WO2014077289A1 - 抗癌剤 - Google Patents

抗癌剤 Download PDF

Info

Publication number
WO2014077289A1
WO2014077289A1 PCT/JP2013/080712 JP2013080712W WO2014077289A1 WO 2014077289 A1 WO2014077289 A1 WO 2014077289A1 JP 2013080712 W JP2013080712 W JP 2013080712W WO 2014077289 A1 WO2014077289 A1 WO 2014077289A1
Authority
WO
WIPO (PCT)
Prior art keywords
anticancer agent
cancer
glutamic acid
aspartic acid
concentration
Prior art date
Application number
PCT/JP2013/080712
Other languages
English (en)
French (fr)
Inventor
慶枝 山口
栄一 平野
慎二郎 井上
小林 巧
俊平 山口
哲夫 森永
Original Assignee
株式会社日本生物製剤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本生物製剤 filed Critical 株式会社日本生物製剤
Priority to JP2014547009A priority Critical patent/JP5747183B2/ja
Publication of WO2014077289A1 publication Critical patent/WO2014077289A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/14Alkali metal chlorides; Alkaline earth metal chlorides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to an anticancer agent.
  • the use of salt has been reported (Patent Document 1).
  • the object of the present invention is to provide a new anticancer agent.
  • the present invention provides the following [1] to [16].
  • [2] The anticancer agent according to [1], wherein the molar ratio of each active ingredient is glutamic acid: aspartic acid 1 to 10: 1 to 10.
  • [3] The anticancer agent according to [1], wherein the molar ratio of each active ingredient is glutamic acid: aspartic acid 1 to 2: 1 to 2.
  • the anticancer agent according to [1] which is a liquid preparation having a glutamic acid concentration of 1 to 120 mM and an aspartic acid concentration of 1 to 120 mM.
  • the anticancer agent according to [5] or [6], wherein the molar ratio of each active ingredient is glutamic acid: aspartic acid: sodium salt 1 to 10: 1 to 10: 4 to 40.
  • Anticancer drugs [14] A solution having a glutamic acid concentration of 1 to 7 mM, an aspartic acid concentration of 1 to 7 mM, a sodium salt concentration of 1.5 to 18 mM, and a calcium salt concentration of 0.3 to 3000 ⁇ M. ] Or the anticancer agent according to [11].
  • a hepatic artery chemoembolization kit comprising the anticancer agent according to (A) [1] to [14] and (B) an oil-based contrast agent.
  • the anticancer agent of the present invention has few side effects and exhibits an effective anticancer action.
  • the anticancer agent according to one embodiment of the present invention contains glutamic acid and aspartic acid.
  • glutamic acid As glutamic acid, glutamic acid and / or a salt thereof can be used.
  • Glutamic acid is a known compound and may be synthesized by a known method or may be obtained as a commercial product.
  • the salt of glutamic acid is not particularly limited as long as it is pharmacologically or physiologically acceptable.
  • salts with inorganic bases eg, ammonium salts; salts with metals such as alkali metals (sodium, potassium, etc.), alkaline earth metals (calcium, magnesium, etc.), aluminum
  • salts with organic bases for example, salts with organic amines such as methylamine, triethylamine, diethylamine, triethanolamine, morpholine, piperazine, pyrrolidine, tripyridine, and picoline.
  • glutamic acid and / or a salt thereof includes a hydrate form.
  • glutamic acid and / or a salt thereof may be any of D-form, L-form and DL-form.
  • glutamic acids and / or their salts may be used alone or in any combination of two or more.
  • L-form glutamic acid and / or a salt thereof can be suitably used as glutamic acid and / or a salt thereof.
  • the concentration of glutamic acid is not particularly limited, the type of glutamic acid used, the type and concentration of aspartic acid used in combination, the use of the anticancer agent, the dosage form, the method of use, etc. It is set appropriately according to
  • the concentration of glutamic acid in the solution is preferably 1 to 120 mM, more preferably 1 to 100 mM, from the viewpoint of effectively suppressing the growth of cancer cells in vivo and reducing side effects. More preferably, it is ⁇ 30 mM.
  • Aspartic acid and / or its salt can be used as aspartic acid.
  • Aspartic acid is a known compound, which may be synthesized by a known method or obtained as a commercial product.
  • the salt of aspartic acid is not particularly limited as long as it is pharmacologically or physiologically acceptable. Examples of such a salt include the same salts as those of glutamic acid.
  • the aspartic acid and / or salt thereof also includes hydrates. Further, aspartic acid and / or a salt thereof may be any of D-form, L-form and DL-form.
  • aspartic acids and / or their salts may be used alone or in any combination of two or more.
  • L-form aspartic acid and / or a salt thereof can be suitably used as aspartic acid and / or a salt thereof.
  • the concentration of aspartic acid is not particularly limited, the type of aspartic acid used, the type and concentration of glutamic acid used together, the use, formulation form, and method of use of the anticancer agent It sets suitably according to etc.
  • the concentration of aspartic acid in the solution is preferably 1 to 120 mM, more preferably 1 to 100 mM, from the viewpoint of effectively suppressing the growth of cancer cells in vivo and reducing side effects. More preferably, it is 15 to 30 mM.
  • the molar ratio of glutamic acid and aspartic acid contained in the anticancer agent according to the present embodiment is not particularly limited, and is appropriately set according to the kind of glutamic acid and aspartic acid used, the use of the anticancer agent, the preparation form, the usage method, and the like.
  • the anticancer agent according to another embodiment of the present invention contains glutamic acid, aspartic acid, and sodium salt.
  • the concentration of glutamic acid is not particularly limited, the type of glutamic acid used, the type and concentration of aspartic acid used in combination, the use of the anticancer agent, the dosage form, the method of use, etc. It is set appropriately according to The concentration of glutamic acid in the solution is preferably 1 to 7 mM, more preferably 2 to 5 mM, more preferably 3 to 4 mM, from the viewpoint of effectively suppressing the growth of cancer cells and reducing side effects. More preferably it is.
  • the concentration of aspartic acid is not particularly limited, the type of aspartic acid used, the type and concentration of glutamic acid used together, the use of the anticancer agent, the formulation form, It is set as appropriate according to the method of use.
  • the concentration of aspartic acid in the solution is preferably 1 to 7 mM, more preferably 2 to 5 mM, more preferably 3 to 4 mM, from the viewpoint of effectively suppressing the growth of cancer cells and reducing side effects. More preferably.
  • the sodium salt is not particularly limited as long as it is pharmacologically or physiologically acceptable.
  • Examples of such sodium salts include sodium chloride, sodium carbonate, sodium acetate, sodium lactate, sodium ascorbate, trisodium citrate, monosodium succinate, disodium succinate, sodium hydrogen tartrate, sodium pantothenate, metalin Examples include sodium acid, sodium glutamate, and sodium aspartate.
  • sodium chloride can be preferably used as the sodium salt from the viewpoint of effectively suppressing the growth of cancer cells.
  • the concentration of sodium salt is not particularly limited, and the type of sodium salt used, the type and concentration of glutamic acid and aspartic acid used together, the use and formulation of the anticancer agent It is appropriately set according to the form, usage method, and the like.
  • the concentration of the sodium salt in the solution is preferably 1.5 to 18 mM, more preferably 6 to 18 mM, and more preferably 12 to 18 mM, from the viewpoint of promoting cancer cell growth inhibitory activity of the anticancer agent. Is more preferable.
  • the molar ratio of glutamic acid, aspartic acid and sodium salt contained in the anticancer agent according to the present embodiment is not particularly limited, and the types of glutamic acid, aspartic acid and sodium salt used, the use of the anticancer agent, and the preparation form It is set as appropriate according to the method of use.
  • the anticancer agent according to still another embodiment of the present invention may further contain a calcium salt.
  • the calcium salt is not particularly limited as long as it is pharmacologically or physiologically acceptable.
  • examples of such calcium salts include calcium chloride, calcium lactate, calcium acetate, calcium hydroxide, tricalcium phosphate, calcium monohydrogen phosphate, calcium dihydrogen phosphate, calcium citrate, calcium pantothenate, and gluconic acid.
  • Calcium, calcium glutamate, calcium aspartate, and calcium levulinate dihydrate may be used alone or in any combination of two or more.
  • calcium chloride can be suitably used as the calcium salt from the viewpoint of effectively suppressing the growth of cancer cells.
  • the concentration of the calcium salt is not particularly limited, and the type of calcium salt used, the type and concentration of glutamic acid, aspartic acid, and sodium salt used together, and the anticancer agent It is appropriately set according to the use, formulation form, method of use and the like.
  • the concentration of the calcium salt in the solution is preferably 0.3 to 3000 ⁇ M, more preferably 30 to 3000 ⁇ M, and more preferably 300 to 3000 ⁇ M from the viewpoint of promoting the cancer cell proliferation inhibitory activity of the anticancer agent. Is more preferable.
  • the molar ratio of glutamic acid, aspartic acid, sodium salt, and calcium salt contained in the anticancer agent according to the present embodiment is not particularly limited, and the types of glutamic acid, aspartic acid, sodium salt, and calcium salt used, It is set as appropriate according to the use, formulation form, method of use, etc. of the anticancer agent.
  • Anticancer agents include, for example, liver cancer, breast cancer, myeloid leukemia, lung cancer, colon cancer, pancreatic cancer, skin cancer, colorectal cancer, prostate cancer, melanoma, brain tumor, lymphoma, bladder cancer, multiple myeloma, Renal cell carcinoma, T cell lymphoma, stomach cancer, uterine cancer, cervical cancer, endometrial cancer, ovarian cancer, esophageal cancer, squamous cell carcinoma of the head and neck, esophageal cancer, small intestine cancer, thyroid cancer, urinary tract cancer, choriocarcinoma, Applicable to pharyngeal cancer, laryngeal cancer, pleuromas, and male embryomas.
  • the anticancer agent according to the present embodiment is preferably applied to liver cancer, breast cancer, myeloid leukemia, lung cancer, colon cancer, pancreatic cancer, or skin cancer, It is more preferable to apply to breast cancer, lung cancer, colon cancer, skin cancer, or pancreatic cancer, and it is more preferable to apply to liver cancer, breast cancer, colon cancer, or pancreatic cancer.
  • the anticancer agent according to this embodiment can be safely administered parenterally to humans and animals.
  • parenteral administration for example, intravenous injection, arterial injection, intramuscular injection, subcutaneous injection, intradermal injection, intraperitoneal injection, intrathecal injection, epidural injection, transdermal administration, pulmonary administration, nasal administration, Examples include enteral administration and transmucosal administration.
  • Examples of the dosage form of the anticancer agent according to this embodiment include injections (subcutaneous injections, intradermal injections, intravenous injections, intramuscular injections, intraperitoneal injections, etc.), and external preparations (transdermal Skin preparations, ointments, etc.), external preparations (injections, poultices, coating agents, etc.), sustained-release preparations (eg, sustained-release microcapsules), and the like.
  • the anticancer agent according to the present embodiment is encapsulated in a hydrogel or microcapsule of a bioabsorbable polymer such as collagen, gelatin, polylactic acid, and polyglycolic acid, and this is subcutaneously, in an organ, muscle, or abdominal cavity. It can also be used by injection or implantation in the local area.
  • the anticancer agent according to this embodiment can be suitably used as an anticancer agent for arterial chemoembolization because it effectively suppresses the proliferation of cancer cells and has few side effects.
  • the aspect of arterial chemoembolization using the anticancer agent according to the present embodiment is not particularly limited, for example, an aspect in which an anticancer agent or an embolic material is injected into an artery involved in a tumor using a catheter.
  • the arterial chemoembolization to which the anticancer agent according to the present embodiment is applied is not particularly limited, and examples thereof include hepatic arterial chemoembolization and uterine arterial chemoembolization.
  • Hepato-arterial chemoembolization is a method for selectively treating hepatocytes by injecting an anticancer agent, an oil-based contrast agent and an embolizing substance into the hepatic artery that nourishes the tumor, and embolizing the feeding artery. It is a treatment that leads to cancer necrosis.
  • the anticancer agent according to the present embodiment can be used as a hepatic artery chemoembolization kit containing (B) an oily contrast agent.
  • the anticancer agent according to this embodiment may be directly mixed with an oil-based contrast agent, or once dissolved in an aqueous contrast agent, and then mixed with an oil-based contrast agent by a pump method or the like. Moreover, when mixing the anticancer agent and oil-based contrast agent which concern on this embodiment, you may emulsify.
  • the hepatic artery chemoembolization kit may contain (C) an embolic substance in addition to (A) the anticancer agent according to the present embodiment and (B) the oil-based contrast agent.
  • water-soluble contrast agent used in this embodiment examples include nonionic contrast agents such as iohexol, iopamidol, ioxirane, iomeprol, iopromide, ioversol, iodixanol, and iotrolan, meglumine iotalamate, sodium iotaramate, and amitrizoic acid
  • an ionic contrast agent such as Among these, from the viewpoint of high stability when mixed with an oil-based contrast agent such as lipiodol to form an emulsion, the water-soluble contrast agent used in the present embodiment is preferably a nonionic contrast agent, and iopamidol is used. It is more preferable.
  • Examples of the (B) oil-based contrast agent used in the present embodiment include iodized poppy oil fatty acid ethyl ester.
  • Examples of iodinated poppy oil fatty acid ethyl ester include lipiodol.
  • lipiodol is preferable from the viewpoint of high hepatic tumor accumulation and retention in the tumor site.
  • Examples of the (C) embolic material used in the present embodiment include gelatin sponges such as sponzel, zelfoam, and gel part, polyvinyl alcohol sponge particles, and cyanoacrylate materials such as n-butyl-2-cyanoacrylate, Examples include coiled embolic materials such as metal coils, and detachable balloons.
  • gelatin sponges such as sponzel, zelfoam, and gel part
  • polyvinyl alcohol sponge particles such as n-butyl-2-cyanoacrylate
  • cyanoacrylate materials such as n-butyl-2-cyanoacrylate
  • Examples include coiled embolic materials such as metal coils, and detachable balloons.
  • the kit for hepatic artery chemoembolization therapy may further contain a solubilizing agent, a buffering agent, a soothing agent, a stabilizer, an antioxidant, and the like.
  • a solubilizing agent for example, alcohol (for example, ethanol, butanol, etc.), polyalcohol (for example, propylene glycol, polyethylene glycol, etc.), nonionic surfactant (for example, Tween20, Tween40, Tween60, Tween65) , Tween 80, etc.) can be used.
  • a phosphate buffering agent, a borate buffering agent, a sodium acetate buffering agent etc. can be used.
  • the soothing agent is not particularly limited, but procaine hydrochloride, lidocaine hydrochloride and the like can be used, and the stabilizer is not particularly limited, but benzyl alcohol, polyethylene glycol, paraoxybenzoic acid ester and the like can be used,
  • the antioxidant is not particularly limited, and ascorbic acid, butylated hydroxytoluene, ⁇ -tocopherol and the like can be used.
  • the formazan dye produced by the decomposition of the tetrazolium salt was solubilized, and the absorbance at 570 nm was measured with a multiwell spectrophotometer (ELISA reader). It was measured. Since the obtained absorbance is proportional to the number of living cells, the number of living cells of cancer cells can be indirectly evaluated from the absorbance.
  • mitomycin C MMC was used at a final concentration of 0.5 ⁇ g / mL.
  • Rat normal hepatocytes Rat normal hepatocytes were isolated by the in situ collagenase method, and the isolated cells were seeded in a 96-well collagen-coated plate (5 ⁇ 10 4 cells / 100 ⁇ L / well) and contained 5% serum. After overnight culture in Williams' E medium, the test substance was allowed to act in the same manner as described above, and the cell growth inhibitory activity of the test substance was evaluated by the MTT assay.
  • DLD-1 (2.0 ⁇ 10 3 cells / 100 ⁇ L / well), MIA PaCa-2 (2.0 ⁇ 10 3 cells / 100 ⁇ L / well), and B16F1 (1.5 ⁇ 10 3 cells / 100 ⁇ L / well) was seeded in a 96-well plate, and the test substance was allowed to act in the same manner as described above, and then the cancer cell growth inhibitory activity of the test substance was measured based on the cell protein content by the SRB assay. A 50% TCA solution was added at 25 ⁇ L / well, incubated at 4 ° C. for 1 hour, washed with MilliQ water and dried.
  • the cells were stained with 0.4% SRB (50 ⁇ L / well) for 20 minutes, washed with 1% acetic acid solution, dissolved in 10 mM Tris solution, and the absorbance at 565 nm was measured with an ELISA reader. Since the obtained absorbance is proportional to the number of living cells, the number of living cells of cancer cells can be indirectly evaluated from the absorbance.
  • FIG. 1 shows the cancer cell growth inhibitory activity when alanine (Ala), glycine (Gly), glutamic acid (Glu), serine (Ser), threonine (Thr), and aspartic acid (Asp) are each added to HepG2 alone.
  • Al alanine
  • Gly glycine
  • Glu glutamic acid
  • Thr threonine
  • Asp aspartic acid
  • the cancer cell proliferation inhibitory activity when a test substance with a mitomycin C (MMC) concentration of 0.5 ⁇ g / mL was added to HepG2 was measured by the MTT assay.
  • shaft of FIG. 1 is cancer cell growth inhibitory activity when various amino acids and mitomycin C are added to HepG2 on the basis of the number of living cells quantified by MTT assay in control (Ctr) (100%). Is shown.
  • glycine, alanine and serine used for the prevention and / or treatment of tumor growth and / or metastasis in Patent Document 1 have almost no cancer cell proliferation inhibitory activity against HepG2. I could't. On the other hand, when glutamic acid and aspartic acid were used, they showed cancer cell proliferation inhibitory activity against HepG2 in a concentration-dependent manner.
  • the concentrations of glutamic acid, aspartic acid, and sodium salt of test substances are fixed at 3 mM, 3 mM, and 12 mM, respectively, in hepatocellular carcinoma and normal hepatocytes.
  • the results of measuring the cell growth inhibitory activity against hepatoma cells and normal hepatocytes when added in stages from 0.3 to 3000 ⁇ M by MTT assay are shown.
  • the concentrations of glutamic acid, aspartic acid, and sodium salt of the test substances are fixed to 3 mM, 3 mM, and 18 mM, respectively, and contained in hepatoma cells and normal hepatocytes.
  • FIG. 3 is a graph comparing the cell growth inhibitory activity of EDSCA on hepatoma cells and normal hepatocytes with that of MMC, 5-FU and CDDP, which are existing anticancer agents.
  • the vertical axis of FIG. 3 shows the cell growth inhibitory activity of MMC, EDSCA, 5-FU, and CDDP based on the number of living cells quantified by MTT assay in the control (Ctr) (100%). Is. From FIG. 3, it can be seen that EDSCA exhibits superior cancer cell proliferation inhibitory activity compared to MMC, 5-FU and CDDP against liver cancer cells.
  • CDDP has the same degree of cytotoxicity against normal liver cells as it does against liver cancer cells.
  • MMC and 5-FU it can be seen that the cytotoxicity against normal hepatocytes is slightly suppressed as compared with the cytotoxicity against hepatoma cells.
  • EDSCA it turns out that the cytotoxicity with respect to a normal hepatocyte is suppressed more notably compared with the cytotoxicity with respect to a hepatoma cell. Therefore, it can be seen that the cell growth inhibitory activity by EDSCA is exerted selectively on cancer cells as compared with MMC, 5-FU and CDDP.
  • FIG. 4 shows cancer of EDSCA against human liver cancer cells (HepG2, Huh-7, and HLE), human breast cancer cells (MCF-7), human promyelocytic leukemia cells (HL-60), and human lung cancer cells (A549). It is the graph which showed the result of having measured cell growth inhibitory activity by MTT assay.
  • FIG. 5 shows the results of measuring the cancer cell growth inhibitory activity of EDSCA against human colon cancer cells (DLD-1), human pancreatic cancer cells (MIA PaCa-2), and mouse skin cancer cells (B16F1) by the SRB assay. It is the graph which showed.
  • FIG. 4 shows cancer of EDSCA against human liver cancer cells (HepG2, Huh-7, and HLE), human breast cancer cells (MCF-7), human promyelocytic leukemia cells (HL-60), and human lung cancer cells (A549). It is the graph which showed the result of having measured cell growth inhibitory activity by MTT assay.
  • FIG. 5 shows the results of measuring the cancer cell growth inhibitory activity
  • EDSCA has a strong cancer cell growth inhibitory activity not only against Huh-7, which is a differentiated human hepatoma cell line, but also against undifferentiated HLE, similar to HepG2. 4 and 5, it can be seen that EDSCA has cancer cell growth inhibitory activity in any cancer cell line other than liver cancer. Among them, it can be seen that it has strong cancer cell growth inhibitory activity against human breast cancer cells, human lung cancer cells, human colon cancer cells, mouse skin cancer cells, and human pancreatic cancer cells.
  • Winn assay The experimental animals used were Balb / c (5 weeks old, female) that had been acclimatized for 5 days.
  • mouse colon cancer cells CT-26 passaged to P7 were used.
  • the cell number was adjusted to 2.5 ⁇ 10 5 cells / 0.1 mL when various drugs described in Table 1 below were added.
  • Various drugs were added to the adjusted cells and suspended, and then subcutaneously inoculated on the ventral side of the shaved mouse.
  • the size of the cancer was quantified by measuring the vertical and horizontal lengths with a caliper twice a week, and setting the tumor volume to 1/2 ⁇ (long side ⁇ short side 2 ).
  • X ⁇ EDSCA means a mixture of glutamic acid (X ⁇ 3 mM), aspartic acid (X ⁇ 3 mM), sodium chloride (X ⁇ 12 mM), and calcium chloride (X ⁇ 3 mM).
  • the vertical axis of FIG. 6 shows the value of the cancer volume (mm 3 ) estimated as the tumor volume, and the horizontal axis shows the number of days elapsed after cancer inoculation.
  • the volume of cancer in the PBS group showed the largest value among the 4 groups, and it was confirmed that the cancer volume tended to decrease as the EDSCA administration concentration increased (FIG. 6).
  • Test substance A 185 ⁇ L of a solution prepared so that the final concentrations of aspartic acid and glutamic acid are 30 mM, 1015 ⁇ L of lipiodol, and 24 ⁇ L of a Tween 20 solution prepared so that the final concentration of Tween 20 is 0.03 v / v%.
  • the mixture was designated as test substance A.
  • Test substance B 185 ⁇ L of a solution prepared so that the final concentrations of aspartic acid and glutamic acid are each 15 mM, 1015 ⁇ L of lipiodol, and 24 ⁇ L of a Tween 20 solution prepared so that the final concentration of Tween 20 is 0.03 v / v%.
  • the mixture was designated as test substance B. After grouping, 0.1 mL / animal of each administration solution was administered once into the hepatic artery.
  • Table 3 shows the change in body weight and the rate of change in body weight from the time of administration to the time of dissection for each group. Weight loss after administration was observed in all groups, but no statistically significant difference was observed between group 1, group 2 and group 3.
  • Table 4 shows the average tumor volume and average tumor growth rate of each group of 1 to 3.
  • One group had a tumor growth rate of 355.3%.
  • the tumor growth rate was negative in all cases in group 2 and in 2 cases out of 3 cases in group 3.
  • the tumor growth rate was ⁇ 33.9% in Group 2 and ⁇ 26.3% in Group 3 (FIG. 7).
  • Tumor growth inhibition was observed in Group 2 and Group 3, and a statistically significant difference was observed between Group 1, Group 2 and Group 3 ( ** p ⁇ 0.01).
  • test substances A and B suppress the growth of tumor cells in vivo. It was confirmed to have

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 本発明は、グルタミン酸及びアスパラギン酸を有効成分として含有する新たな抗癌剤を提供する。

Description

抗癌剤
 本発明は、抗癌剤に関する。
 腫瘍成長及び/又は転移の予防的及び/又は治療的処置のための医薬又は栄養剤の製造における、グリシン、アラニン及びセリンから成る群から選択される少なくとも1つのアミノ酸又は生理学的に許容されるその塩の使用について報告されている(特許文献1)。
特表2000-515874号公報
 本発明は新たな抗癌剤を提供することを目的とする。
 上記目的を達成するため、本発明者らが鋭意研究を重ねた結果、グルタミン酸及びアスパラギン酸を有する混合物が癌細胞増殖抑制作用を有することを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の[1]~[16]を提供する。
[1]グルタミン酸及びアスパラギン酸を有効成分として含有する抗癌剤。
[2]各有効成分のモル比率が、グルタミン酸:アスパラギン酸=1~10:1~10である、[1]に記載の抗癌剤。
[3]各有効成分のモル比率が、グルタミン酸:アスパラギン酸=1~2:1~2である、[1]に記載の抗癌剤。
[4]グルタミン酸の濃度が1~120mM、かつ、アスパラギン酸の濃度が1~120mMの液剤である、[1]に記載の抗癌剤。
[5]グルタミン酸、アスパラギン酸、及び、ナトリウム塩を有効成分として含有する抗癌剤。
[6]ナトリウム塩は塩化ナトリウムである、[5]に記載の抗癌剤。
[7]各有効成分のモル比率が、グルタミン酸:アスパラギン酸:ナトリウム塩=1~10:1~10:4~40である、[5]又は[6]に記載の抗癌剤。
[8]各有効成分のモル比率が、グルタミン酸:アスパラギン酸:ナトリウム塩=1~2:1~2:4~8である、[5]又は[6]に記載の抗癌剤。
[9]グルタミン酸の濃度が1~7mM、アスパラギン酸の濃度が1~7mM、かつ、ナトリウム塩の濃度が1.5~18mMの液剤である、[5]又は[6]に記載の抗癌剤。
[10]グルタミン酸、アスパラギン酸、ナトリウム塩、及び、カルシウム塩を有効成分として含有する抗癌剤。
[11]ナトリウム塩は塩化ナトリウムであり、カルシウム塩は塩化カルシウムである、[10]に記載の抗癌剤。
[12]各有効成分のモル比率が、グルタミン酸:アスパラギン酸:ナトリウム塩:カルシウム塩=1~10:1~10:4~40:1~10である、[10]又は[11]に記載の抗癌剤。
[13]各有効成分のモル比率が、グルタミン酸:アスパラギン酸:ナトリウム塩:カルシウム塩=1~2:1~2:4~8:1~2である、[10]又は[11]に記載の抗癌剤。
[14]グルタミン酸の濃度が1~7mM、アスパラギン酸の濃度が1~7mM、ナトリウム塩の濃度が1.5~18mM、かつ、カルシウム塩の濃度が0.3~3000μMの液剤である、[10]又は[11]に記載の抗癌剤。
[15]癌が、肝癌、大腸癌、又は膵癌である、[1]~[14]に記載の抗癌剤。
[16](A)[1]~[14]に記載の抗癌剤と、(B)油性造影剤と、を含む、肝動脈化学塞栓療法用キット。
 本発明の抗癌剤は、副作用が少なく、かつ、有効な抗癌作用を示す。
各種アミノ酸のHepG2に対する癌細胞増殖抑制活性をMTTアッセイ法により測定した結果を示したグラフである。 アミノ酸濃度を一定とし塩化ナトリウム及び塩化カルシウムの濃度を変化させた場合の、肝癌細胞及び正常肝細胞に対する細胞増殖抑制活性をMTTアッセイ法により測定した結果を示したグラフである。 EDSCA及び既存の抗癌剤(MMC、5-FU、CDDP)の肝癌細胞及び正常肝細胞に対する細胞増殖抑制活性をMTTアッセイ法により測定した結果を示したグラフである。 EDSCAのヒト肝癌細胞及びその他のヒト癌細胞に対する癌細胞増殖抑制活性をMTTアッセイ法により測定した結果を示したグラフである。 EDSCAの各種癌細胞に対する癌細胞増殖抑制活性をSRBアッセイ法により測定した結果を示したグラフである。 EDSCAのin vivoにおける癌細胞増殖抑制活性をWinn assay法により測定した結果を示したグラフである。 1~3群のVX2肝臓担癌家兎に対照物質又は被験物質を投与後7日目の各群の肝腫瘍増殖率を示したグラフである。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 本発明の一実施形態に係る抗癌剤は、グルタミン酸及びアスパラギン酸を含有する。
 グルタミン酸としては、グルタミン酸及び/又はその塩を用いることができる。グルタミン酸は公知の化合物で、公知の方法により合成してもよく市販品として入手することもできる。また、グルタミン酸の塩としては、薬理学的又は生理学的に許容されるものであれば、特に制限されない。このような塩として具体的には、無機塩基との塩[例えば、アンモニウム塩;アルカリ金属(ナトリウム、カリウム等)、アルカリ土類金属(カルシウム、マグネシウム等)、アルミニウム等の金属との塩]、有機塩基との塩[例えば、メチルアミン、トリエチルアミン、ジエチルアミン、トリエタノールアミン、モルホリン、ピペラジン、ピロリジン、トリピリジン、ピコリン等の有機アミンとの塩]が挙げられる。
 なお、グルタミン酸及び/又はその塩には、水和物の形態のものも含まれる。また、グルタミン酸及び/又はその塩は、D体、L体及びDL体のいずれであってもよい。
 これらのグルタミン酸及び/又はその塩は、1種単独で使用してもよく、また2種以上を任意に組み合わせて使用してもよい。この中でも、癌細胞の増殖を有効に抑制するという観点から、グルタミン酸及び/又はその塩として、L体のグルタミン酸及び/又はその塩を好適に用いることができる。
 本実施形態に係る抗癌剤が液剤である場合において、グルタミン酸の濃度は特に限定されず、使用されるグルタミン酸の種類、併用されるアスパラギン酸の種類及び濃度、該抗癌剤の用途、製剤形態、使用方法等に応じて適宜設定される。
 液剤におけるグルタミン酸の濃度としては、生体内で癌細胞の増殖を有効に抑制し、かつ副作用を少なくするという観点から、1~120mMであることが好ましく、1~100mMであることがより好ましく、15~30mMであることがさらに好ましい。
 アスパラギン酸としては、アスパラギン酸及び/又はその塩を用いることができる。アスパラギン酸は公知の化合物で、公知の方法により合成してもよく市販品として入手することもできる。また、アスパラギン酸の塩としては、薬理学的又は生理学的に許容されるものであれば、特に制限されない。このような塩としては、上記グルタミン酸の塩と同様のものを挙げることができる。
 なお、アスパラギン酸及び/又はその塩には、水和物の形態のものも含まれる。また、アスパラギン酸及び/又はその塩は、D体、L体及びDL体のいずれであってもよい。
 これらのアスパラギン酸及び/又はその塩は、1種単独で使用してもよく、また2種以上を任意に組み合わせて使用してもよい。この中でも、癌細胞の増殖を有効に抑制するという観点から、アスパラギン酸及び/又はその塩として、L体のアスパラギン酸及び/又はその塩を好適に用いることができる。
 本実施形態に係る抗癌剤が液剤である場合において、アスパラギン酸の濃度は特に限定されず、使用されるアスパラギン酸の種類、併用されるグルタミン酸の種類及び濃度、該抗癌剤の用途、製剤形態、使用方法等に応じて適宜設定される。
 液剤におけるアスパラギン酸の濃度としては、生体内で癌細胞の増殖を有効に抑制し、かつ副作用を少なくするという観点から、1~120mMであることが好ましく、1~100mMであることがより好ましく、15~30mMであることがさらに好ましい。
 本実施形態に係る抗癌剤に含まれるグルタミン酸及びアスパラギン酸のモル比率は、特に制限されず、使用されるグルタミン酸及びアスパラギン酸の種類、該抗癌剤の用途、製剤形態、使用方法等に応じて適宜設定される。上記抗癌剤に含まれる各有効成分のモル比率としては、癌細胞の増殖を有効に抑制するという観点から、グルタミン酸:アスパラギン酸=1~10:1~10であることが好ましく、グルタミン酸:アスパラギン酸=1~2:1~2であることがさらに好ましい。
 本発明の別の実施形態に係る抗癌剤は、グルタミン酸、アスパラギン酸、及び、ナトリウム塩を含有する。
 本実施形態に係る抗癌剤が液剤である場合において、グルタミン酸の濃度は特に限定されず、使用されるグルタミン酸の種類、併用されるアスパラギン酸の種類及び濃度、該抗癌剤の用途、製剤形態、使用方法等に応じて適宜設定される。
 液剤におけるグルタミン酸の濃度としては、癌細胞の増殖を有効に抑制し、かつ副作用を少なくするという観点から、1~7mMであることが好ましく、2~5mMであることがより好ましく、3~4mMであることがさらに好ましい。
 また、本実施形態に係る抗癌剤が液剤である場合において、アスパラギン酸の濃度は特に限定されず、使用されるアスパラギン酸の種類、併用されるグルタミン酸の種類及び濃度、該抗癌剤の用途、製剤形態、使用方法等に応じて適宜設定される。
 液剤におけるアスパラギン酸の濃度としては、癌細胞の増殖を有効に抑制し、かつ副作用を少なくするという観点から、1~7mMであることが好ましく、2~5mMであることがより好ましく、3~4mMであることがさらに好ましい。
 ナトリウム塩としては、薬理学的又は生理学的に許容されるものであれば、特に制限されない。このようなナトリウム塩としては、例えば、塩化ナトリウム、炭酸ナトリウム、酢酸ナトリウム、乳酸ナトリウム、アスコルビン酸ナトリウム、クエン酸三ナトリウム、コハク酸一ナトリウム、コハク酸二ナトリウム、酒石酸水素ナトリウム、パントテン酸ナトリウム、メタリン酸ナトリウム、グルタミン酸ナトリウム、及びアスパラギン酸ナトリウムが挙げられる。これらのナトリウム塩は、1種単独で使用してもよく、また2種以上を任意に組み合わせて使用してもよい。この中でも、癌細胞の増殖を有効に抑制するという観点から、ナトリウム塩として、塩化ナトリウムを好適に用いることができる。
 本実施形態に係る抗癌剤が液剤である場合において、ナトリウム塩の濃度は、特に限定されず、使用されるナトリウム塩の種類、併用されるグルタミン酸及びアスパラギン酸の種類及び濃度、該抗癌剤の用途、製剤形態、使用方法等に応じて適宜設定される。
 液剤におけるナトリウム塩の濃度としては、抗癌剤の癌細胞増殖抑制活性を促進させるという観点から、1.5~18mMであることが好ましく、6~18mMであることがより好ましく、12~18mMであることがさらに好ましい。
 本実施形態に係る抗癌剤に含まれるグルタミン酸、アスパラギン酸、及び、ナトリウム塩のモル比率は、特に制限されず、使用されるグルタミン酸、アスパラギン酸、及び、ナトリウム塩の種類、該抗癌剤の用途、製剤形態、使用方法等に応じて適宜設定される。上記抗癌剤に含まれる各有効成分のモル比率としては、癌細胞の増殖を有効に抑制するという観点から、グルタミン酸:アスパラギン酸:ナトリウム塩=1~10:1~10:4~40であることが好ましく、グルタミン酸:アスパラギン酸:ナトリウム塩=1~4:1~4:2~16であることがより好ましく、グルタミン酸:アスパラギン酸:ナトリウム塩=1~2:1~2:4~8:1~2であることがさらに好ましい。
 本発明のさらに別の実施形態に係る抗癌剤は、さらに、カルシウム塩を含有していてもよい。
 カルシウム塩としては、薬理学的又は生理学的に許容されるものであれば、特に制限されない。このようなカルシウム塩としては、例えば、塩化カルシウム、乳酸カルシウム、酢酸カルシウム、水酸化カルシウム、リン酸三カルシウム、リン酸一水素カルシウム、リン酸二水素カルシウム、クエン酸カルシウム、パントテン酸カルシウム、グルコン酸カルシウム、グルタミン酸カルシウム、アスパラギン酸カルシウム、及びレブリン酸カルシウム二水和物が挙げられる。これらのカルシウム塩は、1種単独で使用してもよく、また2種以上を任意に組み合わせて使用してもよい。この中でも、癌細胞の増殖を有効に抑制するという観点から、カルシウム塩として、塩化カルシウムを好適に用いることができる。
 本実施形態に係る抗癌剤が液剤の場合において、カルシウム塩の濃度は特に限定されず、使用されるカルシウム塩の種類、併用されるグルタミン酸、アスパラギン酸、及び、ナトリウム塩の種類及び濃度、該抗癌剤の用途、製剤形態、使用方法等に応じて適宜設定される。
 液剤におけるカルシウム塩の濃度としては、抗癌剤の癌細胞増殖抑制活性を促進させるという観点から、0.3~3000μMであることが好ましく、30~3000μMであることがより好ましく、300~3000μMであることがさらに好ましい。
 本実施形態に係る抗癌剤に含まれるグルタミン酸、アスパラギン酸、ナトリウム塩、及び、カルシウム塩のモル比率は、特に制限されず、使用されるグルタミン酸、アスパラギン酸、ナトリウム塩、及び、カルシウム塩の種類、該抗癌剤の用途、製剤形態、使用方法等に応じて適宜設定される。上記抗癌剤に含まれる各有効成分のモル比率としては、癌細胞の増殖を有効に抑制するという観点から、グルタミン酸:アスパラギン酸:ナトリウム塩:カルシウム塩=1~10:1~10:4~40:1~10であることが好ましく、グルタミン酸:アスパラギン酸:ナトリウム塩:カルシウム塩=1~4:1~4:2~16:1~4であることがより好ましく、グルタミン酸:アスパラギン酸:ナトリウム塩:カルシウム塩=1~2:1~2:4~8:1~2であることがさらに好ましい。
 本実施形態に係る抗癌剤は、例えば、肝癌、乳癌、骨髄性白血病、肺癌、大腸癌、膵癌、皮膚癌、結腸直腸癌、前立腺癌、黒色腫、脳腫瘍、リンパ腫、膀胱癌、多発性骨髄腫、腎細胞癌、T細胞リンパ腫、胃癌、子宮癌、子宮頸癌、子宮内膜癌、卵巣癌、食道癌、頭頸部扁平上皮癌、食道癌、小腸癌、甲状腺癌、尿路癌、絨毛癌、咽頭癌、喉頭癌、胸膜腫、及び男性胚腫に適用できる。この中でも、強い癌細胞増殖抑制活性を示すという観点から、本実施形態に係る抗癌剤を、肝癌、乳癌、骨髄性白血病、肺癌、大腸癌、膵癌、又は皮膚癌に適用することが好ましく、肝癌、乳癌、肺癌、大腸癌、皮膚癌、又は膵癌に適用することがより好ましく、肝癌、乳癌、大腸癌、又は膵癌に適用することがさらに好ましい。
 本実施形態に係る抗癌剤は、ヒト及び動物に対して、非経口的に安全に投与できる。非経口的投与としては、例えば、静脈注射、動脈注射、筋肉注射、皮下注射、皮内注射、腹腔内注射、脊髄内注射、硬膜外注射、経皮投与、経肺投与、経鼻投与、経腸投与、及び経粘膜投与等が挙げられる。
 また、本実施形態に係る抗癌剤の剤形としては、例えば、注射剤(皮下注射剤、皮内注射剤、静脈内注射剤、筋肉内注射剤、及び腹腔内注射剤等)、外用剤(経皮製剤、及び軟膏剤等)、外用液剤(注入剤、湿布剤、及び塗布剤等)、及び徐放性製剤(徐放性マイクロカプセル等)等が挙げられる。
 さらに、本実施形態に係る抗癌剤をコラーゲン、ゼラチン、ポリ乳酸、及びポリグリコール酸等の生体吸収性高分子のハイドロゲル又はマイクロカプセル中に封入し、これを皮下、臓器内、筋肉、又は腹腔等の局部に注射又は埋め込む等して用いることも可能である。
 本実施形態に係る抗癌剤は、癌細胞の増殖を有効に抑制し、かつ、副作用が少ないことから、動脈化学塞栓療法用の抗癌剤として好適に用いることができる。本実施形態に係る抗癌剤を用いた動脈化学塞栓療法の態様は、特に制限されないが、例えば、腫瘍に関与する動脈にカテーテルを用いて抗癌剤や塞栓物質を注入する態様が挙げられる。
 また、本実施形態に係る抗癌剤を適用する動脈化学塞栓療法としては、特に制限されないが、例えば、肝動脈化学塞栓療法、及び子宮動脈化学塞栓療法が挙げられる。この中でも、癌細胞の増殖を有効に抑制し、かつ、副作用が少ないという観点から、本実施形態に係る抗癌剤を肝動脈化学塞栓療法用の抗癌剤として用いることが好ましい。
 なお、肝動脈化学塞栓療法とは、肝臓癌に対して、腫瘍を栄養している肝動脈に抗癌剤、油性造影剤及び塞栓物質を注入し、栄養動脈を塞栓することにより、選択的に肝細胞癌を壊死に導く治療法である。
 (A)本実施形態に係る抗癌剤は、(B)油性造影剤を含む、肝動脈化学塞栓療法用キットとして用いることができる。本実施形態に係る抗癌剤は、直接油性造影剤と混合してもよく、一旦水性造影剤に溶解した後に油性造影剤とポンプ法等により混合させてもよい。また、本実施形態に係る抗癌剤と油性造影剤を混合する際にエマルジョン化させてもよい。さらに、上記肝動脈化学塞栓療法用キットには、(A)本実施形態に係る抗癌剤と(B)油性造影剤に加えて、(C)塞栓物質が含まれていてもよい。
 本実施形態に用いられる水溶性造影剤としては、例えば、イオヘキソール、イオパミドール、イオキシラン、イオメプロール、イオプロミド、イオベルソール、イオジキサノール、及びイオトロラン等の非イオン性造影剤、イオタラム酸メグルミン、イオタラム酸ナトリウム、及びアミトリゾ酸等のイオン性造影剤が挙げられる。この中でも、リピオドール等の油性造影剤と混合してエマルジョンとした際に安定性が高いという観点から、本実施形態に用いられる水溶性造影剤としては、非イオン性造影剤が好ましく、イオパミドールを用いることがより好ましい。
 本実施形態に用いられる(B)油性造影剤としては、例えば、ヨード化ケシ油脂肪酸エチルエステルが挙げられる。ヨード化ケシ油脂肪酸エチルエステルとしては、例えば、リピオドールが挙げられる。本実施形態に用いられる油性造影剤としては、肝腫瘍集積性が高く、腫瘍局所に滞留するという観点から、リピオドールが好ましい。
 また、本実施形態に用いられる(C)塞栓物質としては、例えば、スポンゼル、ゼルフォーム、ジェルパート等のゼラチンスポンジ、ポリビニルアルコールスポンジ粒子、n-ブチル-2-シアノアクリレート等のシアノアクリレート系材料、金属コイル等のコイル状塞栓物質、及び離脱型バルーンが挙げられる。本実施形態に用いられる塞栓物質としては、一時的な塞栓物質であり、かつ、安全性が高いという観点から、ゼラチンスポンジを用いることが好ましく、その中でもゼルフォーム又はジェルパートを用いることがより好ましい。
 本実施形態に係る肝動脈化学塞栓療法用キットには、さらに溶解補助剤、緩衝剤、無痛化剤、安定剤、酸化防止剤等が含まれていてもよい。溶解補助剤としては、特に限定されないが、アルコール(例えば、エタノール、ブタノール等)、ポリアルコール(例えば、プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(例えば、Tween20、Tween40、Tween60、Tween65、Tween80等)等を用いることができる。また、緩衝剤としては、特に限定されないが、リン酸塩緩衝剤、ホウ酸塩緩衝剤、酢酸ナトリウム緩衝剤などを用いることができる。無痛化剤としては、特に限定されないが、塩酸プロカイン、塩酸リドカイン等を用いることができ、安定剤としては、特に限定されないが、ベンジルアルコール、ポリエチレングリコール、パラオキシ安息香酸エステル等を用いることができ、酸化防止剤としては、特に限定されないが、アスコルビン酸、ブチル化ヒドロキシトルエン、α-トコフェロール等を用いることができる。
[材料]
<試薬>
 マイトマイシンC(ナカライテスク)、シスプラチン(和光純薬工業)、3-(4,5-Dimethylthial-2-yl)-2,5-Diphenyltetrazalium Bromide(MTT)(ナカライテスク)、Sulforhodamine B(SRB)(シグマアルドリッチ)、Trichloroacetic acid(TCA)(ナカライテスク)、L-グルタミン酸(和光純薬工業)、L-アスパラギン酸(和光純薬工業)、塩化ナトリウム(ナカライテスク)、及び塩化カルシウム(ナカライテスク)を用いた。
 また、以下でEDSCAとはグルタミン酸(3mM)、アスパラギン酸(3mM)、塩化ナトリウム(12mM)、かつ、塩化カルシウム(3mM)の混合物をいう。
<細胞培養>
 HepG2(肝癌)(理化学研究所;以下RIKENと略記)、HLE(肝癌)(ヒューマンサイエンス研究資源バンク;以下JCRBと略記)、A549(肺癌)(RIKEN)及びMIA PaCa-2(膵臓癌)(JCRB)は10%血清含有DMEM培地、Huh-7(肝癌)(東北大学加齢医学研究所;以下TKGと略す)、MCF-7(乳癌)(TKG)、DLD-1(大腸癌)(JCRB)、及びB16F1(皮膚癌)(RIKEN)は10%血清含有RPMI培地、HL-60(白血病)(TKG)は10%血清含有IMDM培地でそれぞれ培養した。
[細胞増殖抑制試験]
ヒト肝癌由来細胞
 HepG2(1.5×10cells/90μL/well)、Huh-7(4.5×10cells/90μL/well)、HLE(1.0×10cells/90μL/well)を96穴プレートに播種して24時間培養後、被験物質を終濃度10%になるように加え、48時間作用させた後、MTTアッセイ法により被験物質の癌細胞増殖抑制活性を測定した。MTT標識試薬を10μL/well添加し、CO2インキュベーターにて37℃、4時間培養後、テトラゾリウム塩の分解により生じたフォルマザン色素を可溶化し、マルチウェル分光光度計(ELISAリーダー)で570nmの吸光度を測定した。得られる吸光度は生細胞数に比例するため、吸光度から癌細胞の生細胞数を間接的に評価することができる。ポジティヴコントロールにはマイトマイシンC(MMC)を終濃度0.5μg/mLで用いた。
ラット正常肝細胞
 ラット正常肝細胞の単離はin situコラーゲナーゼ法により行い、単離した細胞を96穴コラーゲンコートプレート(5×10cells/100μL/well)に播種し、5%血清を含むWilliams‘ E培地で一晩培養後、上記と同様の方法で被験物質を作用させ、MTTアッセイ法にて被験物質の細胞増殖抑制活性を評価した。
ヒト乳癌、ヒト肺癌、ヒト白血病、ヒト大腸癌、ヒト膵臓癌及びマウス皮膚癌細胞
 MCF-7(1.8×10cells/90μL/well)、HL-60(5.0×10cells/90μL/well)、及びA549(1.0×10cells/90μL/well)を96穴プレートに播種し、被験物質を24時間培養後添加し、48時間作用(HL-60のみ96時間)させ、MTTアッセイ法にて評価した。
 DLD-1(2.0×10cells/100μL/well)、MIA PaCa-2(2.0×10cells/100μL/well)、及びB16F1(1.5×10cells/100μL/well)を96穴プレートに播種し、上記と同様の方法で被験物質を作用させた後、SRBアッセイ法にて細胞タンパク質含有量に基づき、被験物質の癌細胞増殖抑制活性を測定した。50%TCA溶液を25μL/well添加し、4℃ 1時間インキュベート後、MilliQ水で洗浄・乾燥した。その後0.4%SRB(50μL/well)にて20分染色後、1%酢酸溶液にて洗浄後、10mM Tris溶液にて溶解し、ELISAリーダーで565nmの吸光度を測定した。得られる吸光度は生細胞数に比例するため、吸光度から癌細胞の生細胞数を間接的に評価することができる。
<各種アミノ酸のHepG2の癌細胞増殖抑制活性>
 図1は、アラニン(Ala)、グリシン(Gly)、グルタミン酸(Glu)、セリン(Ser)、トレオニン(Thr)、及びアスパラギン酸(Asp)をそれぞれ単独でHepG2に加えた場合の癌細胞増殖抑制活性を、MTTアッセイ法により測定した結果を示したグラフである。上記アミノ酸の濃度を、0.01mM、0.1mM、1mM、2mMとふり、それぞれのアミノ酸の癌細胞増殖抑制活性を測定した。また、ポジティヴコントロールとして、マイトマイシンC(MMC)の濃度を0.5μg/mLとした被験物質をHepG2に加えた場合の癌細胞増殖抑制活性をMTTアッセイ法により測定した。
 なお、図1の縦軸は、コントロール(Ctr)においてMTTアッセイ法により定量された生細胞の数を基準(100%)として、各種アミノ酸及びマイトマイシンCをHepG2に加えた場合の癌細胞増殖抑制活性を示したものである。
 図1から分かるように、特許文献1で腫瘍成長及び/又は転移の予防及び/又は治療措置のために使用されていた、グリシン、アラニン及びセリンには、HepG2に対する癌細胞増殖抑制活性がほとんど認められなかった。これに対し、グルタミン酸、アスパラギン酸を用いた場合には、濃度依存的にHepG2に対して癌細胞増殖抑制活性を示した。
<塩化ナトリウム及び塩化カルシウムの濃度と肝癌細胞選択的細胞増殖抑制活性>
 図2の範囲Aでは、肝癌細胞(HepG2)及び正常肝細胞に、被験物質のグルタミン酸及びアスパラギン酸の濃度を3mMに固定し、含有させる塩化ナトリウムの濃度を1.5~18mMまで段階的に変化させて加えた場合の、肝癌細胞及び正常肝細胞に対する細胞増殖抑制活性をMTTアッセイ法により測定した結果を示している。
 図2の範囲Aのグラフから、含有させるナトリウム塩の濃度を1.5から18mMへと上昇させた場合に、肝癌細胞の細胞増殖が、選択的に、かつ、ナトリウム塩の濃度依存的に抑制されることが分かる。
 図2の範囲Bでは、肝細胞癌及び正常肝細胞に、被験物質のグルタミン酸、アスパラギン酸、及び、ナトリウム塩の濃度をそれぞれ3mM、3mM、及び、12mMに固定し、含有させる塩化カルシウムの濃度を0.3~3000μMまで段階的に変化させて加えた場合の、肝癌細胞及び正常肝細胞に対する細胞増殖抑制活性をMTTアッセイにより測定した結果を示している。
 また、図2の範囲Cでは、肝癌細胞及び正常肝細胞に、被験物質のグルタミン酸、アスパラギン酸、及び、ナトリウム塩の濃度をそれぞれ3mM、3mM、及び、18mMに固定し、含有させる塩化カルシウムの濃度を0.3~3000μMまで段階的に変化させて加えた場合の、肝癌細胞及び正常肝細胞に対する細胞増殖抑制活性をMTTアッセイ法により測定した結果を示している。
 図2の範囲B及びCのグラフから、塩化カルシウムが肝癌細胞の細胞増殖抑制活性を選択的に増強させることが分かる。
<EDSCAの癌細胞選択的細胞増殖抑制活性>
 図3は、EDSCAの肝癌細胞と正常肝細胞に対する細胞増殖抑制活性と、既存の抗癌剤であるMMC、5-FU、CDDPのそれとを比較したグラフである。ここで、図3の縦軸は、コントロール(Ctr)においてMTTアッセイ法で定量した生細胞の数を基準(100%)として、MMC、EDSCA、5-FU、CDDPの細胞増殖抑制活性を示したものである。
 図3から、肝癌細胞に対して、EDSCAはMMC、5-FU、CDDPと比較して優れた癌細胞増殖抑制活性を示すことが分かる。また、CDDPは正常肝細胞に対して、肝癌細胞に対するのと同程度の細胞毒性を有することが分かる。他方、MMC及び5-FUの場合は、正常肝細胞に対する細胞毒性が、肝癌細胞に対する細胞毒性に比べて、若干抑制されていることが分かる。そして、EDSCAでは、正常肝細胞に対する細胞毒性が肝癌細胞に対する細胞毒性と比較してさらに顕著に抑制されていることが分かる。このため、EDSCAによる細胞増殖抑制活性は、MMC、5-FU及びCDDPと比較して、癌細胞選択的に発揮されることが分かる。
<各種癌細胞に対するEDSCAの癌細胞増殖抑制活性>
 図4は、EDSCAのヒト肝癌細胞(HepG2、Huh-7、及びHLE)、ヒト乳癌細胞(MCF-7)、ヒト前骨髄性白血病細胞(HL-60)、及びヒト肺癌細胞(A549)に対する癌細胞増殖抑制活性をMTTアッセイ法により測定した結果を示したグラフである。
 また、図5は、EDSCAのヒト大腸癌細胞(DLD-1)、ヒト膵癌細胞(MIA PaCa-2)、及びマウス皮膚癌細胞(B16F1)に対する癌細胞増殖抑制活性をSRBアッセイ法により測定した結果を示したグラフである。
 図4より、EDSCAはHepG2と同様に分化型のヒト肝癌細胞株であるHuh-7のみならず、未分化型のHLEに対しても、強い癌細胞増殖抑制活性を有することが分かる。また、図4及び図5より、肝癌以外のいずれの癌細胞株においても、EDSCAは癌細胞増殖抑制活性を有することが分かる。その中でも、ヒト乳癌細胞、ヒト肺癌細胞、ヒト大腸癌細胞、マウス皮膚癌細胞、及びヒト膵癌細胞に対して強い癌細胞増殖抑制活性を有することが分かる。
[Winn assay]
 実験動物は5日間の順化を行ったBalb/c(5週齢、雌)を用いた。また、癌の接種には、マウス大腸癌細胞CT-26をP7まで継代したものを用いた。細胞数が、下記表1に記載の各種薬剤を添加した際に、2.5×10cells/0.1mLになるように調整した。調整した細胞に各種薬剤を添加し懸濁した後、これを剃毛したマウスの腹側面に皮下接種した。癌のサイズは1週間に2回の頻度で縦と横の長さをノギスで測定し、腫瘍の体積を1/2×(長辺×短辺)として数値化した。
 なお、表1中、X×EDSCAとは、グルタミン酸(X×3mM)、アスパラギン酸(X×3mM)、塩化ナトリウム(X×12mM)、かつ、塩化カルシウム(X×3mM)の混合物を意味する。
Figure JPOXMLDOC01-appb-T000001
 癌細胞を接種後5日目に、全ての群(比較例及び実施例1~3)において目視で確認できる程度の癌が形成されたため、週に2回の頻度で癌のサイズを計測した。図6の縦軸は腫瘍の体積として見積もられる癌体積(mm)の値を示し、横軸は癌接種後の経過日数を示す。癌形成が進むにつれPBS群(比較例)の癌体積は4群の中で最も大きな値を示し、EDSCA投与濃度の上昇に伴って癌体積が小さくなる傾向が確認された(図6)。
 各群n=5で3回試験を行い、その結果を併せて各群n=15として統計処理を行った。その結果、担癌接種後20日目の時点でPBS投与群に比べ10×EDSCA投与群において癌の増殖が遅延する傾向が認められ、5%水準の有意差があった。このことから、EDSCAがin vivoにおいて癌細胞増殖抑制活性を有することが確認された。
[VX2肝臓担癌家兎を用いた抗癌試験]
1.材料及び方法
<試薬>
 生理食塩液(株式会社大塚製薬工場)、リピオドール480注10mL(テルモ株式会社)、Tween20(ナカライテスク株式会社)、注射用水(株式会社大塚製薬工場)を用いた。
<動物の準備>
 Slc:JW/CSKウサギ(日本エスエルシー株式会社、SPF)の雌を14週齢で入荷し、7日間馴化した。15週齢で一般状態に異常のないことを確認した動物を腫瘍(VX2癌細胞)の移植に供した。また、腫瘍移植時から2週間後に一般状態に異常がなく体重の減少が見られないことが確認された動物を群分けに供した。
<試験群の構成>
 腫瘍の大きさが1~2cmの動物を下記の通り群分けした(表2)。
Figure JPOXMLDOC01-appb-T000002
<投与液の調製>
 生理食塩液又は被験物質、リピオドール及びTween20溶液を下記の通り混合した。混合したものを、さらにミキサーによる1分間の撹拌及び超音波による5分間の処理を2回繰り返すことにより1~3群の投与液を調製した。
 陰性対照物質:生理食塩液185μLと、リピオドール1015μLと、Tween20の最終濃度が0.03v/v%となるように調製したTween20溶液24μLとを混合したものを陰性対照物質とした。
 被験物質A:アスパラギン酸及びグルタミン酸の最終濃度がそれぞれ30mMとなるように調製した溶液185μLと、リピオドール1015μLと、Tween20の最終濃度が0.03v/v%となるように調製したTween20溶液24μLとを混合したものを被験物質Aとした。
 被験物質B:アスパラギン酸及びグルタミン酸の最終濃度がそれぞれ15mMとなるように調製した溶液185μLと、リピオドール1015μLと、Tween20の最終濃度が0.03v/v%となるように調製したTween20溶液24μLとを混合したものを被験物質Bとした。
 群分け後、肝動脈内に、各投与液の0.1mL/匹を単回投与した。
<体重>
 群毎の投与時から解剖時までの体重変化量と体重変化率を表3に示した。
 全群で投与後の体重減少が見られたが、1群と2群及び3群との間に統計学的に有意な差は認められなかった。
Figure JPOXMLDOC01-appb-T000003
<腫瘍増殖率>
 1~3の各群の平均腫瘍体積、平均腫瘍増殖率を表4に示した。
 1群の腫瘍増殖率は355.3%であった。これに対し、2群では全例、3群では3例中2例における腫瘍増殖率がマイナスであった。腫瘍増殖率は2群では-33.9%、3群では-26.3%であった(図7)。
 2群及び3群で腫瘍の増殖抑制が認められ、1群と2群及び3群との間に統計学的に有意な差が認められた(**p<0.01)。
Figure JPOXMLDOC01-appb-T000004
 腫瘍増殖率について陰性対照である1群と2群及び3群との間に統計的な有意差が認められたことから、被験物質A及びBは、生体内の腫瘍細胞の増殖を抑制する作用を有することが確認された。

Claims (16)

  1.  グルタミン酸及びアスパラギン酸を有効成分として含有する抗癌剤。
  2.  各有効成分のモル比率が、グルタミン酸:アスパラギン酸=1~10:1~10である、請求項1に記載の抗癌剤。
  3.  各有効成分のモル比率が、グルタミン酸:アスパラギン酸=1~2:1~2である、請求項1に記載の抗癌剤。
  4.  グルタミン酸の濃度が1~120mM、かつ、アスパラギン酸の濃度が1~120mMの液剤である、請求項1に記載の抗癌剤。
  5.  グルタミン酸、アスパラギン酸、及び、ナトリウム塩を有効成分として含有する抗癌剤。
  6.  ナトリウム塩は塩化ナトリウムである、請求項5に記載の抗癌剤。
  7.  各有効成分のモル比率が、グルタミン酸:アスパラギン酸:ナトリウム塩=1~10:1~10:4~40である、請求項5又は6に記載の抗癌剤。
  8.  各有効成分のモル比率が、グルタミン酸:アスパラギン酸:ナトリウム塩=1~2:1~2:4~8である、請求項5又は6に記載の抗癌剤。
  9.  グルタミン酸の濃度が1~7mM、アスパラギン酸の濃度が1~7mM、かつ、ナトリウム塩の濃度が1.5~18mMの液剤である、請求項5又は6に記載の抗癌剤。
  10.  グルタミン酸、アスパラギン酸、ナトリウム塩、及び、カルシウム塩を有効成分として含有する抗癌剤。
  11.  ナトリウム塩は塩化ナトリウムであり、カルシウム塩は塩化カルシウムである、請求項10に記載の抗癌剤。
  12.  各有効成分のモル比率が、グルタミン酸:アスパラギン酸:ナトリウム塩:カルシウム塩=1~10:1~10:4~40:1~10である、請求項10又は11に記載の抗癌剤。
  13.  各有効成分のモル比率が、グルタミン酸:アスパラギン酸:ナトリウム塩:カルシウム塩=1~2:1~2:4~8:1~2である、請求項10又は11に記載の抗癌剤。
  14.  グルタミン酸の濃度が1~7mM、アスパラギン酸の濃度が1~7mM、ナトリウム塩の濃度が1.5~18mM、かつ、カルシウム塩の濃度が0.3~3000μMの液剤である、請求項10又は11に記載の抗癌剤。
  15.  前記癌が、肝癌、大腸癌、又は膵癌である、請求項1~14のいずれか一項に記載の抗癌剤。
  16.  (A)請求項1~14のいずれか一項に記載の抗癌剤と、(B)油性造影剤と、を含む、肝動脈化学塞栓療法用キット。
PCT/JP2013/080712 2012-11-15 2013-11-13 抗癌剤 WO2014077289A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014547009A JP5747183B2 (ja) 2012-11-15 2013-11-13 抗癌剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-251324 2012-11-15
JP2012251324 2012-11-15

Publications (1)

Publication Number Publication Date
WO2014077289A1 true WO2014077289A1 (ja) 2014-05-22

Family

ID=50731200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080712 WO2014077289A1 (ja) 2012-11-15 2013-11-13 抗癌剤

Country Status (2)

Country Link
JP (1) JP5747183B2 (ja)
WO (1) WO2014077289A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208381A1 (ja) * 2013-06-28 2014-12-31 株式会社日本生物製剤 肝細胞増殖剤
WO2020147471A1 (zh) * 2019-01-17 2020-07-23 广州君赫生物科技有限公司 天冬氨酸的新应用
WO2021132539A1 (ja) * 2019-12-27 2021-07-01 株式会社 ブルボン 細胞増殖抑制剤

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515874A (ja) * 1996-07-30 2000-11-28 ノバルテイス・ニユートリシヨン・アクチエンゲゼルシヤフト アミノ酸組成物、ならびに腫瘍の成長および転移の処置におけるその使用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515874A (ja) * 1996-07-30 2000-11-28 ノバルテイス・ニユートリシヨン・アクチエンゲゼルシヤフト アミノ酸組成物、ならびに腫瘍の成長および転移の処置におけるその使用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KAROU TSUCHIYA ET AL: "LONG TIME ORAL SUPPLEMENTATION WITH BRANCHED-CHAIN AMINO ACIDES IMPROVES SURVIVAL AND DECREASES RECURRENCES IN PATIENTS WITH HEPATOCELLULAR CARCINOMA", JAPANESE JOURNAL OF GASTROENTEROLOGY, vol. 106, no. 2, June 2006 (2006-06-01), pages 808 - 816 *
KAZEM YAGASAKA ET AL: "ACTIONS OF AMINO ACIDS ON THE PROLIFERATION AND INVASION OF HEPATOMA CELLS IN CULTURE", REPORTS OF THE RESEARCH COMMITTEE OF ESSENTIAL AMINO ACIDS, no. 146, November 1996 (1996-11-01), pages 84 - 87 *
KAZEM YAGASAKI ET AL: "POSSIBLE INVOLVEMENT OF TRANSPORTER OR RECEPTOR OF AMINO ACIDS IN SUPPRESSION BY AMINO ACIDS OF THE PROLIFERATION AND INVASION OF HEPATOMA CELLS", REPORT OF THE RESEARCH COMMITTEE OF ESSENTIAL AMINO ACIDS, no. 154, January 1999 (1999-01-01), pages 27 - 30 *
KAZEM YAGASAKI: "TOKUSHU AMINO ACID EIYO-SAIKIN NO WADAI AMINO ACID TOKUNI HI HISSU AMINO ACID NO YAKURI SAYO", RINSHO EIYO, vol. 100, no. 2, February 2002 (2002-02-01), pages 161 - 166 *
KUNIHITO GOTO: "1 PAGE ILLUSTRATION DE WAKARU KANGO GA WAKARU SHOKAKI GEKA NURSE NO TAMENO SHUJUTSU IGAI NO CHIRYO TO KENSA", GASTROENTEROLOGICAL SURGERY NURSING, vol. 16, no. 9, September 2011 (2011-09-01), pages 934 - 938 *
MASATOSHI OKAZAKI ET AL: "TOKUSHU KANGAN UP TO DATE CHIRYO KANSAIBO GAN NI TAISURU SOKUSEN RYOHO", PHARMA MEDICA, vol. 25, no. 6, June 2007 (2007-06-01), pages 59 - 63 *
MASATOSHI OKAZAKI ET AL: "TRANSARTERIAL CHEMEMBOLIZATION TECHNIQUES FOR THE TREATMENT OF HEPATOCELLULAR CARCINOMA", KAN TAN SUI, vol. 53, no. 5, November 2006 (2006-11-01), pages 785 - 793 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208381A1 (ja) * 2013-06-28 2014-12-31 株式会社日本生物製剤 肝細胞増殖剤
US9616046B2 (en) 2013-06-28 2017-04-11 Japan Bio Products Co., Ltd. Hepatocyte-proliferating agent
WO2020147471A1 (zh) * 2019-01-17 2020-07-23 广州君赫生物科技有限公司 天冬氨酸的新应用
WO2021132539A1 (ja) * 2019-12-27 2021-07-01 株式会社 ブルボン 細胞増殖抑制剤

Also Published As

Publication number Publication date
JP5747183B2 (ja) 2015-07-08
JPWO2014077289A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
AU2019203820B2 (en) Methods of treating or ameliorating diseases and enhancing performance comprising the use of a magnetic dipole stabilized solution
Bae et al. Docetaxel-loaded thermoresponsive conjugated linoleic acid-incorporated poloxamer hydrogel for the suppression of peritoneal metastasis of gastric cancer
RU2013123457A (ru) Непрерывное введение l-допа, ингибиторов допа-декарбоксилазы, ингибиторов катехол-о-метилтрансферазы и предназначенные для этого композиции
JP2023179467A (ja) 投与および処置の方法
ES2603632T3 (es) Copolímero en bloque que tiene un grupo ácido fenilborónico introducido en el mismo, y usos del mismo
JP5747183B2 (ja) 抗癌剤
KR20010105248A (ko) 충실성 종양 치료용 약제를 제조하기 위한 알부민안정화된 파클리탁셀의 용도 및 이로부터 수득된 약제
UA80692C2 (en) Nutrient pharmaceutical formulation comprising polyphenols and use in treatment of cancer and inflammatory diseases
JP2015509928A (ja) キレート化複合メセルを含有する医薬組成物の放出制御方法
JP2014088453A (ja) 異なる物性の薬物の一剤形化
AU2012343239A1 (en) A drug carrier with chelating complex micelles and the application thereof
JP2016027036A (ja) 外用組成物、化粧料、経皮吸収促進用組成物、外用組成物における有効成分の経皮吸収性を高める方法、経皮投与型医薬及び点眼用組成物
JP2010522146A5 (ja)
JP2002363101A (ja) 外用剤
JP2016169188A (ja) 皮膚外用剤
JP6359583B2 (ja) 肝細胞がんの予防及び/又は治療のための医薬
ES2761311T3 (es) Tratamiento terapéutico
JP2020066617A (ja) 水性ゲル状化粧料
JP5865623B2 (ja) 皮膚外用剤およびその製造方法
JP2006069958A (ja) 老化防止剤
Yaseen et al. Modulation of aggregation behavior of amphiphilic drug AMT under the influence of polymer molecular weight and composition
KR102256453B1 (ko) 소수성 약물 전달용 신규한 폴리머계 하이드로트로프
JP6144472B2 (ja) 増粘剤及び外用組成物
RU2411018C1 (ru) Способ локальной химиотерапии метастазов в печень
JP7211603B2 (ja) 薬物送達用組成物および医薬組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855700

Country of ref document: EP

Kind code of ref document: A1