WO2014077023A1 - 排ガス浄化装置 - Google Patents

排ガス浄化装置 Download PDF

Info

Publication number
WO2014077023A1
WO2014077023A1 PCT/JP2013/074798 JP2013074798W WO2014077023A1 WO 2014077023 A1 WO2014077023 A1 WO 2014077023A1 JP 2013074798 W JP2013074798 W JP 2013074798W WO 2014077023 A1 WO2014077023 A1 WO 2014077023A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
plate portion
reducing agent
air guide
gas purification
Prior art date
Application number
PCT/JP2013/074798
Other languages
English (en)
French (fr)
Inventor
好伸 永田
泰史 梅野
Original Assignee
フタバ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50730946&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014077023(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by フタバ産業株式会社 filed Critical フタバ産業株式会社
Priority to EP13855902.6A priority Critical patent/EP2921219B1/en
Priority to CN201380059554.2A priority patent/CN104797325B/zh
Priority to US14/443,219 priority patent/US20150290585A1/en
Priority to CA2891571A priority patent/CA2891571C/en
Publication of WO2014077023A1 publication Critical patent/WO2014077023A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4315Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being deformed flat pieces of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification device for purifying exhaust gas in an exhaust gas flow path.
  • the exhaust gas discharged from an internal combustion engine such as a diesel engine contains nitrogen oxides (NO x ) that are air pollutants.
  • an exhaust gas purification apparatus having a configuration in which an SCR (Selective Catalytic Reduction) type catalyst is provided in an exhaust gas flow path and urea water is injected into the exhaust gas on the upstream side thereof. ing.
  • SCR Selective Catalytic Reduction
  • urea water injected into the exhaust gas is hydrolyzed by the heat of the exhaust gas, and ammonia (NH 3 ) generated by the hydrolysis is supplied to the catalyst together with the exhaust gas.
  • Nitrogen oxides in the exhaust gas react with ammonia in the catalyst and are reduced and purified.
  • a catalyst having a large cross-sectional area is usually used in order to improve the exhaust gas purification effect of the catalyst.
  • a diameter expansion channel for expanding the exhaust gas channel is formed on the upstream side of the catalyst.
  • the flow of exhaust gas tends to be biased in the diameter expansion channel, and the distribution of exhaust gas flowing into the catalyst tends to be biased.
  • Patent Document 1 a configuration has been proposed in which a diffusion member for diffusing exhaust gas into the enlarged diameter channel is provided on the upstream side of the enlarged diameter channel.
  • the present inventor eliminates the uneven distribution of the reducing agent in the exhaust gas flowing into the catalyst when the distribution of the reducing agent (urea water or ammonia after hydrolysis) is biased in the exhaust gas flowing into the diffusion member.
  • the diffusion member has a function of suppressing the uneven flow of the exhaust gas in the diameter-enlarged flow path, but does not have a function of dispersing the reducing agent that is biased in the exhaust gas.
  • the direction in which the reducing agent is supplied differs from the direction in which the exhaust gas flows at the joining position where the reducing agent merges with the exhaust gas, the flow of the reducing agent tends to be biased due to the flow of the exhaust gas.
  • the uneven distribution of the reducing agent flowing into the catalyst in this way becomes a factor that reduces the exhaust gas purification effect of the catalyst.
  • the exhaust gas purifying apparatus includes a catalyst provided on the downstream side of the enlarged diameter passage in the exhaust gas passage, and an exhaust gas provided on the upstream side of the enlarged diameter passage in the exhaust gas passage and flowing from the upstream side A diffusing member that flows out so as to diffuse into the enlarged diameter channel, a supply device that supplies a reducing agent upstream of the diffusing member in the exhaust gas channel, and the reducing agent in the exhaust gas channel merges with the exhaust gas A merging position or a downstream side of the merging position and upstream of the diffusing member, and a guide member that divides the flow of the reducing agent flowing in from the upstream side into a plurality of parts and guides it to the diffusing member And comprising.
  • the guide member is provided on the upstream side of the diffusing member, the uneven distribution of the reducing agent flowing into the diffusing member is suppressed as compared with the configuration in which the guide member is not provided. be able to. Therefore, the uneven distribution of the reducing agent flowing into the catalyst can be suppressed.
  • the said structure WHEREIN The said guide member is provided with the board part in which the wind guide part extended to the said confluence
  • the first plate portion and the second plate portion are provided, and the first plate portion and the second plate portion are the second plate portion in the first plate portion.
  • the first surface of the second plate portion may be provided so as to face each other with a gap therebetween.
  • this structure should just be provided with the 1st board part and the 2nd board part at least, for example, may further be provided with the 3rd board part. That is, the number of plate portions is not limited to two, and may be three or more.
  • the first plate portion is provided on the upstream side in the exhaust gas flow channel as compared with the second plate portion, and the air guide portion formed in the second plate portion.
  • the width in the direction orthogonal to the direction in which the reducing agent flows may be wider than that of the air guide portion formed in the first plate portion.
  • the air guide portion formed on the second plate portion has the gap on the diffusing member side with respect to the air guide portion formed on the first plate portion. It may be provided so as to be wider than the interval on the position side. According to such a configuration, the reducing agent can be dispersed over a wide range to suppress the bias.
  • the plate portion may be provided with a blade portion extending toward the diffusion member on the side opposite to the side where the air guide portion is formed. According to such a configuration, the exhaust gas containing the reducing agent can be guided to a desired position in the diffusion member.
  • the plate portion may be formed with the first blade portion and the second blade portion having a direction different from that of the first blade portion.
  • the reducing agent can be dispersed over a wide range to suppress the bias.
  • this structure should just be equipped with the 1st blade
  • the plate portion has a receiving portion extending from both sides of the air guide portion in a direction orthogonal to the direction in which the reducing agent flows to the first surface side of the air guide portion. It may be formed. According to such a configuration, the exhaust gas containing the reducing agent can be easily collected in the wind guide section.
  • a through-hole penetrating the air guide portion may be formed in the plate portion. According to such a configuration, it is possible to suppress the bias by dispersing the reducing agent over a wide range using the flow of the exhaust gas passing through the through hole.
  • the diffusion member may generate a swirling flow in the inflowing exhaust gas. According to such a configuration, it is possible to suppress the deviation of the exhaust gas flowing into the catalyst from the enlarged diameter channel.
  • one aspect of the present invention can be realized in various forms such as an induction member used in the exhaust gas purification device, a method of suppressing the deviation of exhaust gas flowing into the catalyst, in addition to the above-described exhaust gas purification device.
  • FIG. 5A is a plan view of the guide member of the first embodiment
  • FIG. 5B is a side view thereof
  • FIG. 5C is a rear view thereof.
  • FIG. 5A is a plan view of the guide member of the first embodiment
  • FIG. 5B is a side view thereof
  • FIG. 5C is a rear view thereof.
  • FIG. 5A is a plan view of the guide member of the first embodiment
  • FIG. 5B is a side view thereof
  • FIG. 5C is a rear view thereof.
  • FIG. 9A is a diagram showing a simulation result of the reducing agent flow in the exhaust gas purification apparatus of the comparative example
  • FIG. 9B is a diagram showing a simulation result of the reducing agent flow in the exhaust gas purification apparatus of the first embodiment
  • FIG. 10A is a diagram showing a simulation result of the distribution of the reducing agent on the catalyst end face of the exhaust gas purification apparatus of the comparative example
  • FIG. 10B is a diagram showing a simulation result of the distribution of the reducing agent on the catalyst end face of the exhaust gas purification apparatus of the first embodiment.
  • 11A is a plan view of the guide member of the second embodiment
  • FIG. 11B is a side view thereof
  • FIG. 11C is a rear view thereof
  • FIG. 11D is a perspective view thereof.
  • 12A is a plan view of the guide member of the third embodiment, FIG. 12B is a side view thereof, FIG. 12C is a rear view thereof, and FIG. 12D is a perspective view thereof.
  • FIG. 13A is a plan view of the guide member of the fourth embodiment, FIG. 13B is a side view thereof, FIG. 13C is a rear view thereof, and FIG. 13D is a perspective view thereof.
  • 14A is a plan view of the guide member of the fifth embodiment, FIG. 14B is a side view thereof, FIG. 14C is a rear view thereof, and FIG. 14D is a perspective view thereof.
  • 15A is a plan view of a guide member according to a modification, FIG. 15B is a side view thereof, FIG. 15C is a rear view thereof, and FIG. 15D is a perspective view thereof.
  • It is sectional drawing which shows the structure of the exhaust gas purification apparatus with which an exhaust gas flow path is linear.
  • An exhaust gas purification apparatus 1 shown in FIG. 1 is for purifying exhaust gas discharged from an internal combustion engine (for example, a diesel engine) of an automobile.
  • the exhaust gas purification device 1 includes a flow path member 2, a catalyst 3, an injection device 4, a diffusion member 9, and a guide member 10.
  • the vertical and horizontal directions (vertical direction and horizontal direction) are expressed with reference to FIG.
  • the flow path member 2 forms a part of the exhaust gas flow path for guiding the exhaust gas discharged from the internal combustion engine to the outside of the automobile, specifically, the exhaust gas flow path reaching the catalyst 3.
  • the flow path member 2 includes a first pipe section 2A, a second pipe section 2B, a third pipe section 2C, and a fourth pipe in order from the upstream side (the left side in FIG. 1) in the exhaust gas flow path. 2D and the 5th pipe part 2E are provided. Note that these first to fifth pipe portions 2A to 2E are sections for convenience of explanation, and the sections of parts constituting the flow path member 2 are not particularly limited. The number of parts constituting the flow path member 2 is not particularly limited.
  • the first tube portion 2A is a straight circular tube portion.
  • the third tube portion 2C is a linear circular tube portion having the same inner diameter as the first tube portion 2A.
  • the third pipe 2C is different from the first pipe 2A in the direction in which the exhaust gas flows.
  • the first pipe portion 2A forms a flow path where the exhaust gas flows obliquely downward
  • the third pipe portion 2C forms a flow path where the exhaust gas flows in the horizontal direction.
  • the first tube portion 2A and the third tube portion 2C are gently connected by the second tube portion 2B which is a circular tube portion curved in an arc shape in a side view.
  • the first axis C1 that is the center axis of the first tube portion 2A and the second axis C2 that is the center axis of the third tube portion 2C are in a positional relationship where they intersect each other.
  • the fifth tube portion 2E is a straight circular tube portion that is coaxial with the third tube portion 2C (with the second axis C2 as a central axis). However, the fifth tube portion 2E is formed to have an inner diameter larger than that of the third tube portion 2C in order to accommodate the columnar catalyst 3 having an outer diameter larger than the inner diameter of the third tube portion 2C. . For this reason, the 3rd pipe part 2C and the 5th pipe part 2E form the diameter expansion channel for expanding the internal diameter of an exhaust flow path gradually (in this embodiment, it diameter-expanded in the taper shape). It is gently connected by a fourth tube portion 2D that is a tube portion.
  • the flow path member 2 includes a sixth pipe portion 2F that forms a reducing agent flow path for injecting the reducing agent from the injection device 4 to the exhaust gas flow path.
  • the sixth pipe part 2F is a circular pipe part that is coaxial with the third pipe part 2C (with the second axis C2 as the central axis).
  • the inner diameter of the reducing agent passage is gradually enlarged toward the exhaust gas passage (in this embodiment, the diameter is slightly tapered), and the injected reducing agent is It is configured so that it does not directly hit the inner surface (so that it does not corrode easily).
  • the sixth pipe part 2F is connected to the second pipe part 2B, and the reducing agent injected by the injection device 4 merges with the exhaust gas flowing in the second pipe part 2B.
  • the catalyst 3 is an SCR (Selective Catalytic) having a function of reducing nitrogen oxides (NO x ).
  • Reduction: selective catalyst reduction) type catalyst which is provided on the downstream side of the expanded diameter passage in the exhaust gas passage (specifically, in the fifth pipe portion 2E).
