WO2014075351A1 - 一种光配向液晶材料的终点检测方法及装置 - Google Patents

一种光配向液晶材料的终点检测方法及装置 Download PDF

Info

Publication number
WO2014075351A1
WO2014075351A1 PCT/CN2012/085374 CN2012085374W WO2014075351A1 WO 2014075351 A1 WO2014075351 A1 WO 2014075351A1 CN 2012085374 W CN2012085374 W CN 2012085374W WO 2014075351 A1 WO2014075351 A1 WO 2014075351A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal material
photo
end point
alignment
Prior art date
Application number
PCT/CN2012/085374
Other languages
English (en)
French (fr)
Inventor
徐亮
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/702,612 priority Critical patent/US8896804B2/en
Publication of WO2014075351A1 publication Critical patent/WO2014075351A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Definitions

  • the invention relates to a method and a device for detecting an end point of a light-aligning liquid crystal material.
  • the present application claims to be submitted to the Chinese Patent Office on November 19, 2012, the application number is 201210467331.7, and the invention name is "a method and device for detecting the end point of a liquid alignment liquid crystal material".
  • Priority of the Chinese Patent Application the entire contents of which are incorporated herein by reference.
  • the present invention relates to the field of liquid crystal display, and more particularly to an end point detecting method and apparatus for a light alignment liquid crystal material. Background technique
  • LCD liquid crystal display devices PDP (Plasma Display Panel), and OLED (Organic Light-Emitting Diode) have been rapidly developed.
  • PDP Plasma Display Panel
  • OLED Organic Light-Emitting Diode
  • liquid crystal display devices are gradually replacing cold cathode display devices due to their low weight, small size, and low power consumption.
  • the initial TN (Twisted nematic) or STN (Super Twisted Nematic) liquid crystal displays have problems such as low contrast and poor viewing angle.
  • IPS In Plan Switch
  • VA Very Alignment
  • the IPS in-plane switch display mode For the IPS in-plane switch display mode, it has a very good wide viewing angle display effect, but in order to achieve a better display effect of the in-plane switch display mode, the requirements for the rubbing process are very high in the production process. This largely results in less process redundancy for its friction. In the mass production process, problems arise from time to time. Compared with the IPS in-plane switching mode, the VA vertical alignment mode does not require a friction process in the production process, which greatly enhances its advantages in large-scale production.
  • PSVA PSVA Polymer stained vertical alignment
  • the polymer stabilized vertical alignment mode uses ultraviolet light alignment, and the ultraviolet light is irradiated onto the liquid crystal through the respective layers on the glass substrate and the alignment film, the illuminance of the ultraviolet light actually irradiated onto the liquid crystal is affected by The influence of the substrate is very large.
  • production management is carried out by controlling the irradiation time.
  • simply controlling the irradiation time tends to cause insufficient alignment or excessive alignment.
  • the technical problem to be solved by the present invention is to provide a method and a device for detecting an end point of a light alignment liquid crystal material, which can control the reaction end point of the alignment by detecting the termination point of the light alignment, and reduce the influence of individual differences of the glass substrate on the optical alignment, and will not A reaction process that affects the alignment of the reactive monomers.
  • the present invention adopts a technical solution: a method for detecting an end point of a light alignment liquid crystal material, comprising the following steps:
  • Performing optical alignment on the liquid crystal material comprising: irradiating the liquid crystal material with radiation light under the action of an electric field to cause polymerization reaction of the reactive monomer in the liquid crystal material;
  • step of detecting the residual amount of the reactive monomer in the liquid crystal material comprises the steps of:
  • a concentration decrease value of cinnamic acid in the reaction monomer is obtained according to the infrared light absorption intensity of the reactive monomer in the liquid crystal material.
  • the step of irradiating the liquid crystal material with infrared light comprises: emitting. , - ; , ⁇ ' :
  • the step of obtaining a decrease in the concentration of cinnamic acid in the reactive monomer according to the infrared light absorption intensity of the reactive monomer in the liquid crystal material comprises:
  • the step of irradiating the liquid crystal material with infrared light comprises: emitting. , - ; , ⁇ ' :
  • the step of detecting the change value of the thickness of the liquid crystal cell includes at least: a step of:
  • the incident light has a wavelength of 580 nm.
  • an end point detecting device for a light alignment liquid crystal material wherein at least:
  • An electric field device for generating an electric field
  • a radiant light device for generating a radiant light, causing a reactive monomer in the liquid crystal material to undergo a polymerization reaction under the action of an electric field and a radiant light, thereby realizing alignment of the liquid crystal material;
  • a first detecting device for detecting the residual amount of the reactive monomer in the liquid crystal material; and a first determining device for determining whether the detected residual amount of the reactive monomer reaches a preset value When the first determining means determines that it is YES, it is a termination point of the light distribution of the liquid crystal material.
  • the first detecting device at least includes:
  • An infrared emitting probe is mounted on the top of the liquid crystal material liquid crystal cell for emitting infrared light to the liquid crystal cell;
  • An infrared receiving probe is disposed at a bottom of the liquid crystal cell for receiving the infrared light penetrating the liquid crystal cell;
  • the infrared light absorption intensity of the reactive monomer in the liquid crystal cell and the decrease value of the cinnamic acid concentration in the reaction monomer are obtained according to the infrared light emitted by the infrared emitting probe and the infrared light receiving by the infrared receiving probe.
  • Concentration detector Infrared light illuminates the liquid crystal material.
  • the concentration detector calculates the residual amount of reactive monomers in the liquid crystal cell by obtaining the intensity of infrared light absorption of a specific wavelength in the cinnamic acid component. Infrared light illuminates the liquid crystal material.
  • an end point detecting device for a light alignment liquid crystal material wherein at least:
  • An electric field device for generating an electric field
  • a radiant light device for generating a radiant light, causing a reactive monomer in the liquid crystal material to undergo a polymerization reaction under the action of an electric field and a radiant light, thereby realizing alignment of the liquid crystal material;
  • a second detecting device for detecting a change in the thickness of the liquid crystal cell in the liquid crystal material; and a second determining device for determining whether the detected thickness change value of the liquid crystal cell reaches a preset value, when the second When the judging device judges YES, the liquid crystal material optical alignment is terminated.
  • the second detecting device comprises at least: a light source for generating the illumination of the liquid crystal cell by incident light that does not cause polymerization of the reaction monomer.
  • the light source uses visible light having a wavelength of 580 nm.
  • the second detecting device further includes: a polarizer installed on the top of the liquid crystal cell.
  • the second detecting device further includes: an analyzer installed at a bottom of the liquid crystal cell.
  • the method and device for detecting the end point of the light-aligning liquid crystal material provided by the invention have the following beneficial effects: by detecting the residual amount of the reactive monomer or the thickness variation of the liquid crystal cell, determining the termination point of the light alignment liquid crystal material, and then performing the pair
  • the automatic control of the light alignment irradiation time can reduce the influence of the glass substrate on the light distribution due to individual differences, and does not interfere with the reaction process of the photo-alignment of the reaction monomers.
  • FIG. 1 is a flow chart showing a first embodiment of an end point detecting method for a photo-aligned liquid crystal material according to the present invention.
  • FIG. 2 is a block diagram showing a specific flow of the first embodiment of the method for detecting an end point of a liquid alignment liquid crystal material according to the present invention.
  • FIG. 3 is a cinnamic acid in the first embodiment of the method for detecting an end point of a liquid alignment liquid crystal material according to the present invention.
  • Fig. 4 is a flow chart showing a second embodiment of the method for detecting an end point of a liquid alignment liquid crystal material according to the present invention.
  • Figure 5 is a block diagram showing the structure of the first embodiment of the end point detecting device for a light-aligning liquid crystal material of the present invention.
  • Fig. 6 is a view showing the structure of detecting the residual amount of the reaction monomer in the first embodiment of the end point detecting device for photoalignment liquid crystal material of the present invention.
  • Figure 7 is a block diagram showing the structure of the second embodiment of the end point detecting device for a light-aligning liquid crystal material of the present invention.
  • Fig. 8 is a structural schematic view showing the value of detecting the thickness variation of the liquid crystal cell in the second embodiment of the end point detecting device for the photoalignment liquid crystal material of the present invention. detailed description
  • FIG. 1 is a first embodiment of a method for detecting an end point of a light alignment liquid crystal material according to the present invention.
  • the method for detecting the end point of the light-aligning liquid crystal material in the embodiment is applied in the PSVA polymer stable vertical alignment mode
  • FIG. 1 is a flow chart of the first embodiment of the method for detecting the end point of the liquid alignment liquid crystal material, which includes the following Steps:
  • Performing optical alignment on the liquid crystal material comprising: irradiating the liquid crystal material with radiation light under the action of an electric field to cause polymerization reaction of the reactive monomer in the liquid crystal material;
  • Detecting a residual amount of the reactive monomer in the liquid crystal material determining whether the detected residual amount of the reactive monomer reaches a preset value, and when it is determined to be YES, is a termination point of the liquid alignment of the liquid crystal material .
  • step S10 the liquid crystal material is optically aligned, for example, by ultraviolet light alignment, and the ultraviolet light is irradiated onto the liquid crystal material after passing through each layer on the glass substrate and the alignment film.
  • Ultraviolet light causes polymerization of the reactive monomer in the liquid crystal material.
  • Step S201 detecting a residual amount of the reactive monomer in the liquid crystal material.
  • This step prepares for the subsequent determination of the termination point of the optical alignment by detecting the amount of residual monomer.
  • This step can be used with respect to a single management mode that manages the optical alignment only by using the control illumination time.
  • FIG. 2 a specific flow chart of the first embodiment of the method for detecting the end point of the optical alignment liquid crystal material according to the present invention is shown.
  • the step of detecting the residual amount of the reactive monomer in the liquid crystal material is carried out as follows.
  • Step S202 irradiating the liquid crystal material with infrared light.
  • the effect of the infrared light irradiation is to cause the reaction monomer to absorb the infrared light to a certain extent, and then perform the step of detecting the residual amount of the reactive monomer in the liquid crystal material.
  • reaction monomer does not initiate polymerization under the irradiation of infrared light
  • measurement can be performed all the time during the entire reaction, and the reaction termination point is determined according to the predetermined specifications. That is, this step may irradiate the liquid crystal material with infrared light which does not cause polymerization of the reaction monomer.
  • Step S203 a step of obtaining a carbon light double bond in the cinnamic acid component for infrared light absorption intensity of a specific wavelength.
  • Step S204 obtaining a concentration decrease value of cinnamic acid in the reaction monomer according to the infrared light absorption intensity of the reactive monomer in the liquid crystal material.
  • the effect of the above two steps is: since the concentration of cinnamic acid in the reactive monomer decreases after the completion of the photoalignment reaction, by analyzing the infrared absorption intensity of the specific wavelength of the phthalic carbon double bond in the chemical structure of cinnamic acid, The residual amount of the reactive monomer in the liquid crystal cell is calculated, and the termination point of the photoalignment reaction can be determined by judgment.
  • the molecular structure of the cinnamic acid is shown in FIG.
  • step S301 it is judged whether the detected residual amount of the reactive monomer has reached a preset value, and when it is judged as YES, it is a termination point of the liquid crystal material optical alignment.
  • This step includes the following:
  • Step S302 determining whether the concentration of the cinnamic acid in the reaction monomer reaches a preset value, and if the concentration of the cinnamic acid decreases to a preset value, the residual amount of the reactive monomer in the liquid crystal material also reaches a preset.
  • the value proceeds to step S40, where the time point is the end point of the optical alignment, and the measure of stopping the alignment should be taken, otherwise the alignment is easy. If the concentration of cinnamic acid has not reached the preset value, it means that the residual amount of reactive monomer in the liquid crystal material has not reached the corresponding preset value. At this time, it is necessary to continue the photo-alignment process to prevent insufficient alignment and continue to transfer. The steps of judgment.
  • FIG. 4 it is a second embodiment of the method for detecting the end point of the light alignment liquid crystal material of the present invention.
  • the embodiment is to detect the liquid crystal material.
  • the material that is, the change value of the thickness of the liquid crystal cell, obtains the termination point of the light alignment liquid crystal material.
  • the principle of this embodiment is: in the photo-alignment reaction process of the photo-aligned liquid crystal cell, since the reaction monomer is polymerized, the thickness of the liquid crystal cell case is reduced, so by detecting the cell thickness of the liquid crystal cell, the optical alignment can be obtained.
  • the progress of the reaction It includes the following steps:
  • Step S205 detecting a change value of a thickness of the liquid crystal cell in the liquid crystal material, and detecting a progress of photo-alignment by detecting a change in a cell thickness of the liquid crystal cell, comprising: irradiating the liquid crystal cell with incident light that does not cause a polymerization reaction of the reaction monomer; For example, irradiation with visible light having a wavelength of 580 nm is performed.
  • This step prepares for the subsequent detection of the change in the cell thickness of the liquid crystal cell and the determination of the termination point of the light alignment by irradiating the liquid crystal cell.
  • Step S304 determining whether the detected thickness change value of the liquid crystal cell reaches a preset value. If the determination is yes, the process proceeds to step S40, where the time point is the end point of the optical alignment, and the measures for stopping the alignment should be taken, otherwise the alignment is easy. over. If the judgment is no, the process of optical alignment needs to be continued to prevent the alignment from being insufficient, and the process of continuing the judgment is transferred.
  • the invention discloses an end point detecting device for a light alignment liquid crystal material. Referring to FIG. 5 and FIG. 6 together, it is a first embodiment of the optical alignment liquid crystal material end point detecting device of the present invention.
  • the end point detecting device of the optical alignment liquid crystal material of the present invention at least includes:
  • the radiant light device 102 is configured to generate radiant light, so that the reactive monomer in the liquid crystal material is polymerized under the action of the electric field and the radiant light, thereby realizing the alignment of the liquid crystal material;
  • a first detecting device 201 configured to detect a residual quantity of the reactive monomer in the liquid crystal material
  • a first determining device 301 configured to determine whether the detected residual amount of the reactive monomer reaches a preset The value, when the first determining means 301 determines YES, is the termination point of the light distribution of the liquid crystal material.
  • the first detecting device 201 includes at least:
  • the infrared emitting probe 2011 is installed at the top of the liquid crystal material liquid crystal cell 4, and is used for the infrared ray receiving probe 2012 of the liquid crystal cell, and is installed at the bottom of the liquid crystal cell 4 for receiving infrared light penetrating the liquid crystal cell 4; Exciting infrared light and the infrared according to the infrared emitting probe 2011
  • the line receiving probe 2012 receives the infrared light, acquires the infrared light absorption intensity of the reactive monomer in the liquid crystal cell 4, and the concentration detector 2013 in which the cinnamic acid concentration in the reaction monomer decreases.
  • the infrared emission probe 2011 and the infrared receiving probe 2012 function to: absorb the infrared light to a certain extent by the reactive monomer, and then perform the detection of the residual amount of the reactive monomer in the liquid crystal material.
  • reaction monomer does not initiate polymerization under the irradiation of infrared light
  • measurement can be performed all the time during the entire reaction, and the reaction termination point is determined according to the predetermined specifications.
  • the function of the concentration detector 2013 is: After the above photo-alignment reaction is completed, the concentration of cinnamic acid in the reaction monomer is lowered, so the concentration detector 2013 can analyze the specific wavelength of the adjacent double carbon bond in the chemical structure of cinnamic acid. The infrared absorption intensity is calculated, and the residual amount of the reaction monomer in the liquid crystal cell is calculated, and the termination point of the photo-alignment reaction can be obtained by the judgment of the first judging means 301.
  • the first determining means 301 determines whether the concentration of the cinnamic acid in the reaction monomer has reached a preset value, and if the concentration of the cinnamic acid decreases to a preset value, the residual amount of the reactive monomer in the liquid crystal material is also Correspondingly, the preset value is reached, which is the termination point of the optical alignment, and the measure of stopping the alignment should be taken, otherwise the alignment is easy; if the first determining device 301 determines that the concentration of the cinnamic acid has not reached the preset value, Correspondingly, the residual amount of reactive monomers in the liquid crystal material also does not reach a preset value. At this time, it is necessary to continue the photo-alignment process to prevent insufficient alignment.
  • a second embodiment of the optical alignment liquid crystal material end point detecting device of the present invention is shown.
  • the end point detecting device of the photo-aligning liquid crystal material of the present invention at least includes:
  • the radiant light device 102 is configured to generate radiant light, so that the reactive monomer in the liquid crystal material is polymerized under the action of the electric field and the radiant light, thereby realizing the alignment of the liquid crystal material;
  • a second detecting device 202 configured to detect a thickness change value of the liquid crystal cell in the liquid crystal material
  • a second determining device 302 configured to determine whether the detected thickness change value of the liquid crystal cell reaches a preset value
  • the second detecting device 202 includes at least:
  • Irradiation is performed, for example, using visible light having a wavelength of 580 nm.
  • the polarizer 2022 and the analyzer 2023 cooperate with each other to detect the thickness variation value of the liquid crystal cell, and by detecting the change in the cell thickness of the liquid crystal cell, the progress of the light alignment reaction is obtained.
  • the polarizer 2022 and the analyzer 2023 detect changes in the cell thickness of the liquid crystal cell to prepare for the termination of the subsequent determination of the optical alignment.
  • the second determining device 302 determines whether the detected thickness change value of the liquid crystal cell has reached a preset value. If the determination is yes, it indicates that the time point is the end point of the optical alignment, and the measures for stopping the alignment should be taken, otherwise the over-alignment is likely to occur. . If the second judging means 302 judges NO, it is necessary to continue the process of optical alignment to prevent insufficient alignment.
  • the method and apparatus for detecting an end point of a photo-alignment liquid crystal material according to the present invention can determine the termination point of the light alignment to the liquid crystal material by detecting the residual amount of the reaction monomer or the thickness variation of the liquid crystal cell, thereby enabling automatic irradiation of the light alignment time
  • the control can reduce the influence of the glass substrate on the light distribution due to individual differences, and does not interfere with the reaction process of the photo-alignment of the reactive monomer.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种光配向液晶材料的终点检测方法,包括以下步骤:对液晶材料进行光配向,其包括:在电场作用下,利用辐射光照射液晶材料,以使液晶材料中的反应单体发生聚合反应;检测所述液晶材料中所述反应单体的残留数量或所述液晶材料中液晶盒的厚度变化数值,判断检测出的所述反应单体的残留数量或所述液晶盒的厚度变化数值是否达到了预设值,当判断为是时,为所述液晶材料光配向的终止点。本发明还公开了一种光配向液晶材料的终点检测装置。实施本发明的光配向液晶材料的终点检测方法及装置,通过检测光配向的终止点控制配向的反应终点,降低玻璃基板个体差异对光配向的影响,且不会影响反应单体进行配向的反应过程。

Description

一种光配向液晶材料的终点检测方法及装置 本申请要求于 2012 年 11 月 19 日提交中国专利局、 申请号为 201210467331.7、发明名称为 "一种光配向液晶材料的终点检测方法及装置" 的中国专利申请的优先权, 上述专利的全部内容通过引用结合在本申请中。 技术领域
本发明涉及液晶显示领域, 尤其涉及一种光配向液晶材料的终点检测方 法及装置。 背景技术
随着信息社会的发展, 人们对显示设备的需求得到了增长。 为了满足这 种需求, 最近几种平板显示设备, 例如: LCD液晶显示器件, PDP ( Plasma Display Panel, 等离子显示板 ), OLED ( Organic Light-Emitting Diode有机发光二 极管 )都得到了迅猛的发展。
在平板显示器件当中, 液晶显示器件由于其重量低、 体积小、 能耗低的 优点, 正在逐步取代冷阴极显示设备。 但最初出现的 TN ( Twisted nematic, 扭曲向列型 )或 STN ( Super twisted nematic, 超扭曲向列型 )液晶显示器都 存在对比度低, 视角差等问题点。 随着人们生活水平的提高, 对显示器件的 要求也越来越高,因此 IPS ( In Plan Switch,面内开关显示模式), VA( Vertical Alignment, 垂直配向显示模式 )等广视角显示技术得到了飞跃的发展。
对于 IPS面内开关显示模式, 其具有非常好的广视角显示效果, 但是为 了实现较好的面内开关显示模式的显示效果, 在其生产过程中, 对于摩擦工 序的要求也就非常的高, 这在很大程度上造成其摩擦的工艺冗余度较小。 在 大规模生产过程中, 容易时不时地出现问题。 同 IPS面内开关模式相比, VA 垂直配向模式在生产过程中不需要摩擦工艺, 所以大大提高了其在大规模生 产上的优势。
目前, 比较流行的是采用搀有高分子聚合单体的液晶, 在后续的工艺过 程中,通过紫外光和电的双重效果,实现光配向。这种显示模式被称为 PSVA ( PSVA Polymer stained vertical alignment, 高分子稳定垂直配向模式), 其特 点表现在彩膜侧既不存在突起, 也不存在 ITO slit (裂缝)。 这不仅节省了彩 膜的制作成本, 而且还提高了整体的透过率。
但是, 由于高分子稳定垂直配向模式使用紫外光配向, 且紫外光是通过 玻璃基板、 配向膜上的各个层别后, 才照射到液晶上的, 所以实际照射到液 晶上的紫外光的照度受基板的影响非常大。 在一般的生产控制上, 都是通过 控制照射时间来进行生产管理的。 但是由于大量生产时, 基板的个体差异非 常大, 所以单纯的控制照射时间往往会造成配向不足或者配向过度。 发明内容
本发明所要解决的技术问题在于,提供一种光配向液晶材料的终点检测 方法及装置, 通过检测光配向的终止点控制配向的反应终点, 降低玻璃基板 个体差异对光配向的影响, 且不会影响反应单体进行配向的反应过程。
为了解决上述技术问题, 本发明采用的一种技术方案: 一种光配向液晶 材料的终点检测方法, 其中, 包括以下步骤:
对液晶材料进行光配向, 其包括: 在电场作用下, 利用辐射光照射液晶 材料, 以使液晶材料中的反应单体发生聚合反应;
检测所述液晶材料中所述反应单体的残留数量或所述液晶材料中液晶 盒的厚度变化数值, 判断检测出的所述反应单体的残留数量或所述液晶盒的 厚度变化数值是否达到了预设值,当判断为是时,所述液晶材料光配向终止。
其中,所述检测所述液晶材料中所述反应单体残留数量的步骤包括以下 步骤:
对所述液晶材料进行红外光照射;
根据所述液晶材料中所述反应单体的红外光吸收强度,获取反应单体中 肉桂酸的浓度下降值。
其中, 所述对所述液晶材料进行红外光照射的步骤包括: 射。 、 - ; 、 ^ ' : 其中, 所述根据所述液晶材料中所述反应单体的红外光吸收强度, 获取 反应单体中肉桂酸浓度下降值的步骤包括:
获取所述肉桂酸成分中碳碳双键对特定波长红外光吸收强度的步骤。 其中, 所述对所述液晶材料进行红外光照射的步骤包括: 射。 、 - ; 、 ^ ' :
其中, 所述检测所述液晶盒厚度变化数值的步骤至少包括: 的步骤。
其中, 所述入射光的波长为 580nm。
为解决上述技术问题, 本发明采用的另一种技术方案: 一种光配向液晶 材料的终点检测装置, 其中, 至少包括:
用以产生电场的电场装置;
用以产生辐射光,使液晶材料中的反应单体在电场和辐射光的作用下发 生聚合反应, 进而实现液晶材料配向的辐射光装置;
用以检测所述液晶材料中所述反应单体残留数量的第一检测装置; 以及 用以判断所述检测出的所述反应单体的残留数量是否达到预设值的第 一判断装置, 当所述第一判断装置判断为是时, 为所述液晶材料光配向的终 止点。
其中, 所述第一检测装置至少包括:
红外线发射探头, 装设在液晶材料液晶盒的顶部, 用于向液晶盒发射红 外光;
红外线接收探头, 装设在液晶盒的底部, 用于接收穿透所述液晶盒的所 述红外光; 以及
用于根据所述红外线发射探头发射红外光和所述红外线接收探头接收 红外光情况, 获取所述液晶盒中所述反应单体的红外光吸收强度, 及反应单 体中肉桂酸浓度下降值的浓度检测器。 红外光对所述液晶材料进行照射。 其中,所述浓度检测器通过获取所述肉桂酸成分中碳碳双键对特定波长 红外光吸收强度, 计算得出液晶盒内反应单体的残留数量。 红外光对所述液晶材料进行照射。
为解决上述技术问题, 本发明采用的另一种技术方案: 一种光配向液晶 材料的终点检测装置, 其中, 至少包括:
用以产生电场的电场装置;
用以产生辐射光,使液晶材料中的反应单体在电场和辐射光的作用下发 生聚合反应, 进而实现液晶材料配向的辐射光装置;
用以检测液晶材料中液晶盒厚度变化数值的第二检测装置; 以及 用以判断所述检测出的所述液晶盒的厚度变化数值是否达到预设值的 第二判断装置,当所述第二判断装置判断为是时,所述液晶材料光配向终止。
其中, 所述第二检测装置至少包括: 光源, 用于产生以不引发所述反应 单体发生聚合反应的入射光对所述液晶盒进行照射。
其中, 所述光源使用波长为 580nm的可见光。
其中, 所述第二检测装置还包括: 装设在所述液晶盒顶部的偏光器。 其中, 所述第二检测装置还包括: 装设在所述液晶盒底部的检偏器。 本发明所提供的光配向液晶材料的终点检测方法及装置, 具有如下有益 效果: 通过检测反应单体的残留数量或液晶盒的厚度变化情况, 判断光配向 液晶材料的终止点, 进而可以实施对光配向照射时间的自动控制, 能够降低 玻璃基板因个体差异对光配所造成的影响,且不会干扰反应单体进行光配向 的反应过程。 附图说明
图 1 是本发明用于光配向液晶材料的终点检测方法实施例一的流程框 图。
图 2是本发明用于光配向液晶材料的终点检测方法实施例一的具体流程 框图。
图 3是本发明用于光配向液晶材料的终点检测方法实施例一中肉桂酸的 分子结构图。
图 4是本发明用于光配向液晶材料的终点检测方法实施例二的流程框 图。
图 5 是本发明用于光配向液晶材料的终点检测装置实施例一的结构框 图。
图 6是本发明用于光配向液晶材料的终点检测装置实施例一中检测反应 单体残留数量的结构示意图。
图 7 是本发明用于光配向液晶材料的终点检测装置实施例二的结构框 图。
图 8是本发明用于光配向液晶材料的终点检测装置实施例二中检测液晶 盒厚度变化数值的结构示意图。 具体实施方式
下面参考附图对本发明的优选实施例进行描述。
结合参见图 1-图 3 ,为本发明光配向液晶材料终点检测方法的实施例一。 本实施例中的光配向液晶材料的终点检测方法应用在 PSVA高分子稳定 垂直配向模式中, 参见图 1 , 为发明用于光配向液晶材料的终点检测方法实 施例一的流程框图, 其包括以下步骤:
对液晶材料进行光配向, 其包括: 在电场作用下, 利用辐射光照射液晶 材料, 以使液晶材料中的反应单体发生聚合反应;
检测所述液晶材料中所述反应单体的残留数量, 判断检测出的所述反应 单体的残留数量是否达到了预设值, 当判断为是时, 为所述液晶材料光配向 的终止点。
步骤 S10, 对液晶材料进行光配向, 例如, 使用紫外光配向, 且紫外光 是通过玻璃基板、 配向膜上的各个层别后, 照射到液晶材料上。 紫外光使液 晶材料中的反应单体发生聚合反应。
步骤 S201 , 检测所述液晶材料中所述反应单体的残留数量。 本步骤通 过检测反应单体残留的数量为后续判断光配向的终止点做好准备。相对于仅 通过使用控制照射时间对光配向进行管理的单一管理模式,通过该步骤可以 进一步的, 如图 2所示, 位本发明用于光配向液晶材料的终点检测方法 实施例一的具体流程框图。检测液晶材料中反应单体残留数量的步骤通过如 下方式实施。
步骤 S202, 对液晶材料进行红外光照射。 红外光照射的作用是: 使反 应单体在一定程度上吸收红外光, 进而实施检测液晶材料中反应单体残留数 量的步骤。
此外, 由于反应单体在红外光的照射下, 不会引发聚合反应, 所以在整 个反应过程中, 可以一直进行测量, 根据预先的规格, 确定反应终止点。 也 就是说, 该步骤以不引发反应单体发生聚合反应的红外光对液晶材料进行照 射即可。
步骤 S203 , 获取所述肉桂酸成分中碳碳双键对特定波长红外光吸收强 度的步骤。
步骤 S204, 根据所述液晶材料中所述反应单体的红外光吸收强度, 获 取反应单体中肉桂酸的浓度下降值。
上述两步骤的作用是: 由于上述光配向反应完毕后, 反应单体中肉桂酸 的浓度会下降, 所以通过分析肉桂酸化学结构中邻苯碳碳双键的特定波长的 红外吸收强度, 就可以计算出液晶盒内的反应单体的残留数量, 进而可以通 过判断得到光配向反应的终止点, 其中, 肉桂酸的分子结构如图 3所示。
步骤 S301 , 判断检测出的反应单体的残留数量是否达到了预设值, 当 判断为是时, 则为液晶材料光配向的终止点。 该步骤包括以下:
步骤 S302, 判断反应单体中肉桂酸的浓度下降值是否达到了预设值, 若肉桂酸的浓度下降值达到了预设值,说明液晶材料中反应单体的残留数量 也相应达到了预设值, 进而转入步骤 S40, 该时间点为光配向的终止点, 应 该采取停止配向的措施, 否则容易配向过度。 若肉桂酸的浓度下降值还未达 到预设值, 说明液晶材料中反应单体的残留数量也未达到相应的预设值, 此 时, 需要继续光配向过程, 防止配向不足, 并转入继续判断的步骤。
参见图 4, 为本发明光配向液晶材料终点检测方法的实施例二。
本实施例与上述实施例一的不同之处在于: 本实施例是通过检测液晶材 料, 也就是液晶盒厚度的变化数值获得光配向液晶材料的终止点。
本实施例的原理是; 在光配向的液晶盒的光配向反应过程中, 由于反应 单体发生聚合, 会伴随液晶盒盒厚的降低, 所以通过检测液晶盒的盒厚, 就 可以得到光配向的反应进度。 其包括以下步骤:
步骤 S205 , 检测液晶材料中液晶盒的厚度变化数值, 通过检测液晶盒 的盒厚变化, 得到光配向的反应进度, 其包括: 以不引发反应单体发生聚合 反应的入射光对液晶盒进行照射,例如,使用波长为 580nm的可见光进行照 射。
本步骤通过对液晶盒进行照射为后续检测液晶盒的盒厚变化及判断光 配向的终止点做好准备。
步骤 S304, 判断检测出的液晶盒的厚度变化数值是否达到了预设值, 若判断为是, 转入步骤 S40, 该时间点为光配向的终止点, 应采取停止配向 的措施, 否则容易配向过度。 若判断为否, 则需继续光配向的过程, 防止配 向不足, 并转入继续判断的步骤。
本发明公开了一种光配向液晶材料的终点检测装置, 结合参见图 5、 图 6所示, 为本发明光配向液晶材料终点检测装置的实施例一。
参见图 5 , 本发明光配向液晶材料的终点检测装置至少包括:
电场装置 101 , 用以产生电场;
辐射光装置 102, 用以产生辐射光, 使液晶材料中的反应单体在电场和 辐射光的作用下发生聚合反应, 进而实现液晶材料的配向;
第一检测装置 201 ,用以检测所述液晶材料中所述反应单体的残留数量; 以及第一判断装置 301 , 用以判断所述检测出的所述反应单体的残留数量是 否达到预设值, 当所述第一判断装置 301判断为是时, 为所述液晶材料光配 向的终止点。
如图 6所示, 第一检测装置 201至少包括:
红外线发射探头 2011 , 装设在液晶材料液晶盒 4的顶部,用于向液晶盒 红外线接收探头 2012, 装设在液晶盒 4的底部, 用于接收穿透液晶盒 4 的红外光; 以及用于根据所述红外线发射探头 2011发射红外光和所述红外 线接收探头 2012接收红外光情况, 获取所述液晶盒 4中反应单体的红外光 吸收强度, 及反应单体中肉桂酸浓度下降值的浓度检测器 2013。
红外线发射探头 2011和红外线接收探头 2012的作用是: 使反应单体在 一定程度上吸收红外光, 进而实施检测液晶材料中反应单体的残留数量。
此外, 由于反应单体在红外光的照射下, 不会引发聚合反应, 所以在整 个反应过程中, 可以一直进行测量, 根据预先的规格, 确定反应终止点。
浓度检测器 2013 的作用是: 在上述光配向反应完毕后, 反应单体中肉 桂酸的浓度会下降, 所以浓度检测器 2013 可以通过分析肉桂酸化学结构中 邻 ^^碳双键的特定波长的红外吸收强度,计算出液晶盒内的反应单体的残 留数量, 进而可以通过第一判断装置 301的判断得到光配向反应的终止点。
实施时, 第一判断装置 301判断反应单体中肉桂酸的浓度下降值是否达 到了预设值, 若肉桂酸的浓度下降值达到了预设值, 说明液晶材料中反应单 体的残留数量也相应达到了预设值, 该时间点为光配向的终止点, 应该采取 停止配向的措施, 否则容易配向过度; 若第一判断装置 301判断肉桂酸的浓 度下降值还未达到预设值, 则相应的, 液晶材料中反应单体的残留数量也未 达到预设值, 此时, 需要继续光配向过程, 以防止配向不足。
结合参见图 7、 图 8所示, 为本发明光配向液晶材料终点检测装置的实 施例二。
参见图 7, 本发明光配向液晶材料的终点检测装置至少包括:
电场装置 101 , 用以产生电场;
辐射光装置 102, 用以产生辐射光, 使液晶材料中的反应单体在电场和 辐射光的作用下发生聚合反应, 进而实现液晶材料的配向;
第二检测装置 202, 用以检测液晶材料中液晶盒的厚度变化数值; 以及 第二判断装置 302, 用以判断所述检测出的所述液晶盒的厚度变化数值是否 达到预设值, 当所述第二判断装置 302判断为是时, 为所述液晶材料光配向 的终止点。
本实施例的原理是; 在光配向的液晶盒的光配向反应过程中, 由于反应 单体发生聚合, 会伴随液晶盒盒厚的降低, 所以通过检测液晶盒的盒厚, 就 可以得到光配向的反应进度。 如图 8所示, 第二检测装置 202至少包括:
4进行照射, 例如, 使用波长为 580nm的可见光进行照射。
装设在液晶盒 4顶部的偏光器 2022,以及装设在液晶盒 4底部的检偏器 2023。偏光器 2022和检偏器 2023相互配合能够检测液晶盒的厚度变化数值, 通过检测液晶盒的盒厚变化, 得到光配向的反应进度。
实施时,偏光器 2022和检偏器 2023检测液晶盒的盒厚变化可为后续判 断光配向的终止点做好准备。 第二判断装置 302判断检测出的液晶盒的厚度 变化数值是否达到了预设值,若判断为是,说明该时间点为光配向的终止点, 应采取停止配向的措施, 否则容易发生配向过度。 若第二判断装置 302判断 为否, 则需继续光配向的过程, 防止配向不足。
实施本发明的光配向液晶材料的终点检测方法及装置,通过检测反应单 体的残留数量或液晶盒的厚度变化情况, 判断光配向液晶材料的终止点, 进 而可以实施对光配向照射时间的自动控制, 能够降低玻璃基板因个体差异对 光配所造成的影响, 且不会干扰反应单体进行光配向的反应过程。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明 之权利范围, 因此等同变化, 仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种光配向液晶材料的终点检测方法, 其中, 包括以下步骤: 对液晶材料进行光配向, 其包括: 在电场作用下, 利用辐射光照射液晶 材料, 以使液晶材料中的反应单体发生聚合反应;
检测所述液晶材料中所述反应单体的残留数量或所述液晶材料中液晶 盒的厚度变化数值, 判断检测出的所述反应单体的残留数量或所述液晶盒的 厚度变化数值是否达到了预设值,当判断为是时,所述液晶材料光配向终止。
2、 如权利要求 1所述的光配向液晶材料的终点检测方法, 其中, 所述 检测所述液晶材料中所述反应单体残留数量的步骤包括以下步骤:
对所述液晶材料进行红外光照射;
根据所述液晶材料中所述反应单体的红外光吸收强度,获取反应单体中 肉桂酸的浓度下降值。
3、 如权利要求 2所述的光配向液晶材料的终点检测方法, 其中, 所述 对所述液晶材料进行红外光照射的步骤包括: 射。 、 - ; 、 ^ ' :
4、 如权利要求 2所述的光配向液晶材料的终点检测方法, 其中, 所述 根据所述液晶材料中所述反应单体的红外光吸收强度, 获取反应单体中肉桂 酸浓度下降值的步骤包括:
获取所述肉桂酸成分中碳碳双键对特定波长红外光吸收强度的步骤。
5、 如权利要求 4所述的光配向液晶材料的终点检测方法, 其中, 所述 对所述液晶材料进行红外光照射的步骤包括: 射。 、 - ; 、 ^ ' :
6、 如权利要求 1所述的光配向液晶材料的终点检测方法, 其中, 所述 检测所述液晶盒厚度变化数值的步骤至少包括: 的步骤。
7、 如权利要求 6所述的光配向液晶材料的终点检测方法, 其中, 所述 入射光的波长为 580nm。
8、 一种光配向液晶材料的终点检测装置, 其中, 至少包括:
用以产生电场的电场装置;
用以产生辐射光,使液晶材料中的反应单体在电场和辐射光的作用下发 生聚合反应, 进而实现液晶材料配向的辐射光装置;
用以检测所述液晶材料中所述反应单体残留数量的第一检测装置; 以及 用以判断所述检测出的所述反应单体的残留数量是否达到预设值的第 一判断装置, 当所述第一判断装置判断为是时, 为所述液晶材料光配向的终 止点。
9、 如权利要求 8所述的光配向液晶材料的终点检测装置, 其中, 所述 第一检测装置至少包括:
红外线发射探头, 装设在液晶材料液晶盒的顶部, 用于向液晶盒发射红 外光;
红外线接收探头, 装设在液晶盒的底部, 用于接收穿透所述液晶盒的所 述红外光; 以及
用于根据所述红外线发射探头发射红外光和所述红外线接收探头接收 红外光情况, 获取所述液晶盒中所述反应单体的红外光吸收强度, 及反应单 体中肉桂酸浓度下降值的浓度检测器。
10、 如权利要求 9所述的光配向液晶材料的终点检测装置, 其中, 所述 液晶材料进行照射。
11、 如权利要求 9所述的光配向液晶材料的终点检测装置, 其中, 所述 浓度检测器通过获取所述肉桂酸成分中碳碳双键对特定波长红外光吸收强 度, 计算得出液晶盒内反应单体的残留数量。
12、 如权利要求 11所述的光配向液晶材料的终点检测装置, 其中, 所 述液晶材料进行照射。
13、 一种光配向液晶材料的终点检测装置, 其中, 至少包括: 用以产生电场的电场装置; 用以产生辐射光,使液晶材料中的反应单体在电场和辐射光的作用下发 生聚合反应, 进而实现液晶材料配向的辐射光装置;
用以检测液晶材料中液晶盒厚度变化数值的第二检测装置; 以及 用以判断所述检测出的所述液晶盒的厚度变化数值是否达到预设值的 第二判断装置,当所述第二判断装置判断为是时,所述液晶材料光配向终止。
14、 如权利要求 13所述的光配向液晶材料的终点检测装置, 其中, 所 述第二检测装置至少包括:
晶盒进行照射。
15、 如权利要求 14所述的光配向液晶材料的终点检测装置, 其中, 所 述光源使用波长为 580nm的可见光。
16、 如权利要求 14所述的光配向液晶材料的终点检测装置, 其中, 所 述第二检测装置还包括:
装设在所述液晶盒顶部的偏光器。
17、 如权利要求 14所述的光配向液晶材料的终点检测装置, 其中, 所 述第二检测装置还包括:
装设在所述液晶盒底部的检偏器。
PCT/CN2012/085374 2012-11-19 2012-11-27 一种光配向液晶材料的终点检测方法及装置 WO2014075351A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/702,612 US8896804B2 (en) 2012-11-19 2012-11-27 Method and device for termination detection of optical alignment of liquid crystal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210467331.7A CN102929017B (zh) 2012-11-19 2012-11-19 一种光配向液晶材料的终点检测方法及装置
CN201210467331.7 2012-11-19

Publications (1)

Publication Number Publication Date
WO2014075351A1 true WO2014075351A1 (zh) 2014-05-22

Family

ID=47643852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085374 WO2014075351A1 (zh) 2012-11-19 2012-11-27 一种光配向液晶材料的终点检测方法及装置

Country Status (2)

Country Link
CN (1) CN102929017B (zh)
WO (1) WO2014075351A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150063804A (ko) * 2013-12-02 2015-06-10 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조방법
CN105093686B (zh) * 2015-02-06 2018-01-12 深圳市华星光电技术有限公司 液晶配向膜制作方法及反应机台
CN108153061B (zh) * 2018-01-04 2020-12-01 京东方科技集团股份有限公司 光配向检测单元、光配向方法及装置
CN108873489A (zh) * 2018-08-16 2018-11-23 惠科股份有限公司 显示面板的制造方法及制造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580908A (zh) * 2004-05-21 2005-02-16 友达光电股份有限公司 配向膜的定向检测方法及装置
JP2006220525A (ja) * 2005-02-10 2006-08-24 Toppan Printing Co Ltd 膜厚測定方法および膜厚測定プログラム
CN101354500A (zh) * 2008-09-25 2009-01-28 友达光电股份有限公司 液晶显示面板及其制造方法
JP2012155311A (ja) * 2011-01-05 2012-08-16 Jnc Corp 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
CN102691259A (zh) * 2011-03-21 2012-09-26 唐延钦 一种桥梁遮阳及照明装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266366B (zh) * 2008-05-20 2010-06-30 友达光电股份有限公司 液晶配向方法
CN102681259B (zh) * 2012-04-28 2015-07-01 深圳市华星光电技术有限公司 一种液晶材料的光配向方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580908A (zh) * 2004-05-21 2005-02-16 友达光电股份有限公司 配向膜的定向检测方法及装置
JP2006220525A (ja) * 2005-02-10 2006-08-24 Toppan Printing Co Ltd 膜厚測定方法および膜厚測定プログラム
CN101354500A (zh) * 2008-09-25 2009-01-28 友达光电股份有限公司 液晶显示面板及其制造方法
JP2012155311A (ja) * 2011-01-05 2012-08-16 Jnc Corp 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
CN102691259A (zh) * 2011-03-21 2012-09-26 唐延钦 一种桥梁遮阳及照明装置

Also Published As

Publication number Publication date
CN102929017B (zh) 2015-06-10
CN102929017A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
JP6317582B2 (ja) 液晶ディスプレイおよびその製造方法
CN101266366B (zh) 液晶配向方法
TW200422715A (en) Liquid crystal display and method of manufacturing the same
WO2014075351A1 (zh) 一种光配向液晶材料的终点检测方法及装置
CN104280934B (zh) 液晶面板及其制作方法
WO2013002084A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
TWI449971B (zh) 橢圓偏光板,其製造方法及使用其之液晶顯示裝置
TW201300912A (zh) 液晶顯示裝置及其製造方法
EP2764400B1 (en) Photo-alignment layers with strong uv-dichroism
CN105785612A (zh) Psva液晶面板的制作方法
CN104267457B (zh) 反射式偏振片及其制备方法、液晶显示装置
CN102472922A (zh) 液晶显示面板及其制造方法
CN102662274B (zh) 液晶面板及其液晶配向方法
TWI518420B (zh) 液晶顯示元件的製造方法及液晶顯示元件
CN102707501B (zh) 液晶显示装置、液晶显示面板的制造方法及制造设备
Lee et al. Formation of liquid crystal multi-domains with different threshold voltages by varying the surface anchoring energy
US8089591B2 (en) Liquid crystal display device and method of aligning liquid crystal molecules utilized thereby
WO2014045923A1 (ja) 液晶表示装置及びその製造方法
TW200944901A (en) Liquid crystal alignment process
KR20130079052A (ko) 액정 표시 장치의 제조 방법
US9429779B2 (en) Electro-optic modulator including composite materials and testing apparatus including the same
WO2014205985A1 (zh) 导光板及其制作方法、背光源及透明显示装置
TWI354842B (zh)
US20140146275A1 (en) Reactive Monomer of Liquid Crystal on Polyimide Surface of Alignment Film and Liquid Crystal Panel
US8896804B2 (en) Method and device for termination detection of optical alignment of liquid crystal material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13702612

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888354

Country of ref document: EP

Kind code of ref document: A1