WO2014077087A1 - バイアス電圧発生装置及び超音波診断システム - Google Patents

バイアス電圧発生装置及び超音波診断システム Download PDF

Info

Publication number
WO2014077087A1
WO2014077087A1 PCT/JP2013/078429 JP2013078429W WO2014077087A1 WO 2014077087 A1 WO2014077087 A1 WO 2014077087A1 JP 2013078429 W JP2013078429 W JP 2013078429W WO 2014077087 A1 WO2014077087 A1 WO 2014077087A1
Authority
WO
WIPO (PCT)
Prior art keywords
bias voltage
ultrasonic
circuit
signal
reception
Prior art date
Application number
PCT/JP2013/078429
Other languages
English (en)
French (fr)
Inventor
小室 雅彦
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2014535437A priority Critical patent/JP5620620B1/ja
Priority to CN201380027495.0A priority patent/CN104334087B/zh
Priority to EP13854508.2A priority patent/EP2839784B1/en
Publication of WO2014077087A1 publication Critical patent/WO2014077087A1/ja
Priority to US14/446,570 priority patent/US20150018678A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/51Electrostatic transducer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present invention relates to a bias voltage generator and an ultrasonic diagnostic system for performing ultrasonic observation using a capacitive vibrator.
  • an ultrasonic diagnostic system including an ultrasonic probe that inserts an insertion portion into a body cavity and transmits / receives ultrasonic waves to / from an affected area has been widely used.
  • an ultrasonic probe using a piezoelectric element an ultrasonic probe using a capacitive vibrator is also adopted as a vibrator for transmitting and receiving ultrasonic waves.
  • the transmission signal generation means and the reception signal processing means are provided on the ultrasonic observation apparatus side.
  • the ultrasonic observation apparatus used together with the ultrasonic probe equipped with the capacitive transducer is configured to generate a DC bias voltage in the configuration of the ultrasonic observation apparatus for piezoelectric elements.
  • Built-in circuit On the other hand, in the conventional example of Japanese Patent Application Laid-Open No. 2007-97760, a capacitive vibrator is formed on a semiconductor substrate, DC bias voltage means for generating a DC bias voltage is provided, and a transmission signal is further provided.
  • An ultrasonic probe device having a built-in transmission signal generating means for generating (driving signal) is disclosed, and this device can be miniaturized.
  • the conventional example even if a connector that can be connected is used in an ultrasonic observation device that is used by connecting an ultrasonic probe equipped with a piezoelectric element (for ultrasonic diagnosis), it can be used with the ultrasonic observation device. Can not do it. That is, the conventional example requires an ultrasonic observation apparatus dedicated to the ultrasonic probe apparatus. Therefore, the conventional example has a drawback that a dedicated ultrasonic observation apparatus is required in addition to the existing ultrasonic observation apparatus used together with the ultrasonic probe mounted with the transducer using the piezoelectric element. For this reason, an apparatus having wide applicability, such as being usable for ultrasonic diagnosis even when an ultrasonic observation apparatus for piezoelectric elements is used, is desired.
  • the present invention has been made in view of the above-described points, and can generate a bias voltage that can be used for ultrasonic diagnosis with an ultrasonic probe equipped with a capacitive transducer even when an ultrasonic observation device for a piezoelectric element is used.
  • An object is to provide an apparatus and an ultrasonic diagnostic system.
  • a bias voltage generation device performs processing on a reception circuit and a transmission circuit that generates a transmission signal in order to transmit and receive ultrasonic waves to and from a subject using a capacitive vibrator.
  • a bias voltage generator that is disposed outside the ultrasonic observation device and used together with an ultrasonic observation device having a built-in reception circuit for generating a bias voltage to be applied to the capacitive vibrator
  • a bias voltage power supply circuit that includes a rechargeable secondary battery and generates the bias voltage, the transmission signal output to the outside of the ultrasonic observation apparatus, and the reception input to the inside of the ultrasonic observation apparatus
  • a bias voltage superimposing unit that superimposes the bias voltage on the signal.
  • An ultrasonic diagnostic system includes an ultrasonic probe equipped with a capacitive transducer, a transmission circuit that generates a transmission signal for generating ultrasonic waves in the capacitive transducer, An ultrasonic observation apparatus including a reception circuit that performs signal processing on a reception signal output from the capacitive transducer upon reception of ultrasonic waves, and a transmission / reception separation circuit that separates the transmission signal and the reception signal And a rechargeable battery that is built-in or detachably connected to the ultrasonic probe and generates a bias signal to be applied to the capacitive vibrator, and for generating the bias voltage.
  • a bias voltage overlap that superimposes the bias voltage on the power supply circuit and the transmission signal output to the outside of the ultrasonic observation apparatus and the reception signal input to the inside of the ultrasonic observation apparatus.
  • a bias voltage generator comprising, a.
  • FIG. 1 is a diagram showing an overall configuration of an ultrasonic diagnostic system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration in which charging is performed by connecting a bias voltage generator provided in an ultrasonic probe equipped with a capacitive vibrator to a bias voltage charger.
  • FIG. 3 is a diagram showing a configuration for transmitting and receiving ultrasonic waves by connecting an ultrasonic probe equipped with a capacitive vibrator to an observation device for the capacitive vibrator.
  • FIG. 4 is a diagram showing a configuration for transmitting and receiving ultrasonic waves by connecting an ultrasonic probe equipped with a capacitive transducer to an ultrasonic probe observation device equipped with a piezoelectric element.
  • FIG. 1 is a diagram showing an overall configuration of an ultrasonic diagnostic system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration in which charging is performed by connecting a bias voltage generator provided in an ultrasonic probe equipped with a capacitive
  • FIG. 5 is a timing chart for explaining the operation of the first embodiment.
  • FIG. 6 is a diagram showing an overall configuration of an ultrasonic diagnostic system according to a first modification of the first embodiment of the present invention.
  • FIG. 7 is a timing chart for explaining the operation of the first modification.
  • FIG. 8 is a diagram illustrating a configuration of a bias voltage generator and the like according to a second modification of the first embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a bias voltage generator and the like according to a third modification of the first embodiment.
  • FIG. 10 is a diagram showing the configuration of the main part of the first ultrasonic probe constituting the second embodiment of the present invention.
  • FIG. 11 is a timing chart for explaining the operation using FIG. FIG.
  • FIG. 12 is a diagram illustrating a configuration of a main part of a first ultrasonic probe of an electronic scanning method according to a modification of the second embodiment.
  • FIG. 13 is a diagram showing a configuration of a main part of a first ultrasonic probe of a modification of the first ultrasonic probe in FIG.
  • the ultrasonic diagnostic system 1 As shown in FIG. 1, the ultrasonic diagnostic system 1 according to the first embodiment of the present invention is a first scanning probe 2A equipped with a capacitive transducer (abbreviated as c-MUT) by a mechanical scanning method. And the second ultrasonic probe 2B mounted with a transducer using a piezoelectric element and the first ultrasonic probe 2A are detachably connected by a mechanical scanning method to generate an ultrasonic tomographic image.
  • c-MUT capacitive transducer
  • An ultrasonic observation apparatus (first observation apparatus) 3A and first and second ultrasonic probes 2A and 2B are detachably connectable, and a second ultrasonic observation apparatus (first observation apparatus) that generates an ultrasonic tomographic image.
  • the first ultrasonic probe 2A is shown connected to the second observation device 3B.
  • An extended cable portion 8I is provided, and a connector 9I is provided at the end of the cable portion 8I.
  • the cMUT 11A is accommodated in the distal end portion 10A of the insertion portion 6A in the first ultrasonic probe 2A, and the cMUT 11A is connected to the motor 14 in the gripping portion 7A via, for example, a hollow flexible shaft 12 and a slip ring 13. ing.
  • the motor 14 is connected to one end of a signal line 15 in the cable portion 8A, the other end of the signal line 15 is connected to a connector terminal (contact) P1 of the connector 9A, and the connector 9A is detachably connected. It is connected to the motor drive circuit 17 in the observation device 3I via the connector receiver 16A or 16B.
  • the motor 14 When the motor drive signal output from the motor drive circuit 17 is applied to the motor 14, the motor 14 is driven to rotate. Then, along with the rotation of the motor 14, the slip ring 13 and the flexible shaft 12 are rotated so that the cMUT 11A attached to the tip of the flexible shaft 12 can be rotationally driven.
  • the electrode of the cMUT 11A is connected to one end of a signal line 18a inserted through the hollow flexible shaft 12, and the signal line 18a inserted through the flexible shaft 12 is in contact with the rotor side contact of the slip ring 13. It is electrically connected to the signal line 18a outside the slip ring 13 through the side contact.
  • the signal line 18a is connected to the connector terminal P5 via a bias voltage superimposing circuit 22 and a capacitor 23 constituting the bias voltage generating device 21 disposed inside the connector 9A, and is connected to the connector via the bias voltage superimposing circuit 22. Connected to terminal P6.
  • the bias voltage generator 21 includes a bias voltage power supply circuit 24 that can charge and generate a bias voltage to be applied to the cMUT 11A.
  • the input terminal of the bias voltage power supply circuit 24 is connected to the charging connector terminal P2, and the bias voltage
  • the output terminal of the power supply circuit 24 is connected to the bias voltage superimposing circuit 22 via a bias switch 25 as a switch for turning on / off the application of the bias voltage.
  • the charge level of the bias voltage is detected by the charge level detection circuit 26, and the signal line for outputting the detected charge level is connected to the connector terminal P3 functioning as a charge level terminal. .
  • the bias switch 25 has a switch control terminal for controlling ON / OFF of the two contacts of the bias switch 25 connected to the connector terminal P4 via a signal line. Then, for example, by applying a binary switch control signal to the connector terminal P4 from the outside, the ON / OFF control of the two contacts of the bias switch 25 can be performed. That is, the connector terminal P4 forms a control terminal for controlling ON / OFF of bias voltage application in the bias voltage superimposing circuit 22 from the outside.
  • the signal line connected to the ground side electrode in the cMUT 11A is connected to the ground terminal of the connector terminal P7.
  • a transducer 11B formed of a piezoelectric element instead of the cMUT 11A is accommodated in the distal end portion 10B of the insertion portion 6B.
  • the transducer 11B includes, for example, a hollow flexible shaft 12 and It is connected to a motor 14 in the gripping part 7B via a slip ring 13.
  • the signal line 18b connected to the vibrator 11B and inserted into the flexible shaft 12 is connected to the external signal line 18b via the slip ring 13, and this signal line 18b is connected to the connector terminal P5 of the connector 9B. Connected.
  • Other configurations of the second ultrasonic probe 2B are the same as those of the first ultrasonic probe 2A, and are denoted by the same reference numerals in FIG.
  • FIG. 2 shows a configuration of the bias voltage charger 4 to which the first ultrasonic probe 2A is detachably connected.
  • the bias voltage charger 4 monitors a charge level detected by a charge voltage generation circuit 31 that generates a charge voltage for charging the bias voltage power supply circuit 24 and a charge level detection circuit 26, and the charge voltage generation circuit 31
  • a charging voltage control circuit 32 that controls the charging operation and a switch control circuit 33 that controls ON / OFF of the bias switch are included.
  • the bias voltage charger 4 has a connector receiver 16C having connector receiving terminals R2, R3, R4 to which the connector terminals P2, P3, P4 of the first ultrasonic probe 2A are connected, respectively.
  • the charging voltage generation circuit 31 includes an AC / DC converter 31a that generates a DC voltage for charging a rechargeable secondary battery 24a in the bias voltage power supply circuit 24 from a commercial AC power supply, and an AC / DC converter. And a switch 31b provided at the output end of 31a. Then, the DC voltage is applied to the secondary battery 24a to charge the secondary battery 24a.
  • the secondary battery 24a is configured by a lithium battery that generates a DC voltage of about 5V to about 10V, a lead battery, or the like.
  • the bias voltage power supply circuit 24 includes a secondary battery 24a and a DC / DC converter 24b that boosts the bias voltage to 100 V or higher by the DC voltage of the secondary battery 24a.
  • the DC voltage of the secondary battery 24a is supplied to the charge level detection circuit 26.
  • the charge level detection circuit 26 monitors the DC voltage of the secondary battery 24a by using this DC voltage as an operating power supply, and the charge level is detected. Is detected. Note that the charge level detection circuit 26 may detect the charge level from the level of the bias voltage output from the DC / DC converter 24b.
  • the charge level detected by the charge level detection circuit 26 is input to the charge voltage control circuit 32.
  • the charge voltage control circuit 32 compares the charge level voltage with the reference voltage 32a, thereby completing the charge completion state. It is determined whether or not it has been reached.
  • the charge voltage control circuit 32 performs control to turn off the switch 31b and end the charging operation.
  • the charging completion state may be notified to the user by turning on an LED (not shown) or turning off an LED in a lighting state when charging is completed.
  • a charge level notification circuit 72 may be connected to the charge level detection circuit 26 so that the user can be notified of the charge level.
  • the switch control circuit 33 is connected to the switch 33a and a switch 33a that can be switched so that a switch control signal for controlling the bias switch 25 to be turned off can be output (by manual operation or the like).
  • the resistors Rb and Rc are provided.
  • the bias switch 25 is turned OFF via the connector terminal P4 to which the connector receiving terminal R4 is connected.
  • the bias switch 25 is a switch that is turned off when the voltage applied to the bias control terminal is at a low level, for example, and turned on when the voltage is at a high level (H level).
  • the bias voltage superimposing circuit 22 as a bias voltage superimposing unit that superimposes the bias voltage on the transmission signal and the reception signal uses, for example, a resistor Ra connected in series to the bias switch 25 to A bias voltage is superimposed on the connection point Pc of the line 18a.
  • FIG. 3 shows a configuration of a main part in a state where the first ultrasonic probe 2A is connected to the first observation apparatus 3A.
  • the first observation apparatus 3A includes a transmission circuit 41 as a transmission signal generation unit that generates a transmission signal in order to transmit and receive ultrasonic waves to and from the subject using the cMUT 11A, and processing on the reception signal received by the cMUT 11A. And a bias voltage generation circuit 49 that generates a bias voltage to be superimposed on the transmission signal and the reception signal.
