WO2014080588A1 - 多結晶シリコン棒の製造装置および製造方法 - Google Patents

多結晶シリコン棒の製造装置および製造方法 Download PDF

Info

Publication number
WO2014080588A1
WO2014080588A1 PCT/JP2013/006609 JP2013006609W WO2014080588A1 WO 2014080588 A1 WO2014080588 A1 WO 2014080588A1 JP 2013006609 W JP2013006609 W JP 2013006609W WO 2014080588 A1 WO2014080588 A1 WO 2014080588A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
electrode
polycrystalline silicon
inverted
core wire
Prior art date
Application number
PCT/JP2013/006609
Other languages
English (en)
French (fr)
Inventor
直樹 永井
田中 秀二
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2014080588A1 publication Critical patent/WO2014080588A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process

Definitions

  • the present invention relates to a technique for manufacturing a polycrystalline silicon rod, and more particularly to a heater for heating a silicon core wire used in manufacturing a polycrystalline silicon rod.
  • Polycrystalline silicon is a raw material for a single crystal silicon substrate for manufacturing semiconductor devices and a silicon substrate for manufacturing solar cells.
  • polycrystalline silicon is produced by bringing a source gas containing chlorosilane into contact with a heated silicon core wire, and depositing polycrystalline silicon on the surface of the silicon core wire by chemical vapor deposition (CVD: Chemical). Vapor Deposition) is performed by the Siemens method (see, for example, Japanese Patent Publication No. 37-18861 (Patent Document 1)).
  • the sealed space formed by the base plate and the dome-shaped container (belger) described above becomes a reaction space for vapor-phase growth of polycrystalline silicon.
  • the metal electrode for silicon penetrates the base plate with an insulator interposed therebetween, and is connected to another metal electrode for silicon through wiring or connected to a power source arranged outside the reaction furnace.
  • silicon metal In order to prevent polycrystalline silicon from precipitating in parts other than the torii type silicon core wire during the vapor phase growth of polycrystalline silicon in the reaction space, and to prevent damage due to the high temperature of the equipment material, silicon metal
  • the electrode, the base plate, and the bell jar are cooled using a coolant such as water or oil.
  • the core wire holder is cooled via the metal electrode for silicon.
  • the raw material gas is supplied from the gas nozzle into the reactor while heating the silicon core wire to a temperature range of 900 ° C. or higher and 1200 ° C. or lower by supplying a current from the metal electrode for silicon to the hydrogen atmosphere in the reaction furnace, Then, silicon is vapor-phase grown, and polycrystalline silicon having a desired diameter is formed in an inverted U shape.
  • the source gas for example, a mixed gas of trichlorosilane and hydrogen is used. Then, after cooling the inside of the reactor, the atmosphere is released, and polycrystalline silicon is taken out from the reactor.
  • the silicon core wire is made of polycrystalline or single crystal silicon or the like, but the silicon core wire used for producing high-purity polycrystalline silicon needs to be high-purity with low impurity concentration. Is required to have a high resistance with a specific resistance of 500 ⁇ cm or more. Since energization of such a high-resistance silicon core wire generally cannot be started at room temperature, it is necessary to energize the silicon core wire in advance by initially heating the silicon core wire to 200 to 400 ° C. to lower the specific resistance (increasing conductivity). .
  • a heater for initial heating is provided at the center or inner peripheral surface of the reactor.
  • the heater is made of carbon, for example.
  • the heater is heated by energization, and the silicon core wire disposed around the heater is heated to a desired temperature by radiant heat generated at that time (for example, JP 2011-037699 A). No. (Patent Document 2)).
  • the silicon core wire is energized and the heater begins to generate heat, the heater ends and is turned off.
  • the base plate used in the Siemens method is generally provided with a silicon metal electrode, a gas nozzle, an exhaust port, a heater metal electrode, and the like in a manner that penetrates the base plate.
  • a silicon metal electrode As described above, the base plate used in the Siemens method is generally provided with a silicon metal electrode, a gas nozzle, an exhaust port, a heater metal electrode, and the like in a manner that penetrates the base plate.
  • the location of the silicon metal electrode, gas nozzle, and exhaust port affects the crystal precipitation during the CVD reaction, so the installation location should be carefully examined.
  • the role of the heater is the initial heating of the silicon core wire, and its arrangement should be considered in consideration of the influence on the heating state of the silicon core wire, and also has a negative effect on the deposition of silicon on the silicon core wire after the end of the initial heating. It is also important not to become. Furthermore, since the lifetime of the heater is shortened when silicon deposition on the heater becomes significant, the heater is preferably installed in a place where silicon is not deposited as much as possible during the CVD reaction.
  • the metal electrode for silicon, the gas nozzle, the exhaust port, and the heater metal electrode are installed through the base plate, it is not possible to determine the optimum arrangement location unless the polycrystalline silicon rod is actually grown. In addition, since these are installed in such a manner as to penetrate the base plate, it is difficult to improve the initial arrangement because it is necessary to change the design of the base plate.
  • the present invention has been made in view of such problems, and its object is to provide a pair of heater electrodes that hold both lower ends of an inverted U-shaped heater used for initial heating of a silicon core wire. Without changing the installation position of the heater, the heater arrangement in the bell jar can be made variable, which makes it possible to improve the problems such as poor growth of the polycrystalline silicon rod and shortened unscheduled heater life. It is to provide a manufacturing apparatus.
  • a polycrystalline silicon rod manufacturing apparatus is a device for manufacturing a polycrystalline silicon rod by vapor-phase growing polycrystalline silicon on a silicon core wire.
  • the heater is placed on the heater electrode via a heater electrode adapter, and the lower end of the inverted U-shaped heater has a central axis at a position different from the extension line of the central axis of the heater electrode. It is characterized by that.
  • the heater electrode adapter has an electrode coupling member for coupling to the electrode and a holding member for holding the lower end portion of the heater, and the holding member is an extension line of the central axis of the electrode. Use one that can turn around.
  • a method for manufacturing a polycrystalline silicon rod according to the present invention is a method for manufacturing a polycrystalline silicon rod using the above-described apparatus, and a first step of manufacturing a polycrystalline silicon rod by heating a silicon core wire with the heater. And a second step of adjusting the position of the heater based on the state of the obtained polycrystalline silicon rod, and a third step of manufacturing the polycrystalline silicon rod by heating the silicon core wire with the heater after the position adjustment. And steps.
  • an inverted U-shaped heater is placed on a heater electrode via a heater electrode adapter, and the lower end of the inverted U-shaped heater is the central axis of the heater electrode.
  • a heater electrode adapter is selected that provides a central axis at a position different from the extension line. For this reason, it becomes possible to change the position of a heater by selection of the electrode adapter for heaters couple
  • the heater electrode adapter has an electrode coupling member and a holding member for holding the heater, and the holding member can be turned around the central axis of the heater electrode, the heater electrode adapter itself is replaced. Therefore, the arrangement of the inverted U-shaped heater in the bell jar in the horizontal direction is variable, and the heater can be easily arranged at an appropriate position. As a result, it is possible to optimize the heater arrangement from three viewpoints: initial heating of the silicon core wire, influence on silicon deposition on the silicon core wire, and silicon deposition on the heater.
  • FIG. 5A the holding member is turned around the central axis of the electrode coupling member, and thereby the inverted U-shaped heater is turned around the central axis of the heater electrode.
  • FIG. It is a figure which shows the mode of arrangement
  • FIG. 1 is a schematic cross-sectional view illustrating a general configuration of a reactor for producing a polycrystalline silicon rod by vapor-phase growing polycrystalline silicon by the Siemens method.
  • a silicon core wire 5 is assembled into a torii type (inverted U shape) with two vertical directions and one horizontal direction in a space constituted by the bell jar 8 and the base plate 1, and the torii type silicon core wire 5 is assembled.
  • a pair of silicon metal electrodes 2 disposed on the base plate 1 via a pair of carbon core wire holders 9 or via a core wire holder adapter (not shown).
  • the silicon metal electrode 2 passes through the base plate 1 with the insulator 7 interposed therebetween, and is connected to another silicon metal electrode (not shown) by wiring (not shown) or is disposed outside the reaction furnace 200.
  • the reference numeral 3 indicates a gas nozzle
  • the reference numeral 4 indicates an exhaust port. Note that each of the silicon core wire, the heater, the gas nozzle, and the like is schematically represented one by one, and actually a plurality of each is arranged based on various designs.
  • An inverted U-shaped heater 11 for heating the silicon core wire to a temperature at which electricity can be passed connects the two column portions 11a having a straight body portion perpendicular to the bottom plate and the upper ends of the two column portions 11a. It has an inverted U-shape consisting of a bridge portion 11 b, and both lower end portions of the heater are fixed to a pair of heater electrodes 12 via a heater electrode adapter 10.
  • the heater metal electrode 12 passes through the base plate 1 with the insulator 7 interposed therebetween, and is connected to a power source (not shown) disposed outside the reaction furnace 200.
  • the surface temperature is heated to about 900 to 1200 ° C.
  • Trichlorosilane is supplied as a silicon raw material.
  • the silicon core wire 5 is heated by energization from the silicon metal electrode 2, but an “U” -shaped heater 11 is used for “initial heating” in which the temperature of the silicon core wire 5 is heated to 200 to 400 ° C. . After the initial heating, the heater 11 is turned off, and the heating is performed to the above temperature necessary for the deposition of the polycrystalline silicon 6 only by energization from the silicon metal electrode 2.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of the reaction furnace 100 of the polycrystalline silicon rod manufacturing apparatus according to the present invention.
  • this reaction furnace 100 is configured such that both ends of the inverted U-shaped silicon core wire 5 are connected to each other via a pair of carbon core wire holders 9 in the space formed by the bell jar 8 and the base plate 1. Alternatively, it is further fixed to a pair of silicon metal electrodes 2 arranged on the base plate 1 via an adapter (not shown). The metal electrode 2 for silicon penetrates the base plate 1 with the insulator 7 interposed therebetween.
  • Both lower ends of the inverted U-shaped heater 11 are fixed to a pair of heater electrodes 12 via a heater electrode adapter 13.
  • the heater metal electrode 12 passes through the base plate 1 with the insulator 7 interposed therebetween.
  • the inverted U-shaped heater 11 is placed on the heater electrode 12 provided through the base plate 1 via the heater electrode adapter 13.
  • the electrode adapter 13 is used in which the electrode coupling portion is located on an extension line of the center axis of the electrode, and the heater holding portion is provided at a position shifted in the horizontal direction from the extension line of the center axis of the electrode. For this reason, when both lower ends of the inverted U-shaped heater 11 are fixed to the heater electrode adapter 13, the central axis of the lower end of the inverted U-shaped heater 11 is different from the extension line of the central axis of the electrode (offset). ) Mode.
  • the position of the heater electrode of the reaction furnace 200 cannot be changed, but the state of the offset can be changed by changing the shape of the heater adapter 13.
  • the heater electrode adapter is configured to have an electrode coupling member 13a and a holding member 13b for holding the heater, and the holding member 13b can be turned around an extension line of the central axis of the electrode. Since the lower end portion of the inverted U-shaped heater 11 also rotates around the central axis of the heater electrode 12, the arrangement of the inverted U-shaped heater 11 in the reaction furnace 100 in the horizontal direction is variable. . Moreover, the magnitude
  • FIG. 3 is a view showing a configuration example of the heater electrode adapter 13 of the above-described inverted U-shaped heater
  • FIG. 3 (A) is a top view
  • FIG. 3 (B) is a cross-sectional view.
  • the heater electrode adapter 13 includes an electrode coupling member 13a having a recess in the center, a holding member 13b that holds the lower end of the inverted U-shaped heater 11 and is rotatable around the central axis of the electrode coupling member 13a.
  • the fastening member 13c is inserted into the recess of the electrode coupling member 13a and supports the holding member 13b.
  • the lower end of the inverted U-shaped heater 11 is inserted into a hole 13h provided in the holding member 13b. It is fixed in a manner.
  • the column portion 11a of the inverted U-shaped heater 11 has a curved portion 11a2 on the lower end side of the column portion as shown in FIG. 4 in addition to the mode including only the straight body portion perpendicular to the base plate 1. It is good also as an aspect. In this case, the amount of “offset” increases by the amount of curvature.
  • FIG. 5A is a diagram showing a state in which the lower end portions of the inverted U-shaped heater 11 are held by the pair of heater electrode adapters 13 of the inverted U-shaped heater described above from above the base plate 1.
  • a mode in which two inverted U-shaped heaters 11 are provided is shown. Note that what is indicated by reference numeral 3 is a gas nozzle that penetrates the base plate 1.
  • FIG. 5B shows a state in which the holding member 13b in the state of FIG. 5A is rotated around the central axis of the heater electrode 12, and thereby the inverted U-shaped heater 11 is rotated around the central axis of the heater electrode 12.
  • FIG. 6 is a diagram showing the arrangement of the inverted U-shaped heater 11 provided on the base plate via the heater electrode adapter 10 in the conventional apparatus.
  • the arrangement of the U-shaped heater 11 is determined depending on where the heater electrode is provided on the base plate, and if the arrangement of the heater 11 is to be changed, the design of the base plate must be changed again.
  • both lower ends of the inverted U-shaped heater 11 are fixed to the heater electrode adapter 13 having the holding member 13b that can roll around the central axis of the heater electrode 12, and
  • the central axis of the lower end of the U-shaped heater 11 is arranged in the horizontal direction.
  • the optimal arrangement from the three viewpoints of the initial heating of the silicon core wire, the effect on the silicon deposition on the silicon core wire, and the silicon deposition on the heater is easy.
  • a polycrystalline silicon rod is produced by heating the silicon core wire 5 with the inverted U-shaped heater 11 using the above-described apparatus, and the state of the obtained polycrystalline silicon rod From this, it is determined whether the arrangement of the heater 11 is appropriate and necessary position adjustment is performed, and the silicon core wire 5 is heated by the heater 11 after the position adjustment to manufacture a polycrystalline silicon rod.
  • the inverted U-shaped heater is placed on the heater electrode via the holding member, and the lower end of the inverted U-shaped heater has a central axis different from the central axis of the heater electrode. Since the holding member can roll around the central axis of the heater electrode, the arrangement of the inverted U-shaped heater in the bell jar in the horizontal direction is variable and can be arranged at an appropriate position. As a result, it is possible to optimize the heater arrangement from three viewpoints: initial heating of the silicon core wire, influence on silicon deposition on the silicon core wire, and silicon deposition on the heater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

 ヒータ用電極アダプタ13は、電極結合部分が電極の中心軸の延長線上に位置し、ヒータ保持部が電極の中心軸の延長線上から水平方向にずれた位置に設けられたものが用いられる。このため、逆U字状ヒータ11の両下端部はヒータ用電極アダプタ13に固定された際、逆U字状ヒータ11の下端部の中心軸は電極の中心軸の延長線上とは異なる(オフセット)態様で載置されている。好ましくは、ヒータ用電極アダプタは電極結合部材13aとヒータを保持する保持部材13bを持つ構成とされ、保持部材13bは電極の中心軸の延長線の周りを転回可能とされ、当該転回に伴い、逆U字状ヒータ11の下端部もヒータ用電極12の中心軸の周りを転回することとなるから、反応炉100内での逆U字状のヒータ11の水平方向での配置が可変となる。

Description

多結晶シリコン棒の製造装置および製造方法
 本発明は、多結晶シリコン棒の製造技術に関し、より詳細には、多結晶シリコン棒の製造時に用いられるシリコン芯線を加熱するためのヒータに関する。
 多結晶シリコンは、半導体デバイス製造用単結晶シリコン基板や太陽電池製造用シリコン基板の原料である。一般に、多結晶シリコンの製造は、クロロシランを含む原料ガスを、加熱されたシリコン芯線に接触させ、当該シリコン芯線の表面に多結晶シリコンを気相成長(CVD:Chemical
Vapor Deposition)させるシーメンス法により行われる(例えば、特公昭37-18861号公報(特許文献1)を参照)。
 シーメンス法により多結晶シリコンを気相成長する場合、鉛直方向に2本、水平方向に1本のシリコン芯線を、反応炉内に鳥居型(逆U字状)に組立て、この鳥居型に組んだシリコン芯線の両端のそれぞれを、芯線ホルダを介してベースプレート(底板)上に設けたシリコン用金属電極に固定する。そして、これらのシリコン用金属電極から上記鳥居型シリコン芯線に通電することで加熱がなされる。なお、通常は、複数個の鳥居型シリコン芯線がベースプレート上に配置される。
 反応炉(反応器)内では、上述したベースプレートとドーム型の容器(ベルジャ)で形成される密閉空間が多結晶シリコンを気相成長させるための反応空間となる。シリコン用金属電極は絶縁物を挟んでベースプレートを貫通し、配線を通して別のシリコン用金属電極に接続されるか、反応炉外に配置された電源に接続される。反応空間内で多結晶シリコンを気相成長させる際に鳥居型シリコン芯線以外の部分にも多結晶シリコンが析出することを防止し、また装置材料の高温による損傷を防止するために、シリコン用金属電極とベースプレートおよびベルジャは、水、オイルなどの冷媒を用いて冷却される。芯線ホルダは、シリコン用金属電極を介して冷却される。
 反応炉内を水素雰囲気とし、上記シリコン用金属電極から電流を導通させてシリコン芯線を900℃以上1200℃以下の温度範囲に加熱しながら原料ガスをガスノズルから反応炉内に供給すると、シリコン芯線上にシリコンが気相成長し、所望の直径の多結晶シリコンが逆U字状に形成される。上記原料ガスとしては、例えばトリクロロシランと水素の混合ガスが用いられる。そして反応炉内を冷却した後に大気開放し、反応炉から多結晶シリコンを取り出す。
 ところで、シリコン芯線は多結晶または単結晶のシリコン等で作製されるが、高純度多結晶シリコン製造のために用いられるシリコン芯線は不純物濃度の低い高純度なものである必要があり、具体的には、比抵抗が500Ωcm以上の高抵抗のものであることが求められる。このような高抵抗のシリコン芯線の通電は、一般に常温では開始できないため、予めシリコン芯線を200~400℃に初期加熱して比抵抗を下げて(導電性を高めて)から通電する必要がある。
 このような初期加熱のために、反応炉の中央または内周面に初期加熱用のヒータを設けてある。ヒータは例えばカーボンで製作される。反応開始時には、先ずこのヒータを通電により発熱させ、その際に発生する輻射熱によってヒータ周辺に配置されているシリコン芯線を所望の温度にまで加熱するということが行われる(例えば、特開2011-037699号公報(特許文献2)を参照)。ヒータはシリコン芯線の通電がなされ、それ自身の発熱が始まると、役割が終わり、切電される。
 上述の如く、シーメンス法にて使用されるベースプレートにはシリコン用金属電極、ガスノズル、排気口、ヒータ用金属電極などが、ベースプレートを貫通させる態様で設置されるのが一般的である。これらのうち、シリコン用金属電極、ガスノズル、排気口は、その配置がCVD反応時の結晶析出に影響するため、慎重に設置場所を検討すべきである。
 ヒータの役割はシリコン芯線の初期加熱であり、その配置は、シリコン芯線の加熱状態への影響を考慮して検討されるべきことに加え、初期加熱終了後のシリコン芯線へのシリコンの析出に弊害とならないことも重要である。さらに、ヒータへのシリコンの析出が顕著となるとヒータの寿命が短くなるから、CVD反応時にシリコンがなるべく析出しない場所に設置されることが好ましい。
 つまり、シリコン芯線を通電可能な温度に加熱するための逆U字状のヒータを底板上に設置するに際しては、シリコン芯線の初期加熱の具合、シリコン芯線へのシリコンの析出への影響、および、ヒータへのシリコンの析出の具合の、3つの観点からの配置の最適化が望まれる。
特公昭37-18861号公報 特開2011-037699号公報
 ベースプレートを貫通させてシリコン用金属電極、ガスノズル、排気口、ヒータ用金属電極を設置する場合、実際に多結晶シリコン棒を育成してみないとそれらの最適な配置場所を判断することができない。しかも、これらはベースプレートを貫通させる態様で設置されているため、当初の配置を変更しようとするとベースプレートの設計変更から行わなければならず改善が困難であった。
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、シリコン芯線の初期加熱用に用いられる逆U字状のヒータの両下端部を保持する一対のヒータ用電極の設置位置を変更することなく、ベルジャ内におけるヒータ配置を可変とし、これにより、多結晶シリコン棒の育成不良や予定外のヒータ寿命の短縮といった問題を改善することが可能な多結晶シリコン棒の製造装置を提供することにある。
 上述の課題を解決するために、本発明に係る多結晶シリコン棒の製造装置は、シリコン芯線上に多結晶シリコンを気相成長させて多結晶シリコン棒を製造するための装置であって、前記シリコン芯線を通電可能な温度に加熱するための逆U字状のヒータであって底板に垂直な直胴部を有する2つの柱部と該2つの柱部の上端部同士を連結するブリッジ部とを有するヒータと、該ヒータの両下端部から通電して加熱するための一対のヒータ用電極と、を備え、前記ヒータ用電極は前記底板を貫通して設けられており、前記逆U字状ヒータはヒータ用電極アダプタを介して前記ヒータ用電極上に載置されており、前記逆U字状ヒータの下端部は前記ヒータ用電極の中心軸の延長線上とは異なる位置に中心軸を有する、ことを特徴とする。
 好ましくは、前記ヒータ用電極アダプタは、前記電極に結合するための電極結合部材と、前記ヒータの下端部を保持するための保持部材を持ち、該保持部材は前記電極の中心軸の延長線の廻りを転回可能であるものを用いる。
 本発明に係る多結晶シリコン棒の製造方法は、上述の装置を用いた多結晶シリコン棒の製造方法であって、前記ヒータによりシリコン芯線を加熱して多結晶シリコン棒を製造する第1のステップと、得られた多結晶シリコン棒の状態に基づいて前記ヒータの位置調整を行う第2のステップと、該位置調整後のヒータによりシリコン芯線を加熱して多結晶シリコン棒を製造する第3のステップと、を備えている。
 本発明の多結晶シリコンの製造装置は、逆U字状ヒータがヒータ用電極アダプタを介してヒータ用電極上に載置されており、逆U字状ヒータの下端部はヒータ用電極の中心軸の延長線上とは異なる位置に中心軸与えるヒータ用電極アダプタが選択される。このため、電極に結合されるヒータ用電極アダプタの選択によってヒータの位置を変更することが可能になる。
 更に、ヒータ用電極アダプタを電極結合部材とヒータを保持する保持部材を持つ構成とし、保持部材がヒータ用電極の中心軸の周りを転回可能とした場合には、ヒータ用電極アダプタそのものを交換することなく、ベルジャ内での逆U字状のヒータの水平方向での配置が可変となり、容易にヒータを適正位置に配置させることが可能となる。これにより、シリコン芯線の初期加熱の具合、シリコン芯線へのシリコンの析出への影響、および、ヒータへのシリコンの析出の具合の、3つの観点からのヒータ配置の最適化が可能となる。
多結晶シリコン棒製造用反応炉の一般的な構成を例示した断面概略図である。 本発明に係る多結晶シリコン棒の製造装置の反応炉の構成例を示す断面概略図である。 逆U字状ヒータのヒータ用電極アダプタの構成例を示す図である。 柱部の下端部側に湾曲部を有している態様の逆U字状ヒータを示す図である。 逆U字状ヒータのヒータ用電極アダプタの一対に逆U字状ヒータの両下端部を保持させた状態をベースプレートの上方向から示した図である。 図5Aの状態のヒータ用電極アダプタに対し、保持部材を電極結合部材の中心軸の周りで転回させ、これにより、逆U字状ヒータをヒータ用電極の中心軸の周りで転回させた状態を示す図である。 従来型の装置における、逆U字状ヒータのベースプレート上での配置の様子を示す図である。
 以下に、図面を参照して、本発明の実施の形態について説明する。
 図1は、シーメンス法により多結晶シリコンを気相成長させて多結晶シリコン棒を製造するための反応炉の一般的な構成を例示した断面概略図である。
 反応炉200は、ベルジャ8とベースプレート1により構成される空間内に、シリコン芯線5を鉛直方向2本、水平方向1本の鳥居型(逆U字状)に組み立て、該鳥居型のシリコン芯線5の両端を1対のカーボン製芯線ホルダ9を介して、あるいは、更に芯線ホルダアダプタ(不図示)を介して、ベースプレート1上に配置した一対のシリコン用金属電極2に固定する。シリコン用金属電極2は、絶縁物7を挟んでベースプレート1を貫通し、配線(不図示)により別のシリコン用金属電極(不図示)に接続されるか、反応炉200外に配置された電源(不図示)に接続される。なお、図中、符号3で示したものはガスノズルであり、符号4で示したものは排気口である。なお、シリコン芯線、ヒータ、ガスノズル等はいずれも1つずつ模式的に表現されたもので、実際にはそれぞれの複数のものが種々の設計に基づいて配置される。
 シリコン芯線を通電可能な温度に加熱するための逆U字状のヒータ11は、底板に垂直な直胴部を有する2本の柱部11aと該2つの柱部11aの上端部同士を連結するブリッジ部11bとから成る逆U字状のもので、該ヒータの両下端部は、ヒータ用電極アダプタ10を介して、一対のヒータ用電極12に固定されている。ヒータ用金属電極12は、絶縁物7を挟んでベースプレート1を貫通し、反応炉200外に配置された電源(不図示)に接続される。
 シリコン芯線5上に多結晶シリコン6を成長(析出)させるためには、一般的には、シリコン芯線5の抵抗値を下げるためにその表面温度が900~1200℃程度となるように加熱し、トリクロロシランをシリコン原料として供給する。シリコン芯線5の加熱はシリコン用金属電極2からの通電により行われるが、シリコン芯線5の温度を200~400℃にまで加熱する「初期加熱」には、逆U字状のヒータ11が用いられる。なお、初期加熱後にはヒータ11はオフされ、シリコン用金属電極2からの通電のみにより多結晶シリコン6の析出に必要な上記温度にまで加熱がなされる。
 図2は、本発明に係る多結晶シリコン棒の製造装置の反応炉100の構成例を示す断面概略図である。
 上述の反応炉200と同様に、この反応炉100は、ベルジャ8とベースプレート1により構成される空間内に、逆U字状のシリコン芯線5の両端を1対のカーボン製芯線ホルダ9を介して、あるいは、更にアダプタ(不図示)を介して、ベースプレート1上に配置した一対のシリコン用金属電極2に固定する。シリコン用金属電極2は、絶縁物7を挟んでベースプレート1を貫通している。
 逆U字状のヒータ11の両下端部は、ヒータ用電極アダプタ13を介して、一対のヒータ用電極12に固定されている。ヒータ用金属電極12は、絶縁物7を挟んでベースプレート1を貫通している。
 本発明においても、従来の装置と同様に、ベースプレート1を貫通して設けられたヒータ用電極12の上に逆U字状ヒータ11がヒータ用電極アダプタ13を介して載置されるが、ヒータ用電極アダプタ13は、電極結合部分が電極の中心軸の延長線上に位置し、ヒータ保持部が電極の中心軸の延長線上から水平方向にずれた位置に設けられたものが用いられる。このため、逆U字状ヒータ11の両下端部はヒータ用電極アダプタ13に固定された際、逆U字状ヒータ11の下端部の中心軸は電極の中心軸の延長線上とは異なる(オフセット)態様で載置されている。ここでは、反応炉200のヒータ用電極の位置を変更することはできないが、ヒータ用アダプタ13の形状を変更することにより、オフセットの状態を変更することができる。
 好ましくは、ヒータ用電極アダプタは電極結合部材13aとヒータを保持する保持部材13bを持つ構成とされ、保持部材13bは電極の中心軸の延長線の周りを転回可能とされ、当該転回に伴い、逆U字状ヒータ11の下端部もヒータ用電極12の中心軸の周りを転回することとなるから、反応炉100内での逆U字状のヒータ11の水平方向での配置が可変となる。また、保持部材13bのみを交換し、長さを変えることによって、オフセットの大きさを変更することもできる。
 図3は上述の逆U字状ヒータのヒータ用電極アダプタ13の構成例を示す図で、図3(A)は上面図、図3(B)は断面図である。このヒータ用電極アダプタ13は、中央に凹部を有する電極結合部材13aと、逆U字状ヒータ11の下端部を保持するとともに電極結合部材13aの中心軸の周りを回動可能な保持部材13bと、電極結合部材13aの上記凹部に挿入されて保持部材13bを支持するための締結部材13cとから成り、逆U字状ヒータ11の下端部は保持部材13bに設けられた穴部13hに挿入される態様で固定される。
 なお、逆U字状ヒータ11の柱部11aは、ベースプレート1に垂直な直胴部のみから成る態様以外にも、図4に示すような、柱部の下端部側に湾曲部11a2を有している態様としてもよい。この場合には、湾曲分だけ「オフセット」の量が多くなる。
 図5Aは上述の逆U字状ヒータのヒータ用電極アダプタ13の一対に逆U字状ヒータ11の両下端部を保持させた状態をベースプレート1の上方向から示した図で、この図には2つの逆U字状ヒータ11が設けられた態様が示されている。なお、符号3で示したものは、ベースプレート1を貫通するガスノズルである。
 図5Bは、図5Aの状態の保持部材13bをヒータ用電極12の中心軸の周りで転回させ、これにより、逆U字状ヒータ11をヒータ用電極12の中心軸の周りで転回させた状態を示す図である。
 図6は、従来型の装置における、ヒータ用電極アダプタ10を介して設けられた、逆U字状ヒータ11のベースプレート上での配置の様子を示す図であるが、このような態様では、逆U字状ヒータ11の配置はベースプレート上の何処にヒータ用電極を設けたかにより決まってしまい、ヒータ11の配置を変更しようとすればベースプレートの設計変更からやり直すしかない。
 これに対して、本発明のように、逆U字状ヒータ11の両下端部をヒータ用電極12の中心軸の周りを転回可能な保持部材13bを持つヒータ用電極アダプタ13に固定し、逆U字状ヒータ11の下端部の中心軸がヒータ用電極12の中心軸とは異なる(オフセット)態様とすることで、反応炉100内での逆U字状のヒータ11の水平方向での配置が容易に変更できることで、シリコン芯線の初期加熱の具合、シリコン芯線へのシリコンの析出への影響、および、ヒータへのシリコンの析出の具合の、3つの観点からの最適配置が容易なものとなる。
 本発明に係る多結晶シリコン棒の製造方法では、上述の装置を用い、逆U字状ヒータ11によりシリコン芯線5を加熱して多結晶シリコン棒を製造し、得られた多結晶シリコン棒の状態からヒータ11の配置の適否を判断して必要な位置調整を行い、該位置調整後のヒータ11によりシリコン芯線5を加熱して多結晶シリコン棒を製造するという工程を採用する。
 本発明によれば、逆U字状ヒータが保持部材を介してヒータ用電極上に載置されており、逆U字状ヒータの下端部はヒータ用電極の中心軸とは異なる中心軸を有し、保持部材がヒータ用電極の中心軸の周りを転回可能であるため、ベルジャ内での逆U字状のヒータの水平方向での配置が可変となり適正位置に配置させることが可能となる。これにより、シリコン芯線の初期加熱の具合、シリコン芯線へのシリコンの析出への影響、および、ヒータへのシリコンの析出の具合の、3つの観点からのヒータ配置の最適化が可能となる。
1 ベースプレート
2 シリコン用金属電極
3 ガスノズル
4 排気口
5 シリコン芯線
6 多結晶シリコン
7 絶縁物
8 ベルジャ
9 芯線ホルダ
10 ヒータ用電極アダプタ
11 ヒータ
12 ヒータ用金属電極
13 ヒータ用電極アダプタ
13a 電極結合部材
13b 保持部材
100,200 反応炉

Claims (3)

  1.  シリコン芯線上に多結晶シリコンを気相成長させて多結晶シリコン棒を製造するための装置であって、
     前記シリコン芯線を通電可能な温度に加熱するための逆U字状のヒータであって底板に垂直な直胴部を有する2つの柱部と該2つの柱部の上端部同士を連結するブリッジ部とを有するヒータと、該ヒータの両下端部から通電して加熱するための一対のヒータ用電極と、を備え、
     前記ヒータ用電極は前記底板を貫通して設けられており、
     前記逆U字状ヒータはヒータ用電極アダプタを介して前記ヒータ用電極上に載置されており、
     前記逆U字状ヒータの下端部は前記ヒータ用電極の中心軸の延長線上とは異なる位置に中心軸を有する、
    ことを特徴とする多結晶シリコン棒の製造装置。
  2.  前記ヒータ用電極アダプタは、前記電極に結合するための電極結合部材と、前記ヒータの下端部を保持するための保持部材を持ち、該保持部材は前記電極の中心軸の延長線の廻りを転回可能である、請求項1に記載の多結晶シリコン棒の製造装置。
  3.  請求項1または2に記載の装置を用いた多結晶シリコン棒の製造方法であって、前記ヒータによりシリコン芯線を加熱して多結晶シリコン棒を製造する第1のステップと、得られた多結晶シリコン棒の状態に基づいて前記ヒータの位置調整を行う第2のステップと、該位置調整後のヒータによりシリコン芯線を加熱して多結晶シリコン棒を製造する第3のステップと、を備えている多結晶シリコン棒の製造方法。
PCT/JP2013/006609 2012-11-21 2013-11-11 多結晶シリコン棒の製造装置および製造方法 WO2014080588A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-255176 2012-11-21
JP2012255176A JP5865236B2 (ja) 2012-11-21 2012-11-21 多結晶シリコン棒の製造装置および製造方法

Publications (1)

Publication Number Publication Date
WO2014080588A1 true WO2014080588A1 (ja) 2014-05-30

Family

ID=50775785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006609 WO2014080588A1 (ja) 2012-11-21 2013-11-11 多結晶シリコン棒の製造装置および製造方法

Country Status (2)

Country Link
JP (1) JP5865236B2 (ja)
WO (1) WO2014080588A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772753B2 (ja) * 2016-10-19 2020-10-21 三菱マテリアル株式会社 多結晶シリコン反応炉
JP7345441B2 (ja) 2020-07-02 2023-09-15 信越化学工業株式会社 多結晶シリコン製造装置
JP2023008110A (ja) 2021-07-05 2023-01-19 信越化学工業株式会社 多結晶シリコンロッドの製造装置及び製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208312A (ja) * 1988-02-15 1989-08-22 Shin Etsu Handotai Co Ltd 高純度多結晶棒製造方法及び該製造方法に用いる反応容器
JP2009126774A (ja) * 2007-11-28 2009-06-11 Mitsubishi Materials Corp 多結晶シリコンの製造装置
JP2009536914A (ja) * 2006-05-11 2009-10-22 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 混合されたコア手段を使用した高純度シリコン棒の製造装置及び製造方法
JP2011037699A (ja) * 2009-07-15 2011-02-24 Mitsubishi Materials Corp 多結晶シリコンの製造方法、製造装置及び多結晶シリコン
JP2013071856A (ja) * 2011-09-27 2013-04-22 Shin-Etsu Chemical Co Ltd 多結晶シリコン製造装置および多結晶シリコンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208312A (ja) * 1988-02-15 1989-08-22 Shin Etsu Handotai Co Ltd 高純度多結晶棒製造方法及び該製造方法に用いる反応容器
JP2009536914A (ja) * 2006-05-11 2009-10-22 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 混合されたコア手段を使用した高純度シリコン棒の製造装置及び製造方法
JP2009126774A (ja) * 2007-11-28 2009-06-11 Mitsubishi Materials Corp 多結晶シリコンの製造装置
JP2011037699A (ja) * 2009-07-15 2011-02-24 Mitsubishi Materials Corp 多結晶シリコンの製造方法、製造装置及び多結晶シリコン
JP2013071856A (ja) * 2011-09-27 2013-04-22 Shin-Etsu Chemical Co Ltd 多結晶シリコン製造装置および多結晶シリコンの製造方法

Also Published As

Publication number Publication date
JP2014101256A (ja) 2014-06-05
JP5865236B2 (ja) 2016-02-17

Similar Documents

Publication Publication Date Title
KR101577452B1 (ko) 다결정 실리콘 반응로
JP5194003B2 (ja) 金属コア手段を使用した高純度多結晶シリコン棒の製造方法
US9562289B2 (en) Carbon electrode with slidable contact surfaces and apparatus for manufacturing polycrystalline silicon rod
KR20140099952A (ko) Cvd 반응기의 개선된 폴리실리콘 증착
JP5865236B2 (ja) 多結晶シリコン棒の製造装置および製造方法
KR20130007589A (ko) 카바이드 필라멘트에 의한 열선 화학적 기상 증착법
WO2012147300A1 (ja) 多結晶シリコン製造装置および多結晶シリコンの製造方法
US20140216348A1 (en) Apparatus for fabricating ingot
WO2011083529A1 (ja) 単結晶製造装置
RU2394117C2 (ru) Cvd-реактор и способ синтеза гетероэпитаксиальных пленок карбида кремния на кремнии
JP2013021113A (ja) 気相成長装置および気相成長方法
JP2012178390A (ja) 基板処理装置
WO2011067894A1 (ja) 単結晶製造装置及び単結晶製造方法
JP5542031B2 (ja) 多結晶シリコンの製造方法および多結晶シリコンの製造システム
JP5539292B2 (ja) 多結晶シリコンの製造方法
JP2013071856A (ja) 多結晶シリコン製造装置および多結晶シリコンの製造方法
WO2016002232A1 (ja) 多結晶シリコン棒製造用のシリコン芯線および多結晶シリコン棒の製造装置
JP2018065717A (ja) 多結晶シリコン反応炉
JP7263172B2 (ja) 多結晶シリコン製造装置
JP5642857B2 (ja) 炭素電極および多結晶シリコン棒の製造装置
JP2020055703A (ja) 多結晶シリコン製造方法及びシード組立体予熱用ヒータ
KR101943313B1 (ko) 기판 처리 장치 및 시스템
JP2013193931A (ja) 多結晶シリコンロッドの製造方法
AU2013251286B2 (en) Carbon electrode and apparatus for manufacturing polycrystalline silicon rod
KR20130022597A (ko) 잉곳 제조 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856973

Country of ref document: EP

Kind code of ref document: A1