WO2014073281A1 - 電圧均等化装置 - Google Patents

電圧均等化装置 Download PDF

Info

Publication number
WO2014073281A1
WO2014073281A1 PCT/JP2013/076082 JP2013076082W WO2014073281A1 WO 2014073281 A1 WO2014073281 A1 WO 2014073281A1 JP 2013076082 W JP2013076082 W JP 2013076082W WO 2014073281 A1 WO2014073281 A1 WO 2014073281A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
batteries
voltages
secondary side
Prior art date
Application number
PCT/JP2013/076082
Other languages
English (en)
French (fr)
Inventor
慎司 広瀬
悟士 山本
渉 牧志
守 倉石
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2014073281A1 publication Critical patent/WO2014073281A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a voltage equalizing apparatus that equalizes voltages of a plurality of batteries connected in series.
  • a technology for realizing a high voltage battery by connecting a plurality of rechargeable batteries in series has been put into practical use.
  • this type of battery has attracted attention in mounting on vehicles such as electric forklifts, hybrid vehicles, and electric vehicles.
  • the voltage of each battery may be uneven.
  • the battery discharge during driving of the traveling motor and the charging of the battery during power generation of the traveling motor are repeated. May become non-uniform.
  • the voltage nonuniformity of each battery may accelerate
  • the non-uniformity of the voltage of each battery may be caused by manufacturing variation of each battery or aging deterioration.
  • a voltage equalization apparatus that performs voltage equalization of each battery by flowing a discharge current from each battery to each battery again through a transformer has been proposed.
  • FIG. 10 is a diagram illustrating an example of a voltage equalizing apparatus that performs voltage equalization of each battery using a transformer in this way.
  • the voltage equalizing apparatus shown in FIG. 10 includes a transformer T, diodes Da to Dc, and a primary side switch SWp (eg, MOSFET), and three batteries Ba to Bc (eg, lithium ion secondary) connected in series. Batteries) are equalized.
  • the transformer T includes a primary side coil Lp and secondary side coils Lsa to Lsc.
  • the primary coil Lp is connected in parallel to the entire batteries Ba to Bc via the switch SWp.
  • the secondary side coil Lsa is connected in parallel to the battery Ba via the diode Da
  • the secondary side coil Lsb is connected in parallel to the battery Bb via the diode Db
  • the secondary side coil Lsc is connected to the battery via the diode Dc.
  • Bc is connected in parallel.
  • the diodes Da to Dc prohibit discharge current from flowing from the batteries Ba to Bc.
  • the primary side switch SWp when the primary side switch SWp is continuously turned on and off, a voltage is applied to the primary side coil Lp due to the current intermittently flowing from the whole battery Ba to Bc to the primary side coil Lp, and the secondary side coils Lsa to Lsc are applied. Also, a voltage corresponding to the coil winding ratio is applied. At this time, charging currents inversely proportional to the voltages of the batteries Ba to Bc flow into the batteries Ba to Bc, respectively, and the batteries Ba to Bc are charged. When the voltages of the batteries Ba to Bc finally become equal to each other, the primary side switch SWp is turned on and off, and the voltage equalizing operation is finished.
  • this invention aims at providing the voltage equalization apparatus which can improve the efficiency of the energy transfer between batteries at the time of equalizing the voltage of the several battery connected in series using a transformer. To do.
  • the voltage equalization apparatus includes a plurality of voltage detectors that detect voltages of a plurality of batteries connected in series with each other, a primary coil that is connected in parallel to the whole of the plurality of batteries, and the plurality of batteries.
  • Transformers each including a plurality of secondary coils connected in parallel, a primary switch connected to the primary coil, and a plurality provided between the plurality of batteries and the plurality of secondary coils, respectively.
  • the switching operation of the secondary side switch is not performed many times, and the voltages of a plurality of batteries can be equalized with each other without taking too much time. Therefore, the efficiency of energy transfer between batteries when equalizing each voltage using a transformer can be improved.
  • the control unit may be configured to temporarily stop the primary side switch when switching a secondary side switch that is always turned on among the plurality of secondary side switches.
  • the efficiency of energy transfer between the batteries during the voltage equalization operation can be improved.
  • FIG. 1 is a diagram showing a voltage equalizing apparatus according to an embodiment of the present invention.
  • symbol is attached
  • a voltage equalizing apparatus 1 shown in FIG. 1 equalizes each voltage of batteries Ba to Bc in a battery mounted on a vehicle such as an electric forklift, a hybrid vehicle, or an electric vehicle,
  • a transformer T a primary side switch SWp, secondary side switches SWsa to SWsc, diodes Da to Dc, voltage detection units Sva to Svc, and a control unit 2 are provided.
  • the batteries Ba to Bc are connected in series to each other, and are constituted by, for example, lithium ion secondary batteries. Further, the number of batteries B constituting the battery is not limited to three. In addition, the battery supplies power to a traveling motor via an inverter circuit or supplies power to electrical equipment such as lighting, a heater, and a car navigation device, for example.
  • the primary side switch SWp and the secondary side switches SWsa to SWsc are constituted by MOSFETs, electromagnetic relays, or the like.
  • the transformer T includes a primary side coil Lp and secondary side coils Lsa to Lsc.
  • the primary coil Lp is connected in parallel to the entire batteries Ba to Bc via the primary switch SWp.
  • the secondary coil Lsa is connected in parallel to the battery Ba via the diode Da and the secondary switch SWsa
  • the secondary coil Lsb is connected in parallel to the battery Bb via the diode Db and the secondary switch SWsb.
  • the secondary coil Lsc is connected in parallel to the battery Bc via the diode Dc and the secondary switch SWsc.
  • the diode Db inhibits the discharge current from flowing from the battery Bb.
  • the secondary switch SWsc is always turned on to electrically connect the positive electrode of the battery Bc and the cathode terminal of the diode Dc, the diode Dc prohibits the discharge current from flowing from the battery Bc.
  • the voltage detection unit Sva detects the voltage Va of the battery Ba
  • the voltage detection unit Svb detects the voltage Vb of the battery Bb
  • the voltage detection unit Svc detects the voltage Vc of the battery Bc.
  • the control unit 2 continuously turns on and off the primary side switch SWp based on the voltages Va to Vc detected by the voltage detection units Sva to Svc, or sets the secondary side switches SWsa to SWsc. Are always on or off.
  • the control unit 2 continuously turns on and off the primary side switch SWp during the voltage equalizing operation, thereby causing the primary side coil Lp to flow into the primary side coil Lp due to the current that flows intermittently from the entire batteries Ba to Bc to the primary side coil Lp.
  • a voltage is applied, and voltages corresponding to the coil winding ratio are also applied to the secondary side coils Lsa to Lsc.
  • the control unit 2 includes, for example, a CPU (Central Processing Unit) or a programmable device (FPGA (Field Programmable Gate Array) or PLD (Programmable Logic Device)) and is stored in a storage unit (not shown).
  • a voltage equalization operation is performed by reading and executing the program by a CPU or a programmable device.
  • FIG. 2 is a flowchart showing the voltage equalization operation of the control unit 2.
  • control unit 2 acquires all the voltages V by each voltage detection unit Sv (S11), and always sets the secondary side switch SWs connected to the battery B having one or more lowest voltages V among the voltages V. After being turned on (S12), the primary side switch SWp is turned on and off (S13).
  • control unit 2 again acquires all the voltages V by the respective voltage detection units Sv (S14), and the lowest one or more of the voltages V is equal to the second lowest voltage V (or (S15 is Yes) and all the voltages V are not equal to each other (S16 is No), the primary side switch SWp is turned on and off (S17), and the process returns to S12 and again.
  • the secondary side switch SWs connected to the battery B having the lowest voltage V of 1 or more is always turned on (S12)
  • the primary side switch SWp is turned on and off (S13).
  • the subsequent operations (S14 to S17) are the same as the above-described operations (S14 to S17).
  • control unit 2 makes the lowest one or more voltages V out of all the voltages V equal (or almost equal) to the second lowest voltage V (Yes in S15), and all the voltages V are equal to each other. If this is the case (S16 is Yes), the primary side switch SWp and each secondary side switch SWb are always turned off (S18), and the voltage equalization operation is terminated.
  • the control unit 2 always turns on the secondary side switch SWsc connected to the battery Bc having the lowest voltage Vc, and then starts turning on and off the primary side switch SWp. Then, as shown in FIG. 3A, a discharge current flows from each of the batteries Ba to Bc, and a charging current flows only to the battery Bc. Therefore, when the charging current flowing through the battery Bc is larger than the discharging current flowing from the battery Bc, only the battery Bc is charged, so that the voltages Va and Vcb decrease and the voltage Vc increases.
  • the control unit 2 temporarily turns on and off the primary side switch SWp,
  • the secondary side switches SWsb and SWsc connected to the batteries Bb and Bc of the lowest voltages Vb and Vc among the voltages Va to Vc are always turned on, and the primary side switch SWp is turned on and off.
  • a discharge current flows from each of the batteries Ba to Bc, and a charging current flows to each of the batteries Bb and Bc.
  • the transformer 1 is used until the lowest one or more voltage V among the voltages Va to Vc of the batteries Ba to Bc becomes equal to the second lowest voltage V. Then, charging of only the battery B having the lowest voltage V of one or more with the current obtained from each of the batteries Ba to Bc is repeated until all the voltages Va to Vc are equal to each other. That is, in the voltage equalizing apparatus 1 of the above-described embodiment, the switching operations of the secondary side switches SWsa to SWsc are not performed many times, and the voltages Va to Vc of the batteries Ba to Bc are mutually connected without taking much time. Can be equalized. As a result, wasteful energy consumed by the transformer T can also be reduced. Therefore, when the voltages Va to Vc of the batteries Ba to Bc are equalized using the transformer T, energy transfer between the batteries Ba to Bc is performed. Efficiency can be improved.
  • the voltage Vb of the battery Bb which was the second lowest last time, is again lower than the average voltage Vt and becomes the lowest, so the voltage Vb becomes the average voltage Vt. Only the battery Bb is charged.
  • the battery B having the lowest voltage V is switched many times during the voltage equalization operation, so that each voltage Va of the batteries Ba to Bc is switched. It takes time for .about.Vc to be equal to each other.
  • the battery B having the lowest voltage V is switched only (number of batteries B ⁇ 1) times, and the voltage equalization operation is completed. Such time can be shortened.
  • the primary side switch SWp is temporarily stopped and then the secondary side switch SWs is always turned on.
  • a large current such as an inrush current or a surge current from flowing from the secondary side coil Ls to the battery B when the secondary side switch SWs is always turned on during the voltage equalizing operation.
  • the voltage equalizing apparatus 1 of the above embodiment charging only the battery B having the lowest one or more voltage V so that the lowest one or more voltage V is equal to the second lowest voltage V.
  • the configuration is such that all the voltages V are repeated until they become equal to each other, but the remaining batteries other than the battery B having the highest voltage of one or more V so that the highest voltage of one or more V becomes equal to the second highest voltage V.
  • the charging of only B may be repeated until all the voltages V are equal to each other.
  • FIG. 5 is a flowchart showing the voltage equalizing operation of the control unit 2 in such a configuration.
  • control unit 2 acquires all the voltages V by each voltage detection unit Sv (S21), and the secondary connected to the remaining batteries B other than the battery B having the highest voltage V of one or more of the voltages V. After the side switch SWs is always turned on (S22), the primary side switch SWp is turned on and off (S23).
  • control unit 2 obtains all the voltages V again by the respective voltage detection units Sv (S24), and one or more highest voltages V among the voltages V are equal to the second highest voltage V (or If all the voltages V are not equal to each other (S26 is No), the primary side switch SWp is turned on and off (S27), and the process returns to S22 and again the highest voltage of 1 or more After the secondary switch SWs connected to the remaining batteries B other than the V battery B is always turned on (S22), the primary switch SWp is turned on and off (S23).
  • the subsequent operations (S24 to S27) are the same as the above-described operations (S24 to S27).
  • the control unit 2 always turns on only the secondary side switches SWsb and SWsc, and then starts turning on and off the primary side switch SWp. Then, as shown in FIG. 6A, a discharge current flows from each of the batteries Ba to Bc, and a charging current flows to each of the batteries Bb and Bc. Therefore, when the charging currents flowing through the batteries Bb and Bc are larger than the discharging currents flowing from the batteries Bb and Bc, respectively, only the battery Ba is discharged and the batteries Bb and Bc are charged, so the voltage Va is lowered. At the same time, the voltages Vb and Vc increase.
  • the control unit 2 stops turning on and off the primary side switch SWp, and is the highest Only the secondary side switch SWsc connected to the remaining batteries Bc other than the batteries Ba and Bb of the voltages Va and Vb is always turned on. Then, as shown in FIG. 6B, a discharging current flows from each of the batteries Ba to Bc, and a charging current flows to the battery Bc. Therefore, when the charging current flowing through the battery Bc is larger than the discharging current flowing from the battery Bc, the batteries Ba and Bb are discharged and only the battery Bc is charged. Vc increases.
  • control unit 2 always turns off the primary side switch SWp and the secondary side switches SWsa to SWsc, and performs the voltage equalizing operation. Exit.
  • the voltages Va to Vc of the three batteries Ba to Bc can be equalized with each other only by the switching operation of the secondary side switches SWsa to SWsc twice.
  • wasteful energy consumed by the transformer T can also be reduced, so that energy transfer between the batteries Ba to Bc when the voltages Va to Vc of the batteries Ba to Bc are equalized using the transformer T is achieved. Efficiency can be improved.
  • FIG. 7 is a diagram showing a voltage equalizing apparatus according to another embodiment of the present invention.
  • symbol is attached
  • a voltage equalizing apparatus 3 shown in FIG. 7 equalizes each voltage of the batteries Ba to BC in a battery mounted on a vehicle such as an electric forklift, a hybrid vehicle, or an electric vehicle.
  • a transformer T switches SWa to SWc, voltage detection units Sva to Svc, and a control unit 4 are provided.
  • the transformer T includes coils La to Lc.
  • the coil La is connected in parallel to the battery Ba via the switch SWa
  • the coil Lb is connected in parallel to the battery Bb via the switch SWb
  • the coil Lc is connected in parallel to the battery Bc via the switch SWc.
  • the switches SWa to SWc are constituted by, for example, electromagnetic relays. It is assumed that the switch SWa can flow a current from the coil La to the battery Ba or from the battery Ba to the coil La when turned on. In addition, when the switch SWb is turned on, it is assumed that current can flow from the coil Lb to the battery Bb or from the battery Bb to the coil Lb. Further, when the switch SWc is on, it is assumed that current can flow from the coil Lc to the battery Bc or from the battery Bc to the coil Lc.
  • the voltage detection unit Sva detects the voltage Va of the battery Ba
  • the voltage detection unit Svb detects the voltage Vb of the battery Bb
  • the voltage detection unit Svc detects the voltage Vc of the battery Bc.
  • the controller 4 continuously turns on and off the switches SWa to SWc based on the voltages Va to Vc detected by the voltage detectors Sva to Svc during the voltage equalizing operation.
  • the control unit 4 turns on and off the switches SWa to SWc to apply average voltages Va to Vc to the coils La to Lc, respectively.
  • the control unit 4 turns on and off the switches SWa to SWc to apply average voltages Va to Vc to the coils La to Lc, respectively.
  • a charging current flows from the coil La to the battery Ba, the battery Ba is charged, and when the voltage Va of the battery Ba is larger than the voltage of the coil La, A discharge current flows from the battery Ba to the coil La.
  • the voltage of the coil Lb is larger than the voltage Vb of the battery Bb
  • a charging current flows from the coil Lb to the battery Bb to charge the battery Bb.
  • the battery A discharge current flows from Bb to the coil Lb. Further, when the voltage of the coil Lc is larger than the battery Vc of the battery Bc, a charging current flows from the coil Lc to the battery Bc to charge the battery Bc, and when the voltage Vc of the battery Bc is larger than the voltage of the coil Lc, the battery A discharge current flows from Bc to the coil Lc.
  • the control unit 4 simultaneously turns on and off the switches SWa and SWb, and always turns off the switch SWc, whereby the coils La and Lb have average voltages Va and Vb, respectively. It takes. At this time, when the voltage of the coil La is larger than the voltage Va of the battery Ba, a charging current flows from the coil La to the battery Ba, the battery Ba is charged, and when the voltage Va of the battery Ba is larger than the voltage of the coil La, A discharge current flows from the battery Ba to the coil La. When the voltage of the coil Lb is larger than the voltage Vb of the battery Bb, a charging current flows from the coil Lb to the battery Bb to charge the battery Bb. When the voltage Vb of the battery Bb is larger than the voltage of the coil Lb, the battery A discharge current flows from Bb to the coil Lb.
  • the control unit 4 simultaneously turns on and off the switches SWb and SWc, and always turns off the switch SWa, thereby causing the coils Lb and Lc to have average voltages Vb and Vc, respectively. It takes. At this time, when the voltage of the coil Lb is larger than the voltage Vb of the battery Bb, a charging current flows from the coil Lb to the battery Bb to charge the battery Bb. When the voltage Vb of the battery Bb is larger than the voltage of the coil Lb, A discharge current flows from the battery Bb to the coil Lb.
  • the control unit 4 simultaneously turns on and off the switches SWa and SWc, and always turns off the switch SWb, thereby causing the coils La and Lc to have average voltages Va and Vc, respectively. It takes. At this time, when the voltage of the coil La is larger than the voltage Va of the battery Ba, a charging current flows from the coil La to the battery Ba, the battery Ba is charged, and when the voltage Va of the battery Ba is larger than the voltage of the coil La, A discharge current flows from the battery Ba to the coil La. Further, when the voltage of the coil Lc is larger than the voltage Vc of the battery Bc, a charging current flows from the coil Lc to the battery Bc to charge the battery Bc. When the voltage Vc of the battery Bc is larger than the voltage of the coil Lc, the battery A discharge current flows from Bc to the coil Lc.
  • the control unit 4 is configured by, for example, a CPU or a programmable device or a PLD, and the voltage equalization operation is performed by the CPU or the programmable device reading and executing a program stored in a storage unit (not illustrated). I do.
  • FIG. 8 is a flowchart showing the voltage equalization operation of the control unit 4.
  • control unit 4 acquires the voltages Va to Vc from the voltage detection units Sva to Svc (S31), the switch SW connected to the battery B having the highest voltage V among the voltages Va to Vc, and the lowest voltage V. Each switch SW connected to the battery B is turned on and off (S32).
  • control unit 4 again acquires the voltages Va to Vc from the voltage detection units Sva to Svc (S33), and when two voltages V of the voltages Va to Vc are equal (or substantially equal) to each other (S34 is Yes) After stopping the on / off of the two switches SW being driven (S35), the on / off of all the switches SW is started (S36).
  • control unit 4 again acquires the voltages Va to Vc from the voltage detection units Sva to Svc (S37), and when all the voltages Va to Vc are equal (or substantially equal) to each other (S38 is Yes), The switch SW is turned on and off (S39), and the voltage equalization operation is terminated.
  • the control unit 4 starts turning on and off the switches SWa and SWc. Then, as shown in FIG. 9A, a discharging current flows from the battery Ba and a charging current flows to the battery Bc. Therefore, since the battery Ba is discharged and the battery Bc is charged, the voltage Va becomes lower and the voltage Vc becomes higher.
  • the control unit 4 stops turning on and off the switches SWa and SWc and then starts turning on and off all the switches SWa to SWc. Then, as shown in FIG. 9B, a discharging current flows from the batteries Ba and Bb, and a charging current flows to the battery Bc. Therefore, the batteries Ba and Bb are discharged, and the battery Bc is charged, so that the voltages Va and Vb are lowered and the voltage Vc is raised.
  • the control unit 4 stops turning on and off all the switches SWa to SWc, and ends the voltage equalization operation.
  • the highest voltage V or the lowest voltage V among all the voltages Va to Vc detected by the voltage detectors SVa to SVc is equal to the remaining voltage V.
  • the voltage detection unit After the energy is transferred from the battery B having the highest voltage V to the battery B having the lowest voltage V, the voltage detection unit until all the voltages Va to Vc detected by the voltage detection units SVa to SVc are equal to each other The battery B having the lowest voltage V of one or more of all the voltages Va to Vc detected by SVa to SVc is charged.
  • the switching operations of the switches SWa to SWc are not performed many times, and the voltages Va to Vc of the batteries Ba to Bc are equalized with each other without taking much time. be able to.
  • wasteful energy consumed by the transformer T can also be reduced. Therefore, when the voltages Va to Vc of the batteries Ba to Bc are equalized using the transformer T, energy transfer between the batteries Ba to Bc is performed. Efficiency can be improved.
  • the two switches SW being driven are temporarily stopped and then the switches SWa to SWc are turned on and off. Thereby, it is possible to prevent a large current such as an inrush current or a surge current from flowing from the coil L to the battery B when the switch SW is switched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 一次側スイッチSWpをオン、オフさせている際、二次側スイッチSWsa~SWscのうちの1以上の二次側スイッチSWsを常時オンさせることにより、その二次側スイッチSWsに接続される電池Bを充電させるとともに、電圧検出部Sva~Svcにより検出されるすべての電圧Va~Vcが互いに等しくなるまで、電圧Va~Vcのうち最も低い1以上の電圧Vが2番目に低い電圧Vに等しくなるように、最も低い1以上の電圧Vの電池Bを充電することを繰り返す。

