

公开了外亚甲基四氢苯酐的制备方法及其精制方法。包括将双环戊二烯的解聚、环戊二烯与马来酸酐的环加成、内亚甲基四氢苯酐的转型三步反应串联起来一步完成。无需单独进行双环戊二烯的解聚,无需分离反应生成的中间体。

Description

外亚甲基四氢苯酐的制备和精制方法
技术领域
本发明属于化合物合成领域, 具体涉及外亚甲基四氢苯酐的制备方法及 其精制方法和其用于制备坦度螺酮或其类似物的方法中的应用。
背景技术
坦度螺酮是继苯二氮卓(BDZ )之后的第三代抗焦虑药, 它作为 5-羟色胺 1A ( 5-HT1A) 受体激动剂, 高度选择地与集中分布在情感中枢的海马、 中隔、 脚间核、 杏仁核等大脑边缘系统以及缝腺核的 5-羟色胺 1A (5-HT1A) 受体结 合。坦度螺酮与 5-HT1A受体的亲和力强,与其它受体的亲和力弱,通过与 5-HT1A 受体选择性地结合来抑制亢进的 5-羟色胺能神经活动, 使 5-HT1A受体产生显 著的向下调节, 促使 5-羟色胺与突触后膜中 5-HUP 5-11^受体的结合恢复 平衡状态, 从而达到抗焦虑的作用, 并具有抗焦虑作用专一、 选择性高、 不 良反应少等优点。
此外, 坦度螺酮还可用于治疗与情感中枢活动相关的抑郁、 焦躁、 睡眠 障碍等疾病, 而不会产生镇静、 嗜睡、 抽搐、 肌肉松弛等不良反应, 且较长 时间连续服用后, 不会在体内产生蓄积作用, 故具有非常高的临床应用价值。 临床治疗中, 多使用坦度螺酮的枸橼酸盐 (其结构如式 1所示), 该化合物包 括外亚甲基六氢苯酐氨化物 (简称螺酮环) (A)、 四个碳原子的垸烃链桥 (B)、 哌嗪嘧啶 (简称
Figure imgf000003_0001
目前, 有关坦度螺酮的制备方法多集中在如何高效地将哌嗪嘧啶、 垸烃 桥链与外亚甲基六氢苯酐氨化物进行缩合, 以制备得到坦度螺酮 (EP 0680961A1 ; US4507303A) , 而有关外亚甲基六氢苯酐氨化物的制备方法较为 单一, 多采用外亚甲基四氢苯酐经氢化还原、 氨化反应的方式制备得到。 因 此, 外亚甲基四氢苯酐 (又称螺酮环) 不仅是坦度螺酮或其类似物 (如鲁拉 西酮) 的一个重要的结构母核, 也是坦度螺酮制备方法中的关键中间体。 同 时, 外亚甲基四氢苯酐还是被广泛用于制备电子领域、 合成树脂领域、 石油 工业领域、 农药领域等的化合物, 是这些领域中的重要化工原料, 具有极其 重要的商业价值, 例如, 用于制备石油工业中的纳迪克酸酐、 电子行业中生 产液晶显示器 (LDC) 的液晶取向材料、 农药领域中的除草剂环戊二酮衍生物 等。 为此, 亟需研究外亚甲基四氢苯酐的高效、 环保的制备方法。 目前, 有关外亚甲基四氢苯酐的制备方法的研究报道包括: 文献 1 ( Elements of Organometal l ic Chemistry, 1974: 92-94 ) 公开了解聚双环 戊二烯的方法, 该方法采用将双环戊二烯加热至 180°C, 高温蒸馏得到单环戊 二烯, 但其收率不足 50%。 W02010133232 公开了使用新制备的环戊二烯与马 来酸酐在冰浴环境下进行环加成反应, 但其制得的内亚甲基四氢苯酐的产率 仅约 70%左右。 W02010101882 和文献 2 (Chem. pharm. bul l. 1991, 39 (9): 2288-2300)公开了采用反复高温溶解回流的转型方式, 将内亚甲基四氢苯酐 转型制得外亚甲基四氢苯酐, 但该方法存在耗能大、 收率低、 反应时间长等 缺陷, 且转型物总产率仅约为 20%左右, 同时文献 2公开的反应中还需要加入 一定量较高纯度的外亚甲基四氢苯酐作为诱导剂, 以诱导转型反应的正向进 行。 CN101880274A公开采用钠光光照转型代替高温转型用以制备外亚甲基四 氢苯酐的方法, 但因该方法在工业化大生产中无法保证足够的钠光光源的照 射面积、 照射能量、 照射的均匀度等问题, 使其在工业应用上存在很大的局 限性。 文献 3 ( ((Tetrahedron Letters)), 2006, 47 : 1145-1151 ) 公开使用 垸烃烯醚用以制备外亚甲基四氢苯酐的方法, 但该方法存在合成路线长、 原 料昂贵、 反应条件苛刻等缺陷, 不具有工业应用价值。 综上, 已有的外亚甲 基四氢苯酐的制备方法通常包括下述步骤 (反应过程见图 1 ) :
1 ) 将双环戊二烯高温解聚制得环戊二烯 (简称 "解聚");
2 )将新制备的环戊二烯与马来酸酐进行环加成反应, 制得内亚甲基四氢 苯酐 (简称 "D-A反应");
3 )将内亚甲基四氢苯酐进行高温转型反应, 制得外亚甲基四氢苯酐 (简 称 "转型")。
这些制备方法存在下述缺陷:
( 1 ) 环戊二烯常以二聚体 (即双环戊二烯) 的形式存在, 且仅能在低温 下短期贮存, 并随着保存时间的延长或贮存温度的升高 (如室温条件) 易发 生聚合而生成双环戊二烯。 因此, 反应中须使用新制备的环戊二烯来参与环 加成反应。
在双环戊二烯的工业化解聚中, 环戊二烯的平均产率不足 50%, 导致双环 戊二烯的利用率非常低, 并产生大量污染环境的废弃物。 已有的双环戊二烯 的解聚方法包括液相解聚法和气相解聚法, 二者均需要庞大的设备、 物资投 入, 且耗能较大, 并在解聚过程中产生大量的多聚物或结焦物, 既污染环境, 又存在很大的安全隐患。 其中, 液相解聚法较为普遍采用, 但在解聚过程中 极易发生多聚化, 产生大量难于处置的废弃物, 而对生产设备、 环境造成很 大的威胁, 且存在收率低, 成本高等缺陷。 相比于液相解聚法, 气相解聚法 具有较高的转化率, 但在解聚过程中, 极易发生物料的结焦而堵塞反应器, 从而导致极大的安全隐患和环境威胁, 因而在工业应用中受到限制。
(2 ) 内亚甲基四氢苯酐的转型反应需在高温下 (高于 190°C ) 进行, 且 转型总产率较低 (仅 20%左右), 或者需多次转型及反复精制, 精制所用的有 机溶剂用量大, 损失大, 能耗高, 生产周期长, 成本高。
(3 ) 外亚甲基四氢苯酐的总收率低 (仅为 7%左右), 反应步骤多且各步 骤均需使用有机溶剂, 导致有机溶剂的用量大、 损失大、 能耗高、 生产周期 长、 生产成本高、 环境污染严重等缺陷。
(4)外亚甲基四氢苯酐粗品的精制收率低(仅约 31. 4%) , 且需大量使用 毒性大的有机溶剂 (如甲苯) 进行多次精制, 导致有机溶剂的用量大且损失 大, 能耗高, 生产周期长, 生产成本高, 环境污染严重, 并有害于操作人员 的身体健康。
因此, 改进外亚甲基四氢苯酐的制备方法, 简化其制备工艺和操作, 缩 短生产周期, 提高外亚甲基四氢苯酐的产率和质量, 降低生产成本, 减少有 毒有害有机溶剂的用量和损失, 保护人员健康, 利于环保, 具有非常重要的 研究价值。
本发明引用文献的全部技术内容均作为本申请的技术参考。
发明内容
本发明的目的在于提供一种外亚甲基四氢苯酐 (结构如式 2所示) 的制 备方法, 包括下述步骤: 将双环戊二烯、 马来酸酐置于反应釜中, 加入溶剂, 密封, 搅拌, 加热至 100°C-220°C, 至反应完全, 制得含有外亚甲基四氢苯酐 的反应液, 析晶, 分离, 干燥, 即
Figure imgf000005_0001
本发明的优选技术方案中, 制备方法中的加热温度至 120°C-200°C, 优选 为 140°C-160°C o
本发明的优选技术方案中, 制备方法中马来酸酐:双环戊二烯的摩尔比为 1 : 0. 2-6, 优选为 1 : 1-4。
本发明的优选技术方案中, 制备方法中所述的溶剂选自二氯甲垸、 氯仿、 二氯乙垸、 石油醚、 正己垸、 环己垸、 乙醚、 二丙醚、 二异丙醚、 四氢呋喃、 二氧六环、 甲醇、 乙醇、 异丙醇、 乙酸乙酯、 乙酸丁酯、 丁酸乙酯、 二甲基 甲酰胺 (DMF)、 二甲基亚砜 (DMS0 ) 的任一种或其组合。
本发明的优选技术方案中, 制备方法中马来酸酐与溶剂的重量体积比为 5 : 1-1 : 60 , 优选 1 : 1-1 : 40。
本发明的优选技术方案中, 所述的分离方式选自过滤、 离心的任一种或 其组合。
本发明的优选技术方案中, 制备方法中所述的析晶温度为 _25°C至室温。 本发明的另一目的在于提供一种外亚甲基四氢苯酐的精制方法, 包括下 述步骤: 在待精制的外亚甲基四氢苯酐粗品中加入溶剂, 加热, 搅拌, 至完 本发明的优选技术方案中, 精制方法中的溶剂选自二氯甲垸、 氯仿、 二 氯乙垸、 石油醚、 正己垸、 环己垸、 乙醚、 二丙醚、 二异丙醚、 四氢呋喃、 二氧六环、 甲醇、 乙醇、 异丙醇、 乙酸乙酯、 乙酸丁酯、 丁酸乙酯、 二甲基 甲酰胺 (DMF)、 二甲基亚砜 (DMS0 ) 的任一种或其组合。
本发明的优选技术方案中, 精制方法中待精制的外亚甲基四氢苯酐与溶 剂的重量体积比为 1 : 0. 2-1: 30, 优选为 1 : 10-1: 20。
本发明的优选技术方案中, 精制方法中所述的析晶温度为 _25°C至室温。 为了清楚地表述本发明的保护范围, 本发明对术语进行如下界定: 本发明所述的内亚甲基四氢苯酐又称降冰片烯二酸酐。
