WO2014082271A1 - 一种定时参考小区的处理方法和设备 - Google Patents

一种定时参考小区的处理方法和设备 Download PDF

Info

Publication number
WO2014082271A1
WO2014082271A1 PCT/CN2012/085585 CN2012085585W WO2014082271A1 WO 2014082271 A1 WO2014082271 A1 WO 2014082271A1 CN 2012085585 W CN2012085585 W CN 2012085585W WO 2014082271 A1 WO2014082271 A1 WO 2014082271A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
subframe
cells
timing difference
timing
Prior art date
Application number
PCT/CN2012/085585
Other languages
English (en)
French (fr)
Inventor
徐文颖
汪凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280002404.3A priority Critical patent/CN104145501B/zh
Priority to PCT/CN2012/085585 priority patent/WO2014082271A1/zh
Publication of WO2014082271A1 publication Critical patent/WO2014082271A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and a device for processing a timing reference cell.
  • the MF-Tx Multiflow Transmission
  • the MF-Tx uses different coordination between multiple cells in one base station or multiple cells in multiple base stations to send different signals to one UE (User Equipment). data.
  • the cells participating in the MF-Tx may be of the same frequency or adjacent frequency, may belong to different sectors, and may belong to different base stations.
  • the downlink timing of the cells participating in the MF-Tx may also be different.
  • the uplink feedback information of the MF-Tx for the downlink data is the joint feedback method, that is, the feedback information of the UE receiving data in multiple serving cells is in the same HS-DPCCH (High-Speed Dedicated Physical Control Channel, high-speed dedicated).
  • the physical control channel is fed back, such as:
  • the HARQ-ACK information of multiple cells is jointly encoded and fed back in one time slot.
  • the HS-PDSCH High-Speed Physical Downlink Shared Channel subframe timing difference in which the uplink data of the multiple cells corresponding to the joint feedback corresponds to the respective downlink data satisfies the maximum coincidence criterion, that is, The subframe timing difference corresponding to each cell is within a range of greater than or equal to 0- ⁇ slots less than or equal to 1.5+ ⁇ slots, where ⁇ is to prevent the “ping-pong” effect (in the edge defined by the maximum coincidence criterion, in order to avoid The UE's measurement error or slight timing jitter causes unnecessary timing errors.
  • the setting is much smaller than the value of the 1.5 slot.
  • the MF-Tx has only two different downlink timings, that is, only one timing difference.
  • the selection principle of the timing reference cells based on the two different downlink timings is:
  • the cell is a 6HARQ (Hybrid Automatic Repeat Request) process scheduling or the UE does not require more HARQ processing time, select the subframe in which the advanced subframe in the corresponding subframe participating in the uplink joint feedback is located.
  • the community is The timing reference cell, if the corresponding subframe synchronization of the uplink joint feedback is involved, designate any cell as the timing reference cell or the designated primary cell as the timing reference cell.
  • the cell includes at least one non-6 HARQ process scheduling or the UE requires more HARQ processing time
  • the cell in which the subframe in which the subframe is delayed in the corresponding subframe that participates in the uplink joint feedback is selected as the timing reference cell, if participating in the uplink joint feedback
  • any cell is designated as a timing reference cell or a designated primary cell is a timing reference cell.
  • the "advance" and “lag” in the selection principle of the above-mentioned timing reference cell cannot determine that the cell is a timing reference cell, and at the same time, due to participation in the uplink
  • the subframe timing difference corresponding to the cell fed back is not unique. Therefore, after the UE measurement, it cannot be determined based on which timing difference is reported.
  • An embodiment of the present invention provides a method and a device for processing a timing reference cell to implement determination of a timing reference cell in an application scenario where there are more than two different downlink timings.
  • a method for processing a timing reference cell where: the network side device determines, in each cell group, a first cell according to a first preset criterion, where the cell group is at least two cell groups;
  • a timing reference cell is determined according to a second preset criterion in the first cell determined by each of the cell groups.
  • the determining, by the network side device, the first cell according to the first preset criterion in each cell group includes:
  • a cell corresponding to the most advanced subframe in time is a first cell in each cell group; wherein the most advanced subframe is delayed in time relative to the most advanced subframe
  • the subframes satisfy the maximum coincidence criterion or the sequence numbers corresponding to the subframes are the same or the subframe timing difference is the Tcell difference;
  • the network side device determines, in each cell group, the most lag in time.
  • the cell corresponding to the subframe is the first cell; wherein the most lag subframe satisfies the maximum coincidence criterion or the sequence number corresponding to the subframe or the subframe timing between the subframes that are temporally advanced relative to the most lag subframe
  • the difference is Tcell difference;
  • the time is a time corresponding to when the network side device sends the subframe.
  • the network side device determines, according to the first preset criterion, in each cell group A cell includes:
  • the network side device determines that the cell is the first cell.
  • the first cell determined by each of the cell groups is Determining, by the second preset criterion, the timing reference cell includes: determining, by the first cell corresponding to the subframe that is the most advanced in time, as the timing reference cell;
  • the subframes from any two of the first cells determined in the group of cells satisfy a predetermined criterion.
  • the determining, by using the second preset criterion, the timing reference cell in the first cell determined by each of the cell groups includes: When the subframe of the first cell determined by each cell group is synchronized, the first cell corresponding to any subframe in the synchronization subframe is determined as a timing reference cell.
  • the subframe includes: an HS-PDSCH subframe or an HS-SCCH subframe.
  • the method further includes: sending a timing reference cell message to the UE, so that the UE learns the network And determining, by the side device, the reference cell, and after receiving the subframe from the timing reference cell, feeding back the hybrid automatic repeat request acknowledgement information when the predetermined time slot length is passed, where the hybrid automatic repeat request acknowledgement information includes the simultaneous Performing joint feedback on subframes in at least one cell; the at least one cell The timing reference cell is included.
  • a second aspect provides a method for processing a timing reference cell, including:
  • the user equipment UE measures a downlink timing difference between two cells or a subframe timing difference corresponding to the two cells;
  • the measurement result is reported to the network side device.
  • the determining, by the UE, a downlink timing difference between two cells or a subframe timing difference corresponding to the two cells includes:
  • the downlink timing difference or the subframe timing difference between the two first cells is measured in sequence, wherein the first cell is a cell determined by the network side device according to the first preset criterion in each cell group.
  • the determining, by the UE, a downlink timing difference between two cells or a subframe timing difference corresponding to the two cells includes:
  • the downlink timing difference between each two cells in the cell group or the subframe timing difference corresponding to the two cells is measured in sequence.
  • the third aspect provides a network side device, including:
  • a processing unit configured to determine, according to a first preset criterion, a first cell in each cell group, where the cell group is at least two cell groups, and in the first cell determined by each cell group, according to The second preset criterion determines a timing reference cell, where the cell group is at least two cell groups.
  • the processing unit is specifically configured to: when each of the cell groups includes at least two cells, determine a subframe that is the most advanced in time in each cell group.
  • the corresponding cell is the first cell, where the most advanced subframe satisfies the maximum coincidence criterion or the sequence number corresponding to the subframe or the subframe timing between the subframes that are temporally delayed relative to the most advanced subframe.
  • the difference is Tcell difference;
  • determining, in each cell group, a cell corresponding to a subframe that is the most backward in time is a first cell, where the most delayed subframe and a subframe that is temporally ahead of the most delayed subframe
  • the maximum coincidence criterion is met or the sequence number corresponding to the subframe is the same or the subframe timing difference is Tcell difference;
  • the time is a time corresponding to when the network side device sends the subframe.
  • the processing unit is specifically configured to: when each of the cell groups includes one cell, the processing unit is specifically configured to determine the cell It is the first cell.
  • the processing unit is specifically configured to: correspond to a subframe that is the most advanced in time.
  • the first cell is determined to be a timing reference cell; or the first cell corresponding to the subframe that is the most late in time is determined as a timing reference cell;
  • the subframes from any two of the first cells determined in the group of cells satisfy a predetermined criterion.
  • the processing unit is specifically configured to: when subframe synchronization from the first cell determined by each cell group, The first cell corresponding to any subframe in the synchronization subframe is determined to be a timing reference cell.
  • the subframe includes: an HS-PDSCH subframe or an HS-SCCH subframe.
  • the method further includes: a sending unit, configured to send a timing reference cell message to the UE, The UE learns the timing reference cell determined by the network side device, and feeds back the hybrid automatic repeat request acknowledgement information when the predetermined time slot length is received after receiving the subframe from the timing reference cell, and the hybrid automatic repeat request acknowledgement
  • the information includes joint feedback on subframes from at least one cell at the same time; the at least one cell includes the timing reference cell.
  • a UE including:
  • a measuring unit configured to measure a downlink timing difference between two cells or a subframe timing difference corresponding to the two cells
  • the reporting unit is configured to report the measurement result to the network side device when the downlink timing difference is measured or the subframe timing difference does not meet the predetermined criterion.
  • the measuring unit is specifically configured to: sequentially measure a downlink timing difference or a subframe timing difference between two first cells, where the first cell is a network side. A cell determined by the device according to the first preset criterion in each cell group.
  • the measuring unit is specifically configured to: sequentially measure a downlink timing difference between each two cells in the cell group or a subframe timing difference corresponding to the two cells.
  • an embodiment of the present invention provides a network side device, including a processor and a memory, where the memory stores a computer to execute an instruction, and the processor and the memory are connected by using a communication bus;
  • the processor executes the computer-executed instructions stored by the memory when the device is in operation, such that the apparatus performs the method of the first aspect described above.
  • a UE including a processor and a memory, where the memory stores a computer to execute an instruction, the processor is connected to the memory through a communication bus; when the UE is running, the processor executes the The computer stored in the memory executes instructions to cause the apparatus to perform the method described in the second aspect above.
  • the network side device determines the first cell according to the first preset criterion in each cell group; and determines the first cell in each cell group.
  • the timing reference cell is determined according to the second preset criterion, so that the determination of the timing reference cell is implemented in an application scenario where there are more than two different downlink timings, and the application range of the timing reference cell is expanded.
  • FIG. 1 is a schematic diagram of a method for processing a timing reference cell according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a reference for determining a timing reference cell according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another method for processing a timing reference cell according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a network side device according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another network side device according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a UE according to an embodiment of the present invention. Schematic;
  • FIG. 7 is a schematic diagram of a network side device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a UE according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for processing a timing reference cell.
  • the execution body of the method is a network side device, and includes:
  • the network side device determines, in each cell group, the first cell according to the first preset criterion.
  • the cell group is at least two cell groups. It should be noted that each cell group includes at least one cell.
  • determining, according to the first preset criterion, that the first cell includes the following three implementation manners:
  • Manner 1 When each cell group includes at least two cells, the network side device determines, within each cell group, a cell corresponding to the subframe that is the most advanced in time as the first cell.
  • the most advanced subframe satisfies the maximum coincidence criterion or the subframe corresponding to the subframe or the subframe timing difference is Tcell difference between the subframes that are temporally delayed relative to the most advanced subframe. It should be noted that, because the sequence numbers corresponding to the two cell subframes in the same cell group are the same, that is, the subframe timing difference of the two cells is within the subframe timing difference defined by the maximum coincidence criterion, and the Tcell difference is also the maximum coincidence criterion. Within the defined subframe timing difference range, therefore, it is satisfied that the sequence number corresponding to the subframe is the same or the subframe timing difference is the Tcell difference, that is, the maximum coincidence criterion is satisfied.
  • the sequence number corresponding to the foregoing subframe is a number corresponding to the subframe in one frame.
  • five subframes correspond to one frame. Therefore, the five subframes may be exemplarily recorded as subframe 0, subframe 1, and subframe.
  • Subframe 3 and subframe 4 subframe 0 is the subframe that is the most advanced in time in a frame, and the subframes corresponding to the same sequence number are the same, that is, the subframes have the same number in the respective frames, for example, the above
  • the most advanced subframe corresponds to subframe 1 in the frame, and the subframe that is temporally delayed relative to the most advanced subframe also corresponds to subframe 1 in the frame, and then determines the most advanced subframe and the opposite subframe.
  • the subframes in which the advanced subframes are delayed in time are the same as the sequence numbers.
  • the Tcell is a timing delay of a start of a downlink synchronization channel, a downlink common pilot channel, or a downlink scrambling code of the cell with respect to a base station frame counter.
  • the downlink timing difference between the two cells is the timing difference between the P-CCPCH (Primary Common Control Physical Channel) channels of the two cells; because in the same cell, the P-CCPCH channel, the HS-SCCH channel, and The following relationships are satisfied between HS-PDSCH channels:
  • the frame start boundary of the P-CCPCH is aligned with the start start boundary of the HS-SCCH subframe 0; the HS-SCCH subframe start boundary and the corresponding HS-PDSCH subframe start boundary are different by 2 slots.
  • the subframe timing difference of the two-cell HS-SCCH or the subframe timing difference of the HS-PDSCH can be inferred.
  • the downlink timing difference of the two cells is Delta_X chips
  • the subframe timing difference of the HS-SCCH or the subframe timing difference of the HS-PDSCH is Delta_X mod 7680 chips, where mod is the remainder operation. .
  • the network side device determines, within each cell group, a cell corresponding to the subframe that is the most late in time as the first cell.
  • the subframe with the most lag meets the maximum coincidence criterion between the subframes that are temporally ahead of the subframe with the most lag, or the sequence number corresponding to the subframe is the same or the subframe timing difference is Tcell difference.
  • the sequence numbers corresponding to the two cell subframes in the same cell group are the same, that is, the subframe timing difference of the two cells is within the subframe timing difference defined by the maximum coincidence criterion, and the Tcell difference is also the maximum coincidence criterion. Within the defined subframe timing difference range, therefore, it is satisfied that the sequence number corresponding to the subframe is the same or the subframe timing difference is the Tcell difference, that is, the maximum coincidence criterion is satisfied.
  • the time is the time corresponding to the time when the network side device sends the subframe
  • the most advanced subframe may be the child of the network side device that meets the first preset criterion.
  • the subframe that is sent first in the frame, and the most lag subframe is the subframe that is last transmitted by the network side device in the subframe that satisfies the first preset criterion.
  • the network side device determines, according to the second preset criterion, the timing reference cell in the first cell determined by the each cell group.
  • determining the timing reference cell according to the second preset criterion includes the following three implementation manners:
  • Manner 1 The first cell corresponding to the subframe that is the most advanced in time is determined as a timing reference cell
  • Manner 2 The first cell corresponding to the subframe that is the most late in time is determined as the timing reference cell.
  • the predetermined criterion is met between subframes from any two first cells determined in the respective cell groups.
  • the predetermined criterion may be a maximum coincidence criterion, and may also be a fixed pairing relationship criterion, which is not limited by the present invention.
  • the foregoing mode 1 and mode 2 may be applied to the case where the subframes of the first cell determined by each cell group are not synchronized, and the subframes are not synchronized, that is, the start boundary of the subframes of the first cell of the network side device is sent by the network side device. not aligned.
  • the first mode and the second mode are described. As shown in FIG. 2, the direction indicated by the arrow indicates that the time advances. As can be seen from the figure, the transmission frame from the cell group 1 cell 1 is significantly ahead of the cell group.
  • the first cell, the cell 2 in the cell group 2 is the first cell of the cell group 2, of course, it can also be determined that the cell 2 in the cell group 1 is the first cell of the cell group 1, and the cell 1 in the cell group 2 is The first cell of the cell group 2 is exemplified and not limited.
  • the transmission frame from cell 1 of cell group 1 is obviously ahead of the transmission frame from cell 2 of cell group 2, and according to mode 1, cell 1 in cell group 1 is determined to be a reference reference cell;
  • Formula II determines the cell of the cell group 2 as a timing reference cell 2.
  • Manner 3 The first cell corresponding to any subframe in the synchronization subframe is determined as a timing reference cell when the subframe synchronization of the first cell determined by each cell group is synchronized.
  • the primary cell in the first cell may be determined as a timing reference cell, where the primary cell is a cell associated with an access point of the radio access network, and is used to send and receive a service HS-DSCH wireless chain for the UE. road.
  • the time is the time corresponding to when the network side device sends the subframe; and the predetermined criterion is met between the subframes of any two first cells determined in each cell group.
  • the network side device transmits the start boundary alignment of the subframes of the first cells.
  • the foregoing subframe includes: an HS-PDSCH subframe or an HS-SCCH subframe. That is, the determining the first cell and determining the timing reference cell may be determined according to the first preset criterion and the second preset criterion by using an HS-PDSCH subframe or an HS-SCCH subframe.
  • the network side device sends a timing reference cell message to the UE, so that the UE learns the timing reference cell determined by the network side device, and after receiving the subframe from the timing reference cell, Scheduled time slot length
  • the hybrid automatic repeat request acknowledgement information includes the joint feedback of the subframes from the at least one cell at the same time; the at least one cell includes the timing reference cell.
  • the UE After the UE learns the timing reference cell, after receiving the HS-PDSCH subframe sent by the timing reference cell, the UE generates a corresponding hybrid automatic repeat request acknowledgement after about 7.5 timeslots (that is, the predetermined time slot length described above). And transmitting the message to the timing reference cell and/or other cells, where the hybrid automatic repeat request acknowledgement message includes a hybrid automatic repeat request acknowledgement message of the timing reference cell and/or a hybrid automatic repeat request acknowledgement message of other cells.
  • the timing reference cell prepares the next transmission data in about 4.5 slots (corresponding to the 6 HARQ process) or about 7.5 slots (corresponding to the 7 HARQ process), and carries the control signaling of the next transmitted data on the HS-SCCH. And sending to the UE, so that the UE demodulates and decodes the received data according to the control signaling.
  • the network side device determines the first cell according to the first preset criterion in each cell group; and determines the first cell in each cell group.
  • the timing reference cell is determined according to the second preset criterion, so that the determination of the timing reference cell is implemented in an application scenario where there are more than two different downlink timings, and the application range of the timing reference cell is expanded.
  • An embodiment of the present invention provides a method for processing a timing reference cell. As shown in FIG. 3, the execution body of the method is a UE, and the method includes:
  • the UE measures a downlink timing difference between two cells or a subframe timing difference corresponding to the two cells.
  • the downlink timing difference is a timing difference between P-CCPCH channels of two cells; then the subframe timing difference is a timing difference between the HS-SCCH channel or the HS-PDSCH channel of the two cells, because the P-CCPCH channel, the HS-
  • the frame start boundary of the P-CCPCH is aligned with the start boundary of the HS-SCCH subframe 0; the HS-SCCH subframe start boundary and the corresponding HS-PDSCH subframe start boundary are different by 2 slots; wherein, the subframe 0 is The most advanced subframe in time in a frame. Therefore, the subframe timing difference of the HS-SCCH or the subframe timing difference of the HS-PDSCH can be inferred from the downlink timing difference.
  • the downlink timing difference of the two cells is Delta_X chips
  • the subframe timing of the HS-SCCH is The difference or the subframe timing difference of the HS-PDSCH is Delta-X mod 7680 chips, where mod is the remainder operation.
  • the UE reports the measurement result to the network side device when the downlink timing difference is measured or the subframe timing difference does not meet the predetermined criterion.
  • the network side device reconfigures according to the measurement result (such as reselecting the timing reference cell and sending the timing reference information).
  • the UE sequentially measures a downlink timing difference or a subframe timing difference between the two first cells.
  • the first cell is a cell determined by the network side device in each cell group according to the first preset criterion, and the network side device determines, according to the first preset criterion, the first cell in each cell group, which can be referred to FIG. Corresponding descriptions in the embodiments are not described herein again.
  • the network side device after determining the timing reference cell, the network side device sends a timing reference cell message to the UE, and the UE learns, according to the timing, that the network side device determines the first cell according to the first preset criterion in each cell group, and the UE only A downlink timing difference or a corresponding subframe timing difference between the first cell (including the timing reference cell) is measured. If there are more than two first cells, the downlink timing difference or the corresponding subframe timing difference between each two first cells is measured in turn, and the downlink timing difference or the corresponding subframe timing difference is not met with the predetermined criterion. The measurement result is reported to the network side device. In this way, the UE does not need to measure the downlink timing difference or the corresponding subframe timing difference between all cells, thereby simplifying the measurement and reporting process of the UE and improving the data transmission efficiency.
  • the UE sequentially measures a downlink timing difference between every two cells in the cell group or a subframe timing difference corresponding to the two cells.
  • the UE when it is determined that the downlink timing difference of the two measured cells or the corresponding subframe timing difference meets a predetermined criterion, continue to measure the downlink timing difference or the corresponding subframe timing between the remaining unmeasured two cells. Poor, until the measurement result is reported when the predetermined criteria are not met. It should be noted that, when the UE measures the downlink timing difference between the two cells or the corresponding subframe timing difference does not meet the predetermined criterion, the UE reports the measurement result, and does not need to report all the cells after the completion of the measurement. The measurement result, in this way, saves the measurement time of the UE, so that the UE reports the measurement result in time, and facilitates the network side device to re-pair the subframe to reselect the timing reference cell.
  • the foregoing predetermined criterion may be a maximum coincidence criterion, which is not limited by the present invention. It may also be a fixed pairing relationship criterion, and the specific predetermined criterion is consistent with the criterion met between the first cells determined by the network side device.
  • the UE measures a downlink timing difference between two cells or a subframe timing difference corresponding to the two cells, and measures the downlink timing difference or the sub-
  • the measurement result is reported to the network side device, so that the measurement time of the UE is saved, so that the UE reports the measurement result in time.
  • the embodiment of the present invention provides a network side device 40, as shown in FIG. 4, including: a processing unit 41, configured to determine, in each cell group, a first cell according to a first preset criterion, and in each cell group The determined first cell determines the timing reference cell according to the second preset criterion.
  • the cell group is at least two cell groups.
  • processing unit 41 is specifically configured to: when each cell group includes at least two cells, determine, in each cell group, a cell corresponding to the subframe that is the most advanced in time is the first cell.
  • the most advanced subframe satisfies the maximum coincidence criterion or the sequence number corresponding to the subframe or the subframe timing difference is Tcell difference between the subframes that are temporally delayed with respect to the most advanced subframe.
  • sequence numbers corresponding to the two cell subframes in the same cell group are the same, that is, the subframe timing difference of the two cells is within the subframe timing difference defined by the maximum coincidence criterion, and the Tcell difference is also the maximum coincidence criterion.
  • the sequence number corresponding to the subframe is the same or the subframe timing difference is the Tcell difference, that is, the maximum coincidence criterion is satisfied.
  • the sequence number corresponding to the foregoing subframe is a number corresponding to the subframe in one frame. Generally, five subframes correspond to one frame. Therefore, the five subframes may be exemplarily recorded as subframe 0, subframe 1, and subframe. 2.
  • Subframe 3 and subframe 4 subframe 0 is the subframe that is the most advanced in time in a frame, and the subframes corresponding to the same sequence number are the same, that is, the subframes have the same number in the respective frames, for example, the above
  • the most advanced subframe corresponds to subframe 1 in the frame
  • the subframe that is temporally delayed relative to the most advanced subframe also corresponds to subframe 1 in the frame, and then determines the most advanced subframe and the opposite subframe.
  • the subframes in which the advanced subframes are delayed in time are the same as the sequence numbers.
  • the Tcell is a timing delay of a start of a downlink synchronization channel, a downlink common pilot channel, or a downlink scrambling code of the cell with respect to a base station frame counter.
  • the downlink timing difference between the two cells is the timing difference between the P-CCPCH channels of the two cells; since the same relationship is satisfied between the P-CCPCH channel, the HS-SCCH channel and the HS-PDSCH channel in the same cell:
  • the frame start boundary of the P-CCPCH is aligned with the start start boundary of the HS-SCCH subframe 0; the HS-SCCH subframe start boundary and the corresponding HS-PDSCH subframe start boundary are different by 2 slots.
  • the subframe timing difference of the HS-SCCH or the subframe timing difference of the HS-PDSCH can be inferred.
  • the downlink timing difference of the two cells is Delta_X chips
  • the subframe timing difference of the HS-SCCH or the subframe timing difference of the HS-PDSCH is Delta_X mod 7680 chips, where mod is the remainder operation. .
  • the processing unit 41 is specifically configured to determine, in each cell group, a cell corresponding to the subframe that is the most late in time as the first cell.
  • the most lagging sub-frame satisfies the maximum coincidence criterion or the sequence number corresponding to the subframe or the subframe timing difference is Tcell difference between the sub-frames that are temporally advanced relative to the most-delayed sub-frame.
  • the sequence numbers corresponding to the two cell subframes in the same cell group are the same, that is, the subframe timing difference of the two cells is within the subframe timing difference defined by the maximum coincidence criterion, and the Tcell difference is also the maximum coincidence criterion. Within the defined subframe timing difference range, therefore, the sequence number corresponding to the subframe is the same or the subframe timing difference is the Tcell difference, that is, the most satisfied Large coincidence criteria.
  • the processing unit 41 is specifically configured to determine that the cell is the first cell
  • the most advanced subframe may be the first subframe sent by the network side device in the subframe that meets the first preset criterion
  • the most lag subframe is the last subframe transmitted by the network side device in the subframe that satisfies the first preset criterion.
  • the processing unit 41 is specifically configured to determine, as the timing reference cell, the first cell corresponding to the subframe that is the most advanced in time. Or the processing unit is specifically configured to determine, as the timing reference cell, the first cell corresponding to the subframe that is the most backward in time;
  • the subframe is not synchronized, that is, the starting boundary of the subframe in which the network side device sends each first cell is not aligned.
  • the processing unit is specifically configured to determine, as a timing reference cell, a first cell corresponding to any subframe in the synchronization subframe, when the subframe is synchronized by the first cell determined by each cell group.
  • the primary cell in the first cell may be determined as a timing reference cell, where the primary cell is a cell associated with an access point of the radio access network, and is used to send and receive a service HS-DSCH wireless chain for the UE. road.
  • the time is the time corresponding to when the network side device sends the subframe; and the predetermined criterion is met between the subframes of any two first cells determined in each cell group.
  • the predetermined criterion may be a maximum coincidence criterion, and may also be a fixed pairing relationship criterion, which is not limited by the present invention.
  • the network side device transmits the start boundary alignment of the subframes of the first cells.
  • the foregoing subframe includes: an HS-PDSCH subframe or an HS-SCCH subframe. That is, the determining the first cell and determining the timing reference cell may be determined according to the first preset criterion and the second preset criterion in an HS-PDSCH subframe or an HS-SCCH subframe. Further, as shown in FIG.
  • the network side device 40 further includes: a sending unit 42, configured to send a timing reference cell message to the UE, so that the UE learns the timing reference cell determined by the network side device, and receives the After the subframe is referenced in the cell, the hybrid automatic repeat request acknowledgement information is fed back when the predetermined time slot length is passed, and the hybrid automatic repeat request acknowledgement information includes joint feedback on the subframes from the at least one cell at the same time; the at least one The cell contains the above-mentioned timing reference cell.
  • a sending unit 42 configured to send a timing reference cell message to the UE, so that the UE learns the timing reference cell determined by the network side device, and receives the After the subframe is referenced in the cell, the hybrid automatic repeat request acknowledgement information is fed back when the predetermined time slot length is passed, and the hybrid automatic repeat request acknowledgement information includes joint feedback on the subframes from the at least one cell at the same time; the at least one The cell contains the above-mentioned timing reference cell.
  • the UE After the UE learns the timing reference cell, after receiving the HS-PDSCH subframe sent by the timing reference cell, the UE generates a corresponding hybrid automatic repeat request acknowledgement after about 7.5 timeslots (that is, the predetermined time slot length described above). And transmitting the message to the timing reference cell and/or other cells, where the hybrid automatic repeat request acknowledgement message includes a hybrid automatic repeat request acknowledgement message of the timing reference cell and/or a hybrid automatic repeat request acknowledgement message of other cells.
  • the timing reference cell prepares the next transmission data in about 4.5 slots (corresponding to the 6 HARQ process) or about 7.5 slots (corresponding to the 7 HARQ process), and carries the control signaling of the next transmitted data on the HS-SCCH. And sending to the UE, so that the UE demodulates and decodes the received data according to the control signaling.
  • the network side device determines the first cell according to the first preset criterion in each cell group; and determines the first in each cell group.
  • the timing reference cell is determined according to the second preset criterion in the cell, so that the determination of the timing reference cell is implemented in an application scenario where there are more than two different downlink timings, and the application range of the timing reference cell is expanded.
  • An embodiment of the present invention provides a UE 60, as shown in FIG. 6, including:
  • the measuring unit 61 is configured to measure a downlink timing difference between two cells or a subframe timing difference corresponding to the two cells.
  • the downlink timing difference is a timing difference between P-CCPCH channels of two cells; then the subframe timing difference is an HS-SCCH channel or an HS-PDSCH channel of two cells. Timing difference, due to the following timing relationship between P-CCPCH channel, HS-SCCH channel and HS-PDSCH channel:
  • the frame start boundary of the P-CCPCH is aligned with the start boundary of the HS-SCCH subframe 0; the HS-SCCH subframe start boundary and the corresponding HS-PDSCH subframe start boundary are different by 2 slots; wherein, the subframe 0 is The most advanced subframe in time in a frame.
  • the subframe timing difference of the HS-SCCH or the subframe timing difference of the HS-PDSCH can be inferred from the downlink timing difference.
  • the downlink timing difference of the two cells is Delta_X chips
  • the subframe timing of the HS-SCCH is The difference or the subframe timing difference of the HS-PDSCH is Delta-X mod 7680 chips, where mod is the remainder operation.
  • the reporting unit 62 is configured to report the measurement result to the network side device when the downlink timing difference is measured or the subframe timing difference does not meet the predetermined criterion.
  • the measuring unit 62 is specifically configured to sequentially measure a downlink timing difference or a subframe timing difference between the two first cells.
  • the first cell is a cell that is determined by the network side device in each cell group according to the first preset criterion.
  • the network side device after determining the timing reference cell, the network side device sends a timing reference cell message to the UE, and the UE learns, according to the timing, that the network side device determines the first cell according to the first preset criterion in each cell group, and the UE only Measure a downlink timing difference between the first cell (including the timing reference cell) or a corresponding subframe timing difference. If there are more than two first cells, measure the downlink timing difference or corresponding between each two first cells in sequence. When the downlink timing difference is measured or the corresponding subframe timing difference does not meet the predetermined criterion, the measurement result is reported to the network side device. In this way, the UE does not need to measure the downlink timing difference or the corresponding subframe timing difference between all cells, thereby simplifying the measurement and reporting process of the UE and improving the data transmission efficiency.
  • the measuring unit 61 is specifically configured to sequentially measure a downlink timing difference between each two cells in the cell group or a subframe timing difference corresponding to the two cells.
  • the downlink timing difference of the two measured cells or the corresponding subframe timing difference meets a predetermined criterion, continue to measure the downlink timing difference or the corresponding subframe timing between the remaining unmeasured two cells. Poor, until when the predetermined criteria are not met Report the measurement results.
  • the UE when the UE measures the downlink timing difference between the two cells or the corresponding subframe timing difference does not meet the predetermined criterion, the UE reports the measurement result, and does not need to report all the cells after the completion of the measurement.
  • the measurement result saves the measurement time of the UE, so that the UE reports the measurement result in time, and facilitates the network side device to re-pair the subframe to reselect the timing reference cell.
  • the foregoing predetermined criterion may be a maximum coincidence criterion, which is not limited by the present invention. It may also be a fixed pairing relationship criterion, and the specific predetermined criterion is consistent with the criterion met between the first cells determined by the network side device.
  • the UE measures a downlink timing difference between two cells or a subframe timing difference corresponding to the two cells, and measures the downlink timing difference or the child.
  • the measurement result is reported to the network side device, so that the measurement time of the UE is saved, so that the UE reports the measurement result in time.
  • the embodiment of the present invention provides a network side device 70. As shown in FIG. 7, the device includes: a processor (rocessor) 71, a communication interface (72), a memory 73, and a communication bus 104.
  • the processor 71, the communication interface 72, and the memory 73 complete communication with each other via the communication bus 104.
  • the processor 71 may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 73 is for storing program code, and the program code includes computer operating instructions.
  • the memory 73 may include a high speed RAM memory, and may also include a non-volatile memory, for example, at least one disk memory.
  • the communication interface 72 is configured to output a compressed code stream of an image.
  • the processor 71 executes program code for determining a first cell according to a first preset criterion in each cell group, and determining a timing reference according to a second preset criterion in the first cell determined by each cell group Community.
  • the cell group is at least two cell groups.
  • the processor 71 is specifically configured to: when each cell group includes at least two cells, determine, in each cell group, a cell corresponding to the subframe that is the most advanced in time is the first cell.
  • the subframe that is the most advanced and the subframe that is delayed in time relative to the most advanced subframe meet the maximum coincidence criterion or the sequence number corresponding to the subframe is the same or the subframe timing difference is Tcell difference; or
  • the processor 71 is specifically configured to determine, in each cell group, a cell corresponding to a subframe that is the most late in time as a first cell.
  • the most lagging sub-frame satisfies the maximum coincidence criterion or the sequence number corresponding to the subframe or the subframe timing difference is Tcell difference between the sub-frames that are temporally advanced relative to the most-delayed sub-frame.
  • the time is the time corresponding to when the network side device sends the subframe.
  • the processor 71 is specifically configured to: when each cell group includes one cell, determine that the cell is the first cell.
  • the processor 71 is specifically configured to determine, as a timing reference cell, a first cell corresponding to the subframe that is the most advanced in time; or
  • the processor is specifically configured to determine, as a timing reference cell, a first cell corresponding to a subframe that is the most late in time.
  • the predetermined criterion is met between subframes from any two first cells determined in the respective cell groups.
  • the processor 71 is configured to determine, according to the subframe synchronization of the first cell determined by each of the cell groups, the first cell corresponding to any subframe in the synchronization subframe as the timing reference cell. .
  • the processor 71 is further configured to send a timing reference cell message to the UE, where Therefore, the UE learns the timing reference cell determined by the network side device, and feeds back the hybrid automatic repeat request acknowledgement information when a predetermined time slot length is received after receiving the subframe from the timing reference cell.
  • the hybrid automatic repeat request acknowledgement information includes joint feedback on the subframes from the at least one cell at the same time; the at least one cell includes the timing reference cell.
  • the embodiment of the present invention provides a UE 80. As shown in FIG. 8, the UE 80 includes: a processor (rocessor) 81, a communication interface (82), a memory (memory) 83, and a communication bus 84.
  • the communication unit 82, the communication interface 82, and the memory 83 complete communication with each other via the communication bus 84.
  • the processor 81 may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 83 is used to store program code, including computer operating instructions.
  • the memory 83 may include a high speed RAM memory, and may also include a non-volatile memory, for example, at least one disk memory.
  • the communication interface 82 is configured to output a compressed code stream of an image.
  • the processor 81 executes program code for measuring a downlink timing difference between two cells or a subframe timing difference corresponding to the two cells;
  • the measurement result is reported to the network side device.
  • the processor 81 is specifically configured to sequentially measure a downlink timing difference or a subframe timing difference between two first cells.
  • the first cell is a cell that is determined by the network side device in each cell group according to the first preset criterion.
  • the processor 81 is specifically configured to sequentially measure a downlink timing difference between each two cells in the cell group or a subframe timing difference corresponding to the two cells.
  • the embodiment of the present invention provides a communication system, as shown in FIG. 9, including the network side device 40 and the UE 60.
  • the system includes the network side device 70 and the UE 80.
  • the communication system may be an MF-Tx system, and the network side device may be an RNC (Radio Network Controller).
  • RNC Radio Network Controller
  • FIG. 3 illustrates a method of processing a timing reference cell, and each unit in the network side device also corresponds to each step in the method.
  • the network side device determines the first cell according to the first preset criterion in each cell group; and determines the first in each cell group.
  • the timing reference cell is determined according to the second preset criterion in the cell, so that the determination of the timing reference cell is implemented in an application scenario where there are more than two different downlink timings, and the application range of the timing reference cell is expanded.
  • the UE measures a downlink timing difference between two cells or a subframe timing difference corresponding to the two cells, and measures the downlink timing difference or the subframe timing difference.
  • the predetermined criterion is not met, the measurement result is reported to the network side device, so that the measurement time of the UE is saved, so that the UE reports the measurement result in time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种定时参考小区的处理方法、设备和系统,涉及通信领域,以在存在多于两个不同的下行定时的应用场景中实现定时参考小区的确定,该方法包括:网络侧设备在每个小区组内根据第一预设准则确定第一小区;在所述每个小区组确定的第一小区中根据第二预设准则确定定时参考小区。本发明实施例用于多于两个不同的下行定时下参考小区的确定以及UE的测量上报。

Description

一种定时参考小区的处理方法和设备 技术领域
本发明涉及通信领域, 尤其涉及一种定时参考小区的处理方法 和设备。
背景技术
MF-Tx ( Multiflow Transmission , 多流传输)技术是利用一个基 站内多个小区之间的协同或者多个基站内多个小区之间的协同, 向 一个 UE ( User Equipment , 用户设备 )发送不同的数据。 参与 MF-Tx 的小区可以是同频或邻频的, 可以属于不同的扇区, 更可以属于不 同的基站, 另外, 参与 MF-Tx的小区的下行定时也可以不同。
MF-Tx 对下行数据的上行反馈信息釆用的都是联合反馈的方 式, 即 UE 在多 个服务小 区 内接收数据的反馈信息在同一条 HS-DPCCH ( High-Speed Dedicated Physical Control Channel , 高速 专用物理控制信道) 上反馈, 如: 多个小区的 HARQ-ACK信息联合 编码反馈在一个时隙中。 釆用联合反馈的多个小区的上行反馈信息 所对应各自 的下行数据所在的 HS-PDSCH ( High-Speed Physical Downlink Shared Channel 高速下行链路共享物理信道) 子帧定时 差满足最大重合准则, 即多个小区对应的子帧定时差在大于等于 0- △时隙小于等于 1 .5+ Δ时隙的范围内, 其中, △为防止 "乒乓" 效 应 (在最大重合准则定义的范围边缘为了避免因 UE 的测量误差或 者轻微定时抖动等原因而引起不必要的定时错误)设置的远小于 1 .5 时隙的值。
现有技术中, MF-Tx 只有两个不同的下行定时, 即只有一个定 时差, 基于这两个不同的下行定时的定时参考小区的选择原则为:
1 , 若小区均为 6HARQ ( Hybrid Automatic Repeat Request , 混 合自动重传请求 )进程调度或者 UE不要求更多的 HARQ处理时间, 选择参与上行联合反馈的所对应的子帧中超前的子帧所在的小区为 定时参考小区, 如果参与上行联合反馈的所对应的子帧同步时, 指 定任一小区为定时参考小区或指定主小区为定时参考小区。
2、 若小区包括至少一个非 6HARQ进程调度或者 UE要求更多 的 HARQ处理时间, 选择参与上行联合反馈的所对应的子帧中滞后 的子帧所在的小区为定时参考小区, 如果参与上行联合反馈的所对 应的子帧同步时, 指定任一小区为定时参考小区或指定主小区为定 时参考小区。
但是对于当 MF-Tx存在多于两个不同的下行定时的场景时, 上 述定时参考小区的选择原则中的 "超前" 和 "滞后" 就无法确定那 个小区为定时参考小区, 同时, 由于参与上行联合反馈的小区对应 的子帧定时差不唯一, 因此, UE测量后无法确定基于哪个定时差进 行上报。
发明内容
本发明的实施例提供一种定时参考小区的处理方法和设备, 以 在存在多于两个不同的下行定时的应用场景中实现定时参考小区的 确定。
第一方面, 提供一种定时参考小区的处理方法, 包括: 网络侧 设备在每个小区组内根据第一预设准则确定第一小区, 其中, 所述 小区组为至少两个小区组;
在所述每个小区组确定的第一小区中根据第二预设准则确定定 时参考小区。
在第一方面第一种可能的实现方式中, 当所述每个小区组包括 至少两个小区时, 所述网络侧设备在每个小区组内根据第一预设准 则确定第一小区包括:
所述网络侧设备在每个小区组内确定在时间上最超前的子帧对 应的小区为第一小区; 其中, 所述最超前的子帧与相对所述最超前 的子帧在时间上滞后的子帧之间满足最大重合准则或者子帧对应的 序号相同或者子帧定时差为 Tcell差;
或者, 所述网络侧设备在每个小区组内确定在时间上最滞后的 子帧对应的小区为第一小区; 其中, 最滞后的子帧与相对所述最滞 后的子帧在时间上超前的子帧之间满足最大重合准则或者子帧对应 的序号相同或者子帧定时差为 Tcell差;
其中, 所述时间为网络侧设备发送所述子帧时对应的时间。 结合第一种可能的实现方式, 在第二种可能的实现方式中, 当 所述每个小区组包括一个小区时, 所述网络侧设备在每个小区组内 根据第一预设准则确定第一小区包括:
网络侧设备确定所述小区为第一小区。
结合第一方面第一种可能的实现方式或第一方面第二种可能的 实现方式, 在第三种可能的实现方式中, 所述在所述每个小区组确 定的第一小区中根据第二预设准则确定定时参考小区包括: 将在时 间上最超前的子帧对应的第一小区确定为定时参考小区;
或者, 将在时间上最滞后的子帧对应的第一小区确定为定时参 考小区;
其中, 来自所述各小区组内确定的任意两个第一小区的子帧之 间满足预定准则。
结合第三种可能的实现方式, 在第四种可能的实现方式中, 所 述在所述每个小区组确定的第一小区中根据第二预设准则确定定时 参考小区包括: 在来自所述每个小区组确定的第一小区的子帧同步 时, 将同步子帧中的任一子帧对应的第一小区确定为定时参考小区。
结合第一方面至第一方面第四种可能的实现方式中的任一种, 在第五种可能的实现方式中, 所述子帧包括: HS-PDSCH子帧或者 HS-SCCH子帧。
结合第一方面至第一方面第五种可能的实现方式中的任一种, 在第五种可能的实现方式中, 还包括: 向 UE 发送定时参考小区消 息, 以便所述 UE 获知所述网络侧设备确定的定时参考小区, 并在 接收到来自定时参考小区中的子帧后, 经过预定时隙长度时反馈混 合自动重传请求确认信息, 所述混合自动重传请求确认信息包括同 时对来自至少一个小区中的子帧进行联合反馈; 所述至少一个小区 包含所述定时参考小区。
第二方面, 提供一种定时参考小区的处理方法, 包括:
用户设备 UE 测量两个小区之间的下行定时差或者所述两个小 区对应的子帧定时差;
在测量到所述下行定时差或者所述子帧定时差不符合预定准则 时, 将测量结果上报至所述网络侧设备。
在第二方面第一种可能的实现方式中, 所述 UE 测量两个小区 之间的下行定时差或者所述两个小区对应的子帧定时差包括:
依次测量两个第一小区之间的下行定时差或者子帧定时差, 其 中, 所述第一小区为网络侧设备在每个小区组内根据第一预设准则 确定的小区。
在第二方面第二种可能的实现方式中, 所述 UE 测量两个小区 之间的下行定时差或者所述两个小区对应的子帧定时差包括:
依次测量小区组内每两个小区之间的下行定时差或者所述两个 小区对应的子帧定时差。
第三方面, 提供一种网络侧设备, 包括:
处理单元, 用于在每个小区组内根据第一预设准则确定第一小 区; 其中, 所述小区组为至少两个小区组, 并在所述每个小区组确 定的第一小区中根据第二预设准则确定定时参考小区, 其中, 所述 小区组为至少两个小区组。
在第三方面第一种可能的实现方式中,所述处理单元具体用于, 当所述每个小区组包括至少两个小区时, 在每个小区组内确定在时 间上最超前的子帧对应的小区为第一小区; 其中, 所述最超前的子 帧与相对所述最超前的子帧在时间上滞后的子帧之间满足最大重合 准则或者子帧对应的序号相同或者子帧定时差为 Tcell差;
或者, 在每个小区组内确定在时间上最滞后的子帧对应的小区 为第一小区; 其中, 所述最滞后的子帧与相对所述最滞后的子帧在 时间上超前的子帧之间满足最大重合准则或者子帧对应的序号相同 或者子帧定时差为 Tcell差; 其中 , 所述时间为网络侧设备发送所述子帧时对应的时间。 结合第一种可能的实现方式, 在第二种可能的实现方式中, 所 述处理单元具体用于, 当所述每个小区组包括一个小区时, 所述处 理单元具体用于确定所述小区为第一小区。
结合第三方面至第三方面第二种可能的实现方式中的任一种, 在第三种可能的实现方式中, 所述处理单元具体用于, 将在时间上 最超前的子帧对应的第一小区确定为定时参考小区; 或者, 将在时 间上最滞后的子帧对应的第一小区确定为定时参考小区;
其中, 来自所述各小区组内确定的任意两个第一小区的子帧之 间满足预定准则。
结合第三方面第三种可能的实现方式, 在第四种可能的实现方 式中, 所述处理单元具体用于, 在来自所述每个小区组确定的第一 小区的子帧同步时, 将同步子帧中的任一子帧对应的第一小区确定 为定时参考小区。
结合第三方面至第三方面第四种可能的实现方式中的任一种, 在第五种可能的实现方式中, 所述子帧包括: HS-PDSCH 子帧或者 HS-SCCH子帧。
结合第三方面至第三方面第五种可能的实现方式中的任一种, 在第六种可能的实现方式中, 还包括: 发送单元, 用于向 UE 发送 定时参考小区消息, 以便所述 UE 获知所述网络侧设备确定的定时 参考小区, 并在接收到来自定时参考小区中的子帧后, 经过预定时 隙长度时反馈混合自动重传请求确认信息, 所述混合自动重传请求 确认信息包括同时对来自至少一个小区中的子帧进行联合反馈; 所 述至少一个小区包含所述定时参考小区。
第四方面, 提供一种 UE ,包括:
测量单元, 用于测量两个小区之间的下行定时差或者所述两个 小区对应的子帧定时差;
上报单元, 用于在测量到所述下行定时差或者所述子帧定时差 不符合预定准则时, 将测量结果上报至所述网络侧设备。 在第四方面第一种可能的实现方式中,所述测量单元具体用于, 依次测量两个第一小区之间的下行定时差或者子帧定时差, 其中, 所述第一小区为网络侧设备在每个小区组内根据第一预设准则确定 的小区。
在第四方面第二种可能的实现方式中,所述测量单元具体用于, 依次测量小区组内每两个小区之间的下行定时差或者所述两个小区 对应的子帧定时差。
第五方面, 本发明实施例提供一种网络侧设备, 包括处理器和 存储器, 所述存储器存储计算机执行指令, 所述处理器与所述存储 器通过通信总线连接;
当所述设备运行时, 所述处理器执行所述存储器存储的所述计 算机执行指令, 使得所述装置执行上述第一方面所述的方法。
第六方面, 提供一种 UE , 包括处理器和存储器, 所述存储器存 储计算机执行指令, 所述处理器与所述存储器通过通信总线连接; 当所述 UE 运行时, 所述处理器执行所述存储器存储的所述计 算机执行指令, 使得所述装置执行上述第二方面所述的方法。
釆用上述方案, 在存在多于两个不同的下行定时的场景中, 网 络侧设备在每个小区组内根据第一预设准则确定第一小区; 并在每 个小区组确定的第一小区中根据第二预设准则确定定时参考小区, 从而在存在多于两个不同的下行定时的应用场景中实现定时参考小 区的确定, 扩展了定时参考小区的应用范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1 为本发明实施例提供的一种定时参考小区的处理的方法示 意图; 图 2 为本发明实施例提供的一种确定定时参考小区的参考示意 图;
图 3 为本发明实施例提供的另一种定时参考小区的处理的方法 示意图;
图 4为本发明实施例提供的一种网络侧设备的结构示意图; 图 5为本发明实施例提供的另一种网络侧设备的结构示意图; 图 6为本发明实施例提供的一种 UE的结构示意图;
图 7本发明实施例提供的一种网络侧设备的示意图;
图 8本发明实施例提供的一种 UE的示意图;
图 9为本发明实施例提供的一种通信系统的示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例提供一种定时参考小区的处理方法,如图 1 所示, 该方法的执行主体为网络侧设备, 包括:
S 101、 网络侧设备在每个小区组内根据第一预设准则确定第一 小区。
其中, 该小区组为至少两个小区组。 需要说明的是, 每个小区 组内包括至少一个小区。
进一步地, 上述根据第一预设准则确定第一小区包括以下三种 实现方式:
方式一: 当每个小区组包括至少两个小区时, 网络侧设备在每 个小区组内确定在时间上最超前的子帧对应的小区为第一小区。
其中, 最超前的子帧与相对该最超前的子帧在时间上滞后的子 帧之间满足最大重合准则或者子帧对应的序号相同或者子帧定时差 为 Tcell差。 需要说明的是, 由于在同一个小区组中两小区子帧对应的序号 相同即表示两小区的子帧定时差在最大重合准则定义的子帧定时差 范围内, 并且 Tcell差也在最大重合准则定义的子帧定时差范围内, 因此, 满足子帧对应的序号相同或者子帧定时差为 Tcell差即满足最 大重合准则。
上述子帧对应的序号即该子帧在一个帧中对应的编号,一般地, 五个子帧对应一个帧, 因此示例地可将该五个子帧分别记为子帧 0、 子帧 1、 子帧 2、 子帧 3和子帧 4 , 子帧 0即为一个帧中在时间上最 超前的子帧, 则上述子帧对应的序号相同即子帧在各自帧中对应相 同的编号相同, 例如, 上述最超前的子帧在帧中对应为子帧 1、 上 述相对该最超前的子帧在时间上滞后的子帧在帧中也对应为子帧 1 , 则确定最超前的子帧与相对该最超前的子帧在时间上滞后的子帧对 应的序号相同。
该 Tcell为小区的下行同步信道、下行公共导频信道或下行扰码 的起始点相对于基站帧计数器的定时延迟。
两小区的下行定时差为两小区的 P-CCPCH ( Primary Common Control Physical Channel ,主公共控制物理信道)信道之间的定时差; 由于在同一个小区内, P-CCPCH信道、 HS-SCCH信道和 HS-PDSCH 信道之间满足以下关系:
P-CCPCH的帧开始边界和 HS-SCCH子帧 0 的子帧开始边界对 齐; HS-SCCH子帧开始边界和与之对应的 HS-PDSCH子帧开始边界 相差 2个时隙。
这样, 从两小区的下行定时差, 可以推断出两小区 HS-SCCH 的子帧定时差或者 HS-PDSCH的子帧定时差。 例如, 两小区的下行 定时差为 Delta— X 个码片 , 则 HS-SCCH 的子帧定时差或者 HS-PDSCH的子帧定时差为 Delta— X mod 7680 码片, 其中, mod为 求余运算。
方式二: 当每个小区组包括至少两个小区时, 网络侧设备在每 个小区组内确定在时间上最滞后的子帧对应的小区为第一小区。 其中, 最滞后的子帧与相对该最滞后的子帧在时间上超前的子 帧之间满足最大重合准则或者子帧对应的序号相同或者子帧定时差 为 Tcell差。
需要说明的是, 由于在同一个小区组中两小区子帧对应的序号 相同即表示两小区的子帧定时差在最大重合准则定义的子帧定时差 范围内, 并且 Tcell差也在最大重合准则定义的子帧定时差范围内, 因此, 满足子帧对应的序号相同或者子帧定时差为 Tcell差即满足最 大重合准则。
方式三, 当每个小区组包括一个小区时, 网络侧设备确定该小 区为第一小区。
需要说明的是, 在上述第一和第二方式中, 上述时间为网络侧 设备发送该子帧时对应的时间, 则上述最超前子帧可以为网络侧设 备在满足第一预设准则的子帧中最先发送的子帧, 上述最滞后子帧 即为网络侧设备在满足第一预设准则的子帧中最后发送的子帧。
S 102、 网络侧设备在该每个小区组确定的第一小区中根据第二 预设准则确定定时参考小区。
具体地, 上述根据第二预设准则确定定时参考小区包括以下三 种实现方式:
方式一: 将在时间上最超前的子帧对应的第一小区确定为定时 参考小区;
方式二: 将在时间上最滞后的子帧对应的第一小区确定为定时 参考小区。
其中, 来自该各小区组内确定的任意两个第一小区的子帧之间 满足预定准则。
需要说明的是, 该预定准则可以为最大重合准则, 还可以为固 定配对关系准则, 本发明对此不作限定。
上述方式一和方式二可以应用于在来自每个小区组确定的第一 小区的子帧不同步的情况下, 该子帧不同步即网络侧设备发送各第 一小区的子帧的起始边界不对齐。 参照图 2对上述方式一和方式二进行说明, 如图 2所示, 箭头 指示方向表示在时间上超前, 由图中可以看出, 来自小区组 1 小区 1 的传输帧明显超前于来自小区组 1 小区 2的传输帧, 来自小区组 2 小区 1 的传输帧明显滞后于来自小区组 2 小区 2 的传输帧, 则根据 第一预设准则可以确定来自小区组 1 中的小区 1 为小区组 1 的第一 小区, 小区组 2 中的小区 2为小区组 2 的第一小区, 当然, 也可以 确定小区组 1 中的小区 2为小区组 1 的第一小区, 小区组 2 中的小 区 1 为小区组 2 的第一小区, 这里只是举例说明, 不作限定, 假设 以小区组 1 中的小区 1 为小区组 1 的第一小区, 小区组 2 中的小区 2 为小区组 2 的第一小区, 由图中可以看出, 来自小区组 1 小区 1 的传输帧明显超前于来自小区组 2小区 2的传输帧, 则按照方式一, 确定小区组 1 中的小区 1 为定时参考小区; 按照方式二, 确定小区 组 2的小区 2为定时参考小区。
方式三: 在来自每个小区组确定的第一小区的子帧同步时, 将 同步子帧中的任一子帧对应的第一小区确定为定时参考小区。
当然, 可以将第一小区中的主小区确定为定时参考小区, 其中, 主小区是与无线接入网的接入点相关联的小区, 用于发送和接收针 对 UE的服务 HS-DSCH无线链路。
其中, 该时间为网络侧设备发送该子帧时对应的时间; 来自各 小区组内确定的任意两个第一小区的子帧之间满足预定准则。
另外, 上述子帧同步即网络侧设备发送各第一小区的子帧的起 始边界对齐。
需要说明的是, 上述子帧包括: HS-PDSCH子帧或者 HS-SCCH 子帧。 也就是说, 上述确定第一小区和确定定时参考小区, 可以以 HS-PDSCH子帧或者 HS-SCCH子帧根据第一预设准则和第二预设准 则确定。
进一步地, 网络侧设备在确定定时参考小区之后, 向 UE 发送 定时参考小区消息, 以便该 UE 获知该网络侧设备确定的定时参考 小区, 并在接收到来自定时参考小区中的子帧后, 经过预定时隙长 度时反馈混合自动重传请求确认信息, 该混合自动重传请求确认信 息包括同时对来自至少一个小区中的子帧进行联合反馈; 该至少一 个小区包含上述定时参考小区。
具体地, UE在获知定时参考小区后, 在接收到定时参考小区发 送的 HS-PDSCH子帧后, 大约 7.5 时隙 ( 即上述的预定时隙长度 ) 后会产生相应的混合自动重传请求确认消息, 并发送至定时参考小 区和 /或其它小区, 所指的混合自动重传请求确认消息包含定时参考 小区的混合自动重传请求确认消息和 /或其它小区的混合自动重传 请求确认消息,定时参考小区在大约 4.5时隙(对应于 6HARQ进程 ) 或者大约 7.5时隙(对应于 7HARQ进程)内准备好下次传输的数据, 将下次传输的数据的控制信令承载在 HS-SCCH上并发送至 UE , 以 便 UE根据控制信令对接收数据进行解调和译码等。
釆用上述方案, 在存在多于两个不同的下行定时的场景中, 网 络侧设备在每个小区组内根据第一预设准则确定第一小区; 并在每 个小区组确定的第一小区中根据第二预设准则确定定时参考小区, 从而在存在多于两个不同的下行定时的应用场景中实现定时参考小 区的确定, 扩展了定时参考小区的应用范围。 本发明实施例提供一种定时参考小区的处理方法,如图 3所示, 该方法的执行主体为 UE , 包括:
S301、 UE测量两个小区之间的下行定时差或者该两个小区对应 的子帧定时差。
其中, 上述下行定时差为两小区的 P-CCPCH 信道之间的定时 差; 则子帧定时差为两小区的 HS-SCCH信道或 HS-PDSCH信道的 定时差, 由于 P-CCPCH信道、 HS-SCCH信道和 HS-PDSCH信道之 间存在以下定时关系:
P-CCPCH的帧开始边界和 HS-SCCH子帧 0 的开始边界对齐; HS-SCCH子帧开始边界和与之对应的 HS-PDSCH子帧开始边界相差 2个时隙; 其中, 子帧 0即为一个帧中在时间上最超前的子帧。 因此由下行定时差可以推断出 HS-SCCH 的子帧定时差或者 HS-PDSCH 的子帧定时差, 例如, 两小区的下行定时差为 Delta— X 个码片, 则 HS-SCCH 的子帧定时差或者 HS-PDSCH 的子帧定时差 为 Delta— X mod 7680 码片, 其中, mod为求余运算。
S302、 UE在测量到该下行定时差或者该子帧定时差不符合预定 准则时, 将测量结果上报至该网络侧设备。
网络侧设备则根据测量结果进行重新配置 (如重新选择定时参 考小区, 发送定时参考信息)。
可选地, UE依次测量两个第一小区之间的下行定时差或者子帧 定时差。
其中, 该第一小区为网络侧设备在每个小区组内根据第一预设 准则确定的小区, 网络侧设备在每个小区组内根据第一预设准则确 定第一小区可以参考图 1 所述实施例中对应的描述, 此处不再赘述 了。
具体地, 网络侧设备在确定定时参考小区之后, 向 UE 发送定 时参考小区消息, UE根据该定时参考小区获知网络侧设备在每个小 区组内根据第一预设准则确定第一小区, UE仅测量第一小区 ( 包括 定时参考小区 ) 之间的下行定时差或对应的子帧定时差。 如果第一 小区多于两个, 则依次测量每两个第一小区之间的下行定时差或对 应的子帧定时差, 在测量到该下行定时差或者对应的子帧定时差不 符合预定准则时, 将测量结果上报至网络侧设备。 这样, UE不需要 再测量所有小区之间下行定时差或者对应的子帧定时差, 从而简化 了 UE的测量和上报流程, 提高了数据的传输效率。
可选地, UE依次测量小区组内每两个小区之间的下行定时差或 者该两个小区对应的子帧定时差。
具体地, 若确定测量的两个小区的下行定时差或者对应的子帧 定时差符合预定准则时, 则继续测量剩余的未测量过的两个小区之 间的下行定时差或者对应的子帧定时差, 直至在不符合预定准则时 上报测量结果。 需要说明的是,UE只要测量到两个小区之间的下行定时差或者 对应的子帧定时差不符合预定准则时, 即上报测量结果, 并不需要 所有的小区之间都测量完成后才上报测量结果, 这样, 节约了 UE 测量的时间,使得 UE及时上报测量结果, 方便网络侧设备重新配对 子帧从而重新选择定时参考小区。
另外, 上述预定准则可以是最大重合准则, 本发明对此不作限 定, 还可以是固定配对关系准则, 具体的预定准则与网络侧设备确 定的第一小区之间满足的准则一致。
釆用上述方案, 在 UE测量上报的过程中, UE测量两个小区之 间的下行定时差或者所述两个小区对应的子帧定时差, 并在测量到 所述下行定时差或者所述子帧定时差不符合预定准则时, 将测量结 果上报至所述网络侧设备, 这样, 节约了 UE 测量的时间,使得 UE 及时上报测量结果。
本发明实施例提供一种网络侧设备 40 , 如图 4所示, 包括: 处理单元 41 , 用于在每个小区组内根据第一预设准则确定第一 小区, 并在该每个小区组确定的第一小区中根据第二预设准则确定 定时参考小区。
其中, 该小区组为至少两个小区组。
进一步地, 该处理单元 41具体用于, 当每个小区组包括至少两 个小区时, 在每个小区组内确定在时间上最超前的子帧对应的小区 为第一小区。
其中, 最超前的子帧与相对该最超前的子帧在时间上滞后的子 帧之间满足最大重合准则或者子帧对应的序号相同或者子帧定时差 为 Tcell差。
需要说明的是, 由于在同一个小区组中两小区子帧对应的序号 相同即表示两小区的子帧定时差在最大重合准则定义的子帧定时差 范围内, 并且 Tcell差也在最大重合准则定义的子帧定时差范围内, 因此, 满足子帧对应的序号相同或者子帧定时差为 Tcell差即满足最 大重合准则。 上述子帧对应的序号即该子帧在一个帧中对应的编号,一般地, 五个子帧对应一个帧, 因此示例地可将该五个子帧分别记为子帧 0、 子帧 1、 子帧 2、 子帧 3和子帧 4 , 子帧 0即为一个帧中在时间上最 超前的子帧, 则上述子帧对应的序号相同即子帧在各自帧中对应相 同的编号相同, 例如, 上述最超前的子帧在帧中对应为子帧 1、 上 述相对该最超前的子帧在时间上滞后的子帧在帧中也对应为子帧 1 , 则确定最超前的子帧与相对该最超前的子帧在时间上滞后的子帧对 应的序号相同。
该 Tcell为小区的下行同步信道、下行公共导频信道或下行扰码 的起始点相对于基站帧计数器的定时延迟。
两小区的下行定时差为两小区的 P-CCPCH信道之间的定时差; 由于在同一个小区 内 , 上述 P-CCPCH 信道、 HS-SCCH 信道和 HS-PDSCH信道之间满足以下关系:
P-CCPCH的帧开始边界和 HS-SCCH子帧 0 的子帧开始边界对 齐; HS-SCCH子帧开始边界和与之对应的 HS-PDSCH子帧开始边界 相差 2个时隙。
这样, 从两小区的下行定时差, 可以推断出 HS-SCCH 的子帧 定时差或者 HS-PDSCH的子帧定时差。 例如, 两小区的下行定时差 为 Delta— X个码片,则 HS-SCCH的子帧定时差或者 HS-PDSCH的子 帧定时差为 Delta— X mod 7680 码片, 其中, mod为求余运算。
可选地, 该处理单元 41具体用于, 在每个小区组内确定在时间 上最滞后的子帧对应的小区为第一小区。
其中, 最滞后的子帧与相对该最滞后的子帧在时间上超前的子 帧之间满足最大重合准则或者子帧对应的序号相同或者子帧定时差 为 Tcell差。
需要说明的是, 由于在同一个小区组中两小区子帧对应的序号 相同即表示两小区的子帧定时差在最大重合准则定义的子帧定时差 范围内, 并且 Tcell差也在最大重合准则定义的子帧定时差范围内, 因此, 满足子帧对应的序号相同或者子帧定时差为 Tcell差即满足最 大重合准则。
当每个小区组包括一个小区时,该处理单元 41具体用于确定该 小区为第一小区;
需要说明的是, 上述时间为网络侧设备发送该子帧时对应的时 间, 则上述最超前子帧可以为网络侧设备在满足第一预设准则的子 帧中最先发送的子帧, 上述最滞后子帧即为网络侧设备在满足第一 预设准则的子帧中最后发送的子帧。
进一步地, 在来自每个小区组确定的第一小区的子帧不同步的 情况下, 该处理单元 41具体用于, 将在时间上最超前的子帧对应的 第一小区确定为定时参考小区; 或者, 该处理单元具体用于, 将在 时间上最滞后的子帧对应的第一小区确定为定时参考小区;
其中, 该子帧不同步即网络侧设备发送各第一小区的子帧的起 始边界不对齐。
在来自每个小区组确定的第一小区的子帧同步时,该处理单元, 具体用于将同步子帧中的任一子帧对应的第一小区确定为定时参考 小区。
当然, 可以将第一小区中的主小区确定为定时参考小区, 其中, 主小区是与无线接入网的接入点相关联的小区, 用于发送和接收针 对 UE的服务 HS-DSCH无线链路。
其中, 该时间为网络侧设备发送该子帧时对应的时间; 来自各 小区组内确定的任意两个第一小区的子帧之间满足预定准则。
需要说明的是, 该预定准则可以为最大重合准则, 还可以为固 定配对关系准则, 本发明对此不作限定。
另外, 上述子帧同步即网络侧设备发送各第一小区的子帧的起 始边界对齐。
需要说明的是, 上述子帧包括: HS-PDSCH子帧或者 HS-SCCH 子帧。 也就是说, 上述确定第一小区和确定定时参考小区, 可以以 HS-PDSCH子帧或者 HS-SCCH子帧根据第一预设准则和第二预设准 则确定。 进一步地, 如图 5 所示, 该网络侧设备 40 还包括: 发送单元 42 , 用于向 UE发送定时参考小区消息, 以便该 UE获知该网络侧设 备确定的定时参考小区, 并在接收到来自定时参考小区中的子帧后, 经过预定时隙长度时反馈混合自动重传请求确认信息, 该混合自动 重传请求确认信息包括同时对来自至少一个小区中的子帧进行联合 反馈; 该至少一个小区包含上述定时参考小区。
具体地, UE在获知定时参考小区后, 在接收到定时参考小区发 送的 HS-PDSCH子帧后, 大约 7.5 时隙 ( 即上述的预定时隙长度 ) 后会产生相应的混合自动重传请求确认消息, 并发送至定时参考小 区和 /或其它小区, 所指的混合自动重传请求确认消息包含定时参考 小区的混合自动重传请求确认消息和 /或其它小区的混合自动重传 请求确认消息,定时参考小区在大约 4.5时隙(对应于 6HARQ进程 ) 或者大约 7.5时隙(对应于 7HARQ进程)内准备好下次传输的数据, 将下次传输的数据的控制信令承载在 HS-SCCH上并发送至 UE , 以 便 UE根据控制信令对接收数据进行解调和译码等。
需要说明的是, 所属本领域的技术人员可以清楚地了解到, 为 描述的方便和简洁, 上述描述的网络侧设备的具体工作过程, 可以 参考前述方法实施例中的对应过程, 在此不再赘述。
釆用上述方案, 在存在多于两个不同的下行定时的场景中, 该 网络侧设备在每个小区组内根据第一预设准则确定第一小区; 并在 每个小区组确定的第一小区中根据第二预设准则确定定时参考小 区, 从而在存在多于两个不同的下行定时的应用场景中实现定时参 考小区的确定, 扩展了定时参考小区的应用范围。 本发明实施例提供一种 UE60 , 如图 6所示, 包括:
测量单元 61 , 用于测量两个小区之间的下行定时差或者所述两 个小区对应的子帧定时差。
其中, 上述下行定时差为两小区的 P-CCPCH 信道之间的定时 差; 则子帧定时差为两小区的 HS-SCCH信道或 HS-PDSCH信道的 定时差, 由于 P-CCPCH信道、 HS-SCCH信道和 HS-PDSCH信道之 间存在以下定时关系:
P-CCPCH的帧开始边界和 HS-SCCH子帧 0 的开始边界对齐; HS-SCCH子帧开始边界和与之对应的 HS-PDSCH子帧开始边界相差 2个时隙; 其中, 子帧 0即为一个帧中在时间上最超前的子帧。
因此由下行定时差可以推断出 HS-SCCH 的子帧定时差或者 HS-PDSCH 的子帧定时差, 例如, 两小区的下行定时差为 Delta— X 个码片, 则 HS-SCCH 的子帧定时差或者 HS-PDSCH 的子帧定时差 为 Delta— X mod 7680 码片, 其中, mod为求余运算。
上报单元 62 , 用于在测量到该下行定时差或者该子帧定时差不 符合预定准则时, 将测量结果上报至该网络侧设备。
可选地, 该测量单元 62具体用于, 依次测量两个第一小区之间 的下行定时差或者子帧定时差。
其中, 该第一小区为网络侧设备在每个小区组内根据第一预设 准则确定的小区。
具体地, 网络侧设备在确定定时参考小区之后, 向 UE 发送定 时参考小区消息, UE根据该定时参考小区获知网络侧设备在每个小 区组内根据第一预设准则确定第一小区, UE仅测量第一小区 ( 包括 定时参考小区 ) 之间的下行定时差或对应的子帧定时差, 如果第一 小区多于两个, 则依次测量每两个第一小区之间的下行定时差或对 应的子帧定时差, 在测量到该下行定时差或者对应的子帧定时差不 符合预定准则时, 将测量结果上报至网络侧设备。 这样, UE不需要 再测量所有小区之间下行定时差或者对应的子帧定时差, 从而简化 了 UE的测量和上报流程, 提高了数据的传输效率。
可选地, 该测量单元 61具体用于, 依次测量小区组内每两个小 区之间的下行定时差或者所述两个小区对应的子帧定时差。
具体地, 若确定测量的两个小区的下行定时差或者对应的子帧 定时差符合预定准则时, 则继续测量剩余的未测量过的两个小区之 间的下行定时差或者对应的子帧定时差, 直至在不符合预定准则时 上报测量结果。
需要说明的是,UE只要测量到两个小区之间的下行定时差或者 对应的子帧定时差不符合预定准则时, 即上报测量结果, 并不需要 所有的小区之间都测量完成后才上报测量结果, 这样, 节约了 UE 测量的时间,使得 UE及时上报测量结果, 方便网络侧设备重新配对 子帧从而重新选择定时参考小区。
另外, 上述预定准则可以是最大重合准则, 本发明对此不作限 定, 还可以是固定配对关系准则, 具体的预定准则与网络侧设备确 定的第一小区之间满足的准则一致。
所属本领域的技术人员可以清楚地了解到, 为描述的方便和简 洁, 上述描述的 UE 的具体工作过程, 可以参考前述方法实施例中 的对应过程, 在此不再赘述。
釆用上述 UE , 在 UE测量上报的过程中, UE测量两个小区之 间的下行定时差或者所述两个小区对应的子帧定时差, 并在测量到 所述下行定时差或者所述子帧定时差不符合预定准则时, 将测量结 果上报至所述网络侧设备, 这样, 节约了 UE 测量的时间,使得 UE 及时上报测量结果。 本发明实施例提供一种网络侧设备 70 , 如图 7所示, 该设备包 括: 处理器 ( rocessor ) 71、 通信接口 ( Communications Interface ) 72、 存储器 ( memory ) 73和通信总线 104 ; 其中, 所述处理器 7 1、 所述通信接口 72和所述存储器 73通过所述通信总线 104完成相互 间的通信。
处理器 71 可能是一个中央处理器 CPU , 或者是特定集成电路 ASIC ( Application Specific Integrated Circuit ) , 或者是被配置成实 施本发明实施例的一个或多个集成电路。
存储器 73用于存放程序代码,所述程序代码包括计算机操作指 令。 存储器 73可能包含高速 RAM存储器, 也可能还包括非易失性 存 4诸器 ( non-volatile memory ) , 例 ¾口至少一个磁盘存 4诸器。 所述通信接口 72 , 用于输出图像的压缩后的码流。
所述处理器 71执行程序代码,用于在每个小区组内根据第一预 设准则确定第一小区, 并在该每个小区组确定的第一小区中根据第 二预设准则确定定时参考小区。
其中, 该小区组为至少两个小区组。
可选地, 该处理器 71具体用于, 当每个小区组包括至少两个小 区时, 在每个小区组内确定在时间上最超前的子帧对应的小区为第 一小区。
其中, 该最超前的子帧与相对该最超前的子帧在时间上滞后的 子帧之间满足最大重合准则或者子帧对应的序号相同或者子帧定时 差为 Tcell差; 或者,
该处理器 71具体用于,在每个小区组内确定在时间上最滞后的 子帧对应的小区为第一小区。
其中, 最滞后的子帧与相对该最滞后的子帧在时间上超前的子 帧之间满足最大重合准则或者子帧对应的序号相同或者子帧定时差 为 Tcell差。
其中, 该时间为网络侧设备发送该子帧时对应的时间。
可选地,该处理器 71具体用于,当每个小区组包括一个小区时, 确定该小区为第一小区。
可选地, 该处理器 71具体用于, 将在时间上最超前的子帧对应 的第一小区确定为定时参考小区; 或者,
该处理器具体用于, 将在时间上最滞后的子帧对应的第一小区 确定为定时参考小区。
其中, 来自该各小区组内确定的任意两个第一小区的子帧之间 满足预定准则。
可选地, 该处理器 71具体用于, 在来自该每个小区组确定的第 一小区的子帧同步时, 将同步子帧中的任一子帧对应的第一小区确 定为定时参考小区。
可选地, 该处理器 71还用于, 向 UE发送定时参考小区消息, 以便该 UE 获知该网络侧设备确定的定时参考小区, 并在接收到来 自定时参考小区中的子帧后, 经过预定时隙长度时反馈混合自动重 传请求确认信息。
其中, 该混合自动重传请求确认信息包括同时对来自至少一个 小区中的子帧进行联合反馈; 该至少一个小区包含该定时参考小区。 本发明实施例提供一种 UE80 , 如图 8所示, 该 UE 80 包括: 处理器 ( rocessor ) 81、 通信接口 ( Communications Interface ) 82、 存储器 ( memory ) 83 和通信总线 84 ; 其中, 所述处理器 81、 所述通信接口 82和所述存储器 83通过所述通信总线 84完成相互间 的通信。
处理器 81 可能是一个中央处理器 CPU , 或者是特定集成电路 ASIC ( Application Specific Integrated Circuit ) , 或者是被配置成实 施本发明实施例的一个或多个集成电路。
存储器 83用于存放程序代码,所述程序代码包括计算机操作指 令。 存储器 83可能包含高速 RAM存储器, 也可能还包括非易失性 存 4诸器 ( non-volatile memory ) , 例 ¾口至少一个磁盘存 4诸器。
所述通信接口 82 , 用于输出图像的压缩后的码流。
所述处理器 81执行程序代码,用于测量两个小区之间的下行定 时差或者该两个小区对应的子帧定时差;
在测量到该下行定时差或者该子帧定时差不符合预定准则时, 将测量结果上报至该网络侧设备。
可选地,该处理器 81具体用于依次测量两个第一小区之间的下 行定时差或者子帧定时差。
其中, 该第一小区为网络侧设备在每个小区组内根据第一预设 准则确定的小区。
可选地, 该处理器 81具体用于, 依次测量小区组内每两个小区 之间的下行定时差或者该两个小区对应的子帧定时差。 本发明实施例提供一种通信系统, 如图 9所示, 包括上述网络 侧设备 40和上述 UE 60 ; 或者, 该系统包括上述网络侧设备 70和 上述 UE 80。
其中, 该通信系统可以为 MF-Tx 系统, 该网络侧设备可以为 RNC ( Radio Network Controller , 无线网络控制器)。
需要说明的是上述网络侧设备应用于上述图 1 和图 2描述的定 时参考小区的处理方法, 且该网络侧设备中的各个单元也与该方法 中的各步骤相对应; 上述 UE应用于上述图 3 描述定时参考小区的 处理方法, 且该网络侧设备中的各个单元也与该方法中的各步骤相 对应。
釆用上述方案, 在存在多于两个不同的下行定时的场景中, 该 网络侧设备在每个小区组内根据第一预设准则确定第一小区; 并在 每个小区组确定的第一小区中根据第二预设准则确定定时参考小 区, 从而在存在多于两个不同的下行定时的应用场景中实现定时参 考小区的确定, 扩展了定时参考小区的应用范围。 另外, 在 UE 测 量上报的过程中, UE测量两个小区之间的下行定时差或者所述两个 小区对应的子帧定时差, 并在测量到所述下行定时差或者所述子帧 定时差不符合预定准则时, 将测量结果上报至所述网络侧设备, 这 样, 节约了 UE测量的时间,使得 UE及时上报测量结果。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或 部分步骤可以通过程序指令相关的硬件来完成, 前述的程序可以存 储于一计算机可读取存储介质中, 该程序在执行时, 执行包括上述 方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM , 磁碟或 者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种定时参考小区的处理方法, 其特征在于, 包括: 网络侧设备在每个小区组内根据第一预设准则确定第一小区,其 中, 所述小区组为至少两个小区组;
在所述每个小区组确定的第一小区中根据第二预设准则确定定 时参考小区。
2、 根据权利要求 1 所述的方法, 其特征在于, 当所述每个小区 组包括至少两个小区时, 所述网络侧设备在每个小区组内根据第一预 设准则确定第一小区包括:
所述网络侧设备在每个小区组内确定在时间上最超前的子帧对 应的小区为第一小区; 其中, 所述最超前的子帧与相对所述最超前的 子帧在时间上滞后的子帧之间满足最大重合准则或者子帧对应的序 号相同或者子帧定时差为 Tcell差;
或者,所述网络侧设备在每个小区组内确定在时间上最滞后的子 帧对应的小区为第一小区; 其中, 最滞后的子帧与相对所述最滞后的 子帧在时间上超前的子帧之间满足最大重合准则或者子帧对应的序 号相同或者子帧定时差为 Tcell差;
其中, 所述时间为网络侧设备发送所述子帧时对应的时间。
3、 根据权利要求 2所述的方法, 其特征在于, 当所述每个小区 组包括一个小区时, 所述网络侧设备在每个小区组内根据第一预设准 则确定第一小区包括:
网络侧设备确定所述小区为第一小区。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述在所述 每个小区组确定的第一小区中根据第二预设准则确定定时参考小区 包括: 将在时间上最超前的子帧对应的第一小区确定为定时参考小 区;
或者,将在时间上最滞后的子帧对应的第一小区确定为定时参考 小区;
其中,来自所述各小区组内确定的任意两个第一小区的子帧之间 满足预定准则。
5、 根据权利要求 4所述的方法, 其特征在于, 所述在所述每个 小区组确定的第一小区中根据第二预设准则确定定时参考小区包括: 在来自所述每个小区组确定的第一小区的子帧同步时, 将同步子帧中 的任一子帧对应的第一小区确定为定时参考小区。
6、 根据权利要求 1 至 5任一项所述的方法, 其特征在于, 所述 子帧包括:高速下行链路共享物理信道 HS-PDSCH子帧或者高速专用 物理控制信道 HS-SCCH子帧。
7、 根据权利要求 1 至 6任一项所述的方法, 其特征在于, 还包 括: 向 UE发送定时参考小区消息, 以便所述 UE获知所述网络侧设 备确定的定时参考小区, 并在接收到来自定时参考小区中的子帧后, 经过预定时隙长度时反馈混合自动重传请求确认信息, 所述混合自动 重传请求确认信息包括同时对来自至少一个小区中的子帧进行联合 反馈; 所述至少一个小区包含所述定时参考小区。
8、 一种定时参考小区的处理方法, 其特征在于, 包括: 用户设备 UE测量两个小区之间的下行定时差或者所述两个小区 对应的子帧定时差;
在测量到所述下行定时差或者所述子帧定时差不符合预定准则 时, 将测量结果上报至所述网络侧设备。
9、 根据权利要求 8 所述的方法, 其特征在于, 所述 UE测量两 个小区之间的下行定时差或者所述两个小区对应的子帧定时差包括: 依次测量两个第一小区之间的下行定时差或者子帧定时差, 其 中, 所述第一小区为网络侧设备在每个小区组内根据第一预设准则确 定的小区。
10、 根据权利要求 8所述的方法, 其特征在于, 所述 UE测量两 个小区之间的下行定时差或者所述两个小区对应的子帧定时差包括: 依次测量小区组内每两个小区之间的下行定时差或者所述两个 小区对应的子帧定时差。
11、 一种网络侧设备, 其特征在于, 包括:
处理单元, 用于在每个小区组内根据第一预设准则确定第一小 区, 并在所述每个小区组确定的第一小区中根据第二预设准则确定定 时参考小区, 其中, 所述小区组为至少两个小区组。
12、 根据权利要求 11 所述的设备, 其特征在于, 所述处理单元 具体用于, 当所述每个小区组包括至少两个小区时, 在每个小区组内 确定在时间上最超前的子帧对应的小区为第一小区; 其中, 所述最超 前的子帧与相对所述最超前的子帧在时间上滞后的子帧之间满足最 或者,在每个小区组内确定在时间上最滞后的子帧对应的小区为 第一小区; 其中, 所述最滞后的子帧与相对所述最滞后的子帧在时间 上超前的子帧之间满足最大重合准则或者子帧对应的序号相同或者 子帧定时差为 Tcell差;
其中, 所述时间为网络侧设备发送所述子帧时对应的时间。
13、 根据权利要求 12所述的设备, 其特征在于, 所述处理单元 具体用于, 当所述每个小区组包括一个小区时, 所述处理单元具体用 于确定所述小区为第一小区。
14、 根据权利要求 12或 13所述的设备, 其特征在于, 所述处理 单元具体用于, 将在时间上最超前的子帧对应的第一小区确定为定时 参考小区; 或者, 将在时间上最滞后的子帧对应的第一小区确定为定 时参考小区;
其中,来自所述各小区组内确定的任意两个第一小区的子帧之间 满足预定准则。
15、 根据权利要求 14所述的设备, 其特征在于, 所述处理单元 具体用于, 在来自所述每个小区组确定的第一小区的子帧同步时, 将 同步子帧中的任一子帧对应的第一小区确定为定时参考小区。
16、 根据权利要求 11至 15任一项所述的设备, 其特征在于, 所 述子帧包括: HS-PDSCH子帧或者 HS-SCCH子帧。
17、 根据权利要求 11至 16任一项所述的设备, 其特征在于, 还 包括: 发送单元, 用于向 UE发送定时参考小区消息, 以便所述 UE 获知所述网络侧设备确定的定时参考小区, 并在接收到来自定时参考 小区中的子帧后, 经过预定时隙长度时反馈混合自动重传请求确认信 息, 所述混合自动重传请求确认信息包括同时对来自至少一个小区中 的子帧进行联合反馈; 所述至少一个小区包含所述定时参考小区。
18、 一种 UE , 其特征在于, 包括:
测量单元,用于测量两个小区之间的下行定时差或者所述两个小 区对应的子帧定时差;
上报单元,用于在测量到所述下行定时差或者所述子帧定时差不 符合预定准则时, 将测量结果上报至所述网络侧设备。
19、 根据权利要求 18所述的 UE , 其特征在于, 所述测量单元具 体用于, 依次测量两个第一小区之间的下行定时差或者子帧定时差, 其中, 所述第一小区为网络侧设备在每个小区组内根据第一预设准则 确定的小区。
20、 根据权利要求 18所述的 UE , 其特征在于, 所述测量单元具 体用于,依次测量小区组内每两个小区之间的下行定时差或者所述两 个小区对应的子帧定时差。
21、 一种网络侧设备, 其特征在于, 包括处理器和存储器, 所述 存储器存储计算机执行指令, 所述处理器与所述存储器通过通信总线 连接;
当所述设备运行时,所述处理器执行所述存储器存储的所述计算 机执行指令, 使得所述装置执行权利要求 1至 7任一所述的方法。
22、 一种 UE , 其特征在于, 包括处理器和存储器, 所述存储器 存储计算机执行指令, 所述处理器与所述存储器通过通信总线连接; 当所述 UE运行时, 所述处理器执行所述存储器存储的所述计算 机执行指令, 使得所述装置执行权利要求 8至 10任一所述的方法。
PCT/CN2012/085585 2012-11-29 2012-11-29 一种定时参考小区的处理方法和设备 WO2014082271A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280002404.3A CN104145501B (zh) 2012-11-29 2012-11-29 一种定时参考小区的处理方法和设备
PCT/CN2012/085585 WO2014082271A1 (zh) 2012-11-29 2012-11-29 一种定时参考小区的处理方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085585 WO2014082271A1 (zh) 2012-11-29 2012-11-29 一种定时参考小区的处理方法和设备

Publications (1)

Publication Number Publication Date
WO2014082271A1 true WO2014082271A1 (zh) 2014-06-05

Family

ID=50827060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085585 WO2014082271A1 (zh) 2012-11-29 2012-11-29 一种定时参考小区的处理方法和设备

Country Status (2)

Country Link
CN (1) CN104145501B (zh)
WO (1) WO2014082271A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198144A (zh) * 2006-12-08 2008-06-11 中兴通讯股份有限公司 宽带码分多址移动通信系统中软切换的方法
CN102281626A (zh) * 2011-07-06 2011-12-14 电信科学技术研究院 一种上行定时提前量的确定方法及装置
CN102595481A (zh) * 2012-02-15 2012-07-18 新邮通信设备有限公司 载波聚合下定时参考小区的确定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507352B1 (en) * 2003-08-14 2007-01-31 Matsushita Electric Industrial Co., Ltd. Time monitoring of packet retransmissions during soft handover
CN100399847C (zh) * 2005-02-24 2008-07-02 大唐移动通信设备有限公司 邻小区测量方法
CN100444687C (zh) * 2005-03-10 2008-12-17 大唐移动通信设备有限公司 移动通信系统中切换目标小区选择方法
WO2011047504A1 (zh) * 2009-10-20 2011-04-28 华为技术有限公司 对组成载波进行定时调整的方法、基站及系统
US9392562B2 (en) * 2009-11-17 2016-07-12 Qualcomm Incorporated Idle access terminal-assisted time and/or frequency tracking
CN102118801B (zh) * 2011-03-31 2013-07-24 电信科学技术研究院 多载波聚合系统中的上行传输方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198144A (zh) * 2006-12-08 2008-06-11 中兴通讯股份有限公司 宽带码分多址移动通信系统中软切换的方法
CN102281626A (zh) * 2011-07-06 2011-12-14 电信科学技术研究院 一种上行定时提前量的确定方法及装置
CN102595481A (zh) * 2012-02-15 2012-07-18 新邮通信设备有限公司 载波聚合下定时参考小区的确定方法

Also Published As

Publication number Publication date
CN104145501A (zh) 2014-11-12
CN104145501B (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
US11039357B2 (en) Handover method in mobile communication system
AU2003203878B2 (en) Soft handover method for multimedia broadcast/multicast service in a CDMA mobile communication system
RU2631671C2 (ru) Временная шкала harq для tdd-fdd агрегирования несущих
CN106664586B (zh) 用户装置、基站以及时间差信息通知方法
WO2020196483A1 (ja) 通信システム、基地局および上位装置
US7403789B2 (en) Synchronization establishment between a mobile station and base station system and method used for them
EP2819338B1 (en) Method and device for sending, receiving, and determining timing reference information
JP6371406B2 (ja) 基地局、ユーザ機器、及び基地局間キャリアアグリゲーションのための測定方法
CN110140322B (zh) 用于根据无线设备的位置调整参数集的方法、设备和节点
WO2017197949A1 (zh) 一种数据传输的控制方法及相关设备
WO2011020407A1 (zh) 辅载波小区同步方法及终端
WO2017152645A1 (zh) 上行反馈信息的传输方法及装置
US20180063806A1 (en) Wireless communication system, mobile station and base station
EP3165030B1 (en) System and method for transmit power control with secondary uplink pilot channel
JP2013541292A (ja) 干渉を低減する方法および装置
WO2017035708A1 (zh) 数据传输方法、装置、基站及用户设备
WO2014205663A1 (zh) 一种定时同步方法、装置、用户设备和通信系统
WO2012068972A1 (zh) 一种激活配置的方法及用户设备
JP2015516129A (ja) データの境界を決定する方法、指示情報を送信する方法、及びそれらの装置
CN112583559B (zh) 反馈方法及装置
WO2015058356A1 (zh) 一种数据传输方法和设备
WO2014000689A1 (zh) Tdd上下行配置的传输反馈方法及装置
JP6265680B2 (ja) 無線通信システム、端末装置、マクロセル基地局、スモールセル基地局および無線通信方法
JP2021521729A (ja) 曖昧期間の長さの特定方法、端末及びネットワーク側機器
WO2014082271A1 (zh) 一种定时参考小区的处理方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889131

Country of ref document: EP

Kind code of ref document: A1