WO2014080799A1 - 加速度検出装置 - Google Patents

加速度検出装置 Download PDF

Info

Publication number
WO2014080799A1
WO2014080799A1 PCT/JP2013/080567 JP2013080567W WO2014080799A1 WO 2014080799 A1 WO2014080799 A1 WO 2014080799A1 JP 2013080567 W JP2013080567 W JP 2013080567W WO 2014080799 A1 WO2014080799 A1 WO 2014080799A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration detection
acceleration
plate
detection element
detection device
Prior art date
Application number
PCT/JP2013/080567
Other languages
English (en)
French (fr)
Inventor
拡才 畠山
剛志 二俣
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014080799A1 publication Critical patent/WO2014080799A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • G01P15/0922Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the bending or flexing mode type

Definitions

  • the present invention relates to an acceleration detection device having a structure in which an acceleration detection element is held by a holding member.
  • Patent Document 1 discloses an acceleration detection device 1001 shown in FIG.
  • the acceleration detection element 1002 is held by the first and second holding members 1003 and 1004.
  • the acceleration detecting element 1002 has a structure in which first and second piezoelectric layers 1002a and 1002b are stacked.
  • the first and second piezoelectric layers 1002a and 1002b are polarized in the directions indicated by the dashed arrows in the figure.
  • the piezoelectric layers 1002a and 1002b are inclined in an oblique direction as indicated by an arrow A at the interface.
  • the piezoelectric body 1002 configured so that the interface is inclined in the oblique direction is supported by the first holding member 1003 and the second holding member 1004 in both ends.
  • a base substrate 1005 is laminated below the first and second holding members 1003 and 1004. Although not shown in FIG. 6, a cover member 1006 indicated by a two-dot chain line is stacked from above. Therefore, the displacement part of the acceleration detection element 1002 is sealed.
  • the acceleration detection device 1001 since the polarization directions of the first and second piezoelectric layers 1002a and 1002b and the stacked interface between them are set as described above in the acceleration detection element 1002, the X direction and the Z direction in FIG. And has a maximum sensitivity in an oblique direction inclined with respect to.
  • the acceleration detection apparatus 1001 could not detect the accelerations in the plurality of detection axis directions with high accuracy.
  • An object of the present invention is to provide an acceleration detection device having a plurality of acceleration detection axes capable of detecting acceleration.
  • the acceleration detecting device has a first end and a second end, and the direction connecting the first and second ends is a length direction, and the length direction
  • An acceleration detecting element having a displacement part that is displaced by receiving an acceleration in an orthogonal direction; and a holding member that holds the acceleration detecting element on at least one side of the first end and the second end of the acceleration detecting element; Is provided.
  • the holding member has first and second holding members respectively joined to first and second surfaces facing each other in a direction orthogonal to the length direction of the acceleration detecting element. .
  • the first and second holding members are joined to the acceleration detection element to constitute a plate-like acceleration detection unit.
  • a plurality of plate-like acceleration detectors are stacked so that the principal surfaces face each other. That is, the plurality of plate-like acceleration detection units are arranged such that the acceleration detection direction of at least one acceleration detection element of the plurality of acceleration detection units is different from the length direction of the acceleration detection elements of the remaining at least one acceleration detection unit. Are stacked.
  • the length direction of at least one acceleration detection element is the length direction of the acceleration detection element of the remaining at least one acceleration detection unit. Is different.
  • the displacement portion of the acceleration detection element is largely displaced by the acceleration in the direction orthogonal to the length direction of the acceleration detection element. Therefore, when the length direction of at least one acceleration detection unit is different from the length direction of the acceleration detection element of the remaining at least one acceleration detection unit, it is possible to detect the acceleration of multiple axes with higher accuracy. it can.
  • the first and second surfaces are in a direction orthogonal to a main surface of the plate-like acceleration detection unit.
  • the configuration of the acceleration detection element in the acceleration detection device can be simplified. Further, the acceleration in the direction orthogonal to the first and second surfaces can be detected with high accuracy.
  • the first and second surfaces are inclined with respect to a main surface of the plate-like acceleration detection unit, whereby in the acceleration detection element, An acceleration detection element having a maximum sensitivity is configured in a direction inclined from a direction orthogonal to the main surface of the plate-like acceleration detection unit. In this case, the acceleration in the direction inclined from the direction orthogonal to the main surface of the plate-like acceleration detection unit can be detected with higher sensitivity.
  • At least one of the plurality of acceleration detection elements is supported by a cantilever beam. In this case, acceleration detection sensitivity can be effectively increased.
  • At least one acceleration detection element among the plurality of acceleration detection elements is supported by both ends.
  • the mechanical strength of the fixed structure of the acceleration detecting element in the acceleration detecting device can be increased.