  • the injection device 4 injects a liquid reducing agent and supplies the reducing agent to the upstream side of the diffusion member 9 in the exhaust gas passage (specifically, in the second pipe portion 2B) via the sixth pipe portion 2F. Functions as a supply device.
  • urea water is injected as a reducing agent. Strictly speaking, the urea water injected into the exhaust gas is hydrolyzed by the heat of the exhaust gas to produce ammonia (NH 3 ), and the ammonia thus generated functions as a reducing agent.
  • Urea water is also referred to as a reducing agent.
  • the diffusing member 9 is for flowing out the exhaust gas flowing in from the upstream side so as to diffuse into the enlarged diameter flow path, and suppressing the deviation of the exhaust gas flowing into the catalyst 3 (approaching it uniformly). It is provided on the upstream side of the radial flow path (in the third pipe portion 2C).
  • the diffusion member 9 shown in FIGS. 2 and 3 is formed by bending a single metal plate, and includes a main body portion 91, a plurality of blade portions 92, and a plurality of support portions 93. .
  • the support portion 93 is a protruding piece that extends upstream in the exhaust gas flow direction D, and protrudes radially outward from the main body portion 91 by being bent stepwise. For this reason, in a state in which the diffusing member 9 is mounted in the third tube portion 2C, the outer surface of the support portion 93 comes into contact with the inner surface of the third tube portion 2C, and the inner surface of the main body portion 91 and the third tube portion 2C. There is a gap between the two. And the main-body part 91 is supported by the support part 93 by welding the contact part of the support part 93 and the 3rd pipe part 2C. That is, the diffusing member 9 is fixed to the third pipe portion 2C.
  • the plurality of blade portions 92 are protruding pieces formed on the downstream side along the flow direction D of the exhaust gas.
  • Each blade portion 92 is inclined with respect to the flow direction D of the exhaust gas by bending the tip, and guides the exhaust gas in a direction corresponding to the inclination.
  • the inclination direction of each blade portion 92 and the direction for inducing exhaust gas are set as follows.
  • the vector E can be a vector from the root of each blade portion 92 to the tip.
  • the in-plane component orthogonal to the exhaust gas flow direction D of the vector E is a vector X
  • the exhaust gas passing through the diffusing member 9 is guided in the direction of the vector X in each blade portion 92.
  • the exhaust gas flowing into the diffusing member 9 generally has a counterclockwise swirl flow in FIG. Therefore, the exhaust gas easily spreads to the diameter-enlarged flow path, and the deviation of the exhaust gas flowing into the catalyst 3 is suppressed.
  • the guide member 10 is for diverting the flow of the reducing agent flowing from the upstream side into a plurality of branches and guiding it to the diffusing member 9 to suppress the uneven distribution of the reducing agent flowing into the diffusing member 9 (approaching it uniformly). It is. For this reason, the guide member 10 is provided on the downstream side of the merging position or the merging position where the reducing agent in the exhaust gas flow path merges with the exhaust gas, and on the upstream side of the diffusion member 9. In this example, the tips of three air guide portions 11A to 13A, which will be described later, are provided so as to be positioned at the reducing agent merging position (in other words, closer to the injection device 4 than the first axis C1). Yes.
  • FIG. 5A is a view (plan view) of the guide member 10 viewed from above
  • FIG. 5B is a view (side view) of the guide member 10 viewed from the side.
  • FIGS. 5A and 5B are horizontal views. 1 coincides with the left-right direction.
  • FIG. 5C is a view (back view) of the guide member 10 viewed from the downstream side (the diffusion member 9 side) along the second axis C2.
  • the guide member 10 is formed by bending a single metal plate. Specifically, the guide member 10 includes a first plate portion 11, a second plate portion 12, a third plate portion 13, a fourth plate portion 14, a fifth plate portion 15, A sixth plate portion 16 and a seventh plate portion 17 are provided. The first to seventh plate portions 11 to 17 are obtained by dividing the guide member 10 into a plurality of portions for convenience of explanation.
  • the first to seventh plate portions 11 to 17 have an angle parallel or nearly parallel to the second axis C2 so that the flow of the reducing agent injected through the sixth pipe portion 2F is not obstructed. It is formed with.
  • the first to third plate portions 11 to 13 are respectively lines (vertical lines as shown in FIG. 5A and vertical directions as shown in FIG. 5C) perpendicular to the first axis C1 and the second axis C2. A plane parallel to the line is formed.
  • the first to third plate portions 11 to 13 include an upper surface (first surface) facing substantially upward and a lower surface (second surface which is the back surface of the first surface) facing generally downward. Are formed.
  • the first to third plate portions 11 to 13 include an upper surface of the third plate portion 13 and a lower surface of the second plate portion 12, and an upper surface of the second plate portion 12 and the first plate portion 11. Are provided so as to face each other with a space therebetween.
  • the first plate portion 11 is provided on the upstream side in the exhaust gas flow channel as compared with the second plate portion 12 and the third plate portion 13, and the exhaust gas from the first pipe portion 2A is It is provided so as to face the flow.
  • the second plate portion 12 is provided on the upstream side in the exhaust gas flow channel as compared with the third plate portion 13, and the first plate portion with respect to the flow of the exhaust gas from the first pipe portion 2 ⁇ / b> A. 11 so as to face each other behind (lower than the first plate portion 11).
  • the third plate portion 13 is provided so as to face the flow of exhaust gas from the first pipe portion 2A behind the second plate portion 12 (below the second plate portion 12). It has been.
  • the fourth plate portion 14 connects one end (the right end portion in FIG. 5C) of the first plate portion 11 and one end (the right end portion in FIG. 5C) of the second plate portion 12.
  • the fifth plate portion 15 connects the other end of the second plate portion 12 (the left end portion in FIG. 5C) and one end of the third plate portion 13 (the left end portion in FIG. 5C). To do.
  • first plate portion 11 there is a sixth plate portion 16 that is substantially symmetrical with the fourth plate portion 14 with the first plate portion 11 in between. It is connected.
  • a seventh plate portion 17 that is substantially symmetrical with the fifth plate portion 15 with the third plate portion 13 interposed therebetween.
  • the first to seventh plate portions 11 to 17 are S-shaped when viewed from the direction along the second axis C2 (specifically, as viewed from the upstream side in the exhaust gas flow path as shown in FIG. 5C). Are formed in an S-shape that is opposite to the left and right.
  • the first plate portion 11 is formed with an air guide portion 11A that is a protruding piece extending toward the reducing agent joining position.
  • the second plate portion 12 is formed with an air guide portion 12A that is a protruding piece extending toward the reducing agent merging position, and the third plate portion 13 protrudes toward the reducing agent merging position.
  • 13 A of air guide parts which are pieces are formed. That is, the guide member 10 has a three-stage shape including three air guide portions 11A to 13A.
  • the air guide portion 12A has a width in a direction (vertical direction as shown in FIG. 5A) perpendicular to the direction in which the reducing agent flows (the direction along the second axis C2 and the horizontal direction as shown in FIG. 5A). It is formed wider than the wind portion 11A. Furthermore, the width of the air guide portion 13A is wider than that of the air guide portion 12A. That is, the three air guide portions 11A to 13A are formed so as to gradually increase in width when viewed from above (see FIG. 5A).
  • the three air guide portions 11A to 13A are not parallel to each other, and are provided so that the interval is narrowed toward the merging position side. That is, 12 A of air guide parts are provided so that the space
  • the flow of the reducing agent injected by the injection device 4 is branched into the upper surface side and the lower surface side by each of the three air guide portions 11A to 13A, A plurality of branches (four in this example) are branched in the vertical direction. Specifically, a first flow path above the first plate portion 11, a second flow path formed between the first plate portion 11 and the second plate portion 12, The second flow path is branched into a third flow path formed between the second plate portion 12 and the third plate portion 13 and a fourth flow path below the third plate portion 13.
  • the first plate portion 11 is formed with a blade portion 11B which is a protruding piece extending toward the diffusion member 9 on the side opposite to the side where the air guide portion 11A is formed.
  • the second plate portion 12 is formed with a blade portion 12B which is a protruding piece extending toward the diffusion member 9 on the side opposite to the side where the air guide portion 12A is formed.
  • the third plate portion 13 is formed with a blade portion 13B which is a protruding piece extending toward the diffusion member 9 on the side opposite to the side where the air guide portion 13A is formed.
  • the three blade portions 11B to 13B are bent obliquely upward toward the downstream side of the exhaust gas, and are provided at different angles from the corresponding air guide portions 11A to 13A. For this reason, the exhaust gas (exhaust gas containing the reducing agent) flowing along the upper surfaces of the blade portions 11B to 13B is guided to the upper side in the exhaust gas flow path as compared with the configuration in which the guide member 10 is not provided.
  • the fourth plate portion 14 is formed with a support portion 14B which is a protruding piece extending downstream in the exhaust gas passage.
  • the fifth plate portion 15 is formed with a support portion 15B that is a similar protruding piece
  • the sixth plate portion 16 is formed with a support portion 16B that is a similar protruding piece
  • the seventh plate is formed with a support portion 17B which is a similar protruding piece.
  • the four support portions 14B to 17B project outward in the radial direction by being bent stepwise. For this reason, in a state where the guide member 10 is mounted in the third tube portion 2C, the outer surfaces of the four support portions 14B to 17B are in contact with the inner surface of the third tube portion 2C.
  • the guide member 10 is fixed to the third pipe portion 2C by welding the contact portions between the four support portions 14B to 17B and the third pipe portion 2C.
  • the exhaust gas purification apparatus 1 of the first embodiment since the guide member 10 is provided on the upstream side of the diffusion member 9, the exhaust gas purification apparatus 1 flows into the diffusion member 9 as compared with a configuration in which the guide member 10 is not provided.
  • the uneven distribution of the reducing agent can be suppressed. Therefore, the bias of the exhaust gas flowing into the catalyst 3 can be suppressed.
  • the guide member is positioned in front of the diffusing member 9 and at a position where the reducing agent tends to be biased (in this example, the lower part in the exhaust gas flow path). 10 is provided.
  • the guide member 10 branches the flow of the reducing agent injected by the injection device 4 into a plurality of portions in the vertical direction by the air guide portions 11A to 13A, and guides the flow to a plurality of locations in the diffusion member 9 by the blade portions 11B to 13B. For this reason, the flow of the reducing agent can be adjusted so that the uneven distribution of the reducing agent flowing into the diffusing member 9 is suppressed.
  • FIG. 9A in the exhaust gas purification apparatus of the comparative example, the flow of the exhaust gas in the curved flow path is biased to the lower part of the exhaust gas flow path, so that the flow of reducing agent (streamline in the figure) is also lower in the exhaust gas flow path.
  • the distribution of the reducing agent in the exhaust gas is biased.
  • FIG. 10A the uniformity of the distribution (points in the figure) of the reducing agent (ammonia) on the end face of the catalyst 3 is biased.
  • FIG. 10A corresponds to the XA-XA cross-sectional view of FIG. 9A.
  • the flow of the exhaust gas and the reducing agent can be adjusted by the guide member 10 provided in front of the diffusion member 9.
  • the guide member 10 causes a flow along the upper surfaces of the air guide portions 11A to 13A, and the negative pressure portion formed on the back surfaces (lower surfaces) of the air guide portions 11A to 13A flows around.
  • the bias of the flow of the reducing agent (streamlines in the figure) is suppressed and is effectively guided to the diffusing member 9.
  • the blades 11B to 13B guide the reducing agent to a position where the reducing agent does not easily flow into the diffusion member 9 (for example, the upper part), and thereby the exhaust gas in a state where the uneven distribution of the reducing agent is suppressed is diffused to the diffusion member 9. Can flow in. For this reason, as shown to FIG. 10B, the uniformity of the distribution (point in a figure) of the reducing agent (ammonia) in the end surface of the catalyst 3 is suppressed more than the comparative example.
