WO2014082262A1 - 发光二极管封装结构 - Google Patents

发光二极管封装结构 Download PDF

Info

Publication number
WO2014082262A1
WO2014082262A1 PCT/CN2012/085572 CN2012085572W WO2014082262A1 WO 2014082262 A1 WO2014082262 A1 WO 2014082262A1 CN 2012085572 W CN2012085572 W CN 2012085572W WO 2014082262 A1 WO2014082262 A1 WO 2014082262A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
package structure
electrode
light emitting
emitting diode
Prior art date
Application number
PCT/CN2012/085572
Other languages
English (en)
French (fr)
Inventor
沈铭基
Original Assignee
Simm Mingji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Simm Mingji filed Critical Simm Mingji
Priority to PCT/CN2012/085572 priority Critical patent/WO2014082262A1/zh
Publication of WO2014082262A1 publication Critical patent/WO2014082262A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to an LED package structure, and more particularly to a light emitting diode package structure using a light transmissive nonwoven fabric. Background technique
  • LED light-emitting diode
  • FIG. 1 is a side cross-sectional view of a conventional LED package structure.
  • the light emitting diode package structure T includes a light emitting element la, an encapsulant 2a, a lens 3a, and a frame 4a.
  • the existing packaging method is to cover the light-emitting element la by means of dispensing or molding, and then to cure the epoxy resin by baking to form the encapsulated colloid 2a. Since the epoxy resin is a polymer material, there are problems such as aging, heat resistance, and poor light characteristics. In addition, the angle of illumination of the packaged LED chip is limited by the encapsulant 2a, thus causing the conventional LED chip to fail to provide a wide angle of light.
  • Embodiments of the present invention provide a light emitting diode package structure that can use a light emitting diode package structure of a light-transmitting non-woven fabric.
  • An LED package structure includes: an electrode unit, a housing unit, a light emitting unit, and a light transmissive nonwoven fabric.
  • the electrode unit includes a first electrode and a second electrode.
  • the housing unit includes a reflective cover having an accommodating space, wherein the reflective cover covers a portion of the first electrode and the second electrode, and another portion of the first electrode and the second electrode is exposed Reflective cover.
  • the illuminating unit includes at least one illuminating element disposed in the accommodating space, wherein the at least one illuminating element is electrically connected to the first electrode and the second electrode.
  • a light-transmitting non-woven fabric is disposed on the top of the reflective cover and covers the at least one light-emitting element.
  • an LED package structure including: a substrate unit, a The light emitting unit, a frame unit and a light transmissive non-woven fabric.
  • the substrate unit includes a substrate body.
  • the light emitting unit includes at least one light emitting element disposed on the substrate body and electrically connected to the substrate body.
  • the frame unit includes a frame body disposed on the substrate body and surrounding the at least one light emitting element.
  • the light-transmitting non-woven fabric is disposed on the frame body and covers the at least one light-emitting element.
  • an LED package structure includes: a substrate unit, a light emitting unit, and a light transmissive nonwoven fabric.
  • the substrate unit includes a substrate body.
  • the light emitting unit includes a plurality of light emitting elements disposed on the substrate body and electrically connected to the substrate body.
  • a light-transmitting non-woven fabric covers the plurality of light-emitting elements.
  • the light emitting diode package structure provided by the embodiment of the present invention can be disposed on the top of the reflective cover body and cover the at least one light emitting element by using a light transmissive non-woven fabric, and the light transmissive non-woven fabric is disposed on the frame body. And covering the above-mentioned at least one light-emitting element", and “the light-transmitting non-woven fabric is disposed on the plurality of light-emitting elements and covering the plurality of light-emitting elements", so that the light-emitting diode package structure of the present invention can enhance the light-emitting diode chip The angle of illumination to provide a wide angle of light.
  • 1 is a side cross-sectional view showing a conventional light emitting diode package structure.
  • FIG. 2A is a side cross-sectional view showing the structure of an LED package according to a first embodiment of the present invention.
  • FIG. 2B is a schematic top view of the light emitting diode package structure according to the first embodiment of the present invention after the light transmissive non-woven fabric is removed.
  • 3A is a perspective view of a light-transmitting non-woven fabric of an LED package structure according to a first embodiment of the present invention.
  • Fig. 3B is an enlarged schematic view showing a portion A of Fig. 3A of the present invention.
  • Fig. 3C is an enlarged schematic view showing a portion B of Fig. 3B of the present invention.
  • Fig. 3D is an enlarged schematic view showing a portion C of Fig. 3C of the present invention.
  • FIG. 4 is a schematic view showing a test state of an LED package structure and a conventional LED package structure in a dark room according to a first embodiment of the present invention.
  • FIG. 5 is a light distribution diagram of a light emitting diode package structure and a conventional light emitting diode package structure according to a first embodiment of the present invention.
  • FIG. 6 is a side cross-sectional view showing a light emitting diode package structure according to a second embodiment of the present invention.
  • FIG. 7 is a side cross-sectional view showing a light emitting diode package structure according to a third embodiment of the present invention.
  • FIG. 8 is a side cross-sectional view showing a light emitting diode package structure according to a fourth embodiment of the present invention.
  • FIG. 9 is a side cross-sectional view showing a light emitting diode package structure according to a fifth embodiment of the present invention.
  • FIG. 10 is a side cross-sectional view showing a light emitting diode package structure according to a sixth embodiment of the present invention.
  • the reference numerals are as follows:
  • Light-emitting element la
  • LED package structure z, w
  • Substrate unit 5 Substrate body: 51
  • Illuminance meter 7a specific implementation
  • FIG. 2A is a side cross-sectional view showing a light emitting diode package structure according to a first embodiment of the present invention.
  • 2B is a top plan view showing the light emitting diode package structure of the first embodiment of the present invention after removing the light-transmitting non-woven fabric.
  • the first embodiment of the present invention provides a light emitting diode package structure in which a light-transmitting non-woven fabric can be used.
  • a first embodiment of the present invention provides an LED package structure Z including an electrode unit 1, a housing unit 2, an illumination unit 3, and a light transmissive non-woven fabric 4.
  • the electrode unit 1 includes a first electrode 11 and a second electrode 12.
  • the first electrode 11 can provide a contact surface of a negative electrode
  • the second electrode 12 can provide a contact surface of a positive electrode
  • the first electrode 11 and the second electrode 12 are electrically insulated from each other.
  • the housing unit 2 includes a reflective cover 21 having an accommodating space 23, wherein the reflective cover 21 covers a portion of the first electrode 11 and the second electrode 12, and the first electrode 11 and the second Another portion of the electrode 12 is exposed to the reflector body 21.
  • the light-emitting unit 3 includes at least one light-emitting element 31 disposed in the accommodating space 23, wherein the at least one light-emitting element 31 is electrically connected to the first electrode 11 and the second electrode 12.
  • the light-emitting element 31 can be a bare-metal diode (LED), and the light-emitting element 31 can be electrically connected to the second electrode 12 through the wire 32.
  • FIG. 3A is a perspective view of a light-transmitting non-woven fabric of an LED package structure according to a first embodiment of the present invention.
  • Fig. 3B is an enlarged schematic view showing a portion A of Fig. 3A of the present invention.
  • Fig. 3C is an enlarged schematic view showing a portion B of Fig. 3B of the present invention.
  • Fig. 3D is an enlarged schematic view showing a portion C of Fig. 3C of the present invention.
  • the light-transmitting non-woven fabric 4 is disposed on the top 25 of the reflective cover and covers the at least one light-emitting element 31.
  • the light-transmitting nonwoven fabric 4 includes a fiber cloth body 41 and a fluorescent material mixed into the fiber cloth body 41.
  • the fluorescent colloid 43 may include a bonding colloid 431 and a plurality of fluorescent particles 433 mixed into the bonding colloid 431.
  • the light-transmitting nonwoven fabric 4 may have a circular shape or a square shape, for example, but the present invention does not limit the shape of the light-transmitting nonwoven fabric. As shown in Fig.
  • the fiber cloth body 41 can be formed by a plurality of fibers 411 which are interwoven with each other.
  • it may be resin fibers such as nylon (nyoln), polyester, acrylic acid, polypropene, polyvinyl chloride, fluorine resin, or the like. It is composed of a short fiber such as a chemical fiber or a glass fiber of a cellulose such as rayon.
  • the present invention does not limit the material of the fiber.
  • the fibers 411 may have a diameter of from ⁇ to 50 ⁇ , a length of from 5 mm to 20 mm, and a fiber density of from 30 to 100 g/cm 2 .
  • the density of the fibers or the thickness of the fibrous cloth body may be increased or decreased depending on actual needs. Further, from the viewpoint of light transmittance of light, it is preferable to form a fiber cloth body 41 by selecting a material having a good light transmittance.
  • the bonding colloid 431 may be, for example, a transparent colloid formed of an organic material such as silicone or an inorganic material such as a sol gel.
  • the binding colloid 431 to which the fluorescent particles 433 are added may be uniformly stirred first.
  • the bonding colloid 431 mixed with the fluorescent particles 433 can be attached to the surface of the fiber 411 and the space 45 between the fibers 411 by means of immersion.
  • the liquid binding colloid 431 is then condensed into a solid by baking.
  • the light-transmitting non-woven fabric 4 formed of the fiber cloth body 41 and the fluorescent colloid 43 can be completed.
  • the fiber cloth body 41 in which the fluorescent colloid 43 is mixed and solidified can be previously produced, and then the prefabricated fiber cloth body 41 is used to cover the above-described light-emitting element 31 provided in the accommodating space 23. Therefore, the present invention can use a light-emitting diode package structure of a light-transmitting nonwoven fabric to effectively increase the light-emitting angle, thereby providing a wide-angle light pattern.
  • thermosetting resin for example, it can be continuously heated for 2 to 4 hours at a temperature of 80 to 150 ° C to cure the liquid-binding gel 431.
  • sol-gel material for example, it can be continuously heated for 0.5 to 1 hour at a temperature of 80 to 120 ° C to cure the liquid-bound colloid 431.
  • the distribution of the fluorescent particles 433 is mostly concentrated on the surface of the fiber 411.
  • the number of fluorescent particles 433 adjacent to the fibers 411 is much larger than the number distributed in the voids 45.
  • FIG. 4 is a schematic view showing a test state of an LED package structure and a conventional LED package structure in a dark room according to a first embodiment of the present invention.
  • FIG. 5 is a light distribution graph of a light emitting diode package structure and a conventional light emitting diode package structure according to a first embodiment of the present invention.
  • the illuminometer 7a is provided on each of the measurement points (1) to (8), and the interval between the illuminance meters 7a is 100 mm. Further, the light emitting diode package structure to be tested is placed above the dark room 7, and the distance between the upper side of the dark room 7 and the bottom surface is 400 mm.
  • the light emitting diode package structure Z of the first embodiment of the present invention is placed in the dark room 7, and then the luminous flux received at the illumination plane of each of the measurement points (1) to (8) is measured by the illuminometer 7a, and Record the results of the measurements in Table 1.
  • the existing LED package structure T is placed in the darkroom 7, and then the luminous flux received at the illumination plane of each of the measurement points (1) to (8) is measured by the illuminometer 7a, and the result of the measurement is measured. Recorded in Table 1.
  • the illuminance percentages of the different measurement points shown in Table 1 of the present invention are the same as those of the conventional light-emitting diode package structure T except for the measurement point (1) at the front side.
  • the remaining measurement points (2) to (8) show that the light-emitting diode package structure of the first embodiment of the present invention emits more light at different angles than the existing light-emitting diode package structure.
  • the values measured in the horizontal position of the measuring point (8) that is, the light emitting diode package structure of the first embodiment of the present invention and the existing light emitting diode package structure, are 18.8% and 7%, respectively.
  • the light emitting diode package structure of the first embodiment of the present invention has a wide-angle light-emitting effect.
  • DUT1 represents the light distribution curve of the existing LED package structure.
  • DUT2 represents a light distribution graph of the light emitting diode package structure of the first embodiment of the present invention.
  • the coordinate value of the horizontal axis represents the angle value of each viewing angle, and the coordinate value of the vertical axis represents the relative luminous intensity value at each viewing angle.
  • the light-emitting diode package structure of the first embodiment of the present invention has an illumination intensity value between 80 degrees and 90 degrees and between -70 and -90 degrees, which is greater than the existing light-emitting diode package structure.
  • the light emitting diode package structure of the first embodiment has a wide-angle light-emitting effect.
  • FIG. 6 is a side cross-sectional view showing a light emitting diode package structure according to a second embodiment of the present invention. 6 and FIG. 2B, the difference between the second embodiment of the present invention and the first embodiment is: In the second embodiment, the width of the fiber cloth body 41 of the light-transmitting nonwoven fabric 4 and the width of the reflection cover 21 are the same.
  • FIG. 7 is a side cross-sectional view showing a light emitting diode package structure according to a third embodiment of the present invention.
  • the third embodiment of the present invention differs from the first embodiment in that, in the third embodiment, the edge of the light-transmitting nonwoven fabric 4 covers a part of the reflecting cover 21.
  • FIG. 8 is a side cross-sectional view showing a light emitting diode package structure according to a fourth embodiment of the present invention. It can be seen from the comparison between FIG. 7 and FIG. 2 that the fourth embodiment of the present invention differs from the first embodiment in that: in the fourth embodiment
  • the reflector body 21 further includes a fixing portion 27 adjacent to the top 25 of the reflector body. Therefore, the light-transmitting non-woven fabric 4 of the present invention can be disposed on the fixing portion 27 and provide a structure of a low profile.
  • FIG. 9 is a side cross-sectional view showing a light emitting diode package structure according to a fifth embodiment of the present invention.
  • an LED package structure W includes a substrate unit 5, a light-emitting unit 3, A frame unit 6, and a light-transmitting non-woven fabric 4.
  • the substrate unit 5 includes a substrate body 51.
  • the light emitting unit 3 includes at least one light emitting element 31 disposed on the substrate body 51 and electrically connected to the substrate body 51.
  • the frame unit 6 includes a frame body 61 disposed on the substrate body 51 and surrounding the at least one light-emitting element 31.
  • the light-transmitting non-woven fabric 4 is disposed on the frame body 61 and covers the at least one light-emitting element 31. Therefore, the light-transmitting nonwoven fabric 4 of the present invention can be produced by means of a chip direct package (COB).
  • COB chip direct package
  • Figure 10 is a side cross-sectional view showing a light emitting diode package structure according to a sixth embodiment of the present invention.
  • an LED package structure W includes a substrate unit 5, a light-emitting unit 3, And a light-transmissive non-woven fabric 4.
  • the substrate unit 5 includes a substrate body 51.
  • the light emitting unit 3 includes a plurality of light emitting elements 31 disposed on the substrate body 51 and electrically connected to the substrate body 51.
  • a light-transmitting non-woven fabric 4 is disposed on the plurality of light-emitting elements 31 and covers the plurality of light-emitting elements 31. Therefore, the light-transmitting nonwoven fabric 4 of the present invention can be fabricated by means of a chip direct package (COB) without the frame body 61 of Fig. 9.
  • COB chip direct package
  • the light emitting diode package structure provided by the embodiment of the present invention can be disposed on the top of the reflective cover body and cover the at least one light emitting element by using a light transmissive non-woven fabric, and the light transmissive non-woven fabric is disposed on the frame body. And covering the design of the at least one light-emitting element "and the light-transmitting non-woven fabric disposed on the plurality of light-emitting elements and covering the plurality of light-emitting elements", so that the light-emitting diode package structure of the present invention can expand the light-emitting diode chip The angle of illumination to provide a wide angle of light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

提供了一种发光二极管封装结构(Z),包括:一电极单元(1)、一壳体单元(2)、一发光单元(3)及一透光不织布(4)。电极单元(1)包括一第一电极(11)及一第二电极(12)。壳体单元(2)包括一具有容置空间(23)的反射罩体(21),其中反射罩体(21)包覆第一电极(11)及第二电极(12)的其中一部分,且第一电极(11)和第二电极(12)的另一部分外露于反射罩体(21)。发光单元(3)包括至少一设置于容置空间(23)内的发光元件(31),其中至少一发光元件(31)电性连接于第一电极(11)和第二电极(12)。透光不织布(4)设置在反射罩体(21)顶部上且遮盖至少一发光元件(31)。

Description

发光二极管封装结构 技术领域
本发明有关于一种发光二极管封装结构,特别关于一种使用透光不织布的发光二极管 封装结构。 背景技术
目前生活上已经可以看到各式各样发光二极管 (LED)商品的应用, 例如交通标志、 汽 车头灯、 及手电筒等。 这些商品除了必要的发光二极管芯片工艺外, 都必须经过一道封装 的程序。
请参阅图 1, 其为现有发光二极管封装结构的侧视剖面示意图。 所述的发光二极管封 装结构 T包括有发光元件 la、 封装胶体 2a、 透镜 3a、 及框体 4a。 一般来说, 现有的封装 方式是通过点胶或模压的方式,将环氧树脂覆盖发光元件 la,接着再通过烘烤的方式来固 化环氧树脂, 以形固化的封装胶体 2a。 由于环氧树脂是高分子材料, 所以容易有老化、 不 耐热及光的特性不佳等问题。此外,封装后的发光二极管芯片的发光角度受到封装胶体 2a 的限制, 因而造成传统的发光二极管芯片无法提供广角度的光型。
因此, 如何通过结构的设计改良, 以改善发光二极管的出光角度, 已成为该项事业人 士所欲解决的重要课题。 发明内容
本发明实施例在于提供一种发光二极管封装结构,其可使用透光不织布的发光二极管 封装结构。
本发明其中一种实施例所提供的一种发光二极管封装结构, 其包括: 一电极单元、 一 壳体单元、一发光单元及一透光不织布。 电极单元包括一第一电极及一第二电极。 壳体单 元包括一具有容置空间的反射罩体,其中该反射罩体包覆该第一电极及该第二电极的其中 一部分, 且该第一电极及该第二电极的另一部分外露于该反射罩体。发光单元包括至少一 设置于该容置空间内的发光元件,其中上述至少一发光元件电性连接于该第一电极及该第 二电极。 透光不织布设置在该反射罩体顶部上且遮盖上述至少一发光元件。
本发明另外一种实施例所提供的一种发光二极管封装结构, 其包括: 一基板单元、 一 发光单元、一框架单元及一透光不织布。 基板单元包括一基板本体。 发光单元包括至少一 设置于该基板本体上且电性连接于该基板本体的发光元件。框架单元包括一设置于该基板 本体上且围绕上述至少一发光元件的框架体。透光不织布设置在该框架体上且遮盖上述至 少一发光元件。
本发明再另外一种实施例所提供的一种发光二极管封装结构, 其包括: 一基板单元、 一发光单元及一透光不织布。基板单元包括一基板本体。发光单元包括多个设置于该基板 本体上且电性连接于该基板本体的发光元件。 透光不织布遮盖所述多个发光元件。
综上所述, 本发明实施例所提供的发光二极管封装结构, 其可通过 "透光不织布设置 在该反射罩体顶部上且遮盖上述至少一发光元件"、 "透光不织布设置在该框架体上且遮 盖上述至少一发光元件"、 及 "透光不织布设置在所述多个发光元件上且遮盖所述多个发 光元件"的设计, 以使得本发明的发光二极管封装结构能够提升发光二极管芯片的发光角 度, 以提供广角度的光型。
为使能更进一步了解本发明之特征及技术内容,请参阅以下有关本发明之详细说明与 附图, 然而所附图式仅提供参考与说明用, 并非用来对本发明加以限制者。 附图说明
图 1为现有发光二极管封装结构的侧视剖面示意图。
图 2A为本发明第一实施例发光二极管封装结构的侧视剖 面示意图。
图 2B为本发明第一实施例发光二极管封装结构在移除透光不织布后的俯视示意图。 图 3A为本发明第一实施例发光二极管封装结构的透光不织布的立体示意图。
图 3B本发明图 3A的 A部分放大示意图。
图 3C本发明图 3B的 B部分放大示意图。
图 3D本发明图 3C的 C部分放大示意图。
图 4 为本发明第一实施例发光二极管封装结构与现有发光二极管封装结构置于暗室 的测试状态示意图。
图 5 为本发明第一实施例发光二极管封装结构与现有发光二极管封装结构的配光曲 线图。
图 6为本发明第二实施例发光二极管封装结构的侧视剖面示意图。
图 7为本发明第三实施例发光二极管封装结构的侧视剖面示意图。
图 8为本发明第四实施例发光二极管封装结构的侧视剖面示意图。 图 9为本发明第五实施例发光二极管封装结构的侧视剖面示意图。 图 10为本发明第六实施例发光二极管封装结构的侧视剖面示意图。 其中, 附图标记说明如下:
[现有技术]
发光二极管封装结构: T
发光元件: la
封胶: 2a
透镜: 3a
框体: 4a
[本发明]
发光二极管封装结构: z、 w
电极单元: 1
第一电极: 1 1
第二电极: 12
壳体单元: 2
反射罩体: 21
容置空间: 23
反射罩体顶部: 25
固定部: 27
发光单元: 3
发光元件: 31
导线: 32
透光不织布: 4
纤维布体: 41
纤维: 41 1
萤光胶体: 43
结合胶体: 431
萤光颗粒: 433
空隙: 45
基板单元: 5 基板本体: 51
框架单元: 6
框架体: 61
暗室: 7
照度计: 7a 具体实施方式
〔第一实施例〕
首先, 请参阅图 2A及图 2B。 图 2A为本发明第一实施例发光二极管封装结构的侧视 剖面示意图。 图 2B为本发明第一实施例发光二极管封装结构在移除透光不织布后的俯视 示意图。 由上述图中可知, 本发明第一实施例提供一种可使用透光不织布的发光二极管封 装结构。
如图 2A所示, 本发明第一实施例提供一种发光二极管封装结构 Z, 其包括一电极单 元 1、 一壳体单元 2、 一发光单元 3、 及一透光不织布 4。
电极单元 1包括一第一电极 11及一第二电极 12。举例来说,第一电极 11可提供一负 电极的接触面,而第二电极 12可提供一正电极的接触面,并且第一电极 11与第二电极 12 彼此为电性绝缘。
壳体单元 2包括一具有容置空间 23的反射罩体 21,其中该反射罩体 21包覆该第一电 极 11及该第二电极 12的其中一部分,且该第一电极 11及该第二电极 12的另一部分外露 于反射罩体 21。
发光单元 3包括至少一设置于该容置空间 23内的发光元件 31, 其中上述至少一发光 元件 31电性连接于该第一电极 11及该第二电极 12。 举例来说, 发光元件 31可为一发光 二极管裸晶 (LED bare die), 且发光元件 31可通过导线 32电性连接于第二电极 12。
接着, 请同时配合参阅图 3A至 3D。 图 3A为本发明第一实施例发光二极管封装结构 的透光不织布的立体示意图。 图 3B本发明图 3A的 A部分放大示意图。 图 3C本发明图 3B的 B部分放大示意图。 图 3D本发明图 3C的 C部分放大示意图。
如图 2A所示,透光不织布 4设置在该反射罩体顶部 25上且遮盖上述至少一发光元件 31 ,其中透光不织布 4包括一纤维布体 41及一混入该纤维布体 41的萤光胶体 43。更进一 步说, 萤光胶体 43可包括一结合胶体 431及多个混入该结合胶体 431内的萤光颗粒 433。 所述的透光不织布 4, 例如可呈圆形状或四角形状, 但本发明不限制透光不织布的形状。 如图 3C所示,所述的纤维布体 41可为多个相互交叉编织的纤维 411所形成的。例如 可以是由尼龙 (nyoln)、 聚酯 (polyester)、 丙烯酸 (acrylic acid)、 聚丙烯 (polypropene)、 聚氯乙 烯 (polyvinylchloride)、 氟树月旨 (fluorine resin)等树脂纤维 (resin fibers)、 嫘萦(rayon)等纤维 素(cellulose)系的化学纤维 (chemical fiber)、 玻璃纤维 (glass fibres)等之短纤维所构成, 但 本发明不限制纤维的材料。 举例来说, 纤维 411直径可为 Ιμηι至 50μηι、 长度可为 5mm 至 20mm, 而纤维密度可为 30至 100g/cm2。 注意的是, 纤维的密度或纤维布体的厚度可 依据实际需求而增加或减少。 此外, 从光的透光性的观点来看, 选择透光性较佳的材料来 构成纤维布体 41是较佳的。
再者, 所述的结合胶体 431, 例如可以是由硅树脂 (silicone)等有机材料或溶胶凝胶 (sol gel)等无机材料所形成的透明胶体。举例来说,可先将添加有萤光颗粒 433的结合胶体 431 均匀的搅拌。接着通过浸泡的方式, 使得混有萤光颗粒 433的结合胶体 431能附着于纤维 411的表面上以及纤维 411之间的空隙 45。然后再通过烘烤的方式, 使得液状的结合胶体 431得以凝结成固体。最后即可完成由纤维布体 41及萤光胶体 43所形成的透光不织布 4。 换言之, 内部混有萤光胶体 43且已固化的纤维布体 41可预先被制作出来, 然后再使用预 制的纤维布体 41来盖住上述设置于容置空间 23内的发光元件 31。因此,本发明可使用透 光不织布的发光二极管封装结构, 以有效地提升发光角度, 从而提供广角度的光型。
附带一提, 对热硬化性树脂的材料而言, 例如可使用 80至 150°C的温度持续加热 2 至 4小时, 以固化液状的结合胶体 431。 对溶胶凝胶的材料而言, 例如可使用 80至 120°C 的温度持续加热 0.5至 1小时, 以固化液状的结合胶体 431。
此外, 如图 3C及 3D所示, 萤光颗粒 433的分布大多数是集中在纤维 411的表面。 换言之, 邻近于纤维 411的萤光颗粒 433的数量远大于分布于空隙 45的数量。
接着, 请同时配合参阅图 4和图 5。 图 4为本发明第一实施例发光二极管封装结构与 现有发光二极管封装结构置于暗室的测试状态示意图。图 5为本发明第一实施例发光二极 管封装结构与现有发光二极管封装结构的配光曲线图。
如图 4所示, 暗室 7的底面上设置有 4组测量点 (1)至 (4), 而暗室 7的侧面上设置有 4 组测量点 (5)至 (8)。 更详细地说, 每一个测量点 (1)至 (8)上设置有照度计 7a, 且照度计 7a 之间的间隔为 100mm。 另外, 待测试的发光二极管封装结构被放置在暗室 7的上方, 且 暗室 7的上方与底面的距离为 400mm。
首先, 将本发明第一实施例发光二极管封装结构 Z放置在暗室 7内, 然后通过照度计 7a, 测量在每一个测量点 (1)至 (8)的受照平面上所接受的光通量, 并将测量的结果记录在 表 1。 其次, 将现有发光二极管封装结构 T放置在暗室 7内, 然后通过照度计 7a, 测量在 每一个测量点 (1)至 (8)的受照平面上所接受的光通量, 并将测量的结果记录在表 1。
如表 1所示的不同测量点的照度百分比,本发明第一实施例发光二极管封装结构 Z与 现有发光二极管封装结构 T, 除了在正前方的测量点 (1)所测量的结果相同。但其余的测量 点 (2)至 (8)显示本发明第一实施例发光二极管封装结构 Ζ在不同角度所发射的光通量是大 于现有发光二极管封装结构 Τ。更详细地说, 在测量点 (8)也就是本发明第一实施例发光二 极管封装结构 Ζ和现有发光二极管封装结构 Τ的水平方向位置所测量到的值分别为 18.8% 和 7%。 换言之, 本发明第一实施例发光二极管封装结构 Ζ具有广角度的出光效果。
表 1
Figure imgf000008_0001
如图 5所示, DUT1代表现有发光二极管封装结构 Τ的配光曲线图。 DUT2代表本发 明第一实施例发光二极管封装结构 ζ的配光曲线图。另外, 水平轴的座标数值代表各视角 的角度数值, 垂直轴的座标数值代表各视角角度下的相对发光强度值。 由图 5可知, 本发 明第一实施例发光二极管封装结构 Ζ在角度 80至 90度之间及 -70至 -90度之间的发光强 度值是大于现有发光二极管封装结构^ 换言之, 本发明第一实施例发光二极管封装结构 Ζ具有广角度的出光效果。
〔第二实施例〕
首先,请参阅图 6。图 6为本发明第二实施例发光二极管封装结构的侧视剖面示意图。 由图 6与图 2Α的比较可知, 本发明第二实施例与第一实施例的差异在于: 在第二实施例 中, 透光不织布 4的纤维布体 41的宽度与反射罩体 21的宽度相同。
〔第三实施例〕
首先,请参阅图 7。图 7为本发明第三实施例发光二极管封装结构的侧视剖面示意图。 由图 7与图 2Α的比较可知, 本发明第三实施例与第一实施例的差异在于: 在第三实施例 中, 透光不织布 4的边缘包覆该反射罩体 21的一部分。
〔第四实施例〕
首先,请参阅图 8。图 8为本发明第四实施例发光二极管封装结构的侧视剖面示意图。 由图 7与图 2Α的比较可知, 本发明第四实施例与第一实施例的差异在于: 在第四实施例 中, 反射罩体 21还包括一邻近于反射罩体顶部 25的固定部 27。 因此, 本发明的透光不织 布 4可设置在固定部 27上, 并且提供一种低厚度 (low profile)的结构。
〔第五实施例〕
首先,请参阅图 9。图 9为本发明第五实施例发光二极管封装结构的侧视剖面示意图。 由图 9与图 2A的比较可知, 本发明第五实施例与第一实施例的差异在于: 在第五实施例 中, 一种发光二极管封装结构 W包括一基板单元 5、 一发光单元 3、 一框架单元 6、 及一 透光不织布 4。基板单元 5包括一基板本体 51。发光单元 3包括至少一设置于该基板本体 51上且电性连接于该基板本体 51的发光元件 31。框架单元 6包括一设置于该基板本体 51 上且围绕上述至少一发光元件 31的框架体 61。透光不织布 4设置在该框架体 61上且遮盖 上述至少一发光元件 31。 因此, 本发明的透光不织布 4可采用芯片直接封装 (COB)的方式 制作而成。
〔第六实施例〕
首先, 请参阅图 10。 图 10为本发明第六实施例发光二极管封装结构的侧视剖面示意 图。 由图 10与图 9的比较可知, 本发明第六实施例与第一实施例的差异在于: 在第六实 施例中, 一种发光二极管封装结构 W包括一基板单元 5、 一发光单元 3、 及一透光不织布 4。基板单元 5包括一基板本体 51。发光单元 3包括多个设置于该基板本体 51上且电性连 接于该基板本体 51的发光元件 31。透光不织布 4, 其设置在所述多个发光元件 31上且遮 盖所述多个发光元件 31。 因此, 本发明的透光不织布 4可采用芯片直接封装 (COB)的方式 制作而成, 而不需要图 9中的框架体 61。
〔实施例的可能功效〕
综上所述, 本发明实施例所提供的发光二极管封装结构, 其可通过 "透光不织布设置 在该反射罩体顶部上且遮盖上述至少一发光元件"、 "透光不织布设置在该框架体上且遮 盖上述至少一发光元件"、 及 "透光不织布设置在所述多个发光元件上且遮盖所述多个发 光元件"的设计, 以使得本发明的发光二极管封装结构能够扩大发光二极管芯片的发光角 度, 以提供广角度的光型。
以上所述仅为本发明之较佳可行实施例, 非因此局限本发明之专利范围, 故举凡运用 本发明说明书及图式内容所为之等效技术变化, 均包含于本发明之范围内。

Claims

权利要求
1. 一种发光二极管封装结构, 其特征在于, 包括:
一电极单元, 其包括一第一电极及一第二电极;
一壳体单元,其包括一具有容置空间的反射罩体,其中该反射罩体包覆该第一电极及 该第二电极的其中一部分, 且该第一电极及该第二电极的另一部分外露于该反射罩体; 一发光单元,其包括至少一设置于该容置空间内的发光元件,其中上述至少一发光元 件电性连接于该第一电极及该第二电极; 以及
一透光不织布, 其设置在该反射罩体顶部上且遮盖上述至少一发光元件。
2.如权利要求 1所述的发光二极管封装结构, 其特征在于, 该透光不织布包括一纤维 布体及一混入该纤维布体的萤光胶体。
3.如权利要求 2所述的发光二极管封装结构, 其特征在于, 该萤光胶体包括一结合胶 体及多个混入该结合胶体内的萤光颗粒。
4.如权利要求 1所述的发光二极管封装结构, 其特征在于, 该透光不织布的边缘包覆 该反射罩体的一部分。
5.—种发光二极管封装结构, 其特征在于, 包括:
一基板单元, 其包括一基板本体;
一发光单元, 其包括至少一设置于该基板本体上且电性连接于该基板本体的发光元 框架单元,其包括一设置于该基板本体上且围绕上述至少一发光元件的框架体; 以 及
一透光不织布, 其设置在该框架体上且遮盖上述至少一发光元件。
6.如权利要求 5所述的发光二极管封装结构, 其特征在于, 该透光不织布包括一纤维 布体及一混入该纤维布体的萤光胶体。
7.如权利要求 6所述的发光二极管封装结构, 其特征在于, 该萤光胶体包括一结合胶 体及多个混入该结合胶体内的萤光颗粒。
8.—种发光二极管封装结构, 其特征在于, 包括:
一基板单元, 其包括一基板本体;
一发光单元, 其包括多个设置于该基板本体上且电性连接于该基板本体的发光元件; 以及
一透光不织布, 其设置在所述多个发光元件上且遮盖所述多个发光元件。
9.如权利要求 8所述的发光二极管封装结构, 其特征在于, 该透光不织布包括一纤维 布体及一混入该纤维布体的萤光胶体。
10.如权利要求 9所述的发光二极管封装结构, 其特征在于, 该萤光胶体包括一结合 胶体及多个混入该结合胶体内的萤光颗粒。
PCT/CN2012/085572 2012-11-29 2012-11-29 发光二极管封装结构 WO2014082262A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085572 WO2014082262A1 (zh) 2012-11-29 2012-11-29 发光二极管封装结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085572 WO2014082262A1 (zh) 2012-11-29 2012-11-29 发光二极管封装结构

Publications (1)

Publication Number Publication Date
WO2014082262A1 true WO2014082262A1 (zh) 2014-06-05

Family

ID=50827053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085572 WO2014082262A1 (zh) 2012-11-29 2012-11-29 发光二极管封装结构

Country Status (1)

Country Link
WO (1) WO2014082262A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9976710B2 (en) 2013-10-30 2018-05-22 Lilibrand Llc Flexible strip lighting apparatus and methods
US10989372B2 (en) 2017-03-09 2021-04-27 Ecosense Lighting Inc. Fixtures and lighting accessories for lighting devices
US11022279B2 (en) 2016-03-08 2021-06-01 Ecosense Lighting Inc. Lighting system with lens assembly
US11041609B2 (en) 2018-05-01 2021-06-22 Ecosense Lighting Inc. Lighting systems and devices with central silicone module
US11296057B2 (en) 2017-01-27 2022-04-05 EcoSense Lighting, Inc. Lighting systems with high color rendering index and uniform planar illumination
US11353200B2 (en) 2018-12-17 2022-06-07 Korrus, Inc. Strip lighting system for direct input of high voltage driving power

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135753A (ja) * 2008-10-27 2010-06-17 Okaya Electric Ind Co Ltd 発光ダイオード
JP3165547U (ja) * 2010-11-08 2011-01-27 岡谷電機産業株式会社 柱状led光源
JP2012134407A (ja) * 2010-12-24 2012-07-12 Okaya Electric Ind Co Ltd 発光ダイオード

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135753A (ja) * 2008-10-27 2010-06-17 Okaya Electric Ind Co Ltd 発光ダイオード
JP3165547U (ja) * 2010-11-08 2011-01-27 岡谷電機産業株式会社 柱状led光源
JP2012134407A (ja) * 2010-12-24 2012-07-12 Okaya Electric Ind Co Ltd 発光ダイオード

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028980B2 (en) 2013-10-30 2021-06-08 Ecosense Lighting Inc. Flexible strip lighting apparatus and methods
US10030828B2 (en) 2013-10-30 2018-07-24 Lilibrand Llc Flexible strip lighting apparatus and methods
US9976710B2 (en) 2013-10-30 2018-05-22 Lilibrand Llc Flexible strip lighting apparatus and methods
US11060702B2 (en) 2016-03-08 2021-07-13 Ecosense Lighting Inc. Lighting system with lens assembly
US11022279B2 (en) 2016-03-08 2021-06-01 Ecosense Lighting Inc. Lighting system with lens assembly
US11359796B2 (en) 2016-03-08 2022-06-14 Korrus, Inc. Lighting system with lens assembly
US11512838B2 (en) 2016-03-08 2022-11-29 Korrus, Inc. Lighting system with lens assembly
US11867382B2 (en) 2016-03-08 2024-01-09 Korrus, Inc. Lighting system with lens assembly
US11296057B2 (en) 2017-01-27 2022-04-05 EcoSense Lighting, Inc. Lighting systems with high color rendering index and uniform planar illumination
US11658163B2 (en) 2017-01-27 2023-05-23 Korrus, Inc. Lighting systems with high color rendering index and uniform planar illumination
US10989372B2 (en) 2017-03-09 2021-04-27 Ecosense Lighting Inc. Fixtures and lighting accessories for lighting devices
US11339932B2 (en) 2017-03-09 2022-05-24 Korrus, Inc. Fixtures and lighting accessories for lighting devices
US11041609B2 (en) 2018-05-01 2021-06-22 Ecosense Lighting Inc. Lighting systems and devices with central silicone module
US11578857B2 (en) 2018-05-01 2023-02-14 Korrus, Inc. Lighting systems and devices with central silicone module
US11353200B2 (en) 2018-12-17 2022-06-07 Korrus, Inc. Strip lighting system for direct input of high voltage driving power

Similar Documents

Publication Publication Date Title
WO2014082262A1 (zh) 发光二极管封装结构
TWI411142B (zh) 發光裝置及其封裝方法
KR101869246B1 (ko) 발광소자 패키지
JP2007049167A (ja) 一体型のレンズを備えるplccパッケージ及びそのパッケージを作製するための方法
CN107086263B (zh) 显示装置及其四面发光led
TW201409764A (zh) 發光二極體模組及其製造方法
CN206918671U (zh) 照明装置
JP5936885B2 (ja) 半導体発光装置
CN102214587B (zh) 制作多层式阵列型发光二极管的方法
TWI474518B (zh) 發光二極體封裝結構(二)
KR101941512B1 (ko) 발광소자 패키지
WO2014082260A1 (zh) 发光二级管封装结构
TWM450072U (zh) 發光二極體封裝結構(一)
TW201415675A (zh) 發光二極體封裝結構(一)
TWM450073U (zh) 發光二極體封裝結構(二)
TWI514051B (zh) 背光結構及其製造方法
JP2002270902A (ja) 発光ダイオード
JP6827295B2 (ja) Led発光装置
JP2016051780A (ja) 反射型ledランプ及びその製造方法
TWI566439B (zh) 封裝結構及其製法
US9204558B2 (en) Method for manufacturing packaged light emitting diode
KR101824882B1 (ko) 발광소자 패키지
CN219873576U (zh) 一种红外白光一体化光源
TWM271252U (en) Package structure of light-emitting device
JP2013187269A (ja) 光半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889053

Country of ref document: EP

Kind code of ref document: A1