WO2014079152A1 - 一种过滤检测装置及其应用 - Google Patents

一种过滤检测装置及其应用 Download PDF

Info

Publication number
WO2014079152A1
WO2014079152A1 PCT/CN2013/001433 CN2013001433W WO2014079152A1 WO 2014079152 A1 WO2014079152 A1 WO 2014079152A1 CN 2013001433 W CN2013001433 W CN 2013001433W WO 2014079152 A1 WO2014079152 A1 WO 2014079152A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
substance
solution
indicator
tested
Prior art date
Application number
PCT/CN2013/001433
Other languages
English (en)
French (fr)
Inventor
刘凤鸣
Original Assignee
北京康华源科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京康华源科技发展有限公司 filed Critical 北京康华源科技发展有限公司
Priority to US14/440,347 priority Critical patent/US20150276731A1/en
Publication of WO2014079152A1 publication Critical patent/WO2014079152A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing

Definitions

  • the invention relates to a filter detection device and its use.
  • Immunological detection technology is an experimental method for measuring antigens, antibodies, immune cells and chemical components designed by the principle of immunology. It is widely used in samples for disease diagnosis and health detection from human and animal bodies, as well as for environmental and pharmaceutical applications. Samples for analysis, food and industrial analysis. Commonly used are immunoturbidimetric techniques, solid phase enzyme immunoassay techniques, chemiluminescence detection techniques, immunofluorescence labeling techniques, flow cytometry, colloidal gold techniques, and the like.
  • the immunoturbidimetric technique also known as immunoturbidimetric method, is a soluble antigen, which specifically binds in the liquid phase to produce a complex of a certain size, which forms the refraction or absorption of light, and determines the transmitted or scattered light after such refraction or absorption. As a unit of calculation, it is used for quantitative detection, but its detection sensitivity is low and it is not suitable for micro-detection.
  • the solid phase enzyme immunoassay technique is based on the immobilization of an antigen or antibody and the enzymatic labeling of an antigen or antibody. The antigen or antibody bound to the surface of the solid support maintains its immunological activity, and the enzyme or conjugate of the antigen retains both its immunological activity and the activity of the enzyme.
  • the test specimen (measured antibody or antigen) and the enzyme antigen or antibody are reacted in different steps with the antigen or antibody on the surface of the solid phase carrier, which has high sensitivity, wide linear response range and easy automation. And so on.
  • the long reaction time is limited by its use.
  • Immunochemiluminescence detection technology is a highly sensitive micro and trace analysis technology with significant advantages such as easy operation, high sensitivity, wide linear response range and easy automation. It is widely used in environmental, clinical, pharmaceutical analysis, food and In industrial analysis, it is also a solid phase separation method based on an antigen or an antibody, and a luminescent reagent labeling technique for an antigen or an antibody.
  • the long reaction time and the high requirements for the testing equipment also affect its use.
  • Immunofluorescence labeling, flow cytometry, and colloidal gold techniques are also widely used, but they all have their corresponding shortcomings.
  • An object of the present invention is to provide a filter detecting device having high sensitivity, full quantitative, and fast detection speed.
  • the filter detecting device provided by the present invention uses a filter as a reaction carrier, and mainly includes a sample storage to be inspected, a detecting phase reservoir, a filter and a detector; the filter is composed of an inlet, a filtering layer and an outlet, and the filtering
  • the filter core in the layer is a solid phase material to which a specific binder of the analyte is coupled; the sample reservoir to be inspected and the reservoir of the detection phase are respectively connected to the inlet of the filter through a pipe.
  • the sample to be tested may specifically be any one of the following: a sample derived from a human body or an animal body for disease diagnosis or health detection, and a sample for environmental, pharmaceutical analysis, food, industrial analysis.
  • Samples derived from human body are the main content of clinical testing, and are used for diagnosis, auxiliary diagnosis, prediction, and disease monitoring of various diseases.
  • Sample testing from animal bodies is also the main content of clinical testing, for the diagnosis, auxiliary diagnosis, prediction, disease monitoring and food safety testing of various diseases related to animals.
  • the detection phase is a solution of the detection substance; the detection substance is a specific conjugate of the test substance through the indicator a substance formed after labeling; the indicator is a substance capable of directly or indirectly producing a change in color or amount of light.
  • the specific combination of the test substance and the test substance is often any combination of the following: enzymes and inhibitors, antigens and antibodies, ligands and receptors, and the like.
  • the indicator is often an enzyme substance, a substance which can directly or indirectly emit light, a substance which can generate fluorescence, a substance which is colored by itself, and the like.
  • Commonly used enzymes are horseradish peroxidase (HRP), alkaline phosphatase (ALP), glucose oxidase, ⁇ -galactosidase, lysozyme and malate dehydrogenase.
  • Substances that can be directly or indirectly luminescent are commonly used in the form of luminol and its derivatives, luster, lollin, peroxy oxalates, acridinium esters and the like.
  • Fluorescent substances such as fluorescein isothiocyanate (FITC) or rhodamine (RB200), which are colored by themselves, such as colloidal gold.
  • the detector may be an instrument capable of quantitatively detecting and recording changes in color or light quantity, and may specifically be any of the following: an enzyme-linked immunosorbent detector, a chemiluminescence detector, a fluorescence detector, and a spectrophotometer. meter.
  • the solid phase material as the filter core may be a particulate matter or a mesh-like substance.
  • the solid phase particulate or mesh-like substance is a plurality of solid substances capable of coupling with an antigen or an antibody and not significantly changing the immunological binding properties of the antigen or antibody, such as commonly used gel particles, Latex particles, magnetic particles, etc.; the gel particles are a gel filtration filler of a dextran gel series and a gel filtration filler of agarose gel series, commonly used cyanogen bromide activated agarose gel medium, NHS Activate the agarose gel medium and the like.
  • the sample storage to be tested and the detection phase reservoir are specifically a 5 mL centrifuge tube; a pipe connecting the sample storage to be tested and the filter, and connecting the detection
  • the phase reservoir and the conduit of the filter are each specifically a silicone tube.
  • the volume of the filter core may be from 2 cubic millimeters to 1 cubic centimeter, such as from 3 cubic millimeters to 0.3 cubic centimeters, further from 5 cubic millimeters to 0.1 cubic centimeters, and further as from 70 to 100 cubic millimeters.
  • the volume of the filter core is specifically 70 cubic millimeters; in another embodiment of the invention, the volume of the filter core is specifically 100 cubic millimeters.
  • the filter core may have a shape longer than a width, and an aspect ratio of 2-100, such as 2-50, further like 2-30, may be cylindrical, conical, square, rectangular, and Its combined shape and the like.
  • the filter core may also have a shape with a width greater than a length, and a width to length ratio of 1.1-10, such as 1.1-5, further like 1.1-3, may be a cylindrical shape, a conical shape, a square shape, a rectangular shape, and a combination thereof. Wait.
  • the filter core has a long column shape, and an aspect ratio (ratio of the height of the cylinder to the diameter of the bottom surface) is 10:3; in another embodiment of the present invention, the filter core In the form of a flat column, the ratio of the width to the length (the ratio of the diameter of the bottom surface of the cylinder to the height) is 10:5.
  • the conduit between the sample storage reservoir and the filter is communicated, and a pump is fixed to each of the conduits between the detection phase reservoir and the filter (eg peristaltic pump);
  • the pump (such as a peristaltic pump) is used to drive the delivery of liquid from the reservoir (test sample reservoir or detection phase reservoir) to the filter and to control the flow rate during filtration.
  • a peristaltic pump is used to drive liquid transportation.
  • the peristaltic pump is a product of Baoding Lange Constant Flow Pump Co., Ltd., and its catalog number is BQ50-1J.
  • Another object of the present invention is to provide a method of detecting the content of a sample to be tested in a sample to be tested by using the filter detecting device.
  • the method for detecting the content of a sample to be tested in the sample to be tested by using the filter detecting device provided by the present invention is as Next (A) or (B):
  • (A) includes the following steps:
  • the solution B is a solution of a detection substance, and the detection substance is a substance formed by labeling a specific conjugate of the analyte; the indicator is capable of directly or indirectly producing a color or a change in the amount of light.
  • the solution B flows into the filter through a pipe, and the detection substance specifically binds to the analyte to be specifically captured by the filter core to form a composite of a filter core-test substance-detection substance Object 1 ;
  • (B) includes the following steps:
  • solution B2 placing solution B2 in the detection phase reservoir;
  • the solution B2 being a solution of the substance labeled by the indicator, the indicator-labeled substance being capable of interacting with the indicatorless agent in the solution B1
  • the labeled specific binding substance of the analyte is combined;
  • the indicator is a substance capable of directly or indirectly producing a color or a change in the amount of light;
  • the solution B2 flows into the filter through a pipe, and the indicator-labeled substance is combined with the specific combination of the non-indicator-labeled substance to be detected in the complex 2, Forming a filter core - the test substance - a specific combination of the test substance not labeled with the indicator - a complex 3 of the substance labeled by the indicator;
  • each solution flows into the filter, and the flow rate at the time of filtration is 0.05 - 1.
  • OmL / min such as 0.1 - 0.3 mL / min.
  • step of washing the filter with a cleaning solution may also be included after step 2) and/or step 3) of the method.
  • (A) is a commonly used two-step detection method, in which a sample solution to be tested containing the object to be inspected is injected into the filter for filtration, and then washed; then it can be specifically combined with the object to be tested and can directly A solution of the test substance which indirectly produces a change in color or amount of light is injected into the filter for filtration and directly detected.
  • (B) is a three-step method, and may be more steps, that is, the sample solution to be tested containing the object to be inspected is injected into the filter for filtration, cleaning; and the object to be inspected without the indicator is specifically Solution filtration of the sex conjugate (this step is carried out at least once); then injecting a substance solution capable of directly or indirectly producing a change in color or light amount in combination with the analyte-specific conjugate which is not labeled with the indicator Filter in the filter and test.
  • the sample to be tested may specifically be any one of the following: a sample derived from a human or animal body for disease diagnosis or health detection, and a sample for environmental, pharmaceutical analysis, food, industrial analysis.
  • the sample detection from the human body is the main content of clinical detection, and is used for diagnosis, auxiliary diagnosis, prediction, and condition monitoring of various diseases.
  • Sample testing from animal bodies is also the main content of clinical testing, for the diagnosis, auxiliary diagnosis, prediction, disease monitoring and food safety testing of various diseases related to animals.
  • the specific combination of the test substance and the test substance is often any combination of the following: enzymes and inhibitors, antigens and antibodies, ligands and receptors, and the like.
  • the indicator is often an enzyme substance, a substance which can directly or indirectly emit light, a substance which can generate fluorescence, a substance which has its own color, and the like.
  • Commonly used enzymes are horseradish peroxidase (HRP), alkaline phosphatase (ALP), glucose oxidase, ⁇ -galactosidase, lysozyme and malate dehydrogenase.
  • Luminos and its derivatives, luster essence, lozenine, peroxy oxalates, acridinium esters and the like are commonly used for substances which can directly or indirectly emit light.
  • Fluorescent substances such as fluorescein isothiocyanate (FITC) or rhodamine (RB200), and their own color-bearing substances such as colloidal gold.
  • the filter provided by the invention can be used for quantitative immunoassay, the filter is composed of an inlet, a filter layer and an outlet, and the filter core in the filter layer is a solid phase material coupled with a specific combination of the test substance. .
  • the solid phase material as the filter core may be a particulate matter or a mesh-like substance.
  • the solid phase particulate or mesh-like substance is a plurality of solid substances capable of coupling with an antigen or an antibody and not significantly changing the immunological binding properties of the antigen or antibody, such as Gel particles, latex particles, magnetic particles, etc.;
  • the gel particles are a gel filtration filler of the dextran gel series and a gel filtration filler of the Qiongyue sugar gel series, which is commonly activated by cyanogen bromide Agarose gel medium, NHS activated agarose gel medium, and the like.
  • the volume of the filter core may be 2 cubic millimeters to 1 cubic centimeter, such as 3 cubic millimeters to 0.3 cubic centimeters, further, such as 5 cubic millimeters to 0.1 cubic centimeters.
  • the filter core may have a shape longer than a width, and has an aspect ratio of 2-100, such as 2-50, further like 2-30, which may be cylindrical, conical, square, rectangular. And its combined shape and so on.
  • the filter core may also have a shape with a width greater than a length, and a width to length ratio of 1.1-10, such as 1.1-5, further like 1.1-3, may be a cylindrical shape, a conical shape, a square shape, a rectangular shape, and a combination thereof. Wait.
  • the filter core has a long column shape, and an aspect ratio (ratio of the height of the cylinder to the diameter of the bottom surface) is 10:3; in another embodiment of the present invention, the filter core In the form of a flat column, the ratio of the width to the length (the ratio of the diameter of the bottom surface of the cylinder to the height) is 10:5.
  • the method for detecting the content of a sample to be tested in the sample to be tested by using the filter provided by the present invention may be as follows (C) or (D):
  • (C) includes the following steps:
  • solution A is a solution containing the sample to be tested of the sample to be tested
  • B is a solution of a test substance, which is a substance formed by labeling a specific conjugate of the test substance with an indicator
  • the indicator is a substance capable of directly or indirectly producing a color or a change in the amount of light
  • the solution B flows into the filter through a pipe, and the detection substance specifically binds to the analyte to be specifically captured by the filter core to form a composite of a filter core-test substance-detection substance Object 1 ;
  • (D) includes the following steps:
  • solution B2 placing solution B2 in the detection phase reservoir;
  • the solution B2 being a solution of the substance labeled by the indicator, the indicator-labeled substance being capable of interacting with the indicatorless agent in the solution B1
  • the labeled specific binding substance of the analyte is combined;
  • the indicator is a substance capable of directly or indirectly producing a color or a change in the amount of light;
  • the solution B2 flows into the filter through a pipe, and the indicator-labeled substance is combined with the specific combination of the non-indicator-labeled substance to be detected in the complex 2, Forming a filter core - the test substance - a specific combination of the test substance not labeled with the indicator - a complex 3 of the substance labeled by the indicator;
  • Detection as follows: (a) - (c): (a) directly detecting, by the detector, a filter cartridge that captures the analyte, the specific binder of the analyte not labeled, and the marker-labeled substance, by Calculating the content of the object to be tested by changing the color or amount of light produced by the indicator;
  • the detector may be an apparatus capable of quantitatively detecting and recording changes in color or light quantity, and specifically may be any of the following: an enzyme-linked immunosorbent detector, a chemiluminescence detector, a fluorescence detector, and a spectrophotometer. .
  • each solution is injected into the filter, and the flow rate at the time of filtration is 0.05 - 1.
  • OmL / min such as 0.1 - 0.3 mL / min.
  • the step of washing the filter with a cleaning liquid may also be included after step 1) and/or step 2) of the method.
  • (C) is a commonly used two-step detection method, that is, the sample solution to be tested containing the object to be inspected is injected into the filter for filtration, and then washed; then it can be specifically combined with the object to be tested and can directly A solution of the test substance which indirectly produces a change in color or amount of light is injected into the filter for filtration and directly detected.
  • (D) is a three-step method or more steps, in which a sample solution to be tested containing the object to be inspected is injected into the filter for filtration, cleaning; and a specific substance to be detected which is not labeled with an indicator is used.
  • Filtration of the solution (this step is carried out at least once); then injecting into the filter with a substance solution capable of binding to the analyte-specific conjugate not labeled with the indicator and capable of directly or indirectly producing a change in color or amount of light Filtered and tested.
  • the sample to be tested may specifically be any one of the following: a sample derived from a human or animal body for disease diagnosis or health detection, and a sample for environmental, pharmaceutical analysis, food, industrial analysis.
  • the sample detection from the human body is the main content of clinical detection, and is used for diagnosis, auxiliary diagnosis, prediction, and condition monitoring of various diseases.
  • Sample testing from animal bodies is also the main content of clinical testing, for the diagnosis, auxiliary diagnosis, prediction, disease monitoring and food safety testing of various diseases related to animals.
  • the specific combination of the test substance and the test substance is often any combination of the following: enzymes and inhibitors, antigens and antibodies, ligands and receptors, and the like.
  • the indicator is often an enzyme substance, a substance which can directly or indirectly emit light, a substance which can generate fluorescence, a substance which has its own color, and the like.
  • Commonly used enzymes are horseradish peroxidase (HRP), alkaline phosphatase (ALP), glucose oxidase, ⁇ -galactosidase, lysozyme and malate dehydrogenase.
  • Luminos and its derivatives, luster essence, lozenine, peroxy oxalates, acridinium esters and the like are commonly used for substances which can directly or indirectly emit light.
  • Fluorescent substances such as fluorescein isothiocyanate (FITC) or rhodamine (RB200), and their own color-bearing substances such as colloidal gold.
  • all of the above analytes are specifically human fibrinogen.
  • all of the above-mentioned samples to be tested are specifically human fibrinogen solution or ex vivo human plasma (ex vivo plasma of healthy persons).
  • all of the above specific binding substances of the test substance are specifically a polyclonal antibody against human fibrinogen or a monoclonal antibody against human fibrinogen.
  • all of the above test substances are specifically horseradish peroxidase-labeled monoclonal antibodies against human fibrinogen or colloidal gold-labeled anti-human fibers.
  • a proprotein monoclonal antibody is specifically horseradish peroxidase-labeled monoclonal antibodies against human fibrinogen or colloidal gold-labeled anti-human fibers.
  • the labeled substances are specifically alkaline phosphatase-labeled secondary antibodies or horseradish peroxidase-labeled secondary antibodies.
  • all of the above detectors are specifically chemiluminescence detectors, enzyme-linked immunosorbent detectors or spectrophotometers.
  • all of the above solid phase materials are specifically NHS activated agarose gel particles; correspondingly, all of the above filter cores are specifically NHS labeled with polyclonal antibody against human fibrinogen. Activate the agarose gel particles. Further, in the process of preparing the filter core, the ratio between the polyclonal antibody against human fibrinogen and the NHS activated agarose gel particles is 0.1-10 mg: 1 mL (eg, 2.5 mg : lmL) .
  • the NHS activated agarose gel particles are specifically CS-A30-01 NHS activated agarose gel FF of Beijing Weishi Bohui Chromatography Technology Co., Ltd.
  • all of the above filters are prepared according to the method comprising the following steps: (a) preparing a filter housing, the material of the filter housing may be plastic (such as hard material);
  • Fig. 1 is a schematic view showing the basic structure of a filter detecting device for a long column filter.
  • Fig. 2 is a schematic view showing the basic structure of a filter detecting device of a flat cylindrical filter.
  • the following examples are provided to facilitate a better understanding of the invention but are not intended to limit the invention.
  • the experimental methods in the following examples are conventional methods unless otherwise specified.
  • the test materials used in the following examples, unless otherwise specified, were purchased from conventional biochemical reagent stores. In the quantitative tests in the following examples, three replicate experiments were set, and the results were averaged.
  • the filter detecting device mainly comprises a sample storage device 2 to be inspected, a phase detector 3, a detector 4, and a long column filter 1 or a flat column filter 10.
  • the long cylindrical filter 1 or the flat cylindrical filter 10 is specifically composed of an inlet 5, a filter layer 6 and an outlet 7, wherein the filter core in the filter layer 6 is a specific conjugate (such as an antigen or an antibody) through the analyte. Co-labeled solid phase material.
  • the sample storage 2 to be inspected and the detection phase reservoir 3 are connected to the inlet 5 of the long columnar filter 1 or the flat columnar filter 10 through a pipe 8 and a pipe 9, respectively.
  • the conduit 8 between the sample storage reservoir 2 and the filter (the long cylindrical filter 1 or the flat cylindrical filter 10), and the detection phase reservoir 3 and the A pump is further fixed to the pipe 9 between the filter (the long cylindrical filter 1 or the flat cylindrical filter 10); the pump is used to drive the slave memory (the sample storage device 2 or the detection phase reservoir 3) ) Liquid delivery to the filter and control of the flow rate during filtration.
  • the long columnar filter 1 or the flat columnar filter 10 is a reaction carrier for detecting the reaction, and the main reaction process is carried out on the long columnar filter 1 or the flat columnar filter 10.
  • the solid phase material as the filter core may be a stacked solid phase particulate material, forming a lacunar filter pore size between the particles and the particles, or may be a mesh-like solid phase material.
  • the sample storage 2 to be tested is used for loading samples including diseases or health tests which are derived from human or animal bodies, and sample solutions (containing substances to be tested) for environmental, pharmaceutical analysis, food, and industrial analysis.
  • the test substance is a substance formed by the specific conjugate of the test substance after being marked by the indicator;
  • the indicator agent is capable of directly or indirectly producing a color or a change in the amount of light Substance.
  • the detector 4 is an apparatus capable of quantitatively detecting and recording changes in color or light quantity, and commonly used enzyme-linked immunosensors, chemiluminescence detectors, fluorescence detectors, and spectrophotometers.
  • the reacted NHS-activated agarose gel particles were washed with pure water, and then a solution containing 10 mM ethanolamine and 0.2 M sodium carbonate was added, pH 8.0, and the unconjugated group was blocked by shaking at room temperature for 4 hours, using 50 mM phosphate buffer.
  • the filter was cleaned, and the prepared filter was prepared by using the prepared NHS activated agarose gel particles, and placed in a self-made long column micro-filter housing, sealed, and used.
  • the resulting filter has a long column shape (having an aspect ratio of 10:3, that is, a ratio of the height of the cylinder to the diameter of the bottom surface of 10:3), and its volume is 70 mm 3 .
  • FIG. 1 Take two 5ml centrifuge tubes, one as the sample reservoir to be inspected and the other as the detection phase reservoir. Connect the two reservoirs through the silicone tube to the inlet of the filter prepared in step one, and simultaneously in the two silicone tubes. Each of them is fixed with a peristaltic pump (product of Baoding Lange Constant Flow Pump Co., Ltd., catalog number BQ50-1J), which drives the liquid delivery from the reservoir to the filter and controls the flow rate during filtration.
  • the connected device together with the detector constitutes the filter detecting device provided by the present invention.
  • the detector is an instrument capable of quantitatively detecting and recording changes in color or light quantity, and commonly used enzyme-linked immunoassay, chemiluminescence detector, fluorescence detector, and spectrophotometer.
  • Glutaraldehyde Glutaraldehyde, magnetic particles (MP-COOH-20020, Zhengzhou Inno Biotechnology Co., Ltd.), Luminol, p-iodophenol, urea peroxide, chemiluminescence detector (Promega, Glomax MultiJ Detection System), human fibrinogen (Sigma-Aldrich product, catalog number F3879-1G).
  • Preparation of human fibrinogen solution A known concentration of human fibrinogen solution was taken, and a 1 ⁇ 8/ ⁇ 1 human fibrinogen solution was diluted with a PBS solution.
  • the magnetic particles were labeled with a polyclonal antibody against human fibrinogen using a conventional labeling method, and the ratio (w/w) of the anti-human fibrinogen polyclonal antibody to the magnetic particles was 1:10.
  • luminescent substrate working solution is prepared by using luminol, p-iodophenol, carbamide peroxide and the like.
  • the solvent for the luminescent substrate working solution was water, and the solute and its concentration were as follows: 0.36 mM luminol, 0.35 mM p-iodophenol, 4.5 mM carbamide peroxide. Each of the above concentrations is the final concentration of the corresponding component in the solution.
  • the experiment will use the present invention and the current chemiluminescence detection technology to observe the influence of different binding reaction time on the luminescence amount, and observe the combined reaction time points 1, 2, 4, 10, 20, 30, 45, 60 minutes.
  • Oxidase-labeled anti-human fibrinogen monoclonal antibody 200 ⁇ 1 the binding reaction was shaken at 37 ° C for the corresponding reaction time, magnetic particles were adsorbed and separated by magnetic separator, the supernatant was discarded, and washed with PBS 200 three times.
  • the magnetic separator adsorbs and separates the magnetic particles, discards the supernatant, transfers the magnetic particles to the illuminating cup, places a chemiluminescence detector, and adds ⁇ luminescent substrate working solution. When the reaction is carried out for 2 minutes, the luminescence amount is recorded for 6 seconds.
  • the anti-human fibrinogen polyclonal antibody filter prepared in Example 1 was diluted with PBS buffer (formulation: 50 mM disodium hydrogen phosphate, 50 mM potassium dihydrogen phosphate, 150 mM sodium chloride, pH 8.0).
  • the filtration involved in the above process controls the flow rate to be 0.2 ml/min (the filtration of the other steps except the cleaning should be controlled to be 0.05-1.0 ml/min).
  • the experiment was repeated three times, and three parallels were set for each experiment, and the results were averaged.
  • the luminescence quantity (mV) of the current chemiluminescence detection technology at 1, 2, 4, 10, 20, 30, 45, 60 minutes is 3222, 5672, 7968, 9810, 14281, 20339, 19827, 20513, respectively.
  • the minute was almost balanced, and the total process operation time was 30 minutes when the combined reaction was 30 minutes.
  • the detection result of the present invention is 21,320, and the whole process operation time is only 13 minutes.
  • Table 1 Comparison of detection performance of the present invention and current chemiluminescence detection technology (luminescence amount (unit: mV)
  • Example 3 Comparison of the detection results of the present invention and the current chemiluminescence detection technology
  • Anti-human fibrinogen polyclonal antibody filter prepared in Example 1 horseradish peroxidase-labeled anti-human fibrinogen monoclonal antibody (prepared in Example 2), anti-human fibrinogen polyclonal antibody (Beijing Yili) Gaoke Biotechnology Research Institute product, catalog number BR0812), magnetic particles (MP-COOH-20020, Zhengzhou Yingnuo Biotechnology Co., Ltd.), luminol, p-iodophenol, urea peroxide, chemiluminescence detector (Promega, Glomax MultiJR Detection System), human fibrinogen (Sigma-Aldrich product, catalog number F3879-1G), healthy human plasma (donated by healthy volunteers).
  • Preparation of human fibrinogen solution A known concentration of human fibrinogen solution was taken, and a series of human fibrinogen solutions of 10, 30, 70, 100, 300, 700 ng/ml were diluted with PBS solution. Used to make standard curves.
  • the magnetic particles were labeled with a polyclonal antibody against human fibrinogen using a conventional labeling method, and the ratio (w/w) of the anti-human fibrinogen polyclonal antibody to the magnetic particles was 1:10.
  • luminescent substrate working solution is prepared by using luminol, p-iodophenol, carbamide peroxide and the like.
  • the solvent for the luminescent substrate working solution was water, and the solute and its concentration were as follows: 0.36 mM luminol, 0.35 mM p-iodophenol, 4.5 mM carbamide peroxide. Each of the above concentrations is the final concentration of the corresponding component in the solution.
  • the experiment uses the present invention and the current chemiluminescence detection technology to detect human fibrinogen solution and draw a standard curve, and then take healthy human plasma, using PBS (50 mM disodium hydrogen phosphate, 50 mM potassium dihydrogen phosphate, 150 mM sodium chloride, pH 7.4
  • PBS 50 mM disodium hydrogen phosphate, 50 mM potassium dihydrogen phosphate, 150 mM sodium chloride, pH 7.4
  • the 10,000-fold dilution was performed to measure fibrinogen in healthy human plasma, and the concentration of fibrinogen in healthy human plasma was calculated using a standard curve.
  • the anti-human fibrinogen polyclonal antibody filter prepared in Example 1 was used in alkaline PBS buffer (formulation:
  • the current chemiluminescence detection technology results show that the content of human fibrinogen in healthy human plasma is 2.51 g / L.
  • the results of the present invention show that the content of human fibrinogen in healthy human plasma is 2.58 g / L, obtained by two experimental methods. The results were basically the same, and there was no statistical difference (P>0.05), but the completion time (12 minutes) of the present invention was significantly shorter than the current technique (83 minutes).
  • the specific results of the three repeated experiments are shown in Table 2.
  • Example 4 the influence of the filter core volume of the invention on the detection result
  • luminescent substrate working solution is prepared by using luminol, p-iodophenol, carbamide peroxide and the like.
  • the solvent for the luminescent substrate working solution was water, and the solute and its concentration were as follows: 0.36 mM luminol, 0.35 mM p-iodophenol, 4.5 mM carbamide peroxide. Each of the above concentrations is the final concentration of the corresponding component in the solution.
  • Preparation of a series of anti-human fibrinogen polyclonal antibody filters The method of Example 1 was used to prepare a filter cartridge having a volume of 1, 2, 3, 5, 10, 50, 100, 300, 500, 700, 1000 cubic millimeters.
  • the filter cores in these filters are all long columnar.
  • the 1, 2, 3, and 5 cubic millimeter filters use a rigid plastic tube with an inner diameter of 1 mm
  • the 10 cubic millimeter filter uses a rigid plastic tube with an inner diameter of 2 mm.
  • the 50, 100 cubic millimeter filter uses a rigid plastic tube with an inner diameter of 5 mm
  • the 300, 500, 700, and 1000 cubic millimeter filters use a rigid plastic tube with an inner diameter of 10 mm.
  • a human fibrinogen solution having a concentration of 1 ⁇ 8 / ⁇ 1 was diluted with a PBS solution (formulation: 50 mM disodium hydrogen phosphate, 50 mM potassium dihydrogen phosphate, 150 mM sodium chloride, pH 7.4). Dilute the ⁇ human fibrinogen solution to 1 ml with alkaline PBS buffer (formulation: 50 mM disodium hydrogen phosphate, 50 mM potassium dihydrogen phosphate, 150 mM sodium chloride, pH 8.0), ie, the final concentration is 0. ⁇ g/ml .
  • the experiment was divided into two groups, the human fibrinogen group (group A) and the blank group (group B).
  • the human fibrinogen group (group A) was filtered with a final concentration of 0.1 ⁇ / ⁇ 1 human fibrinogen solution 1 ml, washed three times with alkaline PBS buffer 1 ml, and then diluted with alkaline PBS ⁇ horseradish peroxidase Label the anti-human fibrinogen monoclonal antibody to 1 ml, filter, filter three times with 1 ml of alkaline PBS buffer, and then use pH 4.5 Tris-HCl buffer (formulation: 50 mM Tris-HCl, 150 mM NaCl, pH 4.5) lml After filtration, the filtrate was collected, and the ⁇ luminescent substrate working solution was taken.
  • the filtration control flow rate involved in the above process is 1, 2, 3, 5 cubic millimeters of filter using 0.05 ml / minute, 10 cubic millimeter of filter using 0.1 ml / minute, 50, 100 cubic millimeter of filter using 0.3
  • the ml/min, 300, 500, 700, 1000 mm3 filter is used at 1.0 ml/min (the filtration above the other steps except the cleaning should be controlled at a flow rate of 0.05-1.0 ml/min).
  • the illuminance (mV) of the filter with a volume of 1, 2, 3, 5, 10, 50, 100, 300, 500, 700, 1000 mm is recorded as 843, 1597, 1871, 1925, 1967, respectively.
  • 1983, 2042, 1956, 1995, 2035, 2068, the filter core is basically balanced when the volume is 3 cubic millimeters.
  • Table 3 The specific results of the three replicate experiments are shown in Table 3.
  • Anti-human fibrinogen polyclonal antibody product of Beijing Yili High-Tech Biotechnology Research Institute, catalog No. BR0812
  • anti-human fibrinogen polyclonal antibody filter prepared in Example 1
  • horseradish peroxidase-labeled anti-human fiber Proprotein monoclonal antibody prepared in Example 2
  • o-phenylenediamine enzyme-linked immunosorbent assay
  • human fibrinogen solution Sigma-Aldrich product, catalog number F3879-1G Healthy human plasma (donated by healthy volunteers).
  • Preparation of human fibrinogen solution A known concentration of human fibrinogen solution was taken, and a series of human fibrinogen solutions of 30, 70, 100, 300, 700, 1000 ng/ml were diluted with PBS solution. Used to make standard curves.
  • the experiment uses the present invention and current enzyme-linked immunosorbent assay to detect human fibrinogen solution and draw a standard curve, and then take healthy human plasma, 10000-fold dilution with PBS, determine fibrinogen in healthy human plasma, and calculate health by standard curve.
  • the concentration of fibrinogen in human plasma Take 42 tubes and divide them into the group of the present invention and the current enzyme-linked immunosorbent assay technology group. Make 3 parallel tubes for each sample.
  • 96-well enzyme-linked plates were used, 100 ⁇ l of anti-human fibrinogen polyclonal antibody was added to each tube, coated at 4 ° C overnight, washed three times, and then added with human fibrinogen solution or healthy human plasma dilution 100 ⁇ l, respectively.
  • the anti-human fibrinogen polyclonal antibody filter prepared in Example 1 was diluted with alkaline PBS buffer to dilute ⁇ human fibrinogen solution or healthy human plasma dilution to 1 ml, filtered, and filtered with alkaline PBS buffer 1 ml. After washing three times, dilute the ⁇ horseradish peroxidase-labeled anti-human fibrinogen monoclonal antibody to 1 ml with alkaline PBS buffer, filter, wash it three times with alkaline PBS buffer 1 ml, and use pH 4.5 Tris-hydrochloric acid. The buffer was filtered in 1 ml, and the filtrate was collected.
  • was added to a 96-well enzyme-linked plate, and ⁇ coloring solution was added (recipe: 0.1 M citric acid 2.43 ml, 0.2 M disodium hydrogen phosphate 2.57 ml, o-phenylenediamine 5 mg, Hydrogen peroxide 5 ⁇ 1), protected from light for 5 minutes, the reaction was terminated by the addition of 2 ⁇ sulfuric acid.
  • the OD490 absorbance value was read on the enzyme-linked immunosorbent assay.
  • the OD values of 30, 70, 100, 300, 700, and 1000 ng/ml were 0.205, 0.255, 0.261, 0.455, 0.679, and 0.92, respectively. Human fibrinogen content in plasma.
  • the filtration involved in the above process controls the flow rate to be 0.1 ml/min (the filtration of the other steps except the cleaning should be controlled at a flow rate of 0.05-1.0 ml/min).
  • Anti-human fibrinogen polyclonal antibody filter anti-human fibrinogen monoclonal antibody prepared in Example 1 (Beijing Yili Hi-Tech Biotechnology Research Institute product, article number BR0616), spectrophotometer (Shanghai Hanhua Technology Instrument Co., Ltd. , 752 UV-Vis spectrophotometer), human fibrinogen solution (Sigma-Aldrich product, catalog number F3879-1G), healthy human plasma (healthy volunteer donation, the same as the healthy human plasma described in Example 5) Sample).
  • Preparation of human fibrinogen solution A known concentration of human fibrinogen solution was taken, and a series of human fibrinogen solutions of 100, 300, 700, 1000, 3000 ng/ml were diluted with PBS solution. Used to make standard curves.
  • Preparation of colloidal gold-labeled anti-human fibrinogen monoclonal antibody Take 500ml of purified water, heat and stir, add 500 ⁇ 1 10% chloroauric acid solution when the water is boiling, heat and boil for 5 minutes, add 500 ⁇ 1 12% trisodium citrate solution, keep The solution was stirred and boiled for 10 minutes, and naturally cooled to room temperature, that is, a colloidal gold solution.
  • the experiment uses the detection technology of colloidal gold as an indicator to detect human fibrinogen solution and draws a standard curve, and then takes healthy human plasma, 5,000-fold dilution with PBS, and then uses the standard curve to calculate the fiber in healthy human plasma.
  • the concentration of the proteinogen Take 18 tubes and make 3 parallel tubes for each sample.
  • the anti-human fibrinogen polyclonal antibody filter prepared in Example 1 was diluted with alkaline PBS buffer to dilute ⁇ human fibrinogen solution or healthy human plasma dilution to 1 ml, filtered, and filtered with alkaline PBS buffer 1 ml.
  • the detection technology of the invention using colloidal gold as an indicator shows that human fibrinogen in healthy human plasma
  • the content was 2.81 g/L, which was basically consistent with the results of other methods (Example 5), and there was no statistical difference (P>0.05).
  • the specific results of the three repeated experiments are shown in Table 5.
  • Embodiment 7 Effect of the shape of the filter of the present invention on the detection result
  • NHS activated agarose gel particles (CS-A30-01 NHS activated agarose gel FF, Beijing Weishi Bohui Chromatography Technology Co., Ltd.), horseradish peroxidase-labeled anti-human fibrinogen monoclonal antibody (Example 2 Prepared IJ), anti-human fibrinogen polyclonal antibody (product of Beijing Yili High-Tech Biotechnology Research Institute, Catalog No. BR0812), sodium bicarbonate, hydrochloric acid, ethanolamine, human fibrinogen (Sigma-Aldrich products, catalogue No. F3879-1G), enzyme-linked immunosorbent assay (Bio-Rad, Model 550).
  • An anti-human fibrinogen polyclonal antibody micro-column filter and a micro-flat column filter having a filter core volume of 100 mm 3 were prepared by the method of Example 1. Wherein, the aspect ratio of the filter core in the micro long column filter
  • the ratio of the height of the cylinder to the diameter of the bottom surface is 10:3, and the width-to-length ratio of the filter core in the micro-flat cylindrical filter (the ratio of the diameter of the bottom surface of the cylinder to the height) is 10:5.
  • the 1 ⁇ / ⁇ 1 human fibrinogen solution was diluted with PBS solution. Dilute ⁇ human fibrinogen solution to 1 ml with alkaline PBS buffer, filter, wash three times with alkaline PBS buffer 1 ml, and dilute ⁇ horseradish peroxidase-labeled anti-human fibrinogen with alkaline PBS buffer.
  • the antibody was cloned into 1 ml, filtered, washed three times with 1 ml of alkaline PBS buffer, filtered with 1 ml of pH 4.5 Tris-hydrochloric acid buffer, and the filtrate was collected. Each ⁇ was taken to a 96-well enzyme-linked plate, and ⁇ enzyme was added.
  • Reaction coloring solution (formulation: 0.1 M citric acid 2.43 ml, 0.2 M disodium hydrogen phosphate 2.57 ml, o-phenylenediamine 5 mg, hydrogen peroxide 5 ⁇ l), protected from light for 3 minutes, and quenched by adding 2 ⁇ sulfuric acid.
  • the OD490 absorbance was read on an enzyme-linked immunosorbent assay.
  • the filtration involved in the above process controls the flow rate to be 1.0 ml/min (the filtration of the other steps except the cleaning should be controlled to a flow rate of 0.05-1.0 ml/min).
  • the long column filter measured the absorbance value of 1.78
  • the flat column filter measured the absorbance value of 1.624.
  • the results obtained by the two filters were basically the same, and there was no statistical difference (P>0.05).
  • the specific results of three repeated experiments are shown in Table 6.
  • Anti-human fibrinogen polyclonal antibody filter prepared in Example 1 anti-human fibrinogen monoclonal antibody (Beijing Yili High-Tech Biotechnology Research Institute product, article number BR0616), anti-human fibrinogen polyclonal antibody (Beijing billion Ligao Bioengineering Technology Research Institute, Catalog No.
  • Alkaline Phosphatase Marker IgG Beijing Kangwei Century Biotechnology Co., Ltd., CW0233
  • magnetic particles MP-COOH-20020, Zhengzhou Yingnuo Biotechnology Co., Ltd.
  • APLS luminescent substrate solution APLS0500, Zhengzhou Yingnuo Biotechnology Co., Ltd.
  • Chemistry Luminescence tester Promega, Glomax MultiJ Detection System
  • human fibrinogen Sigma-Aldrich product, catalog number F3879-1G
  • healthy human plasma healthy human plasma (healthy volunteer donation).
  • Preparation of human fibrinogen solution A known concentration of human fibrinogen solution was taken, and 10, 30, 70, 100, 300, 700 ng/ml human fibrinogen solution was diluted with PBS solution. Used to make standard curves.
  • Magnetic particles were labeled with a polyclonal antibody against human fibrinogen using a conventional labeling method, and the ratio (w/w) of anti-human fibrinogen polyclonal antibody to magnetic particles was 1:10.
  • the experiment uses the present invention and the current chemiluminescence detection technology to detect human fibrinogen solution and draw a standard curve, and then take healthy human plasma, 10000-fold dilution with PBS, and then determine the fibrinogen in healthy human plasma using a standard curve. concentration. Take 42 tubes and divide them into the group of the invention and the current chemiluminescence detection technology group. Make 3 parallel tubes for each sample.
  • the magnetic particles were adsorbed and separated by a magnetic separator, the supernatant was discarded, washed three times with PBS 200, the magnetic particles were separated by magnetic separation, the supernatant was discarded, and the magnetic particles were transferred to the illuminating cup.
  • the luminescence detector lOOpAPLS luminescent substrate solution was added, and when the reaction was carried out for 1 minute, the luminescence amount was recorded for 6 seconds. A standard curve is drawn to calculate the human fibrinogen content in the plasma.
  • the anti-human fibrinogen polyclonal antibody filter prepared in Example 1 was diluted with alkaline PBS buffer to dilute ⁇ human fibrinogen solution or healthy human plasma dilution to 1 ml, filtered, and filtered with alkaline PBS buffer 1 ml. After washing three times, dilute the ⁇ anti-human fibrinogen monoclonal antibody to 1 ml with alkaline PBS buffer, filter, wash it three times with alkaline PBS buffer 1 ml, and dilute ⁇ alkaline phosphatase labeled ⁇ with alkaline PBS buffer.
  • the present invention uses the alkaline phosphatase luminescence system to determine the content of human fibrinogen in healthy human plasma is 2.18g / L, the results obtained by the two experimental methods are basically the same, no statistical difference (P> 0.05). However, the completion time (13 minutes) of the present invention was significantly shorter than the current technique (86 minutes).
  • Table 7 Comparison of detection results of alkaline phosphatase luminescence system and current chemiluminescence detection technology in the present invention
  • Embodiment 9 The present invention directly compares the detection results of the filter core with the current chemiluminescence detection technology.
  • Preparation of human fibrinogen solution A known concentration of human fibrinogen solution was taken, and 10, 30, 70, 100, 300, 700 ng/ml human fibrinogen solution was diluted with PBS solution. Used to make standard curves.
  • Magnetic particles were labeled with a polyclonal antibody against human fibrinogen using a conventional labeling method, and the ratio (w/w) of anti-human fibrinogen polyclonal antibody to magnetic particles was 1:10.
  • the experiment uses the present invention and the current chemiluminescence detection technology to detect human fibrinogen solution and draw a standard curve, and then take healthy human plasma, 10000-fold dilution with PBS, and then determine the fibrinogen in healthy human plasma using a standard curve. concentration. Take 42 tubes and divide them into the group of the invention and the current chemiluminescence detection technology group. Make 3 parallel tubes for each sample.
  • the magnetic particles were adsorbed and separated by a magnetic separator, the supernatant was discarded, washed three times with PBS 200, the magnetic particles were separated by magnetic separation, the supernatant was discarded, and the magnetic particles were transferred to the illuminating cup.
  • ⁇ APLS luminescent substrate solution was added, and when the reaction was carried out for 1 minute, the luminescence amount was recorded for 6 seconds. A standard curve was drawn to calculate the amount of human fibrinogen in the plasma.
  • the anti-human fibrinogen polyclonal antibody filter prepared in Example 1 was diluted with alkaline PBS buffer to dilute ⁇ human fibrinogen solution or healthy human plasma dilution to 1 ml, filtered, and filtered with alkaline PBS buffer 1 ml. After washing three times, dilute the ⁇ anti-human fibrinogen monoclonal antibody to 1 ml with alkaline PBS buffer, filter, wash it three times with alkaline PBS buffer 1 ml, and dilute ⁇ alkaline phosphatase labeled ⁇ with alkaline PBS buffer.
  • the filtration involved in the above process controls the flow rate to be 0.1 ml/min (the filtration of the other steps except the cleaning should be controlled at a flow rate of 0.05-1.0 ml/min).
  • the current chemiluminescence detection technology results show that the content of human fibrinogen in healthy human plasma is 3.11 ⁇ L.
  • the method of direct detection by filter core detection technology shows that the content of human fibrinogen in healthy human plasma is 3.28 g / L.
  • the results obtained by the two experimental methods were basically the same, and there was no statistical difference (P>0.05). However, the completion time (13 minutes) of the present invention was significantly shorter than the current technology (85 minutes).
  • the specific results of the three replicate experiments are shown in Table 8.
  • Anti-human fibrinogen polyclonal antibody filter prepared in Example 1 anti-human fibrinogen monoclonal antibody (Beijing Yili High-Tech Biotechnology Research Institute product, catalog number BR0616), anti-human fibrinogen polyclonal antibody (Beijing billion Ligao Bioengineering Technology Research Institute, Catalog No. BR0812), Alkaline Phosphatase Labeled Anti-Mouse IgG (Beijing Kangwei Century Biotechnology Co., Ltd., CW0233), Magnetic Particles (MP-COOH-20020, Zhengzhou Yingnuo Biotechnology Co., Ltd.
  • APLS luminescent substrate solution APLS0500, Zhengzhou Yingnuo Biotechnology Co., Ltd.
  • Chemiluminescence Detector Promega, Glomax MultiJ Detection System
  • Human Fibrinogen Solution Sigma-Aldrich product, catalog number F3879- 1G
  • healthy human plasma donated by healthy volunteers.
  • Preparation of human fibrinogen solution A known concentration of human fibrinogen solution was taken, and 10, 30, 70, 100, 300, 700 ng/ml human fibrinogen solution was diluted with PBS solution. Used to make standard curves.
  • Magnetic particles were labeled with a polyclonal antibody against human fibrinogen using a conventional labeling method, and the ratio (w/w) of anti-human fibrinogen polyclonal antibody to magnetic particles was 1:10.
  • the experiment uses the present invention and the current chemiluminescence detection technology to detect human fibrinogen solution and draw a standard curve, and then take healthy human plasma, 10000-fold dilution with PBS, and then determine the fibrinogen in healthy human plasma using a standard curve. concentration. Take 42 tubes and divide them into the group of the invention and the current chemiluminescence detection technology group. Make 3 parallel tubes for each sample.
  • the anti-human fibrinogen polyclonal antibody filter prepared in Example 1 was diluted with alkaline PBS buffer to dilute ⁇ human fibrinogen solution or healthy human plasma dilution to 1 ml, filtered, and filtered with alkaline PBS buffer 1 ml. After washing three times, dilute the ⁇ anti-human fibrinogen monoclonal antibody to 1 ml with alkaline PBS buffer, filter, wash it three times with alkaline PBS buffer 1 ml, and dilute 20 ⁇ l alkaline phosphatase labeled with alkaline PBS buffer.
  • Anti-mouse IgG to lml, filter collect the filtrate to the illuminating cup, place the chemiluminescence detector, add the APLS luminescent substrate working solution, and record the luminescence for 6 seconds when the reaction is carried out for 1 minute.
  • a standard curve was drawn to calculate the amount of human fibrinogen in the plasma.
  • the filtration involved in the above process controls the flow rate to be 0.5 ml/min (the filtration of the other steps except the cleaning should be controlled at a flow rate of 0.05-1.0 ml/min).
  • the measurement result of the effluent detection of the present invention shows that the content of human fibrinogen in healthy human plasma is 3.31g/L, and the results obtained by the two experimental methods are basically the same, there is no statistical difference (P>0.05). .
  • the time of completion of the experiment (12 minutes) was significantly shorter than the current technique (88 minutes).
  • the specific results of three replicate experiments are shown in Table 9.
  • Example 3 The "anti-human fibrinogen polyclonal antibody filter prepared in Example 1" was replaced with "the filter detecting device prepared in Example 1", wherein the detector was a chemiluminescence detector, and the rest was compared with Example 3.
  • the experimental materials of Example 3 were all the same.
  • Example 2 Take the filtration test device prepared in Example 1, and dilute the ⁇ human fibrinogen solution with alkaline PBS buffer (formulation: 50 mM disodium hydrogen phosphate, 50 mM potassium dihydrogen phosphate, 150 mM sodium chloride, pH 8.0) or healthy.
  • Human plasma dilution to lml as a solution of the sample to be tested, placed in the sample storage to be tested, the solution of the sample to be tested is filtered through a silicone tube into the filter through a peristaltic pump; then, the alkaline PBS buffer is placed in 1 ml.
  • Tris-HCl buffer (formulation: 50 mM Tris-HCl, 150 mM) NaCl, pH 4.5) lml is placed in the detection phase reservoir, filtered, the filtrate is collected, and the ⁇ is placed in the illuminating cup. The chemiluminescence detector is placed, and the ⁇ luminescent substrate working solution is added. When the reaction is carried out for 2 minutes, the luminescence is recorded. The amount is 6 seconds. A standard curve was drawn to calculate the amount of human fibrinogen in the plasma. The filtration involved in the above process controls the flow rate to be 0.3 ml/min (the filtration of the other steps except the cleaning should be controlled at a flow rate of 0.05-1.0 ml/min).
  • the current chemiluminescence detection technology results show that the content of human fibrinogen in healthy human plasma is 2.51 g / L.
  • the results of the present invention show that the content of human fibrinogen in healthy human plasma is 2.70 g / L, obtained by two experimental methods. The results were basically consistent and there was no statistical difference (P>0.05), but the completion time (12 minutes) of the present invention was significantly shorter than the current technique (87 minutes).
  • the specific results of the three repeated experiments are shown in Table 10.
  • the invention creatively designs a detecting device using a filter as a reaction carrier, which improves the controllability of the detection personalization and improves the detection efficiency.
  • the reaction time of the filtration of the present invention is significantly shortened compared with the current detection and binding reaction time, and the detection speed is improved.
  • the invention can complete all the reactions at room temperature, eliminating the temperature-controlled reaction structure which needs to be set in the current testing equipment, simplifying the design of the instrument, and achieving the purpose of miniaturization and portability. Therefore, the technology of the present invention has important significance and good application prospects for improving existing immunodetection technologies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种过滤检测装置及其应用,包括待检样本储存器(2)、检测相储存器(3)、过滤器(1,10)和检测器(4);所述过滤器(1,10)由入口(5)、过滤层(6)和出口(7)组成,所述过滤层(6)内的过滤芯为偶联了待检物的特异性结合物的固相材料;所述待检样本储存器(2)和所述检测相储存器(3)分别通过单独的管道(8,9)与所述过滤器(1,10)的入口(5)相连通。该检测装置以过滤器(1,10)为反应载体,提高了检测个性化可控程度和检测效率,反应时间较现行检测结合反应时间明显缩短,提高了检测速度,在室温下就可以完成全部反应,免除了现行检测设备中需要设置的温控反应结构,简化了仪器设计,可实现小型化、便携的目的,对改善现有免疫检测技术具有重要意义和良好应用前景。

Description

一种过滤检测装置及其应用 技术领域
本发明涉及一种过滤检测装置及其应用。
背景技术
免疫学检测技术是应用免疫学原理设计的测定抗原、 抗体、 免疫细胞及化学成分 等的实验手段, 广泛用于来源于人体和动物体可进行疾病诊断和健康检测的样品以及 用于环境、 药物分析、 食品和工业分析的样品。 常用的有免疫浊度技术、 固相酶免疫 测定技术、 化学发光检测技术、 免疫荧光标记技术、 流式细胞术、 胶体金技术等。
免疫浊度技术, 也称免疫浊度法是可溶性抗原、 抗体在液相中特异结合, 产生一 定大小的复合物, 形成光的折射或吸收, 测定这种折射或吸收后的透射光或散射光作 为计算单位, 用于定量检测, 但检测灵敏度低, 不适合于微量检测。 固相酶免疫测定 技术基于抗原或抗体的固相化及抗原或抗体的酶标记。 结合在固相载体表面的抗原或 抗体保持其免疫学活性, 抗原或抗体的酶结合物既保留其免疫学活性, 又保留酶的活 性。 在测定时, 把受检标本 (测定其中的抗体或抗原)和酶标抗原或抗体按不同的步 骤与固相载体表面的抗原或抗体起反应, 具有灵敏度高、 线性响应范围宽和易于实现 自动化等显著优点。 但检测反应时间长限制了其使用。 免疫化学发光检测技术是一种 高灵敏的微量及痕量分析技术, 具有操作方便、 灵敏度高、 线性响应范围宽和易于实 现自动化等显著优点, 广泛地应用于环境、 临床、 药物分析、 食品和工业分析中, 也 是基于抗原或抗体的固相分离手段及抗原或抗体的发光试剂标记技术。 但检测反应时 间长及对检测设备的要求高也影响其使用。 免疫荧光标记技术、 流式细胞术、 胶体金 技术也是常用的检测技术被广泛使用, 但均有其相应的不足。
高灵敏度、 快速、 小型化、 全定量、 自动化是目前临床免疫检测技术产品的发展 趋势, 但现有的都无法同时实现上述功能。 因此, 开发一种能够实现既具有高灵敏度、 全定量、 自动化特点, 同时又具有检测快速、 设备可做到小型便携特点的新的检测技 术, 不仅使用方便、 减少浪费, 同时也可显著提高工作效率, 在检测和分析、 分离的 诸多领域具有重要的实用意义。
发明公开
本发明一个目的是提供一种具有灵敏度高、全定量、检测速度快的过滤检测装置。 本发明所提供的过滤检测装置以过滤器作为反应载体,主要包括待检样本储存器、 检测相储存器、 过滤器和检测器; 所述过滤器由入口、 过滤层和出口组成, 所述过滤 层内的过滤芯为偶联了待检物的特异性结合物的固相材料; 所述待检样本储存器和所 述检测相储存器分别通过管道与所述过滤器的入口相连通。
其中, 所述待检样本具体可为如下中任一种: 来源于人体或动物体可进行疾病诊 断或健康检测的样品, 以及用于环境、 药物分析、 食品、 工业分析的样品。 来源于人 体的样本检测为临床检测的主要内容, 用于各种疾病的诊断、 辅助诊断、 预测、 病情 监测等。 来源于动物体的样本检测也为临床检测的主要内容, 用于动物相关各种疾病 的诊断、 辅助诊断、 预测、 病情监测以及食品安全检测等。
所述检测相为检测物质的溶液; 所述检测物质为待检物的特异性结合物经指示剂 标记后所形成的物质; 所述指示剂为能够直接或间接产生颜色或光量变化的物质。 通常情况下, 所述待检物和所述待检物的特异性结合物常为如下中的任一组合: 酶和抑制剂、 抗原和抗体、 配体和受体等。
所述指示剂常为酶类物质、 可直接或间接发出光的物质、 可产生荧光的物质、 自 身带有颜色的物质等。酶类物质常用的有辣根过氧化酶(HRP)、碱性磷酸酶(ALP)、 葡萄糖氧化酶, β-半乳糖苷酶、 溶菌酶和苹果酸脱氢酶等。 可直接或间接发光的物质 常用的有鲁米诺及其衍生物、 光泽精、 洛粉碱、 过氧化草酸酯类、 吖啶酯类等。 可产 生荧光的物质有异硫氰酸荧光素 (FITC) 或罗达明 (RB200) 等、 自身带有颜色的物 质如胶体金类等。
在所述装置中, 所述检测器可为能够定量检测并记录颜色或光量变化的仪器, 具 体可为如下中任一种: 酶联免疫检测器、化学发光检测器、荧光检测器和分光光度计。
在所述装置中, 作为所述过滤芯的固相材料可为颗粒状物质或筛孔状物质。 所述 的固相颗粒状或筛孔状物质为多种能够与抗原或抗体偶联结合并且对所述抗原或抗体 的免疫学结合特性不产生明显改变的固态物质, 如常用的凝胶颗粒、 乳胶颗粒、 磁微 粒等; 所述凝胶颗粒有葡聚糖凝胶系列的凝胶过滤填料和琼脂糖凝胶系列的凝胶过滤 填料, 常用的有溴化氰活化琼脂糖凝胶介质、 NHS活化琼脂糖凝胶介质等。
在本发明的一个实施例中, 所述待检样本储存器和所述检测相储存器具体为 5mL 离心管; 连接所述待检样本储存器和所述过滤器的管道, 以及连接所述检测相储存器 和所述过滤器的管道均具体为硅胶管。
在所述装置中, 所述过滤芯的体积可为 2立方毫米至 1立方厘米, 如 3立方毫米 至 0.3立方厘米, 进一步如 5立方毫米至 0.1立方厘米, 再进一步如 70-100立方毫米。 在本发明的一个实施例中,所述过滤芯的体积具体为 70立方毫米;在本发明的另一个 实施例中, 所述过滤芯的体积具体为 100立方毫米。
在所述装置中, 所述过滤芯可为长大于宽的形状, 其长宽比值为 2-100, 如 2-50, 进一步如 2-30, 可以是圆柱状、 圆锥状、 方形、 长方形及其组合形状等。 当然, 所述 过滤芯也可为宽大于长的形状, 其宽长比值为 1.1-10, 如 1.1-5, 进一步如 1.1-3, 可以 是圆柱状、 圆锥状、 方形、 长方形及其组合形状等。
在本发明的一个实施例中, 所述过滤芯为长柱状, 其长宽比值 (圆柱的高和底面 直径的比值) 为 10: 3; 在本发明的另一个实施例中, 所述过滤芯为扁柱状, 其宽长 比值 (圆柱的底面直径和高的比值) 为 10: 5。
在所述装置中, 连通所述检样本储存器和所述过滤器之间的所述管道, 以及连通 所述检测相储存器和所述过滤器之间的所述管道上各固定有一个泵 (如蠕动泵) ; 所 述泵 (如蠕动泵) 用于驱动从存储器 (检样本储存器或检测相储存器) 到过滤器的液 体输送, 并控制过滤时的流速。
在本发明实施例中采用蠕动泵驱动液体输送, 所述蠕动泵为保定兰格恒流泵有限 公司产品, 其产品目录号为 BQ50-1J。
本发明的另一个目的是提供一种利用所述过滤检测装置检测待测样本中待检物含 量的方法。
本发明所提供的利用所述过滤检测装置检测待测样本中待检物含量的方法, 为如 下 (A) 或 (B) :
(A)包括如下步骤:
1 )将溶液 A置于所述待检样本储存器中;将溶液 B置于所述检测相储存器中(即 检测相); 所述溶液 A为含有所述待检物的待检样本的溶液; 所述溶液 B为检测物质 的溶液, 所述检测物质为待检物的特异性结合物经指示剂标记后所形成的物质; 所述 指示剂为能够直接或间接产生颜色或光量变化的物质;
2)所述溶液 A通过管道流入所述过滤器中, 所述待检物被所述过滤芯特异性捕 犾;
3 )所述溶液 B通过管道流入所述过滤器中, 所述检测物质与被所述过滤芯特异 性捕获的所述待检物特异性结合, 形成过滤芯-待检物 -检测物质的复合物 1 ;
4)检测, 按照如下 (a) - (c) 中任一进行:
(a) 直接采用所述检测器对捕获了所述待检物和所述检测物质的过滤芯进行检 测, 通过所述指示剂产生的颜色或光量变化计算所述待检物的含量;
(b)用洗脱液对所述过滤器进行洗脱, 收集含有所述检测物质的洗脱液, 用所述 检测器检测所述洗脱液中所述指示剂的颜色或光量变化,进而计算所述待检物的含量;
(c)直接用所述检测器检测从所述过滤器流出(未被结合)的溶液 B中所述指示 剂的颜色或光量变化, 进而计算所述待检物的含量;
(B) 包括如下步骤:
1 )将溶液 A置于所述待检样本储存器中; 将溶液 B1置于所述检测相储存器中; 所述溶液 A为含有所述待检物的待检样本的溶液; 所述溶液 B1为未经指示剂标记的 待检物的特异性结合物的溶液;
2)所述溶液 A通过管道流入所述过滤器中, 所述待检物被所述过滤芯特异性捕 犾;
3 )所述溶液 B1通过管道流入所述过滤器中, 所述未经指示剂标记的待检物的特 异性结合物与被所述过滤芯特异性捕获的所述待检物特异性结合, 形成过滤芯-待检物
-未经指示剂标记的待检物的特异性结合物的复合物 2;
4)将溶液 B2置于所述检测相储存器中; 所述溶液 B2为经指示剂标记的物质的 溶液, 所述指示剂标记的物质能与所述溶液 B1 中的所述未经指示剂标记的待检物的 特异性结合物相结合; 所述指示剂为能够直接或间接产生颜色或光量变化的物质;
5 )所述溶液 B2通过管道流入所述过滤器中, 所述经指示剂标记的物质与所述复 合物 2中的所述未经指示剂标记的待检物的特异性结合物相结合, 形成过滤芯-待检物 -未经指示剂标记的待检物的特异性结合物-经指示剂标记的物质的复合物 3;
6)检测, 按照如下 (a) - (c) 中任一进行:
(a)直接采用所述检测器对捕获了所述待检物、所述未经指示剂标记的待检物的 特异性结合物和所述经指示剂标记的物质的过滤芯进行检测, 通过所述指示剂产生的 颜色或光量变化计算所述待检物的含量;
(b)用洗脱液对所述过滤器进行洗脱, 收集含有所述经指示剂标记的物质的洗脱 液, 用所述检测器检测所述洗脱液中所述指示剂的颜色或光量变化, 进而计算所述待 检物的含量; (c) 直接用所述检测器检测从所述过滤器流出的溶液 B2中所述指示剂的颜色或 光量变化, 进而计算所述待检物的含量。
在上述方法中, 各溶液流入所述过滤器, 进行过滤时的流速为 0.05-1. OmL/分钟; 如 0.1-0.3 mL/分钟。
在所述方法步骤 2)和 /或步骤 3)之后还可包括用清洗液清洗所述过滤器的步骤。 其中, (A) 为常用的两步检测法, 即将含有所述待检物的待检样本溶液注入所 述过滤器中过滤, 清洗; 然后将能够与所述待检物特异性结合并能够直接或间接产生 颜色或光量变化的检测物质溶液注入所述过滤器中过滤, 直接检测。 (B) 为三步法, 也可为更多步法, 即将含有所述待检物的待检样本溶液注入所述过滤器中过滤,清洗; 再用未经指示剂标记的待检物特异性结合物的溶液过滤 (该步骤进行至少一次) ; 然 后用能够与所述未经指示剂标记的待检物特异性结合物相结合并能够直接或间接产生 颜色或光量变化的物质溶液注入所述过滤器中过滤, 进行检测。
在所述方法中, 所述待检样本具体可为如下中任一种: 来源于人体或动物体可进 行疾病诊断或健康检测的样品, 以及用于环境、 药物分析、 食品、 工业分析的样品。 来源于人体的样本检测为临床检测的主要内容, 用于各种疾病的诊断、 辅助诊断、 预 测、 病情监测等。 来源于动物体的样本检测也为临床检测的主要内容, 用于动物相关 各种疾病的诊断、 辅助诊断、 预测、 病情监测以及食品安全检测等。
在通常情况下,所述待检物和所述待检物的特异性结合物常为如下中的任一组合: 酶和抑制剂、 抗原和抗体、 配体和受体等。 所述指示剂常为酶类物质、 可直接或间接 发出光的物质、 可产生荧光的物质、 自身带有颜色的物质等。 酶类物质常用的有辣根 过氧化酶 (HRP) 、 碱性磷酸酶 (ALP) 、 葡萄糖氧化酶, β-半乳糖苷酶、 溶菌酶和 苹果酸脱氢酶等。 可直接或间接发光的物质常用的有鲁米诺及其衍生物、 光泽精、 洛 粉碱、 过氧化草酸酯类、 吖啶酯类等。 可产生荧光的物质有异硫氰酸荧光素 (FITC) 或罗达明 (RB200)等、 自身带有颜色的物质如胶体金类等。
本发明的还一个目的是提供一种过滤器。
本发明所提供的过滤器可用于定量免疫检测, 所述过滤器由入口、 过滤层和出口 组成, 所述过滤层内的过滤芯为偶联了待检物的特异性结合物的固相材料。
作为所述过滤芯的固相材料可为颗粒状物质或筛孔状物质。
在实际应用中, 所述的固相颗粒状或筛孔状物质为多种能够与抗原或抗体偶联结 合并且对所述抗原或抗体的免疫学结合特性不产生明显改变的固态物质, 如常用的凝 胶颗粒、 乳胶颗粒、 磁微粒等; 所述凝胶颗粒有葡聚糖凝胶系列的凝胶过滤填料和琼 月旨糖凝胶系列的凝胶过滤填料, 常用的有溴化氰活化琼脂糖凝胶介质、 NHS活化琼脂 糖凝胶介质等。
在所述过滤器中, 所述过滤芯的体积可为 2立方毫米至 1立方厘米, 如 3立方毫 米至 0.3立方厘米, 进一步如 5立方毫米至 0.1立方厘米。
在所述过滤器中,所述过滤芯可为长大于宽的形状,其长宽比值为 2-100,如 2-50, 进一步如 2-30, 可以是圆柱状、 圆锥状、 方形、 长方形及其组合形状等。 当然, 所述 过滤芯也可为宽大于长的形状, 其宽长比值为 1.1-10, 如 1.1-5, 进一步如 1.1-3, 可以 是圆柱状、 圆锥状、 方形、 长方形及其组合形状等。 在本发明的一个实施例中, 所述过滤芯为长柱状, 其长宽比值 (圆柱的高和底面 直径的比值) 为 10: 3; 在本发明的另一个实施例中, 所述过滤芯为扁柱状, 其宽长 比值 (圆柱的底面直径和高的比值) 为 10: 5。
本发明的再一个目的是提供一种利用所述过滤器检测待测样本中待检物含量中的 方法。
本发明所提供的利用所述过滤器检测待测样本中待检物含量中的方法, 可为如下 (C) 或 (D) :
(C) 包括如下步骤:
1 )将溶液 A置于所述待检样本储存器中; 将溶液 B置于所述检测相储存器中; 所述溶液 A为含有所述待检物的待检样本的溶液; 所述溶液 B为检测物质的溶液, 所 述检测物质为待检物的特异性结合物经指示剂标记后所形成的物质; 所述指示剂为能 够直接或间接产生颜色或光量变化的物质;
2)所述溶液 A通过管道流入所述过滤器中, 所述待检物被所述过滤芯特异性捕 犾;
3 )所述溶液 B通过管道流入所述过滤器中, 所述检测物质与被所述过滤芯特异 性捕获的所述待检物特异性结合, 形成过滤芯-待检物 -检测物质的复合物 1 ;
4)检测, 按照如下 (a) - (c) 中任一进行:
(a)直接采用检测器对捕获了所述待检物和所述检测物质的过滤芯进行检测, 通 过所述指示剂产生的颜色或光量变化计算所述待检物的含量;
(b)用洗脱液对所述过滤器进行洗脱, 收集含有所述检测物质的洗脱液, 用检测 器检测所述洗脱液中所述指示剂的颜色或光量变化, 进而计算所述待检物的含量;
(c)直接用检测器检测从所述过滤器流出的溶液 B中所述指示剂的颜色或光量变 化, 进而计算所述待检物的含量;
(D)包括如下步骤:
1 )将溶液 A置于所述待检样本储存器中; 将溶液 B1置于所述检测相储存器中; 所述溶液 A为含有所述待检物的待检样本的溶液; 所述溶液 B1为未经指示剂标记的 待检物的特异性结合物的溶液;
2)所述溶液 A通过管道流入所述过滤器中, 所述待检物被所述过滤芯特异性捕 犾;
3 )所述溶液 B1通过管道流入所述过滤器中, 所述未经指示剂标记的待检物的特 异性结合物与被所述过滤芯特异性捕获的所述待检物特异性结合, 形成过滤芯-待检物 -未经指示剂标记的待检物的特异性结合物的复合物 2;
4)将溶液 B2置于所述检测相储存器中; 所述溶液 B2为经指示剂标记的物质的 溶液, 所述指示剂标记的物质能与所述溶液 B1 中的所述未经指示剂标记的待检物的 特异性结合物相结合; 所述指示剂为能够直接或间接产生颜色或光量变化的物质;
5 )所述溶液 B2通过管道流入所述过滤器中, 所述经指示剂标记的物质与所述复 合物 2中的所述未经指示剂标记的待检物的特异性结合物相结合, 形成过滤芯-待检物 -未经指示剂标记的待检物的特异性结合物-经指示剂标记的物质的复合物 3;
6)检测, 按照如下 (a) - (c) 中任一进行: (a)直接采用检测器对捕获了所述待检物、所述未经指示剂标记的待检物的特异 性结合物和所述经指示剂标记的物质的过滤芯进行检测, 通过所述指示剂产生的颜色 或光量变化计算所述待检物的含量;
(b)用洗脱液对所述过滤器进行洗脱, 收集含有所述经指示剂标记的物质的洗脱 液, 用检测器检测所述洗脱液中所述指示剂的颜色或光量变化, 进而计算所述待检物 的含量;
(c) 直接用检测器检测从所述过滤器流出的溶液 B2中所述指示剂的颜色或光量 变化, 进而计算所述待检物的含量。
在上述方法中, 所述检测器可为能够定量检测并记录颜色或光量变化的仪器, 具 体可为如下中任一种: 酶联免疫检测器、化学发光检测器、荧光检测器和分光光度计。
在上述方法中,将各溶液注入所述过滤器,进行过滤时的流速为 0.05-1. OmL/分钟; 如 0.1-0.3 mL/分钟。
在所述方法步骤 1 )和 /或步骤 2)之后还可包括用清洗液清洗所述过滤器的步骤。 其中, (C) 为常用的两步检测法, 即将含有所述待检物的待检样本溶液注入所 述过滤器中过滤, 清洗; 然后将能够与所述待检物特异性结合并能够直接或间接产生 颜色或光量变化的检测物质溶液注入所述过滤器中过滤, 直接检测。 (D) 为三步法 或更多步法, 即将含有所述待检物的待检样本溶液注入所述过滤器中过滤, 清洗; 再 用未经指示剂标记的待检物特异性结合物的溶液过滤 (该步骤进行至少一次) ; 然后 用能够与所述未经指示剂标记的待检物特异性结合物相结合并能够直接或间接产生颜 色或光量变化的物质溶液注入所述过滤器中过滤, 进行检测。
在所述方法中, 所述待检样本具体可为如下中任一种: 来源于人体或动物体可进 行疾病诊断或健康检测的样品, 以及用于环境、 药物分析、 食品、 工业分析的样品。 来源于人体的样本检测为临床检测的主要内容, 用于各种疾病的诊断、 辅助诊断、 预 测、 病情监测等。 来源于动物体的样本检测也为临床检测的主要内容, 用于动物相关 各种疾病的诊断、 辅助诊断、 预测、 病情监测以及食品安全检测等。
在通常情况下,所述待检物和所述待检物的特异性结合物常为如下中的任一组合: 酶和抑制剂、 抗原和抗体、 配体和受体等。 所述指示剂常为酶类物质、 可直接或间接 发出光的物质、 可产生荧光的物质、 自身带有颜色的物质等。 酶类物质常用的有辣根 过氧化酶 (HRP) 、 碱性磷酸酶 (ALP) 、 葡萄糖氧化酶, β-半乳糖苷酶、 溶菌酶和 苹果酸脱氢酶等。 可直接或间接发光的物质常用的有鲁米诺及其衍生物、 光泽精、 洛 粉碱、 过氧化草酸酯类、 吖啶酯类等。 可产生荧光的物质有异硫氰酸荧光素 (FITC) 或罗达明 (RB200)等、 自身带有颜色的物质如胶体金类等。
以上本发明所提供的所述过滤检测装置或所述过滤器在制备用于定量免疫检测的 产品中的应用也属于本发明的保护范围。
在本发明的一个实施例中, 以上所有的所述待检物均具体为人纤维蛋白原。
在本发明中, 以上所有的所述待检样本均具体为人纤维蛋白原溶液或离体人血浆 (健康人的离体血浆) 。
在本发明中, 以上所有的所述待检物的特异性结合物均具体为抗人纤维蛋白原的 多克隆抗体或抗人纤维蛋白原的单克隆抗体。 在本发明中, 以上所有的所述检测物质 (对应方法 (A)和 (C) )均具体为辣根 过氧化酶标记的抗人纤维蛋白原的单克隆抗体或胶体金标记抗的人纤维蛋白原单克隆 抗体。 以上所有的所述未经指示剂标记的待检物的特异性结合物 (对应方法 (B) 和 (D) )均具体为抗人纤维蛋白原的单克隆抗体, 所有的所述经指示剂标记的物质(对 应方法 (B) 和 (D) )均具体为碱性磷酸酶标记二抗或辣根过氧化物酶标记二抗。
在本发明中, 以上所有的所述检测器均具体为化学发光检测仪、 酶联免疫检测仪 或分光光度计。
在本发明中, 以上所有的所述固相材料均具体为 NHS活化琼脂糖凝胶颗粒; 相应 的,以上所有的所述过滤芯均具体为经抗人纤维蛋白原的多克隆抗体标记的 NHS活化 琼脂糖凝胶颗粒。 进一步, 制备所述过滤芯的过程中, 所述抗人纤维蛋白原的多克隆 抗体与所述 NHS活化琼脂糖凝胶颗粒之间的配比为 0.1-lOmg: lmL (如 2.5mg: lmL)。 所述 NHS活化琼脂糖凝胶颗粒具体为北京韦氏博慧色谱科技有限公司产品 CS-A30-01 NHS活化琼脂糖凝胶 FF。
在本发明中, 以上所有的所述过滤器均具体按照包括如下步骤的方法制备得到: (a)制备过滤器外壳, 所述过滤器外壳的材料可为塑料 (如硬质所料) ;
(b)将作为过滤芯的经抗人纤维蛋白原的多克隆抗体标记的 NHS活化琼脂糖凝 胶颗粒转入步骤 (a) 的过滤器外壳中, 即得到本发明所述过滤器。
附图说明
图 1为长柱状过滤器的过滤检测装置的基本结构示意图。
图 2为扁柱状过滤器的过滤检测装置的基本结构示意图。
实施发明的最佳方式
以下的实施例便于更好地理解本发明, 但并不限定本发明。 下述实施例中的实验 方法, 如无特殊说明, 均为常规方法。 下述实施例中所用的试验材料, 如无特殊说明, 均为自常规生化试剂商店购买得到的。 以下实施例中的定量试验, 均设置三次重复实 验, 结果取平均值。
如图 1、 图 2所示, 本发明所提供的过滤检测装置主要包括待检样本储存器 2、检 测相储存器 3、 检测器 4, 以及长柱状过滤器 1或扁柱状过滤器 10。 长柱状过滤器 1 或扁柱状过滤器 10均具体由入口 5、 过滤层 6和出口 7组成, 其中过滤层 6内的过滤 芯是经待检物的特异性结合物 (如抗原或抗体) 偶联标记过的固相材料。 待检样本储 存器 2和所述检测相储存器 3分别通过管道 8和管道 9与长柱状过滤器 1或扁柱状过 滤器 10的入口 5相连通。
在所述装置中, 连通所述检样本储存器 2和过滤器 (长柱状过滤器 1或扁柱状过 滤器 10)之间的所述管道 8, 以及连通所述检测相储存器 3和所述过滤器 (长柱状过 滤器 1或扁柱状过滤器 10)之间的所述管道 9上还各固定有一个泵; 所述泵用于驱动 从存储器 (检样本储存器 2或检测相储存器 3) 到过滤器的液体输送, 并控制过滤时 的流速。
长柱状过滤器 1或扁柱状过滤器 10为检测反应的反应载体,主要反应过程在长柱 状过滤器 1或扁柱状过滤器 10上进行。作为所述过滤芯的固相材料可以是堆积的固相 颗粒状物质, 形成了颗粒与颗粒之间的腔隙性过滤孔径, 也可以是筛孔状的固相物质。 待检样本储存器 2, 用于装载包括来源于人体或动物体可进行疾病诊断或健康检 测的样品, 以及用于环境、 药物分析、 食品、 工业分析的样品溶液 (含有待检物) 。
检测相储存器 3, 用于装载检测物质溶液; 所述检测物质为待检物的特异性结合 物经指示剂标记后所形成的物质; 所述指示剂为能够直接或间接产生颜色或光量变化 的物质。
检测器 4为能够定量检测并记录颜色或光量变化的仪器, 常用的有酶联免疫检测 器、 化学发光检测器、 荧光检测器和分光光度计等。
实施例 1、 过滤检测装置的制备
一、 过滤器的制备
1、 实验材料
自制长柱状微型过滤器外壳 (高 15mm, 直径 5mm) 、 NHS活化琼脂糖凝胶颗粒 (CS-A30-01 NHS活化琼脂糖凝胶 FF, 北京韦氏博慧色谱科技有限公司)、抗人纤维 蛋白原多克隆抗体(北京亿利高科生物工程技术研究所产品, 货号 BR0812) 、 碳酸氢 钠、 盐酸、 乙醇胺。
2、 实验方法
取 5mg抗人纤维蛋白原多克隆抗体加浓度为 0.2M的碳酸氢钠水溶液 (pH8.3) 2ml 溶解。 取 lml NHS活化琼脂糖凝胶颗粒, 用 ImM盐酸 20ml, 分三次抽滤清洗, 去除全 部盐酸溶液。 将抗人纤维蛋白原多克隆抗体溶液与处理后的 NHS活化琼脂糖凝胶颗粒 按照体积比 1 : 1的比例混合, 4°C, 震荡反应 4小时。 用纯水清洗反应后的 NHS活化琼 脂糖凝胶颗粒, 然后加入含有 10mM乙醇胺和 0.2M碳酸钠的溶液, pH8.0, 室温震荡 4 小时封闭未偶联的基团, 用 50mM的磷酸缓冲液清洗干净, 用制备后的 NHS活化琼脂 糖凝胶颗粒制作过滤芯, 装入自制长柱状微型过滤器外壳内, 封闭, 备用。 所得过滤 芯为长柱状(其长宽比值为 10:3, 即圆柱的高和底面直径的比值为 10:3 ), 其体积为 70 立方毫米。
二、 过滤检测装置的制备
如图 1所示。 取两个 5ml离心管, 一个作为待检样本储存器, 另一个作为检测相 储存器, 将两个储存器分别通过硅胶管与步骤一制备的过滤器的入口相连通, 同时在 两个硅胶管上各固定一个蠕动泵 (保定兰格恒流泵有限公司产品, 其产品目录号为 BQ50-1J), 驱动从存储器到过滤器的液体输送, 并控制过滤时的流速。该连通后的装 置与检测器一起构成了本发明所提供的过滤检测装置。 其中, 检测器为能够定量检测 并记录颜色或光量变化的仪器, 常用的有酶联免疫检测器、 化学发光检测器、 荧光检 测器和分光光度计等。
实施例 2、 本发明与现行化学发光检测技术的检测性能的比较
一、 实验材料
实施例 1制备的抗人纤维蛋白原多克隆抗体过滤器、 辣根过氧化物酶 (HRP, 南 京都莱生物公司产品, 货号 RZ-3) 、 抗人纤维蛋白原单克隆抗体 (北京亿利高科生物 工程技术研究所产品, 货号 BR0616) 、 抗人纤维蛋白原多克隆抗体(北京亿利高科生 物工程技术研究所产品, 货号 BR0812) 戊二醛、 磁微粒 (MP-COOH-20020, 郑州英 诺生物科技有限公司) 、 鲁米诺、 对碘苯酚、 过氧化脲、 化学发光检测仪 (Promega, Glomax MultiJ Detection System) 、 人纤维蛋白原 (Sigma-Aldrich产品, 产品目录号 为 F3879-1G) 。
二、 实验方法
人纤维蛋白原溶液的配制: 取已知浓度的人纤维蛋白原溶液, 用 PBS溶液稀释配 置 1μ8/ηι1人纤维蛋白原溶液。
磁微粒的标记: 采用常规标记方法, 用抗人纤维蛋白原多克隆抗体对磁微粒进行 标记, 抗人纤维蛋白原多克隆抗体和磁微粒的用量比 (w/w) 为 1:10。
发光底物工作液的配制:用鲁米诺、对碘苯酚、过氧化脲等配制发光底物工作液。 发光底物工作液的溶剂为水, 溶质及其浓度如下: 0.36mM鲁米诺、 0.35mM对碘苯酚、 4.5mM过氧化脲。 以上各浓度均为相应组分在溶液中的终浓度。
辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体的制备: 采用戊二醛二步法, 称 取 HRP 25mg溶于 1.25 %戊二醛溶液中, 于室温静置过夜。 反应后的酶溶液经 Sephadex G-25层析柱,用生理盐水洗脱。将待标记的抗体 12.5mg用生理盐水稀释至 5ml,搅拌下 逐滴加入酶溶液中。用 1Μ ρΗ9.5碳酸盐缓冲液 0.25ml, 继续搅拌 3小时, 力 .2M赖氨酸 0.25ml, 混匀后, 置室温 2小时。 在搅拌下逐滴加入等体积饱和硫酸铵, 置 4°C 1小时。 3000rpm离心半小时, 弃上清。 沉淀物用半饱和硫酸铵洗二次, 最后沉淀物溶于少量 0.15^^117.4的1¾8中。 将上述溶液装入透析袋中, 对 0.15M pH7.4的 PBS缓冲液透析, lOOOOrpm离心 30分钟去除沉淀, 上清液即为酶结合物, 分装后, 冰冻保存。
实验将采用本发明与现行化学发光检测技术观测不同结合反应时间对发光量的 影响, 观察结合反应时间点 1、 2、 4、 10、 20、 30、 45、 60分钟。
1、 现行化学发光检测技术组
对应 8个待测的反应时间点, 取 8个 EP管, 每管加入用抗人纤维蛋白原多克隆抗体 标记的磁微粒 100μ1, 再分别加入浓度为 l g/ml的人纤维蛋白原溶液各 100μ1, 结合反应 在 37°C震摇温育 1小时, 用磁分离器吸附分离磁微粒, 弃上清, 加入 PBS 200μ1清洗三 次, 用磁分离器吸附分离磁微粒, 弃上清, 加入辣根过氧化物酶标记抗人纤维蛋白原 单克隆抗体 200μ1, 结合反应在 37°C震摇以对应的反应时间进行温育, 用磁分离器吸附 分离磁微粒, 弃上清,加入 PBS 200 清洗三次,用磁分离器吸附分离磁微粒, 弃上清, 转移磁微粒至发光杯, 置化学发光检测仪, 加入 ΙΟΟμΙ发光底物工作液, 反应进行 2分 钟时, 记录发光量 6秒钟。
2、 本发明组
取实施例 1制作的抗人纤维蛋白原多克隆抗体过滤器, 用碱性 PBS缓冲液 (配方: 50mM磷酸氢二钠, 50mM磷酸二氢钾, 150mM氯化钠, pH8.0)稀释 ΙΟΟμΙ浓度为 l g/ml 的人纤维蛋白原溶液至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗三次, 再用碱性 PBS 缓冲液稀释 ΙΟΟμΙ辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体至 lml, 过滤, 用碱 性 PBS缓冲液 lml过滤洗三次, 再用 pH4.5 Tris-盐酸缓冲液 (配方: 50mM Tris-HCl, 150mM NaCl, pH4.5) lml过滤, 收集滤出液, 取 ΙΟΟμΙ至发光杯, 置化学发光检测仪, 加入 ΙΟΟμΙ发光底物工作液, 反应进行 2分钟时, 记录发光量 6秒钟, 乘以 10作为与上述 现行化学发光检测技术组可比较的总计数结果。 以上过程中所涉及的过滤均控制流速 为 0.2ml/分钟 (以上除清洗以外的其他步骤的过滤均应控制流速为 0.05-1.0ml/分钟) 。 实验重复三次, 每次实验设置 3个平行, 结果取平均值。
三、 实验结果
现行化学发光检测技术在 1、 2、 4、 10、 20、 30、 45、 60分钟时的发光量 (mV) 分别为 3222、 5672、 7968、 9810、 14281、 20339、 19827、 20513, 结合反应 30分钟 基本达到平衡, 结合反应为 30分钟时的全过程操作时间为 89分钟。 本发明的检测结 果为 21320, 全过程操作时间仅为 13分钟。 三次重复实验的具体结果如表 1所示。 表 1本发明与现行化学发光检测技术的检测性能的比较结果发光量 (单位: mV)
Figure imgf000012_0001
实施例 3、 本发明与现行化学发光检测技术检测结果的比较
一、 实验材料
实施例 1制备的抗人纤维蛋白原多克隆抗体过滤器、 辣根过氧化物酶标记抗人纤 维蛋白原单克隆抗体 (实施例 2制备得到) 、 抗人纤维蛋白原多克隆抗体 (北京亿利 高科生物工程技术研究所产品, 货号 BR0812) 、 磁微粒 (MP-COOH-20020, 郑州英 诺生物科技有限公司) 、 鲁米诺、 对碘苯酚、 过氧化脲、 化学发光检测仪 (Promega, Glomax MultiJR Detection System) 、 人纤维蛋白原 (Sigma-Aldrich产品, 产品目录号 为 F3879-1G) 、 健康人血浆 (由健康自愿者捐赠) 。
二、 实验方法
人纤维蛋白原溶液的配制: 取已知浓度的人纤维蛋白原溶液, 用 PBS溶液稀释配 置 10、 30、 70、 100、 300、 700ng/ml的系列人纤维蛋白原溶液。 用于制作标准曲线。
磁微粒的标记: 采用常规标记方法, 用抗人纤维蛋白原多克隆抗体对磁微粒进行 标记, 抗人纤维蛋白原多克隆抗体和磁微粒的用量比 (w/w) 为 1:10。
发光底物工作液的配制:用鲁米诺、对碘苯酚、过氧化脲等配制发光底物工作液。 发光底物工作液的溶剂为水, 溶质及其浓度如下: 0.36mM鲁米诺、 0.35mM对碘苯酚、 4.5mM过氧化脲。 以上各浓度均为相应组分在溶液中的终浓度。
实验采用本发明与现行化学发光检测技术检测人纤维蛋白原溶液并绘制标准曲 线, 然后取健康人血浆, 用 PBS (50mM磷酸氢二钠, 50mM磷酸二氢钾, 150mM氯化 钠, pH7.4) 进行 10000倍稀释, 测定健康人血浆中的纤维蛋白原, 并用标准曲线计算 健康人血浆中纤维蛋白原的浓度。 取 42个试管, 分为本发明组和现行化学发光检测技 术组。 每个样品做 3个平行管。
1、 现行化学发光检测技术组 每管加入抗人纤维蛋白原多克隆抗体标记的磁微粒 100μ1,再分别加入人纤维蛋白 原溶液或健康人血浆稀释液 100μ1, 结合反应在 37°C震摇温育 30分钟, 用磁分离器吸 附分离磁微粒, 弃上清, 加入 PBS 200μ1清洗三次, 用磁分离器吸附分离磁微粒, 弃 上清, 加入辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体 200μ1, 结合反应在 37°C 震摇温育 30分钟, 用磁分离器吸附分离磁微粒, 弃上清, 加入 PBS 200 清洗三次, 用磁分离器吸附分离磁微粒, 弃上清, 转移磁微粒至发光杯, 置化学发光检测仪, 加 入 ΙΟΟμΙ发光底物工作液, 反应进行 2分钟时, 记录发光量 6秒钟。 绘制标准曲线, 计算血浆中人纤维蛋白原含量。
2、 本发明组
取实施例 1制作的抗人纤维蛋白原多克隆抗体过滤器, 用碱性 PBS缓冲液 (配方:
50mM磷酸氢二钠, 50mM磷酸二氢钾, 150mM氯化钠, pH8.0)稀释 ΙΟΟμΙ人纤维蛋白 原溶液或健康人血浆稀释液至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗三次, 再用碱 性 PBS稀释 ΙΟΟμΙ辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体至 lml, 过滤, 用碱 性 PBS缓冲液 lml过滤洗三次, 再用 pH4.5 Tris-盐酸缓冲液 (配方: 50mM Tris-HCl, 150mM NaCl, pH4.5 ) lml过滤, 收集滤出液, 取 ΙΟΟμΙ至发光杯, 置化学发光检测仪, 加入 ΙΟΟμΙ发光底物工作液, 反应进行 2分钟时, 记录发光量 6秒钟。 绘制标准曲线, 计 算血浆中人纤维蛋白原含量。以上过程中所涉及的过滤均控制流速为 0.3ml/分钟(以上 除清洗以外的其他步骤的过滤均应控制流速为 0.05-1.0ml/分钟) 。
实验重复三次, 结果取平均值。
三、 实验结果
现行化学发光检测技术测定结果显示健康人血浆中人纤维蛋白原的含量为 2.51g/L,本发明测定结果显示健康人血浆中人纤维蛋白原的含量为 2.58g/L, 两种实验 方法所得结果基本一致, 无统计学差异 (P>0.05 ) , 但本发明的完成实验时间 (12分 钟) 明显短于现行技术 (83分钟) 。 三次重复实验的具体结果如表 2所示。
Figure imgf000013_0001
实施例 4、 本发明过滤芯体积对检测结果的影响
一、 实验材料
自制长柱状微型过滤器外壳、 NHS活化琼脂糖凝胶颗粒 (CS-A30-01 NHS活化琼 月旨糖凝胶 FF, 北京韦氏博慧色谱科技有限公司)、抗人纤维蛋白原多克隆抗体(北京 亿利高科生物工程技术研究所产品, 货号 BR0812) 、 碳酸氢钠、 盐酸、 乙醇胺、 人纤 维蛋白原 (Sigma-Aldrich产品, 产品目录号为 F3879-1G) 、 辣根过氧化物酶标记抗人 纤维蛋白原单克隆抗体 (实施例 2制备得到) 。
二、 实验方法
发光底物工作液的配制:用鲁米诺、对碘苯酚、过氧化脲等配制发光底物工作液。 发光底物工作液的溶剂为水, 溶质及其浓度如下: 0.36mM鲁米诺、 0.35mM对碘苯酚、 4.5mM过氧化脲。 以上各浓度均为相应组分在溶液中的终浓度。 系列抗人纤维蛋白原多克隆抗体过滤器的制备: 采用实施例 1的方法制备过滤芯体 积为 1、 2、 3、 5、 10、 50、 100、 300、 500、 700、 1000立方毫米的抗人纤维蛋白原多 克隆抗体过滤器。 这些过滤器中过滤芯均为长柱状形, 1、 2、 3、 5立方毫米的过滤器 采用内径为 lmm的硬质塑料管, 10立方毫米的过滤器采用内径为 2mm的硬质塑料管, 50、 100立方毫米的过滤器采用内径为 5mm的硬质塑料管, 300、 500、 700、 1000立方 毫米的过滤器采用内径为 10mm的硬质塑料管。
用 PBS溶液(配方: 50mM磷酸氢二钠, 50mM磷酸二氢钾, 150mM氯化钠, pH7.4) 稀释配置浓度为 1μ8/ηι1的人纤维蛋白原溶液。 用碱性 PBS缓冲液(配方: 50mM磷酸氢 二钠, 50mM磷酸二氢钾, 150mM氯化钠, pH8.0)稀释 ΙΟΟμΙ人纤维蛋白原溶液至 lml, 即终浓度为 0.^g/ml。
实验分为两组, 人纤维蛋白原组 (A组) 和空白组 (B组) 。 人纤维蛋白原组 (A 组)用终浓度为 0.1μ§/ηι1人纤维蛋白原溶液 lml过滤,用碱性 PBS缓冲液 lml过滤洗三次, 再用碱性 PBS稀释 ΙΟΟμΙ辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗三次,再用 pH4.5 Tris-盐酸缓冲液(配方: 50mM Tris-HCl, 150mM NaCl, pH4.5) lml过滤, 收集滤出液, 取 ΙΟΟμΙ发光底物工作液, 反应进行 2分 钟时, 记录发光量 6秒钟。 空白组(Β组)除用 PBS缓冲液代替终浓度为 0.1μ§/ηι1人纤维 蛋白原溶液 lml过滤外,其它同人纤维蛋白原组。 以上过程中所涉及的过滤控制流速为 1、 2、 3、 5立方毫米的过滤器采用 0.05ml/分钟, 10立方毫米的过滤器采用 0.1 ml/分钟, 50、 100立方毫米的过滤器采用 0.3ml/分钟, 300、 500、 700、 1000立方毫米的过滤器采 用 1.0ml/分钟 (以上除清洗以外的其他步骤的过滤均应控制流速为 0.05-1.0ml/分钟) 。
实验重复三次, 结果取平均值。
三、 实验结果
所记录的过滤芯体积为 1、 2、 3、 5、 10、 50、 100、 300、 500、 700、 1000立方毫 米过滤器的发光量 (mV)分别为 843、 1597、 1871、 1925、 1967、 1983、 2042、 1956、 1995、 2035、 2068, 过滤芯体积为 3立方毫米时基本达到平衡。 三次重复实验的具体 结果如表 3所示。
表 3本发明过滤芯体积对检测结果的影响 -发光量测定 (单位: mV) 过滤芯体积 重复 1 重复 2 重复 3 平均值 (立方毫米)
A B A B A B A-B
1 1998 1022 2023 910 1522 1082 843
2 2809 1098 2566 1112 2692 1066 1597
3 3280 1101 2909 1046 2754 1183 1871
5 3122 1284 2990 1022 3167 1198 1925
10 3320 1398 3544 1536 3395 1424 1967
50 3122 1510 3968 1950 3855 1536 1983
100 3768 1860 3978 1862 3982 1880 2042
300 4533 2400 4255 2244 4326 2602 1956 500 5231 3160 5108 2698 4728 3224 1995
700 6854 5066 6723 4266 7126 5266 2035
1000 12530 11274 15217 11568 13135 11836 2068 实施例 5、 本发明与现行酶联免疫检测技术检测结果的比较
一、 实验材料
抗人纤维蛋白原多克隆抗体 (北京亿利高科生物工程技术研究所产品, 货号 BR0812) 、 实施例 1制备的抗人纤维蛋白原多克隆抗体过滤器、 辣根过氧化物酶标记 抗人纤维蛋白原单克隆抗体(实施例 2制备得到)、邻苯二胺、酶联免疫检测仪(Bio-Rad, Model 550) 、 人纤维蛋白原溶液( Sigma-Aldrich产品, 产品目录号为 F3879-1G) 、 健 康人血浆 (健康自愿者捐赠) 。
二、 实验方法
人纤维蛋白原溶液的配制:取已知浓度的人纤维蛋白原溶液,用 PBS溶液稀释配置 30、 70、 100、 300、 700、 1000 ng/ml的系列人纤维蛋白原溶液。 用于制作标准曲线。
实验采用本发明与现行酶联免疫检测技术检测人纤维蛋白原溶液并绘制标准曲 线,然后取健康人血浆,用 PBS进行 10000倍稀释,测定健康人血浆中的纤维蛋白原, 并用标准曲线计算健康人血浆中纤维蛋白原的浓度。取 42个试管, 分为本发明组和现 行酶联免疫检测技术组。 每个样品做 3个平行管。
1、 现行酶联免疫检测技术组
采用 96孔酶联板, 每管加入抗人纤维蛋白原多克隆抗体 100μ1, 4°C过夜包被, 清洗 三次, 再分别加入人纤维蛋白原溶液或健康人血浆稀释液 100μ1, 结合反应在 37°C温育 120分钟, 清洗三次, 加入辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体 100μ1, 结 合反应在 37°C温育 60分钟, 清洗三次, 弃上清, 加入 ΙΟΟμΙ显色液(配方: 0.1M柠檬酸 2.43ml, 0.2M磷酸氢二钠 2.57ml, 邻苯二胺 5mg, 过氧化氢 5μ1), 避光 5分钟, 加入 2Μ 硫酸终止反应。置酶联免疫检测仪上读取 OD490吸光值, 30、 70、 100、 300、 700、 1000 ng/ml浓度对应 OD值分别为 0.198、 0.245、 0.256、 0.458、 0.895、 1.256, 绘制标准曲线, 计算血浆中人纤维蛋白原含量。
2、 本发明组
取实施例 1制作的抗人纤维蛋白原多克隆抗体过滤器,用碱性 PBS缓冲液稀释 ΙΟΟμΙ 人纤维蛋白原溶液或健康人血浆稀释液各至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗 三次, 再用碱性 PBS缓冲液稀释 ΙΟΟμΙ辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体 至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗三次, 再用 pH4.5 Tris-盐酸缓冲液 lml过滤, 收集滤出液, 各取 ΙΟΟμΙ至 96孔酶联板, 加入 ΙΟΟμΙ显色液 (配方: 0.1M柠檬酸 2.43ml, 0.2M磷酸氢二钠 2.57ml, 邻苯二胺 5mg, 过氧化氢 5μ1) , 避光 5分钟, 加入 2Μ硫酸终 止反应。置酶联免疫检测仪上读取 OD490吸光值, 30、 70、 100、 300、 700、 1000 ng/ml 浓度对应 OD值分别为 0.205、 0.255、 0.261、 0.455、 0.679、 0.92, 绘制标准曲线, 计算 血浆中人纤维蛋白原含量。以上过程中所涉及的过滤均控制流速为 0.1ml/分钟(以上除 清洗以外的其他步骤的过滤均应控制流速为 0.05-1.0ml/分钟) 。
实验重复三次, 结果取平均值。
三、 实验结果 现行酶联免疫检测技术测定结果显示健康人血浆中人纤维蛋白原的含量为 2.56g/L,本发明技术测定结果显示健康人血浆中人纤维蛋白原的含量为 2.50g/L, 两种 实验方法所得结果基本一致, 无统计学差异(P>0.05)。但本发明的完成实验时间(13 分钟) 明显短于现行技术 (85分钟) 。 三次重复实验的具体结果如表 4所示。
Figure imgf000016_0001
实施例 6、 本发明以胶体金为指示剂的检测技术检测结果分析
一、 实验材料
实施例 1制备的抗人纤维蛋白原多克隆抗体过滤器、 抗人纤维蛋白原单克隆抗体 (北京亿利高科生物工程技术研究所产品, 货号 BR0616) 、 分光光度计(上海箐华科 技仪器有限公司, 752紫外可见分光光度计)、人纤维蛋白原溶液(Sigma-Aldrich产品, 产品目录号为 F3879-1G)、健康人血浆(健康自愿者捐赠, 与实施例 5中所述健康人血 浆为同一样本) 。
二、 实验方法
人纤维蛋白原溶液的配制:取已知浓度的人纤维蛋白原溶液,用 PBS溶液稀释配置 100、 300、 700、 1000、 3000ng/ml的系列人纤维蛋白原溶液。 用于制作标准曲线。
胶体金标记抗人纤维蛋白原单克隆抗体的制备: 取 500ml纯净水, 加热搅拌, 待水 沸腾时加入 500μ1 10%氯金酸溶液, 加热煮沸 5分钟, 加入 500μ1 12%柠檬酸三钠溶液, 保持此溶液搅拌沸腾 10分钟, 自然降温至室温, 即胶体金溶液。 取胶体金溶液体积 100ml, 用 10%碳酸钾调 pH至 8.3, 迅速加入抗人纤维蛋白原单克隆抗体 1000μ§, 至 10μ§/ηι1终浓度,晃动烧杯混匀,室温放置 30分钟,迅速加入 10%牛血清白蛋白溶液 lml, 使终浓度为 1%, 同时摇动烧杯, 室温放置 30分钟, 12000rpm离心 20分钟, 小心吸出上 清液, 加入 50ml憐酸盐缓冲液将沉淀悬浮, 12000rpm离心 20分钟, 吸出上清液, 将沉 淀溶于 10.0ml含有 1%的牛血清白蛋白和 3%蔗糖的磷酸缓冲液内, 4°C避光保存。
实验采用本发明以胶体金为指示剂的检测技术检测人纤维蛋白原溶液并绘制标准 曲线, 然后取健康人血浆, 用 PBS进行 5000倍稀释, 进行测定, 进而用标准曲线计 算健康人血浆中纤维蛋白原的浓度。 取 18个试管, 每个样品做 3个平行管。
取实施例 1制作的抗人纤维蛋白原多克隆抗体过滤器,用碱性 PBS缓冲液稀释 ΙΟΟμΙ 人纤维蛋白原溶液或健康人血浆稀释液各至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗 三次, 再用碱性 PBS稀释 ΙΟΟμΙ胶体金标记抗人纤维蛋白原单克隆抗体至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗三次, 再用 pH4.5 Tris-盐酸缓冲液 lml过滤, 收集滤出液, 混匀, 取 800μ1置分光光度计读取 520nm波长的吸光值, 绘制标准曲线, 计算血浆中人 纤维蛋白原含量。以上过程中所涉及的过滤均控制流速为 0.1ml/分钟(以上除清洗以外 的其他步骤的过滤均应控制流速为 0.05-1.0ml/分钟 ) 。
实验重复三次, 结果取平均值。
三、 实验结果
本发明以胶体金为指示剂的检测技术测定结果显示健康人血浆中人纤维蛋白原的 含量为 2.81g/L,与其它方法(实施例 5 )检测的结果基本一致,无统计学差异(P>0.05 )。 三次重复实验的具体结果如表 5所示。
表 5本发明以胶体金为指示剂的检测技术检测结果分析 (单位: ^L)
Figure imgf000017_0001
实施例 7、 本发明过滤器形状对检测结果的影响
一、 实验材料
NHS活化琼脂糖凝胶颗粒(CS-A30-01 NHS活化琼脂糖凝胶 FF, 北京韦氏博慧色 谱科技有限公司)、辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体(实施例 2制备得 至 IJ) 、 抗人纤维蛋白原多克隆抗体 (北京亿利高科生物工程技术研究所产品, 货号 BR0812) 、 碳酸氢钠、 盐酸、 乙醇胺、 人纤维蛋白原 (Sigma-Aldrich产品, 产品目录 号为 F3879-1G) 、 酶联免疫检测仪 (Bio-Rad, Model 550) 。
二、 实验方法
采用实施例 1方法制备过滤芯体积为 100立方毫米的抗人纤维蛋白原多克隆抗体微 型长柱状过滤器和微型扁柱状过滤器。 其中, 微型长柱状过滤器中过滤芯的长宽比值
(圆柱的高和底面直径的比值) 为 10:3, 微型扁柱状过滤器中过滤芯的宽长比值 (圆 柱的底面直径和高的比值) 为 10:5。
用 PBS溶液稀释配置 1μ§/ηι1人纤维蛋白原溶液。用碱性 PBS缓冲液稀释 ΙΟΟμΙ人纤维 蛋白原溶液至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗三次, 再用碱性 PBS缓冲液稀 释 ΙΟΟμΙ辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体至 lml, 过滤, 用碱性 PBS缓 冲液 lml过滤洗三次, 再用 pH4.5 Tris-盐酸缓冲液 lml过滤, 收集滤出液, 各取 ΙΟΟμΙ至 96孔酶联板, 加入 ΙΟΟμΙ酶联反应显色液(配方: 0.1M柠檬酸 2.43ml, 0.2M磷酸氢二钠 2.57ml, 邻苯二胺 5mg, 过氧化氢 5μ1) , 避光 3分钟, 加入 2Μ硫酸终止反应。 置酶联 免疫检测仪上读取 OD490吸光值。 以上过程中所涉及的过滤均控制流速为 1.0ml/分钟 (以上除清洗以外的其他步骤的过滤均应控制流速为 0.05-1.0ml/分钟) 。
实验重复三次, 结果取平均值。
三、 实验结果
长柱状过滤器测定吸光值为 1.781, 扁柱状过滤器测定吸光值为 1.624, 两种过滤 器所得结果基本一致, 无统计学差异(P>0.05) 。 三次重复实验具体结果如表 6所示。
Figure imgf000017_0002
实施例 8、 本发明采用碱性磷酸酶发光系统与现行化学发光检测技术检测结果的 比较
一、 实验材料
实施例 1制备的抗人纤维蛋白原多克隆抗体过滤器、 抗人纤维蛋白原单克隆抗体 (北京亿利高科生物工程技术研究所产品, 货号 BR0616) 、 抗人纤维蛋白原多克隆抗 体(北京亿利高科生物工程技术研究所产品, 货号 BR0812) 、 碱性磷酸酶标记驴抗鼠 IgG (北京康为世纪生物科技有限公司, CW0233 ) 、 磁微粒 (MP-COOH-20020, 郑 州英诺生物科技有限公司) 、 APLS发光底物液 (APLS0500, 郑州英诺生物科技有限 公司) 、 化学发光检测仪 (Promega, Glomax MultiJ Detection System) 、 人纤维蛋白 原(Sigma-Aldrich产品, 产品目录号为 F3879-1G) 、 健康人血浆(健康自愿者捐赠) 。
二、 实验方法
人纤维蛋白原溶液的配制:取已知浓度的人纤维蛋白原溶液,用 PBS溶液稀释配置 10、 30、 70、 100、 300、 700ng/ml人纤维蛋白原溶液。 用于制作标准曲线。
磁微粒的标记: 采用常规标记方法, 用抗人纤维蛋白原多克隆抗体对磁微粒进行 标记, 抗人纤维蛋白原多克隆抗体和磁微粒的用量比 (w/w) 为 1 :10。
实验采用本发明与现行化学发光检测技术检测人纤维蛋白原溶液并绘制标准曲 线, 然后取健康人血浆, 用 PBS进行 10000倍稀释, 进行测定, 进而用标准曲线计算 健康人血浆中纤维蛋白原的浓度。取 42个试管, 分为本发明组和现行化学发光检测技 术组。 每个样品做 3个平行管。
1、 现行化学发光检测技术组
每管加入抗人纤维蛋白原多克隆抗体标记的磁微粒 100μ1, 再分别加入人纤维蛋白 原溶液或健康人血浆稀释液各 100μ1, 结合反应在 37°C震摇温育 30分钟, 用磁分离器吸 附分离磁微粒, 弃上清, 加入 PBS 200 清洗三次, 用磁分离器吸附分离磁微粒, 弃上 清, 加入辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体 200μ1, 结合反应在 37°C震摇 温育 30分钟, 用磁分离器吸附分离磁微粒, 弃上清, 加入 PBS 200 清洗三次, 用磁分 离器吸附分离磁微粒, 弃上清, 转移磁微粒至发光杯, 置化学发光检测仪, 加入 lOOpAPLS发光底物液, 反应进行 1分钟时, 记录发光量 6秒钟。 绘制标准曲线, 计算血 浆中人纤维蛋白原含量。
2、 本发明组
取实施例 1制作的抗人纤维蛋白原多克隆抗体过滤器,用碱性 PBS缓冲液稀释 ΙΟΟμΙ 人纤维蛋白原溶液或健康人血浆稀释液各至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗 三次, 再用碱性 PBS缓冲液稀释 ΙΟΟμΙ抗人纤维蛋白原单克隆抗体至 lml, 过滤, 用碱 性 PBS缓冲液 lml过滤洗三次, 再用碱性 PBS缓冲液稀释 ΙΟΟμΙ碱性磷酸酶标记驴抗鼠 IgG至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗三次, 再用 pH4.5 Tris-盐酸缓冲液 lml 过滤, 收集滤出液, 取 ΙΟΟμΙ至发光杯, 置化学发光检测仪, 加入 APLS发光底物工作 液, 反应进行 1分钟时, 记录发光量 6秒钟。 绘制标准曲线, 计算血浆中人纤维蛋白原 含量。以上过程中所涉及的过滤均控制流速为 0.2ml/分钟(以上除清洗以外的其他步骤 的过滤均应控制流速为 0.05- 1.0ml/分钟) 。
实验重复三次, 结果取平均值。
三、 实验结果
现行化学发光检测技术测定结果显示健康人血浆中人纤维蛋白原的含量为
2.32^L, 本发明采用碱性磷酸酶发光系统测定结果健康人血浆中人纤维蛋白原的含量 为 2.18g/L, 两种实验方法所得结果基本一致, 无统计学差异 (P>0.05 ) 。 但本发明的 完成实验时间 (13分钟) 明显短于现行技术(86分钟) 。 三次重复实验的具体结果如 表 7所示。 表 7本发明采用碱性磷酸酶发光系统与现行化学发光检测技术检测结果的比较
(单位: g/L)
Figure imgf000019_0001
实施例 9、 本发明直接采用过滤芯检测与现行化学发光检测技术检测结果的比较 一、 实验材料
实施例 1制备的抗人纤维蛋白原多克隆抗体过滤器、 抗人纤维蛋白原单克隆抗体
(北京亿利高科生物工程技术研究所产品, 货号 BR0616)、抗人纤维蛋白原多克隆抗 体(北京亿利高科生物工程技术研究所产品, 货号 BR0812)、碱性磷酸酶标记驴抗鼠 IgG (北京康为世纪生物科技有限公司, CW0233 ) 、 磁微粒 (MP-COOH-20020, 郑 州英诺生物科技有限公司) 、 APLS发光底物液 (APLS0500, 郑州英诺生物科技有限 公司) 、 化学发光检测仪 (Promega,Glomax MultiJ Detection System) 、 人纤维蛋白 原(Sigma-Aldrich产品, 产品目录号为 F3879-1G)、健康人血浆(健康自愿者捐赠)。
二、 实验方法
人纤维蛋白原溶液的配制: 取已知浓度的人纤维蛋白原溶液, 用 PBS溶液稀释配 置 10、 30、 70、 100、 300、 700ng/ml人纤维蛋白原溶液。 用于制作标准曲线。
磁微粒的标记: 采用常规标记方法, 用抗人纤维蛋白原多克隆抗体对磁微粒进行 标记, 抗人纤维蛋白原多克隆抗体和磁微粒的用量比 (w/w) 为 1 :10。
实验采用本发明与现行化学发光检测技术检测人纤维蛋白原溶液并绘制标准曲 线, 然后取健康人血浆, 用 PBS进行 10000倍稀释, 进行测定, 进而用标准曲线计算 健康人血浆中纤维蛋白原的浓度。取 42个试管, 分为本发明组和现行化学发光检测技 术组。 每个样品做 3个平行管。
1、 现行化学发光检测技术组
每管加入抗人纤维蛋白原多克隆抗体标记的磁微粒 100μ1, 再分别加入人纤维蛋白 原溶液或健康人血浆稀释液各 100μ1, 结合反应在 37°C震摇温育 30分钟, 用磁分离器吸 附分离磁微粒, 弃上清, 加入 PBS 200 清洗三次, 用磁分离器吸附分离磁微粒, 弃上 清, 加入辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体 200μ1, 结合反应在 37°C震摇 温育 30分钟, 用磁分离器吸附分离磁微粒, 弃上清, 加入 PBS 200 清洗三次, 用磁分 离器吸附分离磁微粒, 弃上清, 转移磁微粒至发光杯, 置化学发光检测仪, 加入 ΙΟΟμΙ APLS发光底物液, 反应进行 1分钟时, 记录发光量 6秒钟。 绘制标准曲线, 计算血浆中 人纤维蛋白原含量。
2、 本发明组
取实施例 1制作的抗人纤维蛋白原多克隆抗体过滤器,用碱性 PBS缓冲液稀释 ΙΟΟμΙ 人纤维蛋白原溶液或健康人血浆稀释液各至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗 三次, 再用碱性 PBS缓冲液稀释 ΙΟΟμΙ抗人纤维蛋白原单克隆抗体至 lml, 过滤, 用碱 性 PBS缓冲液 lml过滤洗三次, 再用碱性 PBS缓冲液稀释 ΙΟΟμΙ碱性磷酸酶标记驴抗鼠 IgG至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗三次, 收集过滤芯至发光杯, 置化学发 光检测仪, 加入 APLS发光底物工作液, 反应进行 1分钟时, 记录发光量 6秒钟。 绘制标 准曲线,计算血浆中人纤维蛋白原含量。以上过程中所涉及的过滤均控制流速为 0.1ml/ 分钟 (以上除清洗以外的其他步骤的过滤均应控制流速为 0.05-1.0ml/分钟) 。
实验重复三次, 结果取平均值。
三、 实验结果
现行化学发光检测技术测定结果显示健康人血浆中人纤维蛋白原的含量为 3.11^L, 本发明直接采用过滤芯检测技术测定结果显示健康人血浆中人纤维蛋白原的 含量为 3.28g/L, 两种实验方法所得结果基本一致, 无统计学差异 (P>0.05 ) 。 但本发 明的完成实验时间 (13分钟) 明显短于现行技术(85分钟) 。 三次重复实验的具体结 果如表 8所示。
表 8本发明直接采用过滤芯检测与现行化学发光检测技术检测结果的比较
(单位: g/L)
Figure imgf000020_0001
实施例 10、 本发明釆用流出液检测与现行化学发光检测技术检测结果的比较 一、 实验材料
实施例 1制备的抗人纤维蛋白原多克隆抗体过滤器、 抗人纤维蛋白原单克隆抗体 (北京亿利高科生物工程技术研究所产品, 货号 BR0616)、抗人纤维蛋白原多克隆抗 体(北京亿利高科生物工程技术研究所产品, 货号 BR0812)、碱性磷酸酶标记驴抗鼠 IgG (北京康为世纪生物科技有限公司, CW0233 ) 、 磁微粒 (MP-COOH-20020, 郑 州英诺生物科技有限公司) 、 APLS发光底物液 (APLS0500, 郑州英诺生物科技有限 公司) 、 化学发光检测仪 (Promega, Glomax MultiJ Detection System) 、 人纤维蛋白 原溶液(Sigma-Aldrich产品, 产品目录号为 F3879-1G)、 健康人血浆(健康自愿者捐 赠) 。
二、 实验方法
人纤维蛋白原溶液的配制: 取已知浓度的人纤维蛋白原溶液, 用 PBS溶液稀释配 置 10、 30、 70、 100、 300、 700ng/ml人纤维蛋白原溶液。 用于制作标准曲线。
磁微粒的标记: 采用常规标记方法, 用抗人纤维蛋白原多克隆抗体对磁微粒进行 标记, 抗人纤维蛋白原多克隆抗体和磁微粒的用量比 (w/w) 为 1 :10。
实验采用本发明与现行化学发光检测技术检测人纤维蛋白原溶液并绘制标准曲 线, 然后取健康人血浆, 用 PBS进行 10000倍稀释, 进行测定, 进而用标准曲线计算 健康人血浆中纤维蛋白原的浓度。取 42个试管, 分为本发明组和现行化学发光检测技 术组。 每个样品做 3个平行管。
1、 现行化学发光检测技术组
每管加入抗人纤维蛋白原多克隆抗体标记的磁微粒 100μ1, 再分别加入人纤维蛋白 原溶液或健康人血浆稀释液各 100μ1, 结合反应在 37°C震摇温育 30分钟, 用磁分离器吸 附分离磁微粒, 弃上清, 加入 PBS 200 清洗三次, 用磁分离器吸附分离磁微粒, 弃上 清, 加入辣根过氧化物酶标记抗人纤维蛋白原单克隆抗体 200μ1, 结合反应在 37°C震摇 温育 30分钟, 用磁分离器吸附分离磁微粒, 弃上清, 加入 PBS 200 清洗三次, 用磁分 离器吸附分离磁微粒, 弃上清, 转移磁微粒至发光杯, 置化学发光检测仪, 加入 ΙΟΟμΙ APLS发光底物液, 反应进行 1分钟时, 记录发光量 6秒钟。 绘制标准曲线, 计算血浆中 人纤维蛋白原含量。
2、 本发明组
取实施例 1制作的抗人纤维蛋白原多克隆抗体过滤器,用碱性 PBS缓冲液稀释 ΙΟΟμΙ 人纤维蛋白原溶液或健康人血浆稀释液各至 lml, 过滤, 用碱性 PBS缓冲液 lml过滤洗 三次, 再用碱性 PBS缓冲液稀释 ΙΟΟμΙ抗人纤维蛋白原单克隆抗体至 lml, 过滤, 用碱 性 PBS缓冲液 lml过滤洗三次,再用碱性 PBS缓冲液稀释 20μ1碱性磷酸酶标记驴抗鼠 IgG 至 lml, 过滤, 收集滤出液至发光杯, 置化学发光检测仪, 加入 APLS发光底物工作液, 反应进行 1分钟时, 记录发光量 6秒钟。绘制标准曲线, 计算血浆中人纤维蛋白原含量。 以上过程中所涉及的过滤均控制流速为 0.5ml/分钟(以上除清洗以外的其他步骤的过滤 均应控制流速为 0.05- 1.0ml/分钟) 。
实验重复三次, 结果取平均值。
三、 实验结果
现行化学发光检测技术测定结果果显示健康人血浆中人纤维蛋白原的含量为
3.02g/L, 本发明采用流出液检测的测定结果果显示健康人血浆中人纤维蛋白原的含量 为 3.31g/L, 两种实验方法所得结果基本一致, 无统计学差异 (P>0.05) 。 但本发明的 完成实验时间 (12分钟) 明显短于现行技术(88分钟) 。 三次重复实验的具体结果如 表 9所示。
表 9本发明采用流出液检测与现行化学发光检测技术检测结果的比较
(单位: g/L)
Figure imgf000021_0001
实施例 11、 本发明与现行化学发光检测技术检测结果的比较
一、 实验材料
与实施例 3相比, 将 "实施例 1制备的抗人纤维蛋白原多克隆抗体过滤器"替换 为 "实施例 1制备的过滤检测装置", 其中, 检测器为化学发光检测仪, 其余与实施 例 3实验材料均相同。
二、 实验方法
1、 现行化学发光检测技术组
同实施例 3。
2、 本发明组
取实施例 1制作的过滤检测装置, 将用碱性 PBS缓冲液(配方: 50mM磷酸氢二钠, 50mM磷酸二氢钾, 150mM氯化钠, pH8.0) 稀释 ΙΟΟμΙ人纤维蛋白原溶液或健康人血 浆稀释液至 lml, 作为待检样本的溶液, 置于待检样本储存器中, 待检样本的溶液经蠕 动泵通过硅胶管流入过滤器过滤;接着,将碱性 PBS缓冲液 lml置于待检样本储存器中, 过滤洗涤三次; 再用碱性 PBS缓冲液稀释 ΙΟΟμΙ辣根过氧化物酶标记抗人纤维蛋白原单 克隆抗体至 lml, 作为检测物质的溶液, 置于检测相储存器中, 检测物质的溶液经蠕动 泵通过硅胶管流入过滤器过滤; 接着, 将碱性 PBS缓冲液 lml置于检测相储存器中, 过 滤洗三次; 最后, 将 pH4.5 Tris-盐酸缓冲液 (配方: 50mM Tris-HCl, 150mM NaCl, pH4.5) lml置于检测相储存器中, 过滤, 收集滤出液, 取 ΙΟΟμΙ至发光杯, 置化学发光 检测仪, 加入 ΙΟΟμΙ发光底物工作液, 反应进行 2分钟时, 记录发光量 6秒钟。 绘制标准 曲线, 计算血浆中人纤维蛋白原含量。 以上过程中所涉及的过滤均控制流速为 0.3ml/ 分钟 (以上除清洗以外的其他步骤的过滤均应控制流速为 0.05-1.0ml/分钟) 。
实验重复三次, 结果取平均值。
三、 实验结果
现行化学发光检测技术测定结果显示健康人血浆中人纤维蛋白原的含量为 2.51g/L,本发明测定结果显示健康人血浆中人纤维蛋白原的含量为 2.70g/L, 两种实验 方法所得结果基本一致, 无统计学差异 (P>0.05 ) , 但本发明的完成实验时间 (12分 钟) 明显短于现行技术 (87分钟) 。 三次重复实验的具体结果如表 10所示。
Figure imgf000022_0001
工业应用
本发明创造性地设计了一种以过滤器为反应载体的检测装置, 提高了检测个性化 的可控程度, 提高了检测效率。 本发明过滤的反应时间较现行的检测结合反应时间明 显縮短, 提高了检测速度。 本发明在室温下就可以完成全部反应, 免除了现行检测设 备中需要设置的温控反应结构, 简化了仪器设计, 可实现小型化、便携的目的。 因此, 本发明技术对改善现有免疫检测技术具有重要的意义和良好的应用前景。

Claims

权利要求
1、 一种过滤检测装置, 其特征在于: 所述过滤检测装置包括待检样本储存器、检 测相储存器、 过滤器和检测器; 所述过滤器由入口、 过滤层和出口组成, 所述过滤层 内的过滤芯为偶联了待检物的特异性结合物的固相材料; 所述待检样本储存器和所述 检测相储存器分别通过管道与所述过滤器的入口相连通。
2、根据权利要求 1所述的过滤检测装置, 其特征在于: 所述检测器为能够定量检 测并记录颜色或光量变化的仪器。
3、根据权利要求 1或 2所述的过滤检测装置, 其特征在于: 作为所述过滤芯的固 相材料为颗粒状物质或筛孔状物质。
4、 根据权利要求 1-3中任一所述的过滤检测装置, 其特征在于: 所述过滤芯的体 积为 2立方毫米至 1立方厘米。
5、根据权利要求 4所述的过滤检测装置, 其特征在于: 所述过滤芯的体积为 3立 方毫米至 0.3立方厘米。
6、根据权利要求 5所述的过滤检测装置, 其特征在于: 所述过滤芯的体积为 5立 方毫米至 0.1立方厘米。
7、根据权利要求 1-6中任一所述的过滤检测装置, 其特征在于: 所述过滤芯为长 大于宽的形状, 其长宽比值为 2-100。
8、 根据权利要求 7所述的过滤检测装置, 其特征在于: 所述过滤芯为长大于宽 的形状, 其长宽比值为 2-50。
9、根据权利要求 8所述的过滤检测装置, 其特征在于: 所述过滤芯为长大于宽的 形状, 其长宽比值为 2-30。
10、 根据权利要求 1-6中任一所述的过滤检测装置, 其特征在于: 所述过滤芯为 宽大于长的形状, 其宽长比值为 1.1-10。
11、 根据权利要求 10所述的过滤检测装置, 其特征在于: 所述过滤芯为宽大于 长的形状, 其宽长比值为 1.1-5。
12、根据权利要求 10所述的过滤检测装置, 其特征在于: 所述过滤芯为宽大于长 的形状, 其宽长比值为 1.1-3。
13、 根据权利要求 1-12中任一所述的过滤检测装置, 其特征在于: 在每个所述管 道上固定有一个泵结构。
14、一种利用权利要求 1-13中任一所述的过滤检测装置检测待测样本中待检物含 量的方法, 为如下 (A) 或 (B) :
(A)包括如下步骤:
1 )将溶液 A置于所述待检样本储存器中; 将溶液 B置于所述检测相储存器中; 所述溶液 A为含有所述待检物的待检样本的溶液; 所述溶液 B为检测物质的溶液, 所 述检测物质为待检物的特异性结合物经指示剂标记后所形成的物质; 所述指示剂为能 够直接或间接产生颜色或光量变化的物质; 2)所述溶液 A通过管道流入所述过滤器中, 所述待检物被所述过滤芯特异性捕 犾;
3 )所述溶液 B通过管道流入所述过滤器中, 所述检测物质与被所述过滤芯特异 性捕获的所述待检物特异性结合, 形成过滤芯-待检物 -检测物质的复合物 1 ;
4)检测, 按照如下 (a) - (c) 中任一进行:
(a) 直接采用所述检测器对捕获了所述待检物和所述检测物质的过滤芯进行检 测, 通过所述指示剂产生的颜色或光量变化计算所述待检物的含量;
(b)用洗脱液对所述过滤器进行洗脱, 收集含有所述检测物质的洗脱液, 用所述 检测器检测所述洗脱液中所述指示剂的颜色或光量变化,进而计算所述待检物的含量;
(c)直接用所述检测器检测从所述过滤器流出的溶液 B中所述指示剂的颜色或光 量变化, 进而计算所述待检物的含量;
(B) 包括如下步骤:
1 )将溶液 A置于所述待检样本储存器中; 将溶液 B1置于所述检测相储存器中; 所述溶液 A为含有所述待检物的待检样本的溶液; 所述溶液 B1为未经指示剂标记的 待检物的特异性结合物的溶液;
2)所述溶液 A通过管道流入所述过滤器中, 所述待检物被所述过滤芯特异性捕 犾;
3 )所述溶液 B1通过管道流入所述过滤器中, 所述未经指示剂标记的待检物的特 异性结合物与被所述过滤芯特异性捕获的所述待检物特异性结合, 形成过滤芯-待检物 -未经指示剂标记的待检物的特异性结合物的复合物 2;
4)将溶液 B2置于所述检测相储存器中; 所述溶液 B2为经指示剂标记的物质的 溶液, 所述指示剂标记的物质能与所述溶液 B1 中的所述未经指示剂标记的待检物的 特异性结合物相结合; 所述指示剂为能够直接或间接产生颜色或光量变化的物质;
5 )所述溶液 B2通过管道流入所述过滤器中, 所述经指示剂标记的物质与所述复 合物 2中的所述未经指示剂标记的待检物的特异性结合物相结合, 形成过滤芯-待检物
-未经指示剂标记的待检物的特异性结合物-经指示剂标记的物质的复合物 3;
6)检测, 按照如下 (a) - (c) 中任一进行:
(a)直接采用所述检测器对捕获了所述待检物、所述未经指示剂标记的待检物的 特异性结合物和所述经指示剂标记的物质的过滤芯进行检测, 通过所述指示剂产生的 颜色或光量变化计算所述待检物的含量;
(b)用洗脱液对所述过滤器进行洗脱, 收集含有所述经指示剂标记的物质的洗脱 液, 用所述检测器检测所述洗脱液中所述指示剂的颜色或光量变化, 进而计算所述待 检物的含量;
(c) 直接用所述检测器检测从所述过滤器流出的溶液 B2中所述指示剂的颜色或 光量变化, 进而计算所述待检物的含量。
15、根据权利要求 14所述的方法, 其特征在于: 在所述方法的步骤 2)和 /或步骤 3)之后还包括清洗所述过滤器的步骤。
16、 过滤器, 其特征在于: 所述过滤器由入口、 过滤层和出口组成, 所述过滤层 内的过滤芯为偶联了待检物的特异性结合物的固相材料。
17、根据权利要求 16所述的过滤器, 其特征在于: 作为所述过滤芯的固相材料为 颗粒状物质或筛孔状物质。
18、 根据权利要求 16或 17所述的过滤器, 其特征在于: 所述过滤芯的体积为 2 立方毫米至 1立方厘米。
19、根据权利要求 18所述的过滤器, 其特征在于: 所述过滤芯的体积为 3立方毫 米至 0.3立方厘米。
20、根据权利要求 19所述的过滤器, 其特征在于: 所述过滤芯的体积为 5立方毫 米至 0.1立方厘米。
21、 根据权利要求 16-20中任一所述的过滤器, 其特征在于: 所述过滤芯为长大 于宽的形状, 其长宽比值为 2-100。
22、 根据权利要求 21 所述的过滤器, 其特征在于: 所述过滤芯为长大于宽的形 状, 其长宽比值为 2-50。
23、根据权利要求 22所述的过滤检测装置, 其特征在于: 所述过滤芯为长大于宽 的形状, 其长宽比值为 2-30。
24、 根据权利要求 16-20中任一所述的过滤器, 其特征在于: 所述过滤芯为宽大 于长的形状, 其宽长比值为 1.1-10。
25、根据权利要求 24所述的过滤器,其特征在于:所述过滤芯为宽大于长的形状, 其宽长比值为 1.1-5。
26、根据权利要求 25所述的过滤器,其特征在于:所述过滤芯为宽大于长的形状, 其宽长比值为 1.1-3。
27、 一种利用权利要求 16-26中任一所述的过滤器检测待测样本中待检物含量的 方法, 为如下 (C) 或 (D) :
(C) 包括如下步骤:
1 )将溶液 A注入所述过滤器中, 所述溶液 A为含有所述待检物的待检样本的溶 液, 所述待检物被所述过滤芯特异性捕获;
2)将溶液 B注入所述过滤器中, 所述溶液 B为检测物质的溶液, 所述检测物质 为待检物的特异性结合物经指示剂标记后所形成的物质; 所述指示剂为能够直接或间 接产生颜色或光量变化的物质, 所述检测物质与被所述过滤芯特异性捕获的所述待检 物特异性结合, 形成过滤芯-待检物 -检测物质的复合物 1 ;
3 )检测, 按照如下 (a) - (c) 中任一进行:
(a)直接采用检测器对捕获了所述待检物和所述检测物质的过滤芯进行检测, 通 过所述指示剂产生的颜色或光量变化计算所述待检物的含量;
(b)用洗脱液对所述过滤器进行洗脱, 收集含有所述检测物质的洗脱液, 用检测 器检测所述洗脱液中所述指示剂的颜色或光量变化, 进而计算所述待检物的含量;
(c)直接用检测器检测从所述过滤器流出的所述检测物质溶液中所述指示剂的颜 色或光量变化, 进而计算所述待检物的含量;
(D)包括如下步骤:
1 )将溶液 A注入所述过滤器中, 所述溶液 A为含有所述待检物的待检样本的溶 液, 所述待检物被所述过滤芯特异性捕获;
2)将溶液 B1注入所述过滤器中, 所述溶液 B1为未经指示剂标记的待检物的特 异性结合物的溶液, 所述未经指示剂标记的待检物的特异性结合物与被所述过滤芯特 异性捕获的所述待检物特异性结合, 形成过滤芯-待检物-未经指示剂标记的待检物的 特异性结合物的复合物 2;
3 )将溶液 B2注入所述过滤器中, 所述溶液 B2为经指示剂标记的物质的溶液, 所述经指示剂标记的物质能与所述溶液 B1 中的所述未经指示剂标记的待检物的特异 性结合物相结合; 所述指示剂为能够直接或间接产生颜色或光量变化的物质, 所述经 指示剂标记的物质与所述复合物 2中的所述未经指示剂标记的待检物的特异性结合物 相结合, 形成过滤芯 -待检物-未经指示剂标记的待检物的特异性结合物-经指示剂标记 的物质的复合物 3;
6)检测, 按照如下 (a) - (c) 中任一进行:
(a)直接采用检测器对捕获了所述待检物、所述未经指示剂标记的待检物的特异 性结合物和所述经指示剂标记的物质的过滤芯进行检测, 通过所述指示剂产生的颜色 或光量变化计算所述待检物的含量;
(b)用洗脱液对所述过滤器进行洗脱, 收集含有所述经指示剂标记的物质的洗脱 液, 用检测器检测所述洗脱液中所述指示剂的颜色或光量变化, 进而计算所述待检物 的含量;
(c) 直接用检测器检测从所述过滤器流出的溶液 B2中所述指示剂的颜色或光量 变化, 进而计算所述待检物的含量。
28、根据权利要求 27所述的方法, 其特征在于: 在所述方法的步骤 1 )和 /或步骤 2)之后还包括清洗所述过滤器的步骤。
29、权利要求 1-13中任一所述的过滤检测装置或权利要求 16-26中任一所述过滤 器在制备用于定量免疫检测的产品中的应用。
PCT/CN2013/001433 2012-11-25 2013-11-22 一种过滤检测装置及其应用 WO2014079152A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/440,347 US20150276731A1 (en) 2012-11-25 2013-11-22 Filtration Detection Device and Use Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220626863.6 2012-11-25
CN 201220626863 CN203083994U (zh) 2012-11-25 2012-11-25 一种过滤检测技术装置

Publications (1)

Publication Number Publication Date
WO2014079152A1 true WO2014079152A1 (zh) 2014-05-30

Family

ID=48829819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001433 WO2014079152A1 (zh) 2012-11-25 2013-11-22 一种过滤检测装置及其应用

Country Status (2)

Country Link
CN (1) CN203083994U (zh)
WO (1) WO2014079152A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869061A (zh) * 2012-11-25 2014-06-18 常州博闻迪医药科技有限公司 一种过滤检测技术装置及其用途
CN203083994U (zh) * 2012-11-25 2013-07-24 北京康华源科技发展有限公司 一种过滤检测技术装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1452010A (en) * 1973-05-01 1976-10-06 Wisconsin Alumni Res Found Method of separating a low molecular weight component from a known amount of liquid
JPH05142229A (ja) * 1991-11-25 1993-06-08 Matsushita Electric Ind Co Ltd 免疫的検出方法
US20100113288A1 (en) * 2008-10-24 2010-05-06 Nils Adey Modular System for Performing Laboratory Protocols and Associated Methods
CN102311914A (zh) * 2010-07-07 2012-01-11 索尼公司 微通道、以及核酸杂交微芯片、柱、系统和方法
CN203083994U (zh) * 2012-11-25 2013-07-24 北京康华源科技发展有限公司 一种过滤检测技术装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1452010A (en) * 1973-05-01 1976-10-06 Wisconsin Alumni Res Found Method of separating a low molecular weight component from a known amount of liquid
JPH05142229A (ja) * 1991-11-25 1993-06-08 Matsushita Electric Ind Co Ltd 免疫的検出方法
US20100113288A1 (en) * 2008-10-24 2010-05-06 Nils Adey Modular System for Performing Laboratory Protocols and Associated Methods
CN102311914A (zh) * 2010-07-07 2012-01-11 索尼公司 微通道、以及核酸杂交微芯片、柱、系统和方法
CN203083994U (zh) * 2012-11-25 2013-07-24 北京康华源科技发展有限公司 一种过滤检测技术装置

Also Published As

Publication number Publication date
CN203083994U (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
CN107478837B (zh) 基于磁微粒的微流控化学发光检测系统及其应用
KR0171392B1 (ko) 유동 면역센서법 및 그 장치
CN102735833B (zh) 甲状腺过氧化物酶抗体均相发光免疫分析试剂盒及其检测方法
CN105203775B (zh) 一种降钙素原定量检测的磁微粒化学发光微流控芯片
CN101165491B (zh) 以金磁微粒为载体检测抗双链dna抗体的方法
EP0110993A1 (en) Particulate ligand assay-methods and products
CN105195243B (zh) 一种肌红蛋白定量检测的磁微粒化学发光微流控芯片
JP2005214670A (ja) 簡便な検出法、検出装置及び検出キットとその製法
CN106771219A (zh) 多表位测定
CN105195242A (zh) 一种c反应蛋白定量检测的磁微粒化学发光微流控芯片
CN108722507A (zh) 一种炎症四项标志物磁微粒微流控生物芯片、检测方法
CN105372418A (zh) 一种信号放大免疫检测方法
CN105785054A (zh) 降钙素原定量检测的化学发光微流控盘片及其使用方法
Zhang et al. Towards nanovesicle-based disease diagnostics: a rapid single-step exosome assay within one hour through in situ immunomagnetic extraction and nanophotonic label-free detection
US20150276731A1 (en) Filtration Detection Device and Use Thereof
JP2003215126A (ja) 微生物抗原の抽出方法
CN103869061A (zh) 一种过滤检测技术装置及其用途
WO2014079152A1 (zh) 一种过滤检测装置及其应用
CN102680621B (zh) 一种化学发光检测技术及其用途
CN205650215U (zh) 一种c反应蛋白定量检测的磁微粒化学发光微流控芯片
CN202837307U (zh) Ngal荧光纳米免疫层析定量检测试纸条
CN112505319A (zh) 一种待检标志物免疫定量检测装置、检测方法及用途
JP2000028614A (ja) 免疫学的検査方法および免疫学的検査キット
CN205317785U (zh) 一种降钙素原定量检测的磁微粒化学发光微流控芯片
CN102507926A (zh) 聚苯乙烯纳米金包微粒及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857390

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857390

Country of ref document: EP

Kind code of ref document: A1