Description

電圧均等化装置
 本発明は、直列接続される複数の電池の電圧を均等化する電圧均等化装置に関する。
 複数の充電可能な電池を直列に接続して高電圧のバッテリを実現する技術が実用化されている。この種のバッテリは、近年では、例えば、電動フォークリフト、ハイブリッド車、又は電気自動車などの車両への実装において注目されている。
 ところで、複数の電池を直列に接続した状態で充電を行うと、各電池の電圧(又は、各電池の充電容量)が不均一になることがある。また、上述のバッテリが車両に搭載される場合には、走行用モータ駆動時のバッテリの放電や走行用モータ発電時のバッテリの充電が繰り返されるので、この充放電の繰り返しによっても各電池の電圧が不均一になることがある。そして、各電池の電圧の不均一は、一部の電池の劣化を促進させるおそれがあり、また、バッテリ全体として効率の低下を引き起こすことがある。なお、各電池の電圧の不均一は、各電池の製造ばらつきや経年劣化などにより生じ得る。
 そのため、例えば、複数の電池のうち目標電圧よりも小さい電圧の電池を充電することにより、各電池の電圧の均等化を行う電圧均等化装置が提案されている(例えば、特許文献1参照)。
 また、例えば、各電池からの放電電流をトランスを介して再び各電池に流すことにより、各電池の電圧均等化を行う電圧均等化装置が提案されている。
 図10は、このようにトランスを用いて各電池の電圧均等化を行う電圧均等化装置の一例を示す図である。
 図10に示す電圧均等化装置は、トランスTと、ダイオードDa~Dcと、一次側スイッチSWp(例えば、MOSFET)とを備え、直列接続される3つの電池Ba~Bc(例えば、リチウムイオン二次電池)の各電圧の均等化を行う。
 トランスTは、一次側コイルLpと、二次側コイルLsa~Lscとを備える。
 一次側コイルLpは電池Ba~Bc全体にスイッチSWpを介して並列接続されている。また、二次側コイルLsaはダイオードDaを介して電池Baに並列接続され、二次側コイルLsbはダイオードDbを介して電池Bbに並列接続され、二次側コイルLscはダイオードDcを介して電池Bcに並列接続されている。なお、ダイオードDa~Dcにより、電池Ba~Bcから放電電流が流れることを禁止している。
 ここで、一次側スイッチSWpが継続してオン、オフすると、電池Ba~Bc全体から一次側コイルLpへ間欠的に流れる電流により一次側コイルLpに電圧がかかり、2次側コイルLsa~Lscにもそれぞれコイルの巻き線比に応じた電圧がかかる。このとき、電池Ba~Bcの各電圧に反比例する充電電流が電池Ba~Bcにそれぞれ流れ電池Ba~Bcが充電される。そして、最終的に電池Ba~Bcそれぞれの電圧が互いに等しくなると、一次側スイッチSWpのオン、オフを停止して電圧均等化動作を終了する。
特開2006-129577号公報
 しかしながら、上述のように、トランスを用いて各電池の電圧均等化を行う電圧均等化装置では、放電だけさせたい電池にも充電電流が流れてしまうため、その放電だけさせたい電池の電圧が下がり難い。そのため、電圧均等化動作に時間がかかり、電圧均等化動作にかかる時間が増大すればするほどトランスなどで無駄にエネルギーが消費されてしまう。このように、トランスを用いて各電池の電圧均等化を行う電圧均等化装置として、電圧均等化動作時の電池間のエネルギー授受の効率があまりよくないものがある。
 そこで、本発明は、直列接続される複数の電池の電圧をトランスを用いて均等化する際の電池間のエネルギー授受の効率を向上させることが可能な電圧均等化装置を提供することを目的とする。
 本発明の電圧均等化装置は、互いに直列接続される複数の電池の各電圧を検出する複数の電圧検出部と、前記複数の電池全体に並列接続される一次側コイルと、前記複数の電池にそれぞれ並列接続される複数の二次側コイルとを備えるトランスと、前記一次側コイルに接続される一次側スイッチと、前記複数の電池と前記複数の二次側コイルとの間にそれぞれ設けられる複数の二次側スイッチと、前記一次側スイッチをオン、オフさせている際、前記複数の二次側スイッチのうちの1以上の二次側スイッチを常時オンさせることにより、その二次側スイッチに接続される電池を充電させるとともに、前記複数の電圧検出部により検出されるすべての電圧のうちの最も低い1以上の電圧が2番目に低い電圧に等しくなるように前記最も低い1以上の電圧の電池を充電することを、前記複数の電圧検出部により検出されるすべての電圧が互いに等しくなるまで繰り返す制御部とを備える。
 これにより、何度も二次側スイッチの切り替え動作を行うことがなく、あまり時間をかけずに複数の電池の各電圧を互いに均等化することができるので、トランスで消費される無駄なエネルギーも低減させることができ、各電圧をトランスを用いて均等化する際の電池間のエネルギー授受の効率を向上させることができる。
 また、前記制御部は、前記複数の二次側スイッチのうち常時オンする二次側スイッチを切り替える際、前記一次側スイッチを一旦停止させるように構成してもよい。
 これにより、電圧均等化動作中において、二次側スイッチを常時オンさせる際に二次側コイルから電池に突入電流やサージ電流などの大電流が流れることを防止することができる。
 本発明によれば、直列接続される複数の電池の電圧をトランスを用いて均等化する電圧均等化装置において、電圧均等化動作時の電池間のエネルギー授受の効率を向上させることができる。
本発明の実施形態の電圧均等化装置を示す図である。 制御部の電圧均等化動作を示すフローチャートである。 電圧均等化動作時の各電池の電圧の増減の一例を示す図である。 他の電圧均等化方法における各電池の電圧の増減の一例を示す図である。 制御部の電圧均等化動作を示すフローチャートである。 電圧均等化動作時の各電池の電圧の増減の一例を示す図である。 本発明の他の実施形態の電圧均等化装置を示す図である。 制御部の電圧均等化動作を示すフローチャートである。 電圧均等化動作時の各電池の電圧の増減の一例を示す図である。 既存の電圧均等化装置の一例を示す図である。
 図1は、本発明の実施形態の電圧均等化装置を示す図である。なお、図10に示す既存の電圧均等化装置と同じ構成には同じ符号を付しその構成の説明を省略する。
 図1に示す電圧均等化装置1は、例えば、電動フォークリフト、ハイブリッド車、又は電気自動車などの車両に搭載されるバッテリ内の電池Ba~Bcのそれぞれの電圧を互いに均等化するものであって、トランスTと、一次側スイッチSWpと、二次側スイッチSWsa~SWscと、ダイオードDa~Dcと、電圧検出部Sva~Svcと、制御部2とを備える。
 なお、電池Ba~Bcは、互いに直列接続され、例えば、リチウムイオン二次電池などにより構成される。また、上記バッテリを構成する電池Bの数は3つに限定されない。また、上記バッテリは、例えば、インバータ回路を介して走行用モータに電力を供給したり、照明、ヒーター、カーナビゲーション装置などの電装機器に電力を供給するものとする。
 また、一次側スイッチSWpや二次側スイッチSWsa~SWscは、MOSFETや電磁式リレーなどにより構成される。
 トランスTは、一次側コイルLpと、二次側コイルLsa~Lscとを備える。
 一次側コイルLpは電池Ba~Bc全体に一次側スイッチSWpを介して並列接続されている。また、二次側コイルLsaはダイオードDa及び二次側スイッチSWsaを介して電池Baに並列接続され、二次側コイルLsbはダイオードDb及び二次側スイッチSWsbを介して電池Bbに並列接続され、二次側コイルLscはダイオードDc及び二次側スイッチSWscを介して電池Bcに並列接続されている。二次側スイッチSWsaが常時オンすることにより電池Baの正極とダイオードDaのカソード端子とが電気的に接続されると、ダイオードDaにより、電池Baから放電電流が流れることを禁止する。また、二次側スイッチSWsbが常時オンすることにより電池Bbの正極とダイオードDbのカソード端子とが電気的に接続されると、ダイオードDbにより、電池Bbから放電電流が流れることを禁止する。また、二次側スイッチSWscが常時オンすることにより電池Bcの正極とダイオードDcのカソード端子とが電気的に接続されると、ダイオードDcにより、電池Bcから放電電流が流れることを禁止する。
 電圧検出部Svaは電池Baの電圧Vaを検出し、電圧検出部Svbは電池Bbの電圧Vbを検出し、電圧検出部Svcは電池Bcの電圧Vcを検出する。
 制御部2は、電圧均等化動作時、電圧検出部Sva~Svcで検出される電圧Va~Vcに基づいて、一次側スイッチSWpを継続してオン、オフさせたり、二次側スイッチSWsa~SWscをそれぞれ常時オン又は常時オフさせたりする。例えば、制御部2は、電圧均等化動作時、一次側スイッチSWpを継続してオン、オフさせることにより、電池Ba~Bc全体から一次側コイルLpへ間欠的に流れる電流により一次側コイルLpに電圧をかけ、2次側コイルLsa~Lscにもそれぞれコイルの巻き線比に応じた電圧をかける。このとき、制御部2により、二次側スイッチSWsaが常時オンされると、二次側コイルLsaから電池Baに充電電流が流れて電池Baが充電される。同様に、制御部2により、二次側スイッチSWsbが常時オンされると、二次側コイルLsbから電池Bbに充電電流が流れて電池Bbが充電され、二次側スイッチSWscが常時オンされると、二次側コイルLscから電池Bcに充電電流が流れて電池Bcが充電される。一次側スイッチSWpが継続してオン、オフしているとき、二次側スイッチSWsa~SWscのうち常時オフしている二次側スイッチSWsに接続される電池Bには充電電流が流れないため、その電池Bは充電されない。
 なお、制御部2は、例えば、CPU(Central Processing Unit)又はプログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device))などにより構成され、不図示の記憶部に記憶されているプログラムをCPU又はプログラマブルなデバイスが読み出して実行することにより、電圧均等化動作を行う。
 図2は、制御部2の電圧均等化動作を示すフローチャートである。
 まず、制御部2は、各電圧検出部Svによりすべての電圧Vを取得し(S11)、それら電圧Vのうち最も低い1以上の電圧Vの電池Bに接続される二次側スイッチSWsを常時オンさせた後(S12)、一次側スイッチSWpのオン、オフを開始させる(S13)。
 次に、制御部2は、再度、各電圧検出部Svによりすべての電圧Vを取得し(S14)、それら電圧Vのうち最も低い1以上の電圧Vが2番目に低い電圧Vと等しく(又はほぼ等しく)なり(S15がYes)、かつ、すべての電圧Vが互いに等しくなっていない場合(S16がNo)、一次側スイッチSWpのオン、オフを停止させて(S17)、S12に戻り、再び最も低い1以上の電圧Vの電池Bに接続される二次側スイッチSWsを常時オンさせた後(S12)、一次側スイッチSWpのオン、オフを開始させる(S13)。以降の動作(S14~S17)は上述の動作(S14~S17)と同様である。
 一方、制御部2は、すべての電圧Vのうち最も低い1以上の電圧Vが2番目に低い電圧Vと等しく(又はほぼ等しく)なり(S15がYes)、かつ、すべての電圧Vが互いに等しくなる場合(S16がYes)、一次側スイッチSWp及び各二次側スイッチSWbを常時オフさせて(S18)、電圧均等化動作を終了する。
 例えば、電圧Va~Vcのうち、電圧Vaが最も高く、電圧Vcが最も低い場合に行われる制御部2の電圧均等化動作(図3)について説明する。
 まず、制御部2は、最も低い電圧Vcの電池Bcに接続される二次側スイッチSWscを常時オンさせた後、一次側スイッチSWpのオン、オフを開始させる。すると、図3(a)に示すように、電池Ba~Bcからそれぞれ放電電流が流れるとともに、電池Bcのみに充電電流が流れる。そのため、電池Bcに流れる充電電流が電池Bcから流れる放電電流よりも大きい場合、電池Bcのみが充電するため、電圧Va、Vcbが低くなっていくとともに、電圧Vcが高くなっていく。
 次に、制御部2は、電圧Vcが電圧Vbと等しくなり、かつ、電圧Vaと電圧Vb、Vcとが互いに等しくなっていない場合、一次側スイッチSWpのオン、オフを一旦停止させた後、電圧Va~Vcうち最も低い電圧Vb、Vcの各電池Bb、Bcにそれぞれ接続される2次側スイッチSWsb、SWscを常時オンさせるとともに、一次側スイッチSWpのオン、オフを開始させる。すると、図3(b)に示すように、電池Ba~Bcからそれぞれ放電電流が流れるとともに、電池Bb、Bcにそれぞれ充電電流が流れる。そのため、電池Bbに流れる充電電流が電池Bbから流れる放電電流よりも大きく、かつ、電池Bcに流れる充電電流が電池Bcから流れる放電電流よりも大きい場合、電池Bb、Bcのみが充電するため、電圧Vaが低くなっていくとともに、電圧Vb、Vcがそれぞれ高くなっていく。
 そして、制御部2は、図3(c)に示すように、すべての電圧Va~Vcが互いに等しくなると、一次側スイッチSWp及び二次側スイッチSWsa~SWscを常時オフさせて、電圧均等化動作を終了する。
 このように、上記実施形態の電圧均等化装置1では、電池Ba~Bcの各電圧Va~Vcのうち最も低い1以上の電圧Vが2番目に低い電圧Vと等しくなるまで、トランスTを介して各電池Ba~Bcから得られる電流により、最も低い1以上の電圧Vの電池Bのみを充電させることを、すべての電圧Va~Vcが互いに等しくなるまで繰り返し行っている。すなわち、上記実施形態の電圧均等化装置1では、何度も二次側スイッチSWsa~SWscの切り替え動作を行うことがなく、あまり時間をかけずに電池Ba~Bcの各電圧Va~Vcを互いに均等化することができる。これにより、トランスTで消費される無駄なエネルギーも低減させることができるため、電池Ba~Bcの各電圧Va~VcをトランスTを用いて均等化する際の電池Ba~Bc間のエネルギー授受の効率を向上させることができる。
 ところで、図1に示す電圧均等化装置1のように、トランスTを用いて電池Ba~Bcの各電圧Va~Vcを均等化する場合、図2に示す電圧均等化方法の他に、図4(a)~(d)に示すように、最も低い電圧Vの電池Bが電圧Va~Vcの平均電圧Vtと等しくなるように、その最も低い電圧Vの電池Bを優先的に充電する電圧均等化方法がある。
 しかしながら、図4(a)~(d)に示す電圧均等化方法では、まず、図4(a)に示すように、最も低い電圧Vcが平均電圧Vtになるまで電池Bcのみを充電させる。すると、今度は、図4(b)に示すように、前回2番目に低かった電池Bbの電圧Vbが平均電圧Vtよりも低く、かつ、最も低くなるため、電圧Vbが平均電圧Vtになるまで電池Bbのみを充電させる。すると、今度は、図4(c)に示すように、前回2番目に低かった電池Bcの電圧Vcが再び平均電圧Vtよりも低く、かつ、最も低くなるため、電圧Vcが平均電圧Vtになるまで電池Bcのみを充電させる。すると、今度は、図4(d)に示すように、前回2番目に低かった電池Bbの電圧Vbが再び平均電圧Vtよりも低く、かつ、最も低くなるため、電圧Vbが平均電圧Vtになるまで電池Bbのみを充電させる。このように、図4(a)~(d)に示す電圧均等化方法では、電圧均等化動作中、電圧Vが最も低くなる電池Bが何度も切り替わるため、電池Ba~Bcの各電圧Va~Vcが互いに等しくなるまでに時間がかかってしまう。
 一方、図2に示す電圧均等化方法では、電圧均等化動作中、電圧Vが最も低くなる電池Bが(電池Bの個数-1)回切り替わるだけであり、電圧均等化動作が完了するまでにかかる時間を短縮することができる。
 また、上記実施形態の電圧均等化装置1では、電圧均等化動作中、一次側スイッチSWpを一旦停止させてから二次側スイッチSWsを常時オンさせている。これにより、電圧均等化動作中、二次側スイッチSWsを常時オンさせる際に二次側コイルLsから電池Bに突入電流やサージ電流などの大電流が流れることを防止することができる。
 なお、上記実施形態の電圧均等化装置1では、最も低い1以上の電圧Vが2番目に低い電圧Vに等しくなるようにその最も低い1以上の電圧Vの電池Bのみを充電することを、すべての電圧Vが互いに等しくなるまで繰り返す構成であるが、最も高い1以上の電圧Vが2番目に高い電圧Vに等しくなるようにその最も高い1以上の電圧Vの電池B以外の残りの電池Bのみを充電することを、すべての電圧Vが互いに等しくなるまで繰り返すように構成してもよい。
 図5は、そのように構成する場合における制御部2の電圧均等化動作を示すフローチャートである。
 まず、制御部2は、各電圧検出部Svによりすべての電圧Vを取得し(S21)、それら電圧Vのうち最も高い1以上電圧Vの電池B以外の残りの電池Bに接続される二次側スイッチSWsを常時オンさせた後(S22)、一次側スイッチSWpのオン、オフを開始させる(S23)。
 次に、制御部2は、再度、各電圧検出部Svによりすべての電圧Vを取得し(S24)、それら電圧Vのうち最も高い1以上の電圧Vが2番目に高い電圧Vと等しく(又はほぼ等しく)なり、かつ、すべての電圧Vが互いに等しくなっていない場合(S26がNo)、一次側スイッチSWpのオン、オフを停止させて(S27)、S22に戻り、再び最も高い1以上電圧Vの電池B以外の残りの電池Bに接続される二次側スイッチSWsを常時オンさせた後(S22)、一次側スイッチSWpのオン、オフを開始させる(S23)。以降の動作(S24~S27)は上述の動作(S24~S27)と同様である。
 一方、制御部2は、最も高い1以上の電圧Vが2番目に高い電圧Vと等しく(又はほぼ等しく)なり(S25がYes)、かつ、すべての電圧Vが互いに等しくなる場合(S26がYes)、一次側スイッチSWp及び各二次側スイッチSWbを常時オフさせて(S28)、電圧均等化動作を終了する。
 例えば、電圧Va~Vcのうち、電圧Vaが最も高く、電圧Vcが最も低い場合に行われる制御部2の電圧均等化動作(図6)について説明する。
 まず、制御部2は、二次側スイッチSWsb、SWscのみを常時オンさせた後、一次側スイッチSWpのオン、オフを開始させる。すると、図6(a)に示すように、電池Ba~Bcからそれぞれ放電電流が流れるとともに、電池Bb、Bcにそれぞれ充電電流が流れる。そのため、電池Bb、Bcにそれぞれ流れる充電電流が電池Bb、Bcからそれぞれ流れる放電電流よりも大きい場合、電池Baのみが放電するとともに電池Bb、Bcがそれぞれ充電するため、電圧Vaが低くなっていくとともに、電圧Vb、Vcがそれぞれ高くなっていく。
 次に、制御部2は、電圧Vaが電圧Vbと等しくなり、かつ、電圧Va、Vbと電圧Vcとが互いに等しくなっていない場合、一次側スイッチSWpのオン、オフを停止させて、最も高い電圧Va、Vbの電池Ba、Bb以外の残りの電池Bcに接続される二次側スイッチSWscのみを常時オンさせる。すると、図6(b)に示すように、電池Ba~Bcからそれぞれ放電電流が流れるとともに、電池Bcに充電電流が流れる。そのため、電池Bcに流れる充電電流が電池Bcから流れる放電電流よりも大きい場合、電池Ba、Bbがそれぞれ放電するとともに電池Bcのみが充電するため、電圧Va、Vbがそれぞれ低くなっていくとともに、電圧Vcが高くなっていく。
 そして、制御部2は、図6(c)に示すように、すべての電圧Va~Vcが互いに等しくなると、一次側スイッチSWp及び二次側スイッチSWsa~SWscを常時オフさせて、電圧均等化動作を終了する。
 このように構成しても、二次側スイッチSWsa~SWscの2度の切り替え動作だけで3つの電池Ba~Bcの各電圧Va~Vcを互いに均等化することができる。これにより、トランスTで消費される無駄なエネルギーも低減させることができるため、電池Ba~Bcの各電圧Va~Vcを、トランスTを用いて均等化する際の電池Ba~Bc間のエネルギー授受の効率を向上させることができる。
 図7は、本発明の他の実施形態の電圧均等化装置を示す図である。なお、図1に示す電圧均等化装置1と同じ構成には同じ符号を付しその構成の説明を省略する。
 図7に示す電圧均等化装置3は、例えば、電動フォークリフト、ハイブリッド車、又は電気自動車などの車両に搭載されるバッテリ内の電池Ba~BCのそれぞれの電圧を互いに均等化するものであって、トランスTと、スイッチSWa~SWcと、電圧検出部Sva~Svcと、制御部4とを備える。
トランスTは、コイルLa~Lcを備える。
 コイルLaはスイッチSWaを介して電池Baに並列接続され、コイルLbはスイッチSWbを介して電池Bbに並列接続され、コイルLcはスイッチSWcを介して電池Bcに並列接続されている。
 スイッチSWa~SWcは、例えば、電磁式リレーなどにより構成される。スイッチSWaは、オン時、コイルLaから電池Baに、又は、電池BaからコイルLaに電流を流すことができるものとする。また、スイッチSWbは、オン時、コイルLbから電池Bbに、又は、電池BbからコイルLbに電流を流すことができるものとする。また、スイッチSWcは、オン時、コイルLcから電池Bcに、又は、電池BcからコイルLcに電流を流すことができるものとする。
 電圧検出部Svaは電池Baの電圧Vaを検出し、電圧検出部Svbは電池Bbの電圧Vbを検出し、電圧検出部Svcは電池Bcの電圧Vcを検出する。
 制御部4は、電圧均等化動作時、電圧検出部Sva~Svcで検出される電圧Va~Vcに基づいて、スイッチSWa~SWcを継続してオン、オフさせる。
 例えば、制御部4は、電圧均等化動作時、スイッチSWa~SWcをそれぞれオン、オフさせることにより、コイルLa~Lcにそれぞれ電圧Va~Vcの平均電圧がかかる。このとき、コイルLaの電圧が電池Baの電圧Vaよりも大きいとき、コイルLaから電池Baに充電電流が流れて電池Baが充電され、電池Baの電圧VaがコイルLaの電圧よりも大きいとき、電池BaからコイルLaに放電電流が流れる。また、コイルLbの電圧が電池Bbの電圧Vbよりも大きいとき、コイルLbから電池Bbに充電電流が流れて電池Bbが充電され、電池Bbの電圧VbがコイルLbの電圧よりも大きいとき、電池BbからコイルLbに放電電流が流れる。また、コイルLcの電圧が電池Bcの電池Vcよりも大きいとき、コイルLcから電池Bcに充電電流が流れて電池Bcが充電され、電池Bcの電圧VcがコイルLcの電圧よりも大きいとき、電池BcからコイルLcに放電電流が流れる。
 また、例えば、制御部4は、電圧均等化動作時、スイッチSWa、SWbをそれぞれ同時にオン、オフさせるとともに、スイッチSWcを常時オフさせることにより、コイルLa、Lbにそれぞれ電圧Va、Vbの平均電圧がかかる。このとき、コイルLaの電圧が電池Baの電圧Vaよりも大きいとき、コイルLaから電池Baに充電電流が流れて電池Baが充電され、電池Baの電圧VaがコイルLaの電圧よりも大きいとき、電池BaからコイルLaに放電電流が流れる。また、コイルLbの電圧が電池Bbの電圧Vbよりも大きいとき、コイルLbから電池Bbに充電電流が流れて電池Bbが充電され、電池Bbの電圧VbがコイルLbの電圧よりも大きいとき、電池BbからコイルLbに放電電流が流れる。
 また、例えば、制御部4は、電圧均等化動作時、スイッチSWb、SWcをそれぞれ同時にオン、オフさせるとともに、スイッチSWaを常時オフさせることにより、コイルLb、Lcにそれぞれ電圧Vb、Vcの平均電圧がかかる。このとき、コイルLbの電圧が電池Bbの電圧Vbよりも大きいとき、コイルLbから電池Bbに充電電流が流れて電池Bbが充電され、電池Bbの電圧VbがコイルLbの電圧よりも大きいとき、電池BbからコイルLbに放電電流が流れる。また、コイルLcの電圧が電池Bcの電圧Vcよりも大きいとき、コイルLcから電池Bcに充電電流が流れて電池Bcが充電され、電池Bcの電圧VcがコイルLcの電圧よりも大きいとき、電池BcからコイルLcに放電電流が流れる。
 また、例えば、制御部4は、電圧均等化動作時、スイッチSWa、SWcをそれぞれ同時にオン、オフさせるとともに、スイッチSWbを常時オフさせることにより、コイルLa、Lcにそれぞれ電圧Va、Vcの平均電圧がかかる。このとき、コイルLaの電圧が電池Baの電圧Vaよりも大きいとき、コイルLaから電池Baに充電電流が流れて電池Baが充電され、電池Baの電圧VaがコイルLaの電圧よりも大きいとき、電池BaからコイルLaに放電電流が流れる。また、コイルLcの電圧が電池Bcの電圧Vcよりも大きいとき、コイルLcから電池Bcに充電電流が流れて電池Bcが充電され、電池Bcの電圧VcがコイルLcの電圧よりも大きいとき、電池BcからコイルLcに放電電流が流れる。
 なお、制御部4は、例えば、CPU又はプログラマブルなデバイスやPLDなどにより構成され、不図示の記憶部に記憶されているプログラムをCPU又はプログラマブルなデバイスが読み出して実行することにより、電圧均等化動作を行う。
 図8は、制御部4の電圧均等化動作を示すフローチャートである。
 まず、制御部4は、電圧検出部Sva~Svcから電圧Va~Vcを取得し(S31)、電圧Va~Vcのうち最も高い電圧Vの電池Bに接続されるスイッチSWと最も低い電圧Vの電池Bに接続されるスイッチSWのそれぞれのオン、オフを開始させる(S32)。
 次に、制御部4は、再度、電圧検出部Sva~Svcから電圧Va~Vcを取得し(S33)、電圧Va~Vcのうち2つの電圧Vが互いに等しく(又はほぼ等しく)なると(S34がYes)、駆動中の2つのスイッチSWのオン、オフを停止させた後(S35)、すべてのスイッチSWのオン、オフを開始させる(S36)。
 そして、制御部4は、再度、電圧検出部Sva~Svcから電圧Va~Vcを取得し(S37)、すべての電圧Va~Vcが互いに等しく(又はほぼ等しく)なると(S38がYes)、すべてのスイッチSWのオン、オフを停止させて(S39)、電圧均等化動作を終了する。
 例えば、電圧Va~Vcのうち、電圧Vaが最も高く、電圧Vcが最も低い場合に行われる制御部4の電圧均等化動作について説明する。
 まず、制御部4は、スイッチSWa、SWcのオン、オフを開始させる。すると、図9(a)に示すように、電池Baから放電電流が流れるとともに、電池Bcに充電電流が流れる。そのため、電池Baが放電し、電池Bcが充電するため、電圧Vaが低くなっていくとともに、電圧Vcが高くなっていく。
 次に、制御部4は、電圧Vaと電圧Vbとが互いに等しくなると、スイッチSWa、SWcのオン、オフを停止させた後、すべてのスイッチSWa~SWcのオン、オフを開始させる。すると、図9(b)に示すように、電池Ba、Bbからそれぞれ放電電流が流れるとともに、電池Bcに充電電流が流れる。そのため、電池Ba、Bbがそれぞれ放電するとともに、電池Bcが充電するため、電圧Va、Vbがそれぞれ低くなっていくとともに、電圧Vcが高くなっていく。
 そして、制御部4は、図9(c)に示すように、電圧Va~Vcが互いに等しくなると、すべてのスイッチSWa~SWcのオン、オフを停止させて、電圧均等化動作を終了する。
 このように、上記実施形態の電圧均等化装置3では、電圧検出部SVa~SVcにより検出されるすべての電圧Va~Vcのうち最も高い電圧Vまたは最も低い電圧Vが残りの電圧Vと等しくなるまで、最も高い電圧Vの電池Bから最も低い電圧Vの電池Bにエネルギーを授受させた後、電圧検出部SVa~SVcにより検出されるすべての電圧Va~Vcが互いに等しくなるまで、電圧検出部SVa~SVcにより検出されるすべての電圧Va~Vcのうち最も低い1以上の電圧Vの電池Bを充電させている。すなわち、上記実施形態の電圧均等化装置3では、何度もスイッチSWa~SWcの切り替え動作を行うことがなく、あまり時間をかけずに電池Ba~Bcの各電圧Va~Vcを互いに均等化することができる。これにより、トランスTで消費される無駄なエネルギーも低減させることができるため、電池Ba~Bcの各電圧Va~VcをトランスTを用いて均等化する際の電池Ba~Bc間のエネルギー授受の効率を向上させることができる。
 また、上記実施形態の電圧均等化装置3では、電圧均等化動作時、駆動中の2つのスイッチSWを一旦停止させてからスイッチSWa~SWcのオン、オフを開始させている。これにより、スイッチSWを切り替える際にコイルLから電池Bに突入電流やサージ電流などの大電流が流れることを防止することができる。
 

Claims (4)

  1.  互いに直列接続される複数の電池の各電圧を検出する複数の電圧検出部と、
     前記複数の電池全体に並列接続される一次側コイルと、前記複数の電池にそれぞれ並列接続される複数の二次側コイルとを備えるトランスと、
     前記一次側コイルに接続される一次側スイッチと、
     前記複数の電池と前記複数の二次側コイルとの間にそれぞれ設けられる複数の二次側スイッチと、
     前記一次側スイッチをオン、オフさせている際、前記複数の二次側スイッチのうちの1以上の二次側スイッチを常時オンさせることにより、その二次側スイッチに接続される電池を充電させるとともに、前記複数の電圧検出部により検出されるすべての電圧のうちの最も低い1以上の電圧が2番目に低い電圧に等しくなるように前記最も低い1以上の電圧の電池を充電することを、前記複数の電圧検出部により検出されるすべての電圧が互いに等しくなるまで繰り返す制御部と、
     を備えることを特徴とする電圧均等化装置。
  2.  請求項1に記載の電圧均等化装置であって、
     前記制御部は、前記複数の二次側スイッチのうち常時オンする二次側スイッチを切り替える際、前記一次側スイッチを一旦停止させる
     ことを特徴とする電圧均等化装置。
  3.  互いに直列接続される複数の電池の各電圧を検出する複数の電圧検出部と、
     前記複数の電池全体に並列接続される一次側コイルと、前記複数の電池にそれぞれ並列接続される複数の二次側コイルとを備えるトランスと、
     前記一次側コイルに接続される一次側スイッチと、
     前記複数の電池と前記複数の二次側コイルとの間にそれぞれ設けられる複数の二次側スイッチと、
     前記一次側スイッチをオン、オフさせている際、前記複数の二次側スイッチのうちの1以上の二次側スイッチを常時オンさせることにより、その二次側スイッチに接続される電池を充電させるとともに、前記複数の電圧検出部により検出されるすべての電圧のうちの最も高い1以上の電圧が2番目に高い電圧に等しくなるように前記最も高い1以上の電圧の電池以外の残りの電池を充電することを、前記複数の電圧検出部により検出されるすべての電圧が互いに等しくなるまで繰り返す制御部と、
     を備えることを特徴とする電圧均等化装置。
  4.  互いに直列接続される複数の電池の各電圧を検出する複数の電圧検出部と、
     前記複数の電池にそれぞれ並列接続される複数のコイルを備えるトランスと、
     前記複数の電池と前記複数のコイルとの間にそれぞれ設けられる複数のスイッチと、
     前記複数のスイッチのうちの2以上のスイッチをオン、オフさせることにより、それらスイッチにそれぞれ接続される電池間でエネルギーの授受を行い一方の電池を充電させつつ他方の電池を放電させるとともに、前記複数の電圧検出部により検出されるすべての電圧のうち最も高い電圧または最も低い電圧が残りの電圧と等しくなるまで、最も高い電圧の電池から最も低い電圧の電池にエネルギーを授受させた後、前記複数の電圧検出部により検出されるすべての電圧が互いに等しくなるまで、前記複数の電圧検出部により検出されるすべての電圧のうち最も低い1以上の電圧の電池以外の電池を放電させつつ前記最も低い1以上の電圧の電池を充電させる制御部と、
     を備えることを特徴とする電圧均等化装置。
     
PCT/JP2013/076082 2012-11-07 2013-09-26 電圧均等化装置 WO2014073281A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012244981A JP2014093925A (ja) 2012-11-07 2012-11-07 電圧均等化装置
JP2012-244981 2012-11-07

Publications (1)

Publication Number Publication Date
WO2014073281A1 true WO2014073281A1 (ja) 2014-05-15

Family

ID=50684398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076082 WO2014073281A1 (ja) 2012-11-07 2013-09-26 電圧均等化装置

Country Status (2)

Country Link
JP (1) JP2014093925A (ja)
WO (1) WO2014073281A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228908A1 (fr) * 2017-06-14 2018-12-20 Zodiac Aero Electric Procédé de charge de batteries pour un aéronef et système de stockage d'énergie électrique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111187A1 (ko) * 2015-12-23 2017-06-29 주식회사 엘지화학 배터리 랙 간 전압 밸런싱 장치 및 방법
KR102123048B1 (ko) * 2017-01-10 2020-06-15 주식회사 엘지화학 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
KR101931165B1 (ko) 2018-02-06 2018-12-20 대구대학교 산학협력단 배터리셀 밸런싱 회로

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333762A (ja) * 2002-05-14 2003-11-21 Japan Storage Battery Co Ltd 組電池用の電圧レベル均等化装置
JP2004236486A (ja) * 2003-02-03 2004-08-19 Fuji Heavy Ind Ltd バッテリの電圧検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333762A (ja) * 2002-05-14 2003-11-21 Japan Storage Battery Co Ltd 組電池用の電圧レベル均等化装置
JP2004236486A (ja) * 2003-02-03 2004-08-19 Fuji Heavy Ind Ltd バッテリの電圧検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018228908A1 (fr) * 2017-06-14 2018-12-20 Zodiac Aero Electric Procédé de charge de batteries pour un aéronef et système de stockage d'énergie électrique
FR3067878A1 (fr) * 2017-06-14 2018-12-21 Zodiac Aero Electric Procede de charge de batteries pour un aeronef et systeme de stockage d'energie electrique

Also Published As

Publication number Publication date
JP2014093925A (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
KR101076786B1 (ko) 직렬연결 배터리 스트링을 위한 지능제어 전하균일 장치 및방법
KR101220339B1 (ko) 직렬연결 배터리 스트링을 위한 자동 전하 균일 방법 및장치
JP5477448B1 (ja) 電圧均等化装置
JP5394919B2 (ja) 多重変圧器の2次巻線を並列に接続した電荷均等化装置
US20120206095A1 (en) Charge balancing system
JP2018026973A (ja) 車両用電源装置
WO2013154156A1 (ja) 電池均等化装置および方法
WO2013094344A1 (ja) 蓄電池装置および充電制御方法
JP2013005677A (ja) セルバランス装置
WO2014073281A1 (ja) 電圧均等化装置
JP2012191804A (ja) バランス補正装置および蓄電システム
US20130015818A1 (en) Circuit assembly
EP2693595B1 (en) Balance correction apparatus and electrical storage system
JP2013116006A (ja) 電池均等化装置および方法
WO2013157576A1 (ja) 電池均等化システムおよび方法
JP5285322B2 (ja) 電圧均等化装置並びに充電装置、組蓄電装置、充電システム
WO2013114757A1 (ja) 電池均等化装置および方法
JP2015119614A (ja) 蓄電状態調整回路、蓄電状態調整装置及び電池パック
JP2016154423A (ja) 電圧バランス装置
KR102668602B1 (ko) 전원 시스템
KR101567423B1 (ko) 소형 다중 권선 변압기를 이용한 ess용 액티브 배터리 관리 시스템용 균등 제어장치
WO2016039212A1 (ja) 充電装置
JP3713470B2 (ja) 二次電池の充放電制御装置
JP2014166100A (ja) 電圧均等化装置
JP2000308271A (ja) エネルギー移送装置、充電装置および電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852544

Country of ref document: EP

Kind code of ref document: A1