WO2014080716A1 - 平板型機能性偏光子及びガラス偏光子型偏光ビームスプリッター - Google Patents

平板型機能性偏光子及びガラス偏光子型偏光ビームスプリッター Download PDF

Info

Publication number
WO2014080716A1
WO2014080716A1 PCT/JP2013/078570 JP2013078570W WO2014080716A1 WO 2014080716 A1 WO2014080716 A1 WO 2014080716A1 JP 2013078570 W JP2013078570 W JP 2013078570W WO 2014080716 A1 WO2014080716 A1 WO 2014080716A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
film
glass
light
beam splitter
Prior art date
Application number
PCT/JP2013/078570
Other languages
English (en)
French (fr)
Inventor
堀米 秀嘉
泰志 田淵
Original Assignee
岡本硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岡本硝子株式会社 filed Critical 岡本硝子株式会社
Priority to JP2014548496A priority Critical patent/JPWO2014080716A1/ja
Publication of WO2014080716A1 publication Critical patent/WO2014080716A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Definitions

  • the present invention relates to a polarizer used in an optical system such as a liquid crystal projector, a laser interferometer, and an optical isolator, and in particular, for a plate-type polarizer that conventionally has only a polarizing filter function.
  • the present invention relates to a flat-type functional polarizer capable of providing various optical functions.
  • the present invention relates to a polarizer having a function as a polarizing beam splitter, an optical element having a function of transmitting linearly polarized light in a predetermined wavelength range, or an optical element for reflecting linearly polarized light in a predetermined wavelength range.
  • the present invention also relates to a plate-type polarizing beam splitter having excellent polarization separation performance, and particularly suitable for liquid crystal display devices, laser interferometers, optical isolators, etc., and excellent polarization separation performance and polarization filter in the visible light region.
  • the present invention relates to a compact polarizing beam splitter having performance.
  • a polarizer is an optical element that blocks light other than light polarized in a specific direction and transmits only polarized light, and functions as an optical element that changes natural light, circularly polarized light, or elliptically polarized light into linearly polarized light according to the use situation.
  • a type of polarizer there is a prism polarizer that uses natural birefringence of crystals such as calcite and quartz to linearly polarize natural light.
  • resin polarizers are widely used. . This is generally a polyvinyl alcohol resin that is stretched by adding iodine and then sandwiched by a transparent protective material.
  • Polarization characteristics are realized by utilizing the orientation of the iodine in the stretched direction (orientation direction). Light that vibrates in a direction parallel to the orientation direction is removed by absorption, and Light that vibrates in the vertical direction is transmitted.
  • a PET resin or a glass substrate is used as the protective material.
  • wire grid polarizer a large number of conductor wires are stretched in parallel in the frame, and work as a polarizing filter that reflects polarized light parallel to the wire and transmits perpendicular polarized light.
  • wires are formed at predetermined intervals on the surface of the transparent material.
  • the stretched iodine in the resin polarizer and the wire in the wire grid polarizer work in the same way. That is, the light that vibrates in the direction parallel to the wire is removed by reflection, and the light that vibrates in the vertical direction functions as a polarizing filter that passes therethrough.
  • a glass polarizer has been developed as a polarizer excellent in heat resistance and laser resistance (Patent Document 1 and Patent Document 2).
  • the light that vibrates in the orientation direction is metallic silver.
  • Light that is absorbed and removed by the light and oscillates in the vertical direction is a polarizer utilizing the transmission characteristic. Since the glass substrate is a flat plate, the glass polarizer is a flat plate polarizer.
  • Metal copper may be used instead of metal silver.
  • the flat plate type means that it is not a prism type, and has a flat plate shape having a surface on which light beams are incident and a back surface on the opposite side.
  • the glass polarizer, resin polarizer, or wire grid polarization described above. All of the children are flat-plate polarizers. Among these, the glass polarizer and the resin polarizer are so-called absorption polarizers that remove light other than transmitted polarized light by absorption, and the wire grid polarizer is a reflection polarizer that removes light by reflection.
  • the polarization beam splitter is an optical element having a filter function for separating an incident light beam into its polarization components, and transmits a p-polarization component of light incident on the filter surface and reflects an s-polarization component.
  • Examples of the polarizing beam splitter include a cube type, a flat plate type, and a wedge substrate type.
  • the prism type is formed by forming a polarization separation film on the slope of the prism and then bonding another prism, and is also called a cube type because of its shape. It is the most commonly used polarizing beam splitter because it is easy to handle and stable in performance.
  • the flat plate type has a polarization separation film formed on one surface of a thin glass substrate, and is smaller and more compact than the cube type.
  • the polarization separation film used in the polarization beam splitter is different in refractive index so that, when light of a predetermined wavelength is incident at an incident angle near 45 degrees, p-polarized light is transmitted and s-polarized light is reflected by an optical interference action. It is a dielectric multilayer film formed by repeatedly laminating thin films of seeds or more.
  • the wavelength selective film is called a bandpass filter or an edge filter, and is a film that transmits light of a predetermined wavelength and reflects or absorbs light of other wavelengths.
  • the optical element on which the wavelength selection film is formed is used in order to prevent light having a wavelength other than the necessary wavelength from acting as noise or increasing the temperature of the optical element.
  • the reflection film is literally a film that acts as a mirror.
  • half mirrors that are configured to reflect a certain percentage of light and transmit the rest
  • a selective reflection film formed to reflect only light and transmit light of other wavelengths is also included. These reflective films are used for the purpose of changing the optical path, reducing the transmittance, or extracting only light of a predetermined wavelength.
  • Non-Patent Documents 5 and 6 Extensive research on patented technology has been conducted on polarizing plate resins for liquid crystals, but most of them are related to improvement of transmittance and brightness, expansion of viewing angle, and improvement of durability. There is no patent application regarding the grant of. Although there was a patent application for improving the contrast, it was based on the addition of a dye to the resin member or improvement of the characteristics and shape of the constituent member (Non-patent Document 7).
  • Patent Document 3 relates to imparting a light control function to a resin polarizing plate used in goggles or the like, but adds a light control dye to an adhesive layer or a pressure-sensitive adhesive layer between a resin polarizer and a protective material.
  • Patent Document 4 imparts antistatic properties to a polarizer and does not relate to imparting an optical function.
  • Patent Document 5 imparts a light diffusion function to a protective material for a resin polarizer, and does not relate to enhancement of the polarization characteristics themselves.
  • Patent Document 6 relates to imparting light diffusibility, antistatic properties, moisture permeability, or shock absorption to a resin polarizer, and includes optical functions related to enhancement of polarization characteristics. It is not about granting.
  • the polarizer when using in various optical systems by adding or combining other optical functions to the polarizing filter function by the polarizer, the polarizer is set in the optical system, and then the polarization separation function, wavelength An optical element having a selection function or a reflection function must be arranged and inserted separately from the polarizer. Further, when the p-polarized light and the s-polarized light are separated by the polarization beam splitter and it is desired to increase the contrast of the separated polarized light, it is necessary to add a polarizer in the optical path of p-polarized light or s-polarized light. . In this case, there is a problem that an extra space is required to improve the contrast even though a small and compact flat-plate polarization beam splitter is used.
  • the optical axis and the incident angle must be strictly aligned, otherwise there will be a problem that a large error or noise occurs.
  • the contrast of the p-polarized component is about 1000: 1.
  • the p-polarized light is placed on the light beam exit side.
  • a polarizer that passes through and absorbs s-polarized light is inserted separately.
  • the extra s-polarized light component is removed by this polarizer to improve the contrast.
  • it is necessary to form antireflection films on both surfaces of the inserted polarizer, and it is necessary to correctly align the light beam so that it is perpendicularly incident on the polarizer. is there.
  • the optical system is not compact by inserting the polarizer, it takes time and cost to form an antireflection film for the inserted polarizer, and a plurality of There is a problem that alignment of optical elements is required.
  • the polarizer when viewed from the side of the polarizer, it functions as a polarizing filter that transmits light of a predetermined wavelength range in a predetermined vibration direction and absorbs light that vibrates in a direction orthogonal to the vibration direction. In the first place, it does not have a polarization separation function as a polarization beam splitter.
  • An object of the present invention is to solve the above-described conventional problems, and in addition to the function as a polarizing filter of a flat plate type polarizer, a flat plate type as one optical element without being combined with other optical elements.
  • An object of the present invention is to provide a flat-type functional polarizer to which optical functions such as a polarization separation function, a wavelength selection function, and a reflection function are provided while taking advantage of the fact that the polarizer is compact.
  • Another object of the present invention is to use a glass polarizer without combining with other optical elements, to have a function as a polarizing beam splitter and a function as a polarizing filter, and to greatly improve the polarization separation performance.
  • Another object of the present invention is to provide a polarizing beam splitter. Furthermore, the present invention provides a polarizing beam splitter having excellent polarization separation performance and polarization filter performance in the visible light region, and excellent durability and laser resistance.
  • the first invention of the present application is directed to at least a first surface or a flat plate polarizer having a first surface on which a light beam is incident and a second surface that is a rear surface thereof.
  • a functional film is formed on any one of the second surfaces, and the functional film is any one selected from (1) a polarization separation film, (2) a wavelength selection film, and (3) a reflection film.
  • a flat-type functional polarizer is disclosed.
  • a second invention of the present application discloses a flat-type functional polarizer, wherein an antireflection film is formed on a surface of the flat-plate polarizer where the functional film is not formed.
  • the third invention of the present application is the flat functional polarization, wherein the flat polarizer is selected from (1) a glass polarizer, (2) a resin polarizer, and (3) a wire grid polarizer. Disclose the child.
  • the flat polarizer is any one selected from (1) a glass polarizer, (2) a resin polarizer, and (3) a wire grid polarizer,
  • a flat plate-type functional polarizer is disclosed in which a polarization separation film is formed on the second surface, and the polarization separation film, the wavelength selection film, or the antireflection film is formed on a second surface.
  • the fifth invention of the present application is that a polarization separation film is formed on at least the first surface of a glass polarizer having a first surface on which a light beam is incident and a second surface that is the back surface thereof.
  • a glass polarizer polarizing beam splitter Disclosed is a glass polarizer polarizing beam splitter.
  • a wavelength selection film or an antireflection film can be formed on a surface on which the polarization separation film is not formed.
  • the average aspect ratio of the metallic silver particles dispersed in the surface layer of the glass substrate is 1.5: 1 or more and 3.0: 1 or less.
  • a glass polarizer type polarization beam splitter characterized by using a glass polarizer adjusted to have an average particle length of 30 nm or more and 150 nm or less.
  • the average aspect ratio of the metallic silver particles dispersed in the surface layer of the glass substrate is 1.3: 1 or more and 2.6: 1 or less.
  • a glass polarizer type polarization beam splitter characterized by using a glass polarizer adjusted to have an average particle length of 30 nm or more and 50 nm or less.
  • ADVANTAGE OF THE INVENTION it can be made to function as a plate-type functional polarizer by which various optical functions were added to the plate-type polarizer used for a projector, a laser interferometer, an optical isolator, etc.
  • a polarizing beam splitter, wavelength selection element, reflection element, etc. as separate optical components, thus making the entire optical system compact (miniaturized). You can also.
  • the function as a polarizing filter can be greatly improved.
  • an optical element having both a polarization separation function and a polarization filter function that can be used in a projector, a laser interferometer, and an optical isolator. That is, it is possible to provide an optical element having a polarization filter function that can further improve contrast while separating incident light into s-polarized light and p-polarized light by a polarization separation film and maintaining the transmittance of transmitted polarized light. it can. Since the present invention has a configuration in which a polarization separation film is formed on a glass polarizer, there is no need to use another polarizer in combination to improve contrast, and the entire optical system is made compact and compact. Can do. Furthermore, according to the present invention, it is possible to provide a new function by forming a wavelength selection film on the surface where the polarization separation film is not formed, or to improve the transmittance by forming an antireflection film. it can.
  • the present invention is a configuration in which the polarization separation film formed on the first surface is used to remove s-polarized light by reflection, and then the polarization filter performance of the glass polarizer is used to further improve the purity of polarization.
  • S-polarized light entering the glass polarizer can be kept low. This has a great effect when a high-power laser is used. That is, since the s-polarized light component is removed by the polarization separation film before entering the glass polarizer, it is possible to prevent the glass polarizer type polarization beam splitter from being damaged due to high temperature.
  • the glass polarizer type polarization beam splitter according to the present invention has an effect of exhibiting a very excellent laser resistance.
  • FIG. 1 It is a figure which shows the incident angle dependence of the polarization characteristic of the glass polarizer which is one of the flat type polarizers used for this invention. It is a figure which shows an example of the polarization characteristic of the wire grid polarizer which can be used for this invention. It is a diagram illustrating the performance of the band-pass filter which is formed on the wire grid polarizer of CaF 2 substrate. It is a figure which shows the flat type functional polarizer to which the wavelength selection function was added which is one form of this invention. 3 is a diagram showing a transmittance spectrum of Example 1. FIG. It is a figure which shows an example of the polarization characteristic of the resin polarizer which can be used for this invention.
  • FIG. 6 is a diagram showing a spectral reflectance curve of Example 2. It is a figure which shows an example of the polarization characteristic of the glass polarizer which can be used for this invention. It is a figure which shows the performance of the polarization separation film formed in the glass polarizer surface in this invention. It is a figure which shows the flat type functional polarizer to which the polarization separation film was added which is the other implementation form of this invention. It is a figure which shows the optical system used in order to demonstrate the performance and effect of this invention. It is a figure which shows the general performance of a polarization beam splitter.
  • the surface on which the light beam is incident is defined as a first surface
  • the back surface thereof is defined as a second surface.
  • FIG. 1 illustrates an embodiment of the present invention.
  • Several examples show the addition of various optical functions and their effects, but the present invention is not limited to these examples.
  • embodiments of the present invention will be specifically described.
  • a functional film is provided on at least either the first surface or the second surface of a flat plate polarizer having a first surface on the side on which the light beam is incident and a second surface that is the back surface thereof.
  • a flat-type functional polarizer formed, wherein the functional film is any one selected from (1) a polarization separation film, (2) a wavelength selection film, and (3) a reflection film It is.
  • a flat type functional polarizer that exhibits various functions, such as transmitting a part of polarized light and reflecting a part of the polarized light, can be realized.
  • the contrast of the polarized light separated by the polarization separation film can be improved by the filter function of the polarizer.
  • these functional films are directly formed on the surface of the flat polarizer, these functions can be imparted while maintaining a compact optical system.
  • a band-pass filter that transmits only a predetermined wavelength range is formed on the surface of the flat polarizer, linearly polarized light in that wavelength range can be extracted.
  • a flat polarizer that transmits linearly polarized light only for a wavelength in a necessary infrared region can be obtained while removing noise caused by unnecessary visible light.
  • s-polarized light of the incident light is absorbed by the polarizer, and only p-polarized light is transmitted through the polarizer.
  • the light is reflected in a predetermined direction corresponding to the incident angle by the aluminum mirror.
  • the contrast of the polarization component reflected by the aluminum mirror is improved while passing through the polarizer again. By doing so, polarized light with good contrast can be extracted by reflection.
  • the surface (second surface) of the CaF 2 substrate on which the wire grid is not formed is shown in FIG.
  • a band-pass filter having the optical characteristics shown was formed to obtain the flat plate type functional polarizer shown in FIG.
  • the bandpass filter is formed by using Ta 2 O 5 as a high refractive index material, using SiO 2 as a low refractive index material, and laminating with a predetermined optical film thickness calculated by optical simulation with a design wavelength of 590 nm.
  • the apparatus used for forming the bandpass filter is an ion-assisted vapor deposition machine (model number OTFC1300DBI) manufactured by Optran.
  • FIG. 4 shows the result of measuring the transmission spectrum by irradiating the surface of the sample with a non-polarized light beam at an incident angle of 0 degree using an ultra high pressure mercury lamp as a light source.
  • the transmittance was about 90% in the transmission band of the bandpass filter (wavelength near 590 nm) (the value of the amount of transmitted light of p-polarized light when the amount of incident light of p-polarized light was taken as 100%).
  • a second invention of the present application discloses a flat-type functional polarizer, wherein an antireflection film is formed on a surface of the flat-plate polarizer where the functional film is not formed.
  • an antireflection film is formed on one surface at most. You just need to form it. For example, when a band pass filter is formed on a flat plate polarizer, a band pass filter is formed on the first surface and an antireflection film is formed on the second surface.
  • the polarization component of the predetermined wavelength range that has been transmitted through the bandpass filter and the polarizer is reduced in reflection when exiting the second surface of the flat plate polarizer, and high transmittance can be maintained.
  • the aluminum mirror is formed on the second surface and an antireflection film is formed on the first surface. This reduces reflection at the interface both when the incident light enters the polarizer and when the polarized light reflected by the aluminum mirror exits the polarizer, and keeps the light intensity of the polarization component high. Will be able to.
  • a resin polarizer in which a polarizing sheet having the polarization characteristics shown in FIG. 6 is sandwiched between protective glasses (BK7) is used, and an antireflection film is provided on the first surface (glass surface).
  • An aluminum mirror was formed on the second surface, whereby the flat-type functional polarizer shown in FIG. 7 was obtained.
  • the aluminum mirror was formed by depositing metal aluminum with a thickness of about 1 micron by vapor deposition.
  • the antireflection film is formed by using Ta 2 O 5 as a high refractive index material, SiO 2 as a low refractive index material, and laminating with a predetermined optical film thickness calculated by optical simulation with a design wavelength of 550 nm.
  • the apparatus used for forming the thin film is an ion-assisted vapor deposition machine (model number OTFC1300DBI) manufactured by Optran. In this way, a flat type functional polarizer functioning as a polarization reflection optical element was obtained.
  • optical properties were measured using an instantaneous multi-photometry system (MCPD-3700) manufactured by Otsuka Electronics.
  • FIG. 8 shows the result of measuring a reflection spectrum at an angle of ⁇ 15 degrees by irradiating a non-polarized light beam onto the sample surface with an optical fiber at an incident angle of 15 degrees using an ultrahigh pressure mercury lamp as a light source. A p-polarized light with a reflectance of about 30% was obtained.
  • a flat-type functional polarizer wherein the flat-plate polarizer is selected from (1) a glass polarizer, (2) a resin polarizer, and (3) a wire grid polarizer.
  • the flat-plate polarizer is selected from (1) a glass polarizer, (2) a resin polarizer, and (3) a wire grid polarizer.
  • the glass polarizer is made of glass, it has excellent durability and laser resistance and is not easily damaged. Moreover, since it is excellent in chemical stability, there is an advantage that a functional film and an antireflection film can be easily formed.
  • a resin polarizer is also suitable as a flat plate polarizer used in the present invention. Usually, since the surface is covered with a resin protective material, a functional film or an antireflection film can be formed on the protective material. In the case of a configuration in which a resin polarizer is sandwiched between glasses, a functional film and an antireflection film can be formed by a method similar to that for a glass polarizer.
  • a resin polarizer in which a polarizing sheet is sandwiched between glasses (BK7) is widely used, and a functional film such as a polarization separation film or a wavelength selection film or an antireflection film can be formed on the glass surface.
  • a functional film such as a polarization separation film or a wavelength selection film or an antireflection film can be formed on the glass surface.
  • a wire grid polarizer in which a wire grid is formed on a CaF 2 (fluorite) substrate a similar functional film or antireflection film can be formed on the CaF 2 substrate.
  • a glass polarizer having the polarization characteristics shown in FIG. 9 is used as the plate-type polarizer according to Example 3, a polarization separation film having the characteristics shown in FIG. 10 is formed on the first surface, and reflection is performed on the second surface.
  • a flat type functional polarizer having a function as a polarizing beam splitter having the configuration shown in FIG. 11 was produced.
  • the polarization separation film has a design wavelength of 633 nm, and tantalum oxide (Ta 2 O 5 ) as a high refractive index material and silicon oxide (SiO 2 ) as a low refractive index material alternately with a film thickness shown in Table 1 It is a dielectric multilayer film in which layers are laminated.
  • the antireflection film is one in which four layers of Ta 2 O 5 and SiO 2 are alternately laminated so that the minimum reflectance is 633 nm.
  • an ion-assisted vapor deposition machine (model number OTFC1300DBI) manufactured by OPTRAN was used.
  • the polarization separation performance and the polarization filter performance were evaluated using the optical system having the configuration shown in FIG.
  • As the light source a He—Ne laser having a wavelength of 632.8 nm and a maximum output of 25 mW was used.
  • the laser light beam is converted into circularly polarized light by a quarter-wave plate, expanded by a beam expander, and then incident on the flat functional polarizer of the present invention through an aperture having a diameter of 4 mm.
  • an incident light beam which is circularly polarized light is incident on a flat-type functional polarizer at an incident angle of 45 degrees, the s-polarized light is reflected at right angles within the incident surface by the polarization separation film formed on the first surface, and is finely adjusted.
  • the s-polarized component enters the photodiode PD2 through the Glan-Thompson prism mounted on the polarizer holder, and the amount of light (intensity) is measured.
  • the p-polarized component transmitted through the polarization separation film is removed by absorption due to the polarizing filter performance of the flat-type functional polarizer, and the contrast of the p-polarized component is improved.
  • the antireflection film formed on the exit side surface emits the light without decreasing the transmittance, passes through the Glan-Thompson prism mounted on the fine-tuning polarizer holder, enters the photodiode PD1, and measures the amount of light. Is done.
  • the flat polarizer is any one selected from (1) a glass polarizer, (2) a resin polarizer, and (3) a wire grid polarizer.
  • a flat-type functional polarizer characterized in that a separation film is formed and the polarization separation film, wavelength selection film or antireflection film is formed on a second surface.
  • a general plate-type polarizer can only function as a polarizing filter, but by forming a polarization separation film, it can also function as a high-performance polarizing beam splitter. An element can be obtained.
  • the polarization separation film is preferably formed on the first surface on the side on which the light beam of the flat plate type polarizer is incident.
  • the important point of the present invention is that a polarized component having a significantly improved contrast can be obtained by the polarizing filter function of the flat plate polarizer on the side where the transmitted light beam is emitted.
  • the optical element on which the polarization separation film is formed is usually arranged at an angle of 45 degrees with respect to the incident plane of the incident light beam. With such an arrangement, the s-polarized light that is a component that vibrates in the incident plane is reflected in a direction of 90 degrees with respect to the incident plane.
  • p-polarized light which is a component that vibrates in a direction perpendicular to the incident plane, is transmitted through the polarization separation film and incident at an angle of 45 degrees with respect to the plate-type polarizer as the base material.
  • the function removes components other than the p-polarized light, and the effect of significantly improving the contrast of the p-polarized light is obtained.
  • the flat polarizer is required to exhibit good polarizing filter performance even at an incident angle as large as 45 degrees.
  • the inventors have used a glass polarizer disclosed in Patent Document 8 and Patent Document 9 and, as shown in FIG. 1, the polarizing filter over a wide range of incident angles. I found that the function does not deteriorate.
  • Resin polarizers and wire grid polarizers are not as small in the angle dependency of polarization filter performance as glass polarizers, but can be used as the flat plate polarizer of the present invention.
  • the polarization separation film is formed on the surface (first surface) on the side where the light beam of the glass polarizer is incident, and on the surface (second surface which is the back surface) on the exit side.
  • a high-performance polarization beam splitter can be obtained by forming a polarization separation film, forming a wavelength selection film, or forming an antireflection film.
  • the transmittance can be improved by forming an antireflection film on the second surface of the flat polarizer, it is also effective to form a polarization separation film in the same manner as the first surface instead of the antireflection film. It is.
  • An additional merit of forming the polarization separation film on the second surface of the flat plate type polarizer is that the glass polarizer type polarization beam splitter thus obtained is arranged in the optical system by eliminating the front and back sides. Sometimes it can be incorporated without being conscious of the front and back. It is also possible to build a complicated optical system in which the second surface, which is the back surface, is used as another light beam incident surface. As a further merit, since the same polarization separation film is formed on the front and back surfaces of the glass polarizer, the balance of the formed film stress eliminates the warpage of the flat plate polarizer caused by the residual stress, It is possible to stabilize the polarization separation performance.
  • Example 4 the same glass polarizer as that of Example 3 was used as a base material, and the polarization separation films shown in Table 1 were formed on the first surface and the second surface, so that the glass polarizer type of the present invention was used. A polarizing beam splitter was created. The results of the same evaluation as in Example 3 are shown in Table 2.
  • a polarizing beam splitter having the same configuration was produced in the same manner as in Example 3 except that flat glass (BK7) was used in place of the glass polarizer as the base material on which the functional film and the antireflection film were formed.
  • Table 2 shows the results of evaluating polarization separation performance and polarization filter performance using the same apparatus and method as described in Example 3.
  • Example 4 and Comparative Example 1 From the evaluation results of Example 3, Example 4 and Comparative Example 1 shown in Table 2, although there is no significant difference in the contrast of s-polarized light, the contrast of p-polarized light in Comparative Example 1 is 28.2 dB (660: In contrast to 1), the contrast in Example 3 is 58.9 dB (778,000: 1), and in Example 4, it reaches 63.1 dB (2,013,000: 1) An optical element capable of extracting very pure p-polarized light could be obtained.
  • a fifth invention of the present application is characterized in that a polarization separation film is formed on at least the first surface of a glass polarizer having a first surface on which light beam is incident and a second surface that is the back surface thereof.
  • a glass polarizer type polarizing beam splitter is disclosed. In order for the glass polarizer to function as a polarization beam splitter, it is necessary to form a polarization separation film on at least the first surface. As shown in FIG. 13, the polarizing beam splitter utilizes the fact that the reflectivity of s-polarized light and p-polarized light in a predetermined wavelength range is different when arranged with an incident angle near 45 degrees. It is an optical element to be separated.
  • FIG. 13 shows the performance of a flat polarizing beam splitter having polarization separation performance with respect to light having a wavelength of about 600 nm to 650 nm.
  • a general flat plate-type polarization beam splitter has a polarization separation film formed on the first surface (surface on which the light beam is incident) of the glass substrate (BK7).
  • the configuration of the dielectric multilayer film of the polarization separation film is usually configured to incorporate antireflection performance to reduce reflection at the interface with air and the interface with the glass substrate in order to increase the transmittance. Yes.
  • An antireflection film is also formed on the second surface of the glass substrate (the surface on the side from which the light beam is emitted) for the same reason.
  • p-polarized light is emitted from the second surface of the glass substrate with a transmittance of about 98%, and about 2% of the p-polarized light component is reflected by the polarization separation film.
  • the s-polarized component is incident on the polarization separation film, about 0.1% is transmitted and about 99.9% is reflected. Since the s-polarized component that is transmitted as it is in the incident direction is only about 0.1%, the extinction ratio of the p-polarized component is 98 / 0.1, which is almost 1000.
  • the reflectance of s-polarized light reaches 99.9%, but about 2% of the p-polarized component is reflected, so the extinction ratio is 99.9 / 2, which is about 50. turn into.
  • the extinction ratio is an index representing contrast, and more specifically, corresponds to the ratio of one polarization component to another polarization component. The higher the purity of one polarization component, the better the contrast.
  • the conventional flat polarizing beam splitter uses, for example, a glass substrate made of BK7, while using a glass polarizer as a base material.
  • a polarizing beam splitter using a glass polarizer as a base material for forming a polarizing separation film has a polarization separating function and a characteristic that maintains excellent polarizing filter performance even at an incident angle of around 45 degrees. It can function as an optical element having a polarizing filter function.
  • the meaning of “forming a polarization separation film on at least the first surface” means that if the polarization separation film is not formed on the first surface, the polarizer is a base material. This is because the polarized light is removed by absorption or the like, and the s-polarized light cannot be separated and used. “At least” means that a polarization separation film may also be formed on the second surface. When the polarization separation film is formed also on the second surface, the s-polarized light is also removed from the second surface by reflection, and the contrast of the p-polarized light can be further improved.
  • a wavelength selection film or an antireflection film can be formed on the surface where the polarization separation film is not formed.
  • the antireflection film is literally a film for reducing reflection.
  • the wavelength selection film is formed on the second surface, it is possible to remove the polarized light in the unnecessary wavelength range included in the polarized light transmitted through the polarizing beam splitter, and to limit the polarized light to the necessary wavelength range.
  • an antireflection film it is possible to prevent the transmittance from decreasing.
  • the glass polarizer that can be used in the present invention is disclosed in, for example, Patent Document 8 and Patent Document 9 filed by the applicant of the present invention, and has a predetermined shape on at least the surface layer of the glass substrate.
  • metallic silver particles having a uniaxial orientation are present in a uniaxial orientation, and the polarizing filter function is exhibited by the oriented silver particles.
  • earnest research was continued, and the inventors of the present invention evaluated the angle dependency of the polarizing filter performance of the glass polarizer in detail. As a result, the incident angle of the light beam was greatly tilted from 0 degree to about 50 degrees. The inventors have found the characteristic that the polarizing filter performance hardly changes over a wide range of incident angles.
  • the average aspect ratio of the metallic silver particles dispersed in the surface layer of the glass substrate is 1.5: 1 or more and 3.0: 1 or less, and the average particle length is 30 nm or more.
  • the aspect ratio is an index representing the ratio between the length and width of uniaxially oriented metallic silver particles.
  • the aspect ratio of the metallic silver particles can be adjusted by adjusting the temperature, viscosity coefficient and load of the glass during stretching.
  • Table 3 summarizes the manufacturing conditions of the glass polarizer, the average aspect ratio and average particle length of the metallic silver particles dispersed uniaxially in the glass surface layer, and the relationship between the transmittance and contrast of the glass polarizer.
  • Silver chloride particles are precipitated in the glass preform by heat-treating the glass preform containing silver chloride at a predetermined temperature. Thereafter, the glass preform is heated to a predetermined viscosity range, and then a stretching load is applied to stretch the silver chloride particles.
  • the reduction treatment is performed in a hydrogen atmosphere, the silver chloride particles are reduced to metallic silver particles. The reduction is limited to the surface layer of about 100 ⁇ m from the surface where hydrogen molecules can enter.
  • a glass polarizer in which metallic silver is uniaxially oriented and dispersed is obtained.
  • An example of a photograph taken with a transmission electron microscope showing a state in which metallic silver is dispersed is shown in FIG. Then, from such a photograph, the aspect ratio and grain length of metallic silver are measured, and the average value is calculated.
  • the transmittance of the glass polarizer was measured using a spectrophotometer. Measure the average transmittance T V % of light having a polarization oscillation plane perpendicular to the orientation axis direction of metallic silver particles and the average transmittance T P % of light having a polarization oscillation plane parallel to the orientation axis direction of metal silver particles. The extinction ratio was calculated from the ratio based on the following equation.
  • FIG. 1 shows the polarizing filter performance of a glass polarizer used in a glass polarizer type polarizing beam splitter for the red wavelength region.
  • the incident angle of an incident beam is set at a wavelength near 633 nm, which is a design wavelength. Even when the incident angle is gradually inclined from 0 degree (vertical) to about 50 degrees, both the p-polarized light transmittance and the s-polarized light reflectance hardly change compared to the case of normal incidence, resulting in 50 degrees. It can be seen that the performance as an excellent polarizing filter is maintained even when the incident angle is tilted up to.
  • the average aspect ratio of the metallic silver particles dispersed in the surface layer of the glass substrate is 1.3: 1 or more and 2.6: 1 or less, and the average particle length is 30 nm or more.
  • a glass polarizer type polarization beam splitter exhibiting excellent polarizing filter performance (excellent contrast) with respect to the wavelength in the region (wavelength region of about 500 nm to 600 nm) can be obtained. Even in this case, when the aspect ratio and the average particle length are out of this range, it becomes difficult to realize excellent transmittance and contrast in the green region.
  • These appropriate aspect ratios and average particle length ranges were determined by conducting tests and evaluations similar to those shown in Table 1. The outline is described in Table 1 of Patent Document 8 by the same applicant.
  • the orientation direction of the metallic silver particles in the glass polarizer is arranged to be parallel to the incident plane of the light beam, and the incident light beam is normal to the plate polarizer.
  • the s-polarized component of the incident light beam is reflected at an angle of about 90 degrees with respect to the incident direction, and the p-polarized light of the incident light beam is caused to go straight ahead.
  • the incident plane of the light beam is defined as a plane including a normal vector of the incident interface of the plate polarizer and a vector facing the propagation direction of the incident light.
  • the s-polarized light is light that vibrates in the incident plane
  • the p-polarized light is light that vibrates in a direction perpendicular to the incident plane.
  • the s-polarized component is also reflected on the exit side surface and is removed. Contrast is improved.
  • the additional effect of forming the polarization separation film on the second surface of the glass polarizer is as described above as an additional merit of forming the polarization separation film on the second surface of the flat plate polarizer. Further, a complicated optical system in which the second surface is used as a surface on the incident side of another light beam can be assembled.
  • the balance of film stress eliminates the warpage of the glass polarizer and stabilizes the polarization separation performance. It is done.
  • a polarization separation film is formed only on one surface, film stress remains due to a difference from a film formed on the other surface, and warping of the glass polarizer cannot be avoided.
  • the incident angle of the light beam to the polarization separation film is changed, and the polarization separation performance is deteriorated. Warpage can be prevented and polarization separation performance can be stabilized.
  • FIG. 1 A polarization separation film is formed on the first surface (incident side surface) of a glass polarizer as a substrate of the polarization beam splitter. On the second surface, which is the back surface, the same polarization separation film and the antireflection film were prepared.
  • the present invention will be described more specifically.
  • An evaluation apparatus used for confirming the effect of the present invention is shown in FIG.
  • a glass polarizer used for a glass polarizer type polarization beam splitter As a glass polarizer used for a glass polarizer type polarization beam splitter, a glass polarizer which was a patent application by the applicant and was produced based on an example disclosed in Japanese Patent Application Laid-Open No. 2011-197465 was used.
  • the average particle length and aspect ratio of the deposited metal silver particles are adjusted.
  • the average aspect ratio of the metallic silver particles is 2.7: 1, and the average particle length is adjusted to be about 90 nm.
  • the optical characteristics of the obtained glass polarizer are shown in FIG. A polarizing plate type polarizing beam splitter having the configuration shown in FIG.
  • the polarization separation film is a dielectric multilayer film in which 30 layers of tantalum oxide (Ta 2 O 5 ) as a high refractive index material and silicon oxide (SiO 2 ) as a low refractive index material are alternately stacked.
  • an ion-assisted vapor deposition machine (model number OTFC1300DBI) manufactured by OPTRAN was used.
  • Table 1 shows the film thickness of each layer of the formed polarization separation film
  • Table 4 shows the film thickness of each layer of the antireflection film.
  • the same glass polarizer was used as a base material, and the polarizing separation films shown in Table 1 were formed on the surfaces on both sides, thereby producing a glass polarizer type polarizing beam splitter of the present invention (Example 7).
  • Example 6 and Example 7 the polarization separation performance was evaluated using the optical system having the configuration shown in FIG.
  • the light source a He—Ne laser having a wavelength of 632.8 nm and a maximum output of 25 mW was used.
  • the laser light beam is converted into circularly polarized light by a quarter wave plate, expanded by a beam expander, and then incident on the glass polarizer type polarization beam splitter of the present invention through an aperture having a diameter of 4 mm.
  • the s-polarized light When an incident light beam that is circularly polarized light enters the glass polarizer type polarization beam splitter at an incident angle of 45 degrees, the s-polarized light is incident on the incident surface by the polarization separation film formed on the incident side surface of the glass polarizer type polarization beam splitter.
  • the s-polarized component is incident on the photodiode PD2 through the Glan-Thompson prism, and the amount of light (intensity) is measured.
  • the p-polarized component transmitted through the polarization separation film is removed by absorption of the s-polarized component transmitted through the polarization separation film due to the filter performance of the glass polarizer of the glass polarizer type polarization beam splitter, The contrast of the p-polarized component is improved.
  • the antireflection film in the case of Example 6) formed on the exit-side surface emits the light without decreasing the transmittance, enters the photodiode PD1 through the Glan-Thompson prism, and measures the amount of light. .
  • Example 7 the s-polarized component was reflected and removed by the action of the polarization separation film formed on the exit side surface instead of the antireflection film, and the contrast of the p-polarized component was further improved.
  • the Glan-Thompson prism is mounted on a fine-tuning polarizer holder. When measuring the intensity of p-polarized light and the intensity of s-polarized light, each value is read at a position where the light intensity is maximized by rotating the holder. It was. Table 5 shows the measurement results of the light amount and the extinction ratio (contrast) calculated from them.
  • a polarization separation film having the configuration shown in Table 1 is formed on the first surface of borosilicate glass (BK7 manufactured by Schott), and an antireflection film having the configuration shown in Table 4 is formed on the second surface.
  • a comparative example 2 was formed.
  • Table 5 shows the results of measuring the performance of the polarization separation films and antireflection films prepared in Example 6, Example 7, and Comparative Example 2.
  • the light intensity (light intensity) of the p-polarized component and s-polarized component incident on PD1 and PD2 was measured in the same manner as in Example 6 and Example 7, and the contrast was calculated.
  • the contrast of the p-polarized component is 28.2 dB (660: 1) in the plate-type polarizing beam splitter (Comparative Example 2) that is widely used at present.
  • the contrast improves 1,000 times or more (58.9 dB (778,000)).
  • the contrast is improved to 60 dB or more in the configuration in which the polarization separation films are formed on both sides of the glass polarizer.
  • Example 6 Example 7 and Comparative Example 2, the effect on the light of the wavelength in the red region (632.8 nm) was demonstrated, but the same effect was confirmed also in the green region (for example, a solid laser wavelength of 532 nm). .
  • the glass polarizer, the polarization separation film, and the antireflection film are designed according to the wavelength in the green region.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明は、他の光学素子と組み合わせることなく、平板型偏光子又はガラス偏光子を利用して、光分離機能等の光学的機能を付与した偏光子、又は偏光ビームスプリッターとしての機能と偏光フィルターとしての機能を有し、かつ偏光分離性能を大幅に向上させた偏光ビームスプリッターを提供する。ガラス偏光子等の平板型偏光子の、少なくとも第一面に偏光分離膜、波長選択膜又は反射膜が形成されていることを特徴する。特に、金属銀粒子のアスペクト比と粒子長さを調整して、可視光線の領域で優れた偏光特性を有するようにしたガラス偏光子を利用する。

Description

平板型機能性偏光子及びガラス偏光子型偏光ビームスプリッター
本発明は、液晶プロジェクターやレーザー干渉計や光アイソレーターなどの光学系に使用される偏光子に関するものであって、特に、従来は偏光フィルター機能しか有していなかった平板型偏光子に対して、種々の光学的機能を与えることのできる平板型機能性偏光子に関する。使用法によっては、偏光ビームスプリッターや所定の波長範囲にある直線偏光を透過させる機能を有する光学素子や、あるいは所定の波長範囲にある直線偏光を反射させる光学素子としての機能を併せ持つ偏光子に関する。
また、本発明は、優れた偏光分離性能を有する平板型の偏光ビームスプリッターに関し、特に、液晶表示装置、レーザー干渉計、光アイソレーターなどに好適な、可視光領域で優れた偏光分離性能と偏光フィルター性能とを有するコンパクトな偏光ビームスプリッターに関する。
偏光子は特定方向に偏光した光以外は遮断し、偏光した光だけを透過させる光学素子であり、使用状況に応じて自然光や円偏光や楕円偏光を直線偏光に変える光学素子として機能する。偏光子の種類としては、方解石や水晶のような結晶の複屈折を利用して自然光を直線偏光にするプリズム偏光子があるが、高価であるため、樹脂製の偏光子が広く用いられている。これは、ポリビニルアルコール樹脂にヨウ素を添加して引き伸ばした後、透明な保護材で挟んで積層したものが一般的である。引き伸ばされた方向にヨウ素が配向すること(配向方向)を利用して偏光特性が実現されるものであり、配向方向に対して平行な方向に振動する光は吸収により除去され、配向方向に対して垂直な方向に振動する光は透過する。保護材としてはPET樹脂やガラス基板が用いられる。
ワイヤーグリッド偏光子は、導体のワイヤーがフレーム内に平行に多数張られたもので、ワイヤーに対して平行な偏光を反射し、垂直な偏光を透過する偏光フィルターとして働くものである。通常は透明材料の表面に所定の間隔でワイヤーが形成されている。樹脂偏光子における引き伸ばされたヨウ素と、ワイヤーグリッド偏光子におけるワイヤーとは同じような働きをする。つまり、ワイヤーに対して平行な方向に振動する光は反射により除去され、垂直な方向に振動する光は透過する偏光フィルターとして働く。この他、耐熱性やレーザー耐力に優れた偏光子として、ガラス偏光子が開発されている(特許文献1及び特許文献2)。これは、ガラス基材の表面層に一軸方向に配向した金属銀の粒子を分散、析出させたものであり、金属銀が配向した方向が配向方向であり、配向方向に振動する光は金属銀によって吸収・除去され、垂直な方向に振動する光は透過する特性を利用した偏光子である。ガラス基板は平板であるので、ガラス偏光子は平板型偏光子である。金属銀に代わって金属銅が使用される場合もある。
平板型とは、プリズム型ではないという意味で、光ビームが入射する側の表面と、その反対側の裏面を有する平板状の意味であり、前記したガラス偏光子、樹脂偏光子又はワイヤーグリッド偏光子はいずれも平板型偏光子である。これらのうち、ガラス偏光子と樹脂偏光子は、透過する偏光以外の光を吸収によって除去する、いわゆる吸収型偏光子であり、ワイヤーグリッド偏光子は反射によって除去する反射型偏光子である。
偏光ビームスプリッターとは、入射した光ビームをその偏光成分に分離させるフィルター機能を有する光学素子であって、フィルター面に入射する光のうちp偏光成分を透過し、s偏光成分を反射させる。偏光ビームスプリッターには、キューブ型、平板型、ウェッジ基板型などがある。プリズム型は、プリズムの斜面に偏光分離膜を形成した後、もう一つのプリズムを接着したもので、その形状からキューブ型とも呼ばれる。扱いやすく、性能も安定していることから最も一般的に用いられる偏光ビームスプリッターである。平板型は、薄いガラス基板の片側表面に偏光分離膜を形成したもので、キューブ型に比較すると小型でコンパクトである。
偏光ビームスプリッターに用いられる偏光分離膜とは、所定の波長の光が45度近傍の入射角で入射したとき、光学干渉作用によってp偏光は透過しs偏光は反射するよう、屈折率の異なる2種以上の薄膜を繰り返し交互に積層して形成された誘電体多層膜である。
波長選択膜とは、バンドパスフィルターやエッジフィルターと呼ばれるもので、所定の波長の光を透過し、それ以外の波長の光は反射又は吸収する膜である。波長選択膜が形成された光学素子は、必要な波長以外の波長の光が、ノイズとして作用したり光学素子の温度を上昇させたりすることを避けるために用いられる。
反射膜は、文字通り、鏡(ミラー)として作用する膜である。紫外線から赤外線まで広い範囲の波長の光を高い反射率で反射する一般的なミラー以外に、所定の割合の光を反射し、残りは透過するように形成されたハーフミラーや、所定の波長の光だけを反射し、それ以外の波長の光は透過するように形成された選択反射膜も含まれる。これら反射膜は、光路を変えたり、透過率を減じたり、所定の波長の光だけを取り出したりする目的で使用される。
米国特許4,304,584号 米国特許4,479,819号 特開2001-315241号公報 特開2009-229956号公報 特開2011-27777号公報 特開2012-27260号公報 特開2011-197465号公報 特許第4928561号公報 特許第4928564号公報
「ワイヤーグリッド偏光子」、ソーラボジャパン社ウェブカタログ 無機ガラス偏光子「Glapola」、岡本硝子社カタログ 「偏光ビームスプリッター」、株式会社シンクロンウェブカタログ 「偏光ビームスプリッター」、日東光器社ウェブカタログ LCD用偏光フィルムの高機能化と新しい展開、住友化学2000-1(29-36) ガラス偏光子、NEW GLASS、Vol.23、No.1(2008) 平成16年度特許流通支援チャート(化学26)液晶用偏光板樹脂、独立行政法人工業所有権情報・研修館(2005年3月) PolarcorTM Glass Polarizers, Product Information, Specialty Materials, Issued:August 2010,米国コーニング社電子カタログ
商品化された偏光子にはそれぞれ商品カタログが発行されているが、そこには、それら偏光子に対して新たな光学的機能を付与することについてなんら言及も示唆もない(例えば、非特許文献1及び2)。また、偏光分離膜あるいは偏光ビームスプリッターに関するカタログ等の記載においても、偏光子の機能を併せ持たせることについてはなんら言及も示唆もない(例えば、非特許文献3及び4)。また、偏光フィルムやガラス偏光子については、関連技術をレビューした論文等も公開されているが、防眩処理、反射防止処理、輝度向上について記載されている程度であり、偏光子表面への光学的機能性薄膜の形成による偏光分離機能や波長選択機能の付与については、なんら言及も示唆もない(例えば、非特許文献5及び6)。液晶用偏光板樹脂については、特許技術に関する広範な調査が行われているが、透過率や輝度の向上、視野角の拡大、耐久性の向上に関するものがほとんどであって、新たな光学的機能の付与についての特許出願はない。コントラストの向上についての特許出願はあったが、樹脂部材に対する色素の添加あるいは構成部材の特性や形状の改良に基づくものであった(非特許文献7)。
公開された特許を調査しても、偏光子に対する新たな光学的機能の付与については、ほとんど記載がない。特許文献3は、ゴーグル等に用いられる樹脂偏光板への調光機能の付与についてであるが、樹脂偏光子と保護材の間の接着剤層や粘着剤層に調光性色素を加えるものにすぎず、かつ本発明の技術分野であるところの液晶プロジェクターやレーザー干渉計、光アイソレーター等への応用に関するものではない。特許文献4は、偏光子に対して帯電防止性を付与するものであって、光学的機能の付与に係るものではない。特許文献5は、樹脂偏光子の保護材に光拡散機能を付与するものであって、偏光特性そのものの高機能化に係るものではない。同様に、特許文献6は、樹脂偏光子に対して、光拡散性、帯電防止性、透湿性ないしは衝撃吸収性の付与に関するものであって、偏光特性の高機能化等に係る光学的機能の付与に関するものではない。
このように、偏光子による偏光フィルター機能に対して、他の光学的機能を付加又は組み合わせて種々の光学系で用いる場合には、偏光子を光学系にセットし、次に偏光分離機能、波長選択機能あるいは反射機能を有する光学素子などを、偏光子とは別に配置・挿入して用いなければならないのである。また、偏光ビームスプリッターによってp偏光とs偏光を分離し、それら分離した偏光のコントラストを上げたい場合には、p偏光あるいはs偏光の光路中に偏光子を追加して配置する必要があるのである。そうすると、せっかく小型でコンパクトな平板型偏光ビームスプリッターを使用しているにもかかわらず、コントラストの向上を図ろうとすると余分なスペースが必要となるという問題があった。
また、波長選択膜を有する光学素子を用いて、所定の波長範囲の光を透過させ、さらにこの透過した波長の光を直線偏光に変えたい場合には、波長選択光学素子の光路中に、偏光子を挿入した光学系が必要である。ミラーを用いた反射光学系に、偏光フィルター機能を組み込む場合にも、光路中に偏光子を挿入する必要がある。これらの場合、平板型偏光子を用いるだけであれば、スペースを取らずにコンパクトな光学系が組めるにも関わらず、付与すべき機能性光学素子を別途配置する必要があるため、光学系が大きくなるという課題が生じてしまうのである。
さらに、種々の光学素子を光学系に組み入れる場合には、光軸や入射角を厳密にアライメントしなければならず、そうしないと、大きな誤差やノイズが発生してしまうという問題が生じる。また、これら光学系において光の透過率が減少することを防止するには、偏光子の両側表面及び機能性光学素子の両側表面の全てに反射防止膜を形成する必要があるため、手間とコストがかかるという課題も生じるのである。
たとえば図13に示したような性能を有する平板型偏光ビームスプリッターでは、p偏光成分のコントラストは1000:1程度であるが、さらに高いコントラストが必要な用途では、光ビームの出射側に、p偏光を透過しs偏光を吸収する偏光子が別途挿入される。余分なs偏光成分をこの偏光子によって除去し、コントラストを改善するものである。ここでは、高い透過率を保つために、挿入された偏光子の両側の表面に反射防止膜を形成する必要があるし、光ビームが偏光子に対して垂直に入射するよう正しくアライメントする必要がある。このように、偏光子を挿入することによって光学系がコンパクトでなくなってしまうという課題に加えて、挿入する偏光子に対して反射防止膜を形成するための手間とコストがかかること、及び複数の光学素子のアライメントが必要となるという課題がある。
逆に、偏光子の側からみると、所定の波長範囲の光の、所定の振動方向の光を透過し、その振動方向に直交方向に振動する光を吸収する偏光フィルターとしての機能を発揮するだけであって、そもそも偏光ビームスプリッターとしての偏光分離機能は有していないのである。
本発明の目的は、上記従来の課題を解決するためのものであって、平板型偏光子の偏光フィルターとしての機能に加えて、他の光学素子と組み合わせることなく、一個の光学素子として平板型偏光子がコンパクトであるという利点を活かしたまま、偏光分離機能や波長選択機能や反射機能などの光学的機能を付与した平板型機能性偏光子を提供することにある。
本発明の他の目的は、他の光学素子と組み合わせることなく、ガラス偏光子を利用して、偏光ビームスプリッターとしての機能と偏光フィルターとしての機能を有し、かつ偏光分離性能を大幅に向上させた偏光ビームスプリッターを提供することにある。さらに本発明は、可視光線の領域で、優れた偏光分離性能と偏光フィルター性能を有し、かつ耐久性と耐レーザー性に優れた偏光ビームスプリッターを提供するものである。
上記従来の課題を解決するために、本願の第一の発明は、光ビームが入射する側の第一面とその裏面である第二面とを有する平板型偏光子の、少なくとも第一面又は第二面のいずれかに機能膜が形成され、該機能膜が、(1)偏光分離膜、(2)波長選択膜又は(3)反射膜から選ばれたいずれかであることを特徴とする平板型機能性偏光子を開示するものである。
さらに本願の第二の発明は、前記平板型偏光子において、前記機能膜が形成されていない面には、反射防止膜が形成されていることを特徴とする平板型機能性偏光子を開示する。
さらに本願の第三の発明は、前記平板型偏光子が、(1)ガラス偏光子、(2)樹脂偏光子又は(3)ワイヤーグリッド偏光子から選ばれたいずれかである平板型機能性偏光子を開示する。
さらに、本願の第四の発明は、平板型偏光子が(1)ガラス偏光子、(2)樹脂偏光子又は(3)ワイヤーグリッド偏光子から選ばれたいずれかであって、その第一面に偏光分離膜が形成され、第二面に該偏光分離膜、波長選択膜又は反射防止膜が形成れていることを特徴とする平板型機能性偏光子を開示する。
さらに本願の第五の発明は、光ビームが入射する側の第一面とその裏面である第二面とを有するガラス偏光子の、少なくとも第一面に偏光分離膜が形成されていることを特徴するガラス偏光子型偏光ビームスプリッターを開示するものである。
本願の第六の発明は、第五の発明において、偏光分離膜が形成されていない面には、波長選択膜又は反射防止膜を形成することができる。
さらに、本願の第七の発明は、第五の発明において、ガラス基材の表面層に分散している金属銀粒子の平均アスペクト比が1.5:1以上であって3.0:1以下であり、かつ平均粒子長さが30nm以上であって150nm以下となるように調整されているガラス偏光子を用いたことを特徴とするガラス偏光子型偏光ビームスプリッターを開示する。
さらに、本願の第八の発明は、第五の発明において、ガラス基材の表面層に分散している金属銀粒子の平均アスペクト比が1.3:1以上であって2.6:1以下であり、かつ平均粒子長さが30nm以上であって50nm以下となるように調整されているガラス偏光子を用いたことを特徴とするガラス偏光子型偏光ビームスプリッターを開示する。
本発明によれば、プロジェクターやレーザー干渉計や光アイソレーターなどに用いられる平板型偏光子に、多様な光学的機能が付加された平板型機能性偏光子として機能させることができる。そのような複合機能を持たせることで、偏光ビームスプリッターや波長選択素子、反射素子などを、別の光学部品として配置・挿入する必要がなくなるため、光学系全体をコンパクト(小型化)にすることもできる。実施態様によっては、偏光フィルターとしての機能を大幅に向上させることもできる。別の光学素子を配置・挿入する場合には、それら光学素子の両面に反射防止膜を形成する必要があったが、本発明によれば、機能膜を形成していない表面にのみ、反射防止膜を形成するだけでよいので、無駄なコストや手間を省くこともできる。
また、本発明によれば、プロジェクターやレーザー干渉計や光アイソレーターに用いることのできる偏光分離機能と偏光フィルター機能を併せ持った光学素子を提供することができる。すなわち、入射光を偏光分離膜によってs偏光とp偏光に分離し、透過してきた偏光の透過率を保ったまま、コントラストをさらに高めることができる偏光フィルター機能を持った光学素子を提供することができる。本発明は、ガラス偏光子に偏光分離膜が形成された構成となっているので、コントラストを向上させるために他の偏光子を組み合わせて用いる必要がなく、光学系全体を小型でコンパクトにすることができる。さらに本発明によれば、偏光分離膜が形成されていない表面に、波長選択膜を形成して新たな機能を付与することもできるし、反射防止膜を形成して透過率を向上させることもできる。
さらに本発明は、第一面に形成される偏光分離膜を用いてs偏光を反射によって除去し、次にガラス偏光子の偏光フィルター性能を利用してさらに偏光の純度を向上させる構成であるので、ガラス偏光子に進入するs偏光を低く抑えることができる。このことは、高出力レーザーを用いる場合に大きな効果を発揮する。すなわち、ガラス偏光子に入射する前に偏光分離膜によって、s偏光成分が除去されることから、ガラス偏光子型偏光ビームスプリッターが高温になって損傷を受けることを防止することができるのである。本発明によるガラス偏光子型偏光ビームスプリッターは、非常に優れたレーザー耐力を示すという効果を有する。
本発明に用いる平板型偏光子の一つであるガラス偏光子の偏光特性の入射角度依存性を示す図である。 本発明に用いることのできるワイヤーグリッド偏光子の偏光特性の一例を示す図である。 ワイヤーグリッド偏光子のCaF基板上に形成したバンドパスフィルターの性能を示す図である。 本発明の一形式である、波長選択機能が付加された平板型機能性偏光子を示す図である。 実施例1の透過率スペクトルを示す図である。 本発明に用いることのできる樹脂偏光子の偏光特性の一例を示す図である。 本発明の他の実施形式である、反射膜が付加された平板型機能性偏光子を示す図である。 実施例2の分光反射率曲線を示す図である。 本発明に用いることのできるガラス偏光子の偏光特性の一例を示す図である。 本発明においてガラス偏光子表面に形成した偏光分離膜の性能を示す図である。 本発明の他の実施形式である、偏光分離膜が付加された平板型機能性偏光子を示す図である。 本発明の性能と効果を実証するために用いた光学系を示す図である。 偏光ビームスプリッターの一般的な性能を示す図である。 本発明に用いるガラス偏光子表層に分散している金属銀粒子を示す写真である。 本発明の一実施態様を示す図である。 本発明においてガラス偏光子の裏面に形成した反射防止膜の性能を示す図である。
本発明のように他の光学素子と組み合わせることなく、ガラス偏光子を利用して、偏光ビームスプリッターとしての機能と偏光フィルターとしての機能を有し、かつ偏光分離性能を大幅に向上させた偏光ビームスプリッターはこれまで存在せず、新規なものであるので、以後、ガラス偏光子型偏光ビームスプリッターと呼ぶことにする。また、偏光子について、光ビームが入射する側の面を第一面、その裏面を第二面と定義する。
本発明の実施形態を示す。いくつかの実施例によって、種々の光学的機能の付加とその効果を示すが、本発明はこれら実施例に限定されるものではない。以下、本発明の実施態様について、具体的に説明する。
(実施例1)
本願の第一の発明は、光ビームが入射する側の第一面とその裏面である第二面とを有する平板型偏光子の、少なくとも第一面又は第二面のいずれかに機能膜が形成され、該機能膜が、(1)偏光分離膜、(2)波長選択膜又は(3)反射膜から選ばれたいずれかであることを特徴とする平板型機能性偏光子を開示するものである。偏光フィルター機能を有する平板型偏光子に対して、これら機能膜のいずれかを形成することによって、偏光のコントラストを向上させたり、所定の波長領域の偏光のみを透過させたり、偏光を反射させたり、偏光の一部を透過させ、一部は反射させるなど、様々な機能を発揮する平板型機能性偏光子が可能となる。あるいは、偏光分離膜によって分離された偏光のコントラストを、偏光子のフィルター機能によって向上させることもできる。しかも、平板型偏光子の表面に直接これら機能膜を形成するので、コンパクトな光学系を維持しながら、これら機能を付与できるのである。
平板型偏光子の表面に所定の波長範囲のみ透過するバンドパスフィルターを形成すれば、その波長範囲の直線偏光を取り出すことができる。例えば、赤外線透過可視光吸収膜を形成した場合、不要な可視光線によるノイズを除去しながら、必要な赤外線領域の波長についてのみ直線偏光を透過する平板型偏光子を得ることができる。平板型偏光子の裏面にアルミミラーを形成し、入射角を垂直からやや傾けて配置することにより、入射光のうち、例えばs偏光は偏光子によって吸収させ、p偏光だけが偏光子を透過し、アルミミラーによって入射角に対応した所定の方向に反射される。そして、アルミミラーによって反射された偏光成分は、再び偏光子を透過する間にコントラストが向上する。こうすることによって、コントラストのよい偏光を反射によって取り出すことができることになる。
実施例1にかかる平板型偏光子として、図2に示した偏光特性を有するワイヤーグリッド偏光子を用いて、CaF基板のワイヤーグリッドが形成されていない面(第二面)に、図3に示した光学特性を有するバンドパスフィルターを形成して、図4に示した平板型機能性偏光子を得た。バンドパスフィルターは、高屈折率材料としてTaを用い、低屈折率材料としてSiOを用い、設計波長を590nmとして光学シミュレーションで計算した所定の光学膜厚で積層したものである。バンドパスフィルターの形成に使用した装置は、オプトラン社製イオンアシスト蒸着機(型番OTFC1300DBI)である。このようにして、偏光バンドパスフィルター光学素子として機能する平板型機能性偏光子を得た(図4)。次に、大塚電子製瞬間マルチ測光システム(MCPD-3700)を用いて光学特性を測定した。光源として超高圧水銀ランプを用いて、光ファイバーにより試料表面に無偏光の光ビームを0度の入射角で照射し、透過スペクトルを測定した結果を図5に示す。バンドパスフィルターの透過帯域(波長590nm近傍)で約90%の透過率であった(p偏光の入射光量を100%としたときのp偏光の透過光量の値である)。次に平板型機能性偏光子の光路中にもう一つのワイヤーグリッド偏光子を直交の関係(クロスニコルの関係)で配置して同様の測定を行ったところ、透過率はゼロとなった。このことから、約90%の透過はp偏光であることが確認された。以上のように、ワイヤーグリッド偏光子のCaF基板に設計波長が590nmのバンドパスフィルターを形成することによって、590nm近傍の波長範囲における直線偏光のみを取り出すことのできる光学素子を得ることができた。
(実施例2)
本願の第二の発明は、前記平板型偏光子において、前記機能膜が形成されていない面には、反射防止膜が形成されていることを特徴とする平板型機能性偏光子を開示する。このような構成にすることにより、各種光学系で必要な光の量が減ずるのを抑えることができる。従来は、新たな光学素子を挿入するたびに、これら光学素子の両面に反射防止膜を形成する必要があったのに対して、本発明によれば、多くても一表面に反射防止膜を形成するだけで済むのである。例えば、平板型偏光子にバンドパスフィルターを形成した場合には、第一面にバンドパスフィルターを形成し、第二面に反射防止膜を形成する。そうすることにより、バンドパスフィルターと偏光子を透過してきた所定の波長範囲の偏光成分が、平板型偏光子の第二面を出射する際に反射が減じられ、高い透過率を維持できる。また、平板型偏光子にアルミミラーを形成する場合、アルミミラーは第二面に形成し、第一面に反射防止膜を形成する。こうすることにより、入射光が偏光子に入射する際とアルミミラーによって反射された偏光が偏光子を出射する際の両方で、界面での反射が減じられ、偏光成分の光強度を高く保つことができるようになる。
実施例2にかかる平板型偏光子として、図6に示した偏光特性を有する偏光シートを保護用ガラス(BK7)で挟んだ樹脂偏光子を用い、その第一面(ガラス表面)に反射防止膜を形成し、第二面にアルミミラーを形成することによって、図7に示した平板型機能性偏光子を得た。アルミミラーは蒸着法により金属アルミを約1ミクロンの厚みで形成した。反射防止膜は、高屈折率材料としてTaを、低屈折率材料としてSiOを用い、設計波長を550nmとして光学シミュレーションで計算した所定の光学膜厚で積層したものである。薄膜の形成に使用した装置は、オプトラン社製イオンアシスト蒸着機(型番OTFC1300DBI)である。このようにして、偏光反射光学素子として機能する平板型機能性偏光子を得た。次に、大塚電子製瞬間マルチ測光システム(MCPD-3700)を用いて光学特性を測定した。光源として超高圧水銀ランプを用いて、光ファイバーにより試料表面に無偏光の光ビームを15度の入射角で照射し、-15度の角度での反射スペクトルを測定した結果を図8に示した。約30%の反射率のp偏光が得られた。次に平板型機能性偏光子の反射光の出射後の光路中に別の樹脂偏光子を直交配置して同様の測定を行ったところ、透過率はゼロとなった。このことから、約30%の反射は直線偏光(p偏光)であることが確認された。これにより、樹脂偏光子にアルミミラーを形成し、光軸に対して傾斜して配置し、無偏光光を入射させると、所定の方向に直線偏光を反射する光学素子を得ることができた。
(実施例3)
本願の第三の発明は、前記平板型偏光子が、(1)ガラス偏光子、(2)樹脂偏光子又は(3)ワイヤーグリッド偏光子から選ばれたいずれかである平板型機能性偏光子を開示する。本発明に使用できる平板型偏光子としては、特に限定されるものではないが、ガラス偏光子、樹脂偏光子又はワイヤーグリッド偏光子を用いた場合には、ガラス基材や保護部材に直接種々の光学機能膜を形成することができるので、光学機能膜を形成した基材を貼り合わせるようなことは不要となるからである。ただし、本発明において、光学機能膜を形成した基材を平板型偏光子に貼り合わせるという実施態様を除外するものではない。
ガラス偏光子は、ガラス製であるため耐久性や耐レーザー性に優れ、損傷を受けにくい。また化学的安定性に優れているので、機能膜や反射防止膜の形成が容易となる利点がある。耐レーザー性が要求されないような場合には、樹脂偏光子も本発明に用いる平板型偏光子としては好適である。通常は、表面は樹脂製保護材で覆われているので、保護材に機能膜や反射防止膜を形成することができる。樹脂偏光子をガラスで挟んだ構成の場合には、ガラス偏光子と同様の方法で、機能膜や反射防止膜を形成することができる。但し、樹脂そのものの耐久性が向上するわけではないので、耐レーザー性の向上はそれほど期待できない。ワイヤーグリッド偏光子の場合は、形成されたワイヤーグリッドの表面を、エアギャップ層を介して樹脂製保護材やガラス基材で覆った構成にすることにより、機能膜や反射防止膜を形成する際に、樹脂偏光子やガラス偏光子と同様の取扱いが可能となる。
例えば、偏光シートをガラス(BK7)で挟んだ樹脂偏光子が広く用いられているが、そのガラス表面に偏光分離膜や波長選択膜などの機能膜や反射防止膜を形成することができる。また、CaF(蛍石)基板上にワイヤーグリッドを形成したワイヤーグリッド偏光子においては、CaF基板上に同様の機能膜や反射防止膜を形成することもできる。
実施例3にかかる平板型偏光子として、図9に示した偏光特性を有するガラス偏光子を用い、その第一面に図10に示した特性の偏光分離膜を形成し、第二面に反射防止膜を形成することによって、図11に示した構成の偏光ビームスプリッターとしての機能を有する平板型機能性偏光子を作成した。偏光分離膜は、設計波長を633nmとして、高屈折率材料としての酸化タンタル(Ta)と低屈折率材料としての酸化シリコン(SiO)を交互に表1に示した膜厚で30層積層した誘電体多層膜である。
Figure JPOXMLDOC01-appb-T000001
反射防止膜は、633nmで最小反射率となるように、TaとSiOを交互に4層積層したものである。これら多層膜の成膜には、オプトラン社製イオンアシスト蒸着機(型番OTFC1300DBI)を用いた。このようにして得た平板型機能性偏光子について、図12に示した構成の光学系を用いて、偏光分離性能と偏光フィルター性能を評価した。光源には、波長632.8nmで最大出力25mWのHe-Neレーザーを用いた。レーザー光ビームは1/4波長板によって円偏光に変換され、ビームエキスパンダーによって拡張された後、直径4mmのアパーチャーを通って、本発明の平板型機能性偏光子に入射する。円偏光である入射光ビームが平板型機能性偏光子に45度の入射角で入射すると、第一面に形成された偏光分離膜によって、s偏光は入射面内で直角に反射され、微調式偏光子ホルダーに搭載されたグラントムソンプリズムを通ってs偏光成分がフォトダイオードPD2に入射し、その光量(強度)が計測される。一方、入射光ビームのうち、偏光分離膜を透過したp偏光成分は、平板型機能性偏光子の偏光フィルター性能により、s偏光成分が吸収によって除去され、p偏光成分のコントラストが向上していく。そして出射側表面に形成された反射防止膜によって、透過率を低下させることなく出射し、微調式偏光子ホルダーに搭載されたグラントムソンプリズムを通って、フォトダイオードPD1に入射し、その光量が計測される。なお、PD1及びPD2によるp偏光及びs偏光の光強度の測定に際しては、微調式偏光子ホルダーに搭載されたグラントムソンプリズムを回転させ、p偏光とs偏光それぞれについて、強度が最大となった光量を読み取った。光量の測定結果及びそれらから算出したコントラストを表2に示した。
Figure JPOXMLDOC01-appb-T000002
(実施例4)
本願の第四の発明は、平板型偏光子が(1)ガラス偏光子、(2)樹脂偏光子又は(3)ワイヤーグリッド偏光子から選ばれたいずれかであって、その第一面に偏光分離膜が形成され、第二面に該偏光分離膜、波長選択膜又は反射防止膜が形成れていることを特徴とする平板型機能性偏光子を開示する。このような構成とすることにより、一般的な平板型偏光子が、偏光フィルターとしての機能しか果たさないのに対して、偏光分離膜を形成することによって、高性能偏光ビームスプリッターとしても機能する光学素子を得ることができるのである。偏光分離膜は、平板型偏光子の光ビームが入射する側である第一面に形成するのがよい。反射や吸収による光量の損失が低減されるし、吸収による偏光子の温度上昇を抑えることができるからである。そして、本発明の重要な点は、透過してきた光ビームが出射する側において、平板型偏光子の偏光フィルター機能によってコントラストが大幅に向上した偏光成分が得られることである。
偏光分離膜が形成された光学素子は、通常は、入射光ビームの入射平面に対して45度の角度をなして配置される。そのように配置することにより、入射平面内で振動する成分であるs偏光は、入射平面に対して90度の方向に反射される。一方、入射平面に対して垂直方向に振動する成分であるp偏光は、偏光分離膜を透過し、基材である平板型偏光子に対して45度の角度で入射し、偏光子の偏光フィルター機能によってp偏光以外の成分が除去され、p偏光のコントラストが格段に向上するという効果が得られるのである。
この場合、平板型偏光子には、45度という大きな入射角であっても良好な偏光フィルター性能を発揮することが要求される。発明者らは鋭意研究の結果、出願人が特許文献8や特許文献9で開示したガラス偏光子を用いた場合には、図1に示したように、広範な入射角の範囲にわたって、偏光フィルター機能が悪化しないことを見出した。樹脂偏光子やワイヤーグリッド偏光子は、ガラス偏光子ほど偏光フィルター性能の角度依存性が小さいわけではないが、本発明の平板型偏光子として用いることは可能である。
本発明の実施形式においては、ガラス偏光子の光ビームが入射する側の表面(第一面)に、前記した偏光分離膜を形成し、出射する側の表面(裏面である第二面)にも同様に偏光分離膜を形成するか、波長選択膜を形成するか又は反射防止膜を形成することによって、高性能な偏光ビームスプリッターを得ることができる。平板型偏光子の第二面に反射防止膜を形成することによって透過率を向上させることができるが、反射防止膜に代わって、第一面と同様に偏光分離膜を形成することも効果的である。第二面に形成した偏光分離膜によって、不要なs偏光成分が反射されることによって除去され、さらにp偏光のコントラストが向上するからである。波長選択膜を形成した場合には、選択された波長領域においてコントラストのよいp偏光を得ることができる。
平板型偏光子の第二面にも偏光分離膜を形成することの追加的なメリットは、このようにして得られたガラス偏光子型偏光ビームスプリッターは表裏がなくなることによって、光学系に配置するときに、表裏を意識することなく組み込むことができる点があげられる。また裏面である第二面を、別の光ビームの入射面として用いるような複雑な光学系を組むことも可能となる。さらなるメリットとしては、ガラス偏光子の表面及び裏面に同様の偏光分離膜が形成されることから、形成された膜応力がバランスすることによって、残留応力に起因する平板型偏光子の反りがなくなり、偏光分離性能が安定化することがあげられる。つまり、片面だけに偏光分離膜が形成されていると、どうしても他の面との膜構成の違いにより膜応力が残存してしまい、ガラス偏光子の反りが避けられないのである。平板型偏光子が反ると、偏光分離膜への光ビームの入射角が変わることになって、偏光分離性能が悪化してしまうのであるが、両面を同じ偏光分離膜とすることによって、このような反りを防止し、偏光分離性能を安定化させることができるのである。
実施例4においては実施例3と同じガラス偏光子を基材として用い、第一面にも第二面にも、表1に示した偏光分離膜を形成して、本発明のガラス偏光子型偏光ビームスプリッターを作成した。実施例3と同様の評価を行った結果を表2に示す。
(比較例1)
機能膜及び反射防止膜を形成する基材として、ガラス偏光子に代えて、平板ガラス(BK7)を用いた以外は、実施例3と同一の方法で同一の構成の偏光ビームスプリッターを作成した。実施例3に記載したのと同様の装置及び方法を用いて、偏光分離性能及び偏光フィルター性能を評価した結果を表2に示した。
表2に示した実施例3、実施例4及び比較例1の評価結果から、s偏光のコントラストには大きな差はないものの、p偏光については、比較例1ではコントラストは28.2dB(660:1)に過ぎないのに対して、実施例3ではコントラストは58.9dB(778,000:1)であり、実施例4では、63.1dB(2,013,000:1)にも達し、きわめて純粋なp偏光を取り出すことのできる光学素子を得ることができた。
(実施例5)
本願の第五の発明は、光ビームが入射する側の第一面とその裏面である第二面とを有するガラス偏光子の、少なくとも第一面に偏光分離膜が形成されていることを特徴するガラス偏光子型偏光ビームスプリッターを開示するものである。ガラス偏光子を偏光ビームスプリッターとして機能させるには、少なくとも第一面に偏光分離膜を形成する必要がある。偏光ビームスプリッターは、図13に示したように、45度近傍の入射角で傾斜して配置したときに、所定の波長範囲のs偏光とp偏光の反射率が異なることを利用して偏光を分離する光学素子である。
一例として、600nmから650nm程度の波長の光に対して偏光分離性能を有する平板型偏光ビームスプリッターの性能を図13に示す。一般的な平板型偏光ビームスプリッターはガラス基板(BK7)の第一面(光ビームが入射する側の表面)に偏光分離膜が形成されたものである。この偏光分離膜の誘電体多層膜の構成は、通常は、透過率を高めるために、空気との界面及びガラス基板との界面の反射を低減するよう反射防止性能が組み込まれた構成になっている。また、ガラス基板の第二面(光ビームが出射する側の表面)にも同様の理由で、反射防止膜が形成されている。図13の例では、633nmの波長で、p偏光は98%程度の透過率でガラス基板の第二面から出射し、約2%のp偏光成分は偏光分離膜で反射される。一方、s偏光成分が偏光分離膜に入射すると約0.1%程度が透過し、99.9%程度が反射される。入射方向にそのまま透過するs偏光成分は0.1%程度に過ぎないので、p偏光成分の消光比は98/0.1で、ほぼ1000となる。一方、入射方向に垂直な方向では、s偏光の反射率は99.9%に達するもののp偏光成分の約2%が反射されるため、消光比は99.9/2で、ほぼ50程度となってしまう。なお、消光比とはコントラストを表す指標で、より具体的には、一の偏光成分に対する他の偏光成分の割合に相当する。一の偏光成分の純度が高いほど、コントラストに優れる。
本発明では、従来の平板型偏光ビームスプリッターが、例えばBK7製のガラス基板を用いるのに対して、ガラス偏光子を基材として利用することに特徴がある。偏光分離膜を形成する基材としてガラス偏光子を利用した偏光ビームスプリッターは、45度近傍という入射角であっても、優れた偏光フィルター性能を維持するという特性を利用して、偏光分離機能と偏光フィルター機能を併せ持った光学素子として機能させることができるのである。
本発明のガラス偏光子型偏光ビームスプリッターにおいて、「少なくとも第一面に偏光分離膜を形成する」という意味は、第一面に偏光分離膜を形成しなければ、基材である偏光子によってs偏光が吸収等によって除去され、s偏光を分離して利用することができなくなるからである。「少なくとも」としたのは、第二面にも偏光分離膜を形成してもよいという意味である。第二面にも偏光分離膜を形成した場合は、第二面においてもs偏光が反射により除去されることになって、p偏光のコントラストをさらに向上させることができる。
本発明において、偏光分離膜が形成されていない面には、波長選択膜又は反射防止膜を形成することができる。反射防止膜とは、文字通り、反射を減ずるための膜である。第二面に波長選択膜を形成すると、偏光ビームスプリッターを透過してきた偏光に含まれる不要な波長範囲の偏光を除去し、必要な波長範囲の偏光に限定することができる。反射防止膜を形成する場合は、透過率が減ずるのを防止することができる。
本発明に用いることのできるガラス偏光子は、例えば、本発明の出願人による出願である特許文献8や特許文献9に開示されたものであるが、ガラス基材の少なくとも表面層に所定の形状及び大きさの金属銀粒子が一軸配向して存在し、その配向した銀粒子によって偏光フィルター機能が発揮されるものである。その後、鋭意研究が継続され、本発明の発明者らが、該ガラス偏光子の偏光フィルター性能の角度依存性を詳細に評価した結果、光ビームの入射角が0度から50度程度まで大きく傾いた広範囲な入射角に渡って偏光フィルター性能がほとんど変化しないという特性を見出したことから、本発明に想到するに至ったのである。
さらに、ガラス基材の表面層に分散している金属銀粒子の平均アスペクト比が1.5:1以上であって3.0:1以下であり、かつ平均粒子長さが30nm以上であって150nm以下となるように調整されているガラス偏光子を用いたことを特徴とするガラス偏光子型偏光ビームスプリッターを開示する。アスペクト比とは、一軸配向された金属銀粒子の長さと幅の比を表す指標である。金属銀粒子のアスペクト比は、延伸時のガラスの温度、粘性係数及び荷重を調整することにより、調整することができる。このように調整することによって、ガラス偏光子の一軸配向した金属銀粒子のアスペクト比と平均粒子長さを前記した範囲とすることによって、第一面の偏光分離膜によって分離され、透過してきた偏光成分のうち、赤色領域の波長(580nm~680nm程度の波長領域)に対して優れた偏光フィルター性能(優れた透過率とコントラスト)を示すガラス偏光子型偏光ビームスプリッターを得ることができることを見出した。
表3は、ガラス偏光子の製造条件、ガラス表層中に一軸配向して分散している金属銀粒子に平均アスペクト比及び平均粒子長さ、及びガラス偏光子の透過率とコントラストの関係をまとめたものである。塩化銀を含むガラスプリフォームを所定の温度で熱処理することによりガラスプリフォーム中に塩化銀粒子を析出させる。その後、ガラスプリフォームを所定の粘度範囲になるまで加熱した後、延伸荷重を加えて塩化銀粒子を延伸する。そして、水素雰囲気中で還元処理すると、塩化銀粒子が金属銀粒子に還元される。還元されるのは、水素分子が侵入可能な、表面から約100μm程度の表層に限られる。このようにして金属銀が一軸配向して分散しているガラス偏光子が得られるのである。金属銀が分散している様子を透過電子顕微鏡で撮影した写真の例を図14に示す。そして、このような写真から金属銀のアスペクト比及び粒子長さを計測し、平均値を算出するのである。
Figure JPOXMLDOC01-appb-T000003
ガラス偏光子の透過率は分光光度計を用いて測定した。金属銀粒子の配向軸方向と直交する偏光振動面をもつ光の平均透過率T%と金属銀粒子の配向軸方向に平行な偏光振動面をもつ光の平均透過率T%をそれぞれ測定し、それらの比から次式に基づいて消光比を算出した。
[数1]
消光比(dB)=10 × log10(T%/T%)
表3に示した評価結果から、アスペクト比や平均粒子長さが上記した数値の範囲外になると、赤色領域で優れた透過率とコントラストとすることが困難になると判断されたのである。
図1は、赤色の波長領域用のガラス偏光子型偏光ビームスプリッターに用いられるガラス偏光子の偏光フィルター性能を示すものであるが、設計波長である633nm近傍の波長において、入射ビームの入射角を0度(垂直)から徐々に傾け約50度まで傾けた入射角であっても、p偏光透過率もs偏光反射率もともに、垂直入射の場合と比べてほとんど変化せず、結果として50度まで傾けた入射角であっても、優れた偏光フィルターとしての性能が維持されていることがわかる。
さらに、ガラス基材の表面層に分散している金属銀粒子の平均アスペクト比が1.3:1以上であって2.6:1以下であり、かつ平均粒子長さが30nm以上であって50nm以下となるように調整されているガラス偏光子を用いたことを特徴とするガラス偏光子型偏光ビームスプリッターを開示する。ガラス偏光子の一軸配向した金属銀粒子のアスペクト比と平均粒子長さを前記した範囲とすることによって、第一面に形成された偏光分離膜によって分離され、透過してきた偏光成分のうち、緑色領域の波長(500nm~600nm程度の波長領域)に対して優れた偏光フィルター性能(優れたコントラスト)を示すガラス偏光子型偏光ビームスプリッターとすることができる。この場合においても、アスペクト比や平均粒子長さがこの範囲外になると、緑色領域で優れた透過率とコントラストを実現することが難しくなるのである。これら適切なアスペクト比及び平均粒子長さの範囲については、表1に示したものと同様の試験と評価を実施して定めた。概要は同一出願人による特許文献8の表1に記載されている。
本発明のガラス偏光子型偏光ビームスプリッターでは、ガラス偏光子中の金属銀粒子の配向方向が光ビームの入射平面に対して平行になるように配置し、入射光ビームを平板偏光子の法線方向に対して45度近傍の入射角で入射させることにより、入射光ビームのうちs偏光成分を入射方向に対して約90度の角度で反射させ、入射光ビームのうちp偏光をそのまま直進させ、ガラス偏光子を通過する間に、コントラストが格段に向上したp偏光を取り出すことができることになる。なお、光ビームの入射平面は平板偏光子の入射界面の法線ベクトルと入射光の伝搬方向を向くベクトルを含む面と定義される。そして、本発明の構成では、s偏光は入射面内で振動する光であって、p偏光は入射平面に対して垂直方向に振動する光である。
ガラス偏光子の第二面(出射側表面)に、第一面(入射側表面)と同様に偏光分離膜を形成すると、出射側表面においてもs偏光成分が反射されることによって除去され、さらにコントラストが向上する。ガラス偏光子の第二面にも偏光分離膜を形成する付加的効果は、平板型偏光子の第二面にも偏光分離膜を形成することの追加的なメリットとして前記したとおりである。また第二面を、別の光ビームの入射側表面として用いるような複雑な光学系を組むこともできる。さらなる効果としては、ガラス偏光子の両側表面に同様の偏光分離膜が形成されることから、膜応力がバランスすることによって、ガラス偏光子の反りがなくなり、偏光分離性能が安定化することがあげられる。つまり、片側表面だけに偏光分離膜が形成されていると、どうしても他の面に形成された膜との違いにより膜応力が残存してしまい、ガラス偏光子の反りが避けられないのである。ガラス偏光子が反ると、偏光分離膜への光ビームの入射角が変わることになって、偏光分離性能が悪化するのであるが、両側表面を同じ偏光分離膜とすることによって、このような反りを防止し、偏光分離性能を安定化できるのである。
本願の第五の発明の一実施態様を図15に示す。偏光ビームスプリッターの基材としてのガラス偏光子の第一面(入射側表面)に偏光分離膜が形成されている。裏面である第二面には同じ偏光分離膜を形成したものと、反射防止膜を形成したものを作製した。以下、本発明について、さらに具体的に説明する。本発明の効果を確認するのに用いた評価装置を図12に示す。
(実施例6及び実施例7)
ガラス偏光子型偏光ビームスプリッターに用いるガラス偏光子として、出願人による特許出願であって特開2011-197465に開示された実施例に基づいて作製されたガラス偏光子を用いた。580nm~680nmの波長範囲において、高い透過率と優れた消光比とするため、析出する金属銀粒子の平均粒子長さ及びアスペクト比を調整したものである。金属銀粒子の平均アスペクト比は2.7:1であり、平均粒子長さは約90nmとなるように調整されたものである。得られたガラス偏光子の光学特性を図9に示した。そのガラス偏光子の第一面に偏光分離膜を形成し、第二面に反射防止膜を形成することによって、図15に示した構成の平板偏光子型偏光ビームスプリッターを作成した(実施例6)。偏光分離膜は、高屈折率材料としての酸化タンタル(Ta)と低屈折率材料としての酸化シリコン(SiO)を交互に30層積層した誘電体多層膜である。これら多層膜の成膜には、オプトラン社製イオンアシスト蒸着機(型番OTFC1300DBI)を用いた。形成した偏光分離膜の各層の膜厚を表1に、反射防止膜の各層の膜厚を表4に示した。次に、同じガラス偏光子を基材として用い、両側の表面に、表1に示した偏光分離膜を形成して、本発明のガラス偏光子型偏光ビームスプリッターを作成した(実施例7)。
Figure JPOXMLDOC01-appb-T000004
実施例6及び実施例7について、図12に示した構成の光学系を用いて、偏光分離性能を評価した。光源には、波長632.8nmで最大出力25mWのHe-Neレーザーを用いた。レーザー光ビームは1/4波長板によって円偏光に変換され、ビームエキスパンダーによって拡張された後、直径4mmのアパーチャーを通って、本発明のガラス偏光子型偏光ビームスプリッターに入射する。円偏光である入射光ビームがガラス偏光子型偏光ビームスプリッターに45度の入射角で入射すると、ガラス偏光子型偏光ビームスプリッターの入射側表面に形成された偏光分離膜によって、s偏光は入射面内で直角に反射され、グラントムソンプリズムを通ってs偏光成分がフォトダイオードPD2に入射し、その光量(強度)が計測される。一方、入射光ビームのうち、偏光分離膜を透過したp偏光成分は、ガラス偏光子型偏光ビームスプリッターのガラス偏光子のフィルター性能により、偏光分離膜を透過したs偏光成分が吸収によって除去され、p偏光成分のコントラストが向上していく。そして出射側表面に形成された反射防止膜(実施例6の場合)によって、透過率を低下させることなく出射し、グラントムソンプリズムを通って、フォトダイオードPD1に入射し、その光量が計測される。実施例7の場合は、反射防止膜に代わって、出射側表面に形成された偏光分離膜の作用によって、s偏光成分が反射して除去され、p偏光成分のコントラストがさらに向上した。なお、グラントムソンプリズムは微調式偏光子ホルダーに装着されており、p偏光の強度及びs偏光の強度を測定するに際しては、ホルダーを回転して光強度が最大となる位置でそれぞれの値を読み取った。光量の測定結果及びそれらから算出した消光比(コントラスト)を表5に示した。
(比較例2)
ガラス偏光子の代わりにホウ珪酸ガラス(ショット社製BK7)の第一面に表1に示した構成の偏光分離膜を形成し、第二面に、表4に示した構成の反射防止膜を形成し、比較例2とした。
実施例6、実施例7及び比較例2で作成した偏光分離膜及び反射防止膜の性能を測定した結果を表5に示した。比較例2についても、実施例6及び実施例7と同様の方法で、PD1及びPD2に入射したp偏光成分及びs偏光成分の光量(光強度)を測定し、コントラストを算出した。
Figure JPOXMLDOC01-appb-T000005
これらの結果から明らかなように、現在広く用いられている平板型偏光ビームスプリッター(比較例2)では、p偏光成分のコントラストは28.2dB(660:1)であるのに対して、本発明のガラス偏光子型偏光ビームスプリッターによれば、1,000倍以上もコントラストが向上する(58.9dB(778,000))。さらに、ガラス偏光子の両側に偏光分離膜を形成した構成では、コントラストは60dB以上にまで向上することがわかった。
実施例6、実施例7及び比較例2では、赤色領域(632.8nm)の波長の光に対する効果を実証したが、緑色領域(例えば、532nmの固体レーザー波長)でも同様の効果が確認された。ガラス偏光子、偏光分離膜及び反射防止膜を緑色領域の波長に合わせて設計する点が異なるだけである。

Claims (8)

  1. 光ビームが入射する側の第一面とその裏面である第二面とを有する平板型偏光子の、少なくとも前記第一面又は前記第二面のいずれかに機能膜が形成され、前記機能膜が、(1)偏光分離膜、(2)波長選択膜又は(3)反射膜から選ばれたいずれかであることを特徴とする平板型機能性偏光子。
  2. 前記平板型偏光子の、前記機能膜が形成されていない面には、反射防止膜が形成されていることを特徴とする請求項1に記載の平板型機能性偏光子。
  3. 前記平板型偏光子が、(1)ガラス偏光子、(2)樹脂偏光子又は(3)ワイヤーグリッド偏光子から選ばれたいずれかであることを特徴とする請求項1に記載の平板型機能性偏光子。
  4. 光ビームが入射する側の第一面とその裏面である第二面とを有する平板型偏光子が、(1)ガラス偏光子、(2)樹脂偏光子又は(3)ワイヤーグリッド偏光子から選ばれたいずれかであって、前記第一面に偏光分離膜が形成され、前記第二面に偏光分離膜、波長選択膜又は反射防止膜から選ばれるいずれかが形成されていることを特徴とする平板型機能性偏光子。
  5. 光ビームが入射する側の第一面とその裏面である第二面とを有するガラス偏光子の、少なくとも前記第一面に偏光分離膜が形成されていることを特徴するガラス偏光子型偏光ビームスプリッター。
  6. 前記ガラス偏光子の、前記偏光分離膜が形成されていない面には、波長選択膜又は反射防止膜が形成されていることを特徴とする請求項5に記載のガラス偏光子型偏光ビームスプリッター。
  7. 前記ガラス偏光子の表面層に分散している金属銀粒子の平均アスペクト比が1.5:1以上であって3.0:1以下であり、かつ平均粒子長さが30nm以上であって150nm以下となるように調整されていることを特徴とする請求項5に記載のガラス偏光子型偏光ビームスプリッター。
  8. 前記ガラス偏光子の表面層に分散している金属銀粒子の平均アスペクト比が1.3:1以上であって2.6:1以下であり、かつ平均粒子長さが30nm以上であって50nm以下となるように調整されていることを特徴とする請求項5に記載のガラス偏光子型偏光ビームスプリッター。
PCT/JP2013/078570 2012-11-22 2013-10-22 平板型機能性偏光子及びガラス偏光子型偏光ビームスプリッター WO2014080716A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014548496A JPWO2014080716A1 (ja) 2012-11-22 2013-10-22 平板型機能性偏光子及びガラス偏光子型偏光ビームスプリッター

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012256767 2012-11-22
JP2012-256767 2012-11-22
JP2012-256846 2012-11-22
JP2012256846 2012-11-22

Publications (1)

Publication Number Publication Date
WO2014080716A1 true WO2014080716A1 (ja) 2014-05-30

Family

ID=50775904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078570 WO2014080716A1 (ja) 2012-11-22 2013-10-22 平板型機能性偏光子及びガラス偏光子型偏光ビームスプリッター

Country Status (2)

Country Link
JP (1) JPWO2014080716A1 (ja)
WO (1) WO2014080716A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206322A (ja) * 2015-04-20 2016-12-08 三菱電機株式会社 液晶表示装置
JP2017067896A (ja) * 2015-09-29 2017-04-06 東芝ライテック株式会社 紫外線照射装置
WO2020161950A1 (ja) * 2019-02-04 2020-08-13 株式会社島津製作所 偏光ビームスプリッターおよび光学装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356770A (ja) * 1999-06-15 2000-12-26 Sanyo Electric Co Ltd 液晶プロジェクタ
JP2002228834A (ja) * 2001-02-01 2002-08-14 Toyo Commun Equip Co Ltd プレート型偏光ビームスプリッタ及びその製造装置
JP2004086100A (ja) * 2002-08-29 2004-03-18 Arisawa Mfg Co Ltd 偏光ガラス及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356770A (ja) * 1999-06-15 2000-12-26 Sanyo Electric Co Ltd 液晶プロジェクタ
JP2002228834A (ja) * 2001-02-01 2002-08-14 Toyo Commun Equip Co Ltd プレート型偏光ビームスプリッタ及びその製造装置
JP2004086100A (ja) * 2002-08-29 2004-03-18 Arisawa Mfg Co Ltd 偏光ガラス及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206322A (ja) * 2015-04-20 2016-12-08 三菱電機株式会社 液晶表示装置
JP2017067896A (ja) * 2015-09-29 2017-04-06 東芝ライテック株式会社 紫外線照射装置
WO2020161950A1 (ja) * 2019-02-04 2020-08-13 株式会社島津製作所 偏光ビームスプリッターおよび光学装置

Also Published As

Publication number Publication date
JPWO2014080716A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
US6947215B2 (en) Optical element, optical functional device, polarization conversion device, image display apparatus, and image display system
WO2015159726A1 (ja) キューブ型偏光ビームスプリッターモジュール
EP1510838B1 (en) Polarization beam splitter, optical system and image displaying apparatus using the same
JP6502021B2 (ja) 位相差補償素子及び投射型画像投影装置
JP2010530995A (ja) 反射抑制ワイヤーグリッド偏光素子
JP2009507256A (ja) 偏光ビームスプリッタ及びコンバイナ
KR20080074782A (ko) 단일 레이어 복굴절 결정 트림 리타더
JP2009545773A (ja) 形態複屈折型偏光ビームスプリッタを用いたLCoSプロジェクションシステム用の補償スキーム
JP5793038B2 (ja) 投射型画像表示装置
JP2013167823A (ja) 無機偏光板
JP2000056133A (ja) 偏光子とその作製方法
EP3759531A1 (en) Retarder stack pairs for polarization basis vector transformations
JP2020528159A (ja) 一軸性リターダスタックの広角補償
US7397604B2 (en) Narrow bandpass filter assemblies for solar telescopes
CN111051936B (zh) 光学膜、光学元件和成像装置
WO2014080716A1 (ja) 平板型機能性偏光子及びガラス偏光子型偏光ビームスプリッター
US6384974B1 (en) Polarization beam splitter
JPH0572417A (ja) 偏光変換素子
JP2008185768A (ja) 波長板及び光学装置
WO2019102902A1 (ja) 光学素子及び投射型画像表示装置
Baur A new type of beam-splitting polarizer cube
JP2014106254A (ja) 偏光ビームスプリッターモジュール
JP5361302B2 (ja) 光学素子及び光学機器
JP2015060217A (ja) 偏光デバイス
JP6440172B2 (ja) 無機偏光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856458

Country of ref document: EP

Kind code of ref document: A1