  • FIG. 10B corresponds to the XB-XB sectional view of FIG. 9B.
  • the three air guide portions 11A to 13A formed on the guide member 10 are formed so as to gradually increase in width as viewed from above. For this reason, in the flow along the upper surface of the uppermost wind guide portion 11A (arrow F1), the flow on the outer side in the width direction is guided to the second wind guide portion 12A (arrow F2), and the second stage wind guide. In the flow along the upper surface of the portion 12A, the flow on the outer side in the width direction is guided to the third-stage air guide portion 13A (arrow F3).
  • the reducing agent can be dispersed over a wide range by sequentially guiding the exhaust gas flow from the first plate portion 11 to the second plate portion 12 and from the second plate portion 12 to the third plate portion 13. It is possible to suppress the bias.
  • the guide member 10 is arranged such that the tips of the three air guide portions 11A to 13A are positioned at the converging position of the reducing agent (in other words, closer to the injection device 4 than the first axis C1). ) Is provided. For this reason, even if the flow rate of the exhaust gas changes, the inflow position of the reducing agent is less likely to vary, and a stable effect can be obtained.
  • the guide member 10 includes the blade portions 11B to 13B, the exhaust gas containing the reducing agent can be guided to a desired position in the diffusion member 9. Further, hydrolysis can be promoted by collision of the reducing agent with the blade portions 11B to 13B.
  • the guide member 10 has a simple configuration formed by bending a single metal plate, it can be realized at low cost.
  • the basic configuration of the second embodiment is the same as that of the first embodiment, except that a guide member 20 described later is used instead of the guide member 10 described above.
  • description is abbreviate
  • the guide member 20 of the second embodiment shown in FIGS. 11A to 11D has basically the same configuration as the guide member 10 of the first embodiment, the description will focus on the differences.
  • the guide member 20 of the second embodiment is formed by bending a single metal plate, like the guide member 10 of the first embodiment, but the third plate portion referred to in the first embodiment. 13 and the seventh plate portion 17 are not provided. That is, the guide member 10 of the first embodiment has a three-stage shape including three air guide portions 11A to 13A, whereas the guide member 20 of the second embodiment has a two-stage shape. Is different.
  • the guide member 20 includes a first plate portion 21, a second plate portion 22, a fourth plate portion 24, a fifth plate portion 25, a sixth plate portion 26, Is provided.
  • the name of each part is made to correspond to the name of 1st Embodiment.
  • the first plate portion 21 and the second plate portion 22 are respectively formed with air guide portions 21A and 22A that are protruding pieces extending toward the reducing agent merging position, as in the first embodiment. For this reason, the flow of the reducing agent injected by the injection device 4 is branched into the upper surface side and the lower surface side by each of the two air guide portions 21A and 22A, and is divided into a plurality (three in this example) in the vertical direction. Branch off.
  • the first plate portion 21 and the second plate portion 22 are protruding pieces that extend toward the diffusion member 9 on the side opposite to the side where the air guide portions 21A and 22A are formed.
  • the blade portions 21B and 22B are formed.
  • the fourth plate portion 24, the fifth plate portion 25, and the sixth plate portion 26 are formed with support portions 24B, 25B, and 26B, which are projecting pieces extending downstream in the exhaust gas passage. .
  • the guide member 20 is fixed to the 3rd pipe part 2C by welding the contact part of each of support part 24B, 25B, 26B and the 3rd pipe part 2C.
  • the same effects as those of the first embodiment can be obtained.
  • the negative pressure space formed on the back surfaces (lower surfaces) of the air guide portions 21A and 22A can be widened, and the reducing agent can be effectively guided to the diffusing member 9. .
  • the guiding member 30 of the third embodiment shown in FIGS. 12A to 12D has basically the same configuration as that of the guiding member 10 of the first embodiment, and therefore, differences will be mainly described.
  • the guide member 30 of the third embodiment is formed by bending a single metal plate material, like the guide member 10 of the first embodiment, and includes a first plate portion 31 and a second plate. A portion 32, a third plate portion 33, a fourth plate portion 34, a fifth plate portion 35, a sixth plate portion 36, and a seventh plate portion 37.
  • the name of each part is made to correspond to the name of 1st Embodiment.
  • the first to third plate portions 31 to 33 are respectively formed with air guide portions 31A to 33A that are projecting pieces extending toward the reducing agent merging position, as in the first embodiment. And in 3rd Embodiment, it receives so that it may extend from the both sides of the direction (width direction) orthogonal to the direction where a reducing agent flows in the air guide part 33A to the upper surface side (in this example, diagonally upward) in the air guide part 33A.
  • the second embodiment is different from the first embodiment in that the portions 33C and 33D are formed.
  • the first to third plate portions 31 to 33 are projecting pieces extending toward the diffusion member 9 on the side opposite to the side where the air guide portions 31A to 33A are formed, as in the first embodiment.
  • Blade portions 31B to 33B are formed.
  • the fourth to seventh plate portions 34 to 37 are formed with support portions 34B to 37B, which are protruding pieces extending downstream in the exhaust gas flow path.
  • the lowermost third plate portion 33 is formed into a receiving shape having receiving portions 33C and 33D extending obliquely upward, so that the exhaust gas containing the reducing agent is guided to the air guiding portion 33A. As a result, more exhaust gas can be guided to the blade portions 31B to 33B.
  • the fourth embodiment has the same basic configuration as that of the first embodiment, except that a guide member 40 described later is used instead of the guide member 10 described above.
  • description is abbreviate
  • the guide member 40 of the fourth embodiment shown in FIGS. 13A to 13D has basically the same configuration as the guide member 10 of the first embodiment, the description will focus on the differences.
  • the guide member 40 of the fourth embodiment is formed by bending a single metal plate material, like the guide member 10 of the first embodiment, and includes a first plate portion 41 and a second plate. A portion 42, a third plate portion 43, a fourth plate portion 44, a fifth plate portion 45, a sixth plate portion 46, and a seventh plate portion 47.
  • the name of each part is made to correspond to the name of 1st Embodiment.
  • the first to third plate portions 41 to 43 are respectively formed with air guide portions 41A to 43A that are protruding pieces extending toward the reducing agent merging position, as in the first embodiment.
  • the first to third plate portions 41 to 43 are projecting pieces extending toward the diffusion member 9 on the side opposite to the side where the air guide portions 41A to 43A are formed, as in the first embodiment.
  • Blade portions 41B to 43B are formed.
  • the fourth embodiment is different from the first embodiment in that a plurality of circular through holes 40H are formed in the air guide portions 41A to 43A and the blade portions 41B to 43B.
  • the fourth to seventh plate portions 44 to 47 are formed with support portions 44B to 47B, which are projecting pieces extending downstream in the exhaust gas flow path.
  • the same effects as in the first embodiment can be obtained.
  • the reducing agent is utilized using the flow of the exhaust gas passing through the through holes 40H.
  • the exhaust gas flow can be guided over a wide range while promoting the hydrolysis of the.
  • the fifth embodiment has the same basic configuration as that of the first embodiment, except that a guide member 50 described later is used instead of the guide member 10 described above.
  • a guide member 50 described later is used instead of the guide member 10 described above.
  • description is abbreviate
  • the guiding member 50 of the fifth embodiment shown in FIGS. 14A to 14D has basically the same configuration as that of the guiding member 10 of the first embodiment, and therefore, differences will be mainly described.
  • the guide member 50 of the fifth embodiment is formed by bending a single metal plate, like the guide member 10 of the first embodiment, and includes a first plate portion 51 and a second plate. A portion 52, a third plate portion 53, a fourth plate portion 54, a fifth plate portion 55, a sixth plate portion 56, and a seventh plate portion 57.
  • the name of each part is made to correspond to the name of 1st Embodiment.
  • the first to third plate portions 51 to 53 are respectively formed with air guide portions 51A to 53A, which are projecting pieces extending toward the reducing agent merging position, as in the first embodiment. Further, as in the first embodiment, the first plate portion 51 is formed with a blade portion 51B that is a protruding piece extending toward the diffusion member 9 on the side opposite to the side where the air guide portion 51A is formed. Yes.
  • the second plate portion 52 is provided with two blade portions 52E and 52F instead of the blade portion 12B referred to in the first embodiment, and the third plate portion 53 includes the first plate portion 52B. It is different from 1st Embodiment by replacing with the blade
  • the blade portions 52E and 52F formed on the second plate portion 52 are formed such that the right blade portion 52E as shown in FIG. 14C is bent obliquely upward, whereas the left blade portion 52F as shown in FIG. 14C is inclined downward. It is bent to In addition, the blade portions 53E and 53F formed on the third plate portion 53 have the right blade portion 53E shown in FIG. 14C bent obliquely downward, whereas the left blade portion 53F shown in FIG. It is bent diagonally upward. That is, a plurality of blade portions (two blade portions of the first blade portion and the second blade portion in this example) having different directions are formed on each of the second plate portion 52 and the third plate portion 53. Has been.
  • the fourth to seventh plate portions 54 to 57 are formed with support portions 54B to 57B, which are projecting pieces extending downstream in the exhaust gas passage. According to the fifth embodiment described above in detail, the same effects as those of the first embodiment can be obtained.
  • a plurality of (two in this example) blade portions 52E, 52F, 53E, and 53F are formed on each of the second plate portion 52 and the third plate portion 53. Therefore, the reducing agent can be dispersed over a wide range to suppress the bias.
  • the guide member including a plurality of plate portions is exemplified, but the present invention is not limited to this.
  • the guide member 60 shown in FIGS. 15A to 15D is formed by bending a single metal plate into a W shape.
  • the flow of the reducing agent injected by the injection device 4 is branched into a plurality (two in this example) in the vertical direction, and the diffusion member 9 It can be guided to multiple places. Therefore, the flow of the reducing agent can be adjusted so that the uneven distribution of the reducing agent flowing into the diffusing member 9 is suppressed.
  • the configuration in which the guide member is provided in the vicinity of the merging position is illustrated, but the present invention is not limited thereto, and the guiding member may be disposed at a position away from the merging position.
  • the guide member 10 may be provided at a position closer to the diffusion member 9 than the first axis C1. Even if it does in this way, the same effect will be acquired if the guidance member is provided in the position into which the reducing agent distributed unevenly flows.
  • the exhaust gas flow channel in which the curved flow channel is formed is assumed.
  • the present invention is not limited to this.
  • the reducing agent is influenced by the flow of the exhaust gas because the direction in which the reducing agent is supplied is different from the flow direction of the exhaust gas at the joining position where the reducing agent joins the exhaust gas. It tends to be biased (upward in this example). For this reason, by providing the guide member 10, the flow of the reducing agent injected by the injection device 4 can be guided downward.
  • the configuration of the flow path member, the diffusion member, the guide member, and the like in the above embodiment is merely an example, and a structure and a fixing method different from those in the above embodiment may be employed.
  • the number of the air guide portions may be one or a plurality (for example, four or more).
  • the first tube portion 2A and the third tube portion 2C may have a tube shape other than the circular tube portion, or may have a curved shape.
  • the first tube portion 2A and the third tube portion 2C may have different inner diameters.
  • the 3rd pipe part 2C and the 5th pipe part 2E may not be coaxial.
  • the reducing agent is not limited to urea water, but may be any as long as it contributes to purification of exhaust gas in the catalyst.
  • Each component of the present invention is conceptual and is not limited to the above embodiment. For example, the functions of one component may be distributed to a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