本发明所述的串联反应是将双环戊二烯的解聚、 环戊二烯与马来酸酐的 环加成反应、 内亚甲基四氢苯酐的转型三步反应串联起来一步高效地完成, 即该方法将解聚、 环加成、 转型三步反应在密闭反应釜中连续进行, 且无须 单独进行双环戊二烯的解聚, 无需添加其它原料, 也无需分离反应生成的中 间产物, 而是一次高效地完成外亚甲基四氢苯酐的制备。
本发明所述的坦度螺酮类似物是指分子结构中含有如式 3所示含有方框 中螺酮结构的化合物, 例如, 鲁拉西酮等化合物任意一种或其组合物。 其中, X代表 N原子或 0原 垸基、 烯基、 烃、 螺环酮等。
Figure imgf000006_0001
除非另有说明, 本发明涉及液体与液体之间的百分比时, 所述的百分比 为体积 /体积百分比; 本发明涉及液体与固体之间的百分比时, 所述百分比为 体积 /重量百分比; 本发明涉及固体与液体之间的百分比时, 所述百分比为重 量 /体积百分比; 其余为重量 /重量百分比。
本发明将双环戊二烯的解聚、 环戊二烯与马来酸酐的环加成、 内亚甲基 四氢苯酐的转型三步反应串联起来一步高效地完成, 该方法无须单独进行双 环戊二烯的解聚, 无需添加其它原料, 且无需分离反应生成的中间产物, 有 效解决了已有的外亚甲基四氢苯酐的制备方法中存在的双环戊二烯解聚繁 杂、 转化率低、 收率低、 环境污染严重、 能耗高、 生产周期长、 贮存条件要 求苛刻等缺陷。 并且, 本发明制得的外亚甲基四氢苯酐粗品质量高, 并通过 优化外亚甲基四氢苯酐的精制方法及其工艺参数, 有效解决了外亚甲基四氢 苯酐的精制方法中存在的精制溶剂毒性大、 用量大、 损失大、 环境污染和损 害人体健康等缺陷, 具有环保、 高效等优点。 与现有技术相比, 本发明具有 下述有益技术效果: 1、 本发明的制备方法省略了繁杂的双环戊二烯解聚步骤, 并将双环戊二 烯的解聚、 环戊二烯与马来酸酐之间的环加成、 内亚甲基四氢苯酐的转型三 步反应串联起来一步高效地完成, 无须进行中间产物的分离, 显著简化了外 亚甲基四氢苯酐的制备工艺, 缩短了生产周期, 提高了双环戊二烯的利用率、 反应效率和制得的外亚甲基四氢苯酐粗品的质量。 生产相同量的外亚甲基四 氢苯酐而言, 本发明的制备方法较已有的制备方法缩短了约 50%的制备时间, 利于工业化应用。
2、 本发明的制备方法显著提高了双环戊二烯的利用率。 就生产相同量的 外亚甲基四氢苯酐而言, 在已有制备方法和本发明制备方法中, 所需的双环 戊二烯的摩尔比为 4. 3 : 0. 2, 即本发明方法将双环戊二烯的利用率提高了 21 倍以上。
3、 本发明的制备方法显著降低了制备方法中溶剂用量, 避免了溶剂 损失。就生产相同量的外亚甲基四氢苯酐而言, 已有的外亚甲基四氢苯酐 的制备方法中溶剂用量与原料的投料比高达 300mL/mOl, 而本发明的制备 方法中溶剂用量与原料的投料比最低可达到 20 mL/mol , 即溶剂用量仅为 已有方法的 1/15。
4、 本发明的制备方法显著提高了外亚甲基四氢苯酐的产率。 如本发明的 制备方法中外亚甲基四氢苯酐粗品的产率高达 88. 55%, 显著高于已有的制备 方法仅为 20%左右的产率。
5、本发明的精制方法改进了精制工艺和精制溶剂,显著提高了精制收率。 如本发明的精制方法的精制收率为 47. 1%, 显著高于已有的仅约 32%的精制收 率。
6、 本发明的制备方法和精制方法显著提高了外亚甲基四氢苯酐的成品产 率。 如本发明的制备方法和精制方法制得的外亚甲基四氢苯酐的成品产率高 达 41. 61%,显著高于文献报道的已有的外亚甲基四氢苯酐仅约 7%的成品产率。
7、 本发明的制备方法省略了繁杂的双环戊二烯解聚步骤, 并将双环 戊二烯的解聚反应、环戊二烯与马来酸酐之间的环加成反应、 内亚甲基四 氢苯酐的转型反应三步反应串联起来一步高效地完成,该方法既无须单独 进行双环戊二烯的解聚, 又无需添加其它原料, 更无需分离反应生成的中 间产物, 显著简化了外亚甲基四氢苯酐的制备工艺, 缩短了生产周期, 提 高了反应效率, 并显著提高了双环戊二烯的利用率, 降低了溶剂的用量和 损失, 显著提高了外亚甲基四氢苯酐的产率、 精制收率和成品得率, 极大 地降低了生产成本。如生产相同量的外亚甲基四氢苯酐而言, 本发明的制 备方法较已有的外亚甲基四氢苯酐的制备方法生产成本下降了约 55%; 本 发明的精制方法较已有的外亚甲基四氢苯酐的精制方法成本下降了约 30%。
8、 本发明的制备方法和精制方法的工业应用前景广阔。 本发明的制备方 法具有工艺简洁、 稳定、 反应条件温和等特点, 并利用串联反应一步高效地 完成解聚、 环加成和转型反应, 显著减少了制备方法中的影响因素, 增强了 反应的可控性和可操作性, 利于工业化大生产。
9、 本发明的制备方法和精制方法利于环保。 相比于现有工艺, 本发明的 制备方法避免了繁杂的反应步骤, 且原料利用率高、 使用量少、 反应生成的 杂质少, 减少了制备过程中化学试剂和反应废弃物的排放和回收处理, 降低 了环境污染; 本发明的制备方法无须分离中间产物, 显著减少有机溶剂的用 量、 溶剂损失、 溶剂污染、 溶剂回收消耗; 本发明的精制方法中选用更加环 保的精制溶剂替代了毒性大的精制溶剂, 且因反应产物的质量较好, 显著减 少了精制次数、 精制溶剂的用量、 溶剂损失、 溶剂污染、 溶剂回收消耗等, 利于操作人员的安全和健康, 利于环保, 并适合工业化生产。
综上, 本发明的制备方法简化了外亚甲基四氢苯酐的反应步骤, 且无 须分离中间产物, 缩短了反应周期, 显著提高了双环戊二烯的利用率、 反 应效率和反应产物的质量, 显著减少有机溶剂和精制溶剂的用量、溶剂损 失、 溶剂污染、 溶剂回收消耗, 具有反应效率高、 产率高、 质量好、 使用 溶剂环保、 成本低、 适用于工业化大生产等优点。
本发明的另一目的在于提供外亚甲基四氢苯酐用于制备坦度螺酮或其类 似物的方法中的应用, 优选所述的坦度螺酮类似物选自鲁拉西酮等化合物的 任一种或其组合。
本发明的另一目的在于提供外亚甲基四氢苯酐用于制备电子领域、 合成 树脂领域、 石油化工领域、 农药领域或制药领域的化合物中的应用。 附图说明
图 1 本发明方法与已有文献报道的外亚甲基四氢苯酐粗品的制备方法比较。 图 2 外亚甲基四氢苯酐的已有制备方法和精制方法与本发明的制备方法与 精制方法的工艺流程比较。 具体实施方式
以下结合实施例对本发明做进一步描述, 需要说明的是, 下述实施例不 能作为对本发明保护范围的限制, 任何在本发明基础上作出的改进都在本发 明的保护范围之内。 比较例 1 已有的外亚甲基四氢苯酐的制备方法
本比较例外亚甲基四氢苯酐的制备方法, 包括下述步骤:
1 ) 双环戊二烯的解聚 (参见文献 1 ) : 取双环戊二烯 200g放置于蒸馏瓶 中, 加热至 180°C, 常压蒸馏, 得环戊二烯馏分 88g, 收率 44%;
2 )内亚甲基四氢苯酐的合成(参见 W02010133232实施例 1 ) :称取 3. 44g 马来酸酐, 将其溶于 35mL乙酸乙酯, 冰水冷却下, 缓慢滴加入 lOmL新鲜制 备的环戊二烯, 搅拌使溶解, 于 0°C_5°C搅拌反应 2h后, 置于室温搅拌反应 2h,反应完毕后,抽滤,滤饼用适量的正己垸洗涤,得内亚甲基四氢苯酐 4. lg, 收率 71. 20%;
3 ) 外亚甲基四氢苯酐的合成:
a)外亚甲基四氢苯酐粗品的制备(参见文献 2 ) :取内亚甲基四氢苯酐(降 冰片烯二酸酐)100g,加入三口瓶,加热使融化,回流 4小时,加入甲苯 500ml, 加热溶解, 冷却析晶, 过滤, 干燥, 得外亚甲基四氢苯酐粗品 64. 29g, 收率 64. 29% (从双环戊二烯解聚至得到粗品, 三步总收率为 20. 14%) ;
b ) 外亚甲基四氢苯酐成品的制备 (精制) (参见文献 2 ) : 称取外亚甲基 四氢苯酐 (降冰片烯二酸酐) 粗品 5g, 加入圆底烧瓶中, 加入甲苯 50mL, 加 热搅拌回流, 至完全溶解, 冷却, 析晶、 过滤, 干燥, 得外亚甲基四氢苯酐 成品 1. 57g, 收率 31. 4%。
四步总收率: 6. 32%。
产品描述: 白色粉末, mp: 141. 0°C-142. 5°C。 实施例 1 外亚甲基四氢苯酐的制备
称取马来酸酐 98g和双环戊二烯 26g, 将其置于反应釜中, 加入二氯甲垸 lOOmL, 密封, 搅拌, 升温至 150 °C, 待反应完全后, 将所得的反应液降温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 47. 5g (收率 72. 35%)。
检测方法采用实施例 17所述的高效液相色谱法, 其中保留时间在 12分 钟左右的色谱峰为外亚甲基四氢苯酐主峰(实施例 2-15均采用此方法检测), 经检测主峰保留时间与对照品一致。
色谱纯度: 68. 12%。 实施例 2 外亚甲基四氢苯酐的制备
称取马来酸酐 98g和双环戊二烯 528g, 将其置于反应釜中, 加入二氯甲 垸 2000mL, 密封, 搅拌, 升温至 220°C, 待反应完全后, 将所得的反应液降 温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 144. 7g (收率 88. 26%)。
主峰保留时间与对照品一致。
色谱纯度: 67. 33%。 实施例 3 外亚甲基四氢苯酐的制备
称取马来酸酐 98g 和双环戊二烯 793g, 将其置于反应釜中, 加入乙醇 6000mL, 密封, 搅拌, 升温至 120°C, 待反应完全后, 将所得的反应液降温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 145. 2g (收率 88. 51%)。
主峰保留时间与对照品一致。
色谱纯度: 67. 54%。 实施例 4 外亚甲基四氢苯酐的制备 称取马来酸酐 98g和双环戊二烯 528g, 将其置于反应釜中, 加入二氯甲 垸 4000mL, 密封, 搅拌, 升温至 100°C, 待反应完全后, 将所得的反应液降 温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 145. lg (收率 88. 53%)。
主峰保留时间与对照品一致。
色谱纯度: 67. 39% 实施例 5 外亚甲基四氢苯酐的制备
称取马来酸酐 98g 和双环戊二烯 528g, 将其置于反应釜中, 加入乙醇 lOOmL, 密封, 搅拌, 升温至 150 °C, 待反应完全后, 将所得的反应液降温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 144. 7g (收率 88. 26%)。
主峰保留时间与对照品一致。
色谱纯度: 67. 35%。 实施例 6 外亚甲基四氢苯酐的制备
称取马来酸酐 98g和双环戊二烯 26g, 将其置于反应釜中, 加入二氯甲垸 6000mL, 密封, 搅拌, 升温至 220°C, 待反应完全后, 将所得的反应液降温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 49. 5g (收率 75. 41%)。
主峰保留时间与对照品一致。
色谱纯度: 68. 62%。 实施例 7 外亚甲基四氢苯酐的制备
称取马来酸酐 98g和双环戊二烯 793. 2g, 将其置于反应釜中, 加入二氯 甲垸 20mL, 密封, 搅拌, 升温至 140°C, 待反应完全后, 将所得的反应液降 温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 145. 2g (收率 88. 51%)。
主峰保留时间与对照品一致。
色谱纯度: 66. 89% 实施例 8 外亚甲基四氢苯酐的制备
称取马来酸酐 98g和双环戊二烯 26g, 将其置于反应釜中, 加入四氢呋喃 2000mL, 密封, 搅拌, 升温至 160°C, 待反应完全后, 将所得的反应液降温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 50. Og (收率 76. 12%)。
主峰保留时间与对照品一致。
色谱纯度: 69. 71%。 实施例 9 外亚甲基四氢苯酐的制备
称取马来酸酐 98g 和双环戊二烯 528g, 将其置于反应釜中, 加入乙醇 4000mL, 密封, 搅拌, 升温至 150°C, 待反应完全后, 将所得的反应液降温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 57. Og (收率 86. 83%)。 主峰保留时间与对照品一致。
色谱纯度: 60. 25%。 实施例 10 外亚甲基四氢苯酐的制备
称取马来酸酐 98g和双环戊二烯 793g, 将其置于反应釜中, 加入乙酸乙 酯 20mL, 密封, 搅拌, 升温至 100°C, 待反应完全后, 将所得的反应液降温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 145. 2g (收率 88. 55%)。
主峰保留时间与对照品一致。
色谱纯度: 66. 91%。 实施例 11 外亚甲基四氢苯酐的制备
称取马来酸酐 98g和双环戊二烯 793g,将其置于反应釜中,加入 DMF 20mL, 密封, 搅拌, 升温至 220°C, 待反应完全后, 将所得的反应液降温, 析晶, 分 离, 干燥, 即得外亚甲基四氢苯酐粗品 144. 9g (收率 88. 35%)。
主峰保留时间与对照品一致。
色谱纯度: 67. 83% 实施例 12 外亚甲基四氢苯酐的制备
称取马来酸酐 98g和双环戊二烯 528g, 将其置于反应釜中, 加入 DMS0 4000mL, 密封, 搅拌, 升温至 160°C, 待反应完全后, 将所得的反应液降温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 144. 7g (收率 88. 21%)。
主峰保留时间与对照品一致。
色谱纯度: 67. 08%。 实施例 13 外亚甲基四氢苯酐的制备
称取马来酸酐 98g和双环戊二烯 26g, 将其置于反应釜中, 加入异丙醇 4000mL, 密封, 搅拌, 升温至 150°C, 待反应完全后, 将所得的反应液降温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 47. 2g (收率 71. 94%)。
主峰保留时间与对照品一致。
色谱纯度: 69. 88% 实施例 14 外亚甲基四氢苯酐的制备
称取马来酸酐 98g和双环戊二烯 528g, 将其置于反应釜中, 加入二氯乙 垸 20mL, 密封, 搅拌, 升温至 140°C, 待反应完全后, 将所得的反应液降温, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐粗品 53. 6g (收率 81. 66%)。
主峰保留时间与对照品一致。
色谱纯度: 62. 76%。 实施例 15 外亚甲基四氢苯酐的制备方法
称取马来酸酐 98g和双环戊二烯 528.8g, 将其置于反应釜中, 加入二氯 乙垸 6000mL, 密封, 搅拌, 升温至 100°C, 待反应完全后, 将所得的反应液 降温,析晶,分离,干燥, 即得外亚甲基四氢苯酐粗品 145. lg (收率 88.49%)。
主峰保留时间与对照品一致。
色谱纯度: 67.71%。 实施例 16 外亚甲基四氢苯酐的精制方法
称取实施例 1-15、对比例制得的外亚甲基四氢苯酐粗品, 加入精制溶剂, 加热溶解, 降温至 0°C, 析晶, 分离, 干燥, 即得外亚甲基四氢苯酐,结果见 表 1。
表 1
Figure imgf000012_0001
实施例 17 外亚甲基四氢苯酐的质量研究
称取实施例 16制得的实施例 1-15、对比例的外亚甲基四氢苯酐成品, 进 行如下检测,结果见表 2。
本发明制得的外亚甲基四氢苯酐成品的 -丽 R谱图确认数据:
本发明外亚甲基四氢苯酐的1 H-NMR谱数据: δ 1.440(1Η), δ 1.664C1H), δ 2.998 (2Η), δ 3.450 (2Η), δ 6.328 (2Η)。
对照品外亚甲基四氢苯酐的 1Η-丽 R谱数据: δ 1.438C1H), δ 1.66K1H), δ 2.995 (2Η), δ 3.446 (2Η), δ 6.325 (2Η)。 采用高效液相色谱法进行测定本发明制得的外亚甲基四氢苯酐成品质 量: 色谱条件与系统适用性试验用十八垸基硅垸键合硅胶为填充剂, 甲醇-水
(85: 15 )为流动相, 检测波长为 281nm。 通过面积归一化法, 计算各吸收峰 面积所占百分比。 各样品所得液相图谱中, 保留时间 12分钟左右的色谱峰为 外亚甲基四氢苯酐主峰,保留时间 10分钟左右的色谱峰为内亚甲基四氢苯酐, 其余则为未知杂质。 检验结果见表 2。
表 2
有关物质
熔点
检査项目 性状 会 a醫里 结论 ( °C ) 内亚甲基四 其它单一
总杂质
氢苯酐 最大杂质
白色或类白
质量标准 色结晶性粉 140-144 97% ¾≡2. 0% ¾≡0. 5% ¾≡3. 0% 符合要求 末
白色结晶性 142. 0-143.
实施例 1 98. 81% 0. 74% 0. 36 1. 19 符合要求 粉末 5
白色结晶性 142. 2-143.
实施例 2 98. 55% 0. 81% 0. 42 1. 45 符合要求 粉末 0
白色结晶性 142. 2-143.
实施例 3 98. 66% 0. 85% 0. 37 1. 34 符合要求 粉末 1
白色结晶性 142. 1-143.
实施例 4 98. 84% 0. 76% 0. 31 1. 16 符合要求 粉末 0
白色结晶性 142. 3-143.
实施例 5 98. 60% 0. 73% 0. 47 1. 40 符合要求 粉末 4
白色结晶性 142. 1-143.
实施例 6 98. 55% 0. 83% 0. 44 1. 45 符合要求 粉末 2
白色结晶性 142. 0-143.
实施例 7 98. 78% 0. 87% 0. 30 1. 22 符合要求 粉末 8
白色结晶性 141. 7-142.
实施例 8 98. 63% 0. 80% 0. 47 1. 37 符合要求 粉末 9
白色结晶性 142. 6-143.
实施例 9 98. 57% 0. 76% 0. 42 1. 43 符合要求 粉末 7
白色结晶性 141. 9-143.
实施例 10 98. 76% 0. 85% 0. 29 1. 24 符合要求 粉末 0
白色结晶性 142. 4-143.
实施例 11 98. 69% 0. 79% 0. 35 1. 31 符合要求 粉末 8
白色结晶性 142. 7-144.
实施例 12 98. 48% 0. 84% 0. 29 1. 52 符合要求 粉末 0
白色结晶性 141. 8-142.
实施例 13 98. 75% 0. 73% 0. 27 1. 25 符合要求 粉末 8
白色结晶性 142. 1-143.
实施例 14 98. 59% 0. 77% 0. 34 1. 41 符合要求 粉末 5
白色结晶性 142. 3-143.
实施例 15 98. 61% 0. 71% 0. 36 1. 39 符合要求 粉末 2
对比例 类白色结晶 141. 0-142. 96. 21% 3. 13% 0. 55 3. 79 不符合要求
9
O 99LO/£lOZ l3/13d 9 80/ 0Z OAV
ZY

Claims

权 利 要 求 书
1、 一种外亚甲基四氢苯酐的制备方法, 其特征在于: 包括下述步骤: 将双环戊二烯、 马来酸酐置于反应釜中, 加入溶剂, 密封, 搅拌, 加热至 100°C-220°C, 至反应完全, 制 得含有外亚甲基四氢苯酐的反应液, 析晶, 分离, 干燥, 即得。
2、 根据权利要求 1 所述的制备方法, 其特征在于: 制备方法中的加热温度为 120°C- 200°C。
3、 根据权利要求 2 所述的制备方法, 其特征在于: 制备方法中的加热温度为 140°C-160°C。
4、根据权利要求 1所述的制备方法, 其特征在于: 制备方法中马来酸酐:双环戊二烯 的摩尔比为 1 : ( 0. 2-6)。
5、根据权利要求 4所述的制备方法, 其特征在于: 制备方法中马来酸酐:双环戊二烯 的摩尔比为 1 : ( 1-4)。
6、 根据权利要求 1-5任一项所述的制备方法, 其特征在于: 制备方法中所述的溶剂 选自二氯甲烷、 氯仿、 二氯乙烷、 石油醚、 正己烷、 环己烷、 乙醚、 二丙醚、 二异丙醚、 四氢呋喃、 二氧六环、 甲醇、 乙醇、 异丙醇、 乙酸乙酯、 乙酸丁酯、 丁酸乙酯、 二甲基甲 酰胺 (DMF)、 二甲基亚砜 (DMS0) 的任一种或两种以上的组合。
7、 根据权利要求 1所述的外亚甲基四氢苯酐的制备方法, 其特征在于: 制备方法中 马来酸酐与溶剂的摩尔体积比为 (5 : 1 ) - ( 1 : 60)。
8、 根据权利要求 7所述的制备方法, 其特征在于: 制备方法中马来酸酐与溶剂的摩 尔体积比为 ( 1 : 1 ) - ( 1 : 40)。
9、 根据权利要求 1-8任一项所述的制备方法, 其特征在于: 所述的分离方式选自过 滤、 离心的任一种或其组合。
10、 根据权利要求 1-3任一项所述的制备方法, 其特征在于: 制备方法中所述的析 晶温度为 -25 °C至室温。
11、 一种外亚甲基四氢苯酐的精制方法, 其特征在于: 包括下述步骤: 在待精制的外 亚甲基四氢苯酐中加入溶剂, 加热, 搅拌, 至完全溶解, 析晶, 分离, 干燥, 即得外亚甲 基四氢苯酐。
12、 根据权利要求 11所述的精制方法, 其特征在于: 精制方法中的溶剂选自二氯甲 烷、 氯仿、 二氯乙烷、 石油醚、 正己烷、 环己烷、 乙醚、 二丙醚、 二异丙醚、 四氢呋喃、 二氧六环、 甲醇、 乙醇、异丙醇、 乙酸乙酯、 乙酸丁酯、 丁酸乙酯、二甲基甲酰胺(DMF)、 二甲基亚砜 (DMS0) 的任一种或其组合。
13、根据权利要求 11所述的精制方法, 其特征在于: 精制方法中待精制的外亚甲基 四氢苯酐与溶剂的重量体积比为 (1 : 0. 2 ) - ( 1: 30)。
14、根据权利要求 13所述的精制方法, 其特征在于: 精制方法中待精制的外亚甲基 四氢苯酐与溶剂的重量体积比为 (1 : 10) - ( 1: 20)。
15、 根据权利要求 11-14任一项所述的精制方法, 其特征在于: 精制方法中所述的 析晶温度为 -25 °C至室温。
PCT/CN2013/076640 2012-11-30 2013-06-03 外亚甲基四氢苯酐的制备和精制方法 WO2014082436A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210499831.9A CN103848801B (zh) 2012-11-30 2012-11-30 外亚甲基四氢苯酐的制备和精制方法及其在制备坦度螺酮中的应用
CN201210499831.9 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014082436A1 true WO2014082436A1 (zh) 2014-06-05

Family

ID=50827141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076640 WO2014082436A1 (zh) 2012-11-30 2013-06-03 外亚甲基四氢苯酐的制备和精制方法

Country Status (2)

Country Link
CN (1) CN103848801B (zh)
WO (1) WO2014082436A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496942A (zh) * 2013-08-12 2015-04-08 成都科瑞德医药投资有限责任公司 外亚甲基四氢苯酐的纯化方法
CN105985304B (zh) * 2015-03-04 2018-05-08 四川科瑞德制药股份有限公司 一种外亚甲基四氢邻苯二甲酸酐的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845892A (zh) * 2003-09-03 2006-10-11 日立化成工业株式会社 具有降冰片烯或降冰片烷结构的二羧酸或其衍生物的立体异构体的分离方法
CN1927855A (zh) * 2006-09-28 2007-03-14 英志祥 一种双环戊二烯的顺丁烯二酸酐加成物的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9688631B2 (en) * 2009-03-02 2017-06-27 Isp Investments Llc Thermosetting ring-opening metathesis polymerization materials with thermally degradable linkages
KR101295978B1 (ko) * 2009-10-21 2013-08-13 코오롱인더스트리 주식회사 노르보넨계 중합체 및 그 제조방법
CN101880274A (zh) * 2010-06-28 2010-11-10 北大国际医院集团西南合成制药股份有限公司 一种坦度螺酮及其类似物的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845892A (zh) * 2003-09-03 2006-10-11 日立化成工业株式会社 具有降冰片烯或降冰片烷结构的二羧酸或其衍生物的立体异构体的分离方法
CN1927855A (zh) * 2006-09-28 2007-03-14 英志祥 一种双环戊二烯的顺丁烯二酸酐加成物的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUERTAS, D. ET AL.: "Solvent-free Diels-Alder reaction of in situ generated cyclopentadiene", GREEN CHEMISTRY, vol. 11, 2009, pages 91 - 95 *

Also Published As

Publication number Publication date
CN103848801B (zh) 2017-07-07
CN103848801A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
Yong et al. Syntheses of spiro [cyclopropane-1, 3′-oxindole]-2-carboxylic acid and cyclopropa [c] quinoline-7b-carboxylic acid and their derivatives
CN109705013B (zh) 一种1-(4-甲基苄基)-3-氨基-4-甲硒基马来酰亚胺化合物及制备方法
Low et al. Transformations of the 2, 7-Seco aspidosperma alkaloid leuconolam, structure revision of epi-Leuconolam, and partial syntheses of leuconoxine and leuconodines A and F
CN110437236B (zh) 一种吲哚-1,2-并1,4-苯并二氮杂卓类化合物及其合成方法
Mayani et al. A non-chromatographic method for the separation of highly pure naphthalene crystals from pyrolysis fuel oil
Wang et al. Synthesis of spiro [furan-3, 3′-indolin]-2′-ones by PET-catalyzed [3+ 2] reactions of spiro [indoline-3, 2′-oxiran]-2-ones with electron-rich olefins
WO2014082436A1 (zh) 外亚甲基四氢苯酐的制备和精制方法
CN110872219B (zh) 一种光催化合成苯并芴酮类化合物的方法
CN104370863A (zh) 外型降冰片烯二酸酐的制备方法
Kelch et al. The preparation of several 1, 2, 3, 4, 5-functionalized cyclopentane derivatives
Marchand et al. Lewis acid-promoted reactions of substituted pentacyclo [5.4. 0.02, 6.03, 1005, 9] undecane-8, 11-diones with ethyl diazoacetate
CN107586272B (zh) 一种多取代苯并双环[2.2.2]辛烷衍生物及其制备方法
CN110317170B (zh) 一种3-菲啶基甲酸丙酯类化合物的绿色合成方法
Heynderickx et al. A one-pot synthesis of hindered 2, 3-diarylbenzo [b] thiophenes via Suzuki reaction
Alluri et al. A convenient enantioselective synthesis of 3-asymmetrically substituted oxindoles as progesterone receptor antagonists
CN111362795B (zh) 一类取代丁酸酯类衍生物的制备方法
JPS5929573B2 (ja) 新規なベンゾビシクロノネンの製造方法
Li et al. A facile preparation of tetralins from arene-1, 4-diones using titanium (IV) chloride and triethylsilane
CN109851599B (zh) 一种2-氨基苯并呋喃化合物的制备方法
Xiao et al. Concise Synthesis of Linderaspirone A and Bi‐linderone
CN104119240A (zh) (S)-(-)-α-甲胺基苯丙酮的制备方法
Chanda et al. Chemo-and regio-selective synthesis of hexacyclic indeno-fused coumarins via domino Diels–Alder dimerization/Baeyer–Villiger oxidation
CN112441935B (zh) 一种β-氨基酮类化合物的合成方法
CN105985304B (zh) 一种外亚甲基四氢邻苯二甲酸酐的制备方法
Kalena et al. Stereo-and regioselectivity of intramolecular 1, 2-arene-alkene photocycloaddition in 2-alkenyl-4-chromanones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30-11-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13859340

Country of ref document: EP

Kind code of ref document: A1