  • the bias voltage generated by the bias voltage generation circuit 49 is superimposed on the transmission signal or the reception signal at the connection point P between the transmission signal and the signal line 44 for transmitting and receiving the reception signal via the signal line 49a.
  • a function including the generation of the bias voltage by the bias voltage generation circuit 49 and the superposition of the bias voltage at the connection point P may be defined as a bias voltage circuit.
  • the first observation device 3 ⁇ / b> A has a capacitor 45 inserted in the middle of a signal line 44 for transmitting and receiving a transmission signal and a reception signal, and a bias voltage superimposed on the signal line 44 together with the transmission / reception separation circuit 43.
  • the input to the receiving circuit 42 is protected.
  • the transmission / reception separation circuit 43 separates the transmission signal and the reception signal using a common signal line 44.
  • the transmission / reception separation circuit 43 has the same configuration as the transmission / reception separation circuit 43B shown in FIG.
  • the signal line 44 is connected to the connector terminal P6 via the connector receiving terminal R6, and the connector receiving terminal R7 is connected to the connector terminal P7.
  • the image signal of the ultrasonic tomographic image generated by the receiving circuit 42 is output to the monitor 46, and the ultrasonic tomographic image of the subject generated by transmitting and receiving the ultrasonic waves by the cMUT 11A is displayed on the display surface of the monitor 46. Is done.
  • the switch control circuit 47 provided in the first observation apparatus 3A is connected to the connector terminal P4 through the connector receiving terminal R4.
  • the switch control circuit 47 may have the same configuration as the switch control circuit 33 shown in FIG. That is, as shown in FIG. 3, the switch control circuit 47 is set to output a switch control signal for turning off the bias switch 25. In this case, the bias voltage by the bias voltage power supply circuit 24 in the connector 9A is not used for transmission / reception of ultrasonic waves.
  • the first observation device 3A outputs the transmission signal to the connector 9A side together with the bias voltage superimposed on the transmission signal. A transmission signal on which a bias voltage is superimposed is applied to the cMUT 11A and transmits ultrasonic waves. Since the cMUT 11A is driven to rotate by the motor 14, as shown in FIG.
  • the ultrasonic wave transmitted to the subject 48 side is reflected at a portion where the acoustic impedance is changed, and a part thereof is received by the cMUT 11A and converted into an electric signal.
  • a predetermined bias voltage is applied to the cMUT 11A, a converted reception signal can be generated efficiently.
  • the reception signal received by the cMUT 11A is input from the connector 9A into the first observation device 3A in a state where the bias voltage generated by the bias voltage generation circuit 49 in the first observation device 3A is superimposed.
  • the received signal is input to the receiving circuit 42 via the capacitor 45 and the transmission / reception separating circuit 43, and a video signal is generated by the receiving circuit 42.
  • FIG. 4 shows the configuration of the main part in a state where the first ultrasonic probe 2A is connected to the second observation device 3B.
  • the second observation apparatus 3B uses a piezoelectric element transducer 11B to generate a transmission signal for transmitting and receiving ultrasonic waves to and from the subject. 41B, a reception circuit 42B that performs processing on a reception signal received by the transducer 11B, and a transmission / reception separation circuit that separates a transmission signal and a reception signal that are transmitted using a common signal line 44b in the second observation apparatus 3B. 43B.
  • the transmission circuit 41B when the ultrasonic probe 2A is connected as shown in FIG. 4, the transmission circuit 41B generates a transmission signal for the cMUT 11A, and the reception circuit 42B receives a signal for the reception signal received by the cMUT 11A. Process.
  • the transmission / reception separation circuit 43B separates the transmission signal and the reception signal.
  • the transmission / reception separating circuit 43B includes diode bridges D1 to D4 and diodes D1, D3 arranged in a signal line 44b 'extending from the branch point of the signal line 44b to the input end side of the receiving circuit 42B.
  • the resistor Re is connected to the power supply terminal Vdd
  • the resistor Rf is connected to the cathodes of the diodes D2 and D4 to the power supply terminal Vss.
  • the diode bridges D1 to D4 are turned on in the case of a weak signal such as a reception signal (for example, a signal of 1 Vpp or less) and are input to the reception circuit 42B, but are excessive as in the case of a transmission signal (for example, about 100 Vpp).
  • a weak signal such as a reception signal (for example, a signal of 1 Vpp or less) and are input to the reception circuit 42B, but are excessive as in the case of a transmission signal (for example, about 100 Vpp).
  • a reception signal for example, a signal of 1 Vpp or less
  • a transmission signal for example, about 100 Vpp
  • the diodes D1 and D2 have a reverse recovery time (recovery time) shorter than the cycle of the transmission signal, and the diodes D3 and D4 have a cycle of the reception signal. Those having longer characteristics may be used.
  • diode bridges D1 to D4 and switches SW1 and SW2 for switching between a negative power source and a positive power source at the time of transmission and reception are used.
  • the diode bridges D1 to D4 are made non-conductive at the time of transmission to protect the high-voltage transmission signal from being input to the reception circuit 42B, and the diode bridges D1 to D4 are made conductive to receive the reception signal at the time of reception. 42B may be input.
  • the transmission circuit 41B and the reception circuit 42B can be used as a transmission circuit that generates a transmission signal also for the cMUT 11A and a reception circuit that performs signal processing on the reception signal. I am doing so.
  • the connector receiver 16B of the second observation device 3B has connector receiver terminals R1, R4, R5, and R7 connected to the connector terminals P1, P4, P5, and P7, respectively.
  • the image signal of the ultrasonic tomographic image generated by the receiving circuit 42B is output to the monitor 46, and the ultrasonic wave of the subject generated by transmitting / receiving the ultrasonic wave by the transducer 11B or the cMUT 11A is displayed on the display surface of the monitor 46. A tomogram is displayed.
  • the switch control circuit 47B provided in the second observation device 3B is connected to the connector terminal P4 via the connector receiving terminal R4.
  • the switch control circuit 47B has the same configuration as the switch control circuit 33 shown in FIG. 2, but the switch 33a is connected to the power supply terminal Vdd via the pull-up resistor Rb, and the connector receiving terminal R4 and the connector terminal P4 have It is set so that an H level switch control signal is applied.
  • the switch control circuit 47B controls the bias switch 25 to be turned on.
  • the transmission signal from the transmission circuit 41B is transmitted into the connector 9A through the transmission / reception separation circuit 43B, and then into the connector 9A in the bias voltage superposition circuit 22 after passing through the capacitor 23 in the connector 9A.
  • a bias voltage by the provided bias voltage power supply circuit 24 is superimposed and applied to the cMUT 11A.
  • a bias voltage by the bias voltage power supply circuit 24 provided in the connector 9A is also superimposed on the reception signal received by the ultrasonic wave by the cMUT 11A.
  • the reception signal is 2 in the observation apparatus 3B.
  • the received signal is input to the receiving circuit 42B via the transmission / reception separating circuit 43B, and the receiving circuit 42B performs signal processing on the received signal to generate a video signal and output it to the monitor 46.
  • the ultrasonic diagnostic system 1 having such a configuration generates a first ultrasonic probe 2 ⁇ / b> A as an ultrasonic probe equipped with a cMUT 11 ⁇ / b> A as a capacitive transducer, and generates ultrasonic waves in the capacitive transducer.
  • a transmission circuit 41B that generates a transmission signal for receiving the signal
  • a reception circuit 42B that performs signal processing on the reception signal output from the capacitive vibrator by receiving ultrasonic waves, and separation of the transmission signal and the reception signal
  • a second observation device 3B as an ultrasonic observation device incorporating a transmission / reception separation circuit 43B, and a built-in ultrasonic probe outside the second observation device 3B.
  • a rechargeable battery 24a for generating a bias signal to be applied is provided, and the bias voltage power supply circuit 24 for generating the bias voltage and the outside of the ultrasonic observation apparatus are provided.
  • the bias voltage generator 21 provided in the first ultrasonic probe 2A generates a transmission signal for transmitting and receiving ultrasonic waves to and from the subject using the cMUT 11A as a capacitive transducer. Generating a bias voltage to be used outside the second observation device 3B together with the second observation device 3B as an ultrasonic observation device including a transmission circuit 41B that performs processing on the received signal and a reception circuit 42 that performs processing on the received signal
  • the device 21 includes a rechargeable secondary battery 24a for generating a bias voltage to be applied to the capacitive vibrator, the bias voltage power supply circuit 24 for generating the bias voltage, and the ultrasonic wave Bias as a bias voltage superimposing unit that superimposes the bias voltage on the transmission signal output from the observation device and the reception signal input to the ultrasonic observation device And ⁇ tatami circuit 22, and further comprising a.
  • the bias voltage generator 21 is configured to be disposed inside the first ultrasonic probe 2A on which the cMUT 11A is mounted. However, in the configuration of FIG. 8 described later, the cMUT 11A is mounted.
  • the first ultrasonic probe 2A ′′ is configured to be detachable from the first ultrasonic probe 2A ′′.
  • the bias voltage power supply circuit 24 of the bias voltage generator 21 is connected to the bias voltage charger 4 as shown in FIG. 2 to connect the secondary battery 24a. To the charged state.
  • the bias voltage generator 21 is provided in the first ultrasonic probe 2A
  • the first ultrasonic probe 2A is connected to the bias voltage charger 4 as shown in FIG.
  • the secondary battery 24a of the bias voltage power supply circuit 24 of the bias voltage generator 21 provided in the first ultrasonic probe 2A is charged.
  • the bias voltage power supply circuit 24 is connected and charged, and the charging can be completed by lighting the LED.
  • the first ultrasonic probe 2A can be connected to the second observation apparatus 3B to transmit and receive ultrasonic waves and perform ultrasonic diagnosis.
  • the first ultrasonic probe 2A is connected to the second observation apparatus 3B.
  • the transmission signal of the transmission circuit 41B passes through the capacitor 23 in the connector 9A through the transmission / reception separation circuit 43B, and the bias voltage output from the bias voltage power supply circuit 24 is superimposed in the bias voltage superposition circuit 22. , Applied to the electrode of cMUT11A.
  • the cMUT 11A when a transmission signal is applied in a state in which a bias voltage is superimposed between electrodes on both sides facing the cavity, the one film facing the cavity vibrates, and the object 48 (see FIG. 1) side Send ultrasonic waves to.
  • the reception signal reflected by the subject 48 and received by the cMUT 11A is input into the second observation apparatus 3B through the capacitor 23 with the bias voltage from the bias voltage power supply circuit 24 superimposed thereon.
  • the received signal is input to the receiving circuit 42B via the transmission / reception separating circuit 43B.
  • the receiving circuit 42B performs signal processing on the received signal, generates a video signal, and outputs the video signal to the monitor 46.
  • An ultrasonic tomogram is displayed on the display surface. The surgeon observes the ultrasonic tomogram and diagnoses the affected area.
  • FIG. 5 shows a timing diagram, and the horizontal axis shows t.
  • the bias voltage power supply circuit 24 outputs a bias voltage Vbias as shown in FIG. 5A, and this bias voltage Vbias is applied to the signal line 18a by the bias voltage superimposing circuit 22.
  • the transmission circuit 41B in the second observation apparatus 3B outputs a pulse-shaped transmission signal as shown in FIG. 5B for a short transmission period Ts, and this transmission signal is biased by the bias voltage superimposing circuit 22 to the bias voltage Vbias. Is applied to the cMUT 11A in a superposed state to transmit ultrasonic waves.
  • the reception circuit 42B enters an operating state, and performs signal processing on the reception signal received by the cMUT 11A.
  • the cMUT 11A is mechanically driven to rotate in synchronization with the rotation of the motor 14, so that the direction in which ultrasonic waves are transmitted and received changes sequentially.
  • the receiving circuit 42B acquires image data for one frame when radial scanning is performed. An ultrasonic tomographic image generated from the image data for one frame is displayed on the monitor 46. The operation of transmitting and receiving ultrasonic waves by connecting the first ultrasonic probe 2A to the second observation device 3B for piezoelectric elements has been described.
  • the ultrasonic waves can be transmitted and received by connecting to the first observation apparatus 3A. Therefore, according to the present embodiment, even when an ultrasonic observation apparatus for piezoelectric elements (that is, the second observation apparatus 3B) is used, a bias voltage generation apparatus that can be used for ultrasonic diagnosis (or ultrasonic observation) and An ultrasonic diagnostic system can be provided.
  • an ultrasonic observation apparatus for piezoelectric elements that is, the second observation apparatus 3B
  • a bias voltage generation apparatus that can be used for ultrasonic diagnosis (or ultrasonic observation) and An ultrasonic diagnostic system can be provided.
  • FIG. 6 shows the configuration of an electronic scanning ultrasonic diagnostic system 1 ′ according to a first modification of the first embodiment.
  • This ultrasonic diagnostic system 1 ′ has a configuration in which a part of the ultrasonic diagnostic system 1 in FIG. 1 is changed as follows.
  • the first and second ultrasonic probes 2A ′ and 2B ′ in this modification do not have the motor 14, the flexible shaft 12, and the slip ring 13 in the first and second ultrasonic probes 2A and 2B of FIG.
  • the first ultrasonic probe 2A ′ includes a plurality of cMUTs 11-1, 11-2,..., 11-m arranged along the inner peripheral surface of the distal end portion 10A, instead of one cMUT 11A in FIG.
  • the multiplexer 51 can sequentially select the cMUTs 11-j connected to the signal line 18a by a selection signal applied to the multiplexer 51.
  • the control circuit 53 in the first observation device 3A ′ or the control circuit 53B in the second observation device 3B ′ outputs a selection signal, and the selection signal passes through the connector receiving terminal R1 ′ and the connector terminal P1 ′.
  • the signal is applied to the transducer selection terminal of the multiplexer 51 via a signal line 54 inserted into one ultrasonic probe 2A ′.
  • the control circuit 53 controls the operations of the transmission circuit 41 and the reception circuit 42 in the first observation apparatus 3A ′ in synchronization with the selection signal.
  • the control circuit 53B in the second observation apparatus 3B ′ When the second ultrasonic probe 2B ′ is connected to the second observation apparatus 3B ′, the control circuit 53B in the second observation apparatus 3B ′ outputs a selection signal, and the selection signal is output to the second ultrasonic apparatus.
  • the signal is applied to the transducer selection terminal of the multiplexer 51B through the signal line 54B inserted into the probe 2B '.
  • the control circuit 53B controls the operation of the transmission circuit 41B and the reception circuit 42B in the second observation device 3B ′ in synchronization with the selection signal.
  • the control circuit 53B outputs a selection signal in the same manner as when the second ultrasonic probe 2B ′ is connected.
  • the first observation device 3 ⁇ / b> A ′ and the second observation device 3 ⁇ / b> B ′ do not have the motor drive circuit 17.
  • the other configuration is the same as the configuration shown in FIG.
  • cMUTs used for transmission / reception are sequentially switched by the selection signal at the timing shown in FIG. That is, the timing of this modification is as shown in FIG. 7A to 7C are the same as FIGS. 5A to 5C.
  • the control circuit 53B in the second observation device 3B ′ selects the first cMUT 11-1 in the first transmission period Ts and the first reception period Tr which are the first as shown in FIG. 7D.
  • the first cMUT 11-1 is used for transmission / reception in the first transmission period Ts and the first reception period Tr.
  • the timing for outputting the selection signals Se1, Se2, etc. may be slightly preceded by the transmission period Ts (transmission signal).
  • the control circuit 53B selects the second cMUT 11-2 in the next second transmission period Ts and second reception period Tr.
  • the selection signal Se2 is output, and the second cMUT 11-2 is used for transmission / reception in the second transmission period Ts and the second reception period Tr.
  • the connector 9C is separated into two bodies at the base end side of the connector 9A, and the connector 9C on the ultrasonic probe 2A ′′ side, It is separated into a housing 60 containing a bias voltage generator 21A having a detachable connector receiver 60A.
  • the housing 60 has substantially the same configuration as that of the connector 9A except for the configuration on the base end side of the connector 9A shown in FIG.
  • the signal line 15 connected to the motor 14 is detachable between the connector terminal P8 on the connector 9C side and the connector receiving terminal R8 of the connector receiver 60A of the housing 60 that conducts when the connector terminal P8 comes into contact.
  • the signal line 18a connected to the cMUT 11A is connected to the connector terminal P9 on the connector 9C side on the ultrasonic probe 2A ′′ side and the connector receiving terminal of the connector receiver 60A of the housing 60 that is brought into conduction when the connector terminal P9 comes into contact. It becomes detachable with R9.
  • FIG. 8 shows the configuration of the bias voltage generating device 21B applied to the first embodiment, but the second modification can also be applied to the configuration of FIG.
  • FIG. 9 shows a configuration of a bias voltage generating device 21B of a third modification when applied to the electronic scanning method shown in FIG. 9 is the same as the configuration in which the signal line 15 is replaced with the signal line 54 in FIG.
  • the front end of the signal line 54 is connected to the multiplexer 51 via the connector terminal P8 that comes into contact with the connector receiving terminal R8, and the rear end of the signal line 54 comes into contact with the connector terminal P1 ′ to be conducted.
  • Is connected to the control circuit 53B in the second observation apparatus 3B.
  • the ultrasonic probe 2A ′′ and the second observation device 3B are also applied to the ultrasonic probe 2A ′′ equipped with the cMUT 11A or cMUT 11 ′ without the bias voltage generator.
  • the housing 60 with the bias voltage generator 21A built in between there is an effect that ultrasonic diagnosis or ultrasonic observation by ultrasonic transmission / reception becomes possible.
  • the ultrasonic diagnostic system of the present embodiment is configured to further include the first ultrasonic probe 2D shown in FIG. 10 in the ultrasonic diagnostic system 1 of FIG.
  • a charge level detection signal detection information
  • a gain variable amplifier that varies the gain for amplifying the received signal and a charge level notification unit that notifies the charge level are provided. It has a configuration equipped.
  • the first ultrasonic probe 2D is different from the bias voltage generator 21D provided in the connector 9A (for example, shown in FIG. 4) in the first ultrasonic probe 2A in FIG.
  • a connector 9D provided with
  • This bias voltage generator 21D is a preamplifier 71 and a charge level notification circuit 72 as a gain variable amplifier whose gain is variable by the charge level detection signal of the charge level detection circuit 26 in the bias voltage generator 21 shown in FIG. And two transmission / reception separation circuits 73A and 73B provided on the signal line 18a.
  • the preamplifier 71 is disposed between the two transmission / reception separation circuits 73A and 73B.
  • the reception signal is amplified with a gain of 1 or more, and the transmission / reception separation circuit 73B.
  • the data is output to the connector terminal P6 or P5 side serving as a transmission / reception terminal.
  • the two transmission / reception separation circuits 73A and 73B may have the same configuration as the transmission / reception separation circuit 43B of FIG. 4, for example.
  • the charge level detection circuit 26 of this embodiment has an appropriate bias voltage range in which the bias voltage output from the bias voltage power supply circuit 24 is set in advance.
  • the second comparison circuit 26a detects whether or not the lower limit value Vt1 is less than the second voltage value Vt2 that is lower than the lower limit value Vt1. It has a comparison circuit 26b. As shown in FIG. 11C, the first comparison circuit 26a outputs a signal corresponding to the H level (for example, a signal of level Vc) when it is equal to or higher than the lower limit value Vt1 as compared with the lower limit value Vt1.
  • a first detection signal of level Vd proportional to the bias voltage less than the lower limit value Vt1 is output.
  • the charge level detection circuit 26 determines whether the signal level applied to the connector terminal P4 is H or L, in other words, whether the signal level is at the H level for turning on the bias switch 25 (or the connector 9C). Is connected to the second observation device 3B).
  • the operation of the preamplifier 71 is controlled only when the signal level applied to the connector terminal P4 is H level (that is, when the connector 9C is connected to the second observation device 3B). When the signal level applied to the connector terminal P4 is L level, the operation of the preamplifier 71 is not controlled.
  • the bias voltage output from the bias voltage power supply circuit 24 is less than the preset lower limit value Vt1 of the appropriate bias voltage range, the sensitivity of the received signal received and generated by the cMUT 11A is in the proper bias voltage range. Also decreases. For this reason, in the present embodiment, the charge level detection circuit 26 uses the gain 1 in the appropriate bias voltage range when the bias voltage output from the bias voltage power supply circuit 24 is less than the lower limit value Vt1.
  • the voltage applied to the gain control terminal is changed so that the gain of the preamplifier 71 is greater than 1.
  • a decrease in sensitivity to the received signal when the bias voltage falls below an appropriate range is compensated by an increase in gain of the preamplifier 71.
  • the charge level detection circuit 26 outputs a charge level detection signal of the bias voltage power supply circuit 24 to the charge level notification circuit 72, and the charge level notification circuit 72 displays the charge level on a display, thereby displaying the user. Notify the charge level.
  • the charge level detection circuit 26 outputs a second detection signal to the charge level notification circuit 72 when the bias voltage output from the bias voltage power supply circuit 24 becomes equal to or lower than the second voltage value Vt2. .
  • the charge level notification circuit 72 displays the charge level and the content for prompting the charge and notifies the user of the content for prompting the charge.
  • the bias voltage generation circuit 49 of the first observation device 3A always outputs a bias voltage within an appropriate range. The sensitivity correction by the preamplifier 71 is not performed.
  • FIG. 11 is a timing chart for explaining the operation in this case.
  • the horizontal axis in FIG. 11 indicates time t, and it is assumed that the operation of the bias voltage generator 21D and the like starts at time t0.
  • the connector terminal P4 becomes H level after time t0, the bias switch 25 is turned on, and the charge level detection circuit 26 controls the operation of the preamplifier 71 and the charge level notification circuit 72. Perform the action.
  • the first comparison circuit 26a of the charge level detection circuit 26 is shown in FIG. )
  • the first detection signal having a constant level Vc is applied to the gain control terminal of the preamplifier 71.
  • the gain of the preamplifier 71 is set to 1 as shown in FIG.
  • the operation is substantially the same as that of the first embodiment in which the first ultrasonic probe 2A is connected to the second observation apparatus 3B.
  • the charge level notification circuit 72 displays the charge level on a display to notify the charge level as shown in FIG.
  • the charge level of the bias voltage power supply circuit 24 decreases and the bias voltage output from the bias voltage power supply circuit 24 falls below the lower limit value Vt1 of the bias voltage in the proper range (time t1)
  • the first comparison is made.
  • the circuit 26a applies (outputs) the first detection signal of the level Vd, which changes in proportion to the rate of decrease from the lower limit value Vt1, to the gain control terminal of the preamplifier 71.
  • the preamplifier 71 is in an operating state in which the received signal is amplified with a gain that is increased (greater than 1) in proportion to the amount of change from the constant level Vc.
  • the second comparison circuit 26b when the bias voltage output from the bias voltage power supply circuit 24 decreases and becomes equal to or lower than the second voltage value Vt2 (time t2), the second comparison circuit 26b generates a second voltage as shown in FIG. 2 detection signal (for example, H level) is output to the charge level notification circuit 72.
  • the charge level notification circuit 72 displays a warning on the display that the charge level of the bias voltage power supply circuit 24 has decreased to a level that requires charging, and prompts the user to charge. Notify That is, as shown in FIG. 11 (F), the charge level notification circuit 72 performs notification by warning display. From this warning display, the user recognizes that the battery is ready to be charged.
  • the preamplifier 71 does not operate and the charge level notification circuit 72 operates as described above. To do.
  • the bias voltage output from the bias voltage power supply circuit 24 is less than the lower limit value Vt1 of the bias voltage in an appropriate range. Even in such a case, it is possible to correct a decrease in sensitivity of the received signal.
  • the ultrasonic diagnostic system of the present embodiment has been described in the case where the ultrasonic probe 2D is further provided in the ultrasonic diagnostic system 1 of FIG. Also in the ultrasonic diagnostic system 1B shown in FIG. 6, it is possible to provide an electronic scanning type ultrasonic probe provided with the bias voltage generator 21D shown in FIG. FIG.
  • the ultrasonic diagnostic system according to the present modification includes an electronic scanning first ultrasonic probe 2E shown in FIG. 12 in the ultrasonic diagnostic system 1B shown in FIG.
  • the signal line 15 is replaced with the signal line 54, and the connector 9D is replaced with the connector 9E.
  • the front end of the signal line 54 is connected to the multiplexer 51, and the rear end is connected to the connector terminal P1 ′.
  • Others are the same as the structure demonstrated in FIG.
  • the present modification has substantially the same functions and effects as those of the second embodiment except that the ultrasonic scanning method is different from that of the second embodiment.
  • 10 shows a configuration in which a bias voltage generator 21D is provided in the connector 9D of the ultrasonic probe 2D.
  • the bias voltage generator 21D can be configured to be detachable from the connector of the ultrasonic probe 2D. Further, the same can be applied to the ultrasonic probe 2E of FIG.
  • the connector receiving terminal R6 that is an ultrasonic transmission / reception terminal of the first observation device 3A and the connector reception terminal R5 that is an ultrasonic transmission / reception terminal of the second observation device 3B are respectively attached and detached.
  • the flexible connector terminals are not common, and have been described in the case of the configuration having two connector terminals P6 and P5.
  • the connector terminals P5 and P6 may be combined into one connector terminal P56.
  • FIG. 13 shows a configuration example of an ultrasonic probe 2F which is a modification of the ultrasonic probe 2D of FIG.
  • a changeover switch 81 is provided on the signal line between the connector terminal 5 and the transmission / reception separating circuit 73b, and the connector terminal 5 is used as the connector terminal 56. It has a connector 9F.
  • the connector terminal 56 is connected to the common contact c of the changeover switch 81, and the signal line from the connection point of the transmission / reception separating circuit 73B, the bias voltage superimposing circuit 22 and the capacitor 23 to the connector terminal P6 (in FIG. 10) is contacted. a and contact b are connected to each other, and the changeover of the changeover switch 81 is controlled by the signal level of the connector terminal P4. Specifically, when the signal level applied to the connector terminal P4 is H level at which the bias switch 25 is turned on, that is, when the second observation device 3B is connected to the connector 9F, the common contact c is connected to the contact a. When the signal level applied to the connector terminal P4 is L level, that is, when the first observation device 3A is connected to the connector 9F, the common contact c is made conductive with the contact b.
  • the connector terminal 6 is not provided.
  • the connector receiving terminal R5 of the second observation device 3B shown in FIG. 1 or FIG. 4 or the like is detachably connected to the connector terminal P56, and the first terminal shown in FIG.
  • the connector receiving terminal R6 of the observation device 3A is detachably connected.
  • Other configurations are the same as those described in FIG. According to this modification, the common connector terminal 56 can be connected to each ultrasonic transmission / reception terminal of the first observation apparatus 3A and the second observation apparatus 3B. Therefore, the number of connector terminals can be reduced.
  • FIG. 13 is applied in the case of the configuration of FIG. 10, it can be similarly applied to the first embodiment, the second embodiment, and the like.
  • the structure in embodiment including the case of the modification mentioned above is not limited to the case of the structure shown in figure.
  • the ultrasonic diagnostic systems 1 and 1B described with reference to FIGS. 1 and 6 and the like also belong to the present invention in a configuration in which constituent elements are reduced as necessary.
  • the ultrasonic diagnostic system 1 can be configured with a configuration that does not include the second ultrasonic probe 2B.
  • the ultrasonic diagnostic system 1 shown in FIG. 1 the ultrasonic diagnostic system 1 can be configured with a configuration that does not include the first observation device 3B.
  • the bias voltage by the bias voltage power supply circuit 24 is superimposed on the signal line connected to each c-MUT 11-j via the bias switch 25 (which is ON / OFF controlled by the switch control signal). You can do it.
  • embodiments configured by partially combining the above-described embodiments and modifications also belong to the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 バイアス電圧発生装置は、静電容量型振動子を用いて被検体との間で超音波の送受信を行うために送信信号を発生する送信回路と受信信号に対する処理を行う受信回路とを内蔵した超音波観測装置と共にその外部に配置されて使用され、静電容量型振動子に印加するバイアス電圧を生成するための充電可能な二次電池を備え、バイアス電圧を生成するバイアス電圧用電源回路と、超音波観測装置の外部に出力される送信信号と超音波観測装置の内部に入力される受信信号にバイアス電圧を重畳するバイアス電圧重畳部と、を備える。

Description

バイアス電圧発生装置及び超音波診断システム
 本発明は静電容量型振動子を用いて超音波観測を行うためのバイアス電圧発生装置及び超音波診断システムに関する。
 近年、体腔内に挿入部を挿入して、患部等に対して超音波を送受信する超音波プローブを備えた超音波診断システムが広く用いられるようになっている。 
 また、超音波を送受信する振動子として、圧電素子を用いた超音波プローブの他に、静電容量型振動子を用いた超音波プローブも採用されるようになっている。圧電素子を搭載した超音波プローブの場合、送信信号発生手段と受信信号処理手段とは超音波観測装置側に設けられる。
 静電容量型振動子を用いた場合には、圧電素子を用いた場合には不必要であった、高電圧の直流バイアス電圧を送信信号と受信信号に重畳することが必要になる。このため、静電容量型振動子を搭載した超音波プローブと共に使用される超音波観測装置は、圧電素子用の超音波観測装置の場合の構成において、さらに直流バイアス電圧を発生する直流バイアス電圧発生回路を内蔵する。 
 これに対して、日本国特開2007-97760号公報の従来例には、半導体基板に静電容量型振動子を形成すると共に、直流バイアス電圧を発生する直流バイアス電圧手段を設け、さらに送信信号(駆動信号)を発生する送信信号発生手段を内蔵した超音波プローブ装置が開示され、この装置を小型化できるようにしている。
 しかしながら、上記従来例は、圧電素子を搭載した超音波プローブを接続して(超音波診断に)使用する超音波観測装置に、接続できるようなコネクタを採用してもその超音波観測装置と共に使用することができない。つまり、従来例は、上記超音波プローブ装置専用の超音波観測装置が必要になる。
 従って、従来例は、圧電素子を用いた振動子を搭載した超音波プローブと共に使用される既存の超音波観測装置の他に、専用の超音波観察装置が必要になる欠点がある。 
 このため、圧電素子用の超音波観測装置を用いた場合にも超音波診断に利用できる等、広い適用性を有する装置が望まれる。 
 本発明は上述した点に鑑みてなされたもので、圧電素子用の超音波観測装置を用いても静電容量型振動子を搭載した超音波プローブによって超音波診断を行うことができるバイアス電圧発生装置及び超音波診断システムを提供することを目的とする。
 本発明の一態様に係るバイアス電圧発生装置は、静電容量型振動子を用いて被検体との間で超音波の送受信を行うために送信信号を発生する送信回路と受信信号に対する処理を行う受信回路とを内蔵した超音波観測装置と共に前記超音波観測装置の外部に配置されて使用されるバイアス電圧発生装置であって、前記静電容量型振動子に印加するバイアス電圧を生成するための充電可能な二次電池を備え、前記バイアス電圧を生成するバイアス電圧用電源回路と、前記超音波観測装置の外部に出力される前記送信信号と前記超音波観測装置の内部に入力される前記受信信号に前記バイアス電圧を重畳するバイアス電圧重畳部と、を備える。
 本発明の一態様に係る超音波診断システムは、静電容量型振動子を搭載した超音波プローブと、前記静電容量型振動子に超音波を発生させるための送信信号を発生する送信回路、超音波の受信により前記静電容量型振動子から出力される受信信号に対する信号処理を行う受信回路、及び前記送信信号と前記受信信号との分離を行う送受分離回路、を内蔵した超音波観測装置と、前記超音波プローブに内蔵又は着脱自在に接続され、前記静電容量型振動子に印加するバイアス信号を生成するための充電可能な二次電池を備え、前記バイアス電圧を生成するバイアス電圧用電源回路、及び前記超音波観測装置の外部に出力される前記送信信号と前記超音波観測装置の内部に入力される前記受信信号に前記バイアス電圧を重畳するバイアス電圧重畳部、を備えるバイアス電圧発生装置と、を備える。
図1は本発明の第1の実施形態の超音波診断システムの全体構成を示す図。 図2は静電容量型振動子を搭載した超音波プローブの内部に設けられたバイアス電圧発生装置をバイアス電圧充電器に接続して充電を行う構成を示す図。 図3は静電容量型振動子を搭載した超音波プローブを静電容量型振動子用の観測装置に接続して超音波の送受信を行う構成を示す図。 図4は静電容量型振動子を搭載した超音波プローブを圧電素子を搭載した超音波プローブ用の観測装置に接続して超音波の送受信を行う構成を示す図。 図5は第1の実施形態の動作を説明するタイミングを示す図。 図6は本発明の第1の実施形態の第1変形例の超音波診断システムの全体構成を示す図。 図7は第1変形例の動作を説明するタイミングを示す図。 図8は第1の実施形態の第2変形例におけるバイアス電圧発生装置等の構成を示す図。 図9は第1の実施形態の第3変形例におけるバイアス電圧発生装置等の構成を示す図。 図10は本発明の第2の実施形態を構成する第1の超音波プローブの主要部の構成を示す図。 図11は図10を用いた動作を説明するタイミング図。 図12は第2の実施形態の変形例の電子走査方式の第1の超音波プローブの主要部の構成を示す図。 図13は図10の第1の超音波プローブの変形例の第1の超音波プローブの主要部の構成を示す図。
 以下、図面を参照して本発明の実施形態を説明する。 
(第1の実施形態)
 図1に示すように本発明の第1の実施形態の超音波診断システム1は、機械走査方式で、静電容量型振動子(c-MUTと略記)を搭載した第1の超音波プローブ2Aと、機械走査方式で、圧電素子を用いた振動子を搭載した第2の超音波プローブ2Bと、第1の超音波プローブ2Aが着脱自在に接続され、超音波断層像を生成する第1の超音波観測装置(第1の観測装置)3Aと、第1及び第2の超音波プローブ2A、2Bが着脱自在に接続可能で、超音波断層像を生成する第2の超音波観測装置(第2の観測装置)3Bと、第1の超音波プローブ2A内に設けられたバイアス電圧用電源回路24を充電するバイアス電圧充電器4とを有する。なお、図1においては、第1の超音波プローブ2Aを第2の観測装置3Bに接続した状態で示している。
 第1及び第2の超音波プローブ2I(I=A,B)は、それぞれ細長の挿入部6Iと、その後端(基端)に設けられた把持部(操作部)7Iと、把持部7Iから延出されたケーブル部8Iとを備え、ケーブル部8Iの端部にはコネクタ9Iが設けてある。 
 第1の超音波プローブ2Aにおける挿入部6Aの先端部10A内には、cMUT11Aが収納され、cMUT11Aは、例えば中空のフレキシブルシャフト12及びスリップリング13を介して把持部7A内のモータ14に連結されている。 
 また、モータ14は、ケーブル部8A内の信号線15の一端と接続され、この信号線15の他端はコネクタ9Aのコネクタ端子(接点)P1に接続され、コネクタ9Aが着脱自在に接続されるコネクタ受け16A又は16Bを介して観測装置3I内のモータ駆動回路17に接続される。
 モータ駆動回路17から出力されるモータ駆動信号がモータ14に印加されることにより、モータ14は回転駆動する。そして、モータ14の回転と共に、スリップリング13及びフレキシブルシャフト12を回転し、フレキシブルシャフト12の先端に取り付けたcMUT11Aを回転駆動することができるようにしている。 
 また、cMUT11Aの電極は、中空のフレキシブルシャフト12内を挿通された信号線18aの一端に接続され、フレキシブルシャフト12内を挿通された信号線18aは、スリップリング13のロータ側接点と接触するステータ側接点を経てスリップリング13外部の信号線18aと電気的に導通する。信号線18aは、コネクタ9A内部に配置したバイアス電圧発生装置21を構成するバイアス電圧重畳回路22及びコンデンサ23を介して、コネクタ端子P5に接続されると共に、バイアス電圧重畳回路22を介して、コネクタ端子P6に接続される。
 バイアス電圧発生装置21は、cMUT11Aに印加するバイアス電圧を充電可能で生成するバイアス電圧用電源回路24を備え、このバイアス電圧用電源回路24の入力端は充電用コネクタ端子P2と接続され、バイアス電圧用電源回路24の出力端はバイアス電圧の印加のON/OFFを行うスイッチとしてのバイアススイッチ25を介してバイアス電圧重畳回路22に接続される。 
 また、バイアス電圧用電源回路24は、バイアス電圧の充電レベルが充電レベル検出回路26により検出され、検出された充電レベルを出力する信号線は、充電レベル端子として機能するコネクタ端子P3に接続される。 
 また、上記バイアススイッチ25は、このバイアススイッチ25の2接点のON/OFFの制御を行うスイッチ制御端子が信号線を介してコネクタ端子P4に接続される。そして、このコネクタ端子P4に外部から、例えば2値のスイッチ制御信号を印加することにより、バイアススイッチ25の2接点のON/OFFの制御を行うことができるようにしている。つまり、コネクタ端子P4は、外部からバイアス電圧重畳回路22においてのバイアス電圧の印加のON/OFFの制御を行う制御端子を形成する。
 なお、cMUT11Aにおけるグラウンド側の電極に接続された信号線は、コネクタ端子P7のグラウンド端子に接続される。 
 一方、第2の超音波プローブ2Bは、挿入部6Bの先端部10B内に、cMUT11Aの代わりに圧電素子で形成された振動子11Bが収納され、振動子11Bは、例えば中空のフレキシブルシャフト12及びスリップリング13を介して把持部7B内のモータ14に連結されている。 
 また、振動子11Bに接続され、フレキシブルシャフト12内に挿通された信号線18bは、スリップリング13を介してその外部の信号線18bに接続され、この信号線18bはコネクタ9Bのコネクタ端子P5に接続される。第2の超音波プローブ2Bにおけるその他の構成は、第1の超音波プローブ2Aと同じであり、図1において同じ符号で示している。
 図2は、第1の超音波プローブ2Aが着脱自在に接続されるバイアス電圧充電器4の構成を示す。 
 バイアス電圧充電器4は、バイアス電圧用電源回路24を充電する充電電圧を発生する充電電圧発生回路31と、充電レベル検出回路26により検出される充電レベルをモニタして、充電電圧発生回路31による充電動作を制御する充電電圧制御回路32と、バイアススイッチのON/OFFを制御するスイッチ制御回路33とを有する。 
 また、バイアス電圧充電器4は、第1の超音波プローブ2Aのコネクタ端子P2,P3,P4がそれぞれ接続されるコネクタ受け端子R2,R3,R4を有するコネクタ受け16Cを有する。
 具体的には、コネクタ受け端子R2,R3,R4は、充電電圧発生回路31の出力端、充電レベル検出回路26の入力端、スイッチ制御回路33の出力端にそれぞれ接続されている。 
 また、充電電圧発生回路31は、商用のAC電源からバイアス電圧用電源回路24内の充電可能な二次電池24aを充電するためのDC電圧を発生するAC/DCコンバータ31aと、AC/DCコンバータ31aの出力端に設けられたスイッチ31bとを有する。そして、このDC電圧を二次電池24aに印加して二次電池24aを充電する。なお、二次電池24aは、例えば5V程度から10V程度のDC電圧を発生するリチウム電池や、鉛電池などにより構成される。
 バイアス電圧用電源回路24は、二次電池24aと、この二次電池24aのDC電圧により、100V以上のバイアス電圧に昇圧するDC/DCコンバータ24bとを有する。 
 また、二次電池24aのDC電圧は、充電レベル検出回路26に供給され、充電レベル検出回路26はこのDC電圧を動作電源に利用して、二次電池24aのDC電圧をモニタし、充電レベルを検出する。なお、充電レベル検出回路26は、DC/DCコンバータ24bから出力されるバイアス電圧のレベルから充電レベルを検出するようにしても良い。 
 充電レベル検出回路26により検出された充電レベルは、充電電圧制御回路32に入力され、充電電圧制御回路32は、充電レベルの電圧と、基準となる電圧32aとを比較することにより、充電完了状態に達したか否かを判定する。
 そして、充電電圧制御回路32は、充電レベルの電圧が、基準となる電圧32aに達した場合に、スイッチ31bをOFFにして、充電動作を終了させる制御を行う。なお、充電完了の際に図示しないLEDを点灯又は点灯状態のLEDを消灯させる等して、充電完了状態をユーザに告知するようにしても良い。また、後述するように充電レベル検出回路26に充電レベル通知回路72を接続して、充電レベルをユーザに通知することができるようにしても良い。 
 また、スイッチ制御回路33は、バイアススイッチ25をOFFとなるように制御するスイッチ制御信号を出力することが(手動操作などで)できるように切替設定が可能なスイッチ33aと、このスイッチ33aに接続された抵抗Rb,Rcとから構成される。
 本実施形態においては、抵抗Rcを介してコネクタ受け端子R4をローレベル(Lレベル)に設定することにより、コネクタ受け端子R4が接続されるコネクタ端子P4を介してバイアススイッチ25をOFFにする。なお、バイアススイッチ25は、バイアス制御端子に印加される電圧が、例えばローレベルであるとOFF,ハイレベル(Hレベル)であるとONするスイッチである。 
 また、図2に示すように送信信号と受信信号とにバイアス電圧を重畳するバイアス電圧重畳部としてのバイアス電圧重畳回路22は、例えばバイアススイッチ25に直列に接続される抵抗Raを用いて、信号線18aの接続点Pcにバイアス電圧を重畳するように構成される。 
 図3は第1の超音波プローブ2Aを第1の観測装置3Aに接続した状態の主要部の構成を示す。
 第1の観測装置3Aは、cMUT11Aを用いて被検体との間で超音波の送受信を行うために送信信号を発生する送信信号発生部としての送信回路41と、cMUT11Aで受信した受信信号に対する処理を行う受信回路42と、送信信号と受信信号に重畳するためのバイアス電圧を発生するバイアス電圧発生回路49とを有する。バイアス電圧発生回路49で発生したバイアス電圧は、信号線49aを介して送信信号と受信信号を送受信するための信号線44との接続点Pにおいて、送信信号又は受信信号に重畳される。バイアス電圧発生回路49によるバイアス電圧の発生と、接続点Pでのバイアス電圧の重畳とを含めた機能をバイアス電圧回路と定義しても良い。 
 また、第1の観測装置3Aは、送信信号と受信信号を送受信するための信号線44の途中にコンデンサ45を介挿し、信号線44に重畳されたバイアス電圧が送受分離回路43と共に送信回路41と、受信回路42に入力されるのを保護している。なお、送受分離回路43は、共通の信号線44を用いて送信信号と受信信号とを分離する。この送受分離回路43は、図4に示す送受分離回路43Bと同じ構成である。 
 信号線44は、コネクタ受け端子R6を介して、コネクタ端子P6に接続され、コネクタ受け端子R7は、コネクタ端子P7に接続される。また、受信回路42により生成された超音波断層像の映像信号は、モニタ46に出力され、モニタ46の表示面にはcMUT11Aによる超音波の送受により生成された被検体の超音波断層像が表示される。
 また、第1の観測装置3Aに設けたスイッチ制御回路47は、コネクタ受け端子R4を介して、コネクタ端子P4に接続される。このスイッチ制御回路47は、図2に示したスイッチ制御回路33と同じ構成としても良い。つまり、図3に示すようにスイッチ制御回路47は、バイアススイッチ25をOFFにするスイッチ制御信号を出力するように設定される。 
 そして、この場合には、コネクタ9A内のバイアス電圧用電源回路24によるバイアス電圧は超音波の送受信には使用されない状態となる。 
 図3の構成の場合、第1の観測装置3Aは、送信信号に重畳されたバイアス電圧と共に送信信号をコネクタ9A側に出力する。そして、cMUT11Aには、バイアス電圧が重畳された送信信号が印加され、超音波を送信する。cMUT11Aは、モータ14により回転駆動されるため、図1に示すように先端部10Aの外周面が接触している被検体48側に超音波を送信する。
 被検体48側に送信された超音波は、音響インピーダンスが変化している部分で反射され、その一部がcMUT11Aで受信され、電気信号に変換される。この場合、cMUT11Aに所定のバイアス電圧を印加しているので、効率良く変換した受信信号を生成することができる。 
 cMUT11Aで受信した受信信号は、第1の観測装置3A内のバイアス電圧発生回路49で発生したバイアス電圧が重畳された状態でコネクタ9Aから第1の観測装置3A内に入力される。そして、受信信号は、コンデンサ45、送受分離回路43を経て、受信回路42に入力し、受信回路42により映像信号が生成され、映像信号がモニタ46に入力されることによりモニタ46の表示面に超音波断層像が表示される。 
 図4は第1の超音波プローブ2Aを第2の観測装置3Bに接続した状態の主要部の構成を示す。
 第2の観測装置3Bは、超音波プローブ2Bが接続された場合には、圧電素子の振動子11Bを用いて被検体との間で超音波の送受信を行うために送信信号を発生する送信回路41Bと、振動子11Bで受信した受信信号に対する処理を行う受信回路42Bと、第2の観測装置3B内において共通の信号線44bを用いて送信する送信信号と受信信号とを分離する送受分離回路43Bとを有する。本実施形態においては、図4に示すように超音波プローブ2Aが接続された場合には、送信回路41BはcMUT11Aに対して送信信号を生成し、受信回路42BはcMUT11Aで受信した受信信号に対する信号処理を行う。また、送受分離回路43Bは送信信号と受信信号とを分離する。 
 送受分離回路43Bは、図4に示すように信号線44bの分岐点から受信回路42Bの入力端側に延出される信号線44b′中に配置されたダイオードブリッジD1~D4と、ダイオードD1,D3のアノードを電源端Vddに接続する抵抗Reと、ダイオードD2,D4のカソードを電源端Vssに接続する抵抗Rfとから構成される。ダイオードブリッジD1~D4は、受信信号のように微弱な信号(例えば1Vpp以下の信号)の場合にはONとなり、受信回路42Bに入力されるが、送信信号(例えば100Vpp程度)のように過大な信号の場合にはダイオードD1又はD2がONし、それによってダイオードD3又はD4をOFFにして、受信回路42Bに過大な信号が印加されることを防止する。
 なお、日本国特開2011-229630号公報に記載のようにダイオードD1,D2を逆回復時間(リカバリー時間)が送信信号の周期に比較して短く、かつダイオードD3,D4が受信信号の周期に比較して長い特性のものを用いるようにしても良い。 
 この他に、日本国特開2010-201163号公報の図2に開示されているようにダイオードブリッジD1~D4と、送信時と受信時に負電源と正電源とを切り替えるスイッチSW1,SW2を用いて構成にし、送信時にはダイオードブリッジD1~D4を非導通状態にして、高圧の送信信号が受信回路42Bに入力されないように保護し、受信時にはダイオードブリッジD1~D4を導通状態にして受信信号が受信回路42Bに入力されるようにしても良い。
 本実施形態においては、上記のように送信回路41Bと受信回路42Bは、cMUT11Aに対しても送信信号を生成する送信回路と、受信信号に対する信号処理を行う受信回路として(兼用して)使用できるようにしている。 
 また、第2の観測装置3Bのコネクタ受け16Bは、コネクタ端子P1,P4,P5,P7にそれぞれ接続されるコネクタ受け端子R1,R4,R5,R7を有する。 
 また、受信回路42Bにより生成された超音波断層像の映像信号は、モニタ46に出力され、モニタ46の表示面には振動子11B又はcMUT11Aによる超音波の送受により生成された被検体の超音波断層像が表示される。 
 また、第2の観測装置3Bに設けたスイッチ制御回路47Bは、コネクタ受け端子R4を介して、コネクタ端子P4に接続される。 
 このスイッチ制御回路47Bは、図2に示したスイッチ制御回路33と同じ構成であるが、スイッチ33aはプルアップ抵抗Rbを介して電源端Vddに接続され、コネクタ受け端子R4及びコネクタ端子P4にはHレベルのスイッチ制御信号が印加されるように設定される。
 つまり、図4に示すようにスイッチ制御回路47Bは、バイアススイッチ25をONにするように制御する。 
 そして、この場合には、送信回路41Bからの送信信号は、送受分離回路43Bを経てコネクタ9A内に送信され、コネクタ9A内のコンデンサ23を経た後のバイアス電圧重畳回路22において、コネクタ9A内に設けたバイアス電圧用電源回路24によるバイアス電圧が重畳されてcMUT11Aに印加される。 
 また、cMUT11Aにより超音波を受信した受信信号にもコネクタ9A内に設けたバイアス電圧用電源回路24によるバイアス電圧が重畳されており、この受信信号はコンデンサ23においてバイアス電圧がカットされた後、第2の観測装置3B内入力する。第2の観測装置3B内において、受信信号は送受分離回路43Bを経て受信回路42Bに入力され、受信回路42Bは受信信号に対する信号処理を行い映像信号を生成してモニタ46に出力する。
 この様な構成の超音波診断システム1は、静電容量型振動子としてのcMUT11Aを搭載した超音波プローブとしての第1の超音波プローブ2Aと、前記静電容量型振動子に超音波を発生させるための送信信号を発生する送信回路41B、超音波の受信により前記静電容量型振動子から出力される受信信号に対する信号処理を行う受信回路42B、及び前記送信信号と前記受信信号との分離を行う送受分離回路43B、を内蔵した超音波観測装置としての第2の観測装置3Bと、前記第2の観測装置3Bの外部の前記超音波プローブに内蔵され、前記静電容量型振動子に印加するバイアス信号を生成するための充電可能な二次電池24aを備え、前記バイアス電圧を生成するバイアス電圧用電源回路24及び前記超音波観測装置の外部に出力される前記送信信号と前記超音波観測装置の内部に入力される前記受信信号に前記バイアス電圧を重畳するバイアス電圧重畳部としてのバイアス電圧重畳回路22、を備えるバイアス電圧発生装置21と、を備えることを特徴とする。
 また、第1の超音波プローブ2A内に設けたバイアス電圧発生装置21は、静電容量型振動子としてのcMUT11Aを用いて被検体との間で超音波の送受信を行うために送信信号を発生する送信回路41Bと受信信号に対する処理を行う受信回路42とを内蔵した超音波観測装置としての第2の観測装置3Bと共に前記第2の観測装置3Bの外部に配置されて使用されるバイアス電圧発生装置21であって、前記静電容量型振動子に印加するバイアス電圧を生成するための充電可能な二次電池24aを備え、前記バイアス電圧を生成するバイアス電圧用電源回路24と、前記超音波観測装置から出力される前記送信信号と前記超音波観測装置に入力される前記受信信号に前記バイアス電圧を重畳するバイアス電圧重畳部としてのバイアス電圧重畳回路22と、を備えることを特徴とする。
 なお、上述した構成においては、バイアス電圧発生装置21は、cMUT11Aを搭載した第1の超音波プローブ2Aの内部に配置された構成を示しているが、後述する図8の構成においてはcMUT11Aを搭載した第1の超音波プローブ2A″の外部で、この第1の超音波プローブ2A″に着脱自在となる構成となる。 
 次に本実施形態の動作を説明する。第1の超音波プローブ2Aを用いて超音波診断を行う前に、図2に示すようにバイアス電圧発生装置21のバイアス電圧用電源回路24をバイアス電圧充電器4に接続して二次電池24aを充電された状態にする。 
 本実施形態においては、バイアス電圧発生装置21は、第1の超音波プローブ2A内に設けているので、図2に示すように第1の超音波プローブ2Aをバイアス電圧充電器4に接続して、第1の超音波プローブ2A内に設けたバイアス電圧発生装置21のバイアス電圧用電源回路24の二次電池24aを充電する。
 図2に示すように接続してバイアス電圧用電源回路24を充電し、LEDの点灯などにより充電を完了させることができる。このように充電が完了後に、第1の超音波プローブ2Aを第2の観測装置3Bに接続して超音波の送受信を行い、超音波診断を行うことができる。具体的には図1又は図4に示すように第1の超音波プローブ2Aを第2の観測装置3Bに接続する。 
 この場合、送信回路41Bの送信信号は、送受分離回路43Bを経て、コネクタ9A内のコンデンサ23を通り、バイアス電圧重畳回路22において、バイアス電圧用電源回路24から出力されるバイアス電圧が重畳されて、cMUT11Aの電極に印加される。
 cMUT11Aは、空洞に対向する両側の電極間にバイアス電圧が重畳された状態で送信信号が印加されることにより、空洞に対向する一方の膜が振動して、被検体48(図1参照)側に超音波を送信する。また、被検体48側で反射され、cMUT11Aで受信した受信信号は、バイアス電圧用電源回路24からのバイアス電圧が重畳された状態でコンデンサ23を経て第2の観測装置3B内に入力する。 
 第2の観測装置3B内において受信信号は、送受分離回路43Bを経て受信回路42Bに入力され、受信回路42Bは受信信号に対する信号処理を行い映像信号を生成してモニタ46に出力し、モニタ46の表示面には超音波断層像が表示される。術者は、超音波断層像を観察して、患部等を診断する。
 図5は、タイミング図を示し、横軸はtを示す。第1の超音波プローブ2Aを第2の観測装置3Bに接続して、バイアス電圧発生装置21の図示しない電源スイッチをONすると共に、第2の観測装置3Bの図示しない電源スイッチをONすることにより、バイアス電圧用電源回路24は、図5(A)に示すようなバイアス電圧Vbiasを出力し、このバイアス電圧Vbiasはバイアス電圧重畳回路22により信号線18aに印加される。 
 また、第2の観測装置3B内の送信回路41Bは、図5(B)に示すようなパルス状の送信信号を短い送信期間Ts出力し、この送信信号はバイアス電圧重畳回路22によりバイアス電圧Vbiasが重畳された状態でcMUT11Aに印加され、超音波を送信する。
 図5(C)に示すよう送信期間Ts後の受信期間Trになると、受信回路42Bが動作状態となり、cMUT11Aで受信した受信信号に対する信号処理を行う。 
 なお、cMUT11Aは、モータ14の回転に同期して機械的に回転駆動されるため、超音波が送受信される方向が順次変化する。このように送信と受信を繰り返すことにより、受信回路42Bは、ラジアル走査した場合の1フレーム分の画像データを取得する。そして、1フレーム分の画像データから生成される超音波断層像がモニタ46で表示される。 
 第1の超音波プローブ2Aを、圧電素子用の第2の観測装置3Bに接続して、超音波を送受信する動作を説明したが、図3において説明したように第1の超音波プローブ2Aを、第1の観測装置3Aに接続して、超音波を送受信することもできる。 
 従って、本実施形態によれば、圧電素子用の超音波観測装置(つまり、第2の観測装置3B)を用いた場合にも超音波診断(又は超音波観測)に利用できるバイアス電圧発生装置及び超音波診断システムを提供できる。
 上述の構成は、機械走査方式の超音波診断システム1に関して説明したが、以下のように電子走査方式の超音波診断システム1′を構成することもできる。 
 図6は、第1の実施形態の第1変形例の電子走査方式の超音波診断システム1′の構成を示す。この超音波診断システム1′は、図1の超音波診断システム1において以下のように一部を変更した構成にしている。 
 本変形例における第1及び第2の超音波プローブ2A′,2B′は、図1の第1及び第2の超音波プローブ2A,2Bにおいてモータ14,フレキシブルシャフト12,スリップリング13を有しない。また、第1の超音波プローブ2A′は、図1における1つのcMUT11Aの代わりに、先端部10Aの内周面に沿って配置された複数のcMUT11―1,11―2,…,11-mを有するCMUTアレイ11′を有し、各cMUT11―j(j=1,2,…,m)(の電極)は、その近傍に配置された振動子選択手段としてのマルチプレクサ51に接続されている。
 マルチプレクサ51は、このマルチプレクサ51に印加される選択信号により、信号線18aと接続されるcMUT11―jを順次選択することができるようになっている。 
 第1の観測装置3A′内の制御回路53又は第2の観測装置3B′内の制御回路53Bは選択信号を出力し、該選択信号は、コネクタ受け端子R1′、コネクタ端子P1′を経て第1の超音波プローブ2A′内に挿通された信号線54を経てマルチプレクサ51の振動子選択端子に印加される。 
 また制御回路53は、選択信号に同期して第1の観測装置3A′内の送信回路41,受信回路42の動作を制御する。
 また、第2の超音波プローブ2B′は、図1の1つの圧電素子により構成される振動子11Bの代わりに、先端部10Bの内周面に沿って配置された複数の振動子11B―1,11B―2,…,11B-mを有するcMUTアレイ11B′を有し、各振動子11B―j(j=1,2,…,m)(の電極)は、その近傍に配置された振動子選択手段としてのマルチプレクサ51Bに接続されている。マルチプレクサ51Bは、このマルチプレクサ51Bに印加される選択信号により、信号線18bと接続される振動子11B―jを順次選択することができるようになっている。 
 第2の超音波プローブ2B′を第2の観測装置3B′に接続した場合、第2の観測装置3B′内の制御回路53Bは選択信号を出力し、該選択信号を、第2の超音波プローブ2B′内に挿通された信号線54Bを経てマルチプレクサ51Bの振動子選択端子に印加する。
 また、制御回路53Bは、選択信号に同期して第2の観測装置3B′内の送信回路41B,受信回路42Bの動作を制御する。 
 また、第1の超音波プローブ2A′を第2の観測装置3B′に接続した場合、第2の超音波プローブ2B′を接続した場合と同様に、制御回路53Bは、選択信号を出力する。なお、図6に示すように第1の観測装置3A′及び第2の観測装置3B′は、モータ駆動回路17を有しない。その他の構成は、図1に示した構成と同様の構成である。 
 本変形例の動作は、図5に示すタイミングにおいて、さらに選択信号により、送受信に使用されるcMUTが順次切り替わるものとなる。つまり、本変形例のタイミングは図7に示すようになる。なお、図7(A)-図7(C)は、図5(A)-図5(C)と同様である。
 第2の観測装置3B′内の制御回路53Bは、図7(D)に示すように最初となる第1の送信期間Ts及び第1の受信期間Trにおいては、第1のcMUT11-1を選択する選択信号Se1を出力し、第1のcMUT11-1は、第1の送信期間Ts及び第1の受信期間Trにおいて送受信に使用される。なお、図7に示すように選択信号Se1、Se2等を出力するタイミングを送信期間Ts(送信信号)より僅かに先行させても良い。 
 制御回路53Bは、第1の送信期間Ts及び第1の受信期間Trが終了すると、次となる第2の送信期間Ts及び第2の受信期間Trにおいては、第2のcMUT11-2を選択する選択信号Se2を出力し、第2のcMUT11-2は、第2の送信期間Ts及び第2の受信期間Trにおいて送受信に使用される。
 このような動作が繰り返され、受信回路42Bは、電子走査(電子ラジアル走査)した場合の1フレーム分の画像データを取得する。そして、1フレーム分の画像データから生成される超音波断層像がモニタ46で表示される。本変形例は、第1の実施形態と同様の効果を有する。 
 なお、上述した第1の実施形態においては、バイアス電圧発生装置21を第1の超音波プローブ2Aの内部に設けた構成を示したが、図8に示すように第1の超音波プローブ2Aが着脱自在となる筐体60内部にバイアス電圧発生装置21Aを設ける構成にしても良い。 
 図8に示す第2変形例においては、例えば図4に示したコネクタ9Aにおいて、このコネクタ9Aの基端側で2体に分離して超音波プローブ2A″側のコネクタ9Cと、このコネクタ9Cが着脱自在のコネクタ受け60Aを有するバイアス電圧発生装置21Aを内蔵した筐体60に分離している。
 この筐体60は、図4に示したコネクタ9Aにおいて、その基端側の構成以外は、実質的にコネクタ9Aと同じ構成となる。 
 つまり、モータ14に接続される信号線15は、コネクタ9C側のコネクタ端子P8と、該コネクタ端子P8が接触することにより導通する筐体60のコネクタ受け60Aのコネクタ受け端子R8とで着脱自在となる。 
 また、cMUT11Aに接続される信号線18aは、超音波プローブ2A″側のコネクタ9C側のコネクタ端子P9と、該コネクタ端子P9が接触することにより導通する筐体60のコネクタ受け60Aのコネクタ受け端子R9とで着脱自在となる。
 なお、筐体60におけるコネクタ端子P1-P7が第1又は第2の観測装置3A、3Bのコネクタ受け16A,16Bや、バイアス電圧充電器4に接続される構造は、第1の実施形態で説明した構造と同じである。 
 なお、図8は、第1の実施形態に適用した場合のバイアス電圧発生装置21Bの場合の構成を示しているが、図6の構成に対しても第2変形例を適用することもできる。図9は、図6に示した電子走査方式の場合に適用した場合の第3変形例のバイアス電圧発生装置21Bの構成を示している。 
 図9は、図8において信号線15を信号線54に置換した構成と同じとなる。なお信号線54の先端は、コネクタ受け端子R8と接触して導通するコネクタ端子P8を経てマルチプレクサ51に接続され、信号線54の後端はコネクタ端子P1′と接触して導通するコネクタ受け端子R1′を経て、第2の観測装置3B内の制御回路53Bに接続される。 
 図8又は図9の構成の場合には、バイアス電圧発生装置を有しないcMUT11A又はcMUT11′を搭載した超音波プローブ2A″に対しても、該超音波プローブ2A″と第2の観測装置3Bとの間にバイアス電圧発生装置21Aを内蔵した筐体60を用いることにより、超音波の送受信による超音波診断又は超音波観測が可能になる効果を有する。
(第2の実施形態)
 次に本発明の第2の実施形態を説明する。本実施形態の超音波診断システムは、図1の超音波診断システム1において、さらに図10に示す第1の超音波プローブ2Dを備えた構成となる。本実施形態においては、充電レベル検出回路26の充電レベルの検出信号(検出情報)に基づいて、受信信号を増幅するゲインを可変するゲイン可変アンプと、充電レベルを通知する充電レベル通知部とを備えた構成にしている。 
 この第1の超音波プローブ2Dは、図1における第1の超音波プローブ2Aにおいて、そのコネクタ9A内部に設けられた(例えば図4に示す)バイアス電圧発生装置21とは異なるバイアス電圧発生装置21Dを設けたコネクタ9Dを有する。
 このバイアス電圧発生装置21Dは、図4に示すバイアス電圧発生装置21において、さらに充電レベル検出回路26の充電レベルの検出信号によりゲインが可変されるゲイン可変アンプとしてのプリアンプ71及び充電レベル通知回路72と、信号線18a上に設けた2つの送受分離回路73A,73Bとを設けた構成となっている。なお、プリアンプ71は、2つの送受分離回路73A,73Bの間に配置され、送受分離回路73Aを経て受信信号が入力された場合に、その受信信号をゲイン1以上で増幅し、送受分離回路73Bを経て、送受信端子となるコネクタ端子P6又はP5側に出力する。また、2つの送受分離回路73A,73Bは、例えば図4の送受分離回路43Bと同じ構成としても良い。
 本実施形態の充電レベル検出回路26は、第1の実施形態において説明した充電レベルの検出機能の他に、バイアス電圧用電源回路24から出力されるバイアス電圧が予め設定された適正なバイアス電圧範囲の下限値Vt1未満になったか否かを第1の比較回路26aを用いて検出すると共に、この下限値Vt1よりもさらに低い第2の電圧値Vt2以下になったか否かを検出する第2の比較回路26bを有する。なお、第1の比較回路26aは、図11(C)に示すように下限値Vt1と比較して下限値Vt1以上の場合にはHレベルに対応する信号(例えばレベルVcの信号)を出力すると共に、下限値Vt1未満となった場合には、下限値Vt1未満のバイアス電圧に比例したレベルVdの第1の検出信号を出力する。 
 また、この充電レベル検出回路26は、コネクタ端子P4に印加される信号レベルがH,Lのいずれであるか否か、換言するとバイアススイッチ25をONするHレベルで有るか否か(またはコネクタ9Cが第2の観測装置3Bに接続されているか否か)を判定する第3の比較回路26cを有する。
 そして、コネクタ端子P4に印加される信号レベルがHレベルの場合(つまり、コネクタ9Cに第2の観測装置3Bに接続されている場合)のみ、プリアンプ71の動作を制御する。コネクタ端子P4に印加される信号レベルがLレベルの場合には、プリアンプ71の動作の制御を行わない。 
 バイアス電圧用電源回路24から出力されるバイアス電圧が予め設定された適正なバイアス電圧範囲の下限値Vt1未満になると、cMUT11Aにより受信して生成する受信信号の感度が適正なバイアス電圧範囲の場合よりも低下する。 
 このため、本実施形態においては充電レベル検出回路26は、バイアス電圧用電源回路24から出力されるバイアス電圧が下限値Vt1未満になった場合には、適正なバイアス電圧範囲の場合のゲイン1よりも、プリアンプ71のゲインを1より大きくなるようにゲイン制御端子に印加する電圧を変化させる。そして、本実施形態は、バイアス電圧の適正な範囲以下に低下した場合の受信信号に対する感度低下を、プリアンプ71のゲイン増大で補うようにしている。
 また、充電レベル検出回路26は、バイアス電圧用電源回路24の充電レベルの検出信号を充電レベル通知回路72に出力し、充電レベル通知回路72は、充電レベルを表示器で表示することにより、ユーザに充電レベルを通知する。 
 また、充電レベル検出回路26は、バイアス電圧用電源回路24から出力されるバイアス電圧が第2の電圧値Vt2以下になった場合には、第2の検出信号を充電レベル通知回路72に出力する。充電レベル通知回路72は、第2の検出信号が入力されると、充電レベルの表示と共に、充電を促す内容を表示して、ユーザに充電を促す内容を通知する。 
 なお、本実施形態においては、コネクタ9Dが第1の観測装置3Aに接続された場合には、第1の観測装置3Aのバイアス電圧発生回路49は常時適正な範囲内のバイアス電圧を出力するため、プリアンプ71による感度補正を行わない構成にしている。
 その他の構成は、上述した第1の実施形態と同様である。次に本実施形態の動作を説明する。本実施形態は、第1の超音波プローブ2Aを用いた場合には、第1の実施形態と同様の動作となるためその説明を省略し、第1の超音波プローブ2Dを用いた場合の主要な動作を説明する。また、第1の超音波プローブ2Dを第2の観測装置3Bに接続して超音波の送受信を行う場合を説明する。 
 図11はこの場合における動作説明用のタイミング図を示す。図11における横軸は時間tを示し、バイアス電圧発生装置21D等の動作が時間t0において開始したとする。
 図11(A)に示すようにコネクタ端子P4は、時間t0以降、Hレベルとなり、バイアススイッチ25がONすると共に、充電レベル検出回路26は、プリアンプ71と充電レベル通知回路72の動作を制御する動作を行う。 
 バイアス電圧用電源回路24が図11(B)に示すように適正な範囲のバイアス電圧を出力している期間T1においては、充電レベル検出回路26の第1の比較回路26aは、図11(C)に示すように一定レベルVcの第1の検出信号をプリアンプ71のゲイン制御端に印加する。この状態においては、図11(D)に示すようにプリアンプ71のゲインは1に設定される。
 この状態においては、第1の超音波プローブ2Aが第2の観測装置3Bに接続された第1の実施形態の場合と実質的に同じ動作となる。
 また、充電レベル通知回路72は、図11(F)に示すように充電レベルを通知するために充電レベルを表示器で表示する。 
 バイアス電圧用電源回路24の充電レベルが低下し、バイアス電圧用電源回路24から出力されるバイアス電圧が適正な範囲のバイアス電圧の下限値Vt1未満になる(その時間t1)と、第1の比較回路26aは、図11(C)に示すように下限値Vt1からの低下の割合に比例して変化するレベルVdの第1の検出信号をプリアンプ71のゲイン制御端に印加(出力)する。 
 そして、プリアンプ71は、一定レベルVcからの変化量に比例して大きくなる(1より大きい)ゲインで受信信号を増幅する動作状態となる。
 さらにバイアス電圧用電源回路24から出力されるバイアス電圧が低下し、第2の電圧値Vt2以下になる(その時間t2)と、第2の比較回路26bが図11(E)に示すように第2の検出信号(例えばHレベル)を充電レベル通知回路72に出力する。 
 充電レベル通知回路72は第2の検出信号が入力されると、バイアス電圧用電源回路24の充電レベルが、充電を要する程度に低下したことを表示器で警告表示し、ユーザに充電を促すように通知する。つまり、図11(F)に示すように充電レベル通知回路72は、警告表示による通知を行う。この警告表示により、ユーザは、充電すべき状態となったことを認識する。 
 なお、第1の超音波プローブ2Dを第1の観測装置3Aに接続して超音波の送受信を行う場合には、プリアンプ71は動作しないで、上記の説明と同様に充電レベル通知回路72が動作する。
 このように動作する本実施形態によれば、第1の実施形態と同様の効果の他に、バイアス電圧用電源回路24から出力されるバイアス電圧が適正な範囲のバイアス電圧の下限値Vt1未満になった場合にも、受信信号の感度低下を補正することができる。 
 なお、本実施形態の超音波診断システムは、図1の超音波診断システム1において、さらに超音波プローブ2Dを設けた場合で説明した。図6に示した超音波診断システム1Bにおいても図10に示したバイアス電圧発生装置21Dを設けた電子走査方式の超音波プローブを設けることが可能となる。
 図12は第2の実施形態の変形例の超音波診断システムにおける電子走査方式の第1の超音波プローブ2Eの主要部の構成を示す。本変形例の超音波診断システムは、図6に示す超音波診断システム1Bにおいて、さらに図12に示す電子走査方式の第1の超音波プローブ2Eを備える。
 この電子走査方式の第1の超音波プローブ2Eは、図10の超音波プローブ2Dにおいて、信号線15を信号線54に置換し、コネクタ9Dをコネクタ9Eに置換している。この信号線54の先端は、マルチプレクサ51に接続され、後端はコネクタ端子P1′に接続される。その他は、図10において説明した構成と同様である。そして、本変形例は、第2の実施形態と超音波の走査方式が異なることを除けば、第2の実施形態とほぼ同様の作用効果を有する。 
 また、図10では、超音波プローブ2Dのコネクタ9D内に、バイアス電圧発生装置21Dを設けた構成で示しているが、図4の構成を図8のように変形したのと同様の変形により、バイアス電圧発生装置21Dを超音波プローブ2Dのコネクタが着脱自在となる構成にすることができる。また、図12の超音波プローブ2Eにおいても同様に適用することができる。
 なお、上述した実施形態等においては、第1の観測装置3Aの超音波送受端子となるコネクタ受け端子R6と、第2の観測装置3Bの超音波送受端子となるコネクタ受け端子R5とにそれぞれ着脱自在となるコネクタ端子は、共通ではなく、2つのコネクタ端子P6とP5となる構成の場合で説明した。これに対して、図13に示すように、切替スイッチ81を設けることにより、コネクタ端子P5、P6を共通化した1つのコネクタ端子P56にしても良い。図13は図10の超音波プローブ2Dの変形例の超音波プローブ2Fの構成例を示す。 
 この超音波プローブ2Fは、図10の超音波プローブ2Dのコネクタ9Dにおいて、コネクタ端子5と送受分離回路73bとの間に信号線上に切替スイッチ81を設けて、コネクタ端子5をコネクタ端子56とするコネクタ9Fを有する。
 また、コネクタ端子56を切替スイッチ81の共通接点cに接続し、送受分離回路73Bと、バイアス電圧重畳回路22とコンデンサ23との接続点から(図10における)コネクタ端子P6に至る信号線を接点aと接点bとにそれぞれ接続し、コネクタ端子P4の信号レベルによって切替スイッチ81の切替を制御する。 
 具体的には、コネクタ端子P4に印加される信号レベルがバイアススイッチ25をONするHレベル、つまり、コネクタ9Fに第2の観測装置3Bが接続される状態であると、共通接点cを接点aと導通させ、コネクタ端子P4に印加される信号レベルがLレベルである、つまり、コネクタ9Fに第1の観測装置3Aが接続される状態であると、共通接点cを接点bと導通させる。
 また、図13においてはコネクタ端子6を有しない。また、コネクタ端子P56には、図1又は図4等に示した第2の観測装置3Bのコネクタ受け端子R5が着脱自在に接続されると共に、、図1又は図3等に示した第1の観測装置3Aのコネクタ受け端子R6が着脱自在に接続される。 
 その他の構成は、図10等において説明した構成と同様である。本変形例によれば、共通化したコネクタ端子56を、第1の観測装置3A及び第2の観測装置3Bの各超音波送受信端子に接続することができる。従って、コネクタ端子数を削減できる。なお、図13は、図10の構成の場合に適用しているが、第1の実施形態及び第2の実施形態等にも同様に適用することができる。
 なお、上述した変形例の場合を含む実施形態における構成は、図示した構成の場合に限定されるものでない。また、図1,図6等において説明した超音波診断システム1,1Bにおいて、必要に応じて、構成要素を削減した構成の場合も本発明に属する。例えば、図1に示した超音波診断システム1において、第2の超音波プローブ2Bを有しない構成で超音波診断システム1を構成することもできる。 
 また、図1に示した超音波診断システム1において、第1の観測装置3Bを有しない構成で超音波診断システム1を構成することもできる。図1の構成の場合に述べたが、図6の構成においても、同様である。 
 また、上述した構成例においては、超音波プローブ2A′、2B′等、超音波プローブ内部にマルチプレクサ51及び51Bを設けた場合で説明したが、超音波プローブ内部に設ける代わりに観測装置3A′,3B′等の観測装置内部に設けるようにしても良い。この場合には、バイアス電圧用電源回路24によるバイアス電圧を(スイッチ制御信号でON/OFF制御される)バイアススイッチ25を介して各c-MUT11-jにそれぞれ接続される信号線に重畳する構成にすれば良い。 
 また、上述した実施形態及び変形例を部分的に組み合わせて構成される実施形態等も本発明に属する。
 本出願は、2012年11月16日に日本国に出願された特願2012―252427号を優先権主張の基礎として出願するものであり、上記の開示内容は、本明細書、請求の範囲、図面に引用されたものとする。

Claims (19)

  1.  静電容量型振動子を用いて被検体との間で超音波の送受信を行うために送信信号を発生する送信回路と受信信号に対する処理を行う受信回路とを内蔵した超音波観測装置と共に前記超音波観測装置の外部に配置されて使用されるバイアス電圧発生装置であって、
     前記静電容量型振動子に印加するバイアス電圧を生成するための充電可能な二次電池を備え、前記バイアス電圧を生成するバイアス電圧用電源回路と、
     前記超音波観測装置の外部に出力される前記送信信号と前記超音波観測装置の内部に入力される前記受信信号に前記バイアス電圧を重畳するバイアス電圧重畳部と、
     を備えることを特徴とするバイアス電圧発生装置。
  2.  前記バイアス電圧発生装置は、前記静電容量型振動子を搭載した超音波プローブ内に配置されることを特徴とする請求項1に記載のバイアス電圧発生装置。
  3.  前記バイアス電圧発生装置は、前記静電容量型振動子を搭載した超音波プローブと前記超音波観測装置とに着脱自在に接続されることを特徴とする請求項1に記載のバイアス電圧発生装置。
  4.  前記バイアス電圧発生装置は、さらに前記バイアス電圧用電源回路により発生した前記バイアス電圧の前記バイアス電圧重畳部への重畳のON/OFFを行うスイッチと、前記スイッチのON/OFFの制御を、外部から行う制御端子とを備えることを特徴とする請求項1に記載のバイアス電圧発生装置。
  5.  前記バイアス電圧発生装置は、さらに前記バイアス電圧用電源回路を構成する前記二次電池の充電レベルを検出する充電レベル検出部と、
     前記充電レベル検出部により検出した充電レベル情報を通知する充電レベル通知部と、
     を備えることを特徴とする請求項4に記載のバイアス電圧発生装置。
  6.  前記バイアス電圧発生装置は、さらに前記充電レベル検出部により検出した充電レベル情報に基づいて、前記受信信号のゲインを増大するゲイン可変アンプを備えることを特徴とする請求項5に記載のバイアス電圧発生装置。
  7.  前記バイアス電圧用電源回路は、前記二次電池と、前記二次電池の直流電圧を昇圧して前記バイアス電圧を生成するDC/DCコンバータとを有することを特徴とする請求項5に記載のバイアス電圧発生装置。
  8.  前記バイアス電圧発生装置は、前記プローブにおける前記超音波観測装置に着脱自在に接続されるコネクタ内に配置されることを特徴とする請求項2に記載のバイアス電圧発生装置。
  9.  前記バイアス電圧発生装置は、前記超音波観測装置のコネクタ受けの複数のコネクタ受け端子に着脱自在に接続される複数からなる第1のコネクタ端子を有すると共に、前記二次電池を充電する充電電圧を発生する充電器のコネクタ受けのコネクタ受け端子に着脱自在に接続される複数からなる第2のコネクタ端子を有することを特徴とする請求項2に記載のバイアス電圧発生装置。
  10.  前記バイアス電圧発生装置は、更に該バイアス電圧発生装置に着脱自在に接続され、前記二次電池を充電する充電電圧を発生する充電器を有し、前記充電器は、該充電器が前記バイアス電圧発生装置に接続された場合、前記制御端子を介して前記スイッチをOFFに設定するスイッチ制御回路を有することを特徴とする請求項4に記載のバイアス電圧発生装置。
  11.  静電容量型振動子を搭載した超音波プローブと、
     前記静電容量型振動子に超音波を発生させるための送信信号を発生する送信回路、超音波の受信により前記静電容量型振動子から出力される受信信号に対する信号処理を行う受信回路、及び前記送信信号と前記受信信号との分離を行う送受分離回路を内蔵した超音波観測装置と、
     前記超音波プローブに内蔵又は着脱自在に接続され、前記静電容量型振動子に印加するバイアス信号を生成するための充電可能な二次電池を備え、前記バイアス電圧を生成するバイアス電圧用電源回路、及び前記超音波観測装置の外部に出力される前記送信信号と前記超音波観測装置の内部に入力される前記受信信号に前記バイアス電圧を重畳するバイアス電圧重畳部、を備えるバイアス電圧発生装置と、
     を備えることを特徴とする超音波診断システム。
  12.  前記バイアス電圧発生装置は、さらに前記バイアス電圧用電源回路により発生した前記バイアス電圧の前記バイアス電圧重畳部への重畳のON/OFFを行うスイッチと、前記スイッチのON/OFFの制御を、前記バイアス電圧発生装置の外部から行う制御端子とを備えることを特徴とする請求項11に記載の超音波診断システム。
  13.  前記バイアス電圧発生装置は、さらに前記バイアス電圧用電源回路の充電レベルを検出する充電レベル検出部と、
     前記充電レベル検出部により検出した充電レベル情報を通知する充電レベル通知部と、
     を備えることを特徴とする請求項12に記載の超音波診断システム。
  14.  前記バイアス電圧発生装置は、さらに前記充電レベル検出部により検出した充電レベル情報に基づいて、前記受信信号のゲインを増大するゲイン可変アンプを備えることを特徴とする請求項13に記載の超音波診断システム。
  15.  更に、前記バイアス電圧発生装置により発生された前記バイアス電圧が重畳された受信信号が入力される前記超音波観測装置の他に、
     前記スイッチに対して、前記バイアス電圧の重畳をOFFにするスイッチ制御信号を発生するスイッチ制御回路と、前記静電容量型振動子に超音波を発生させるための第2の送信信号を発生する第2の送信回路と、前記静電容量型振動子から出力される受信信号に対する信号処理を行う第2の受信回路と、前記第2の送信回路による送信信号及び前記第2の受信回路に入力される前記受信信号に重畳させる第2のバイアス電圧を発生し、かつ重畳させるバイアス電圧回路とを内蔵した第2の超音波観測装置を有することを特徴とする請求項12に記載の超音波診断システム。
  16.  前記バイアス電圧用電源回路は、前記二次電池と、前記二次電池の直流電圧を昇圧して前記バイアス電圧を生成するDC/DCコンバータとを有することを特徴とする請求項11に記載の超音波診断システム。
  17.  更に前記バイアス電圧発生装置に着脱自在に接続され、前記二次電池を充電する充電電圧を発生する充電器を有し、前記充電器は、該充電器が前記バイアス電圧発生装置に接続された場合、前記制御端子を介して前記スイッチをOFFに設定するスイッチ制御回路を有することを特徴とする請求項12に記載の超音波診断システム。
  18.  前記超音波プローブは、前記静電容量型振動子による超音波の走査を機械的に行う機械走査方式の超音波プローブにより構成されることを特徴とする請求項12に記載の超音波診断システム。
  19.  前記超音波プローブは、前記静電容量型振動子として複数からなる静電容量型振動子アレイを有し、前記静電容量型振動子アレイを駆動して超音波の走査を電子的に行う電子走査方式の超音波プローブにより構成されることを特徴とする請求項12に記載の超音波診断システム。
PCT/JP2013/078429 2012-11-16 2013-10-21 バイアス電圧発生装置及び超音波診断システム WO2014077087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014535437A JP5620620B1 (ja) 2012-11-16 2013-10-21 バイアス電圧発生装置及び超音波診断システム
CN201380027495.0A CN104334087B (zh) 2012-11-16 2013-10-21 偏置电压产生装置以及超声波诊断系统
EP13854508.2A EP2839784B1 (en) 2012-11-16 2013-10-21 Bias-voltage generation device, and ultrasound diagnostic system
US14/446,570 US20150018678A1 (en) 2012-11-16 2014-07-30 Bias voltage generating apparatus and ultrasound diagnostic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012252427 2012-11-16
JP2012-252427 2012-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/446,570 Continuation US20150018678A1 (en) 2012-11-16 2014-07-30 Bias voltage generating apparatus and ultrasound diagnostic system

Publications (1)

Publication Number Publication Date
WO2014077087A1 true WO2014077087A1 (ja) 2014-05-22

Family

ID=50731006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078429 WO2014077087A1 (ja) 2012-11-16 2013-10-21 バイアス電圧発生装置及び超音波診断システム

Country Status (5)

Country Link
US (1) US20150018678A1 (ja)
EP (1) EP2839784B1 (ja)
JP (1) JP5620620B1 (ja)
CN (1) CN104334087B (ja)
WO (1) WO2014077087A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150123461A1 (en) * 2013-11-01 2015-05-07 Mark Anthony Novosad Methods For Powering NDT Probes
GB2521416B (en) * 2013-12-19 2017-02-01 Cirrus Logic Int Semiconductor Ltd Biasing circuitry for MEMS transducers
KR102360304B1 (ko) * 2015-08-05 2022-02-15 기산전자(주) 자동 캘리브레이션 장치 및 방법
JP7065768B6 (ja) * 2015-11-02 2022-06-06 コーニンクレッカ フィリップス エヌ ヴェ 超音波トランスデューサのための高電圧電力の能動的分配
JP2017093850A (ja) * 2015-11-25 2017-06-01 セイコーエプソン株式会社 超音波プローブ、制御装置および計測装置
US10552498B2 (en) * 2016-09-19 2020-02-04 International Business Machines Corporation Ground truth generation for machine learning based quality assessment of corpora
WO2018095937A1 (en) 2016-11-28 2018-05-31 Koninklijke Philips N.V. Cmut device and imaging method
JP7128693B2 (ja) * 2018-09-10 2022-08-31 富士フイルムヘルスケア株式会社 超音波診断装置、及びそれに用いる探触子
CN109044405B (zh) * 2018-09-12 2024-03-15 深圳开立生物医疗科技股份有限公司 一种超声导管、超声导管控制器及超声系统
CN113892968B (zh) * 2021-09-14 2023-09-05 青岛海信医疗设备股份有限公司 一种超声仪器、超声探头检测方法和超声主机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222638A (ja) * 1985-07-23 1987-01-30 松下電器産業株式会社 超音波探触子接続用アダプタ
JP2003010177A (ja) * 2001-06-22 2003-01-14 Ge Medical Systems Global Technology Co Llc 超音波プローブおよび超音波診断装置
JP2003339708A (ja) * 2002-05-22 2003-12-02 Ge Medical Systems Global Technology Co Llc シングルcw変換アダプタおよび超音波診断装置
JP2007097760A (ja) 2005-10-03 2007-04-19 Olympus Medical Systems Corp 静電容量型超音波振動子装置
JP2007125225A (ja) * 2005-11-04 2007-05-24 Hitachi Medical Corp 超音波探触子、超音波診断装置
JP2010201163A (ja) 2009-03-05 2010-09-16 Medison Co Ltd 送受信スイッチング装置を備える超音波システム
JP2011229630A (ja) 2010-04-27 2011-11-17 Hitachi Medical Corp ダイオードブリッジ型送受分離回路及びそれを備える超音波診断装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278072B1 (en) * 2000-06-08 2007-05-02 Mitsubishi Denki Kabushiki Kaisha Device for judging life of auxiliary battery
JP4839099B2 (ja) * 2006-03-03 2011-12-14 オリンパスメディカルシステムズ株式会社 マイクロマシンプロセスにより製造された超音波振動子、超音波振動子装置、その体腔内超音波診断装置、及びその制御方法
WO2011129326A1 (ja) * 2010-04-12 2011-10-20 オリンパスメディカルシステムズ株式会社 超音波診断装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222638A (ja) * 1985-07-23 1987-01-30 松下電器産業株式会社 超音波探触子接続用アダプタ
JP2003010177A (ja) * 2001-06-22 2003-01-14 Ge Medical Systems Global Technology Co Llc 超音波プローブおよび超音波診断装置
JP2003339708A (ja) * 2002-05-22 2003-12-02 Ge Medical Systems Global Technology Co Llc シングルcw変換アダプタおよび超音波診断装置
JP2007097760A (ja) 2005-10-03 2007-04-19 Olympus Medical Systems Corp 静電容量型超音波振動子装置
JP2007125225A (ja) * 2005-11-04 2007-05-24 Hitachi Medical Corp 超音波探触子、超音波診断装置
JP2010201163A (ja) 2009-03-05 2010-09-16 Medison Co Ltd 送受信スイッチング装置を備える超音波システム
JP2011229630A (ja) 2010-04-27 2011-11-17 Hitachi Medical Corp ダイオードブリッジ型送受分離回路及びそれを備える超音波診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2839784A4

Also Published As

Publication number Publication date
EP2839784A1 (en) 2015-02-25
EP2839784B1 (en) 2017-03-22
JPWO2014077087A1 (ja) 2017-01-05
CN104334087A (zh) 2015-02-04
US20150018678A1 (en) 2015-01-15
CN104334087B (zh) 2016-06-29
JP5620620B1 (ja) 2014-11-05
EP2839784A4 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5620620B1 (ja) バイアス電圧発生装置及び超音波診断システム
EP2452627B1 (en) Ultrasound diagnostic system
JP4917699B2 (ja) 超音波診断装置
JP2008245715A (ja) 静電容量型トランスデューサ装置及び体腔内超音波診断システム
JP5087722B2 (ja) 超音波観測装置
WO2013115005A1 (ja) 超音波診断装置
US8248889B2 (en) Ultrasound diagnostic apparatus
US9676001B2 (en) Driver device and driving method for driving a load, in particular an ultrasound transducer
US20150094583A1 (en) Ultrasonic measurement apparatus and ultrasonic measurement method
JP2011067544A (ja) 超音波診断装置、およびモード切り替え方法
JP5718152B2 (ja) 超音波探触子、超音波診断装置
JP2011083362A (ja) 超音波プローブ、及び超音波診断装置
JP5266351B2 (ja) 超音波診断装置
JP7434562B2 (ja) 超音波システムおよび超音波システムの制御方法
JP2012179324A (ja) 超音波診断装置
JP2019187783A (ja) 超音波プローブ、超音波プローブの制御方法および超音波システム
JP2011072583A (ja) 超音波プローブ、および超音波診断システム
JP5266348B2 (ja) 超音波診断装置
WO2013145452A1 (ja) 超音波診断装置
JP2011072703A (ja) 超音波診断装置
JP2011188242A (ja) 送受波装置および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535437

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013854508

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013854508

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE