WO2014073694A1 - 表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器 - Google Patents

表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器 Download PDF

Info

Publication number
WO2014073694A1
WO2014073694A1 PCT/JP2013/080479 JP2013080479W WO2014073694A1 WO 2014073694 A1 WO2014073694 A1 WO 2014073694A1 JP 2013080479 W JP2013080479 W JP 2013080479W WO 2014073694 A1 WO2014073694 A1 WO 2014073694A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
layer
printed wiring
wiring board
carrier
Prior art date
Application number
PCT/JP2013/080479
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
新井 英太
敦史 三木
康修 新井
嘉一郎 中室
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012247890A external-priority patent/JP5432357B1/ja
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CN201380058515.0A priority Critical patent/CN104769165B/zh
Priority to KR1020157013115A priority patent/KR101660663B1/ko
Publication of WO2014073694A1 publication Critical patent/WO2014073694A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites

Definitions

  • the present invention relates to a surface-treated copper foil and a laminate using the surface-treated copper foil, and in particular, a surface-treated copper foil suitable for a field where transparency of the remaining resin after etching the copper foil is required, and a laminate using the same.
  • the present invention relates to a board, a copper clad laminate, a printed wiring board, and an electronic device.
  • FPCs flexible printed wiring boards
  • the signal transmission speed has been increased, and impedance matching has become an important factor in FPC.
  • a resin insulation layer for example, polyimide
  • the demand for higher wiring density has further increased the number of FPC layers.
  • processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer
  • the visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.
  • a copper clad laminate that is a laminate of a copper foil and a resin insulating layer can be manufactured using a rolled copper foil having a roughened plating surface.
  • This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness.
  • Patent Document 1 a polyimide film and a low-roughness copper foil are laminated, and a light transmittance at a wavelength of 600 nm of the film after copper foil etching is 40% or more, a haze value.
  • An invention relating to a copper clad laminate having (HAZE) of 30% or less and an adhesive strength of 500 N / m or more is disclosed.
  • Patent Document 2 has an insulating layer in which a conductive layer made of electrolytic copper foil is laminated, and the light transmittance of the insulating layer in the etching region when the circuit is formed by etching the conductive layer is 50% or more.
  • the electrolytic copper foil includes a rust-proofing layer made of a nickel-zinc alloy on an adhesive surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesive surface ) Is 0.05 to 1.5 ⁇ m, and the specular gloss at an incident angle of 60 ° is 250 or more.
  • Patent Document 3 discloses a method for treating a copper foil for a printed circuit, in which a cobalt-nickel alloy plating layer is formed on the surface of the copper foil after a roughening treatment by copper-cobalt-nickel alloy plating, and further zinc-nickel.
  • An invention relating to a method for treating a copper foil for printed circuit, characterized by forming an alloy plating layer is disclosed.
  • JP 2004-98659 A WO2003 / 096776 Japanese Patent No. 2849059
  • Patent Document 1 a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency. Moreover, in patent document 2, the roughening process is not made and the adhesive strength of copper foil and resin is low and inadequate in uses other than the flexible printed wiring board for COF. Further, in the treatment method described in Patent Document 3, it was possible to finely process the copper foil with Cu—Co—Ni, but the resin after bonding the copper foil to the resin and removing it by etching was excellent. Transparency is not realized.
  • the present invention provides a surface-treated copper foil that adheres well to a resin and is excellent in resin transparency after removing the copper foil by etching, a laminate using the same, a copper-clad laminate, a printed wiring board, and Provide electronic equipment.
  • the inventors have placed a printed matter with a mark on the polyimide substrate from which the copper foil has been bonded and removed, and the mark portion taken by the CCD camera through the polyimide substrate. Paying attention to the lightness curve near the mark edge drawn in the observation point-lightness graph obtained from the image of the above, controlling the lightness curve is not affected by the type of substrate resin film or the thickness of the substrate resin film Furthermore, it has been found that the resin transparency after the copper foil is removed by etching is affected.
  • the present invention completed on the basis of the above knowledge, in one aspect, is a surface-treated copper foil in which roughened particles are formed on at least one surface by a roughening treatment, and the copper foil is disposed on both sides of a polyimide resin substrate. Then, the copper foils on both sides are removed by etching, and a printed matter on which a line-shaped mark is printed is laid under the exposed polyimide substrate, and the printed matter is photographed with a CCD camera through the polyimide substrate.
  • the image obtained by the imaging was prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends.
  • a value indicating a position of an intersection closest to the line-shaped mark among the intersections of the brightness curve and Bt is set.
  • t1 indicates the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and 0.1 ⁇ B in the depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt.
  • Sv defined by the formula (1) in the brightness curve is 3.9 or more.
  • Sv defined by the formula (1) in the brightness curve is 5.0 or more.
  • the TD average roughness Rz of the roughened surface is 0.20 to 0.80 ⁇ m, and the roughened surface MD has a 60 ° gloss.
  • the ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side is 1.90-2. .40.
  • the 60 degree glossiness of the MD is 90 to 250%.
  • the average roughness Rz of the TD is 0.30 to 0.60 ⁇ m.
  • the A / B is 2.00 to 2.20.
  • a resin layer is provided on the roughened surface.
  • the resin layer includes a dielectric.
  • the present invention provides a carrier-attached copper foil having a carrier, an intermediate layer, and an ultrathin copper layer in this order, wherein the ultrathin copper layer is the surface-treated copper foil of the present invention. is there.
  • the present invention is a laminated plate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.
  • the present invention is a printed wiring board using the surface-treated copper foil of the present invention.
  • the present invention is a laminated plate formed by laminating the copper foil with a carrier of the present invention and a resin substrate.
  • the present invention is a printed wiring board using the copper foil with a carrier of the present invention.
  • the present invention is an electronic device using the printed wiring board of the present invention.
  • the present invention provides a copper-clad laminate including an insulating resin substrate and a surface-treated copper foil laminated on the insulating substrate from the surface side on which the surface treatment is performed.
  • the surface-treated copper foil of the tension laminate is made into a line-shaped surface-treated copper foil by etching, and taken with a CCD camera through the insulating resin substrate laminated from the surface side where the surface treatment is performed.
  • the observation point-lightness graph the image obtained by the photographing was prepared by measuring the lightness at each observation point along the direction perpendicular to the direction in which the observed surface-treated copper foil was extended.
  • the present invention is a printed wiring board using the copper clad laminate of the present invention.
  • the present invention is an electronic device using the printed wiring board of the present invention.
  • the present invention is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards of the present invention.
  • the present invention includes a step of connecting at least one printed wiring board of the present invention and another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention, This is a method for manufacturing a printed wiring board in which two or more printed wiring boards are connected.
  • the present invention relates to a printed wiring board in which at least one printed wiring board of the present invention is connected or an electronic apparatus using one or more printed wiring boards of the present invention.
  • a method for producing a printed wiring board comprising at least a step of connecting a printed wiring board to which at least one printed wiring board of the present invention is connected or a printed wiring board of the present invention and a component. It is.
  • the step of connecting at least one printed wiring board of the present invention to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention and A method for producing a printed wiring board having two or more printed wiring boards connected, comprising at least a step of connecting a printed wiring board to which at least one printed wiring board of the present invention is connected or a printed wiring board of the present invention and a component. It is.
  • a step of forming a circuit on the ultrathin copper layer side surface of the copper foil with a carrier of the present invention Forming a resin layer on the ultrathin copper layer side surface of the carrier-attached copper foil so that the circuit is buried; Forming a circuit on the resin layer; Forming the circuit on the resin layer, and then peeling the carrier; and After the carrier is peeled off, the printed wiring board includes a step of exposing the circuit embedded in the resin layer formed on the surface of the ultrathin copper layer by removing the ultrathin copper layer Is the method.
  • a surface-treated copper foil that adheres well to a resin and is excellent in transparency of a resin after the copper foil is removed by etching, a laminate using the same, a copper-clad laminate, and a printed wiring A board and an electronic device can be provided.
  • FIGS. 8A to 8C are schematic views of a cross section of a wiring board in a process up to circuit plating and resist removal according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
  • D to F are schematic views of the cross section of the wiring board in the process from the lamination of the resin and the second-layer copper foil with a carrier to the laser drilling according to a specific example of the method for manufacturing a printed wiring board using the copper foil with a carrier of the present invention. It is.
  • GI are schematic views of the cross section of the wiring board in the steps from via fill formation to first layer carrier peeling, according to a specific example of the method for producing a printed wiring board using the copper foil with carrier of the present invention.
  • J to K are schematic views of a cross section of a wiring board in steps from flash etching to bump / copper pillar formation according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention. It is an external appearance photograph of the foreign material used in the Example. It is an external appearance photograph of the foreign material used in the Example.
  • the copper foil used in the present invention is useful for a copper foil used by making a laminate by bonding to a resin substrate and removing it by etching.
  • the copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil.
  • the surface of the copper foil that adheres to the resin substrate that is, the roughened surface, has a fist-like electric surface on the surface of the copper foil after degreasing in order to improve the peel strength of the copper foil after lamination.
  • a roughening process is carried out to wear.
  • the electrolytic copper foil has irregularities at the time of manufacture, the irregularities are further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment.
  • the roughening treatment is performed by alloy plating such as copper-cobalt-nickel alloy plating or copper-nickel-phosphorus alloy plating nickel-zinc alloy plating.
  • alloy plating such as copper-cobalt-nickel alloy plating or copper-nickel-phosphorus alloy plating nickel-zinc alloy plating.
  • copper alloy plating bath for example, a plating bath containing one or more elements other than copper and copper, more preferably any selected from the group consisting of copper and cobalt, nickel, arsenic, tungsten, chromium, zinc, phosphorus, manganese and molybdenum It is preferable to use a plating bath containing at least one kind.
  • the said roughening process makes a current density higher than the conventional roughening process, and shortens roughening processing time.
  • Ordinary copper plating or the like may be performed as a pretreatment before roughening, and ordinary copper plating or the like may be performed as a finishing treatment after roughening in order to prevent electrodeposits from dropping off.
  • known treatments related to copper foil roughening are included as necessary, and are collectively referred to as roughening treatment.
  • the rolled copper foil according to the present invention includes a copper alloy foil containing one or more elements such as Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, V, and B. Is also included.
  • the conductivity of the rolled copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more.
  • the copper alloy foil may contain a total of elements other than copper of 0 mass% or more and 50 mass% or less, may contain 0.0001 mass% or more and 40 mass% or less, may contain 0.0005 mass% or more and 30 mass% or less, and 0.001 mass%. More than 20 mass% may be included.
  • middle layer, and an ultra-thin copper layer in this order may be sufficient as the copper foil used in this invention. When using copper foil with a carrier in this invention, the said roughening process is performed to the ultra-thin copper layer surface. In addition, another embodiment of the copper foil with a carrier will be described later.
  • Electrolytic copper foil which can be used for this invention is shown below.
  • Leveling agent 1 bis (3sulfopropyl) disulfide): 10 to 30 ppm
  • Leveling agent 2 (amine compound): 10 to 30 ppm
  • As the amine compound an amine compound having the following chemical formula can be used.
  • R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.
  • Copper as roughening treatment - cobalt - nickel alloy plating, by electrolytic plating, coating weight is to be a 15 ⁇ 40mg / dm 2 of copper -100 ⁇ 3000 ⁇ g / dm 2 of cobalt -50 ⁇ 1500 ⁇ g / dm 2 of nickel
  • a ternary alloy layer can be formed, and the adhesion amount is 15 to 40 mg / dm 2 of copper—100 to 3000 ⁇ g / dm 2 of cobalt—100 to 1500 ⁇ g / dm 2 of nickel. It is preferable to carry out so as to form a ternary alloy layer.
  • the heat resistance may deteriorate and the etching property may deteriorate.
  • the amount of Co deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate.
  • the Ni adhesion amount is less than 50 ⁇ g / dm 2 , the heat resistance may deteriorate.
  • the Ni adhesion amount exceeds 1500 ⁇ g / dm 2 , the etching residue may increase.
  • a preferable Co adhesion amount is 1000 to 2500 ⁇ g / dm 2
  • a preferable nickel adhesion amount is 500 to 1200 ⁇ g / dm 2
  • the etching stain means that Co remains without being dissolved when etched with copper chloride
  • the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.
  • the plating bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating are as follows: Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L pH: 1 to 4 Temperature: 30-50 ° C Current density D k : 25 to 50 A / dm 2 Plating time: 0.3 to 3 seconds Note that the surface-treated copper foil according to one embodiment of the present invention is subjected to a roughening treatment under conditions where the plating time is shorter than before and the current density is increased. By performing the roughening treatment under a condition in which the plating time is shortened and the current density is increased as compared with the conventional case, finer roughened particles are formed on the copper foil surface than in the conventional case.
  • the copper-nickel-phosphorus alloy plating conditions as the roughening treatment of the present invention are shown below.
  • Plating bath composition Cu 10-50 g / L, Ni 3-20 g / L, P1-10 g / L pH: 1 to 4 Temperature: 30-40 ° C
  • Current density D k 30 to 50 A / dm 2
  • Plating time 0.3 to 3 seconds Note that the surface-treated copper foil according to one embodiment of the present invention is subjected to a roughening treatment under conditions where the plating time is shorter than before and the current density is increased.
  • finer roughened particles are formed on the copper foil surface than in the conventional case.
  • the copper-nickel-cobalt-tungsten alloy plating conditions as the roughening treatment of the present invention are shown below.
  • Plating bath composition Cu 5-20 g / L, Ni 5-20 g / L, Co 5-20 g / L, W 1-10 g / L pH: 1-5
  • Temperature 30-50 ° C
  • Current density D k 30 to 50
  • Plating time 0.3 to 3 seconds
  • the surface-treated copper foil according to one embodiment of the present invention is subjected to a roughening treatment under conditions where the plating time is shorter than before and the current density is increased.
  • the copper-nickel-molybdenum-phosphorus alloy plating conditions as the roughening treatment of the present invention are shown below.
  • Plating bath composition Cu 5-20 g / L, Ni 5-20 g / L, Mo 1-10 g / L, P 1-10 g / L pH: 1-5
  • Temperature 30-50 ° C
  • Current density D k 30 to 50
  • Plating time 0.3 to 3 seconds
  • the surface-treated copper foil according to one embodiment of the present invention is subjected to a roughening treatment under conditions where the plating time is shorter than before and the current density is increased.
  • each layer may be a plurality of layers such as two layers, three layers, and the order of stacking the layers may be any order, and the layers may be stacked alternately.
  • a known heat-resistant layer can be used as the heat-resistant layer. Further, for example, the following surface treatment can be used.
  • the heat-resistant layer and the rust-proof layer known heat-resistant layers and rust-proof layers can be used.
  • the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum
  • it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like.
  • the heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • An oxide, nitride, or silicide containing one or more elements selected from the above may be included.
  • the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy.
  • the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer.
  • the nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities.
  • the total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 .
  • the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably.
  • the heat-resistant layer and / or rust prevention layer is a layer containing a nickel-zinc alloy, the interface between the copper foil and the resin substrate is eroded by the desmear liquid when the inner wall of a through hole or via hole comes into contact with the desmear liquid. It is difficult to improve the adhesion between the copper foil and the resin substrate.
  • the rust prevention layer may be a chromate treatment layer. A known chromate treatment layer can be used for the chromate treatment layer.
  • a chromate treatment layer refers to a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate.
  • Chromate treatment layer is any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic and titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included).
  • Specific examples of the chromate treatment layer include a pure chromate treatment layer and a zinc chromate treatment layer.
  • a chromate treatment layer treated with an anhydrous chromic acid or potassium dichromate aqueous solution is referred to as a pure chromate treatment layer.
  • a chromate treatment layer treated with a treatment liquid containing chromic anhydride or potassium dichromate and zinc is referred to as a zinc chromate treatment layer.
  • the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2.
  • a tin layer of ⁇ 80 mg / m 2 , preferably 5 mg / m 2 ⁇ 40 mg / m 2 may be sequentially laminated.
  • the nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these.
  • the heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable.
  • the carrier-clad copper foil is processed into a printed wiring board, and the subsequent circuit peeling strength, the chemical resistance deterioration rate of the peeling strength, and the like are improved.
  • coating weight of cobalt 200 ⁇ 2000 ⁇ g / dm 2 of cobalt -50 ⁇ 700 [mu] g / dm 2 of nickel - can form a nickel alloy plating layer.
  • This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
  • This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered.
  • the amount of cobalt adhesion is less than 200 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. As another reason, if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable.
  • cobalt nickel cobalt -100 ⁇ 700 ⁇ g / dm 2 weight deposited on the roughened surface is 200 ⁇ 3000 ⁇ g / dm 2 - can form a nickel alloy plating layer.
  • This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
  • This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered. If the amount of cobalt adhesion is less than 200 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated.
  • the treated surface becomes reddish, which is not preferable.
  • the amount of cobalt deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching spots may occur, and acid resistance and chemical resistance may deteriorate.
  • a preferable cobalt adhesion amount is 500 to 2500 ⁇ g / dm 2 .
  • the nickel adhesion amount is less than 100 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated.
  • nickel exceeds 1300 microgram / dm ⁇ 2 > alkali etching property will worsen.
  • a preferable nickel adhesion amount is 200 to 1200 ⁇ g / dm 2 .
  • Plating bath composition Co 1-20 g / L, Ni 1-20 g / L pH: 1.5 to 3.5 Temperature: 30-80 ° C Current density D k : 1.0 to 20.0 A / dm 2 Plating time: 0.5-4 seconds
  • a zinc plating layer having an adhesion amount of 30 to 250 ⁇ g / dm 2 is further formed on the cobalt-nickel alloy plating. If the zinc adhesion amount is less than 30 ⁇ g / dm 2 , the heat deterioration rate improving effect may be lost. On the other hand, when the zinc adhesion amount exceeds 250 ⁇ g / dm 2 , the hydrochloric acid deterioration rate may be extremely deteriorated.
  • the zinc coating weight is 30 ⁇ 240 ⁇ g / dm 2, more preferably 80 ⁇ 220 ⁇ g / dm 2.
  • Plating bath composition Zn 100 to 300 g / L pH: 3-4 Temperature: 50-60 ° C Current density D k : 0.1 to 0.5 A / dm 2 Plating time: 1 to 3 seconds
  • a zinc alloy plating layer such as zinc-nickel alloy plating may be formed instead of the zinc plating layer, and a rust prevention layer and a weather resistance layer are applied to the outermost surface by chromate treatment or application of a silane coupling agent. It may be formed.
  • a known weathering layer can be used as the weathering layer.
  • a well-known silane coupling process layer can be used, for example, The silane coupling process layer formed using the following silanes can be used.
  • a known silane coupling agent may be used.
  • an amino silane coupling agent, an epoxy silane coupling agent, or a mercapto silane coupling agent may be used.
  • Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and ⁇ -aminopropyl.
  • Triethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, ⁇ -mercaptopropyltrimethoxysilane or the like may be used.
  • the silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • you may use 2 or more types of such silane coupling agents in mixture.
  • it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
  • the amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl
  • the silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness between the base resin and the surface-treated copper foil can be further improved.
  • the surface-treated copper foil of the present invention it is preferable that roughened particles are formed on the surface of the copper foil by a roughening treatment, and that the average roughness Rz of TD on the roughened surface is 0.20 to 0.80 ⁇ m. .
  • the peel strength is increased and the resin is satisfactorily bonded to the resin, and the transparency of the resin after the copper foil is removed by etching is increased.
  • alignment and the like when mounting an IC chip through a positioning pattern that is visible through the resin can be made easier.
  • the average roughness Rz of TD is less than 0.20 ⁇ m, there may be a concern about manufacturing costs for producing an ultra-smooth surface.
  • the average roughness Rz of TD is more than 0.80 ⁇ m, the unevenness of the resin surface after the copper foil is removed by etching may increase, resulting in a problem that the transparency of the resin becomes poor. There is a fear.
  • the TD average roughness Rz of the roughened surface is more preferably 0.30 to 0.70 ⁇ m, still more preferably 0.35 to 0.60 ⁇ m, still more preferably 0.35 to 0.55 ⁇ m, and Even more preferred is 35 to 0.50 ⁇ m.
  • the average roughness Rz of TD of the roughening surface of the surface-treated copper foil of this invention is 0.20.
  • the term “roughened surface” means that when the surface treatment for providing a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. is performed after the roughening treatment, It means the surface of the surface-treated copper foil after the treatment.
  • the surface-treated copper foil is an ultrathin copper layer of a copper foil with a carrier
  • the “roughened surface” means that a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. are provided after the roughening treatment.
  • the surface treatment is performed, the surface of the ultrathin copper layer after the surface treatment is performed.
  • the surface-treated copper foil of the present invention preferably has a roughened surface having a glossiness of 76 to 350%, preferably 80 to 350%, more preferably 90 to 300%, It is still more preferably 90 to 250%, and even more preferably 100 to 250%.
  • the surface on the treatment side of the copper foil before the surface treatment if the surface-treated copper foil is an ultrathin copper layer of the copper foil with carrier, an intermediate layer is formed.
  • TD direction perpendicular to the rolling direction (width direction of the copper foil) of the surface on the side where the intermediate layer of the previous carrier is provided or the surface of the ultrathin copper layer
  • Roughness (Rz) and glossiness in the direction perpendicular to the foil passing direction may be controlled.
  • the TD surface roughness (Rz) of the copper foil before the surface treatment is preferably 0.20 to 0.80 ⁇ m, preferably 0.30 to 0.80 ⁇ m, more preferably 0.30 to 0.8.
  • the glossiness at an incident angle of 60 degrees in the rolling direction (MD) is preferably 350 to 800%, more preferably 500 to 800%, and the current density is higher than that of the conventional roughening treatment. If the roughening treatment time is shortened, the glossiness at an incident angle of 60 degrees in the rolling direction (MD) of the surface-treated copper foil after the surface treatment is 90 to 350%.
  • Such a copper foil can be produced by adjusting the oil film equivalent of rolling oil (high gloss rolling), or by chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution.
  • the TD roughness (Rz) of the treated side surface of the copper foil before the surface treatment is set.
  • the glossiness at an incident angle of 60 degrees in the rolling direction (MD) is 350 to 800%, preferably 500 to 800%.
  • the current density is made higher than that of the conventional roughening treatment, and the roughening treatment time is shortened.
  • the copper foil before the roughening treatment preferably has a 60 degree gloss of MD of 500 to 800%, more preferably 501 to 800%, and still more preferably 510 to 750%. . If the 60 degree glossiness of MD of the copper foil before the roughening treatment is less than 500%, the transparency of the resin may be poorer than the case of 500% or more. The problem that it becomes difficult may arise.
  • the high gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13000 to 24000 or less.
  • the oil film equivalent defined by the following formula is set to 12000 to 24000 for high gloss rolling.
  • Oil film equivalent ⁇ (rolling oil viscosity [cSt]) ⁇ (sheet feeding speed [mpm] + roll peripheral speed [mpm]) ⁇ / ⁇ (roll biting angle [rad]) ⁇ (yield stress of material [kg / mm 2 ]) ⁇
  • the rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
  • a known method such as using a low viscosity rolling oil or slowing a sheet passing speed may be used.
  • Chemical polishing is performed with an etching solution such as sulfuric acid-hydrogen peroxide-water system or ammonia-hydrogen peroxide-water system at a lower concentration than usual and for a long time.
  • the surface-treated copper foil of the present invention is bonded to both surfaces of the polyimide resin substrate, and then the copper foil on both surfaces is removed by etching, and a printed matter on which a line-shaped mark is printed is laid under the exposed polyimide substrate. Then, when the printed matter is photographed with a CCD camera through the polyimide substrate, the brightness at each observation point is measured along the direction perpendicular to the direction in which the observed line-shaped mark extends with respect to the image obtained by photographing.
  • the surface-treated copper foil of the present invention has a lightness curve, Bt, and Bt, where t1 is a value indicating the position of the intersection closest to the line-shaped mark in the observation point-brightness graph.
  • t1 is a value indicating the position of the intersection closest to the line-shaped mark in the observation point-brightness graph.
  • Sv defined by the following formula (1) is preferably 3.5 or more.
  • FIGS. 1A and 1B are schematic views for defining Bt and Bb when the mark width is about 0.3 mm. When the mark width is about 0.3 mm, a V-shaped brightness curve may be obtained as shown in FIG. 1A, or a brightness curve having a bottom as shown in FIG. 1B. .
  • the “top average value Bt of the lightness curve” indicates the average value of lightness when measured at 5 locations (a total of 10 locations on both sides) at 30 ⁇ m intervals from the positions 50 ⁇ m away from the end positions on both sides of the mark.
  • the “bottom average value Bb of the lightness curve” indicates the minimum value of lightness at the tip of the V-shaped valley when the lightness curve is V-shaped as shown in FIG. When it has the bottom of (b), the value of the center part of about 0.3 mm is shown.
  • the mark width may be about 0.2 mm, 0.16 mm, or 0.1 mm.
  • top average value Bt of the lightness curve is 5 points at 30 ⁇ m intervals from a position 100 ⁇ m apart, a position 300 ⁇ m apart, or a position 500 ⁇ m apart from the end positions on both sides of the mark (total 10 on both sides). Location) It may be the average value of brightness when measured.
  • FIG. 2 is a schematic diagram that defines t1, t2, and Sv. “T1 (pixel ⁇ 0.1)” is a value indicating an intersection point closest to the line-shaped mark among intersection points of the lightness curve and Bt and a position of the intersection point (value on the horizontal axis of the observation point-lightness graph) ).
  • T2 (pixel ⁇ 0.1) is the line-shaped mark among the intersections of the lightness curve and 0.1 ⁇ B in the depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt. And the value (the value on the horizontal axis of the observation point-lightness graph) indicating the closest intersection and the position of the intersection.
  • Sv grade / pixel ⁇ 0.1
  • One pixel on the horizontal axis corresponds to a length of 10 ⁇ m.
  • Sv is measured on both sides of the mark, and a small value is adopted. Further, when the shape of the lightness curve is unstable and there are a plurality of the “intersections between the lightness curve and Bt”, the intersection closest to the mark is adopted. In the image taken by the CCD camera, the brightness is high at the portion where the mark is not attached, but the brightness decreases as soon as the end of the mark is reached. If the visibility of the polyimide substrate is good, such a lowered state of brightness is clearly observed. On the other hand, if the visibility of the polyimide substrate is poor, the lightness does not suddenly drop from “high” to “low” in the vicinity of the mark end, but the state of decline is slow and the state of lightness decline is unclear. End up.
  • the present invention is based on such a polyimide substrate from which the surface-treated copper foil of the present invention is bonded and removed, and a mark printed matter is placed under the polyimide substrate and photographed with a CCD camera over the polyimide substrate.
  • Sv is more preferably 3.9 or more, more preferably 4.5 or more, and more preferably 5.0 or more.
  • the upper limit of ⁇ B is not particularly limited, but is, for example, 100 or less, 80 or less, or 70 or less. Further, the upper limit of Sv is not particularly limited, but is, for example, 15 or less and 10 or less. According to such a configuration, the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately.
  • the ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side greatly affects the transparency of the resin. That is, if the surface roughness Rz is the same, the smaller the ratio A / B, the better the transparency of the resin. For this reason, in the surface-treated copper foil of the present invention, the ratio A / B is preferably 1.90 to 2.40, and more preferably 2.00 to 2.20.
  • the shape and density of the grains are determined, and the top average value Bt and the bottom of the brightness curve generated from the end of the mark to the part where the mark is not drawn
  • the ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan view from the copper foil surface side is controlled to 1.90 to 2.40.
  • the roughness of the roughened surface is controlled to 0.20 to 0.80 ⁇ m to eliminate extremely rough portions, while the glossiness of the roughened surface is increased. It can be as high as 76 to 350%.
  • the particle size of the roughened particles on the roughened surface can be reduced.
  • the particle size of the roughened particles affects the resin transparency after the copper foil is removed by etching, but such control means that the particle size of the roughened particles is reduced within an appropriate range. Therefore, the resin transparency after removing the copper foil by etching becomes better, and the peel strength becomes better.
  • the etching factor is preferably 1.8 or more, preferably 2.0 or more, preferably 2.2 or more, and 2.3 or more. Preferably, it is 2.4 or more.
  • the above-mentioned particle area ratio (A / B), glossiness, and surface roughness Rz are obtained for the copper circuit or copper foil surface by dissolving and removing the resin. Can be measured.
  • Transmission loss When the transmission loss is small, attenuation of the signal when performing signal transmission at a high frequency is suppressed, so that a stable signal transmission can be performed in a circuit that transmits the signal at a high frequency. Therefore, a smaller transmission loss value is preferable because it is suitable for use in a circuit for transmitting a signal at a high frequency.
  • the transmission loss at a frequency of 20 GHz is preferably less than 5.0 dB / 10 cm, more preferably less than 4.1 dB / 10 cm. Even more preferred is less than 0.7 dB / 10 cm.
  • the carrier-attached copper foil according to another embodiment of the present invention includes a carrier, an intermediate layer, and an ultrathin copper layer in this order. And the said ultra-thin copper layer is the surface treatment copper foil which is one embodiment of the above-mentioned this invention.
  • the carrier that can be used in the present invention is typically a metal foil or a resin film, for example, copper foil, copper alloy foil, nickel foil, nickel alloy foil, iron foil, iron alloy foil, stainless steel foil, aluminum foil, aluminum It is provided in the form of alloy foil, insulating resin film (for example, polyimide film, liquid crystal polymer (LCP) film, polyethylene terephthalate (PET) film, polyamide film, polyester film, fluororesin film, etc.). It is preferable to use a copper foil as a carrier that can be used in the present invention. This is because the copper foil has a high electrical conductivity, so that subsequent formation of an intermediate layer and an ultrathin copper layer is facilitated.
  • insulating resin film for example, polyimide film, liquid crystal polymer (LCP) film, polyethylene terephthalate (PET) film, polyamide film, polyester film, fluororesin film, etc.
  • the carrier is typically provided in the form of rolled copper foil or electrolytic copper foil.
  • the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll.
  • the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used.
  • the thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 5 ⁇ m or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 ⁇ m or less. Accordingly, the thickness of the carrier is typically 12-70 ⁇ m, more typically 18-35 ⁇ m.
  • the carrier used in the present invention needs to control the surface roughness Rz and the glossiness on the side where the intermediate layer is formed. This is to control the glossiness of the roughened surface of the ultrathin copper layer after the surface treatment and the size and number of roughened particles.
  • An intermediate layer is provided on the carrier. Another layer may be provided between the carrier and the intermediate layer.
  • the ultrathin copper layer is hardly peeled off from the carrier before the copper foil with the carrier is laminated on the insulating substrate, while the ultrathin copper layer is separated from the carrier after the lamination step on the insulating substrate.
  • the intermediate layer of the copper foil with a carrier of the present invention is Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, alloys thereof, hydrates thereof, oxides thereof, One or two or more selected from the group consisting of organic substances may be included.
  • the intermediate layer may be a plurality of layers. Further, for example, the intermediate layer is a single metal layer composed of one kind of element selected from the element group composed of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn from the carrier side. Or forming an alloy layer composed of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, A layer made of a hydrate or oxide of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, and Zn. It can comprise by forming.
  • a well-known organic substance can be used for the intermediate
  • specific nitrogen-containing organic compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H, which are triazole compounds having a substituent. It is preferable to use -1,2,4-triazole, 3-amino-1H-1,2,4-triazole and the like.
  • the sulfur-containing organic compound it is preferable to use mercaptobenzothiazole, 2-mercaptobenzothiazole sodium, thiocyanuric acid, 2-benzimidazolethiol and the like.
  • the carboxylic acid it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like.
  • the intermediate layer can be constituted by laminating nickel, a nickel-phosphorus alloy or a nickel-cobalt alloy, and chromium in this order on a carrier.
  • the adhesive strength between nickel and copper is higher than the adhesive strength between chromium and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and chromium. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer.
  • Adhesion amount of nickel in the intermediate layer is preferably 100 [mu] g / dm 2 or more 40000 ⁇ g / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 4000 ⁇ g / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 2500 g / dm 2 or less, more Preferably, it is 100 ⁇ g / dm 2 or more and less than 1000 ⁇ g / dm 2 , and the amount of chromium deposited on the intermediate layer is preferably 5 ⁇ g / dm 2 or more and 100 ⁇ g / dm 2 or less.
  • the intermediate layer When the intermediate layer is provided only on one side, it is preferable to provide a rust preventive layer such as a Ni plating layer on the opposite side of the carrier. If the thickness of the intermediate layer becomes too large, the thickness of the intermediate layer may affect the glossiness of the roughened surface of the ultrathin copper layer after the surface treatment and the size and number of roughened particles.
  • the thickness of the intermediate layer on the roughened surface of the thin copper layer is preferably 1 to 1000 nm, preferably 1 to 500 nm, preferably 2 to 200 nm, and preferably 2 to 100 nm. More preferably, it is 3 to 60 nm.
  • ⁇ Ultra thin copper layer> An ultrathin copper layer is provided on the intermediate layer. Another layer may be provided between the intermediate layer and the ultrathin copper layer.
  • the ultra-thin copper layer having the carrier is a surface-treated copper foil that is one embodiment of the present invention.
  • the thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 ⁇ m or less. Typically 0.5 to 12 ⁇ m, more typically 1.5 to 5 ⁇ m.
  • strike plating with a copper-phosphorus alloy may be performed in order to reduce pinholes in the ultrathin copper layer. Examples of the strike plating include a copper pyrophosphate plating solution.
  • the ultra-thin copper layer of the present application is formed under the following conditions. This is for controlling the size and number of particles of the roughening treatment and the glossiness after the roughening treatment by forming a smooth ultrathin copper layer.
  • Electrolyte composition Copper 80 to 120 g / L Sulfuric acid: 80-120 g / L Chlorine: 30-100ppm
  • Leveling agent 1 bis (3sulfopropyl) disulfide): 10 to 30 ppm
  • Leveling agent 2 (amine compound) 10 to 30 ppm
  • As the amine compound an amine compound having the following chemical formula can be used.
  • R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.
  • a resin layer may be provided on the roughened surface of the surface-treated copper foil of the present invention.
  • the resin layer may be an insulating resin layer.
  • the resin layer may be provided on part or all of the roughened surface of the surface-treated copper foil of the present invention.
  • the term “roughened surface” means that when the surface treatment for providing a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. is performed after the roughening treatment, It means the surface of the surface-treated copper foil after the treatment.
  • the “roughened surface” means that a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. are provided after the roughening treatment.
  • the surface treatment is performed, the surface of the ultrathin copper layer after the surface treatment is performed.
  • the resin layer may be an adhesive or an insulating resin layer in a semi-cured state (B stage state) for bonding.
  • the semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer may be an adhesive resin, that is, an adhesive, or may be a semi-cured (B-stage) insulating resin layer for adhesion.
  • the semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer may contain a thermosetting resin or a thermoplastic resin.
  • the resin layer may include a thermoplastic resin.
  • the resin layer may contain a known resin, resin curing agent, compound, curing accelerator, dielectric, reaction catalyst, crosslinking agent, polymer, prepreg, skeleton material, and the like.
  • the resin layer may be, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 084533, JP-A-11-5828, JP-A-11-140281, Patent 3184485, International Publication. No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Application Laid-Open No.
  • Japanese Patent No. 3612594 Japanese Patent Application Laid-Open No. 2002-179721, Japanese Patent Application Laid-Open No. 2002-309444, Japanese Patent Application Laid-Open No. 2003-302068, Japanese Patent No. 3992225, Japanese Patent Application Laid-Open No. -249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 4025177, Japanese Patent Application Laid-Open No. 2004-349654, Japanese Patent No. 4286060, Japanese Patent Application Laid-Open No. 2005-262506, Japanese Patent No. 4570070, and Japanese Patent Application Laid-Open No. 4570070. No. 5-53218, Japanese Patent No.
  • WO 2008/114858 International Publication Number WO 2009/008471, JP 2011-14727, International Publication Number WO 2009/001850, International Publication Number WO 2009/145179, International Publication Number Nos. WO2011 / 068157 and JP2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc.) and / or You may form using the formation method and formation apparatus of a resin layer.
  • the type of the resin layer is not particularly limited.
  • epoxy resin polyimide resin, polyfunctional cyanate ester compound, maleimide compound, polymaleimide compound, maleimide resin, aromatic maleimide resin , Polyvinyl acetal resin, urethane resin, acrylic resin, polyethersulfone (also referred to as polyethersulfone or polyethersulfone), polyethersulfone (also referred to as polyethersulfone or polyethersulfone) resin, aromatic polyamide resin , Aromatic polyamide resin polymer, rubber resin, polyamine, aromatic polyamine, polyamideimide resin, rubber modified epoxy resin, phenoxy resin, carboxyl group-modified acrylonitrile-butadiene resin, polyphenylene oxide, bismale Midtriazine resin, thermosetting polyphenylene oxide resin, cyanate ester resin, carboxylic acid anhydride, polyvalent carboxylic acid anhydride, linear polymer having crosslinkable functional group, polyphenylene ether resin, 2,2-bis
  • the epoxy resin has two or more epoxy groups in the molecule and can be used without any problem as long as it can be used for electric / electronic materials.
  • the epoxy resin is preferably an epoxy resin epoxidized using a compound having two or more glycidyl groups in the molecule.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, brominated (brominated) epoxy Resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, brominated bisphenol A type epoxy resin, orthocresol novolac type epoxy resin, rubber modified bisphenol A type epoxy resin, glycidylamine type epoxy resin, triglycidyl isocyanurate, N, N -Glycidyl amine compounds such as diglycidyl aniline, glycidyl ester compounds such as diglycidyl tetrahydrophthalate, phosphorus-containing epoxy resins, biphenyl type epoxy resins, One or two or more types selected from the group of phenyl novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylethane type epoxy resin can be used, or
  • the phosphorus-containing epoxy resin a known epoxy resin containing phosphorus can be used.
  • the phosphorus-containing epoxy resin is, for example, an epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide having two or more epoxy groups in the molecule. Is preferred.
  • the resin layer may include a dielectric (dielectric filler).
  • a dielectric (dielectric filler) is included in any of the above resin layers or resin compositions, it can be used for the purpose of forming the capacitor layer and increase the capacitance of the capacitor circuit.
  • the dielectric (dielectric filler) includes a composite oxide having a perovskite structure such as BaTiO3, SrTiO3, Pb (Zr-Ti) O3 (commonly called PZT), PbLaTiO3 / PbLaZrO (commonly known as PLZT), SrBi2Ta2O9 (commonly known as SBT), and the like.
  • Dielectric powder is used.
  • the dielectric (dielectric filler) may be in powder form.
  • the powder characteristics of the dielectric (dielectric filler) are such that the particle size is in the range of 0.01 ⁇ m to 3.0 ⁇ m, preferably 0.02 ⁇ m to 2.0 ⁇ m. It is preferable that.
  • SEM scanning electron microscope
  • the length of the longest straight line across the dielectric particle is The length of the dielectric particle is defined as the diameter of the dielectric particle.
  • an average value of the diameters of the dielectric particles in the measurement visual field is defined as the dielectric particle size.
  • methyl ethyl ketone MLK
  • cyclopentanone dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, methanol, ethanol, propylene glycol monomethyl ether
  • the surface-treated copper foil is coated on the roughened surface by, for example, a roll coater method, and then heated and dried as necessary to remove the solvent to obtain a B-stage state.
  • a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C., preferably 130 to 200 ° C.
  • the resin layer composition is dissolved using a solvent, and the resin solid content is 3 wt% to 70 wt%, preferably 3 wt% to 60 wt%, preferably 10 wt% to 40 wt%, more preferably 25 wt% to 40 wt%. It is good also as a resin liquid.
  • the resin layer is preferably a semi-cured resin film having a resin flow in the range of 5% to 35% when measured according to MIL-P-13949G in the MIL standard. In this specification, the resin flow is based on MIL-P-13949G in the MIL standard. Four 10 cm square samples were sampled from a surface-treated copper foil with resin with a resin thickness of 55 ⁇ m.
  • the surface-treated copper foil (resin-treated surface-treated copper foil) provided with the resin layer is obtained by superposing the resin layer on a substrate and then thermocompressing the whole to thermally cure the resin layer, and then the surface-treated copper foil.
  • the carrier is peeled off to expose the ultra-thin copper layer (of course, the surface on the intermediate layer side of the ultra-thin copper layer is exposed)
  • the surface-treated copper foil is used in a form in which a predetermined wiring pattern is formed from the surface opposite to the surface subjected to the roughening treatment.
  • this surface-treated copper foil with resin makes it possible to reduce the number of prepreg materials used when manufacturing a multilayer printed wiring board.
  • the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used.
  • the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.
  • the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous.
  • the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 ⁇ m or less can be manufactured.
  • the thickness of this resin layer is preferably 0.1 to 120 ⁇ m.
  • the thickness of the resin layer becomes thinner than 0.1 ⁇ m, the adhesive strength is reduced, and when this surface-treated copper foil with resin is laminated on the base material provided with the inner layer material without interposing the prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two.
  • the thickness of the resin layer is greater than 120 ⁇ m, it is difficult to form a resin layer having a target thickness in a single coating process, which may be economically disadvantageous because of extra material costs and man-hours.
  • the thickness of the resin layer is 0.1 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m, More preferably, the thickness is 1 ⁇ m to 5 ⁇ m in order to reduce the thickness of the multilayer printed wiring board.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier
  • a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor
  • the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.
  • a step of preparing the copper foil with carrier and the insulating substrate according to the present invention the copper foil with carrier and the insulating substrate Laminating the copper foil with carrier and the insulating substrate, then peeling off the carrier of the copper foil with carrier, etching the exposed ultrathin copper layer with a corrosive solution such as an acid.
  • the process of removing everything by methods such as A step of providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching, a step of performing a desmear process on a region including the through hole or / and the blind via, the resin and the A step of providing an electroless plating layer in a region including a through hole or / and a blind via, a step of providing a plating resist on the electroless plating layer, a region where a circuit is formed after the plating resist is exposed to light
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention the copper foil with a carrier and the insulating substrate Laminating the copper foil with carrier and the insulating substrate, then peeling off the carrier of the copper foil with carrier, etching the exposed ultrathin copper layer with a corrosive solution such as an acid.
  • Removing all by a method such as plasma or plasma providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching, and providing a plating resist on the electroless plating layer
  • a step of exposing the plating resist, and then removing the plating resist in a region where a circuit is formed, the plating resist The step of providing an electrolytic plating layer in the region where the removed circuit is formed, the step of removing the plating resist, and flushing the electroless plating layer and the ultrathin copper layer in the region other than the region where the circuit is formed Removing by etching or the like.
  • the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.
  • the step of preparing the copper foil with carrier and the insulating substrate according to the present invention, the copper foil with carrier and the insulation A step of laminating the substrate, a step of peeling the carrier of the copper foil with carrier and the insulating substrate after laminating the carrier-attached copper foil, a through-hole or / and in the insulating substrate and the ultrathin copper layer exposed by peeling the carrier
  • a step of providing a blind via, a step of performing a desmear process on the region including the through hole or / and the blind via, a step of providing an electroless plating layer on the region including the through hole or / and the blind via, and exposing the substrate by peeling off the carrier The step of providing a plating resist on the surface of the ultrathin copper layer, the plating resist After digits, including the step of forming a circuit by electroplating, removing the plating resist, a step
  • the step of forming a circuit on the resin layer includes bonding another copper foil with a carrier on the resin layer from the ultrathin copper layer side, and using the copper foil with a carrier bonded to the resin layer. It may be a step of forming a circuit.
  • the copper foil with a carrier of the present invention may be another copper foil with a carrier to be bonded onto the resin layer.
  • the step of forming a circuit on the resin layer may be performed by any one of a semi-additive method, a subtractive method, a partial additive method, or a modified semi-additive method.
  • the copper foil with a carrier which forms a circuit on the said surface may have a board
  • the step of preparing the copper foil with carrier and the insulating substrate according to the present invention, the copper foil with carrier and the insulation A step of laminating the substrate, a step of laminating the carrier-attached copper foil and an insulating substrate, a step of peeling the carrier of the copper foil with carrier, a step of providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier, Exposing the plating resist and then removing the plating resist in a region where a circuit is formed; providing an electrolytic plating layer in a region where the circuit where the plating resist is removed; Step of removing resist, flash etching of electroless plating layer and ultrathin copper layer in regions other than the region where the circuit is formed, etc. A step of further removing including,.
  • the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.
  • a step of preparing the copper foil with carrier and the insulating substrate according to the present invention, the copper foil with carrier and the insulating substrate Laminating the carrier-attached copper foil and the insulating substrate, then peeling the carrier of the carrier-attached copper foil, peeling the carrier and exposing the ultrathin copper layer and the insulating substrate through holes or / and blinds A step of providing a via; a step of performing a desmear process on a region including the through hole or / and a blind via; a step of applying a catalyst nucleus in a region including the through hole or / and a blind via; and an electrode exposed by peeling off the carrier Providing an etching resist on the surface of the thin copper layer; A step of forming a circuit pattern, removing the ultrathin copper layer and the catalyst nuclei by a method such as etching or plasma using a corrosive solution such as
  • the subtractive method refers to a method of selectively removing unnecessary portions of the copper foil on the copper clad laminate by etching or the like to form a conductor pattern.
  • the step of preparing the copper foil with carrier and the insulating substrate according to the present invention, the copper foil with carrier and the insulating substrate, Laminating the carrier-attached copper foil and the insulating substrate, then peeling the carrier of the carrier-attached copper foil, peeling the carrier and exposing the ultrathin copper layer and the insulating substrate through holes or / and blinds A step of providing a via, a step of performing a desmear process on a region including the through hole or / and the blind via, a step of providing an electroless plating layer on the region including the through hole or / and the blind via, a surface of the electroless plating layer
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention the copper foil with a carrier and the insulating substrate Laminating the carrier-attached copper foil and the insulating substrate, then peeling the carrier of the carrier-attached copper foil, peeling the carrier and exposing the ultrathin copper layer and the insulating substrate through holes or / and blinds
  • a step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer, a step of exposing the etching resist to form a circuit pattern, the ultrathin copper layer and the electroless plating includes a step of forming a circuit by removing the layer by a method such as etching using a corrosive solution such as acid or plasma, and a step of removing the etching resist.
  • ⁇ Through holes and / or blind vias and subsequent desmear steps may not be performed.
  • the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention is demonstrated in detail using drawing.
  • the carrier-attached copper foil having an ultrathin copper layer on which a roughened layer is formed will be described as an example.
  • the present invention is not limited thereto, and the carrier has an ultrathin copper layer on which a roughened layer is not formed.
  • the following method for producing a printed wiring board can be similarly performed using an attached copper foil.
  • a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
  • FIG. 5-A a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
  • a resist is applied on the roughened layer of the ultrathin copper layer, exposed and developed, and etched into a predetermined shape.
  • the resist is removed to form circuit plating having a predetermined shape.
  • an embedded resin is provided on the ultrathin copper layer so as to cover the circuit plating (so that the circuit plating is buried), and then the resin layer is laminated, followed by another carrier attachment.
  • a copper foil (second layer) is bonded from the ultrathin copper layer side.
  • the carrier is peeled off from the second layer of copper foil with carrier.
  • the other carrier-attached copper foil may be the carrier-attached copper foil of the present invention, a conventional carrier-attached copper foil, or a normal copper foil.
  • one or more circuits may be formed on the second layer circuit shown in FIG. 7-H, and these circuits may be formed by a semi-additive method, a subtractive method, a partial additive method, or a modified semi-conductor method. You may carry out by any method of an additive method.
  • the copper foil with a carrier according to the present invention is preferably controlled so that the color difference on the surface of the ultrathin copper layer satisfies the following (1).
  • the “color difference on the surface of the ultrathin copper layer” means the color difference on the surface of the ultrathin copper layer, or the color difference on the surface of the surface treatment layer when various surface treatments such as roughening treatment are applied. . That is, it is preferable that the copper foil with a carrier according to the present invention is controlled so that the color difference of the roughened surface of the ultrathin copper layer satisfies the following (1).
  • the term “roughened surface” means that when the surface treatment for providing a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. is performed after the roughening treatment, It means the surface of the surface-treated copper foil (ultra thin copper layer) after the treatment.
  • the surface-treated copper foil is an ultrathin copper layer of a copper foil with a carrier
  • the “roughened surface” means that a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. are provided after the roughening treatment.
  • the surface treatment is performed, the surface of the ultrathin copper layer after the surface treatment is performed.
  • the color difference ⁇ E * ab based on JISZ8730 is 45 or more.
  • the color differences ⁇ L, ⁇ a, and ⁇ b are respectively measured with a color difference meter, and are shown using the L * a * b color system based on JIS Z8730, taking into account black / white / red / green / yellow / blue. It is a comprehensive index and is expressed as ⁇ L: black and white, ⁇ a: reddish green, ⁇ b: yellow blue.
  • ⁇ E * ab is expressed by the following formula using these color differences.
  • the above-described color difference can be adjusted by increasing the current density when forming the ultrathin copper layer, decreasing the copper concentration in the plating solution, and increasing the linear flow rate of the plating solution.
  • the above-mentioned color difference can also be adjusted by performing a roughening process on the surface of an ultra-thin copper layer and providing a roughening process layer.
  • the current density is higher than that in the past (for example, 40 to 60 A) using an electrolytic solution containing copper and one or more elements selected from the group consisting of nickel, cobalt, tungsten, and molybdenum. / Dm2), and can be adjusted by shortening the processing time (for example, 0.1 to 1.3 seconds).
  • Ni alloy plating (for example, Ni—W alloy plating, Ni—Co—P alloy plating, Ni—Zn alloy plating) is applied to the surface of the treatment layer or the silane coupling treatment layer at a lower current density (0.1 to 1.. 3A / dm 2 ), and the processing time can be set long (20 to 40 seconds).
  • the color difference ⁇ E * ab based on JISZ8730 is 45 or more when the formula difference on the surface of the ultrathin copper layer is 45 or more, for example, when forming a circuit on the surface of the ultrathin copper layer of the copper foil with carrier, As a result, the visibility is improved and the circuit alignment can be performed with high accuracy.
  • the color difference ⁇ E * ab based on JISZ8730 on the surface of the ultrathin copper layer is preferably 50 or more, more preferably 55 or more, and even more preferably 60 or more.
  • the contrast with the circuit plating becomes clear and the visibility becomes good. Accordingly, in the manufacturing process of the printed wiring board as described above, for example, as shown in FIG. 5C, it is possible to form the circuit plating at a predetermined position with high accuracy. Further, according to the printed wiring board manufacturing method as described above, since the circuit plating is embedded in the resin layer, the ultrathin copper layer is removed by flash etching as shown in FIG. 8J, for example. At this time, the circuit plating is protected by the resin layer and the shape thereof is maintained, thereby facilitating the formation of a fine circuit.
  • the circuit plating is protected by the resin layer, the migration resistance is improved, and the continuity of the circuit wiring is satisfactorily suppressed. For this reason, formation of a fine circuit becomes easy. Also, as shown in FIGS. 8J and 8K, when the ultrathin copper layer is removed by flash etching, the exposed surface of the circuit plating is recessed from the resin layer, so that bumps are formed on the circuit plating. In addition, copper pillars can be easily formed thereon, and the production efficiency is improved.
  • a known resin or prepreg can be used as the embedding resin (resin).
  • a prepreg that is a glass cloth impregnated with BT (bismaleimide triazine) resin or BT resin, an ABF film or ABF manufactured by Ajinomoto Fine Techno Co., Ltd. can be used.
  • the resin layer and / or resin and / or prepreg as described in this specification can be used for the embedding resin (resin).
  • the carrier-attached copper foil used in the first layer may have a substrate or a resin layer on the surface of the carrier-attached copper foil.
  • substrate or resin layer By having the said board
  • any substrate or resin layer can be used as long as it has an effect of supporting the copper foil with carrier used in the first layer.
  • the surface-treated copper foil of the present invention can be bonded to a resin substrate from the roughened surface side to produce a laminate.
  • the resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board or the like.
  • a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin for rigid PWB Glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin and glass cloth base material epoxy resin, etc. are used, polyester film, polyimide film, liquid crystal polymer (LCP) film, Teflon for FPC A (registered trademark) film, a fluororesin film, or the like can be used.
  • the peel strength between the film and the surface-treated copper foil tends to be smaller than when a polyimide film is used. Therefore, when a liquid crystal polymer (LCP) film or a fluororesin film is used, the surface-treated copper foil is etched to form a copper circuit, and then the copper circuit is covered with a cover lay to cover the film and the copper The circuit is difficult to peel off, and peeling of the film and the copper circuit due to a decrease in peel strength can be prevented.
  • Resins with good dielectric properties low dielectric loss tangent (for example, dielectric loss tangent is 0.008 or less) and / or low relative dielectric constant (for example, 3 or less when the signal frequency is 25 GHz)) or low dielectric resin (Resin having a small relative dielectric constant (for example, 3 or less when the signal frequency is 25 GHz)) has a small dielectric loss. Therefore, copper-clad laminates, printed wiring boards, and printed circuit boards using a resin, low dielectric resin or low dielectric loss resin with good dielectric properties and the surface-treated copper foil according to the present invention are high frequency circuits (signals at high frequencies). Suitable for transmission circuit).
  • the low dielectric loss resin refers to a resin having a dielectric loss smaller than that of polyimide conventionally used for a copper clad laminate.
  • the surface-treated copper foil according to the present invention has a small surface roughness Rz and a high glossiness, so that the surface is smooth and suitable for high-frequency circuit applications.
  • the resin having good dielectric characteristics, the low dielectric resin, or the low dielectric loss resin include a liquid crystal polymer (LCP) film and a fluororesin film.
  • the surface-treated copper foil of this invention can be used suitably for all the uses. For example, it can be used for printed wiring boards, printed circuit boards, printed wiring boards for high frequency circuits, printed circuit boards, semiconductor package substrates, secondary batteries, capacitor electrodes, and the like.
  • a prepreg is prepared by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing.
  • FPC it is laminated on a copper foil under high temperature and high pressure without using an adhesive on a substrate such as a polyimide film, or a polyimide precursor is applied, dried, cured, etc.
  • a laminated board can be manufactured by performing.
  • the thickness of the polyimide base resin is not particularly limited, but generally 25 ⁇ m or 50 ⁇ m can be mentioned.
  • the laminate of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited.
  • PWB printed wiring boards
  • the single-sided PWB, the double-sided PWB, and the multilayer PWB 3
  • rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material.
  • the electronic device of the present invention can be manufactured using such a printed wiring board.
  • the printed wiring board of the present invention is a printed wiring board composed of an insulating resin substrate and a surface-treated copper foil on which a copper circuit is formed by being laminated on the insulating substrate from the surface side where the surface treatment is performed.
  • a copper circuit is photographed with a CCD camera through an insulating resin substrate laminated from the surface side where the surface treatment is performed, the image obtained by photographing is perpendicular to the direction in which the observed copper circuit extends.
  • connection via soldering or anisotropic conductive film (ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used as a method of connecting one printed wiring board and another printed wiring board.
  • connection via soldering or anisotropic conductive film (ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used as a method of connecting one printed wiring board and another printed wiring board.
  • the surface-treated copper foil of the tension laminate is made into a line-shaped surface-treated copper foil by etching, and taken with a CCD camera through the insulating resin substrate laminated from the surface side where the surface treatment is performed,
  • the observation point-lightness graph prepared for the obtained image the lightness at each observation point was measured along the direction perpendicular to the direction in which the observed surface treated copper foil was extended.
  • connection via soldering or anisotropic conductive film (ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used as a method of connecting one printed wiring board and another printed wiring board.
  • ACF anisotropic conductive film
  • anisotropic conductive paste A known connection method such as connection via ACP
  • connection via a conductive adhesive can be used as a known connection method such as connection via ACP) or connection via a conductive adhesive.
  • the “printed wiring board” includes a printed wiring board and a printed board on which components are mounted.
  • a laminate of a surface-treated copper foil and a resin substrate is prepared.
  • a specific example of the laminate of the surface-treated copper foil and the resin substrate according to the present invention at least one of a main substrate, an attached circuit substrate, and a resin substrate such as polyimide used for electrically connecting them.
  • a laminated board manufactured by accurately positioning the flexible printed circuit board and crimping it to the wiring ends of the main circuit board and the attached circuit board Is mentioned.
  • the laminate is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding.
  • the laminated board has a mark formed of a part of the copper wiring and a separate material.
  • the position of the mark is not particularly limited as long as it can be photographed by photographing means such as a CCD camera through the resin constituting the laminated plate.
  • the mark refers to a mark used to detect, position, or align the position of a laminated board, printed wiring board, or the like.
  • the position of the mark when the above-mentioned mark is photographed by the photographing means through the resin, the position of the mark can be detected well. And the position of the said mark can be detected in this way, and based on the position of the said detected mark, the positioning of the laminated board of surface-treated copper foil and a resin substrate can be performed favorably.
  • the photographing means can detect the position of the mark well by such a positioning method, and the printed wiring board can be positioned more accurately.
  • the connection failure is reduced and the yield is improved.
  • a method for connecting one printed wiring board and another printed wiring board soldering, connection through an anisotropic conductive film (Anisotropic Conductive Film, ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used.
  • the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which components are mounted.
  • a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to the present invention, and at least one printed wiring board according to the present invention.
  • One printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention can be connected, and an electronic apparatus can be manufactured using such a printed wiring board.
  • “copper circuit” includes copper wiring.
  • the printed wiring board of the present invention may be connected to a component to produce a printed wiring board.
  • at least one printed wiring board of the present invention is connected to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention.
  • a printed wiring board in which two or more printed wiring boards are connected may be manufactured by connecting two or more printed wiring boards and components.
  • “components” include connectors, LCDs (Liquid Crystal Display), electronic components such as glass substrates used in LCDs, ICs (Integrated Circuits), LSIs (Large Scale Integrated Circuits), VLSIs (Very Large Circuits). ), Electronic components including semiconductor integrated circuits such as ULSI (Ultra-Large Scale Integration) (for example, IC chips, LSI chips, VLSI chips, ULSI chips), components for shielding electronic circuits and covers on printed wiring boards Examples include parts necessary for fixing.
  • the positioning method according to the embodiment of the present invention may include a step of moving a laminated board (including a laminated board of copper foil and a resin substrate and a printed wiring board).
  • a laminated board including a laminated board of copper foil and a resin substrate and a printed wiring board.
  • it may be moved by a conveyor such as a belt conveyor or a chain conveyor, may be moved by a moving device provided with an arm mechanism, or may be moved by floating a laminated plate using gas.
  • a moving means a moving device or moving means (including a roller or a bearing) that moves a laminated plate by rotating an object such as a substantially cylindrical shape, a moving device or moving means that uses hydraulic pressure as a power source, Moving devices and moving means powered by air pressure, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. It may be moved by a moving device or moving means having a stage. Moreover, you may perform the movement process by a well-known moving means. In the step of moving the laminated plate, the laminated plate can be moved for alignment.
  • the positioning method according to the embodiment of the present invention may be used for a surface mounter or a chip mounter.
  • the printed wiring board which has the circuit provided on the resin board and the said resin board may be sufficient as the laminated board of the surface treatment copper foil and the resin board which are positioned in this invention. In that case, the mark may be the circuit.
  • positioning includes “detecting the position of a mark or an object”.
  • alignment includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.
  • Examples 1 to 35 and Comparative Examples 1 to 14 various copper foils shown in Table 2 were prepared, and one surface was subjected to a plating treatment under the conditions shown in Table 1 as a roughening treatment.
  • various carriers shown in Table 2 were prepared, an intermediate layer was formed on the surface of the carrier, and an ultrathin copper layer was formed on the surface of the intermediate layer under the following conditions. And the surface of the ultra-thin copper layer was plated on the conditions described in Table 1 as a roughening treatment.
  • Ni layer (Ni plating) A Ni layer having an adhesion amount of 1000 ⁇ g / dm 2 was formed on the carrier by electroplating with a roll-to-roll type continuous plating line under the following conditions. Specific plating conditions are described below. Nickel sulfate: 270 to 280 g / L Nickel chloride: 35 to 45 g / L Nickel acetate: 10-20g / L Boric acid: 30-40g / L Brightener: Saccharin, butynediol, etc.
  • Leveling agent 1 bis (3sulfopropyl) disulfide): 10 to 30 ppm
  • Leveling agent 2 (amine compound): 10 to 30 ppm
  • the following amine compound was used as the leveling agent 2.
  • R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.
  • Electrolyte temperature 50-80 ° C
  • Current density 100 A / dm 2
  • Electrolyte linear velocity 1.5-5m / sec
  • the surface roughness of TD on the surface of the ultrathin copper layer was 0.55 ⁇ m, and the 60 ° glossiness of MD was 519%.
  • Ni-Mo layer (nickel molybdenum alloy plating)
  • Ni—Mo layer having an adhesion amount of 3000 ⁇ g / dm 2 was formed on the carrier by electroplating on a roll-to-roll continuous plating line under the following conditions. Specific plating conditions are described below.
  • Ni layer Ni plating
  • a Ni layer was formed under the same conditions as in Example 31.
  • Organic layer organic layer formation treatment
  • CBTA carboxybenzotriazole
  • An organic layer was formed by spraying an aqueous solution of 40 ° C. and pH 5 by spraying for 20 to 120 seconds.
  • ⁇ Ultra thin copper layer An ultrathin copper layer was formed on the organic layer formed in (2).
  • An ultrathin copper layer was formed under the same conditions as in Example 31 except that the thickness of the ultrathin copper layer was 2 ⁇ m.
  • the surface roughness of TD on the surface of the ultrathin copper layer was 0.40 ⁇ m, and the 60 ° glossiness of MD was 528%.
  • Example 35 ⁇ Intermediate layer> (1) Co-Mo layer (cobalt molybdenum alloy plating) The carrier, to form a Co-Mo layer deposition amount of 4000 ⁇ g / dm 2 by electroplating in a continuous plating line of the roll-to-roll type under the following conditions. Specific plating conditions are described below.
  • Examples 1 to 10, 12 to 27, 32 to 35 and Comparative Examples 3, 4, 6, and 9 to 14 are plated for forming the following heat-resistant layer and rust-preventing layer. Processed.
  • the conditions for forming the heat-resistant layer 1 are shown below.
  • Liquid composition Nickel 5-20 g / L, Cobalt 1-8 g / L pH: 2-3
  • Coulomb amount 10-20 As / dm 2
  • a heat-resistant layer 2 was formed on the copper foil provided with the heat-resistant layer 1.
  • the rough plating treatment was not performed, and the heat-resistant layer 2 was directly formed on the prepared copper foil.
  • the conditions for forming the heat-resistant layer 2 are shown below.
  • Liquid composition Nickel 2-30 g / L, Zinc 2-30 g / L pH: 3-4
  • Liquid temperature 30-50 ° C
  • Current density 1 to 2 A / dm 2
  • Coulomb amount 1 to 2 As / dm 2
  • the conditions for forming the rust preventive layer are shown below.
  • Liquid composition potassium dichromate 1-10 g / L, zinc 0-5 g / L pH: 3-4 Liquid temperature: 50-60 ° C Current density: 0-2A / dm 2 (for immersion chromate treatment) Coulomb amount: 0 to 2 As / dm 2 (for immersion chromate treatment)
  • the weathering layer was further formed. The formation conditions are shown below.
  • N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (Examples 17, 24-27), N-2- (aminoethyl) -3-aminopropyltri Ethoxysilane (Examples 1 to 16, 32 to 35), N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (Examples 18, 28, 29, 30), 3-aminopropyltrimethoxysilane ( Example 19), 3-aminopropyltriethoxysilane (Examples 20 and 21), 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (Example 22), N-phenyl-3 -Aminopropyltrimethoxysilane (Example 23) was applied and dried to form a weather-resistant layer.
  • silane coupling agents can be used in combination of two or more.
  • coating and drying were performed with N-2- (aminoethyl) -3-aminopropyltrimethoxysilane to form a weather resistant layer.
  • the rolled copper foil was manufactured as follows. After producing a copper ingot having the composition shown in Table 2 and performing hot rolling, annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled sheet having a thickness of 1 to 2 mm. This rolled sheet was annealed in a continuous annealing line at 300 to 800 ° C. and recrystallized, and finally cold-rolled to the thickness shown in Table 2 to obtain a copper foil. “Tough pitch copper” in the “Type” column of Table 2 indicates tough pitch copper standardized in JIS H3100 C1100, and “Oxygen-free copper” indicates oxygen-free copper standardized in JIS H3100 C1020.
  • “Tough pitch copper + Ag: 100 ppm” means that 100 mass ppm of Ag is added to tough pitch copper. Except for Example 35, electrolytic copper foil HLP foil made by JX Nippon Mining & Metals was used as the electrolytic copper foil. For Example 35, electrolytic copper foil JTC foil manufactured by JX Nippon Mining & Metals was used as the electrolytic copper foil. When electrolytic polishing or chemical polishing was performed, the plate thickness after electrolytic polishing or chemical polishing was described. Table 2 shows the points of the copper foil or carrier manufacturing process before the surface treatment. “High gloss rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the value of the oil film equivalent.
  • “Normal rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the oil film equivalent value described.
  • “Chemical polishing” and “electropolishing” mean the following conditions. “Chemical polishing” was performed using an etching solution of 1 to 3% by mass of H 2 SO 4 , 0.05 to 0.15% by mass of H 2 O 2 , and the remaining water, and the polishing time was 1 hour. “Electropolishing” is a condition of 67% phosphoric acid + 10% sulfuric acid + 23% water, a voltage of 10 V / cm 2 , and a time shown in Table 2 (the amount of polishing is 1 to 2 ⁇ m when electrolytic polishing is performed for 10 seconds) ).
  • the surface roughness (Rz) was similarly determined for the surface on the side where the carrier intermediate layer is provided and the surface of the ultrathin copper layer.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier
  • the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the glossiness was calculated
  • the surface-treated copper foil is bonded to both surfaces of a polyimide film (Kaneka thickness 25 ⁇ m or 50 ⁇ m or Toray DuPont thickness 50 ⁇ m) from the roughened surface side of the surface-treated copper foil.
  • a polyimide film Ka thickness 25 ⁇ m or 50 ⁇ m or Toray DuPont thickness 50 ⁇ m
  • etching ferric chloride aqueous solution
  • the surface which carried out the roughening process of copper foil was bonded together to the above-mentioned polyimide film, and the above-mentioned sample film was produced.
  • the surface treatment is performed to provide a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc.
  • the heat-resistant layer, rust-proof The surface-treated copper foil after the surface treatment of the layer, weather resistant layer, etc. is bonded to both surfaces of the polyimide film from the surface-treated surface side, and the surface-treated copper foil is etched (ferric chloride aqueous solution) Removed to create a sample film.
  • the surface-treated copper foil is an ultrathin copper layer of a copper foil with a carrier
  • the carrier-attached copper foil is bonded to both surfaces of the polyimide film from the roughened surface side of the ultrathin copper layer, and then the carrier is peeled off.
  • FIG. 3 is a schematic diagram showing the configuration of the photographing apparatus used at this time and the measurement method of the brightness curve.
  • ⁇ B, t1, t2, and Sv were measured by the following photographing apparatus as shown in FIG.
  • the above-mentioned “printed matter printed with a line-shaped black mark” is printed on white glossy paper having a glossiness of 43.0 ⁇ 2 according to JIS P8208 (1998) (a copy of the measurement table of dust) and JIS P8145 (2011) ( Annex JA (normative) Visual foreign substance comparison chart Figure JA.1-Copy of visual foreign substance comparison chart) Dirt with various lines printed on the transparent film shown in Fig.
  • a transporter (not shown) for transporting the evaluation polyimide substrate placed below onto the stage is provided.
  • the main specifications of the camera are as follows: ⁇ Photographing device: Sheet inspection device Mujken manufactured by Nireco Corporation Line CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits) ⁇ Power supply for lighting: High frequency lighting power supply (power supply unit x 2) ⁇ Illumination: fluorescent lamp (30W, model name: FPL27EX-D, twin fluorescent lamp) Line for Sv measurement was used a line indicated by an arrow drawn on the contaminants 9 of 0.7 mm 2. The width of the line is 0.3 mm. Further, the line CCD camera field of view is arranged in a dotted line in FIG.
  • the signal is confirmed at 256 gradations on the full scale, and the place where the black mark of the printed matter does not exist (on the white glossy paper above) without placing the polyimide film (polyimide substrate) to be measured.
  • the lens aperture was adjusted so that the peak gradation signal of 230 ⁇ 5 falls within the range (when a portion outside the mark printed on the contaminants is measured with a CCD camera from the transparent film side).
  • the camera scan time (the time when the camera shutter is open and the time when light is captured) is fixed at 250 ⁇ s, and the lens aperture is adjusted so that it falls within the above gradation.
  • a white gloss with a glossiness of 43.0 ⁇ 2 is provided on the back surface of the line-shaped copper foil.
  • the above “line-shaped black mark” is used except that ⁇ B, t1, t2, and Sv are measured from the lightness curve generated from the end of the mark to the portion without the mark.
  • the surface-treated surface of the surface-treated copper foil is bonded to both sides of a polyimide film (Kaneka thickness 25 ⁇ m or 50 ⁇ m, or Toray Dupont thickness 50 ⁇ m), and the copper foil is removed by etching (ferric chloride aqueous solution).
  • a sample film was prepared.
  • the surface which carried out the roughening process of copper foil was bonded together to the above-mentioned polyimide film, and the above-mentioned sample film was produced.
  • the surface treatment is performed to provide a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc.
  • the heat-resistant layer, rust-proof The surface-treated copper foil after the surface treatment of the layer, weather resistant layer, etc. is bonded to both surfaces of the polyimide film from the surface-treated surface side, and the surface-treated copper foil is etched (ferric chloride aqueous solution) Removed to create a sample film.
  • the surface-treated copper foil is an ultrathin copper layer of a copper foil with a carrier
  • the carrier-attached copper foil is bonded to both surfaces of the polyimide film from the roughened surface side of the ultrathin copper layer, and then the carrier is peeled off.
  • Peel strength (adhesive strength); After the surface-treated surface of the surface-treated copper foil is laminated on a polyimide film (Kaneka thickness 25 ⁇ m or 50 ⁇ m, or Toray DuPont thickness 50 ⁇ m), in accordance with IPC-TM-650, tensile tester Autograph The normal peel strength was measured at 100, and the normal peel strength of 0.7 N / mm or more could be used for laminated substrate applications. In Examples 31 to 35, after the surface-treated surface of the surface-treated copper foil was laminated on a polyimide film (Kaneka thickness 25 ⁇ m or 50 ⁇ m, or Toray DuPont thickness 50 ⁇ m), the carrier was peeled off.
  • the peel strength was measured after copper plating was performed such that the ultrathin copper layer laminated with the polyimide film had a thickness of 12 ⁇ m.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • solder heat resistance evaluation The surface-treated surface of the surface-treated copper foil was bonded to both surfaces of a polyimide film (Kaneka thickness 25 ⁇ m or 50 ⁇ m, or Toray DuPont thickness 50 ⁇ m). In addition, about the copper foil which performed the roughening process, the surface which roughened the copper foil was bonded together to the above-mentioned polyimide film. About the obtained double-sided laminated board, the test coupon based on JISC6471 was created. The prepared test coupon was exposed to high temperature and high humidity of 85 ° C. and 85% RH for 48 hours, and then floated in a solder bath at 300 ° C. to evaluate solder heat resistance.
  • the area where the interface discolored due to blistering in an area of 5% or more of the copper foil area in the test coupon is x (failed), area
  • the color change was less than 5% the case was evaluated as ⁇
  • the case where no color change occurred was evaluated as ⁇ .
  • surface treatment is performed to provide a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the surface of the surface-treated copper foil is bonded to both sides of a polyimide film (Kaneka thickness 25 ⁇ m or 50 ⁇ m, or Toray DuPont thickness 50 ⁇ m), and the copper foil is etched (ferric chloride).
  • FPC having a circuit width of L / S of 30 ⁇ m / 30 ⁇ m was prepared.
  • the surface which roughened the copper foil was bonded together to the above-mentioned polyimide film. After that, an attempt was made to detect a 20 ⁇ m ⁇ 20 ⁇ m square mark with a CCD camera through polyimide.
  • the circuit width was set such that the bottom width of the circuit cross section was 20 ⁇ m.
  • Equipment Spray type small etching equipment
  • Spray pressure 0.2 MPa
  • Etching solution Ferric chloride aqueous solution (specific gravity 40 Baume)
  • Liquid temperature 50 ° C
  • the photosensitive resist film was peeled off by dipping in a 45 ° C. NaOH aqueous solution for 1 minute.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the thickness of the copper foil was thicker than 18 ⁇ m, the thickness was reduced to 18 ⁇ m by electrolytic polishing. On the other hand, when the thickness was thinner than 18 ⁇ m, the thickness was increased to 18 ⁇ m by copper plating.
  • ⁇ ⁇ less than 3.7 dB / 10 cm, ⁇ 3.7 dB / 10 cm or more and less than 4.1 dB / 10 cm, ⁇ 4 4.1 dB / 10 cm or more and less than 5.0 dB / 10 cm, ⁇ , 5.0 dB / 10 cm or more was defined as x.
  • the surface treatment copper foil which has a printed wiring board, a copper clad laminated board, or a resin layer, it is (1) surface roughness (Rz) mentioned above about a copper circuit or a copper foil surface by melt
  • surface treatment is performed to provide a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer. Tables 1 to 5 show the conditions and evaluation of each test.
  • Examples 1 to 35 all had good visibility, peel strength, solder heat resistance evaluation and yield. Examples 1 to 35 were all good because of a large etching factor and a small transmission loss. Comparative Examples 1 to 4, 6, and 9 to 14 had poor visibility because ⁇ B was less than 40. In Comparative Examples 5, 7, and 8, the visibility was excellent, but the substrate adhesion was poor. In Comparative Examples 1 to 14, the solder heat resistance evaluation was poor.
  • an acrylic resin having a thickness of 1 ⁇ m was applied to the roughened surface, and the above evaluation was performed. As a result, the same evaluation results as those of the surface-treated copper foils of Examples 10 to 12, 14, 32, and 35 were obtained.
  • Example 4 shows (a) Comparative Example 1, (b) Comparative Example 3, (c) Comparative Example 5, (d) Comparative Example 6, (e) Example 1, and (f) in the Rz evaluation.
  • the SEM observation photograph of the copper foil surface of Example 2 is shown, respectively.
  • the mark width is 0.3 mm to 0.16 mm (the third mark from the side closest to the description of 0.5 of 0.5 mm 2 in the area of the contaminant sheet (see FIG. 10).
  • the same ⁇ B value and Sv value were measured by changing to the mark indicated by the arrow)), but both ⁇ B value and Sv value were the same as when the mark width was 0.3 mm.
  • a position 50 ⁇ m away from the end positions on both sides of the mark is defined as a position 100 ⁇ m apart, a position 300 ⁇ m apart, and a position 500 ⁇ m apart. From this position, the same ⁇ B value and Sv value were measured by changing to the average value of the brightness when measured at 5 locations (total of 10 locations on both sides) at 30 ⁇ m intervals.
  • the value is the value when the average value of brightness when measuring 5 locations at 30 ⁇ m intervals from a position 50 ⁇ m away from the end positions on both sides of the mark (10 locations in total on both sides) is “top average value Bt of the brightness curve”
  • the values were the same as the ⁇ B value and the Sv value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Mechanical Engineering (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)
PCT/JP2013/080479 2012-11-09 2013-11-11 表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器 WO2014073694A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380058515.0A CN104769165B (zh) 2012-11-09 2013-11-11 表面处理铜箔及使用其的积层板、覆铜积层板、印刷配线板以及电子机器
KR1020157013115A KR101660663B1 (ko) 2012-11-09 2013-11-11 표면 처리 동박 및 그것을 사용한 적층판, 구리 피복 적층판, 프린트 배선판 그리고 전자 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012247890A JP5432357B1 (ja) 2012-09-10 2012-11-09 表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器
JP2012-247890 2012-11-09

Publications (1)

Publication Number Publication Date
WO2014073694A1 true WO2014073694A1 (ja) 2014-05-15

Family

ID=50684783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080479 WO2014073694A1 (ja) 2012-11-09 2013-11-11 表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器

Country Status (4)

Country Link
KR (1) KR101660663B1 (zh)
CN (1) CN104769165B (zh)
TW (1) TWI484073B (zh)
WO (1) WO2014073694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11622445B2 (en) * 2019-12-19 2023-04-04 Iljin Materials Co., Ltd. Surface-treated copper foil, manufacturing method thereof, copper foil laminate including the same, and printed wiring board including the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177299B2 (ja) * 2015-11-04 2017-08-09 Jx金属株式会社 メタルマスク材料及びメタルマスク
US10115668B2 (en) * 2015-12-15 2018-10-30 Intel IP Corporation Semiconductor package having a variable redistribution layer thickness
US10529992B2 (en) 2017-02-03 2020-01-07 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, and current collector, electrode, and battery cell using the surface-treated copper foil
JP7193915B2 (ja) * 2017-02-03 2022-12-21 Jx金属株式会社 表面処理銅箔並びにこれを用いた集電体、電極及び電池
CN106705826A (zh) * 2017-03-15 2017-05-24 四维尔丸井(广州)汽车零部件有限公司 电镀件的镀层厚度测试方法
JP6413039B1 (ja) * 2018-03-29 2018-10-24 Jx金属株式会社 表面処理銅箔及び銅張積層板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987889A (ja) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk 印刷回路用銅箔の処理方法
JP2011240625A (ja) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp 銅張積層板
JP2012211351A (ja) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp 電解銅箔及び電解銅箔の製造方法
JP2012212529A (ja) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp 二次電池負極集電体用電解銅箔及びその製造方法
JP2012224941A (ja) * 2011-03-23 2012-11-15 Jx Nippon Mining & Metals Corp 銅箔及びそれを用いた銅張積層板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660406B2 (en) * 2000-07-07 2003-12-09 Mitsui Mining & Smelting Co., Ltd. Method for manufacturing printed wiring board comprising electrodeposited copper foil with carrier and resistor circuit; and printed wiring board comprising resistor circuit
KR100632861B1 (ko) 2002-05-13 2006-10-13 미쓰이 긴조꾸 고교 가부시키가이샤 칩온 필름용 플렉시블 프린트배선판
JP2004098659A (ja) 2002-07-19 2004-04-02 Ube Ind Ltd 銅張積層板及びその製造方法
EP2351876A1 (en) * 2008-11-25 2011-08-03 JX Nippon Mining & Metals Corporation Copper foil for printed circuit
JP5512585B2 (ja) 2011-03-30 2014-06-04 Jx日鉱日石金属株式会社 銅箔及びそれを用いたリチウムイオン二次電池用負極集電体及び負極材、ならびにリチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987889A (ja) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk 印刷回路用銅箔の処理方法
JP2011240625A (ja) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp 銅張積層板
JP2012224941A (ja) * 2011-03-23 2012-11-15 Jx Nippon Mining & Metals Corp 銅箔及びそれを用いた銅張積層板
JP2012211351A (ja) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp 電解銅箔及び電解銅箔の製造方法
JP2012212529A (ja) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp 二次電池負極集電体用電解銅箔及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11622445B2 (en) * 2019-12-19 2023-04-04 Iljin Materials Co., Ltd. Surface-treated copper foil, manufacturing method thereof, copper foil laminate including the same, and printed wiring board including the same

Also Published As

Publication number Publication date
KR101660663B1 (ko) 2016-09-27
KR20150070380A (ko) 2015-06-24
CN104769165B (zh) 2017-08-25
CN104769165A (zh) 2015-07-08
TWI484073B (zh) 2015-05-11
TW201435153A (zh) 2014-09-16

Similar Documents

Publication Publication Date Title
JP5885790B2 (ja) 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、プリント配線板、電子機器、電子機器の製造方法、並びに、プリント配線板の製造方法
JP5885791B2 (ja) 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、銅箔、プリント配線板、電子機器、電子機器の製造方法、並びに、プリント配線板の製造方法
JP5758035B2 (ja) 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP5855259B2 (ja) 表面処理銅箔及びそれを用いた積層板
JP5819569B1 (ja) 表面処理銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法
WO2014073694A1 (ja) 表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器
JP6343204B2 (ja) 表面処理銅箔及びそれを用いたキャリア付銅箔、積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
US10791631B2 (en) Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
WO2014038718A1 (ja) 表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器
WO2014038716A1 (ja) 表面処理銅箔及びそれを用いた積層板
JP5758034B2 (ja) 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP5758033B2 (ja) 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP6343205B2 (ja) キャリア付銅箔及びそれを用いた積層板の製造方法、プリント配線板、電子機器、プリント配線板の製造方法、並びに、電子機器の製造方法
JP2015061757A (ja) キャリア付銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP6449587B2 (ja) キャリア付銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2015061758A (ja) キャリア付銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2015062222A (ja) キャリア付銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びにプリント配線板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157013115

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13852952

Country of ref document: EP

Kind code of ref document: A1