排ガス浄化装置は、排ガス流路における拡径流路の下流側に設けられた触媒と、前記排ガス流路における前記拡径流路の上流側に設けられ、上流側から流入した排ガスを前記拡径流路へ拡散するように流出させる拡散部材と、前記排ガス流路における前記拡散部材よりも上流側へ還元剤を供給する供給装置と、前記排ガス流路における前記還元剤が排ガスと合流する合流位置又は前記合流位置よりも下流側であって、前記拡散部材よりも上流側に設けられ、上流側から流入した前記還元剤の流れを複数に分岐して前記拡散部材へ誘導する誘導部材と、を備える。

Description

排ガス浄化装置 関連出願の相互参照
 本国際出願は、2012年11月16日に日本国特許庁に出願された日本国特許出願第2012-252472号に基づく優先権を主張するものであり、日本国特許出願第2012-252472号の全内容を本国際出願に援用する。
 本発明は、排ガス流路において排ガスを浄化する排ガス浄化装置に関する。
 ディーゼルエンジン等の内燃機関から排出される排ガス中には、大気汚染物質である窒素酸化物(NOx)が含まれている。こうした排ガスを浄化するための装置として、SCR(Selective Catalytic Reduction:選択触媒還元)方式の触媒を排ガス流路に設け、その上流側の排ガス中に尿素水を噴射する構成の排ガス浄化装置が知られている。排ガス中に噴射された尿素水は、排ガスの熱により加水分解し、加水分解により生じたアンモニア(NH3)が排ガスとともに触媒へ供給される。排ガス中の窒素酸化物は、触媒においてアンモニアと反応し、還元浄化される。
 また、この種の排ガス浄化装置には、触媒による排ガス浄化効果を向上させるため、断面積の大きい触媒が用いられることが通常である。触媒の上流側には、排ガス流路を拡径するための拡径流路が形成される。しかしながら、このような拡径流路が形成された構成では、拡径流路において排ガスの流れが偏りやすくなり、触媒に流入する排ガスの分布に偏りが生じやすくなってしまう。そこで、拡径流路の上流側に、排ガスを拡径流路へ拡散するための拡散部材を設けた構成が提案されている(特許文献1)。
特開2010-90808号公報
 ところで、本発明者は、拡散部材に流入する排ガス中において還元剤(尿素水又は加水分解後のアンモニア)の分布が偏っていると、触媒に流入する排ガスにおいても還元剤の分布の偏りが解消されないという問題を見出した。すなわち、拡散部材は、拡径流路における排ガスの流れの偏りを抑制する機能を有するものの、排ガス中に偏って存在する還元剤を分散させる機能は有していないからである。特に、還元剤が排ガスと合流する合流位置において、還元剤が供給される方向と排ガスの流れる方向とが異なると、排ガスの流れに影響されて還元剤の流れが偏りやすくなってしまう。このようにして触媒に流入する還元剤の分布が偏ることは、触媒による排ガス浄化効果を低下させる要因となる。
 本発明の一側面においては、触媒に流入する還元剤の分布の偏りを抑制することが望ましい。
 本発明の一側面の排ガス浄化装置は、排ガス流路における拡径流路の下流側に設けられた触媒と、前記排ガス流路における前記拡径流路の上流側に設けられ、上流側から流入した排ガスを前記拡径流路へ拡散するように流出させる拡散部材と、前記排ガス流路における前記拡散部材よりも上流側へ還元剤を供給する供給装置と、前記排ガス流路における前記還元剤が排ガスと合流する合流位置又は前記合流位置よりも下流側であって、前記拡散部材よりも上流側に設けられ、上流側から流入した前記還元剤の流れを複数に分岐して前記拡散部材へ誘導する誘導部材と、を備える。
 このような構成によれば、拡散部材の上流側に誘導部材が設けられているため、誘導部材が設けられていない構成と比較して、拡散部材に流入する還元剤の分布の偏りを抑制することができる。したがって、触媒に流入する還元剤の分布の偏りを抑制することができる。
 また、上記構成において、前記誘導部材は、前記合流位置側へ延びる導風部が形成された板部を備え、前記導風部が、前記還元剤の流れを、前記板部における第1の面側と、前記第1の面の裏面である第2の面側と、に分岐するようにしてもよい。このような構成によれば、簡素な構成により還元剤の流れを複数に分岐することができる。
 また、上記構成において、第1の前記板部と、第2の前記板部と、を備え、前記第1の板部及び前記第2の板部は、前記第1の板部における前記第2の面と、前記第2の板部における前記第1の面と、が間隔を空けて対向するように設けられていてもよい。このような構成によれば、還元剤の流れを多数に分岐することができる。なお、この構成は、第1の板部と第2の板部とを少なくとも備えていればよく、例えば、第3の板部を更に備えてもよい。つまり、板部は2つに限定されるものではなく、3つ以上であってもよい。
 また、上記構成において、前記第1の板部は、前記第2の板部と比較して、前記排ガス流路における上流側に設けられ、前記第2の板部に形成された前記導風部は、前記還元剤が流れる方向と直交する方向の幅が、前記第1の板部に形成された前記導風部と比較して、広く形成されていてもよい。このような構成によれば、排ガスの流れを第1の板部から第2の板部へ順に導くことで、還元剤を広範囲に分散させて偏りを抑制することができる。
 また、上記構成において、前記第2の板部に形成された前記導風部は、前記第1の板部に形成された前記導風部に対し、前記拡散部材側の前記間隔が、前記合流位置側の前記間隔と比較して、広くなるように設けられていてもよい。このような構成によれば、還元剤を広範囲に分散させて偏りを抑制することができる。
 また、上記構成において、前記板部には、前記導風部が形成された側とは反対側に、前記拡散部材側へ延びる羽根部が形成されていてもよい。このような構成によれば、還元剤が含まれた排ガスを、拡散部材における所望の位置へ導くことができる。
 また、上記構成において、前記板部には、第1の前記羽根部と、前記第1の羽根部とは向きが異なる第2の前記羽根部と、が形成されていてもよい。このような構成によれば、還元剤を広範囲に分散させて偏りを抑制することができる。なお、この構成は、第1の羽根部と第2の羽根部とを少なくとも備えていればよく、例えば、第3の羽根部を更に備えてもよい。つまり、羽根部は2つに限定されるものではなく、3つ以上であってもよい。
 また、上記構成において、前記板部には、前記導風部における、前記還元剤が流れる方向と直交する方向の両側から、前記導風部における前記第1の面側へ延びるように受け部が形成されていてもよい。このような構成によれば、還元剤を含む排ガスが導風部へ集まりやすくすることができる。
 また、上記構成において、前記板部には、前記導風部を貫通する貫通孔が形成されていてもよい。このような構成によれば、貫通孔を抜ける排ガスの流れを利用して、還元剤を広範囲に分散させて偏りを抑制することができる。
 また、上記構成において、前記拡散部材は、流入した排ガスに旋回流を生じさせるものであってもよい。このような構成によれば、拡径流路から触媒に流入する排ガスの偏りを抑制することができる。
 なお、本発明の一側面は、前述した排ガス浄化装置の他、排ガス浄化装置に用いられる誘導部材、触媒に流入する排ガスの偏りを抑制する方法など、種々の形態で実現することができる。
第1実施形態の排ガス浄化装置の構成を示す断面図である。 拡散部材の斜視図である。 拡散部材を排ガス流路における下流側から見た図である。 拡散部材の羽根部の形状を示す図である。 図5Aは第1実施形態の誘導部材の平面図、図5Bはその側面図、図5Cはその背面図である。 第1実施形態の誘導部材の斜視図である。 第1実施形態の誘導部材の展開図である。 比較例の排ガス浄化装置の構成を示す断面図である。 図9Aは比較例の排ガス浄化装置における還元剤の流れのシミュレーション結果を示す図、図9Bは第1実施形態の排ガス浄化装置における還元剤の流れのシミュレーション結果を示す図である。 図10Aは比較例の排ガス浄化装置の触媒端面における還元剤の分布のシミュレーション結果を示す図、図10Bは第1実施形態の排ガス浄化装置の触媒端面における還元剤の分布のシミュレーション結果を示す図である。 図11Aは第2実施形態の誘導部材の平面図、図11Bはその側面図、図11Cはその背面図、図11Dはその斜視図である。 図12Aは第3実施形態の誘導部材の平面図、図12Bはその側面図、図12Cはその背面図、図12Dはその斜視図である。 図13Aは第4実施形態の誘導部材の平面図、図13Bはその側面図、図13Cはその背面図、図13Dはその斜視図である。 図14Aは第5実施形態の誘導部材の平面図、図14Bはその側面図、図14Cはその背面図、図14Dはその斜視図である。 図15Aは変形例の誘導部材の平面図、図15Bはその側面図、図15Cはその背面図、図15Dはその斜視図である。 排ガス流路が直線状の排ガス浄化装置の構成を示す断面図である。
 1…排ガス浄化装置、2…流路部材、3…触媒、4…噴射装置、9…拡散部材、10,20,30,40,50,60…誘導部材、11…第1の板部、11A…導風部、11B…羽根部、12…第2の板部、12A…導風部、12B…羽根部、13…第3の板部、13A…導風部、13B…羽根部
 以下、本発明が適用された実施形態について、図面を用いて説明する。
 [1.第1実施形態]
 図1に示す排ガス浄化装置1は、自動車の内燃機関(例えばディーゼルエンジン)から排出された排ガスを浄化するためのものである。排ガス浄化装置1は、流路部材2と、触媒3と、噴射装置4と、拡散部材9と、誘導部材10と、を備える。なお、以下の説明では、図1を基準に上下左右方向(鉛直方向及び水平方向)を表現するが、あくまでも説明の便宜上の表現であり、排ガス浄化装置1が設けられる向きは特に限定されない。
 流路部材2は、内燃機関から排出された排ガスを自動車の外部へ導くための排ガス流路の一部、具体的には触媒3へ至る排ガス流路を形成する。流路部材2は、排ガス流路における上流側(図1でいう左側)から順に、第1の管部2Aと、第2の管部2Bと、第3の管部2Cと、第4の管部2Dと、第5の管部2Eと、を備える。なお、これら第1~第5の管部2A~2Eは、説明の便宜上の区分であり、流路部材2を構成する部品の区分は特に限定されない。流路部材2を構成する部品点数は、特に限定されない。
 第1の管部2Aは、直線状の円管部である。第3の管部2Cは、第1の管部2Aと内径が同じ直線状の円管部である。ただし、第3の管部2Cは、排ガスの流れる方向が第1の管部2Aと異なる。具体的には、第1の管部2Aは、排ガスが斜め下方へ流れる流路を形成し、第3の管部2Cは、排ガスが水平方向へ流れる流路を形成する。このため、第1の管部2Aと第3の管部2Cとは、側面視において円弧状に湾曲した形状の円管部である第2の管部2Bによって、なだらかに連結されている。なお、この例では、第1の管部2Aの中心軸線である第1の軸線C1と第3の管部2Cの中心軸線である第2の軸線C2とが、互いに交差する位置関係にある。
 第5の管部2Eは、第3の管部2Cと同軸の(第2の軸線C2を中心軸線とする)直線状の円管部である。ただし、第5の管部2Eは、第3の管部2Cの内径よりも外径が大きい円柱状の触媒3を収容するために、第3の管部2Cよりも内径が大きく形成されている。このため、第3の管部2Cと第5の管部2Eとは、排気流路の内径を徐々に拡大するための拡径流路を形成する(本実施形態ではテーパ状に拡径した)円管部である第4の管部2Dによって、なだらかに連結されている。
 つまり、触媒3へ至る排ガス流路として、触媒3の上流側に湾曲流路と拡径流路とを有する排ガス流路が形成されている。
 さらに、流路部材2は、噴射装置4から排ガス流路へ還元剤を噴射するための還元剤流路を形成する第6の管部2Fを備える。第6の管部2Fは、第3の管部2Cと同軸の(第2の軸線C2を中心軸線とする)円管部である。この例では、第6の管部2Fは、排ガス流路へ向かって還元剤流路の内径が徐々に拡大(本実施形態では若干テーパ状に拡径)されており、噴射された還元剤が内面に直接当たりにくいように(腐食しにくいように)構成されている。第6の管部2Fは、第2の管部2Bに接続されており、噴射装置4により噴射された還元剤は、第2の管部2B内を流れる排ガスと合流する。
 触媒3は、窒素酸化物(NOx)を還元する機能を有するSCR(Selective Catalytic
 Reduction:選択触媒還元)方式の触媒であり、排ガス流路における拡径流路の下流側(具体的には第5の管部2E内)に設けられている。
 噴射装置4は、液状の還元剤を噴射し、第6の管部2Fを介して、排ガス流路における拡散部材9よりも上流側(具体的には第2の管部2B内)へ還元剤を供給する供給装置として機能する。本実施形態では、還元剤として尿素水を噴射する。なお、厳密には、排ガス中に噴射された尿素水が、排ガスの熱により加水分解してアンモニア(NH3)が生じ、こうして生じたアンモニアが還元剤として機能するが、加水分解前の状態(尿素水)についても還元剤と称する。
 拡散部材9は、上流側から流入した排ガスを拡径流路へ拡散するように流出させ、触媒3に流入する排ガスの偏りを抑制する(均一に近づける)ためのものであり、排ガス流路における拡径流路の上流側(第3の管部2C内)に設けられている。
 ここで、一例としての拡散部材9の具体的な構成について、図2及び図3を用いて説明する。図2及び図3に示す拡散部材9は、1枚の金属製の板材を折り曲げて形成されたものであり、本体部91と、複数の羽根部92と、複数の支持部93と、を備える。
 支持部93は、排ガスの流れ方向Dに沿った上流側へ延びる突出片であり、階段状に折り曲げられることで、本体部91よりも径方向外側に張り出している。このため、拡散部材9を第3の管部2C内に取り付けた状態では、支持部93の外面が第3の管部2Cの内面と接触し、本体部91と第3の管部2Cの内面との間には隙間が生じる。そして、支持部93と第3の管部2Cとの接触部が溶接されることで、本体部91が支持部93により支持される。つまり、拡散部材9が第3の管部2Cに固定される。
 複数の羽根部92は、排ガスの流れ方向Dに沿った下流側に形成された突出片である。各羽根部92は、先端が折り曲げられることにより、排ガスの流れ方向Dに対して傾斜しており、傾斜に応じた方向へ排ガスを誘導する。各羽根部92の傾斜方向及び排ガスを誘導する方向は、以下のように設定されている。
 すなわち、図4に示すように各羽根部92が排ガスを誘導する方向のベクトルをベクトルEとすると、ベクトルEは、各羽根部92の根元から先端へ向かうベクトルとすることができる。そして、ベクトルEのうち、排ガスの流れ方向Dに直交する面内の成分をベクトルXとすると、拡散部材9を排ガスの流れ方向Dにおける下流側から見た場合に、各羽根部92のベクトルXは、全体として、図3に示すように一定の経路で一巡する。このため、拡散部材9を通過する排ガスは、各羽根部92においてベクトルXの方向へ誘導される。その結果、拡散部材9に流入した排ガスには、全体として、図3において反時計回りの旋回流が生じる。したがって、排ガスが拡径流路へ広がりやすくなり、触媒3に流入する排ガスの偏りが抑制される。
 誘導部材10は、上流側から流入した還元剤の流れを複数に分岐して拡散部材9へ誘導し、拡散部材9に流入する還元剤の分布の偏りを抑制する(均一に近づける)ためのものである。このため、誘導部材10は、排ガス流路における還元剤が排ガスと合流する合流位置又は合流位置よりも下流側であって、拡散部材9よりも上流側に設けられている。この例では、後述する3つの導風部11A~13Aの先端が還元剤の合流位置に位置するように(換言すれば、第1の軸線C1よりも噴射装置4寄りの位置に)設けられている。
 ここで、第1実施形態の誘導部材10の具体的な構成について、図5A、図5B、図5C、図6及び図7を用いて説明する。なお、図5Aは誘導部材10を上方から見た図(平面図)、図5Bは誘導部材10を側方から見た図(側面図)であり、図5A及び図5Bの左右方向は、図1の左右方向と一致する。また、図5Cは、誘導部材10を第2の軸線C2に沿った下流側(拡散部材9側)から見た図(背面図)である。
 誘導部材10は、1枚の金属製の板材を折り曲げて形成されたものである。具体的には、誘導部材10は、第1の板部11と、第2の板部12と、第3の板部13と、第4の板部14と、第5の板部15と、第6の板部16と、第7の板部17と、を備える。なお、これら第1~第7の板部11~17は、説明の便宜上、誘導部材10を複数の部分に区分したものである。
 第1~第7の板部11~17は、第6の管部2Fを介して噴射された還元剤の流れが阻害されにくいように、第2の軸線C2に対して平行又は平行に近い角度で形成されている。
 このうち、第1~第3の板部11~13は、それぞれ、第1の軸線C1及び第2の軸線C2と直交する線(図5Aでいう上下方向の線。図5Cでいう左右方向の線。)に対して平行な面を形成する。具体的には、第1~第3の板部11~13には、概略上方を向いた上面(第1の面)と、概略下方を向いた下面(第1の面の裏面である第2の面)と、が形成される。
 そして、第1~第3の板部11~13は、第3の板部13における上面と第2の板部12における下面、及び、第2の板部12における上面と第1の板部11における下面、がそれぞれ間隔を空けて対向するように設けられている。具体的には、第1の板部11は、第2の板部12及び第3の板部13と比較して排ガス流路における上流側に設けられ、第1の管部2Aからの排ガスの流れに対して対向するように設けられている。また、第2の板部12は、第3の板部13と比較して排ガス流路における上流側に設けられ、第1の管部2Aからの排ガスの流れに対して、第1の板部11の背後(第1の板部11よりも下方)において対向するように設けられている。さらに、第3の板部13は、第1の管部2Aからの排ガスの流れに対して、第2の板部12の背後(第2の板部12よりも下方)において対向するように設けられている。
 一方、第4の板部14は、第1の板部11の一端(図5Cでいう右側端部)と第2の板部12の一端(図5Cでいう右側端部)とを連結する。同様に、第5の板部15は、第2の板部12の他端(図5Cでいう左側端部)と第3の板部13の一端(図5Cでいう左側端部)とを連結する。
 さらに、第1の板部11の他端(図5Cでいう左側端部)には、第1の板部11を挟んで第4の板部14と概略対称形状の第6の板部16が連結されている。同様に、第3の板部13の他端(図5Cでいう右側端部)には、第3の板部13を挟んで第5の板部15と概略対称形状の第7の板部17が連結されている。
 つまり、第1~第7の板部11~17は、第2の軸線C2に沿った方向から見てS字状(詳細には、図5Cに示すように、排ガス流路における上流側から見て左右逆向きのS字状)に形成されている。
 第1の板部11には、還元剤の合流位置側へ延びる突出片である導風部11Aが形成されている。同様に、第2の板部12には、還元剤の合流位置側へ延びる突出片である導風部12Aが形成され、第3の板部13には、還元剤の合流位置側へ延びる突出片である導風部13Aが形成されている。つまり、誘導部材10は、3つの導風部11A~13Aを備えた3段形状のものである。
 また、導風部12Aは、還元剤が流れる方向(第2の軸線C2に沿った方向であり、図5Aでいう左右方向)と直交する方向(図5Aでいう上下方向)の幅が、導風部11Aと比較して広く形成されている。さらに、導風部13Aは、その幅が、導風部12Aと比較して広く形成されている。つまり、3つの導風部11A~13Aは、上方から見て、段階的に幅が広くなるように形成されている(図5A参照)。
 また、3つの導風部11A~13Aは、互いに平行ではなく、合流位置側へ向かって間隔が狭まるように設けられている。すなわち、導風部12Aは、導風部11Aに対し、拡散部材9側の間隔が、合流位置側の間隔と比較して広くなるように設けられており、導風部13Aは、導風部12Aに対し、拡散部材9側の間隔が、合流位置側の間隔と比較して広くなるように設けられている。
 このような形状の誘導部材10が設けられているため、噴射装置4により噴射された還元剤の流れは、3つの導風部11A~13Aのそれぞれによってその上面側と下面側とに分岐され、上下方向において複数(この例では4つ)に分岐される。具体的には、第1の板部11よりも上方の第1の流路と、第1の板部11と第2の板部12との間に形成された第2の流路と、第2の板部12と第3の板部13との間に形成された第3の流路と、第3の板部13よりも下方の第4の流路と、に分岐される。
 また、第1の板部11には、導風部11Aが形成された側とは反対側に、拡散部材9側へ延びる突出片である羽根部11Bが形成されている。同様に、第2の板部12には、導風部12Aが形成された側とは反対側に、拡散部材9側へ延びる突出片である羽根部12Bが形成されている。また、第3の板部13には、導風部13Aが形成された側とは反対側に、拡散部材9側へ延びる突出片である羽根部13Bが形成されている。3つの羽根部11B~13Bは、排ガスの下流側へ向かって斜め上方へ折り曲げられており、それぞれに対応する導風部11A~13Aとは異なる角度に設けられている。このため、羽根部11B~13Bの上面に沿って流れる排ガス(還元剤が含まれた排ガス)は、誘導部材10が設けられていない構成と比較して、排ガス流路における上部側へ誘導される。
 また、第4の板部14には、排ガス流路における下流側へ延びる突出片である支持部14Bが形成されている。そして、第5の板部15には、同様の突出片である支持部15Bが形成され、第6の板部16には、同様の突出片である支持部16Bが形成され、第7の板部17には、同様の突出片である支持部17Bが形成されている。4つの支持部14B~17Bは、階段状に折り曲げられることで、径方向外側に張り出している。このため、誘導部材10を第3の管部2C内に取り付けた状態では、4つの支持部14B~17Bのそれぞれの外面が第3の管部2Cの内面と接触する。そして、4つの支持部14B~17Bのそれぞれと第3の管部2Cとの接触部が溶接されることで、誘導部材10が第3の管部2Cに固定される。
 以上詳述した第1実施形態によれば、以下の効果が得られる。
 [A1]第1実施形態の排ガス浄化装置1は、拡散部材9の上流側に誘導部材10が設けられているため、誘導部材10が設けられていない構成と比較して、拡散部材9に流入する還元剤の分布の偏りを抑制することができる。したがって、触媒3に流入する排ガスの偏りを抑制することができる。
 ここで、このような効果が得られる理由について、誘導部材10を備えない構成(比較例の排ガス浄化装置)と対比する形で説明する。
 図8に示すように、誘導部材10を備えない比較例の排ガス浄化装置では、排ガス流路における湾曲流路において排ガスの流れが偏るため、合流した還元剤も排ガスに流されてしまい、排ガス流路における下部に偏ってしまう。このため、拡散部材9に流入する還元剤の分布が、この例では下方に大きく偏る。拡散部材9は、拡径流路における排ガスの偏りを抑制する機能を有するものの、偏って流入した還元剤を全体に広げる効果は少ない。このため、拡散部材9を通過した排ガスは、還元剤の分布が偏ったままの状態で触媒3へ流入しやすくなる。このような状態では、触媒3による排ガス浄化効果を十分に得ることができない。
 これに対し、第1実施形態の排ガス浄化装置1では、図1に示すように、拡散部材9の手前であって還元剤が偏りやすい位置(この例では排ガス流路における下部)に、誘導部材10が設けられている。誘導部材10は、噴射装置4により噴射された還元剤の流れを、導風部11A~13Aにより上下方向において複数に分岐し、羽根部11B~13Bにより拡散部材9における複数の箇所へ誘導する。このため、拡散部材9に流入する還元剤の分布の偏りが抑制されるように還元剤の流れを調整することができる。
 次に、シミュレーション結果について説明する。図9Aに示すように、比較例の排ガス浄化装置では、湾曲流路において排ガスの流れが排ガス流路における下部に偏ることにより、還元剤の流れ(図中の流線)も排ガス流路の下部へ偏ってしまい、排ガス中における還元剤の分布が偏ってしまう。このため、図10Aに示すように、触媒3の端面での還元剤(アンモニア)の分布(図中の点)の一様度は、偏ったものとなる。なお、図10Aは、図9AのXA-XA断面図に相当する。
 これに対し、図9Bに示すように、第1実施形態の排ガス浄化装置1では、拡散部材9の手前に設けられた誘導部材10により、排ガス及び還元剤の流れを調整することができる。具体的には、誘導部材10により、導風部11A~13Aの上面に沿った流れが生じ、また、導風部11A~13Aの背面(下面)に形成される負圧部により、周囲を流れる排ガスが巻き込まれることで、還元剤の流れ(図中の流線)の偏りが抑制され、効果的に拡散部材9へ導かれる。そして、羽根部11B~13Bにより、還元剤を拡散部材9における還元剤が流入しにくい位置(例えば上部)へ導くことで、還元剤の分布の偏りが抑制された状態の排ガスを拡散部材9へ流入させることができる。このため、図10Bに示すように、触媒3の端面での還元剤(アンモニア)の分布(図中の点)の一様度は、比較例よりも偏りが抑制されたものとなる。なお、図10Bは、図9BのXB-XB断面図に相当する。
 [A2]また、図5Aに示すように、誘導部材10に形成された3つの導風部11A~13Aは、上方から見て、段階的に幅が広くなるように形成されている。このため、最上段の導風部11Aの上面に沿った流れ(矢印F1)において、幅方向外側の流れが2段目の導風部12Aに導かれ(矢印F2)、2段目の導風部12Aの上面に沿った流れにおいて、幅方向外側の流れが3段目の導風部13Aに導かれる(矢印F3)。このように、排ガスの流れを第1の板部11から第2の板部12へ、第2の板部12から第3の板部13へ、と順に導くことで、還元剤を広範囲に分散させて偏りを抑制することができる。
 [A3]また、誘導部材10は、3つの導風部11A~13Aの間に形成された流路が、拡散部材9側へ広くなるように設けられているため、還元剤を上下方向に広範囲に分散させて偏りを抑制することができる。
 [A4]また、誘導部材10は、3つの導風部11A~13Aの先端が還元剤の合流位置に位置するように(換言すれば、第1の軸線C1よりも噴射装置4寄りの位置に)設けられている。このため、排ガスの流速が変化しても還元剤の流入位置がばらつきにくくなり、安定した効果を得ることができる。
 [A5]また、誘導部材10は、羽根部11B~13Bを備えるため、還元剤が含まれた排ガスを、拡散部材9における所望の位置へ導くことができる。また、還元剤が羽根部11B~13Bに衝突することで、加水分解を促進させることができる。
 [A6]また、誘導部材10は、1枚の金属製の板材を折り曲げて形成された簡素な構成のものであるため、低コストで実現することができる。
 [2.第2実施形態]
 第2実施形態は、基本的な構成は第1実施形態と同様であり、前述した誘導部材10に代えて、後述する誘導部材20が用いられている点が異なる。その他、第1実施形態と共通する構成については、同一符号を用いて説明を省略する。
 図11A~図11Dに示す第2実施形態の誘導部材20は、基本的には第1実施形態の誘導部材10と同様の構成であるため、相違点を中心に説明する。
 第2実施形態の誘導部材20は、第1実施形態の誘導部材10と同様、1枚の金属製の板材を折り曲げて形成されたものであるが、第1実施形態でいう第3の板部13及び第7の板部17を備えていない。つまり、第1実施形態の誘導部材10は、3つの導風部11A~13Aを備えた3段形状のものであるのに対し、第2実施形態の誘導部材20は2段形状である点で相違する。具体的には、誘導部材20は、第1の板部21と、第2の板部22と、第4の板部24と、第5の板部25と、第6の板部26と、を備える。なお、各部の名称は、第1実施形態の名称に対応させている。
 第1の板部21及び第2の板部22には、第1実施形態と同様、還元剤の合流位置側へ延びる突出片である導風部21A,22Aがそれぞれ形成されている。このため、噴射装置4により噴射された還元剤の流れは、2つの導風部21A,22Aのそれぞれによってその上面側と下面側とに分岐され、上下方向において複数(この例では3つ)に分岐される。
 また、第1の板部21及び第2の板部22には、第1実施形態と同様、導風部21A,22Aが形成された側とは反対側に、拡散部材9側へ延びる突出片である羽根部21B,22Bが形成されている。
 また、第4の板部24、第5の板部25及び第6の板部26には、排ガス流路における下流側へ延びる突出片である支持部24B,25B,26Bがそれぞれ形成されている。そして、支持部24B,25B,26Bのそれぞれと第3の管部2Cとの接触部が溶接されることで、誘導部材20が第3の管部2Cに固定される。
 以上詳述した第2実施形態によれば、第1実施形態と同様の効果が得られる。加えて、第2実施形態によれば、導風部21A,22Aの背面(下面)に形成される負圧空間を広くすることができ、還元剤を効果的に拡散部材9へ導くことができる。
 [3.第3実施形態]
 第3実施形態は、基本的な構成は第1実施形態と同様であり、前述した誘導部材10に代えて、後述する誘導部材30が用いられている点が異なる。その他、第1実施形態と共通する構成については、同一符号を用いて説明を省略する。
 図12A~図12Dに示す第3実施形態の誘導部材30は、基本的には第1実施形態の誘導部材10と同様の構成であるため、相違点を中心に説明する。
 第3実施形態の誘導部材30は、第1実施形態の誘導部材10と同様、1枚の金属製の板材を折り曲げて形成されたものであり、第1の板部31と、第2の板部32と、第3の板部33と、第4の板部34と、第5の板部35と、第6の板部36と、第7の板部37と、を備える。なお、各部の名称は、第1実施形態の名称に対応させている。
 第1~第3の板部31~33には、第1実施形態と同様、還元剤の合流位置側へ延びる突出片である導風部31A~33Aがそれぞれ形成されている。そして、第3実施形態では、導風部33Aにおける、還元剤が流れる方向と直交する方向(幅方向)の両側から、導風部33Aにおける上面側(この例では斜め上方)へ延びるように受け部33C,33Dが形成されている点で、第1実施形態と相違する。
 なお、第1~第3の板部31~33には、第1実施形態と同様、導風部31A~33Aが形成された側とは反対側に、拡散部材9側へ延びる突出片である羽根部31B~33Bが形成されている。また、第4~第7の板部34~37には、排ガス流路における下流側へ延びる突出片である支持部34B~37Bがそれぞれ形成されている。
 以上詳述した第3実施形態によれば、第1実施形態と同様の効果が得られる。加えて、第3実施形態によれば、最下段の第3の板部33を、斜め上方へ延びる受け部33C,33Dを有する受け形状にすることで、還元剤を含む排ガスが導風部33Aへ集まりやすくなり、より多くの排ガスを羽根部31B~33Bへ誘導することができる。
 [4.第4実施形態]
 第4実施形態は、基本的な構成は第1実施形態と同様であり、前述した誘導部材10に代えて、後述する誘導部材40が用いられている点が異なる。その他、第1実施形態と共通する構成については、同一符号を用いて説明を省略する。
 図13A~図13Dに示す第4実施形態の誘導部材40は、基本的には第1実施形態の誘導部材10と同様の構成であるため、相違点を中心に説明する。
 第4実施形態の誘導部材40は、第1実施形態の誘導部材10と同様、1枚の金属製の板材を折り曲げて形成されたものであり、第1の板部41と、第2の板部42と、第3の板部43と、第4の板部44と、第5の板部45と、第6の板部46と、第7の板部47と、を備える。なお、各部の名称は、第1実施形態の名称に対応させている。
 第1~第3の板部41~43には、第1実施形態と同様、還元剤の合流位置側へ延びる突出片である導風部41A~43Aがそれぞれ形成されている。また、第1~第3の板部41~43には、第1実施形態と同様、導風部41A~43Aが形成された側とは反対側に、拡散部材9側へ延びる突出片である羽根部41B~43Bが形成されている。
 そして、第4実施形態では、導風部41A~43A及び羽根部41B~43Bに複数の円形の貫通孔40Hが形成されている点で、第1実施形態と相違する。
 なお、第4~第7の板部44~47には、排ガス流路における下流側へ延びる突出片である支持部44B~47Bがそれぞれ形成されている。
 以上詳述した第4実施形態によれば、第1実施形態と同様の効果が得られる。加えて、第4実施形態によれば、導風部41A~43A及び羽根部41B~43Bに複数の貫通孔40Hが形成されているため、貫通孔40Hを抜ける排ガスの流れを利用して還元剤の加水分解を促進しつつ、排ガスの流れを広範囲に導くことができる。
 [5.第5実施形態]
 第5実施形態は、基本的な構成は第1実施形態と同様であり、前述した誘導部材10に代えて、後述する誘導部材50が用いられている点が異なる。その他、第1実施形態と共通する構成については、同一符号を用いて説明を省略する。
 図14A~図14Dに示す第5実施形態の誘導部材50は、基本的には第1実施形態の誘導部材10と同様の構成であるため、相違点を中心に説明する。
 第5実施形態の誘導部材50は、第1実施形態の誘導部材10と同様、1枚の金属製の板材を折り曲げて形成されたものであり、第1の板部51と、第2の板部52と、第3の板部53と、第4の板部54と、第5の板部55と、第6の板部56と、第7の板部57と、を備える。なお、各部の名称は、第1実施形態の名称に対応させている。
 第1~第3の板部51~53には、第1実施形態と同様、還元剤の合流位置側へ延びる突出片である導風部51A~53Aがそれぞれ形成されている。また、第1の板部51には、第1実施形態と同様、導風部51Aが形成された側とは反対側に、拡散部材9側へ延びる突出片である羽根部51Bが形成されている。
 そして、第5実施形態では、第2の板部52に、第1実施形態でいう羽根部12Bに代えて、2つの羽根部52E,52Fが設けられ、第3の板部53に、第1実施形態でいう羽根部13Bに代えて、2つの羽根部53E,53Fが設けられている点で、第1実施形態と相違する。
 第2の板部52に形成された羽根部52E,52Fは、図14Cでいう右側の羽根部52Eが斜め上方へ折り曲げられているのに対し、図14Cでいう左側の羽根部52Fは斜め下方へ折り曲げられている。また、第3の板部53に形成された羽根部53E,53Fは、図14Cでいう右側の羽根部53Eが斜め下方へ折り曲げられているのに対し、図14Cでいう左側の羽根部53Fは斜め上方へ折り曲げられている。つまり、第2の板部52及び第3の板部53のそれぞれに、互いに向きが異なる複数の羽根部(この例では第1の羽根部及び第2の羽根部の2つの羽根部)が形成されている。
 なお、第4~第7の板部54~57には、排ガス流路における下流側へ延びる突出片である支持部54B~57Bがそれぞれ形成されている。
 以上詳述した第5実施形態によれば、第1実施形態と同様の効果が得られる。加えて、第5実施形態によれば、第2の板部52及び第3の板部53のそれぞれに複数(この例では2つ)の羽根部52E,52F,53E,53Fが形成されているため、還元剤を広範囲に分散させて偏りを抑制することができる。
 [6.他の実施形態]
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
 [B1]上記実施形態では、複数の板部を備える誘導部材を例示したが、これに限定されるものではない。例えば、図15A~図15Dに示す誘導部材60は、1枚の金属製の板をW字状に湾曲して形成されたものである。このような簡素な構成であっても、第1実施形態と同様、噴射装置4により噴射された還元剤の流れを、上下方向において複数(この例では2つ)に分岐し、拡散部材9における複数の箇所へ誘導することができる。したがって、拡散部材9に流入する還元剤の分布の偏りが抑制されるように還元剤の流れを調整することができる。
 [B2]上記実施形態では、誘導部材を合流位置付近に設けた構成を例示したが、これに限定されるものではなく、合流位置から離れた位置に配置してもよい。例えば、図1に示す構成において、誘導部材10が、第1の軸線C1よりも拡散部材9寄りの位置に設けられていてもよい。このようにしても、偏って分布した還元剤が流入する位置に誘導部材が設けられていれば、同様の効果が得られる。
 [B3]上記実施形態では、湾曲流路が形成された排ガス流路を前提としているが、これに限定されるものではなく、例えば、図16に示すように、直線状の排ガス流路に適用してもよい。すなわち、図16に示す構成においても、還元剤が排ガスと合流する合流位置において、還元剤が供給される方向と排ガスの流れる方向とが異なるため、還元剤が排ガスの流れに影響されて部分的に(この例では上方に)偏りやすくなってしまう。このため、誘導部材10を設けることで、噴射装置4により噴射された還元剤の流れを、下方へ誘導することができる。
 [B4]上記実施形態の流路部材、拡散部材、誘導部材などの構成は、あくまでも一例であり、上記実施形態とは異なる構造や固定方法を採用してもよい。例えば、誘導部材において、導風部は1つでもよく、複数(例えば4つ以上)としてもよい。また、例えば、羽根部を備えていない構成の誘導部材としてもよい。また、例えば、第1の管部2A及び第3の管部2Cは、円管部以外の管形状としてもよく、また、曲線状としてもよい。また、第1の管部2A及び第3の管部2Cは、内径が異なっていてもよい。また、第3の管部2C及び第5の管部2Eは、同軸でなくてもよい。また、上記複数の実施形態の特徴部を組み合わせた構成としてもよい。
 [B5]還元剤は、尿素水に限定されるものではなく、触媒における排ガスの浄化に寄与するものであればよい。
 [B6]本発明の各構成要素は概念的なものであり、上記実施形態に限定されない。例えば、1つの構成要素が有する機能を複数の構成要素に分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。

Claims (10)

  1.  排ガス流路における拡径流路の下流側に設けられた触媒と、
     前記排ガス流路における前記拡径流路の上流側に設けられ、上流側から流入した排ガスを前記拡径流路へ拡散するように流出させる拡散部材と、
     前記排ガス流路における前記拡散部材よりも上流側へ還元剤を供給する供給装置と、
     前記排ガス流路における前記還元剤が排ガスと合流する合流位置又は前記合流位置よりも下流側であって、前記拡散部材よりも上流側に設けられ、上流側から流入した前記還元剤の流れを複数に分岐して前記拡散部材へ誘導する誘導部材と、
     を備えることを特徴とする排ガス浄化装置。
  2.  請求項1に記載の排ガス浄化装置であって、
     前記誘導部材は、前記合流位置側へ延びる導風部が形成された板部を備え、
     前記導風部は、前記還元剤の流れを、前記板部における第1の面側と、前記第1の面の裏面である第2の面側と、に分岐する
     ことを特徴とする排ガス浄化装置。
  3.  請求項2に記載の排ガス浄化装置であって、
     第1の前記板部と、
     第2の前記板部と、
     を備え、
     前記第1の板部及び前記第2の板部は、前記第1の板部における前記第2の面と、前記第2の板部における前記第1の面と、が間隔を空けて対向するように設けられている
     ことを特徴とする排ガス浄化装置。
  4.  請求項3に記載の排ガス浄化装置であって、
     前記第1の板部は、前記第2の板部と比較して、前記排ガス流路における上流側に設けられ、
     前記第2の板部に形成された前記導風部は、前記還元剤が流れる方向と直交する方向の幅が、前記第1の板部に形成された前記導風部と比較して、広く形成されている
     ことを特徴とする排ガス浄化装置。
  5.  請求項3又は請求項4に記載の排ガス浄化装置であって、
     前記第2の板部に形成された前記導風部は、前記第1の板部に形成された前記導風部に対し、前記拡散部材側の前記間隔が、前記合流位置側の前記間隔と比較して、広くなるように設けられている
     ことを特徴とする排ガス浄化装置。
  6.  請求項2から請求項5までのいずれか1項に記載の排ガス浄化装置であって、
     前記板部には、前記導風部が形成された側とは反対側に、前記拡散部材側へ延びる羽根部が形成されている
     ことを特徴とする排ガス浄化装置。
  7.  請求項6に記載の排ガス浄化装置であって、
     前記板部には、第1の前記羽根部と、前記第1の羽根部とは向きが異なる第2の前記羽根部と、が形成されている
     ことを特徴とする排ガス浄化装置。
  8.  請求項2から請求項7までのいずれか1項に記載の排ガス浄化装置であって、
     前記板部には、前記導風部における、前記還元剤が流れる方向と直交する方向の両側から、前記導風部における前記第1の面側へ延びるように受け部が形成されている
     ことを特徴とする排ガス浄化装置。
  9.  請求項2から請求項8までのいずれか1項に記載の排ガス浄化装置であって、
     前記板部には、前記導風部を貫通する貫通孔が形成されている
     ことを特徴とする排ガス浄化装置。
  10.  請求項1から請求項9までのいずれか1項に記載の排ガス浄化装置であって、
     前記拡散部材は、流入した排ガスに旋回流を生じさせるものである
     ことを特徴とする排ガス浄化装置。
PCT/JP2013/074798 2012-11-16 2013-09-13 排ガス浄化装置 WO2014077023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13855902.6A EP2921219B1 (en) 2012-11-16 2013-09-13 Exhaust gas purification device
CN201380059554.2A CN104797325B (zh) 2012-11-16 2013-09-13 排气净化装置
US14/443,219 US20150290585A1 (en) 2012-11-16 2013-09-13 Exhaust gas purification device
CA2891571A CA2891571C (en) 2012-11-16 2013-09-13 Exhaust gas purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-252472 2012-11-16
JP2012252472A JP6073659B2 (ja) 2012-11-16 2012-11-16 排ガス浄化装置

Publications (1)

Publication Number Publication Date
WO2014077023A1 true WO2014077023A1 (ja) 2014-05-22

Family

ID=50730946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074798 WO2014077023A1 (ja) 2012-11-16 2013-09-13 排ガス浄化装置

Country Status (6)

Country Link
US (1) US20150290585A1 (ja)
EP (1) EP2921219B1 (ja)
JP (1) JP6073659B2 (ja)
CN (1) CN104797325B (ja)
CA (1) CA2891571C (ja)
WO (1) WO2014077023A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664081B2 (en) 2007-07-24 2017-05-30 Faurecia Emissions Control Technologies, Germany Gmbh Assembly and method for introducing a reducing agent into the exhaust pipe of an exhaust system of an internal combustion engine
US9714598B2 (en) 2015-04-30 2017-07-25 Faurecia Emissions Control Technologies, Usa, Llc Mixer with integrated doser cone
US9719397B2 (en) 2015-04-30 2017-08-01 Faurecia Emissions Control Technologies Usa, Llc Mixer with integrated doser cone
US9726064B2 (en) 2015-04-30 2017-08-08 Faurecia Emissions Control Technologies, Usa, Llc Mixer for use in a vehicle exhaust system
US9828897B2 (en) 2015-04-30 2017-11-28 Faurecia Emissions Control Technologies Usa, Llc Mixer for a vehicle exhaust system
US10227907B2 (en) 2014-06-03 2019-03-12 Faurecia Emissions Control Technologies, Usa, Llc Mixer and doser cone assembly
US10933387B2 (en) 2016-10-21 2021-03-02 Faurecia Emissions Control Technologies, Usa, Llc Reducing agent mixer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011684A (ja) * 2017-06-29 2019-01-24 いすゞ自動車株式会社 排気ガス浄化システム
CN108119211A (zh) * 2017-12-23 2018-06-05 无锡威孚力达催化净化器有限责任公司 一种满足欧六排放标准的紧凑式混合装置
JP2019157826A (ja) * 2018-03-16 2019-09-19 いすゞ自動車株式会社 内燃機関の排気浄化装置及びその装置に適用される管部材
US10787946B2 (en) 2018-09-19 2020-09-29 Faurecia Emissions Control Technologies, Usa, Llc Heated dosing mixer
CN109289573B (zh) * 2018-10-16 2024-04-05 中国华电科工集团有限公司 一种应用于脱硝系统的气体混合装置及方法
JP7437156B2 (ja) * 2019-12-27 2024-02-22 株式会社豊田自動織機 排気浄化システム
US11441460B2 (en) 2020-10-26 2022-09-13 Caterpillar Inc. Vane mixer in engine exhaust system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505638A (ja) * 1999-07-22 2003-02-12 シーメンス アクチエンゲゼルシヤフト 排ガスに作用物質を混入するための装置
WO2008111254A1 (ja) * 2007-03-12 2008-09-18 Bosch Corporation 内燃機関の排気浄化装置
JP2009068460A (ja) * 2007-09-14 2009-04-02 Toyota Motor Corp 排気通路の添加剤分散板構造
JP2009085179A (ja) * 2007-10-02 2009-04-23 Toyota Motor Corp 排気通路の添加剤分散板構造
JP2010090808A (ja) 2008-10-08 2010-04-22 Toyota Motor Corp 排気浄化装置および内燃機関の排気浄化装置
JP2011252498A (ja) * 2011-07-24 2011-12-15 Bosch Corp 内燃機関の排気浄化装置、ミキサープレート、及びミキサーユニット、並びにミキサープレート用プレス成型装置
JP2013002334A (ja) * 2011-06-15 2013-01-07 Toyota Industries Corp 排気ガス後処理装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248940A (ja) * 1993-02-24 1994-09-06 Tokyo Gas Co Ltd 三元触媒容器装置
US7533520B2 (en) * 2006-04-24 2009-05-19 Fleetguard, Inc. Exhaust aftertreatment mixer with stamped muffler flange
DE102006058402A1 (de) * 2006-12-12 2008-06-19 Bayerische Motoren Werke Ag Vorrichtung zum Zumischen eines Reduktionsmittels in einen Abgasstrom einer Brennkraftmaschine
EP1982756A1 (en) * 2007-04-19 2008-10-22 Magneti Marelli Sistemi di Scarico S.p.a. An exhaust system of an internal combustion engine
DE102007020812B4 (de) * 2007-05-04 2010-01-14 Audi Ag Vorrichtung und Verfahren zur Zudosierung von fluiden schadstoffreduzierenden Medien in einen Abgaskanal einer Brennkraftmaschine
US7814745B2 (en) * 2007-07-17 2010-10-19 Ford Global Technologies, Llc Approach for delivering a liquid reductant into an exhaust flow of a fuel burning engine
JP4286887B2 (ja) * 2007-09-28 2009-07-01 日産ディーゼル工業株式会社 排気浄化装置
DE102008008786A1 (de) * 2008-02-12 2009-08-13 Man Nutzfahrzeuge Aktiengesellschaft Vorrichtung zur Verminderung von Dibenzo-Dioxin- und Dibenzo-Furan-Emissionen aus übergangsmetallhaltigen Katalysatoren
EP2111916B1 (en) * 2008-04-21 2012-10-24 Swenox AB Gas treatment apparatus, vehicle equipped with it and method for treatment of an exhaust gas
US8272777B2 (en) * 2008-04-21 2012-09-25 Heinrich Gillet Gmbh (Tenneco) Method for mixing an exhaust gas flow
JP4834041B2 (ja) * 2008-08-04 2011-12-07 本田技研工業株式会社 排ガス浄化装置
WO2010053033A1 (ja) * 2008-11-05 2010-05-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9429058B2 (en) * 2008-12-01 2016-08-30 GM Global Technology Operations LLC Mixing devices for selective catalytic reduction systems
JP2012127311A (ja) * 2010-12-17 2012-07-05 Ud Trucks Corp 還元剤の拡散器
US8800276B2 (en) * 2012-03-14 2014-08-12 Ford Global Technologies, Llc Mixing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505638A (ja) * 1999-07-22 2003-02-12 シーメンス アクチエンゲゼルシヤフト 排ガスに作用物質を混入するための装置
WO2008111254A1 (ja) * 2007-03-12 2008-09-18 Bosch Corporation 内燃機関の排気浄化装置
JP2009068460A (ja) * 2007-09-14 2009-04-02 Toyota Motor Corp 排気通路の添加剤分散板構造
JP2009085179A (ja) * 2007-10-02 2009-04-23 Toyota Motor Corp 排気通路の添加剤分散板構造
JP2010090808A (ja) 2008-10-08 2010-04-22 Toyota Motor Corp 排気浄化装置および内燃機関の排気浄化装置
JP2013002334A (ja) * 2011-06-15 2013-01-07 Toyota Industries Corp 排気ガス後処理装置
JP2011252498A (ja) * 2011-07-24 2011-12-15 Bosch Corp 内燃機関の排気浄化装置、ミキサープレート、及びミキサーユニット、並びにミキサープレート用プレス成型装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2921219A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664081B2 (en) 2007-07-24 2017-05-30 Faurecia Emissions Control Technologies, Germany Gmbh Assembly and method for introducing a reducing agent into the exhaust pipe of an exhaust system of an internal combustion engine
US10227907B2 (en) 2014-06-03 2019-03-12 Faurecia Emissions Control Technologies, Usa, Llc Mixer and doser cone assembly
US10294843B2 (en) 2014-06-03 2019-05-21 Faurecia Emissions Control Technologies, Usa, Llc Mixer and doser cone assembly
US9714598B2 (en) 2015-04-30 2017-07-25 Faurecia Emissions Control Technologies, Usa, Llc Mixer with integrated doser cone
US9719397B2 (en) 2015-04-30 2017-08-01 Faurecia Emissions Control Technologies Usa, Llc Mixer with integrated doser cone
US9726064B2 (en) 2015-04-30 2017-08-08 Faurecia Emissions Control Technologies, Usa, Llc Mixer for use in a vehicle exhaust system
US9828897B2 (en) 2015-04-30 2017-11-28 Faurecia Emissions Control Technologies Usa, Llc Mixer for a vehicle exhaust system
US10933387B2 (en) 2016-10-21 2021-03-02 Faurecia Emissions Control Technologies, Usa, Llc Reducing agent mixer

Also Published As

Publication number Publication date
CN104797325B (zh) 2016-08-17
CN104797325A (zh) 2015-07-22
EP2921219B1 (en) 2018-07-18
JP6073659B2 (ja) 2017-02-01
EP2921219A1 (en) 2015-09-23
US20150290585A1 (en) 2015-10-15
JP2014100628A (ja) 2014-06-05
CA2891571C (en) 2018-01-09
EP2921219A4 (en) 2016-07-20
CA2891571A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
WO2014077023A1 (ja) 排ガス浄化装置
EP2949896B1 (en) Exhaust gas purification device
US8033714B2 (en) Fluid mixing apparatus
US9410464B2 (en) Perforated mixing pipe with swirler
US8033101B2 (en) Exhaust-gas system having an injection nozzle
JP6306306B2 (ja) 拡散板及びその製造方法
JP6166468B2 (ja) 排気攪拌装置
JP5791489B2 (ja) 内燃機関の排気浄化装置
WO2014178213A1 (ja) 排気攪拌装置
JP6650044B2 (ja) 還元剤混合装置
JP5760799B2 (ja) 内燃機関の排気浄化装置
JP6846212B2 (ja) 旋回流発生装置
JP6894385B2 (ja) 混合装置
WO2017126120A1 (ja) 拡散板
JP7469215B2 (ja) 排気浄化装置
JP6846155B2 (ja) 旋回流発生装置
JP2020094569A (ja) 排気攪拌装置
JP2021156226A (ja) 排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2891571

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14443219

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013855902

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201503031

Country of ref document: ID