  • the acceleration detection direction of at least one acceleration detection element of the plurality of acceleration detection units is different from the length direction of the acceleration detection element of the remaining at least one acceleration detection unit. Since a plurality of plate-like acceleration detection units are stacked, it is possible to provide an acceleration detection device having a plurality of acceleration detection axes.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of an acceleration detection device according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing one acceleration detection unit of the acceleration detection device according to the first embodiment of the present invention.
  • FIG. 3 is an exploded perspective view showing a schematic configuration of the acceleration detection device according to the second embodiment of the present invention.
  • FIG. 4 is an exploded perspective view showing a schematic configuration of an acceleration detection device according to the third embodiment of the present invention.
  • FIG. 5 is an exploded perspective view showing an acceleration detection element used in the acceleration detection device of the third embodiment.
  • FIG. 6 is a perspective view showing a conventional acceleration detecting device.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of an acceleration detection device according to a first embodiment of the present invention.
  • the acceleration detection device 1 includes plate-like first and second acceleration detection units 2 and 3.
  • the plate-like first and second acceleration detectors 2 and 3 are stacked so that the main surfaces face each other.
  • An upper protective substrate 4 is laminated on the upper surface 2a which is one main surface of the plate-like first acceleration detection unit 2.
  • a lower protective substrate 5 is laminated on the lower surface 3 b which is the other main surface of the plate-like second acceleration detection unit 3.
  • the lower protective substrate 5 has a recess 5a on the upper surface.
  • the concave portion 5a is formed to provide a space for preventing displacement of an acceleration detection element to be described later. Similar recesses are also formed on the lower surface of the upper protective substrate 4.
  • the upper protective substrate 4 and the lower protective substrate 5 are made of insulating ceramics such as alumina. However, other insulating materials such as a synthetic resin may be used.
  • the first and second acceleration detection units 2 and 3 have first and second acceleration detection elements 11 and 21, respectively.
  • the acceleration detecting elements 11 and 21 are schematically shown.
  • FIG. 2 details of the acceleration detection unit 2 and the acceleration detection element 11 used in the acceleration detection unit 2 will be clarified.
  • the acceleration detector 2 has a plate-like shape with a substantially rectangular outer shape.
  • the first acceleration detecting element 11 has a length direction.
  • the acceleration detection element 11 has a multilayer piezoelectric body 12.
  • the stacked piezoelectric body 12 has a structure in which a plurality of piezoelectric layers 12a to 12d are stacked. More specifically, the piezoelectric layers 12a and 12c are stacked at the center in the stacking direction.
  • the piezoelectric layer 12b is disposed on one outer side in the stacking direction, and the piezoelectric layer 12d is disposed on the other outer side in the stacking direction.
  • the thickness of the piezoelectric layers 12b and 12d is not particularly limited, but is 1/2 the thickness of the piezoelectric layers 12a and 12c.
  • the piezoelectric layers 12a to 12d are polarized in the direction indicated by the arrow P shown in the drawing.
  • FIG. 2 four piezoelectric layers 12a to 12d are stacked.
  • the acceleration detecting element may be used in this embodiment.
  • an acceleration detecting element 11A shown in FIG. That is, a speed detecting element having a two-layer structure in which each surface is parallel to the X direction, the Y direction, and the Z direction may be used. In that case, you may support an acceleration detection element by both ends.
  • the X direction shown in the drawing is the length direction.
  • the first surface 12e and the second surface 12f of the multilayer piezoelectric element face each other.
  • a first electrode 13 is formed on the first surface 12e, and a second electrode 14 is formed on the second surface 12f.
  • the structure of the acceleration detection element 11 itself has been known before the filing of the present application.
  • the laminated piezoelectric body 12 can be configured using a piezoelectric ceramic such as a lead zirconate titanate ceramic.
  • a piezoelectric ceramic such as a lead zirconate titanate ceramic.
  • appropriate metals or alloys, such as Ag and Cu, can be used as an electrode material which comprises the 1st, 2nd electrodes 13 and 14.
  • the acceleration detecting element 11 is held by first and second holding members 15 and 16 at a first end which is one end in the length direction. That is, the first holding member 15 is bonded to the first end portion region of the first surface 12 e of the multilayer piezoelectric body 12. Similarly, the second holding member 16 is joined to the second surface 12f on the first end side.
  • the first and second holding members 15 and 16 are extended toward the second end of the acceleration detecting element 11 opposite to the first end. However, the first and second holding members 15 and 16 are separated from the longitudinal acceleration detection element 11 and the spaces 17 and 18. Accordingly, portions of the acceleration detection element 11 other than the portions joined to the first and second holding members 15 and 16 are easily deformed by the acceleration from the outside.
  • the second end of the acceleration detection element 11 is a free end. Therefore, in the present embodiment, the acceleration detection element 11 is supported by a cantilever beam. Since it is supported by the cantilever, the acceleration detecting element 11 can be largely displaced by the acceleration from the outside. Therefore, the sensitivity can be effectively increased.
  • a spacer 19 is arranged with a gap G between the tip of the acceleration detecting element 11 and the gap G.
  • the dimension along the Y direction of the spacer 19 is equal to the dimension along the Y direction of the acceleration detecting element 11.
  • the first and second holding members 15 and 16 are joined to the spacer 19. That is, the spacer 19 is provided so as to seal the spaces 17 and 18.
  • first and second holding members 15 and 16 and the spacer 19 and the acceleration detecting element 11 are joined as described above, and the plate-like first acceleration detecting unit 2 having a substantially rectangular outer shape is configured. ing.
  • the acceleration detection axis that is, the detection axis with the highest sensitivity is the Y direction in FIG.
  • a plate-like second acceleration detection unit 3 is further laminated below the plate-like first acceleration detection unit 2.
  • the acceleration detection element 21 is configured similarly to the acceleration detection element 11.
  • a spacer 22 is arranged with a gap G from the tip of the acceleration detection element 21.
  • the acceleration detection element 21 is held by the first and second holding members 15 and 16.
  • the second acceleration detection unit 3 is different from the first acceleration detection unit 2 in that the length direction of the acceleration detection element 21 is different from the acceleration detection element 11, that is, a direction orthogonal thereto. More specifically, the second acceleration detecting element 21 is along the length direction and the Y direction. Therefore, in the second acceleration detector 3, the detection axis for detecting the acceleration is in the X direction.
  • the acceleration detection device 1 of the present embodiment it is possible to provide an acceleration detection device having two detection axes in the X direction and the Y direction. Therefore, acceleration applied from various directions can be detected with high accuracy.
  • FIG. 3 is an exploded perspective view for explaining an acceleration detecting apparatus according to the second embodiment of the present invention.
  • a plate-like third acceleration detection unit 32 is further laminated. Other points are the same as in the first embodiment.
  • the acceleration detection element 33 is provided at a position different from the first acceleration detection element 11 in the Y direction so that the length direction thereof is the X direction.
  • a spacer 34 is provided with a gap from the tip of the acceleration detection element 33.
  • the third acceleration detector 32 has a detection axis in the Z direction.
  • the acceleration detection device 31 has acceleration detection axes in the X direction, the Y direction, and the Z direction.
  • three or more plate-like acceleration detection units may be further stacked. Thereby, acceleration applied from various directions can be detected with higher accuracy.
  • At least one acceleration detection element is an arbitrary direction orthogonal to the Z direction, and the extending direction of the remaining at least one acceleration detection element is Z. Any other direction orthogonal to the direction can be used.
  • FIG. 4 is an exploded perspective view showing a schematic configuration of the acceleration detection device according to the third embodiment of the present invention.
  • This embodiment is the same as the first embodiment except that the acceleration detection element and the spacer used are different.
  • the first acceleration detecting element 11A schematically shown in FIG. 4 includes a multilayer piezoelectric body 12A, and the first surface 12a and the second surface 12b of the multilayer piezoelectric body 12A are plate-shaped. It is inclined with respect to the Z direction, which is a direction orthogonal to the main surface of the acceleration detector 2. This will be described more specifically with reference to FIG.
  • a first piezoelectric layer 12h and a second piezoelectric layer 12i are laminated.
  • first and second piezoelectric layers 12h and 12i the first to third regions divided along the length direction thereof are respectively polarized as indicated by broken arrows in the figure.
  • the interface 12j between the first piezoelectric layer 12h and the second piezoelectric layer 12i is inclined from the Z direction in FIG. Therefore, the first surface 12a and the second surface 12b of the multilayer piezoelectric body 12A are also inclined as shown in FIG.
  • the maximum sensitivity direction with respect to acceleration is inclined from the X, Y, and Z directions in FIG. More specifically, it has maximum sensitivity in the direction between the Y direction and the Z direction.
  • the laminated piezoelectric body 12A is inclined as described above.
  • each surface of the multilayer piezoelectric body may be shaped along the X, Y, and Z directions without tilting the multilayer piezoelectric body.
  • the laminated piezoelectric body 11A is supported by both ends, but may be supported by cantilevers.
  • the surfaces of the spacer 19A joined to the first and second holding members 15A and 16A according to the acceleration detecting element 11A are also inclined surfaces. Further, the surfaces of the first and second holding members 15A and 16A that are joined to the acceleration detecting element 11A and the spacer 19A are also inclined surfaces.
  • the length direction of the second acceleration detection element 21 is the Y direction, but an inclined piezoelectric body is used so that the maximum sensitivity direction is between the X direction and the Z direction. It is used.
  • the maximum sensitivity direction of the acceleration detection element may be inclined in a direction different from the surface direction of the plate-like acceleration detection unit.
  • the first and second acceleration detecting elements are supported by cantilever beams. However, as in the conventional example shown in FIG. 6, they are supported by both ends.
  • An existing acceleration detection element may be used. That is, as indicated by broken lines M and M in FIG. 2, the first acceleration detection element 11 may be extended to a region where the spacer 19 is provided. Thereby, it can be set as the structure which supported the acceleration detection element by the 1st, 2nd holding member by both ends. In the case of both ends, the mechanical strength of the acceleration detector can be increased.

Abstract

 複数の加速度検出軸を有する加速度検出装置を提供する。 長さ方向を有する加速度検出素子11,21と、加速度検出素子11,21を保持する保持部材15,16とを有する複数のプレート状の加速度検出部2,3が積層されており、少なくとも1つの加速度検出部の加速度検出素子の加速度検出軸が、残りのプレート状の加速度検出部に設けられている少なくとも1つの加速度検出素子の加速度検出軸と異ならされている、加速度検出装置1。

Description

加速度検出装置
 本発明は、加速度検出素子が保持部材により保持されている構造を有する加速度検出装置に関する。
 従来、電子機器や車輛等における衝撃を検知するために加速度検出装置が広く用いられている。例えば下記の特許文献1には、図6に示す加速度検出装置1001が開示されている。加速度検出装置1001では、加速度検出素子1002が第1,第2の保持部材1003,1004により保持されている。加速度検出素子1002は、第1,第2の圧電体層1002a,1002bを積層した構造を有する。第1,第2の圧電体層1002a,1002bは図示の破線の矢印で示す方向に分極されている。
 他方、圧電体層1002a,1002bはその界面が矢印Aで示すように、斜め方向に傾斜している。このように界面が斜め方向に傾斜するように構成された圧電体1002が、第1の保持部材1003と第2の保持部材1004とにより両持ちで支持されている。
 第1,第2の保持部材1003,1004の下方には、ベース基板1005が積層されている。なお、図6では図示していないが、二点鎖線で示すカバー部材1006が上方から積層されている。従って、加速度検出素子1002の変位部分が封止されている。
特許第3144159号公報
 加速度検出装置1001では、加速度検出素子1002における第1,第2の圧電体層1002a,1002bの分極方向及び両者の積層界面が上記のように設定されているため、図6のX方向及びZ方向に対して傾斜している斜め方向に最大感度を有する。
 もっとも、加速度検出装置1001は、複数の検出軸方向の加速度を高精度に検出することはできなかった。
 本発明の目的は、加速度を検知し得る加速度検出軸が複数である加速度検出装置を提供することにある。
 本発明に係る加速度検出装置は、第1の端部と第2の端部とを有し、第1,第2の端部を結ぶ方向が長さ方向とされており、該長さ方向と直交する方向の加速度を受けて変位する変位部を有する加速度検出素子と、前記加速度検出素子の第1の端部及び第2の端部の少なくとも一方側において前記加速度検出素子を保持する保持部材とを備える。本発明では、前記保持部材は、前記加速度検出素子の前記長さ方向と直交する方向において対向している第1,第2の面にそれぞれ接合されている第1及び第2の保持部材を有する。前記第1,第2の保持部材が前記加速度検出素子に接合されてプレート状の加速度検出部が構成されている。本発明では、複数のプレート状の加速度検出部が主面同士が対向するように積層されている。すなわち、該複数の加速度検出部の少なくとも1つの加速度検出素子の加速度検出方向が、残りの少なくとも1つの加速度検出部の加速度検出素子の長さ方向と異なるようにプレート状の複数の加速度検出部が積層されている。
 本発明に係る加速度検出装置のある特定の局面では、前記複数の加速度検出部において、少なくとも1つの加速度検出素子の長さ方向が、残りの少なくとも1つの加速度検出部の加速度検出素子の長さ方向と異なっている。加速度検出素子の長さ方向と直交する方向の加速度により加速度検出素子の変位部分は大きく変位する。従って、少なくとも1つの加速度検出部の長さ方向が残りの少なくとも1つの加速度検出部の加速度検出素子の長さ方向と異なっている場合には、複数軸の加速度をより高精度に検出することができる。
 本発明に係る加速度検出装置のさらに他の特定の局面では、前記加速度検出素子において、前記第1,第2の面がプレート状の加速度検出部の主面と直交する方向とされている。この場合には、加速度検出装置における加速度検出素子の構成の簡略化を図ることができる。また、上記第1,第2の面と直交する方向における加速度を高精度に検出することができる。
 本発明の加速度検出装置のさらに他の特定の局面では、前記第1,第2の面が前記プレート状の加速度検出部の主面に対して傾斜しており、それによって前記加速度検出素子において、前記プレート状の加速度検出部の主面と直交する方向から傾斜した方向に最大感度を有する加速度検出素子が構成されている。この場合には、プレート状の加速度検出部の主面と直交する方向から傾斜した方向の加速度をより高感度で検出することができる。
 本発明に係る加速度検出装置のさらに別の特定の局面では、前記複数の加速度検出素子のうち少なくとも1つの加速度検出素子が片持ち梁で支持されている。この場合には、加速度検出感度を効果的に高めることができる。
 本発明に係る加速度検出装置のさらに他の特定の局面では、上記複数の加速度検出素子のうち少なくとも1つの加速度検出素子が両持ちで支持されている。この場合には、加速度検出装置における加速度検出素子の固定構造の機械的強度を高めることができる。
 本発明に係る加速度検出装置によれば、該複数の加速度検出部の少なくとも1つの加速度検出素子の加速度検出方向が、残りの少なくとも1つの加速度検出部の加速度検出素子の長さ方向と異なるようにプレート状の複数の加速度検出部が積層されているため、複数軸の加速度検出軸を有する加速度検出装置を提供することが可能となる。
図1は、本発明の第1の実施形態に係る加速度検出装置の概略構成を示す分解斜視図である。 図2は、本発明の第1の実施形態に係る加速度検出装置の1つの加速度検出部を示す斜視図である。 図3は、本発明の第2の実施形態に係る加速度検出装置の概略構成を示す分解斜視図である。 図4は、本発明の第3の実施形態に係る加速度検出装置の概略構成を示す分解斜視図である。 図5は、第3の実施形態の加速度検出装置で用いられている加速度検出素子を示す分解斜視図である。 図6は、従来の加速度検出装置を示す斜視図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1は、本発明の第1の実施形態に係る加速度検出装置の概略構成を示す分解斜視図である。加速度検出装置1は、プレート状の第1,第2の加速度検出部2,3を有する。プレート状の第1,第2の加速度検出部2,3は主面同士が対向するように積層されている。そして、プレート状の第1の加速度検出部2の一方主面である上面2aには、上部保護基板4が積層されている。また、プレート状の第2の加速度検出部3の他方主面である下面3bには、下部保護基板5が積層されている。下部保護基板5は、上面に凹部5aを有する。凹部5aは、後述する加速度検出素子の変位を妨げないための空間を設けるために形成されている。上部保護基板4の下面にも同様の凹部が形成されている。
 上記上部保護基板4及び下部保護基板5は、アルミナなどの絶縁性セラミックスからなる。もっとも、合成樹脂などの他の絶縁材料が用いられてもよい。
 他方、第1,第2の加速度検出部2,3は、それぞれ、第1,第2の加速度検出素子11,21を有する。図1では、加速度検出素子11,21は略図的に示されている。図2を参照して、加速度検出部2及び該加速度検出部2に用いられている加速度検出素子11の詳細を明らかにする。
 図2に示すように、加速度検出部2は、外形が略矩形のプレート状の形状を有する。第1の加速度検出素子11は、長さ方向を有する。加速度検出素子11は、積層型圧電体12を有する。積層型圧電体12は、複数の圧電体層12a~12dを積層した構造を有する。より具体的には、積層方向中央に、圧電体層12a,12cが積層されている。そして、圧電体層12bが積層方向一方の外側に、圧電体層12dが積層方向他方の外側に配置されている。図示のように、圧電体層12b,12dの厚みは、特に限定されないが、圧電体層12a,12cの1/2の厚みとされている。また、圧電体層12a~12dは、図示の矢印Pで示す方向に分極されている。
 なお、図2では、4層の圧電体層12a~12dが積層されていたが、公知の加速度検出素子と同様に、厚み方向において分極方向が逆方向である2層の圧電体層を積層してなる加速度検出素子を本実施形態において用いてもよい。例えば、後述する図5に示す加速度検出素子11Aを傾斜させない形状としたものを用いてもよい。すなわち、X方向、Y方向及びZ方向に各面が平行な2層構造の速度検出素子を用いてもよい。その場合、加速度検出素子を両持ちで支持してもよい。
 上記積層型圧電体12では、図示のX方向が長さ方向とされている。この長さ方向と直交しているY方向において積層型圧電体の第1の面12eと第2の面12fとが対向している。この第1の面12eに、第1の電極13が、第2の面12fに第2の電極14が形成されている。上記加速度検出素子11自体の構造は、本願出願以前より知られている。
 上記積層型圧電体12は、チタン酸ジルコン酸鉛系セラミックスのような圧電体セラミックスを用いて構成することができる。また、第1,第2の電極13,14を構成する電極材料としては、Ag、Cuなどの適宜の金属もしくは合金を用いることができる。
 上記加速度検出素子11は、長さ方向一端部である第1の端部において、第1,第2の保持部材15,16により保持されている。すなわち、積層型圧電体12の第1の面12eの第1の端部側領域において第1の保持部材15が接合されている。同様に、該第1の端部側において、第2の面12fに第2の保持部材16が接合されている。
 第1,第2の保持部材15,16は、加速度検出素子11の第1の端部側とは反対側の第2の端部に向かって延ばされている。ただし、第1,第2の保持部材15,16は、長さ方向加速度検出素子11と空間17,18を隔てられている。従って、加速度検出素子11の上記第1,第2の保持部材15,16に接合されている部分以外の部分は、外部からの加速度により容易に変形する。
 他方、加速度検出素子11の第2の端部は自由端とされている。従って、本実施形態では加速度検出素子11は片持ち梁で支持されている。片持ち梁で支持されているため、外部からの加速度により加速度検出素子11が大きく変位し得る。従って、感度を効果的に高めることができる。
 他方、加速度検出素子11の先端とギャップGを隔ててスペーサ19が配置されている。スペーサ19のY方向に沿う寸法は、加速度検出素子11のY方向に沿う寸法と等しくされている。そして、第1,第2の保持部材15,16が、上記スペーサ19に接合されている。すなわち、上記空間17,18を封止するように、スペーサ19が設けられている。
 そして、第1,第2の保持部材15,16及びスペーサ19と、加速度検出素子11とが上記のように接合されて、外形が略矩形のプレート状の第1の加速度検出部2が構成されている。
 上記加速度検出部2では、加速度の検出軸すなわち感度が最大となる検出軸は図2のY方向である。
 図1に戻り、本実施形態の加速度検出装置1では、上記プレート状の第1の加速度検出部2の下方に、さらにプレート状の第2の加速度検出部3が積層されている。加速度検出部3では、加速度検出素子21が加速度検出素子11と同様に構成されている。また、加速度検出素子21の先端とギャップGを隔てて、スペーサ22が配置されている。第2の加速度検出部3においても、加速度検出素子21が、第1,第2の保持部材15,16により保持されている。第2の加速度検出部3が第1の加速度検出部2と異なるところは、加速度検出素子21の長さ方向が、加速度検出素子11と異なる方向すなわち直交する方向とされていることにある。より具体的には、第2の加速度検出素子21の長さ方向とY方向に沿っている。従って、第2の加速度検出部3においては、加速度を検出する検出軸は、X方向となる。
 よって、本実施形態の加速度検出装置1では、X方向及びY方向の2つの検出軸を有する加速度検出装置を提供することが可能となる。よって、様々な方向から加わった加速度を、高精度に検出することが可能となる。
 図3は、本発明の第2の実施形態に係る加速度検出装置を説明するための分解斜視図である。第2の実施形態の加速度検出装置31では、プレート状の第1,第2の加速度検出部2,3に加え、さらにプレート状の第3の加速度検出部32が積層されていることにある。その他の点は、第1の実施形態と同様である。
 プレート状の第3の加速度検出部32では、加速度検出素子33がその長さ方向がX方向となるように、ただし第1の加速度検出素子11とはY方向において異なる位置に設けられている。加速度検出素子33の先端とはギャップを隔ててスペーサ34が設けられている。第3の加速度検出部32はZ方向の検出軸を有する。
 本実施形態では、加速度検出装置31は、X方向、Y方向及びZ方向の加速度検出軸を有する。
 本実施形態の加速度検出装置31のように、3以上のプレート状の加速度検出部をさらに積層してもよい。それによって、様々な方向から加わる加速度をより高精度に検出することができる。
 また、複数の加速度検出部の加速度検出素子の延びる方向の異ならせ方についても特に限定されるものではない。すなわち、複数の加速度検出部に設けられている複数の加速度検出素子のうち、少なくとも1つの加速度検出素子をZ方向と直交する任意の方向とし、残りの少なくとも1つの加速度検出素子の延びる方向をZ方向と直交する方向の他の任意の方向とすることができる。
 図4は、本発明の第3の実施形態に係る加速度検出装置の概略構成を示す分解斜視図である。本実施形態では、用いられている加速度検出素子及びスペーサが異なることを除いては第1の実施形態と同様である。すなわち、図4に略図的に示す第1の加速度検出素子11Aは、積層型圧電体12Aを有し、該積層型圧電体12Aの第1の面12aと第2の面12bとがプレート状の加速度検出部2の主面と直交する方向であるZ方向に対して傾斜されている。これを、図5を参照してより具体的に説明する。加速度検出素子11Aでは、第1の圧電体層12hと第2の圧電体層12iとが積層されている。第1,第2の圧電体層12h,12iは、その長さ方向に沿って分割された第1~第3の領域が、図示の破線の矢印で示すようにそれぞれ分極されている。そして、第1の圧電体層12hと第2の圧電体層12iとの界面12jが、図4のZ方向から傾斜している。従って、積層型圧電体12Aの第1の面12a及び第2の面12bもまた、図4に示すように傾斜している。
 図5に示した第1の加速度検出素子11Aは上記のように構成されているため、加速度に対する最大感度方向が図4のX方向、Y方向及びZ方向から傾斜している。より具体的には、Y方向とZ方向との間の方向に最大感度を有する。
 なお、図5に示した加速度検出素子11Aでは、上記のように積層型圧電体12Aが傾斜されていた。もっとも、本実施形態においても、積層型圧電体を傾斜させず、積層型圧電体の各面をX方向、Y方向及びZ方向に沿う形状としてもよい。さらに、本実施形態では、積層型圧電体11Aが両持ちで支持されていたが、片持ち梁で支持されていてもよい。
 また、上記加速度検出素子11Aに応じてスペーサ19Aの第1,第2の保持部材15A,16Aと接合されている面も傾斜面とされている。さらに、第1,第2の保持部材15A,16Aの加速度検出素子11A及びスペーサ19Aと接合される面も傾斜面とされている。
 第2の加速度検出部3においても、第2の加速度検出素子21の長さ方向はY方向であるが、最大感度方向がX方向とZ方向との間となるように傾斜型の圧電体が用いられている。
 図4に示したように、本発明において、加速度検出素子の最大感度方向は、上記プレート状の加速度検出部の面方向と異なる方向に傾斜されていてもよい。
 また、上記第1~第3の実施形態では、第1,第2の加速度検出素子は片持ち梁で支持されていたが、図6に示した従来例のように、両持ちで支持されている加速度検出素子を用いてもよい。すなわち、図2に破線M,Mで示すように、第1の加速度検出素子11をスペーサ19が設けられている領域まで延長してもよい。それによって、加速度検出素子を両持ちで第1,第2の保持部材により支持した構造とすることができる。両持ちの場合には、加速度検出部の機械的強度を高めることができる。
 1…加速度検出装置
 2,3…加速度検出部
 4…上部保護基板
 5…下部保護基板
 5a…凹部
 11,11A…加速度検出素子
 12,12A…積層型圧電体
 12a~12d…圧電体層
 12e,12f…第1,第2の面
 12h,12i…第1,第2の圧電体層
 12j…界面
 13,14…第1,第2の電極
 15,15A…第1の保持部材
 16,16A…第2の保持部材
 17,18…空間
 19,19A…スペーサ
 21…加速度検出素子
 22…スペーサ
 31…加速度検出装置
 32…加速度検出部
 33…加速度検出素子
 34…スペーサ

Claims (6)

  1.  第1の端部と第2の端部とを有し、第1,第2の端部を結ぶ方向が長さ方向とされており、該長さ方向と直交する方向の加速度を受けて変位する変位部を有する加速度検出素子と、
     前記加速度検出素子の第1の端部及び第2の端部の少なくとも一方側において前記加速度検出素子を保持する保持部材とを備え、
     前記保持部材が、前記加速度検出素子の前記長さ方向と直交する方向において対向している第1,第2の面にそれぞれ接合されている第1及び第2の保持部材を有し、
     前記第1,第2の保持部材が前記加速度検出素子に接合されてプレート状の加速度検出部が構成されており、
     複数のプレート状の前記加速度検出部が主面同士が対向するように積層されており、該複数の加速度検出部の少なくとも1つの加速度検出素子の加速度検出方向が、残りの少なくとも1つの加速度検出部の加速度検出素子の長さ方向と異なるようにプレート状の複数の加速度検出部が積層されている、加速度検出装置。
  2.  前記複数の加速度検出部において、少なくとも1つの加速度検出素子の長さ方向が、残りの少なくとも1つの加速度検出部の加速度検出素子の長さ方向と異なっている、請求項1に記載の加速度検出装置。
  3.  前記加速度検出素子において、前記第1,第2の面がプレート状の加速度検出部の主面と直交する方向とされている、請求項1または2に記載の加速度検出装置。
  4.  前記第1,第2の面が前記プレート状の加速度検出部の主面に対して傾斜しており、それによって前記加速度検出素子において、前記プレート状の加速度検出部の主面と直交する方向から傾斜した方向に最大感度を有する加速度検出素子が構成されている、請求項1または2に記載の加速度検出装置。
  5.  前記複数の加速度検出素子のうち少なくとも1つの加速度検出素子が片持ち梁で支持されている、請求項1~4のいずれか1項に記載の加速度検出装置。
  6.  前記複数の加速度検出素子のうち少なくとも1つの加速度検出素子が両持ちで支持されている、請求項1~4のいずれか1項に記載の加速度検出装置。
PCT/JP2013/080567 2012-11-20 2013-11-12 加速度検出装置 WO2014080799A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012254255 2012-11-20
JP2012-254255 2012-11-20

Publications (1)

Publication Number Publication Date
WO2014080799A1 true WO2014080799A1 (ja) 2014-05-30

Family

ID=50775982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080567 WO2014080799A1 (ja) 2012-11-20 2013-11-12 加速度検出装置

Country Status (1)

Country Link
WO (1) WO2014080799A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158226A (ja) * 1990-10-22 1992-06-01 Omron Corp 加速度センサー
JPH08201418A (ja) * 1995-01-23 1996-08-09 Murata Mfg Co Ltd 加速度センサの取付構造
JP2003337140A (ja) * 2002-05-21 2003-11-28 Murata Mfg Co Ltd 加速度センサ
JP2009053141A (ja) * 2007-08-29 2009-03-12 Yokohama Rubber Co Ltd:The 加速度センサモジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158226A (ja) * 1990-10-22 1992-06-01 Omron Corp 加速度センサー
JPH08201418A (ja) * 1995-01-23 1996-08-09 Murata Mfg Co Ltd 加速度センサの取付構造
JP2003337140A (ja) * 2002-05-21 2003-11-28 Murata Mfg Co Ltd 加速度センサ
JP2009053141A (ja) * 2007-08-29 2009-03-12 Yokohama Rubber Co Ltd:The 加速度センサモジュール

Similar Documents

Publication Publication Date Title
US9052332B2 (en) Piezoresistive type Z-axis accelerometer
US20180238751A1 (en) Piezoelectric deflection sensor
CN107683405B (zh) 分量传感器和使用该分量传感器的多分量传感器和该多分量传感器的应用
KR20150101741A (ko) Mems 센서
JP4909607B2 (ja) 2軸加速度センサ
JP2008275325A (ja) センサ装置
WO2014080799A1 (ja) 加速度検出装置
JP2011247714A (ja) 半導体物理量センサ
JP4957414B2 (ja) 容量式半導体加速度センサ
WO2016117289A1 (ja) 物理量センサおよびその製造方法
JP2013024765A (ja) 静電容量式センサ
JP2007017284A (ja) センサ
JP5825445B2 (ja) 加速度検出装置
JP6113686B2 (ja) Memsデバイス
US9964561B2 (en) Acceleration sensor
JP5076657B2 (ja) 応力感応型センサ用の双音叉型振動素子及び加速度検知ユニット
WO2013089079A1 (ja) 加速度センサ
US10018649B2 (en) Acceleration sensor
WO2014171175A1 (ja) 加速度検出装置
JP5046240B2 (ja) 加速度センサの製造方法
JP6044320B2 (ja) 物理量センサ
WO2016117290A1 (ja) 加速度センサおよび加速度センサの実装構造
US20220299383A1 (en) Sensor chip and force sensor apparatus
WO2014080800A1 (ja) 加速度センサ
JP5929645B2 (ja) 物理量センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP