WO2014075271A1 - 光放大器的控制方法和装置及光放大器 - Google Patents

光放大器的控制方法和装置及光放大器 Download PDF

Info

Publication number
WO2014075271A1
WO2014075271A1 PCT/CN2012/084681 CN2012084681W WO2014075271A1 WO 2014075271 A1 WO2014075271 A1 WO 2014075271A1 CN 2012084681 W CN2012084681 W CN 2012084681W WO 2014075271 A1 WO2014075271 A1 WO 2014075271A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
offset
control
control current
optical amplifier
Prior art date
Application number
PCT/CN2012/084681
Other languages
English (en)
French (fr)
Inventor
刘伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES12871608.1T priority Critical patent/ES2620636T3/es
Priority to EP12871608.1A priority patent/EP2759876B1/en
Priority to PCT/CN2012/084681 priority patent/WO2014075271A1/zh
Priority to CN201280002430.6A priority patent/CN103222135B/zh
Publication of WO2014075271A1 publication Critical patent/WO2014075271A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/296Transient power control, e.g. due to channel add/drop or rapid fluctuations in the input power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/1001Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2931Signal power control using AGC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a method and apparatus for controlling an optical amplifier and an optical amplifier. Background technique
  • an optical amplifier In a wavelength division multiplexing (WDM) system, an optical amplifier (OA) is used to amplify multiple weak light signals.
  • WDM wavelength division multiplexing
  • OA optical amplifier
  • the control device in the optical amplifier adjusts the drive current of the pump laser in the optical amplifier, and the adjustment process includes a fast optical power change control process and a slow optical power change control process.
  • the control device adjusts the drive current of the pump laser in the optical amplifier according to a preset control current, thereby adjusting the output power of the optical amplifier. Due to the delay of the above adjustment process, when the optical amplifier increases or decreases the wavelength, the output power of the original transmission wavelength instantaneously increases or decreases, that is, a transient effect occurs. Due to the actual WDM system, multiple light sources are usually used in series. The superposition of transient effects adversely affects the power of the original transmission wavelength, which in turn causes bit errors.
  • Method 1 Add a variable optical attenuator (VOA) to the optical amplifier, use the feedforward method to quickly detect the change of the optical power of the input signal, and then reduce the transient effect by controlling the VOA.
  • Method 2 Add a Bragg grating (fiber Bragg), a VOA and a coupler in the optical amplifier, filter a wavelength through the FBG, control the signal gain through the VOA, and then couple it to the output through the coupler to form a The input optical power consumes the bait particles, which reduces the transient effect.
  • VOA variable optical attenuator
  • a first aspect of the present invention provides a method of controlling an optical amplifier for solving the drawbacks of the prior art and reducing the manufacturing cost of the optical amplifier.
  • Another aspect of the present invention is to provide a control device for an optical amplifier for solving the drawbacks of the prior art and reducing the manufacturing cost of the optical amplifier.
  • Yet another aspect of the present invention is to provide an optical amplifier for solving the drawbacks of the prior art and reducing the manufacturing cost of the optical amplifier.
  • a first aspect of the present invention provides a method for controlling an optical amplifier, including: determining a current input optical power of an optical amplifier and a previous input optical power, and a preset maximum operating current and minimum of the optical amplifier. Operating current, control current coefficient and offset coefficient to obtain an initial control current offset;
  • the control current offset of the current time is obtained, and the sum of the control current offset of the current time and the preset control current is taken as The drive current of the pump laser in the optical amplifier.
  • the aspect as described above and any possible implementation manner further provide an implementation manner, according to the current input optical power of the acquired optical amplifier and the last input optical power, and the preset maximum operation of the optical amplifier Current, minimum operating current, control current coefficient, and offset factor, the initial control current offset is obtained:
  • I. ⁇ is the first control current offset
  • P hisin is the last input optical power
  • K. Ffset is the preset offset coefficient
  • the initial control current offset is obtained, where 0-8.
  • is the initial control current offset, I. Ffsf;t is the first control current offset, and ADA / ⁇ I ma is the control current coefficient.
  • control current is obtained according to the initial control current offset amount and a preset adjustment time
  • the offset versus time curve includes:
  • the curve of the curve includes: curve type, interval time or number of intervals.
  • any possible implementation manner further provide an implementation manner, according to the current input optical power of the acquired optical amplifier and the last input optical power, and the preset maximum operation of the optical amplifier Current, minimum operating current, control current coefficient, and offset factor, before obtaining the initial control current offset, include:
  • Another aspect of the present invention provides a control apparatus for an optical amplifier, including: a first calculation module, configured to: according to a current input optical power of an acquired optical amplifier and a last input optical power, and a preset optical amplifier Maximum operating current, minimum operating current control current coefficient and offset coefficient, to obtain initial control current offset;
  • a second calculating module configured to obtain a curve of the control current offset according to the time according to the initial control current offset and the preset adjustment time
  • a control module configured to acquire, according to the curve of the control current offset over time, the control current offset of the current time, the control current offset of the current time and the preset The sum of the control currents is used as the drive current of the pump laser in the optical amplifier.
  • the second calculating module is specifically configured to use the initial control current offset as an initial value of the ordinate, and use 0 as the ordinate
  • the final value using the adjustment time as the abscissa, plots the control current offset with time according to a preset curve parameter, and the curve parameter includes: a curve type, an interval time, or an interval number.
  • the foregoing aspect and any possible implementation manner further provide an implementation manner, further including: a comparison module, configured to compare a difference between a current input optical power of the optical amplifier and a previous input optical power, and a preset The fast control threshold is compared. When the difference between the current input optical power of the optical amplifier and the last input optical power is greater than a preset fast control threshold, the first computing module is turned on.
  • Yet another aspect of the present invention is to provide an optical amplifier comprising:
  • a pump laser for inputting a laser to the erbium doped fiber by using a drive current determined by the control device;
  • the erbium-doped fiber is used to amplify a laser provided by the pump laser;
  • the control device is configured to: according to the obtained current input optical power of the optical amplifier and the last input optical power, and the preset maximum operating current, minimum operating current, control current coefficient, and offset coefficient of the optical amplifier Obtaining an initial control current offset, obtaining a control current offset according to the initial control current offset and a preset adjustment time, according to the control current offset during the adjustment time The amount varies with time, and the control current offset of the current time is obtained, and the sum of the control current offset of the current time and the preset control current is used as the driving current of the pump laser in the optical amplifier.
  • (1 &11 _ 1 ) . _ ⁇ ) . ⁇
  • obtain the first control current offset and according to DA.
  • Ffs£;t I. Ffff;t . ADA MI ma , obtaining the initial control current offset, wherein 1 ⁇ is the normal driving current, I full is the maximum operating current, 1 ⁇ 16 is the minimum operating current, P m
  • I. ⁇ is the first control current offset
  • DA. ⁇ is the initial control current offset
  • I. ⁇ is the first control current offset
  • ⁇ 1 ⁇ is the control current coefficient.
  • control device is specifically configured to use the initial control current offset as an initial value of the ordinate, and 0 as the final coordinate a value, wherein the adjustment time is used as an abscissa, and the control current offset is plotted according to a preset curve parameter, wherein the curve parameter includes: a curve type, an interval time, or an interval number.
  • control device is further configured to use a difference between a current input optical power of the optical amplifier and a previous input optical power and a preset fast Comparing the control thresholds, when the difference between the current input optical power of the optical amplifier and the last input optical power is greater than a preset fast control threshold, according to the current input optical power of the acquired optical amplifier and the last input optical power, and The preset maximum current, minimum operating current, control current coefficient, and offset coefficient of the optical amplifier are preset to obtain an initial control current offset.
  • control method of the optical amplifier proposed by the present invention does not directly control the driving current of the pump laser in the optical amplifier according to the preset control current, but first according to the current optical amplifier.
  • Input optical power, last input optical power, maximum operating current, minimum operating current, control current coefficient, and offset coefficient obtain the initial control current offset, and then obtain according to the initial control current offset and the preset adjustment time.
  • Control the current offset curve with time During the adjustment time, according to the curve of the control current offset with time, obtain the current control current offset, the current control current offset and the preset control. The sum of the currents is used as the drive current of the pump laser in the optical amplifier.
  • FIG. 1 is a flowchart of a method of controlling an optical amplifier according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a method for controlling an optical amplifier according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of a control current offset amount with time according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing another curve of control current offset with time according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a control apparatus for an optical amplifier according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical amplifier according to Embodiment 4 of the present invention. detailed description
  • a pump laser and a control device are included in the existing optical amplifier, and the control device controls a driving current of the pump laser.
  • the present invention improves the control method performed by the control device, so that the control device adopts the proposed method of the present invention.
  • the control method controls the pump laser.
  • FIG. 1 is a flow chart showing a method of controlling an optical amplifier according to Embodiment 1 of the present invention. As shown in FIG. 1, the method includes the following processes, and the following processes can all be performed by a control device in an optical amplifier.
  • Step 101 Obtain an initial control current offset according to the current input optical power of the obtained optical amplifier and the last input optical power, and the preset maximum operating current, minimum operating current, control current coefficient, and offset coefficient of the optical amplifier. Transfer amount.
  • Step 102 Obtain a curve of the control current offset with time according to the initial control current offset and the preset adjustment time.
  • Step 103 During the adjustment time, according to the control current offset, change with time The curve obtains a control current offset of the current time, and uses a sum of the control current offset of the current time and a preset control current as a driving current of the pump laser in the optical amplifier.
  • the offset of the control current that changes with time is calculated according to the change of the operating state of the optical amplifier in combination with the adjustment requirement of the optical amplifier, and is increased by the driving current value of the pump laser.
  • the above control current offset thereby achieving advance adjustment of the optical amplifier, avoiding the hysteresis of the drive current value caused by the adjustment process delay, thereby greatly reducing the transient effect of the optical amplifier. Since the above control operations are performed by the control device included in the optical amplifier itself, it is only necessary to modify the program executed by the control device without adding any components to the optical amplifier, thereby reducing the manufacturing cost of the optical amplifier.
  • FIG. 2 is a flow chart of a method of controlling an optical amplifier according to Embodiment 2 of the present invention. As shown in FIG. 2, the method includes the following processes, all of which can be performed by a control device in an optical amplifier.
  • Step 201 Acquire the current input optical power of the optical amplifier and the last input optical power by detecting.
  • the optical amplifier when the optical amplifier is started, the optical amplifier operates the initial condition, and the first step 201 is performed to perform the first detection on the input optical power of the optical amplifier, and the first detection result is obtained, and the detection result is The current input optical power detected for the first time, and after the first detection, the input optical power obtained by the first detection is set to be the last input optical power.
  • the input optical power of the optical amplifier is detected according to a preset detection time interval as the current input optical power for each detection. For example, the optical amplifier detects the input optical power every 0.0001 seconds. ⁇ _Sets the input optical power to increase linearly from time 0, and reaches -18.5dBm at the 1.5th second. At 1.0000 seconds, 10,000 tests have been performed. . For each of these tests, the subsequent steps are performed based on the current input optical power acquired from the detection and the last input optical power.
  • Step 202 Compare a difference between a current input optical power of the optical amplifier and a previous input optical power with a preset fast control threshold.
  • step 203 When the difference between the current input optical power of the optical amplifier and the last input optical power is greater than a preset fast control threshold, step 203 is performed.
  • step 210 is performed.
  • the fast control threshold is a preset value, and the value can be flexibly set according to the actual application.
  • Step 210 Perform a slow optical power change control process.
  • a slow optical power change control process is performed.
  • the present invention does not limit the method of performing the slow optical power variation control process, and any method for controlling the optical power variation of the optical amplifier can be applied.
  • Step 203 Obtain an initial control current offset according to the current input optical power of the obtained optical amplifier and the last input optical power, and the preset maximum operating current, minimum operating current, control current coefficient, and offset coefficient of the optical amplifier. Transfer amount.
  • the maximum operating current, the minimum operating current, the control current coefficient, and the offset coefficient of the optical amplifier are preset values, and in one implementation, may be obtained according to the calibration of the optical amplifier.
  • the information of the optical amplifier calibration includes: a maximum operating current and a minimum operating current of the optical amplifier, and a corresponding relationship between the control current and the normal driving current, that is, a DA-I ma curve, and the slope of the curve is the control
  • the current coefficient is obtained by obtaining the slope of the curve according to the curve information in the calibration, thereby obtaining the control current coefficient.
  • Different current input optical powers may correspond to different control currents, and according to the current input optical power obtained by the detection, the corresponding relationship between the preset current input optical power and the control current is searched for, and the control current is obtained.
  • the current input optical power of the optical amplifier and the last input optical power can be obtained by detection in the aforementioned steps.
  • the initial control current offset is obtained by calculation according to the current input optical power, the last input optical power, the maximum operating current, the minimum operating current, the control current coefficient, and the offset coefficient of the optical amplifier.
  • the foregoing calculation method includes:
  • I ma is the normal driving current
  • I full is the maximum operating current
  • 1 ⁇ 1 ( ; is the minimum operating current
  • P m is the current input optical power.
  • DA. ⁇ is the initial control current offset
  • I. Ffs . t is the first control current offset
  • DA is the control current
  • 1 is the normal drive current
  • 40 is /1 ⁇ is the control current
  • the coefficient, ie, ⁇ /8 is the slope of the DA-I ma curve.
  • Step 204 Obtain a curve of the control current offset with time according to the initial control current offset and the preset adjustment time.
  • the initial control current offset can be obtained in the foregoing steps, and the adjustment time is obtained according to the preset, and the control current is drawn according to the initial control current offset and the preset adjustment time, combined with the preset curve parameters. Offset curve over time.
  • the initial control current offset is used as the initial value of the ordinate, 0 is the final value of the ordinate, and the adjustment time is taken as the abscissa, and the control current offset is plotted according to the preset curve parameter.
  • the curve parameters can include: information such as curve type, interval time or number of intervals. Among them, the curve types can include: linear curves, stepped curves, and so on.
  • FIG. 3 is a schematic diagram of a control current offset according to a second embodiment of the present invention.
  • the initial control current offset is 100, and the preset adjustment time is 10 microseconds.
  • the curve parameters include: curve type For the linear curve, the interval time is 1 microsecond. According to the above information, the curve of the control current offset as shown in Fig. 3 is plotted. In Fig. 3, the abscissa represents time and the ordinate represents control current offset. The curve in Figure 3 is a plot of the control current offset over time.
  • FIG. 4 is a schematic diagram of another control current offset according to the second embodiment of the present invention.
  • the initial control current offset is 100, and the preset adjustment time is 10 microseconds.
  • the curve parameters include: The curve type is a stepped curve, and the number of intervals is 10. According to the above information, the curve of the control current offset as shown in Fig. 4 is plotted. In Fig. 4, the abscissa indicates time and the ordinate indicates control current offset. The curve in Figure 4 is a plot of the control current offset over time.
  • Step 205 Obtain a control current offset amount of the current time according to the control current offset amount change curve according to the control time, and control current offset amount and the preset control current at the current time. The sum is used as the drive current of the pump laser in the optical amplifier.
  • the driving current of the pump laser in the optical amplifier is adjusted within a preset adjustment time.
  • a timer may be started, the expiration time of the timer is set to the preset adjustment time, the adjustment is performed before the timer expires, and when the timer expires, the adjustment is ended.
  • the adjustment method may be: First, according to the control current offset obtained in the foregoing step, the time-dependent curve is obtained, and the current control current is obtained. Offset. Then, using the current control offset of the current time plus the preset control current, the drive current of the pump laser is obtained. Finally, a control signal is sent to the pump laser such that the pump laser uses the sum of the control current offset at the current time and the preset control current as the drive current.
  • Step 206 Update the value of the last input optical power.
  • step 205 in this step, that is, only when it is determined in step 202 that the difference between the current input optical power of the optical amplifier and the last input optical power is greater than a preset fast control threshold, the pump is adjusted in the optical amplifier. After the driving current of the laser, the value of the last input optical power is refreshed to the current input optical power for use in the next adjustment process.
  • the fast control threshold is ldB.
  • the optical amplifier When the optical amplifier is started, the first detection is performed at 0th second, and the input optical power at this time is -20dBm. The first current input optical power and the last input optical power are both -20dBm. The optical amplifier detects the input optical power every 0.0001 seconds.
  • the optical power increases linearly from 0 to -18.5 dBm at 1.5 seconds. Then, in the detection of the 1.000th second, the difference between the current input optical power and the last input optical power is less than or equal to the fast control threshold, so the value of the last input optical power is not updated, that is, the last input optical power The value is always kept at -20dBm. In the detection of 1.0001 seconds, the current optical power at this time is -18.9999dBm, and the difference between the current optical power and the last input optical power -20dBm is greater than the fast control threshold, based on the current optical power.
  • the last input optical power is -20dBm.
  • the drive current of the pump laser in the optical amplifier is adjusted.
  • the value of the last input optical power is updated to the current input optical power of the 1.0001 second.
  • the value, that is, the value of the last input optical power is updated to -18.9999 dBm.
  • the updated value of the last input optical power is supplied to the next adjustment process.
  • the value of the last input optical power obtained is - 18.9999 dBm.
  • the offset of the control current that changes with time is calculated according to the change of the operating state of the optical amplifier in combination with the adjustment requirement of the optical amplifier, and is increased by the driving current value of the pump laser.
  • the above-mentioned control current offsets thereby achieving advance adjustment of the optical amplifier, avoiding the hysteresis of the driving current value caused by the adjustment process delay, thereby greatly reducing the transient effect of the optical amplifier.
  • the above control method is performed, and the current input optical work is performed.
  • the slow optical power variation control process of the prior art is still used when the difference between the rate and the last input optical power is less than or equal to the fast control threshold. Since the above control operations are all performed by the control device included in the optical amplifier itself, it is only necessary to modify the program executed by the control device without adding any components to the optical amplifier, thereby reducing the manufacturing cost of the optical amplifier.
  • FIG. 5 is a schematic structural diagram of a control device for an optical amplifier according to a third embodiment of the present invention.
  • the control device can be disposed within the optical amplifier.
  • the device includes at least: a first calculating module 51, a second calculating module 52, and a control module 53. Further, the device may further include: a comparing module 54.
  • the device comprises the first calculation module 51, the second calculation module 52 and the control module 53:
  • the first calculation module 51 is configured to: according to the current input optical power of the acquired optical amplifier and the last input optical power, and the preset maximum operating current, minimum operating current, control current coefficient, and offset coefficient of the optical amplifier. , get the initial control current offset.
  • the second calculating module 52 is configured to obtain a curve of the control current offset according to the time according to the initial control current offset and the preset adjustment time.
  • the control module 53 is configured to acquire, according to the curve of the control current offset according to the time variation curve, a current offset amount of the current time, the control current offset of the current time and the preset The sum of the control currents is used as the drive current of the pump laser in the optical amplifier.
  • the first calculating module 51 is specifically configured to obtain a normal driving current according to ⁇ - ⁇ + ⁇ , and according to
  • Io ffs et (I full - ) - ( P 1 n - P M S J ' K offset ) obtains the first control current offset, and according to
  • DA offset I offset - ADA / AI ma , obtaining the initial control current offset, wherein I ma is the normal driving current, I full is the maximum operating current, and 1 81 ⁇ is the minimum operating current , ⁇ is the current input optical power, I. Ffst!t is the first control current offset, and P hisin is the last input optical power, K. ⁇ is the preset offset coefficient, DA. Ffs6t is the initial control current offset, I. Ffsrt is the first control current offset, DA is the control current, 1 ⁇ is the normal drive current, where ⁇ DA/AL a is the slope of the control current coefficient.
  • the second calculating module 52 is specifically configured to use the initial control current offset as an initial value of the ordinate, and 0 as the final coordinate. a value, wherein the adjustment time is used as an abscissa, and the control current offset is plotted according to a preset curve parameter, wherein the curve parameter includes: a curve type, an interval time, or an interval number.
  • the device may further include: a comparison module 54.
  • the comparison module 54 is configured to compare the difference between the current input optical power of the optical amplifier and the last input optical power with a preset fast control threshold, when the current input optical power of the optical amplifier and the last input optical power When the difference is greater than the preset fast control threshold, the first calculation module 51 is turned on.
  • the first computing module 51, the second computing module 52, and the control module 53 operate in the manner described above only if the difference between the current input optical power and the last input optical power is greater than the fast control threshold.
  • control device of the optical amplifier according to the third embodiment of the present invention can be used to perform the control method of the optical amplifier according to the first embodiment or the second embodiment of the present invention.
  • the specific implementation process and technical effects can be referred to the first embodiment or the embodiment of the present invention. Second, I will not repeat them here.
  • FIG. 6 is a schematic structural diagram of an optical amplifier according to Embodiment 4 of the present invention.
  • the optical amplifier includes at least: a pump laser 61, an erbium doped fiber 62, and a control device 63.
  • the control unit 63 can receive the input light and the input light through the beam splitter 64, respectively.
  • the pump laser 61 is connected to the control device 63 and the erbium doped fiber 62 for inputting laser light to the erbium doped fiber 62 by using a drive current determined by the control device 63.
  • the erbium doped fiber 62 is used to amplify the laser light supplied from the pump laser 61.
  • the control device 63 is configured to: according to the obtained current input optical power of the optical amplifier and the last input optical power, and the preset maximum operating current, minimum operating current, control current coefficient, and offset coefficient of the optical amplifier Obtaining an initial control current offset, obtaining a control current offset according to the initial control current offset and a preset adjustment time, according to the control current offset during the adjustment time The amount varies with time, and the control current offset of the current time is obtained, and the sum of the control current offset of the current time and the preset control current is used as the drive current of the pump laser 61 in the optical amplifier.
  • control device 63 is specifically used according to - gJ. Pm + , get normal drive current, and according to
  • DA offs I offset - ADA / AI ma , obtaining the initial control current offset.
  • I ma is the The normal driving current
  • I full is the maximum operating current
  • 1 1 ⁇ is the minimum operating current
  • is the current input optical power
  • I. Ffsrt is the first control current offset
  • P hism is the last input optical power
  • K. ⁇ is the preset offset coefficient
  • DA. ⁇ is the initial control current offset
  • I. ⁇ is the first control current offset
  • DA is the control current, which is the normal drive current
  • ADA/AI ma is the slope of the control current coefficient.
  • control device 63 is specifically configured to use the initial control current offset as an initial value of the ordinate, and 0 as the final value of the ordinate, and the adjustment time as On the abscissa, the control current offset is plotted according to a preset curve parameter, and the curve parameters include: a curve type, an interval time, or an interval number.
  • control device 63 is further configured to compare a difference between a current input optical power of the optical amplifier and a previous input optical power, and a preset fast control threshold, when When the difference between the current input optical power of the optical amplifier and the last input optical power is greater than a preset fast control threshold, according to the current input optical power of the acquired optical amplifier and the last input optical power, and the preset optical amplifier
  • the maximum operating current, minimum operating current, control current coefficient, and offset factor are used to obtain the initial control current offset.
  • the control device for the optical amplifier according to the third embodiment of the present invention may be disposed in the optical amplifier according to the fourth embodiment of the present invention, and the control method of the optical amplifier according to the first embodiment of the present invention or the second embodiment of the present invention is used to control the present invention.
  • the control method of the optical amplifier according to the first embodiment of the present invention or the second embodiment of the present invention is used to control the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)

Abstract

一种光放大器的控制方法和装置及光放大器。根据当前输入光功率、上一次输入光功率、最大工作电流、最小工作电流、控制电流系数和偏移系数获得初始控制电流偏移量,并结合调整时间获得控制电流偏移量随时间变化曲线,然后根据该曲线以当前时刻的控制电流偏移量与预设的控制电流之和作为光放大器中泵浦激光器的驱动电流。该控制方法和装置能够对光放大器进行超前调节,避免了调整过程时延造成的驱动电流取值的滞后性,大大减少了光放大器发生瞬态效应的情况。

Description

光放大器的控制方法和装置及光放大器 技术领域
本发明实施例涉及通信技术, 尤其涉及一种光放大器的控制方法和装 置及光放大器。 背景技术
在波分复用 ( wavelength division multiplexing, 简称 WDM ) 系统中, 采 用光放大器( optical amplifier, 简称 OA )放大多路弱光信号。
在光放大器中传输的波数发生变化后, 光放大器内的控制装置调整该光 放大器中的泵浦激光器的驱动电流, 该调整过程包括快速光功率变化控制过 程和慢速光功率变化控制过程。 在快速控制过程中, 控制装置根据预设的控 制电流调整该光放大器中的泵浦激光器的驱动电流, 从而调整该光放大器的 输出功率。 由于上述调整过程存在时延, 该光放大器在增加或减少波长的情 况下, 原有传输波长的输出功率会瞬间增大或减小, 即发生瞬态效应。 由于 实际的 WDM系统, 通常多个光放串联使用。 瞬态效应的迭加对于原有传输 波长的功率造成不利影响, 进而造成误码。
目前主要采用以下两种方式减小瞬态效应的影响。 方式一: 在光放大 器中增加可调光衰减器 ( variable optical attenuator, 简称 VOA ) , 利用前 馈的方法, 快速检测输入信号光功率的变化, 然后通过控制 VOA减小瞬 态效应。 方式二: 在光放大器中增加布拉格光栅 ( fiber Bragg grating, 筒 称 FBG ) 、 VOA和耦合器, 通过 FBG滤除一个波长, 经过 VOA控制信 号增益, 然后通过耦合器耦合到输出端, 形成一个与输入光功率此消彼长 的消耗饵粒子, 从而减小瞬态效应。
采用上述现有的光放大器控制方法, 虽然能够减小瞬态效应, 但是需 要在光放大器中增加 VOA、 FBG、 耦合器等器件, 导致光放大器的生产制 造成本高。 发明内容 本发明的第一个方面是提供一种光放大器的控制方法, 用以解决现有 技术中的缺陷, 降低光放大器的生产制造成本。
本发明的另一个方面是提供一种光放大器的控制装置, 用以解决现有 技术中的缺陷, 降低光放大器的生产制造成本。
本发明的又一个方面是提供一种光放大器, 用以解决现有技术中的缺 陷, 降低光放大器的生产制造成本。
本发明的第一个方面是提供一种光放大器的控制方法, 包括: 根据获取的光放大器的当前输入光功率和上一次输入光功率, 以及预 设的所述光放大器的最大工作电流、 最小工作电流、 控制电流系数和偏移 系数, 获得初始控制电流偏移量;
根据所述初始控制电流偏移量和预设的调整时间, 获得控制电流偏移 量随时间变化曲线;
在所述调整时间内, 根据所述控制电流偏移量随时间变化曲线, 获取 当前时刻的控制电流偏移量, 以所述当前时刻的控制电流偏移量与预设的 控制电流之和作为所述光放大器中泵浦激光器的驱动电流。
如上所述的方面和任一可能的实现方式, 进一步提供一种实现方式, 所述根据获取的光放大器的当前输入光功率和上一次输入光功率, 以 及预设的所述光放大器的最大工作电流、 最小工作电流、 控制电流系数和 偏移系数, 获得初始控制电流偏移量包括:
根据 K^ - I^ Pm + Ismgk, 获得正常驱动电流, 其中, 为所述正 常驱动电流, 1&11为所述最大工作电流, 1^¼为所述最小工作电流, Pm为所 述当前输入光功率;
根据1。^ = (1^ _ 1 ) . ¾ _ ^ 。^ ,获得第一控制电流偏移量, 其中,
I。^为所述第一控制电流偏移量, Phisin为所述上一次输入光功率, K。ffset为 预设的偏移系数;
根据0 ^ = 1。^ ^0人/ 41^, 获得所述初始控制电流偏移量, 其中, 0八。^为所述初始控制电流偏移量, I。ffsf;t为所述第一控制电流偏移量, ADA / Δ Ima为所述控制电流系数。
如上所述的方面和任一可能的实现方式, 进一步提供一种实现方式, 所述根据所述初始控制电流偏移量和预设的调整时间, 获得控制电流 偏移量随时间变化曲线包括:
以所述初始控制电流偏移量作为纵坐标的初始值, 以 0作为纵坐标的 最终值, 以所述调整时间作为横坐标, 根据预设的曲线参数绘制所述控制 电流偏移量随时间变化曲线, 所述曲线参数包括: 曲线类型、 间隔时间或 间隔次数。
如上所述的方面和任一可能的实现方式, 进一步提供一种实现方式, 所述根据获取的光放大器的当前输入光功率和上一次输入光功率, 以 及预设的所述光放大器的最大工作电流、 最小工作电流、 控制电流系数和 偏移系数, 获得初始控制电流偏移量之前, 还包括:
对所述光放大器的当前输入光功率与上一次输入光功率之差与预设 的快速控制门限进行比较;
当所述光放大器的当前输入光功率与上一次输入光功率之差大于预 设的快速控制门限时, 执行所述根据获取的光放大器的当前输入光功率和 上一次输入光功率, 以及预设的所述光放大器的最大工作电流、 最小工作 电流、 控制电流系数和偏移系数, 获得初始控制电流偏移量的步骤。
本发明的另一个方面是提供一种光放大器的控制装置, 包括: 第一计算模块, 用于根据获取的光放大器的当前输入光功率和上一次 输入光功率, 以及预设的所述光放大器的最大工作电流、 最小工作电流控 制电流系数和偏移系数, 获得初始控制电流偏移量;
第二计算模块, 用于根据所述初始控制电流偏移量和预设的调整时 间, 获得控制电流偏移量随时间变化曲线;
控制模块, 用于在所述调整时间内, 根据所述控制电流偏移量随时间 变化曲线, 获取当前时刻的控制电流偏移量, 以所述当前时刻的控制电流 偏移量与预设的控制电流之和作为所述光放大器中泵浦激光器的驱动电 流。
如上所述的方面和任一可能的实现方式, 进一步提供一种实现方式, 所述第一计算模块具体用于根据^ ^ -^^ ^ + , 获得正常驱 动电流, 并根据 I。ffset = (Iftll - Isingk) . (Pm _ Phisin) . K。ffset ,获得第一控制电流偏移量, 并根据0 。^ = 1。^ ^0入/^ 1„13 , 获得所述初始控制电流偏移量, 其中, 1 为 所述正常驱动电流, Ifull为所述最大工作电流, 1 1(5为所述最小工作电流, Pm为所述当前输入光功率, I。^为所述第一控制电流偏移量, Phisin为所述 上一次输入光功率, K。ffsrt为预设的偏移系数, DA。ffsrt为所述初始控制电流 偏移量, 1。^为所述第一控制电流偏移量, 八0八/^1„^为所述控制电流系数。
如上所述的方面和任一可能的实现方式, 进一步提供一种实现方式, 所述第二计算模块具体用于以所述初始控制电流偏移量作为纵坐标 的初始值, 以 0作为纵坐标的最终值, 以所述调整时间作为横坐标, 根据 预设的曲线参数绘制所述控制电流偏移量随时间变化曲线, 所述曲线参数 包括: 曲线类型、 间隔时间或间隔次数。
如上所述的方面和任一可能的实现方式, 进一步提供一种实现方式, 还包括: 比较模块, 用于对所述光放大器的当前输入光功率与上一次 输入光功率之差与预设的快速控制门限进行比较, 当所述光放大器的当前 输入光功率与上一次输入光功率之差大于预设的快速控制门限时, 开启所 述第一计算模块。
本发明的又一个方面是提供一种光放大器, 包括:
泵浦激光器, 连接控制装置和掺铒光纤, 用于釆用所述控制装置确定 的驱动电流, 向所述掺铒光纤输入激光;
所述掺铒光纤, 用于放大所述泵浦激光器提供的激光;
所述控制装置, 用于根据获取的所述光放大器的当前输入光功率和上 一次输入光功率, 以及预设的所述光放大器的最大工作电流、 最小工作电 流、 控制电流系数和偏移系数, 获得初始控制电流偏移量, 根据所述初始 控制电流偏移量和预设的调整时间, 获得控制电流偏移量随时间变化曲 线, 在所述调整时间内, 根据所述控制电流偏移量随时间变化曲线, 获取 当前时刻的控制电流偏移量, 以所述当前时刻的控制电流偏移量与预设的 控制电流之和作为所述光放大器中泵浦激光器的驱动电流。
如上所述的方面和任一可能的实现方式, 进一步提供一种实现方式, 所述控制装置具体用于根据 = (I滅 _ Ismgle) . Pm + Ismgle, 获得正常驱动电 流, 并根据1。^ = (1&11 _ 1 ) . _ ^) 。^, 获得第一控制电流偏移量, 并 根据 DA。ffs£;t = I。ffsf;t . ADA M Ima , 获得所述初始控制电流偏移量, 其中, 1^为 所述正常驱动电流, Ifull为所述最大工作电流, 1^16为所述最小工作电流, Pm为所述当前输入光功率, I。 ^为所述第一控制电流偏移量, Phisin为所述 上一次输入光功率, K。ffst为预设的偏移系数, DA。^为所述初始控制电流 偏移量, I。 ^为所述第一控制电流偏移量, 八0 ^1^为所述控制电流系数。
如上所述的方面和任一可能的实现方式, 进一步提供一种实现方式, 所述控制装置具体用于以所述初始控制电流偏移量作为纵坐标的初 始值, 以 0作为纵坐标的最终值, 以所述调整时间作为横坐标, 根据预设 的曲线参数绘制所述控制电流偏移量随时间变化曲线, 所述曲线参数包 括: 曲线类型、 间隔时间或间隔次数。
如上所述的方面和任一可能的实现方式, 进一步提供一种实现方式, 所述控制装置还用于对所述光放大器的当前输入光功率与上一次输 入光功率之差与预设的快速控制门限进行比较, 当所述光放大器的当前输 入光功率与上一次输入光功率之差大于预设的快速控制门限时, 根据获取 的光放大器的当前输入光功率和上一次输入光功率, 以及预设的所述光放 大器的最大工作电流、 最小工作电流、 控制电流系数和偏移系数, 获得初 始控制电流偏移量。
由上述发明内容可见, 本发明提出的光放大器的控制方法, 光放大 器的控制装置并不直接根据预设的控制电流作为该光放大器中泵浦激光 器的驱动电流, 而是先根据光放大器的当前输入光功率、 上一次输入光功 率、 最大工作电流、 最小工作电流、 控制电流系数和偏移系数, 获得初始 控制电流偏移量, 然后根据初始控制电流偏移量和预设的调整时间, 获得 控制电流偏移量随时间变化曲线, 在调整时间内, 根据控制电流偏移量随 时间变化曲线, 获取当前时刻的控制电流偏移量, 以当前时刻的控制电流 偏移量与预设的控制电流之和作为光放大器中泵浦激光器的驱动电流。 根 据该光放大器的工作状态的变化情况结合对该光放大器的调节要求计算 获得随时间变化的控制电流的偏移量, 通过在泵浦激光器的驱动电流值中 增加上述控制电流的偏移量, 从而实现对光放大器进行超前调节, 避免了 调整过程时延造成的驱动电流取值的滞后性,从而大大减小了光放大器发生 瞬态效应。 由于上述控制操作均由光放大器自身包含的控制装置执行, 无 需在光放大器中增加任何元器件, 因此降低了光放大器的生产制造成本。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一的光放大器的控制方法的流程图;
图 2为本发明实施例二的光放大器的控制的方法的流程图;
图 3 为本发明实施例二的一种控制电流偏移量随时间变化曲线示意 图;
图 4为本发明实施例二的另一种控制电流偏移量随时间变化曲线示意 图;
图 5为本发明实施例三的光放大器的控制装置的结构示意图;
图 6为本发明实施例四的光放大器的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
在现有的光放大器中均包括泵浦激光器和控制装置, 该控制装置控制该 泵浦激光器的驱动电流, 本发明对该控制装置执行的控制方法进行改进, 使 该控制装置采用本发明提出的控制方法控制泵浦激光器。
图 1为本发明实施例一的光放大器的控制方法的流程图。 如图 1所示, 该方法包括以下过程, 以下过程均可以由光放大器中的控制装置执行。
步骤 101 : 根据获取的光放大器的当前输入光功率和上一次输入光功 率, 以及预设的所述光放大器的最大工作电流、 最小工作电流、 控制电流 系数和偏移系数, 获得初始控制电流偏移量。
步骤 102: 根据所述初始控制电流偏移量和预设的调整时间, 获得控 制电流偏移量随时间变化曲线。
步骤 103 : 在所述调整时间内, 根据所述控制电流偏移量随时间变化 曲线, 获取当前时刻的控制电流偏移量, 以所述当前时刻的控制电流偏移 量与预设的控制电流之和作为所述光放大器中泵浦激光器的驱动电流。
在本发明实施例一中, 根据该光放大器的工作状态的变化情况结合 对该光放大器的调节要求计算获得随时间变化的控制电流的偏移量, 通过 在泵浦激光器的驱动电流值中增加上述控制电流的偏移量, 从而实现对光 放大器进行超前调节,避免了调整过程时延造成的驱动电流取值的滞后性, 从而大大减小了光放大器发生瞬态效应。 由于上述控制操作均由光放大器自 身包含的控制装置执行, 只需要对控制装置执行的程序进行修改, 而无需 在光放大器中增加任何元器件, 因此降低了光放大器的生产制造成本。
图 2为本发明实施例二的光放大器的控制的方法的流程图。如图 2所示, 该方法包括以下过程, 以下过程均可以由光放大器中的控制装置执行。
步骤 201 : 通过检测获取光放大器的当前输入光功率和上一次输入光 功率。
在本步骤中, 在光放大器启动时, 光放大器运行初始条件, 第一次执 行本步骤 201 , 对光放大器的输入光功率进行第一次检测, 获得第一次的 检测结果, 该检测结果为第一次检测的当前输入光功率, 并且, 在第一次 检测后, 设置该第一次检测获得的输入光功率为上一次输入光功率。 在第 一次检测之后, 按照预设的检测时间间隔, 对光放大器的输入光功率进行 检测, 作为各次检测的当前输入光功率。 例如, 光放大器每隔 0.0001秒检 测一次输入光功率, ^_设输入光功率从 0时刻开始线性增加, 在第 1.5秒 的时候达到 -18.5dBm, 则在第 1.0000秒, 已经进行了 10000次检测。 对于 其中的每次检测, 根据检测获取的当前输入光功率和上一次输入光功率执 行后续步骤。
步骤 202: 对所述光放大器的当前输入光功率与上一次输入光功率之 差与预设的快速控制门限进行比较。
当所述光放大器的当前输入光功率与上一次输入光功率之差大于预 设的快速控制门限时, 执行步骤 203。 当所述光放大器的当前输入光功率 与上一次输入光功率之差小于或等于预设的快速控制门限时, 执行步骤 210。 在本步驟中, 快速控制门限为一预设值, 其数值可根据实际应用进 行灵活设置。 步骤 210: 执行慢速光功率变化控制过程。
在本步驟中, 执行慢速光功率变化控制过程。 本发明对执行慢速光功 率变化控制过程的方法不做限制, 任何对光放大器进行慢速光功率变化控 制的方法均可适用。
步骤 203: 根据获取的光放大器的当前输入光功率和上一次输入光功 率, 以及预设的所述光放大器的最大工作电流、 最小工作电流、 控制电流 系数和偏移系数, 获得初始控制电流偏移量。
在本步骤中, 光放大器的最大工作电流、 最小工作电流、 控制电流系 数和偏移系数为预设值, 在一种实现方式中, 可以根据该光放大器的标定 获得。 其中, 光放大器标定的信息包括: 该光放大器的最大工作电流和最 小工作电流, 还包括控制电流与正常驱动电流的对应关系曲线, 即 DA-Ima 曲线, 该曲线的斜率即为所述控制电流系数, 根据标定中的曲线信息, 获 取该曲线的斜率, 从而获取所述控制电流系数。 不同的当前输入光功率可 以对应不同的控制电流, 根据检测获得的当前输入光功率, 查找预设的当 前输入光功率与控制电流的对应关系, 获得控制电流。 光放大器的当前输 入光功率和上一次输入光功率可以在前述步骤中通过检测获得。 在本步骤 中, 根据该光放大器的当前输入光功率、 上一次输入光功率、 最大工作电 流、 最小工作电流、 控制电流系数和偏移系数通过计算获得初始控制电流 偏移量。 在一种实现方式中, 上述计算方法包括:
第一步: 根据 1^ = ^- Ismgle).Pm + Ismgle, 获得正常驱动电流。 其中, Ima 为所述正常驱动电流, Ifull为所述最大工作电流, 1^1(;为所述最小工作电流, Pm为所述当前输入光功率。
第二步: 根据 ι。^=(ι - ismglJ.(Pm_Phlsin).K。ffset, 获得第一控制电流偏移 量。 其中, i。ffst为所述第一控制电流偏移量, ^为所述上一次输入光功 率, K。ffsst为预设的偏移系数。 K。^为一预设值, 其数值可根据实际应用进 行灵活设置。例如, K。ffct的数值可以设置为 0.5。在一种实现方式中, Pin- Phisin 的数值越大, K。ffsrt的数值越大。
第三步: 根据 DA。ffset=I。ffsf;t.ADAMIma, 获得所述初始控制电流偏移量。 其中, DA。^为所述初始控制电流偏移量, I。ffst为所述第一控制电流偏移量, DA为所述控制电流, 1„^为所述正常驱动电流, 40入/ 1^为所述控制电流 系数, 即, 八0 /八 为 DA - Ima曲线的斜率。
步骤 204: 根据所述初始控制电流偏移量和预设的调整时间, 获得控 制电流偏移量随时间变化曲线。
在本步骤中, 初始控制电流偏移量可以在前述步骤中获得, 调整时间 根据预设获得, 根据初始控制电流偏移量和预设的调整时间, 并结合预设 的曲线参数, 绘制控制电流偏移量随时间变化曲线。 在一种实现方式中, 以初始控制电流偏移量作为纵坐标的初始值, 以 0作为纵坐标的最终值, 以调整时间作为横坐标, 根据预设的曲线参数绘制控制电流偏移量随时间 变化曲线。 曲线参数中可以包括: 曲线类型、 间隔时间或间隔次数等信息。 其中, 曲线类型可以包括: 线性曲线、 阶梯状曲线等等。
例如, 图 3为本发明实施例二的一种控制电流偏移量随时间变化曲线 示意图, 初始控制电流偏移量为 100, 预设的调整时间为 10微秒, 曲线参 数中包括: 曲线类型为线性曲线、 间隔时间为 1微秒, 根据上述信息, 绘 制得到如图 3所示的控制电流偏移量随时间变化曲线, 图 3中横坐标表示 时间, 纵坐标表示控制电流偏移量, 图 3中的曲线为控制电流偏移量随时 间变化曲线。
又例如, 图 4为本发明实施例二的另一种控制电流偏移量随时间变化 曲线示意图, 初始控制电流偏移量为 100, 预设的调整时间为 10微秒, 曲 线参数中包括: 曲线类型为阶梯型曲线、 间隔次数为 10 , 根据上述信息, 绘制得到如图 4所示的控制电流偏移量随时间变化曲线, 图 4中横坐标表 示时间, 纵坐标表示控制电流偏移量, 图 4中的曲线为控制电流偏移量随 时间变化曲线。
步骤 205: 在所述调整时间内, 根据所述控制电流偏移量随时间变化 曲线, 获取当前时刻的控制电流偏移量, 以所述当前时刻的控制电流偏移 量与预设的控制电流之和作为所述光放大器中泵浦激光器的驱动电流。
在本步骤中, 在预设的调整时间内对该光放大器中泵浦激光器的驱动 电流进行调整。 为了准确地控制时间, 可以启动一个定时器, 该定时器的 到期时间设置为上述预设的调整时间, 在该定时器到时之前进行调整, 当 该定时器到时时, 结束调整。 其中, 调整的方法可以为: 首先, 根据前述 步骤中获得的控制电流偏移量随时间变化曲线, 获取当前时刻的控制电流 偏移量。 然后, 用当前时刻的控制电流偏移量加上预设的控制电流, 得到 泵浦激光器的驱动电流。 最后, 向泵浦激光器发送控制信号, 使得该泵浦 激光器以当前时刻的控制电流偏移量与预设的控制电流之和作为驱动电 流。
步骤 206: 更新上一次输入光功率的数值。
在步骤 205之后, 执行本步骤中, 即, 只有在步骤 202中判断光放大 器的当前输入光功率与上一次输入光功率之差大于预设的快速控制门限 的时候, 在调整光放大器中泵浦激光器的驱动电流之后, 将上一次输入光 功率的数值刷新成为当前的输入光功率,以备下一次调整过程使用。例如, 快速控制门限是 ldB。 光放大器启动的时候, 在第 0秒进行第一次检测, 此时的输入光功率为 -20dBm,则第一次的当前输入光功率和上一次输入光 功率的数值均为 -20dBm。 光放大器每隔 0.0001秒检测一次输入光功率, 殳设光功率从 0时刻开始线性增加, 在第 1.5秒的时候达到 -18.5dBm。 则 截止到第 1.0000秒进行的检测中,当前输入光功率与上一次输入光功率之 差均小于或等于快速控制门限, 因此并不对上一次输入光功率的数值进行 更新, 即上一次输入光功率的数值一直保持在 -20dBm。 在第 1.0001秒进 行的检测中, 此时的当前光功率为 -18.9999dBm, 当前光功率与上一次输 入光功率 -20dBm之差大于快速控制门限, 则根据当前光功率为
-18.9999dBm且上一次输入光功率为 -20dBm , 对光放大器中泵浦激光器的 驱动电流进行调整, 在调整后, 就把上一次输入光功率的数值更新为第 1.0001秒的当前输入光功率的数值, 即, 上一次输入光功率的数值更新为 -18.9999dBm。 更新后的上一次输入光功率的数值提供给下一次调整过程 使用, 当下一次调整过程中执行上述步骤 201时, 获取的上一次输入光功 率的数值即为 - 18.9999dBm。
在本发明实施例二中, 根据该光放大器的工作状态的变化情况结合 对该光放大器的调节要求计算获得随时间变化的控制电流的偏移量, 通过 在泵浦激光器的驱动电流值中增加上述控制电流的偏移量, 从而实现对光 放大器进行超前调节,避免了调整过程时延造成的驱动电流取值的滞后性, 从而大大减少了光放大器的瞬态效应。 并且, 仅在当前输入光功率与上一次 输入光功率之差大于快速控制门限时, 执行上述控制方法, 在当前输入光功 率与上一次输入光功率之差小于或等于快速控制门限时, 仍釆用现有技术中 的慢速光功率变化控制过程。 由于上述控制操作均由光放大器自身包含的控 制装置执行, 只需要对控制装置执行的程序进行修改, 而无需在光放大器 中增加任何元器件, 因此降低了光放大器的生产制造成本。
图 5为本发明实施例三的光放大器的控制装置的结构示意图。 该控制装 置可以设置在该光放大器之内。 如图 5 所示, 该装置设备至少包括: 第一 计算模块 51、 第二计算模块 52和控制模块 53 ; 进一步地, 还可以包括: 比较模块 54。
对于该装置设备包括第一计算模块 51、 第二计算模块 52和控制模块 53的情况:
其中, 第一计算模块 51用于根据获取的光放大器的当前输入光功率 和上一次输入光功率, 以及预设的所述光放大器的最大工作电流、 最小工 作电流、 控制电流系数和偏移系数, 获得初始控制电流偏移量。
第二计算模块 52用于根据所述初始控制电流偏移量和预设的调整时 间, 获得控制电流偏移量随时间变化曲线。
控制模块 53用于在所述调整时间内, 根据所述控制电流偏移量随时 间变化曲线, 获取当前时刻的控制电流偏移量, 以所述当前时刻的控制电 流偏移量与预设的控制电流之和作为所述光放大器中泵浦激光器的驱动 电流。
在上述技术方案的基础上, 具体地, 所述第一计算模块 51具体用于 根据^^ -^^ + ^^, 获得正常驱动电流' 并根据
Ioffset = (Ifull - ) - (P 1n - PMSJ ' Koffset ) 获得第一控制电流偏移量, 并根据
DAoffset = Ioffset - ADA / AIma , 获得所述初始控制电流偏移量, 其中, Ima为所述 正常驱动电流, Ifull为所述最大工作电流, 181^为所述最小工作电流, ^为 所述当前输入光功率, I。ffst!t为所述第一控制电流偏移量, Phisin为所述上一 次输入光功率, K。^为预设的偏移系数, DA。ffs6t为所述初始控制电流偏移 量, I。ffsrt为所述第一控制电流偏移量, DA为所述控制电流, 1^为所述正 常驱动电流, 其中△ DA/A La是控制电流系数的斜率。
在上述技术方案的基础上, 具体地, 所述第二计算模块 52具体用于 以所述初始控制电流偏移量作为纵坐标的初始值, 以 0作为纵坐标的最终 值, 以所述调整时间作为横坐标, 根据预设的曲线参数绘制所述控制电流 偏移量随时间变化曲线, 所述曲线参数包括: 曲线类型、 间隔时间或间隔 次数。
在上述技术方案的基础上, 进一步地, 该装置中还可以包括: 比较模 块 54。 比较模块 54用于对所述光放大器的当前输入光功率与上一次输入 光功率之差与预设的快速控制门限进行比较, 当所述光放大器的当前输入 光功率与上一次输入光功率之差大于预设的快速控制门限时, 开启所述第 一计算模块 51。从而使得仅在当前输入光功率与上一次输入光功率之差大 于快速控制门限的情况下, 上述第一计算模块 51、 第二计算模块 52和控 制模块 53按照上述方式运行。
本发明实施例三的光放大器的控制装置可以用于执行本发明实施例 一或实施例二所述的光放大器的控制方法, 其具体实现过程和技术效果可 以参照本发明实施例一或实施例二, 此处不再赘述。
图 6为本发明实施例四的光放大器的结构示意图。 如图 6所示, 该光放 大器中至少包括: 泵浦激光器 61、 掺铒光纤 62和控制装置 63。 控制装置 63可以通过分光器 64分别接收输入光和输入光。
其中, 所述泵浦激光器 61连接所述控制装置 63和所述掺铒光纤 62 , 用于采用所述控制装置 63确定的驱动电流,向所述掺铒光纤 62输入激光。
所述摻铒光纤 62用于放大所述泵浦激光器 61提供的激光。
所述控制装置 63用于根据获取的所述光放大器的当前输入光功率和 上一次输入光功率, 以及预设的所述光放大器的最大工作电流、 最小工作 电流、 控制电流系数和偏移系数, 获得初始控制电流偏移量, 根据所述初 始控制电流偏移量和预设的调整时间, 获得控制电流偏移量随时间变化曲 线, 在所述调整时间内, 根据所述控制电流偏移量随时间变化曲线, 获取 当前时刻的控制电流偏移量, 以所述当前时刻的控制电流偏移量与预设的 控制电流之和作为所述光放大器中泵浦激光器 61的驱动电流。
在上述技术方案的基础上, 具体地, 所述控制装置 63具体用于根据 - gJ. Pm +
Figure imgf000014_0001
, 获得正常驱动电流, 并根据
Ι。^ = (ΙΜ _ Ι ) · (Ρω _ Ρω81 Κ。^, 获得第一控制电流偏移量, 并根据
DAoffs = Ioffset - ADA / AIma , 获得所述初始控制电流偏移量。 其中, Ima为所述 正常驱动电流, Ifull为所述最大工作电流, 11^为所述最小工作电流, ^为 所述当前输入光功率, I。ffsrt为所述第一控制电流偏移量, Phism为所述上一 次输入光功率, K。^为预设的偏移系数, DA。^为所述初始控制电流偏移 量, I。 ^为所述第一控制电流偏移量, DA为所述控制电流, 为所述正 常驱动电流, 其中 ADA/A Ima是控制电流系数的斜率。
在上述技术方案的基础上, 具体地, 所述控制装置 63具体用于以所 述初始控制电流偏移量作为纵坐标的初始值, 以 0作为纵坐标的最终值, 以所述调整时间作为横坐标, 根据预设的曲线参数绘制所述控制电流偏移 量随时间变化曲线, 所述曲线参数包括: 曲线类型、 间隔时间或间隔次数。
在上述技术方案的基础上, 具体地, 所述控制装置 63还用于对所述 光放大器的当前输入光功率与上一次输入光功率之差与预设的快速控制 门限进行比较, 当所述光放大器的当前输入光功率与上一次输入光功率之 差大于预设的快速控制门限时, 根据获取的光放大器的当前输入光功率和 上一次输入光功率, 以及预设的所述光放大器的最大工作电流、 最小工作 电流、 控制电流系数和偏移系数, 获得初始控制电流偏移量。
本发明实施例三所述的光放大器的控制装置可以设置在本发明实施 例四所述的光放大器中, 采用本发明实施例一或本发明实施例二所述的光 放大器的控制方法控制本发明实施例四所述的光放大器, 其具体实现过程 和技术效果可以参照本发明实施例一或实施例二, 此处不再赘述。
需要说明的是: 对于前述的各方法实施例, 为了筒单描述, 故将其都表 述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受所描 述的动作顺序的限制, 因为依据本发明, 某些步骤可以釆用其他顺序或者同 时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实施例均属 于优选实施例, 所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有 详述的部分, 可以参见其他实施例的相关描述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明 , 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种光放大器的控制方法, 其特征在于, 包括:
根据获取的光放大器的当前输入光功率和上一次输入光功率, 以及预 设的所述光放大器的最大工作电流、 最小工作电流、 控制电流系数和偏移 系数, 获得初始控制电流偏移量;
根据所述初始控制电流偏移量和预设的调整时间, 获得控制电流偏移 量随时间变化曲线;
在所述调整时间内, 根据所述控制电流偏移量随时间变化曲线, 获取 当前时刻的控制电流偏移量, 以所述当前时刻的控制电流偏移量与预设的 控制电流之和作为所述光放大器中泵浦激光器的驱动电流。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据获取的光放 大器的当前输入光功率和上一次输入光功率, 以及预设的所述光放大器的 最大工作电流、 最小工作电流、 控制电流系数和偏移系数, 获得初始控制 电流偏移量包括:
根据1^ = (^ - 181^) ^ + 1^, 获得正常驱动电流, 其中, 为所述正 常驱动电流, Ιωι为所述最大工作电流, 181^为所述最小工作电流, Pm为所 述当前输入光功率;
根据
Figure imgf000017_0001
,获得第一控制电流偏移量, 其中, i。fto为所述第一控制电流偏移量, Phisin为所述上一次输入光功率, κ。^为 预设的偏移系数;
根据0 ^ = 1。^ ^0入^1^ , 获得所述初始控制电流偏移量, 其中, DA。ffs6t为所述初始控制电流偏移量, I。ffset为所述第一控制电流偏移量, ΔΌΑ / Δ Ima为所述控制电流系数。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述根据所述初 始控制电流偏移量和预设的调整时间, 获得控制电流偏移量随时间变化曲 线包括:
以所述初始控制电流偏移量作为纵坐标的初始值, 以 0作为纵坐标的 最终值, 以所述调整时间作为横坐标, 根据预设的曲线参数绘制所述控制 电流偏移量随时间变化曲线, 所述曲线参数包括: 曲线类型、 间隔时间或 间隔次数。
4、 根据权利要求 1至 3中任意一项所述的方法, 其特征在于, 所述 根据获取的光放大器的当前输入光功率和上一次输入光功率, 以及预设的 所述光放大器的最大工作电流、最小工作电流、控制电流系数和偏移系数 , 获得初始控制电流偏移量之前, 还包括:
对所述光放大器的当前输入光功率与上一次输入光功率之差与预设 的快速控制门限进行比较;
当所述光放大器的当前输入光功率与上一次输入光功率之差大于预 设的快速控制门限时, 执行所述根据获取的光放大器的当前输入光功率和 上一次输入光功率, 以及预设的所述光放大器的最大工作电流、 最小工作 电流、 控制电流系数和偏移系数, 获得初始控制电流偏移量的步骤。
5、 一种光放大器的控制装置, 其特征在于, 包括:
第一计算模块, 用于根据获取的光放大器的当前输入光功率和上一次 输入光功率, 以及预设的所述光放大器的最大工作电流、 最小工作电流、 控制电流系数和偏移系数, 获得初始控制电流偏移量;
第二计算模块, 用于根据所述初始控制电流偏移量和预设的调整时 间, 获得控制电流偏移量随时间变化曲线;
控制模块, 用于在所述调整时间内, 根据所述控制电流偏移量随时间 变化曲线, 获取当前时刻的控制电流偏移量, 以所述当前时刻的控制电流 偏移量与预设的控制电流之和作为所述光放大器中泵浦激光器的驱动电 流。
6、 根据权利要求 5所述的装置, 其特征在于,
所述第一计算模块具体用于根据^ ^ ^ ^ + , 获得正常驱 动电流, 并根据 I。ffset = (Iftll - Isingk) . (Pm _ Phisin) . K。ffset ,获得第一控制电流偏移量, 并根据1^。^ = 1。^ ^0入/^ 11113 , 获得所述初始控制电流偏移量, 其中, 1^为 所述正常驱动电流, Ifull为所述最大工作电流, 1^1(5为所述最小工作电流, Pm为所述当前输入光功率, I。ffs6t为所述第一控制电流偏移量, Phisin为所述 上一次输入光功率, K。ffsrt为预设的偏移系数, DA。ffsrt为所述初始控制电流 偏移量, 1。^为所述第一控制电流偏移量, 八0 /^1^为所述控制电流系数。
7、 根据权利要求 5或 6所述的装置, 其特征在于,
所述第二计算模块具体用于以所述初始控制电流偏移量作为纵坐标 的初始值, 以 0作为纵坐标的最终值, 以所述调整时间作为横坐标, 根据 预设的曲线参数绘制所述控制电流偏移量随时间变化曲线, 所述曲线参数 包括: 曲线类型、 间隔时间或间隔次数。
8、 根据权利要求 5至 7中任意一项所述的装置, 其特征在于, 还包 括: 比较模块, 用于对所述光放大器的当前输入光功率与上一次输入光功 率之差与预设的快速控制门限进行比较, 当所述光放大器的当前输入光功 率与上一次输入光功率之差大于预设的快速控制门限时, 开启所述第一计 算模块。
9、 一种光放大器, 其特征在于, 包括:
泵浦激光器, 连接控制装置和掺铒光纤, 用于釆用所述控制装置确定 的驱动电流, 向所述掺铒光纤输入激光;
所述掺铒光纤, 用于放大所述泵浦激光器提供的激光;
所述控制装置, 用于根据获取的所述光放大器的当前输入光功率和上 一次输入光功率, 以及预设的所述光放大器的最大工作电流、 最小工作电 流、 控制电流系数和偏移系数, 获得初始控制电流偏移量, 根据所述初始 控制电流偏移量和预设的调整时间, 获得控制电流偏移量随时间变化曲 线, 在所述调整时间内, 根据所述控制电流偏移量随时间变化曲线, 获取 当前时刻的控制电流偏移量, 以所述当前时刻的控制电流偏移量与预设的 控制电流之和作为所述光放大器中泵浦激光器的驱动电流。
10、 根据权利要求 9所述的光放大器, 其特征在于,
所述控制装置具体用于根据 = (I滅 - ismgle) . Pm + ismgle, 获得正常驱动电 流, 并根据1。^ = (1&11 _ 1^ _ ^ 。^, 获得第一控制电流偏移量, 并 根据 DA。ffs£;t = I。ffsf;t . ADA M Ima , 获得所述初始控制电流偏移量, 其中, 1^为 所述正常驱动电流, Ifull为所述最大工作电流, 1^16为所述最小工作电流, Pm为所述当前输入光功率, I。 ^为所述第一控制电流偏移量, Phisin为所述 上一次输入光功率, K。ffs6t为预设的偏移系数, DA。^为所述初始控制电流 偏移量, I。^为所述第一控制电流偏移量, 八0 ^1„^为所述控制电流系数。
1 1、 根据权利要求 9或 10所述的光放大器, 其特征在于,
所述控制装置具体用于以所述初始控制电流偏移量作为纵坐标的初 始值, 以 0作为纵坐标的最终值, 以所述调整时间作为横坐标, 根据预设 的曲线参数绘制所述控制电流偏移量随时间变化曲线, 所述曲线参数包 括: 曲线类型、 间隔时间或间隔次数。
12、 根据权利要求 9至 11 中任意一项所述的光放大器, 其特征在于, 所述控制装置还用于对所述光放大器的当前输入光功率与上一次输 入光功率之差与预设的快速控制门限进行比较, 当所述光放大器的当前输 入光功率与上一次输入光功率之差大于预设的快速控制门限时, 根据获取 的光放大器的当前输入光功率和上一次输入光功率, 以及预设的所述光放 大器的最大工作电流、 最小工作电流、 控制电流系数和偏移系数, 获得初 始控制电流偏移量。
PCT/CN2012/084681 2012-11-15 2012-11-15 光放大器的控制方法和装置及光放大器 WO2014075271A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES12871608.1T ES2620636T3 (es) 2012-11-15 2012-11-15 Método y dispositivo de control de un amplificador óptico y un amplificador óptico
EP12871608.1A EP2759876B1 (en) 2012-11-15 2012-11-15 Optical amplifier control method and device and optical amplifier
PCT/CN2012/084681 WO2014075271A1 (zh) 2012-11-15 2012-11-15 光放大器的控制方法和装置及光放大器
CN201280002430.6A CN103222135B (zh) 2012-11-15 2012-11-15 光放大器的控制方法和装置及光放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/084681 WO2014075271A1 (zh) 2012-11-15 2012-11-15 光放大器的控制方法和装置及光放大器

Publications (1)

Publication Number Publication Date
WO2014075271A1 true WO2014075271A1 (zh) 2014-05-22

Family

ID=48818192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084681 WO2014075271A1 (zh) 2012-11-15 2012-11-15 光放大器的控制方法和装置及光放大器

Country Status (4)

Country Link
EP (1) EP2759876B1 (zh)
CN (1) CN103222135B (zh)
ES (1) ES2620636T3 (zh)
WO (1) WO2014075271A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652379A (zh) * 2016-03-03 2016-06-08 青岛海信宽带多媒体技术有限公司 一种光模块调节光功率的方法及装置
CN105912067B (zh) * 2016-06-15 2017-05-24 凌云天博光电科技股份有限公司 一种泵浦激光器输入电流的控制方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487349A (zh) * 2002-08-30 2004-04-07 住友电气工业株式会社 光放大器、光放大器的增益控制方法及电路
CN1728607A (zh) * 2004-07-30 2006-02-01 朗迅科技公司 光传输系统中的瞬态控制
CN101158796A (zh) * 2007-10-22 2008-04-09 中兴通讯股份有限公司 Edfa瞬态抑制方法和系统
US20080130098A1 (en) * 2006-11-30 2008-06-05 Fujitsu Limited Control of a light source providing excitation light
CN101599803A (zh) * 2008-06-05 2009-12-09 昂纳信息技术(深圳)有限公司 一种光放大器的自适应前馈控制装置和方法
CN102098109A (zh) * 2011-02-12 2011-06-15 武汉光迅科技股份有限公司 Edfa瞬态效应抑制方法
CN102223182A (zh) * 2011-06-14 2011-10-19 中兴通讯股份有限公司 驱动电流控制方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134776B1 (en) * 2008-06-04 2012-03-13 Oplink Communications, Inc. Optical amplifier output control based on change in detected input power

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487349A (zh) * 2002-08-30 2004-04-07 住友电气工业株式会社 光放大器、光放大器的增益控制方法及电路
CN1728607A (zh) * 2004-07-30 2006-02-01 朗迅科技公司 光传输系统中的瞬态控制
US20080130098A1 (en) * 2006-11-30 2008-06-05 Fujitsu Limited Control of a light source providing excitation light
CN101158796A (zh) * 2007-10-22 2008-04-09 中兴通讯股份有限公司 Edfa瞬态抑制方法和系统
CN101599803A (zh) * 2008-06-05 2009-12-09 昂纳信息技术(深圳)有限公司 一种光放大器的自适应前馈控制装置和方法
CN102098109A (zh) * 2011-02-12 2011-06-15 武汉光迅科技股份有限公司 Edfa瞬态效应抑制方法
CN102223182A (zh) * 2011-06-14 2011-10-19 中兴通讯股份有限公司 驱动电流控制方法及装置

Also Published As

Publication number Publication date
ES2620636T3 (es) 2017-06-29
EP2759876A1 (en) 2014-07-30
CN103222135B (zh) 2014-12-31
CN103222135A (zh) 2013-07-24
EP2759876A4 (en) 2014-12-03
EP2759876B1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
US8139286B2 (en) Self-adapting feed forward control apparatus and method in an optical amplifier
US11671179B2 (en) Fiber amplifier and gain adjustment method for fiber amplifier
US11239628B2 (en) Method for realizing precise target gain control for hybrid fibre amplifier, and hybrid fibre amplifier
CN108390724B (zh) 光模块的发射光功率调节方法、装置及光模块
US20070297044A1 (en) Method and apparatus for amplified spontaneous emission corrected automatic signal power control of an optical amplifier
US9455546B2 (en) Raman-based static and dynamic tilt control in an optical system
JP6003581B2 (ja) 光増幅器
JP5470859B2 (ja) 光増幅器、制御回路、および光増幅器の制御方法
WO2014075271A1 (zh) 光放大器的控制方法和装置及光放大器
JP5735198B2 (ja) 自動光リンクパワー制御
CN102857301B (zh) 一种光功率控制方法和采用该方法的光放大器
EP2474110B1 (en) Optical fiber amplifier compromising an embedded filter and a control method with improved feedforward control performance
US20040150875A1 (en) Method, apparatus and system for reducing gain ripple in a raman-amplified WDM system
US11770193B2 (en) Mitigating instability in cascaded optical power controllers
JP4294459B2 (ja) 光増幅器
JP5556358B2 (ja) 光増幅装置
US20180241473A1 (en) Control Method And System For Cascade Hybrid Amplifier
JP6083220B2 (ja) 光増幅器および故障検出方法
CN106301579B (zh) 一种突发光信号放大控制方法、装置及突发光信号放大系统
JP4268153B2 (ja) 光増幅器、光増幅器の制御方法及び光増幅中継通信システム
US20220131330A1 (en) Optical amplifier and gain adjustment method for optical amplifier
JP2014072283A (ja) 光増幅器システム及び光増幅方法
JP4580404B2 (ja) 光増幅器
JP2008135640A (ja) ゲインクランプ型光増幅器
JP2009503835A (ja) 二重ポンプパワー制御を有する双光増幅器

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2012871608

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012871608

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE