WO2014079086A1 - 有机硅强化剂、再生集料、及沥青混合料与应用 - Google Patents

有机硅强化剂、再生集料、及沥青混合料与应用 Download PDF

Info

Publication number
WO2014079086A1
WO2014079086A1 PCT/CN2012/085528 CN2012085528W WO2014079086A1 WO 2014079086 A1 WO2014079086 A1 WO 2014079086A1 CN 2012085528 W CN2012085528 W CN 2012085528W WO 2014079086 A1 WO2014079086 A1 WO 2014079086A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregate
silicone
waste
recycled
recycled aggregate
Prior art date
Application number
PCT/CN2012/085528
Other languages
English (en)
French (fr)
Inventor
吴少鹏
林俊涛
杨世明
陈美祝
庞凌
谢君
雷敏
万里
王腾
Original Assignee
武汉理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工大学 filed Critical 武汉理工大学
Publication of WO2014079086A1 publication Critical patent/WO2014079086A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1051Organo-metallic compounds; Organo-silicon compounds, e.g. bentone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of recycling solid waste resources, and particularly relates to a silicone reinforcing agent, a recycled aggregate, and an asphalt mixture and application.
  • the properties of recycled aggregate concrete depend to a large extent on the nature of the recycled aggregate. To this end, a lot of researches on the properties of recycled aggregates have been carried out at home and abroad. It is found that the ratio of recycled aggregates to natural aggregates has the characteristics of higher porosity, lower density, enhanced water absorption and lower aggregate strength.
  • the high water absorption rate of recycled aggregates is the most important problem that restricts its large-scale application. Especially in asphalt mixtures, the excessive water absorption of aggregates will lead to an increase in the amount of asphalt, which will significantly improve the application of recycled aggregates. cost.
  • the water absorption rate of the recycled aggregate is too high, and the presence of moisture causes the adhesion of the recycled aggregate to the asphalt to be poor, so that the probability of occurrence of water damage is increased.
  • the water absorption of recycled fine aggregates 10-12% the water absorption of the coarse aggregate is 2.5-12%. In order to solve the problem of restricting the application of recycled aggregates, it is necessary to strengthen the recycled aggregate.
  • the technical problem to be solved by the present invention is to provide a silicone reinforcing agent, a recycled aggregate, an asphalt mixture and an application method, and the water absorption rate of the recycled aggregate obtained by treating the waste aggregate using the silicone reinforcing agent is remarkably lowered And can improve the adhesion performance of recycled aggregate and asphalt.
  • the technical solution of the present invention is: a silicone reinforcing agent, which is composed of the following components in percentage by weight: 50%-98% Silicone resin solution, 1%-30% penetrant, and 1%-20% tackifier.
  • the silicone resin solution has a mass ratio of 40-60:1-10:2-10:5-15:0-2:10-40 methyltriethoxysilane, ethyl orthosilicate, dimethyldiethoxysilane, ethanol, alkali Liquid and water in the reactor at a temperature of 25 ° C
  • the reaction was synthesized at -150 °C.
  • the penetrating agent is isobutyltriethoxysilane, polymethyltriethoxysilane, methylhydrogendiethoxysilane, dimethyldiethoxysilane, or isobutylene triethoxylate.
  • silanes or a mixture of any two or more.
  • the tackifier is ⁇ -aminopropyltriethoxysilane, ⁇ -thiopropyltriethoxysilane, 3- Glycidyloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, or vinyltrimethoxysilane.
  • Recycled aggregates prepared by the following method: Claims 1 to 4
  • the silicone reinforcing agent according to any one of the inventions is sprayed on the waste aggregate or the waste aggregate is immersed in the silicone fortifier according to any one of claims 1 to 4, and is cured at a temperature of 25 to 60 ° C. 5 Days, the regenerated aggregate is obtained.
  • the mass ratio of the silicone reinforcing agent to the waste aggregate is 0.5-4:100.
  • the discarded aggregate is broken by building construction waste, steel slag waste, or waste cement concrete pavement.
  • the regenerated aggregate according to any one of the above materials is mixed and heated to 170-180 ° C, and then mixed with asphalt and ore powder to form the asphalt mixture, and the recycled aggregate accounts for 60% by mass of the natural aggregate. -90%.
  • the principle of the invention is that before the curing of the silicone reinforcing agent, the silicone resin solution can react with the moisture in the void of the recycled aggregate to solidify the silicon oxide main chain structure of the network structure.
  • the moisture content in the recycled aggregate is reduced, and on the other hand, a dense hydrophobic silicon film is formed in the void of the recycled aggregate, which reduces the water absorption of the recycled aggregate.
  • the tackifier in the silicone reinforcing agent acts as a coupling, and contains two groups of different properties, wherein a group such as a chlorine group, a methoxy group, an ethoxy group or the like can be tightly combined with a polycondensation reaction of the aggregate.
  • the vinyl group, the amino group and the epoxy group can effectively adhere to the asphalt, and the adhesion of the asphalt to the recycled aggregate can be improved.
  • the penetrant in the silicone reinforcing agent acts as a surface active agent, which can reduce the viscosity and surface tension of the reinforcing agent, so that the silicone reinforcing agent can be in better contact with the aggregate and solidify in the void of the aggregate to exert a waterproof effect.
  • the silicone reinforcing agent synthesized in the present invention can significantly reduce the water absorption rate of the recycled aggregate and improve the adhesion of the recycled aggregate to the asphalt.
  • the silicone reinforcing agent of the present invention has a simple synthesis process, low cost, and is relatively environmentally friendly.
  • This embodiment provides a silicone enhancer A which is composed of the following components in percentage by weight: 70% silicone resin solution, 28% Penetrant, and 2% tackifier.
  • the silicone resin solution is composed of methyltriethoxysilane, tetraethyl orthosilicate, dimethyldiethoxysilane, ethanol, lye, and a mass ratio of 40:10:2:5:0.01:40.
  • the water is reacted in the reaction vessel at a temperature of 25 ° C to 150 ° C.
  • the lye is a sodium hydroxide solution.
  • the penetrant is isobutyltriethoxysilane, polymethyltriethoxysilane, methylhydrogendiethoxysilane, dimethyldiethoxysilane, or isobutylenetriethoxysilane. One or a mixture of any two or more. In this embodiment, isobutyltriethoxysilane is used.
  • the tackifier is ⁇ -aminopropyltriethoxysilane, ⁇ -thiopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, ⁇ -methacryloyloxy Propyltrimethoxysilane, or vinyltrimethoxysilane.
  • ⁇ -aminopropyltriethoxysilane was used.
  • the first part has a particle size range of 9.5-19mm and the second part has a particle size range of 4.75-9.5mm.
  • Each waste aggregate is divided into five groups of equal quality.
  • the first group sprays 1% by weight of silicone fortifier A in each group of discarded aggregates to obtain recycled aggregates; the second group sprays 2% by weight of silicone fortifier A in each group of discarded aggregates.
  • Recycled aggregates were obtained; the third group sprayed 3% by weight of the silicone fortifier A of each group of discarded aggregates to obtain recycled aggregates; and the fourth group soaked the waste aggregates (submerged the silicone fortifiers to waste) Aggregate can be used in the silicone fortifier A for 30 minutes to obtain recycled aggregates; the fifth group does not do any treatment on the discarded aggregates as a comparison.
  • This embodiment provides a silicone reinforcing agent B which is composed of the following components in percentage by weight: 80% silicone resin solution, 18% Penetrant, and 2% tackifier.
  • the silicone resin solution is composed of methyltriethoxysilane, ethyl orthosilicate, dimethyldiethoxysilane, ethanol, lye, and a mass ratio of 60:1:10:15:0.01:10.
  • the water is reacted in the reaction vessel at a temperature of 25 ° C to 150 ° C.
  • the lye is a sodium hydroxide solution.
  • the penetrant is isobutyltriethoxysilane, polymethyltriethoxysilane, methylhydrogendiethoxysilane, dimethyldiethoxysilane, or isobutylenetriethoxysilane. One or a mixture of any two or more. In this embodiment, methyl hydrogen diethoxysilane is used.
  • the tackifier is ⁇ -aminopropyltriethoxysilane, ⁇ -thiopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, ⁇ -methacryloyloxy Propyltrimethoxysilane, or vinyltrimethoxysilane.
  • ⁇ -thiopropyltriethoxysilane was used.
  • the first part has a particle size range of 9.5-19mm and the second part has a particle size range of 4.75-9.5mm.
  • Each waste aggregate is divided into five groups of equal quality.
  • the first group sprays 1% by weight of silicone fortifier B in each group of discarded aggregates to obtain recycled aggregates; the second group sprays 2% by weight of silicone fortifier B in each group of discarded aggregates. Recycled aggregates were obtained; the third group sprayed 3% by weight of silicone fortifier B in each group of discarded aggregates to obtain recycled aggregates; and the fourth group immersed the waste aggregates in silicone fortifier B. Minutes, recycled aggregates were obtained; the fifth group did not do any treatment on the discarded aggregates as a comparison.
  • This embodiment provides a silicone enhancer C which is composed of the following components in percentage by weight: 90% silicone resin solution, 8% Penetrant, and 2% tackifier.
  • the silicone resin solution is composed of methyltriethoxysilane, ethyl orthosilicate, dimethyldiethoxysilane, ethanol, lye, and a mass ratio of 50:8:8:10:1:30.
  • the water is reacted in the reaction vessel at a temperature of 25 ° C to 150 ° C.
  • the lye is a sodium hydroxide solution.
  • the penetrant is isobutyltriethoxysilane, polymethyltriethoxysilane, methylhydrogendiethoxysilane, dimethyldiethoxysilane, or isobutylenetriethoxysilane. One or a mixture of any two or more. In this embodiment, isobutylene triethoxysilane is used.
  • the tackifier is ⁇ -aminopropyltriethoxysilane, ⁇ -thiopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, ⁇ -methacryloyloxy Propyltrimethoxysilane, or vinyltrimethoxysilane.
  • 3-glycidoxypropyltrimethoxysilane is used.
  • the first part has a particle size range of 9.5-19mm and the second part has a particle size range of 4.75-9.5mm.
  • Each waste aggregate is divided into five groups of equal quality.
  • the first group sprays 1% of the silicone intensifier C in each group of discarded aggregates to obtain recycled aggregates; the second group separately sprays 2% by weight of each group of discarded aggregates.
  • Agent C the recycled aggregate is obtained;
  • the third group sprays the silicone fortifier C of 3% by mass of the waste aggregate of each group to obtain the recycled aggregate;
  • the fourth group soaks the waste aggregate in the silicone fortifier Regenerated aggregates were obtained in 30 minutes in C; the fifth group did not process any discarded aggregates as a comparison.
  • the silicone reinforcing agent treatment increases the adhesion grade of the recycled aggregate to the asphalt.
  • the adhesion grade of the recycled aggregate is increased from 3 to 4, which helps the recycled aggregate to be used in the asphalt mixture.
  • the waste aggregate was immersed in the silicone enhancer C in Example 3 for 30 minutes to obtain a recycled aggregate (9.5-19 mm). And 4.75-9.5mm), replacing the recycled aggregate with 80% limestone aggregate (within the range of 4.75-19mm), and then grading the design.
  • AC-16 asphalt mixture with matrix Asphalt mixture is mixed with ordinary asphalt powder of No. 70, and the volume and mechanical properties of the asphalt mixture are shown in Table 4. Among them, without the use of silicone enhancer C The asphalt mixture obtained from the treated waste aggregate was used as a comparative sample.
  • the use of silicone enhancer C The treated asphalt mixture exhibited superior mechanical properties compared to the comparative sample. More significantly, the amount of asphalt used in the asphalt mixture prepared by using the silicone reinforcing agent is greatly reduced, which can significantly reduce the cost of the asphalt mixture. Moreover, the parameters of the freeze-thaw splitting strength ratio are greatly improved. The decrease in the amount of asphalt used and the increase in the freeze-thaw splitting strength ratio are the result of a decrease in the water absorption of the recycled aggregate and an increase in the adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)

Abstract

一种有机硅强化剂、再生集料、及沥青混合料与其应用。该有机硅强化剂由下列组分按重量百分比组成:50%-98%的有机硅树脂溶液、1%-30%的渗透剂、及1%-20%的增粘剂。将有机硅强化剂喷洒于废弃集料或者将废弃集料浸泡于有机硅强化剂后,养生得到再生集料。将天然集料和再生集料混合后与沥青、矿粉拌合形成沥青混合料,再生集料占天然集料的质量百分比为60%-90%。

Description

有机硅强化剂、再生集料、及沥青混合料与应用 技术领域
本发明属于固体废弃物资源循环利用领域,尤其涉及一种有机硅强化剂、再生集料、及沥青混合料与应用。
背景技术
进入二十一世纪以来,随着世界范围内城市化进程的加快,建筑业进入高速发展阶段,建筑垃圾的处理量和处理费用越来越高,由此引起的社会环境问题也越来越多。根据有关资料的测算,我国每年仅施工建设所产生的建筑废渣就有 4000 万 t ,其中约 34% 是混凝土块,则由此产生的废弃混凝土 (waste Concrete) 就有 1360 万 t ,而且随着我国经济建设步伐的进一步加快,今后废弃混凝土也必然随之增加。
另外,钢渣等固体废弃物也逐年增多。据统计,钢渣的产量占到钢铁生产量的 18%-20% 左右,目前我国积存的钢渣已有 2 亿多吨,而且每年仍以 800-900 万吨的排渣量递增,占据了大量的土地资源,同时影响了区域环境。而其中钢渣废料中有的 80% 未能被有效利用。
目前,这些固体废弃物的处理办法主要是运往郊外弃置或填埋,这既占用土地又影响环境。而将固体废弃物经过破碎、清洗与分级后,按一定的比例与级配混合后作为新的混凝土的集料,称为再生集料。制备的再生集料可以重新用于水泥混凝土或者沥青混合料中。另外,公路建设中集料短缺的问题日益严重。据估算, 2011 年我国用于公路建设的沥青混凝土达 5.7 亿吨,消耗了天然碎石骨料近 5.1 亿吨。对于不可再生的天然砂石资源来说,如此大的消耗量几乎意味着消耗殆尽。在这样的形势下,大规模的应用再生集料成为了解决集料短缺的必由之路。再生集料的应用完全满足世界环境组织提出的'绿色'的三大含义: (1) 节约资源、能源; (2) 不破坏环境,更应有利于环境; (3) 可持续发展,既可满足当代人的需求,又不危害后代人满足其需要的能力。
国内外的研究人员对再生集料的研究和应用已经取得了很多的成果。用途主要集中在在公路沥青混合料,水泥混凝土和钢筋混凝土中以取代部分天然集料。 1991 年日本政府制定的《资源重新利用促进法》规定建筑施工过程产生的渣土、混凝土块、沥青混凝土块、木材、金属等建筑垃圾,必须送往'再生资源化设施'进行处理。根据美国联邦公路局统计,截止 2003 年,美国现在己有超过 20 个州在公路建设中采用再生混凝土, 26 个州允许将再生集料作为基层材料, 4 个州允许将再生集料作为底基层材料,将再生集料应用于基层 和底基层的 28 个州级机构中,有 15 个制定了关于再生集料和再生集料混凝土的相关规范;在欧洲,在 20 世纪 80 年代,荷兰就制定了有关利用再生混凝土集料制备素混凝土、钢筋混凝土和预应力钢筋混凝土的规范,丹麦于 1990 年颁布法规修正案将回收的混凝土按强度分为 2 类 : 其中强度为 20MPa 以下的为第 1 类,而强度为 20-40MPa 的为第 2 类。在使用这些再生集料的过程中,要求各类集料达到一定的技术要求。我国对再生集料混凝土的开发研究晚于发达国家,但近年政府对建筑垃圾的循环再利用高度重视,制定的中长期发展战略鼓励废弃物的开发利用。目前国内数十家大学和研究机构开展了再生混凝土的研究,取得了一定进展,并在北京、上海等地的建筑企业在建筑垃圾,固体废弃物回收利用方面做了一些有益的尝试。
再生集料混凝土的各项性能在很大程度上取决于再生集料的性质。为此,国内外对再生集料的性质进行了大量研究并且发现:再生集料与天然集料比,具有孔隙率较高、密度较小、吸水性增强和集料强度较低等特点。其中再生集料的吸水率过高是制约其大规模应用的最重要问题,尤其是应用于沥青混合料中,集料吸水率过高将导致沥青用量的提高,从而明显提高再生集料应用的成本。另外,再生集料的吸水率过高,水分的存在导致再生集料与沥青的粘附性不好,使得水损害发生的机率增高。一般而言,再生细集料的吸水率为 10-12% ,粗集料的吸水率为 2.5-12% 。为解决制约再生集料应用的难题,必须要对再生集料进行强化处理。
技术问题
本发明所要解决的技术问题是,提供一种有机硅强化剂、再生集料、及沥青混合料与应用方法,使用该有机硅强化剂处理废弃集料后得到的再生集料的吸水率显著降低、并能提高再生集料与沥青的粘附性能。
技术解决方案
本发明的技术方案为: 有机硅强化剂,其特征在于,它由下列组分按重量百分比组成: 50%-98% 的有机硅树脂溶液、 1%-30% 的渗透剂、及 1%-20% 的增粘剂。
上述方案中,所述有机硅树脂溶液由质量比为 40-60:1-10:2-10:5-15:0-2:10-40 的甲基三乙氧基硅烷、正硅酸乙酯、二甲基二乙氧基硅烷、乙醇、碱液和水于反应釜内,在温度为 25 ℃ -150 ℃ 时反应合成。
上述方案中,所述渗透剂为异丁基三乙氧基硅烷、聚甲基三乙氧基硅烷、甲基氢二乙氧基硅烷、二甲基二乙氧基硅烷、或异丁烯三乙氧基硅烷中的一种或者任意两种以上的混合。
上述方案中,所述增粘剂为γ - 氨丙基三乙氧基硅烷、γ - 硫丙基三乙氧基硅烷、 3- 缩水甘油醚氧基丙基三甲氧基硅烷、γ - 甲基丙烯酰氧基丙基三甲氧基硅烷、或乙烯基三甲氧基硅烷。
再生集料,所述再生集料由下述方法制备得到:将权利要求 1 至 4 任一项所述的有机硅强化剂喷洒于废弃集料或者将废弃集料浸泡于权利要求 1 至 4 任一项所述的有机硅强化剂后,在 25-60℃的温度下养生2-5 天,即得到所述再生集料。
上述方案中,将有机硅强化剂喷洒于废弃集料时,所述有机硅强化剂与所述废弃集料的质量比为 0.5-4:100 。
上述方案中,所述废弃集料为房屋建筑废弃物、钢渣废弃物、或废弃水泥混凝土路面破碎而成。
沥青混合料,所述沥青混合料由下述方法制备得到:将天然集料和权利要求 5-7 任一项所述的再生集料混合后加热至 170-180℃,然后与沥青,矿粉拌合形成所述沥青混合料,所述再生集料占所述天然集料的质量百分比为60%-90% 。
沥青混合料在沥青路面的中下面层的应用。
本发明的原理为:有机硅强化剂在固化前,其中的有机硅树脂溶液能够与再生集料空隙中的水分发生反应,固化生成网状结构的硅氧主链结构。一方面降低了再生集料中的水分含量,另一方面在再生集料的空隙中形成了致密的憎水有机硅薄膜,降低了再生集料的吸水率。有机硅强化剂中的增粘剂起到了偶联作用,其含有两种不同性质的基团,其中的氯基,甲氧基,乙氧基等基团可以与集料发生缩聚反应紧密结合,而其中的乙烯基,氨基,环氧基可以有效地粘附沥青,可以提高沥青与再生集料的粘附性。有机硅强化剂中的渗透剂起到表面活性的作用,可以降低强化剂的粘度与表面张力,使得有机硅强化剂能够与集料更好的接触,在集料的空隙中固化发挥防水作用。
有益效果
本发明的有益效果为:
1. 本发明中合成的有机硅强化剂可以显著的降低再生集料的吸水率,提高再生集料与沥青的粘附性。
2. 将处理后的再生集料大比例应用于沥青混合料中,取代天然石料后,不影响沥青混合料的力学性能,并且还能减少沥青用量,大大降低成本。
3. 本发明的有机硅强化剂的合成工艺简单,成本低,并且比较环保。
本发明的实施方式
下面结合实施例对本发明作进一步说明,但不限定本发明。
实施例 1
本实施例提供一种有机硅强化剂 A ,它由下列组分按重量百分比组成: 70% 的有机硅树脂溶液、 28% 的渗透剂、及 2% 的增粘剂。
所述有机硅树脂溶液由质量比为 40:10:2:5:0.01:40 的甲基三乙氧基硅烷、正硅酸乙酯、二甲基二乙氧基硅烷、乙醇、碱液和水于反应釜内,在温度为 25 ℃ -150 ℃ 时反应合成。在本实施例中,碱液为氢氧化钠溶液。
所述渗透剂为异丁基三乙氧基硅烷、聚甲基三乙氧基硅烷、甲基氢二乙氧基硅烷、二甲基二乙氧基硅烷、或异丁烯三乙氧基硅烷中的一种或者任意两种以上的混合。在本实施例中,选用异丁基三乙氧基硅烷。
所述增粘剂为γ - 氨丙基三乙氧基硅烷、γ - 硫丙基三乙氧基硅烷、 3- 缩水甘油醚氧基丙基三甲氧基硅烷、γ - 甲基丙烯酰氧基丙基三甲氧基硅烷、或乙烯基三甲氧基硅烷。在本实施例中,选用γ - 氨丙基三乙氧基硅烷。
取两份由废弃水泥混凝土路面破碎而成的废弃集料,第一份的粒径范围在 9.5-19mm ,第二份的粒径范围在 4.75-9.5mm 。将每一份废弃集料分成等质量的五组。第一组喷洒占每组废弃集料的质量百分比为 1% 的有机硅强化剂 A ,得到再生集料;第二组喷洒占每组废弃集料的质量百分比为 2% 的有机硅强化剂 A ,得到再生集料;第三组喷洒占每组废弃集料的质量百分比为 3% 的有机硅强化剂 A ,得到再生集料;第四组将废弃集料浸泡(使有机硅强化剂淹没废弃集料即可)于有机硅强化剂 A 中 30 分钟,得到再生集料;第五组对废弃集料不做任何处理,作为对比样。
实施例 2
本实施例提供一种有机硅强化剂 B ,它由下列组分按重量百分比组成: 80% 的有机硅树脂溶液、 18% 的渗透剂、及 2% 的增粘剂。
所述有机硅树脂溶液由质量比为 60:1:10:15:0.01:10 的甲基三乙氧基硅烷、正硅酸乙酯、二甲基二乙氧基硅烷、乙醇、碱液和水于反应釜内,在温度为 25 ℃ -150 ℃ 时反应合成。在本实施例中,碱液为氢氧化钠溶液。
所述渗透剂为异丁基三乙氧基硅烷、聚甲基三乙氧基硅烷、甲基氢二乙氧基硅烷、二甲基二乙氧基硅烷、或异丁烯三乙氧基硅烷中的一种或者任意两种以上的混合。在本实施例中,选用甲基氢二乙氧基硅烷。
所述增粘剂为γ - 氨丙基三乙氧基硅烷、γ - 硫丙基三乙氧基硅烷、 3- 缩水甘油醚氧基丙基三甲氧基硅烷、γ - 甲基丙烯酰氧基丙基三甲氧基硅烷、或乙烯基三甲氧基硅烷。在本实施例中,选用γ - 硫丙基三乙氧基硅烷。
取两份由废弃水泥混凝土路面破碎而成的废弃集料,第一份的粒径范围在 9.5-19mm ,第二份的粒径范围在 4.75-9.5mm 。将每一份废弃集料分成等质量的五组。第一组喷洒占每组废弃集料的质量百分比为 1% 的有机硅强化剂 B ,得到再生集料;第二组喷洒占每组废弃集料的质量百分比为 2% 的有机硅强化剂 B ,得到再生集料;第三组喷洒占每组废弃集料的质量百分比为 3% 的有机硅强化剂 B ,得到再生集料;第四组将废弃集料浸泡于有机硅强化剂 B 中 30 分钟,得到再生集料;第五组对废弃集料不做任何处理,作为对比样。
实施例 3
本实施例提供一种有机硅强化剂 C ,它由下列组分按重量百分比组成: 90% 的有机硅树脂溶液、 8% 的渗透剂、及 2% 的增粘剂。
所述有机硅树脂溶液由质量比为 50:8:8:10:1:30 的甲基三乙氧基硅烷、正硅酸乙酯、二甲基二乙氧基硅烷、乙醇、碱液和水于反应釜内,在温度为 25 ℃ -150 ℃ 时反应合成。在本实施例中,碱液为氢氧化钠溶液。
所述渗透剂为异丁基三乙氧基硅烷、聚甲基三乙氧基硅烷、甲基氢二乙氧基硅烷、二甲基二乙氧基硅烷、或异丁烯三乙氧基硅烷中的一种或者任意两种以上的混合。在本实施例中,选用异丁烯三乙氧基硅烷。
所述增粘剂为γ - 氨丙基三乙氧基硅烷、γ - 硫丙基三乙氧基硅烷、 3- 缩水甘油醚氧基丙基三甲氧基硅烷、γ - 甲基丙烯酰氧基丙基三甲氧基硅烷、或乙烯基三甲氧基硅烷。在本实施例中,选用 3- 缩水甘油醚氧基丙基三甲氧基硅烷。
取两份由废弃水泥混凝土路面破碎而成的废弃集料,第一份的粒径范围在 9.5-19mm ,第二份的粒径范围在 4.75-9.5mm 。将每一份废弃集料分成等质量的五组。第一组分别喷洒占每组废弃集料的质量百分比为 1% 的有机硅强化剂 C ,得到再生集料;第二组分别喷洒占每组废弃集料的质量百分比为 2% 的有机硅强化剂 C ,得到再生集料;第三组分别喷洒占每组废弃集料的质量百分比为 3% 的有机硅强化剂 C ,得到再生集料;第四组将废弃集料浸泡于有机硅强化剂 C 中 30 分钟,得到再生集料;第五组对废弃集料不做任何处理,作为对比样。
将上述三个实施例中的 4.75-9.5mm 粒径和 9.5-19mm 粒径的五组样品养护 3 天后,将所有样品浸泡在水中 24 小时,然后进行吸水率的测试,测试方法按照《公路工程集料试验规程》( JTG E42-2005 ),测试结果参见表 1 和表 2 。
将上述三个实施例中的 9.5-19mm 粒径的五组样品养护 3 天后,然后将所有样品浸泡在水中 24 小时,然后进行粘附性指标的测试,测试方法按照《公路工程沥青及沥青混合料试验规程》( JTG E20-2011 )的相关规定进行,测试结果参见表 3 。
表 1 9.5-19mm 再生集料的吸水率
1% 2% 3% 浸泡 30 分钟 空白
实施例 1 3.8% 3.3% 3.2% 2.8% 8.9%
实施例 2 3.9% 3.0% 3.2% 2.1% 8.9%
实施例 3 3.2% 2.7% 2.4% 1.8% 8.9%
表 2 4.75-9.5mm 再生集料的吸水率
1% 2% 3% 浸泡 30 分钟 空白
实施例 1 4.5% 4.0% 3.5% 2.9% 11.2%
实施例 2 4.2% 4.1% 3.1% 2.4% 11.2%
实施例 3 4.3% 3.6% 2.9% 2.0% 11.2%
表 3 再生集料的粘附性
1% 2% 3% 浸泡 30 分钟 空白
实施例 1 3 级 3 级 4 级 4 级 3 级
实施例 2 3 级 4 级 4 级 4 级 3 级
实施例 3 3 级 4 级 4 级 4 级 3 级
从表 1 与表 2 可以看出,采用有机硅强化剂处理后,再生集料的吸水率明显降低,并且随着有机硅强化剂用量的增多而效果越好。另外,将废弃集料浸泡在有机硅强化剂中能够最大幅度降低再生集料的吸水率。
从表 3 可以看出,有机硅强化剂处理后增加了再生集料与沥青的粘附性等级。在一定的用量下,使再生集料的粘附等级由 3 级升高到 4 级,有助于再生集料应用于沥青混合料中。
实施例 4
将废弃集料浸泡于实施例 3 中的有机硅强化剂 C 中 30 分钟后得到再生集料( 9.5-19mm 以及 4.75-9.5mm ),将所述再生集料取代 80% 的石灰石集料( 4.75-19mm 范围内),然后进行级配设计 AC-16 沥青混合料,采用基质 70 号沥青,普通石灰石矿粉进行沥青混合料拌合,该沥青混合料的体积性能及力学性能如表 4 所示。其中,以未采用有机硅强化剂 C 处理的废弃集料得到的沥青混合料作为对比样。
表 4 沥青混合料的技术指标
技术指标 对比样 实施例 4
最佳油石比( % ) 6.1 4.9
空隙率 ( % ) 4.6 4.5
矿料间隙率 ( % ) 14.1 14.5
沥青饱和度 ( % ) 65.7 69.2
马歇尔稳定度 (KN) 14.85 15.89
冻融劈裂强度比 (%) 83 90
吸收沥青量 (%) 1.65 0.15
从表 4 可以看出,采用有机硅强化剂 C 处理后的沥青混合料与对比样相比,表现出了优益的力学性能。更为显著的是,采用有机硅强化剂处理后的再生集料制备的沥青混合料的沥青用量大大降低了,这可明显降低沥青混合料的成本。而且,冻融劈裂强度比的参数得到很大提高。沥青用量的降低和冻融劈裂强度比的提高正是由于再生集料的吸水率的降低和粘附性提高的结果。

Claims (9)

1. 有机硅强化剂,其特征在于,它由下列组分按重量百分比组成:50%-98%的有机硅树脂溶液、1%-30%的渗透剂、及1%-20%的增粘剂。
2. 根据权利要求1所述的有机硅强化剂,其特征在于,所述有机硅树脂溶液由质量比为40-60:1-10:2-10:5-15:0-2:10-40的甲基三乙氧基硅烷、正硅酸乙酯、二甲基二乙氧基硅烷、乙醇、碱液和水于反应釜内,在温度为25℃-150℃时反应合成。
3. 根据权利要求1所述的有机硅强化剂,其特征在于,所述渗透剂为异丁基三乙氧基硅烷、聚甲基三乙氧基硅烷、甲基氢二乙氧基硅烷、二甲基二乙氧基硅烷、或异丁烯三乙氧基硅烷中的一种或者任意两种以上的混合。
4. 根据权利要求1所述的有机硅强化剂,其特征在于,所述增粘剂为γ-氨丙基三乙氧基硅烷、γ-硫丙基三乙氧基硅烷、3-缩水甘油醚氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、或乙烯基三甲氧基硅烷。
5. 再生集料,其特征在于,所述再生集料由下述方法制备得到:将权利要求1至4任一项所述的有机硅强化剂喷洒于废弃集料或者将废弃集料浸泡于权利要求1至4任一项所述的有机硅强化剂后,在25-60℃的温度下养生2-5天,即得到所述再生集料。
6. 根据权利要求5所述的再生集料,其特征在于,将有机硅强化剂喷洒于废弃集料时,所述有机硅强化剂与所述废弃集料的质量比为0.5-4:100。
7. 根据权利要求5或6所述的再生集料,其特征在于,所述废弃集料为房屋建筑废弃物、钢渣废弃物、或废弃水泥混凝土路面破碎而成。
8. 沥青混合料,其特征在于,所述沥青混合料由下述方法制备得到:将天然集料和权利要求5-7任一项所述的再生集料混合后加热至170-180℃,然后与沥青,矿粉拌合形成所述沥青混合料,所述再生集料占所述天然集料的质量百分比为60%-90%。
9. 根据权利要求8所述的沥青混合料在沥青路面的中下面层的应用。
PCT/CN2012/085528 2012-11-21 2012-11-29 有机硅强化剂、再生集料、及沥青混合料与应用 WO2014079086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210474400.7 2012-11-21
CN2012104744007A CN102942326A (zh) 2012-11-21 2012-11-21 有机硅强化剂、再生集料、及沥青混合料与应用

Publications (1)

Publication Number Publication Date
WO2014079086A1 true WO2014079086A1 (zh) 2014-05-30

Family

ID=47725348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085528 WO2014079086A1 (zh) 2012-11-21 2012-11-29 有机硅强化剂、再生集料、及沥青混合料与应用

Country Status (2)

Country Link
CN (1) CN102942326A (zh)
WO (1) WO2014079086A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145777A (zh) * 2016-06-29 2016-11-23 广州新粤交通技术有限公司 温拌再生沥青混合料及其制备方法
CN115745472A (zh) * 2022-11-25 2023-03-07 杭州瑞鼎建材有限公司 一种混凝土粗骨料
CN117342832A (zh) * 2023-12-04 2024-01-05 长沙中科盛联新材料有限公司 一种基于再生骨料的水稳层材料及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313910A (zh) * 2014-10-25 2015-01-28 合肥市安山涂层织物有限公司 一种染色均匀的合成革渗透剂及其制备方法
CN108751799B (zh) * 2018-06-21 2020-11-03 青岛理工大学 废木塑包裹再生集料沥青混凝土与其制备工艺及应用
CN109111155B (zh) * 2018-09-10 2021-06-22 武汉源锦商品混凝土有限公司 一种建筑垃圾制备的透水混凝土系统及其制备方法
CN109748528A (zh) * 2019-02-22 2019-05-14 湖南鑫长胜材料科技有限公司 一种再生集料强化剂、及强化处理方法
CN110104996A (zh) * 2019-06-19 2019-08-09 湖南鑫长胜材料科技有限公司 一种高耐久性钢渣沥青混凝土路面材料及制备方法
CN110981287A (zh) * 2019-12-25 2020-04-10 江苏中新苏通市政工程有限公司 一种高结合性再生沥青混凝土及其制备工艺
CN111620581A (zh) * 2020-05-08 2020-09-04 扬州大学 一种采用复合防水抗油剂强化再生粗集料的方法
CN111620582A (zh) * 2020-06-10 2020-09-04 西安建筑科技大学 利用废高压电瓷制备耐磨抗滑路面集料、路面及制备方法
CN112321185A (zh) * 2020-11-16 2021-02-05 武汉理工大学 一种改性集料及其制备方法和应用
CN114804670B (zh) * 2022-06-30 2022-11-01 湖南康纳新材料有限公司 钢渣在制备铁路道砟集料中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1683467A (zh) * 2005-03-03 2005-10-19 武汉理工大学 一种无色有机硅树脂沥青路面防水抗油剂
CN101624268A (zh) * 2009-08-07 2010-01-13 武汉理工大学 一种废弃混凝土再生骨料的处理剂及处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1683467A (zh) * 2005-03-03 2005-10-19 武汉理工大学 一种无色有机硅树脂沥青路面防水抗油剂
CN101624268A (zh) * 2009-08-07 2010-01-13 武汉理工大学 一种废弃混凝土再生骨料的处理剂及处理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145777A (zh) * 2016-06-29 2016-11-23 广州新粤交通技术有限公司 温拌再生沥青混合料及其制备方法
CN115745472A (zh) * 2022-11-25 2023-03-07 杭州瑞鼎建材有限公司 一种混凝土粗骨料
CN115745472B (zh) * 2022-11-25 2023-08-29 杭州瑞鼎建材有限公司 一种混凝土粗骨料
CN117342832A (zh) * 2023-12-04 2024-01-05 长沙中科盛联新材料有限公司 一种基于再生骨料的水稳层材料及其制备方法
CN117342832B (zh) * 2023-12-04 2024-02-09 长沙中科盛联新材料有限公司 一种基于再生骨料的水稳层材料及其制备方法

Also Published As

Publication number Publication date
CN102942326A (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
WO2014079086A1 (zh) 有机硅强化剂、再生集料、及沥青混合料与应用
CN108793876B (zh) 以废弃混凝土为骨料的透水混凝土、其制备方法及应用
CN105461248B (zh) 一种再生骨料的改性方法及改性再生骨料混凝土
CN109516707B (zh) 一种抑制碱-骨料反应的再生骨料的制备方法
CN108424087B (zh) 一种地聚合物基水泥路面裂缝快速修补材料及其制备方法和应用
CN113105170B (zh) 一种掺加红麻韧皮纤维作物秸秆的3d打印碱激发地聚物复合材料及其制备方法
CN110183150B (zh) 一种硅铝质废弃物氯离子固化剂及其制备方法和应用
CN110041035B (zh) 一种低胶材用量的c30高抗渗混凝土及其制备方法
CN102603235B (zh) 一种碳纳米管水泥基防水材料及其制备方法
CN113968686B (zh) 一种废弃混凝土的再生方法及改性再生混凝土
CN115108767B (zh) 一种房屋建筑用再生高强混凝土及其制备方法
CN112777981A (zh) 一种低成本高性能全再生骨料砂浆及其制备方法
CN113582602B (zh) 一种利用混凝土搅拌车罐内残余混凝土制备的再生骨料
CN111253130A (zh) 一种高强耐热自修复混凝土及其制备方法
CN110776290A (zh) 一种橡胶再生混凝土及其制备方法
WO2024007625A1 (zh) 一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法
CN111620585A (zh) 一种建筑垃圾废弃砖块的回收及其制备的混凝土
CN110317006A (zh) 一种建筑物施工用混凝土及其制备方法
CN106747072B (zh) 一种掺煤气化粗渣的公路半刚性基层材料
AU2021103591A4 (en) Curing agent for titanium gypsum road, preparation method and application method thereof
CN114772974A (zh) 一种混凝土剩料纳米再生处理剂、制备方法及其应用
CN115304356A (zh) 一种高强度建筑垃圾再生砖及其制备方法
CN111548031B (zh) 利用工业废渣中和渣制备的矿粉及其制备方法
CN113603411A (zh) 环保型复合外加剂改性水泥稳定碎石混合料及其制备方法
CN113912315A (zh) 一种强化再生骨料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888717

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12888717

Country of ref document: EP

Kind code of ref document: A1