WO2013094344A1 - 蓄電池装置および充電制御方法 - Google Patents

蓄電池装置および充電制御方法 Download PDF

Info

Publication number
WO2013094344A1
WO2013094344A1 PCT/JP2012/079333 JP2012079333W WO2013094344A1 WO 2013094344 A1 WO2013094344 A1 WO 2013094344A1 JP 2012079333 W JP2012079333 W JP 2012079333W WO 2013094344 A1 WO2013094344 A1 WO 2013094344A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
battery cell
unit
voltage
storage
Prior art date
Application number
PCT/JP2012/079333
Other languages
English (en)
French (fr)
Inventor
園 駱
丸橋 建一
吉田 信秀
高橋 真吾
宣幸 板橋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013550182A priority Critical patent/JP6102746B2/ja
Priority to US14/366,698 priority patent/US9472976B2/en
Priority to EP12859273.0A priority patent/EP2797203B1/en
Publication of WO2013094344A1 publication Critical patent/WO2013094344A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a storage battery device including a plurality of storage battery cells connected in series.
  • storage battery devices including lithium ion storage batteries have been used in many situations.
  • storage battery devices are used as a drive source for electric vehicles, used for peak cuts that reduce power consumption during times when demand is high on the demand side of homes, stores, commercial facilities, etc. It is used to perform load shift that consumes power during a short period of time, or to stabilize the output of unstable renewable energy on the grid side of electric power companies and heavy electrical power companies.
  • Any storage battery device used in such applications requires a large capacity storage battery.
  • a large-capacity storage battery can be realized by connecting a plurality of storage battery cells in series.
  • characteristics such as the effective power storage amount of the storage battery are greatly deteriorated by natural discharge, aged use, charge / discharge cycle, and the like. Further, since the deterioration of each storage battery cell included in the storage battery does not proceed in the same way, the storage battery cell often deteriorated and the storage battery cell with less deterioration are often mixed in the storage battery. In this case, the characteristics of the storage battery as a whole are determined by the characteristics of the storage battery cell that has deteriorated.
  • Patent Document 1 describes a power supply system that outputs a voltage from each of a plurality of storage battery cells connected in series.
  • FIG. 1 is a circuit diagram of the power supply system described in Patent Document 1.
  • the storage battery D has storage battery cells B1, B2, and B3 connected in series.
  • Device A is connected to terminal 1
  • device B is connected to terminal 2
  • device C is connected to terminal 3
  • return line R is connected to terminal 4.
  • Device A, device B, and device C are operated by the discharged power of the storage battery D.
  • the balance circuit 10 is connected to the terminal 1, the terminal 2, the terminal 3, and the terminal 4, and exchanges energy between the storage battery cells B1, B2, and B3, whereby the storage battery cells B1, B2, and B3. Equalize the output voltage.
  • the current flowing through the storage battery cells B1, B2, and B3 is usually non-uniform, and the output voltage of each storage battery cell is non-uniform.
  • FIG. 2 shows a storage battery cell B1 when the storage battery D is discharged from the initial state in which the storage battery cells B1, B2 and B3 are fully charged in the power supply system excluding the balance circuit 10 from the power supply system shown in FIG. It is the figure which showed transition of the output voltage of B2, B3.
  • FIG. 3 shows changes in the output voltages of the storage battery cells B1, B2, and B3 when the storage battery D is discharged from the initial state where the storage battery cells B1, B2, and B3 are fully charged in the power supply system shown in FIG. FIG.
  • the dischargeable time shown in FIG. 2 and FIG. 3 is that the storage battery cell B3 whose output voltage becomes the discharge inhibition voltage in the shortest time from the start of discharge is discharged from the start of discharge among the storage battery cells B1, B2, and B3. Represents the time to reach the forbidden voltage.
  • the dischargeable time shown in FIG. 2 is longer than the dischargeable time shown in FIG.
  • Patent Document 2 discloses a charge / discharge control circuit that equalizes the output voltage of each storage battery cell when a storage battery composed of a plurality of storage battery cells connected in series is charged / discharged.
  • FIG. 4 is a block diagram showing an apparatus including the charge / discharge control circuit described in Patent Document 2.
  • the charge / discharge control circuit 20 charges the storage battery 12 using the DC power supply 15. Further, when the switch 14 is on and the switch 13 is off, the storage battery 12 is discharged, and the discharged power is consumed by the load 11.
  • the charge / discharge control circuit 20 shown in FIG. 4 compares the average output voltage of all the storage battery cells with the output voltage of each storage battery cell. Then, the charge / discharge control circuit 20 switches on and off the switches 13 and 14 according to the result of the comparison, and diverts a part of the current discharged by each storage battery cell into the charge / discharge control circuit 20.
  • the output voltage of each storage battery cell is made uniform.
  • An object of the present invention is to provide a storage battery device and a charge control method capable of further improving the lifetime.
  • the storage battery device of the present invention measures a voltage via a plurality of storage battery cells connected in series and the terminals of each storage battery cell, and indicates the deterioration state of each of the plurality of storage battery cells based on the voltage
  • a monitor for acquiring information; a selection unit for selecting at least one of the plurality of storage battery cells; a power supply unit for supplying power to the storage battery cell selected by the selection unit and charging the storage battery cell; And a control unit that switches the storage battery cell selected by the selection unit and adjusts the power supplied by the power supply unit, based on the deterioration information acquired by the monitor unit.
  • the charge control method of the present invention is a charge control method performed in a storage battery device having a plurality of storage battery cells connected in series, and measures a voltage via a terminal of each storage battery cell, and based on the voltage, Acquiring deterioration information indicating a state of deterioration of each of the plurality of storage battery cells, selecting at least one of the plurality of storage battery cells, supplying power to the storage battery cell selected in the selection step, and A cell is charged, and the selected storage battery cell is switched based on the acquired deterioration information, and the power supplied by the power feeding step is adjusted.
  • the lifetime can be further improved.
  • FIG. 2 is a circuit diagram showing a power supply system described in Patent Document 1.
  • FIG. It is a figure which shows transition of the output voltage at the time of discharging a storage battery in the power supply system which removed the balance circuit from the power supply system shown in FIG.
  • FIG. 1 it is a figure which shows transition of the output voltage at the time of discharging a storage battery.
  • It is a block diagram which shows an apparatus provided with the charging / discharging control circuit of patent document 2.
  • It is a block diagram which shows the structure of the storage battery apparatus of the 1st Embodiment of this invention.
  • FIG. 5 is a block diagram showing a configuration of the storage battery device of the present embodiment.
  • the storage battery device 30 shown in FIG. 5 includes a series cell 31, a power feeding unit 32, a monitor unit 33, a selection unit 34, and a control unit 35.
  • the storage battery device 30 can be connected to an external power source 36.
  • the storage battery device 30 connected to the external power source 36 is shown.
  • the serial cell 31 is composed of a plurality of storage battery cells 31-1 to 31-n connected in series, and has an intermediate tap terminal drawn from each positive terminal of the storage battery cells 31-2 to 31-n. n is an integer of 2 or more.
  • the series cell 31 has the positive terminal of the storage battery cell 31-1 and the negative terminal of the storage battery cell 31-n as the positive terminal and the negative terminal of the series cell 31, respectively.
  • the storage battery cells 31-1 to 31-n are preferably lithium ion storage battery cells.
  • the external power source 36 is connected to the positive terminal and the negative terminal of the series cell 31 and supplies power to the storage battery device 30.
  • the external power supply 36 charges the series cell 31. At this time, if the storage battery cells 31-1 to 31-n are not deteriorated at all, the charged state of each storage battery cell becomes uniform.
  • the selection unit 34 is connected to each of the positive terminal, the negative terminal, and the intermediate tap terminal of the series cell 31.
  • the selection unit 34 is connected to the power supply unit 32.
  • the selection unit 34 receives a selection signal for selecting at least one of the storage battery cells 31-1 to 31-n from the control unit 35, and at least one of the storage battery cells 31-n to 31-n according to the selection signal. Select one.
  • FIG. 6 is a block diagram illustrating a configuration of the storage battery device 30 using an (n + 1) terminal pair circuit as an example of the selection unit 34.
  • the (n + 1) terminal pair circuit that is the selection unit 34 is (n + 1) pieces provided on the wiring connecting the positive terminal, the negative terminal, and the intermediate tap terminal of the series cell 31 to the power feeding unit 32.
  • the selection unit 34 switches the switches 34-1 to 34- (n + 1) on and off so that a voltage is applied from the power supply unit 32 to the selected power storage unit cell.
  • the power supply unit 32 receives a power supply signal indicating an applied voltage to be applied to the storage battery cell selected by the selection unit 34 from the control unit 35, and the application unit indicated by the power supply signal is selected by the selection unit 34. Applied to the storage battery cell to charge the storage battery cell.
  • the monitor unit 33 is connected to each terminal of the series cell 31.
  • the monitor unit 33 acquires deterioration information indicating the deterioration state of each of the storage battery cells 31-1 to 31-n via each terminal, and transmits the deterioration information to the control unit 35.
  • SOH State of Health
  • an output voltage specifically, a voltage between terminals of a storage battery cell
  • an internal impedance for example, an output voltage (specifically, a voltage between terminals of a storage battery cell), an internal impedance, a remaining battery level, a charging rate, an effective charged amount, or a combination thereof is adopted.
  • the control unit 35 Upon receiving the deterioration information from the monitor unit 33, the control unit 35 selects at least one storage battery cell among the storage battery cells 31-1 to 31-n based on the deterioration information and applies it to the storage battery cell. Determine the voltage.
  • the applied voltage may be a DC voltage or a pulse voltage.
  • the control unit 35 adjusts the value of the DC voltage based on the deterioration information.
  • the control unit 35 adjusts the duty ratio of the pulse voltage based on the deterioration information.
  • control unit 35 increases the charge amount of the storage battery cell by increasing the value of the DC voltage or the duty ratio of the pulse voltage as the deterioration of the storage battery cell is smaller.
  • the control unit 35 transmits a selection signal indicating the selected storage battery cell to the selection unit 34, transmits a power supply signal indicating the determined applied voltage to the power supply unit 32, and the storage battery cell selected by the selection unit 34. And the power supplied by the power supply unit 32 is adjusted.
  • FIG. 7 is a flowchart for explaining an example of the operation when the storage battery device 30 is charged from the external power source 36.
  • the monitor unit 33 of the storage battery device 30 continues to acquire the deterioration information of each of the storage battery cells 31-1 to 31-n (step S101).
  • the deterioration information indicates an effective power storage amount and an output voltage.
  • the monitor unit 33 continues to transmit the acquired deterioration information to the control unit 35 (step S102).
  • the control unit 35 receives the deterioration information from the monitor unit 33 (step S103).
  • the control unit 35 sets an upper limit voltage, which is a voltage when the power supply unit 32 finishes charging, for each storage battery cell based on the effective storage amount indicated in the received deterioration information (step S104). For example, the control unit 35 sets the upper limit voltage by increasing the upper limit voltage as the effective storage amount of the storage battery cell is larger.
  • the control unit 35 determines whether there is a storage battery cell whose current output voltage is lower than the upper limit voltage based on the received deterioration information (step S105).
  • control unit 35 transmits a power supply stop signal to the power supply unit 32, stops application of the applied voltage, and sends a selection stop signal to the selection unit 34. Then, the selection of the storage battery cell is terminated (step S114).
  • the control unit 35 determines a threshold value for each storage battery cell based on the value of the held counter (step S106).
  • the control unit 35 increments the value of the counter every time it is determined in step S105 that there is a storage battery cell whose output voltage is lower than the upper limit voltage.
  • the control unit 35 increases and sets the threshold value. Further, when the value of the counter reaches a predetermined value, the control unit 35 sets the threshold value equal to the upper limit voltage.
  • the control unit 35 determines whether or not there is a storage battery cell whose current output voltage is lower than a threshold value (step S107).
  • control unit 35 When there is no storage battery cell whose current output voltage is lower than the threshold value, the control unit 35 returns to the process of step S105.
  • the control unit 35 When there is a storage battery cell whose current output voltage is lower than the threshold value, the control unit 35 stores the storage battery having the largest effective storage amount among the storage battery cells whose current output voltage is lower than the threshold value based on the received deterioration information. The cell is selected as the storage battery cell with the least deterioration. Further, the control unit 35 determines an applied voltage based on the deterioration information (step S108).
  • the control unit 35 transmits a selection signal indicating the selected storage battery cell to the selection unit 34, and transmits a power supply signal indicating the determined applied voltage to the power supply unit 32 (step S109).
  • the selection unit 34 receives the selection signal transmitted in step S109 and selects the storage battery cell indicated in the selection signal (step S110).
  • the power supply unit 32 receives the power supply signal transmitted in step S109, applies the applied voltage indicated by the power supply signal to the storage battery cell selected by the selection unit 34, and charges the storage battery cell (step S111). ).
  • Control part 35 judges whether the present output voltage of the storage battery cell which electric power feeding part 32 is charging is higher than a threshold based on deterioration information (Step S112).
  • control unit 35 When the current output voltage of the storage battery cell charged by the power supply unit 32 is not higher than the threshold value, the control unit 35 returns to the process of step S112.
  • control unit 35 When the current output voltage of the storage battery cell charged by the power supply unit 32 is higher than the threshold value, the control unit 35 returns to the process of step S107 (S113).
  • a battery cell with less deterioration is charged before a battery cell with advanced deterioration until it reaches a threshold value higher than that of the battery cell with advanced deterioration. This process is repeated as the threshold value is increased, and finally, the voltage when charging of the battery cell with little deterioration is finished is higher than the voltage when charging of the battery cell with advanced deterioration is finished. .
  • the effective storage amount is adopted as SOH.
  • the effective power storage amount is a ratio of the current power storage amount of the storage battery at the time of full charge to the power storage amount at the time of full charge in the initial state of the storage battery.
  • the unit of the effective power storage amount is a percentage.
  • the number n of storage battery cells is 2.
  • FIG. 8 shows a comparative storage battery device composed of two storage battery cells connected in series, the storage battery device 30, and the number of cycles that is the number of times charging / discharging has been performed in each storage battery cell. It is a graph which shows the relationship.
  • SOH of the comparative storage battery device is SOH1
  • SOH of the storage battery device 30 is SOH2
  • SOH of the two storage battery cells of the comparative storage battery is SOH3 and SOH4
  • SOH of the storage battery cell 31-1 is SOH5
  • the storage battery cell 31-2 is SOH6.
  • the cycle number at which the SOH becomes 70% is regarded as the life of the comparative storage battery device and the storage battery device 30.
  • SOH1 is 70%, which is the average value of SOH3 and SOH4, so the life of the comparative battery is when the number of cycles is M.
  • SOH5 is 90%, and is larger than 80% of SOH3.
  • SOH6 is 60%, which is equal to SOH4.
  • the storage battery device 30 measures a voltage via a plurality of storage battery cells connected in series and the terminals of each storage battery cell, and a plurality of storage batteries based on the voltage. Power is supplied to the storage battery cell selected by the selection part 34, the selection part 34 which selects the deterioration part information which shows the state of each deterioration of a cell, the selection part 34 which selects at least one of several storage battery cells Then, based on the deterioration information acquired by the power supply unit 32 that charges the storage battery cell and the monitor unit 33, the control unit switches the storage battery cell selected by the selection unit 34 and controls the power supplied by the power supply unit 32. Part 35. For this reason, it becomes possible to improve a lifetime more.
  • the voltage when the power feeding unit 32 charges is a DC voltage
  • the control unit 35 adjusts the value of the DC voltage based on the deterioration information. For this reason, it becomes possible to charge the storage battery cell selected in the selection part 34 with a constant voltage according to the degree of the deterioration.
  • the control unit 35 increases the value of the DC voltage as the deterioration of the storage battery cell selected by the selection unit 34 is smaller based on the deterioration information. For this reason, the voltage when charge of a storage battery cell with little deterioration is complete
  • finished can be made high.
  • the voltage when the power feeding unit 32 charges is a pulse voltage
  • the control unit 35 adjusts the duty ratio of the pulse voltage based on the deterioration information. For this reason, it becomes possible to charge-charge the selected storage battery cell according to the degree of the deterioration.
  • the voltage when the power feeding unit 32 charges is a pulse voltage
  • the control unit 35 adjusts the duty ratio of the pulse voltage based on the deterioration information. For this reason, it is possible to increase the voltage when charging of the storage battery cell with high speed and little deterioration is completed.
  • FIG. 9 is a block diagram showing a configuration of the storage battery device of the present embodiment.
  • the storage battery device 40 shown in FIG. 9 includes a series cell 31, a power feeding unit 42, a monitor unit 33, a selection unit 34, a control unit 45, and a storage unit 47.
  • the storage battery device 40 is connected to an external power source 36.
  • the power feeding unit 42 is connected to the storage unit 47, and the storage unit 47 is connected to the power feeding unit 42 and the selection unit 34, and the storage battery cell selected by the selection unit 34 via the selection unit 34.
  • the connection is different from the configuration of the first embodiment shown in FIG.
  • the power supply unit 42 receives a power supply signal indicating an applied voltage to be applied to the storage unit 47 from the control unit 45, applies the applied voltage indicated by the power supply signal to the storage unit 47, and supplies power to the storage unit 47. To do.
  • the storage unit 47 is supplied with electric power from the power supply unit 42 and exchanges electric power with the storage battery cell selected by the selection unit 34 to temporarily store the electric power.
  • the storage unit 47 is preferably any of a capacitor, a storage battery cell, and a storage battery.
  • the control unit 45 Upon receiving the deterioration information from the monitor unit 33, the control unit 45 selects at least one storage battery cell 31-1 to 31-n that exchanges power with the storage unit 47 based on the deterioration information, and The applied voltage for the power supply unit 42 to apply to the storage unit 47 is determined. The control unit 45 transmits a selection signal indicating the selected storage battery cell to the selection unit 34, and transmits a power supply signal indicating the determined applied voltage to the power supply unit 42.
  • the control unit 45 supplies power from the first storage battery cell to the storage unit 47 among the plurality of storage battery cells, and stores the storage unit in the second storage battery cell that is less deteriorated than the first storage battery cell.
  • the storage battery cell selected by the selector 34 is switched so that power is supplied from 47.
  • the power of the storage battery cell with less deterioration is increased by transferring the power of the storage battery cell with advanced deterioration to the storage battery cell with less deterioration by the storage unit 47 temporarily storing the power.
  • this is different from the first embodiment.
  • FIG. 10 is a flowchart showing an operation when the storage battery device 40 is charged by the external power source 36.
  • the monitor unit 33 continues to acquire the deterioration information of the storage battery cells 31-1 to 31-n.
  • the monitor unit 33 continues to transmit the acquired deterioration information to the control unit 45.
  • the control unit 45 receives the deterioration information from the monitor unit 33 (step S201).
  • the control unit 45 sets an upper limit voltage, which is a voltage when the power feeding unit 42 finishes charging, for each storage battery cell based on the effective storage amount indicated in the received deterioration information (step S202). For example, the control unit 45 sets the upper limit voltage by increasing the upper limit voltage as the effective storage amount of the storage battery cell is larger.
  • the control unit 45 determines whether there is a storage battery cell whose current output voltage is lower than the upper limit voltage based on the received deterioration information (step S203).
  • control unit 45 transmits a power supply stop signal to the power supply unit 42, stops application of the applied voltage, and sends a selection stop signal to the selection unit 34. Then, the selection of the storage battery cell is terminated (step S219).
  • the control unit 45 determines a threshold value for each storage battery cell based on the value of the held counter (step S204).
  • the control unit 45 increments the value of the counter every time it is determined in step S203 that there is a storage battery cell whose output voltage is lower than the upper limit voltage.
  • the control unit 45 increases and sets the threshold value. Further, when the value of the counter reaches a predetermined value, the control unit 45 sets the threshold value equal to the upper limit voltage.
  • the control unit 45 determines whether or not there is a storage battery cell whose current output voltage is lower than a threshold value (step S205).
  • control unit 45 When there is no storage battery cell whose current output voltage is lower than the threshold value, the control unit 45 returns to the process of step S203.
  • control unit 45 selects all the storage battery cells in which the current output voltage is higher than the threshold value based on the deterioration information.
  • a storage battery cell having a smaller amount of effective power storage than the storage battery cell is a storage battery cell having deteriorated, it is determined whether there is a storage battery cell having deteriorated (step S206).
  • the control unit 45 selects the storage battery cell having the smallest effective storage amount among the storage battery cells whose deterioration has progressed. Then, the storage battery cell that has been most deteriorated is selected, and the applied voltage that the power supply unit 42 applies to the storage unit 47 is determined based on the degradation information (step S207).
  • the control unit 45 transmits a selection signal indicating the selected storage battery cell to the selection unit 34, and transmits a power supply signal indicating the determined applied voltage to the power supply unit 42 (step S208).
  • the selection unit 34 receives the selection signal transmitted in step S208 and selects the storage battery cell indicated in the selection signal (step S209).
  • the power supply unit 42 receives the power supply signal transmitted in step S208, applies the applied voltage indicated by the power supply signal to the storage unit 47, and supplies power.
  • the storage unit 47 receives power from the storage battery cell selected by the selection unit 34 via the selection unit 34, and temporarily stores the power (step S210).
  • the voltage applied by the power feeding unit 42 to the storage unit 47 also has a function of controlling the power transfer from the storage battery cell selected by the selection unit 34 to the storage unit 47.
  • the control unit 45 determines whether or not the voltage of the storage battery cell selected by the selection unit 34 is lower than the threshold value of the storage battery cell (step S211).
  • control unit 45 returns to the process of step S211.
  • control unit 45 transmits a power supply stop signal to the power supply unit 42 to stop application of the applied voltage, and to the storage unit 47.
  • the supply of power is terminated (step S212).
  • the control unit 45 selects the storage battery cell having the largest effective storage amount as the storage battery cell having the least deterioration from the storage battery cells whose current voltage is lower than the threshold, and based on the deterioration information, The applied voltage to be applied to the storage unit 47 is determined (step S213).
  • the control unit 45 transmits a selection signal indicating the selected storage battery cell to the selection unit 34, and transmits a power supply signal indicating the determined applied voltage to the power supply unit 42 (step S214).
  • the selection unit 34 receives the selection signal transmitted in step S214, and selects the storage battery cell indicated in the selection signal (step S215).
  • the power supply unit 42 receives the power supply signal transmitted in step S214, applies the applied voltage indicated by the power supply signal to the storage unit 47, and supplies power, and the storage unit 47 temporarily supplies the power. accumulate.
  • the storage unit 47 releases the power that has been primarily stored up to the storage battery cell selected by the selection unit 34 through the selection unit 34 (step S216).
  • the control unit 45 determines whether or not the current voltage of the storage battery cell selected by the selection unit 34 is higher than a threshold value (step S217).
  • the control part 45 returns to the process of step S217, when the present voltage of the storage battery cell selected by the selection part 34 is not higher than a threshold value.
  • control unit 45 transmits a power supply stop signal to the power supply unit 42 and ends supplying power to the storage unit 47. (Step S218).
  • step S218 After the process of step S218 is completed, the control unit 45 returns to the process of step S205.
  • the storage unit 47 temporarily stores the power from the storage battery cell that has deteriorated and the power supply unit 42, and then stores the power from the storage unit 47 into the storage battery cell that has less deterioration.
  • the battery When power is supplied, the battery is charged before the battery cell having deteriorated, and charged until the threshold value is higher than that of the battery cell having deteriorated. This process is repeated as the threshold value increases, and finally, the voltage when charging of the storage battery cell with little deterioration ends is higher than that of the storage battery cell with advanced deterioration.
  • the storage battery device 40 further includes the storage unit 47 that transfers power with the storage battery cell selected by the selection unit 34 and stores the received power.
  • the control unit 45 supplies power from the first storage battery cell to the storage unit 47 among the plurality of storage battery cells, and stores the storage unit in the second storage battery cell that is less deteriorated than the first storage battery cell.
  • the storage battery cell selected by the selector 34 is switched so that power is supplied from 47. For this reason, it becomes possible to improve a lifetime more and can balance the charge condition of each storage battery cell of the serial cell 31.
  • the power feeding unit 42 is connected to the selection unit 34 without going through the storage unit 47, and is connected to the storage battery cell selected by the selection unit 34 through the selection unit 34. In this case, the same effect can be obtained if the same operation is performed.
  • storage battery device 31 series cell 31-1 to 31-n storage battery cell 32 power supply unit 33 monitor unit 34 selection unit 34-1 to 34-n switch 35 control unit 36 external power supply 40 storage battery device 42 power supply unit 45 control unit 47 storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 寿命をより向上させることが可能な蓄電池装置を提供する。 直列に接続された複数の蓄電池セル31-1~31-nを有する蓄電池装置30において、各蓄電池セルの端子を介して電圧を計測し、その電圧に基づいて複数の蓄電池セルのそれぞれの劣化の状態を示す劣化情報を取得するモニタ部33と、複数の蓄電池セルの少なくとも一つを選択する選択部34と、選択部34にて選択された蓄電池セルに電力を供給して、その蓄電池セルを充電する給電部32と、モニタ部33にて取得された劣化情報に基づいて、選択部34が選択する蓄電池セルを切り替えるとともに、給電部32が供給する電力を調節する制御部35と、を備える。

Description

蓄電池装置および充電制御方法
 本発明は、直列に接続された複数の蓄電池セルを備えた蓄電池装置に関する。
 近年、リチウムイオン蓄電池などを備えた蓄電池装置が多くの場面で使用されている。例えば、蓄電池装置は、電気自動車の駆動源として使われたり、家庭、店舗や商業施設などの需要側で電力需要の多い時間帯に電力消費を減らすピークカットに使われたり、需要側で電力需要の少ない時間帯に電力を消費するロードシフトを行うために使われたり、電力会社や重電企業などの系統側で不安定な再生可能エネルギーの出力を安定化するために使われたりする。このような用途で使用される蓄電池装置では、いずれも大容量の蓄電池が必要である。大容量の蓄電池は、複数の蓄電池セルを直列に接続することで実現できる。
 また、蓄電池の有効蓄電量などの特性は、自然放電、経年使用、および充放電サイクルなどによって大きく劣化することが知られている。さらに、蓄電池に含まれる各蓄電池セルの劣化が同じように進むわけではないので、蓄電池の中に、劣化の進んだ蓄電池セルと劣化の少ない蓄電池セルが混在することが多い。この場合、劣化の進んだ蓄電池セルの特性によって、蓄電池全体の特性が決まってしまう。
 これに対して、寿命が低下することを防止することを目的として、各蓄電池セルを均等に使用する蓄電池装置が提案されている(特許文献1および2参照)。
 特許文献1には、直列に接続された複数の蓄電池セルのそれぞれから電圧を出力する電源システムが記載されている。
 図1は、特許文献1に記載の電源システムの回路図である。
 図1において、蓄電池Dは、直列に接続された蓄電池セルB1、B2およびB3を有する。
 機器Aは端子1に接続され、機器Bは端子2に接続され、機器Cは端子3に接続され、帰り線Rは端子4に接続されている。機器A、機器Bおよび機器Cは、蓄電池Dの放電電力により作動する。また、バランス回路10が、端子1、端子2、端子3、および端子4に接続され、蓄電池セルB1、B2、およびB3の間でエネルギーの交換を行うことにより、蓄電池セルB1、B2、およびB3の出力電圧を均一化する。
 なお、図1に示した電源システムからバランス回路10を除いた電源システムでは、通常、蓄電池セルB1、B2、およびB3に流れる電流が不均一となり、各蓄電池セルの出力電圧は不均一となる。
 図2は、図1に示した電源システムからバランス回路10を除いた電源システムにおいて、蓄電池セルB1、B2およびB3が満充電である初期状態から、蓄電池Dの放電を行った場合の蓄電池セルB1、B2およびB3の出力電圧の推移を示した図である。
 図3は、図1に示される電源システムにおいて、蓄電池セルB1、B2およびB3が満充電である初期状態から、蓄電池Dの放電を行った場合の蓄電池セルB1、B2およびB3の出力電圧の推移を示した図である。
 図2に示される蓄電池セルB1、B2およびB3の出力電圧の推移はそれぞれ異なっているが、図3に示される蓄電池セルB1、B2およびB3の出力電圧は同じように推移する。
 また、図2および図3に示される放電可能時間は、蓄電池セルB1、B2およびB3の中で、放電開始からもっとも短い時間で出力電圧が放電禁止電圧になる蓄電池セルB3が、放電開始から放電禁止電圧になるまでの時間を表す。図2に示される放電可能時間は、図3に示される放電可能時間よりも長い。
 また、特許文献2には、直列に接続された複数の蓄電池セルからなる蓄電池が充放電されるときに、各蓄電池セルの出力電圧を均一化する充放電制御回路が開示されている。
 図4は、特許文献2に記載の充放電制御回路を備える装置を示すブロック図である。
 図4に示される装置では、スイッチ13がオンであり、かつ、スイッチ14がオフのときには、充放電制御回路20が、直流電源15を用いて、蓄電池12を充電する。また、スイッチ14がオンであり、かつ、スイッチ13がオフのときには、蓄電池12は放電し、放電された電力は負荷11で消費される。
 図4に示される充放電制御回路20は、全ての蓄電池セルの出力電圧の平均と個々の蓄電池セルの出力電圧を比較する。そして、充放電制御回路20は、その比較の結果に応じて、スイッチ13および14のオンオフを切り替えて、個々の蓄電池セルが放電する電流の一部を、充放電制御回路20の中へ分流させ、各蓄電池セルの出力電圧を均一化する。
 このように各蓄電池セルの出力電圧を均一化することにより、劣化の進んだ蓄電池セルの急速な劣化を防止し、蓄電池12全体としての寿命を延ばすことができる。
特開2009-247145号公報 特開2004-215322号公報
 特許文献1および2に記載の技術では、バランス回路または平均電圧保持回路が用いられることで、各蓄電池セルの出力電圧が均一化されていた。しかしながら、この場合には、劣化の少ない蓄電池セルが劣化の進んだ蓄電池セルと同じように使用されてしまうので、劣化の少ない蓄電池セルを十分に利用することができず、劣化の進んだ蓄電池セルの寿命に応じて、蓄電池装置の寿命が決まってしまう。このため、蓄電池装置の寿命を十分に向上させることはできない。
 本発明の目的は、寿命をより向上させることが可能な蓄電池装置および充電制御方法を提供することである。
 本発明の蓄電池装置は、直列に接続された複数の蓄電池セルと、各蓄電池セルの端子を介して電圧を計測し、当該電圧に基づいて前記複数の蓄電池セルのそれぞれの劣化の状態を示す劣化情報を取得するモニタ部と、前記複数の蓄電池セルの少なくとも一つを選択する選択部と、前記選択部にて選択された蓄電池セルに電力を供給して、該蓄電池セルを充電する給電部と、前記モニタ部にて取得された劣化情報に基づいて、前記選択部が選択する蓄電池セルを切り替えるとともに、前記給電部が供給する電力を調節する制御部と、を有する。
 本発明の充電制御方法は、直列に接続された複数の蓄電池セルを有する蓄電池装置で行われる充電制御方法であって、各蓄電池セルの端子を介して電圧を計測し、当該電圧に基づいて前記複数の蓄電池セルのそれぞれの劣化の状態を示す劣化情報を取得し、前記複数の蓄電池セルの少なくとも一つを選択し、前記選択ステップにて選択された蓄電池セルに電力を供給して、該蓄電池セルを充電し、前記取得された劣化情報に基づいて、前記選択される蓄電池セルを切り替えるとともに、前記給電ステップが供給する電力を調節する。
 本発明によれば、寿命をより向上させることが可能になる。
特許文献1に記載の電源システムを示す回路図である。 図1に示される電源システムから、バランス回路を取り除いた電源システムにおいて、蓄電池の放電を行った場合の出力電圧の推移を示す図である。 図1に示される電源システムにおいて、蓄電池の放電を行った場合の出力電圧の推移を示す図である。 特許文献2に記載の充放電制御回路を備える装置を示すブロック図である。 本発明の第1の実施形態の蓄電池装置の構成を示すブロック図である。 選択部として(n+1)端子対回路を用いた蓄電池装置の構成を示すブロック図である。 本発明の第1の実施形態の蓄電池装置の動作の一例を説明するためのフローチャートである。 本発明の第1の実施形態におけるサイクル数と比較用蓄電池および蓄電池装置のSOHの関係を示す図である。 本発明の第2の実施形態の蓄電池装置の構成を示すブロック図である。 本発明の第2の実施形態の蓄電池装置の動作の一例を説明するためのフローチャートである。
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明では、同じ機能を有するものには同じ符号を付け、その説明を省略する場合がある。
 (第1の実施の形態)
 図5は、本実施形態の蓄電池装置の構成を示すブロック図である。
 図5に示される蓄電池装置30は、直列セル31と、給電部32と、モニタ部33と、選択部34と、制御部35とを有する。また、蓄電池装置30は、外部電源36と接続可能である。図5では、外部電源36と接続された蓄電池装置30が示されている。
 直列セル31は、直列に接続された複数の蓄電池セル31-1~31-nで構成され、蓄電池セル31-2~31-nのそれぞれの正端子から引き出された中間タップ端子を有する。nは、2以上の整数とする。直列セル31は、蓄電池セル31―1の正端子および蓄電池セル31―nの負端子を、それぞれ直列セル31の正端子および負端子として有する。
 蓄電池セル31-1~31-nはリチウムイオン蓄電池セルであることが好ましい。
 外部電源36は、直列セル31の正端子および負端子に接続され、蓄電池装置30に電力を供給する。
 蓄電池装置30において、外部電源36は直列セル31を充電する。このとき、蓄電池セル31-1~31-nに劣化が全くない場合は、各蓄電池セルの充電状態は均一となる。
 選択部34は、直列セル31の正端子、負端子および中間タップ端子のそれぞれと接続されている。また、選択部34は、給電部32と接続されている。
 選択部34は、蓄電池セル31-1~31-nの少なくとも1つを選択する選択信号を制御部35から受信し、その選択信号に応じて、蓄電池セル31-n~31-nの少なくとも1つを選択する。
 図6は、選択部34の一例として(n+1)端子対回路を用いた蓄電池装置30の構成を示すブロック図である。図6において、選択部34である(n+1)端子対回路は、直列セル31の正端子、負端子および中間タップ端子のそれぞれと給電部32とを接続する配線上に設けられた(n+1)個のスイッチ34-1~34-(n+1)を有する。この場合、選択部34は、選択した蓄電部セルに給電部32から電圧が印加されるように、スイッチ34-1~34-(n+1)のオンオフを切り替える。
 給電部32は、制御部35から、選択部34にて選択された蓄電池セルに印加する印加電圧を示す給電信号を受信して、その給電信号が示す印加電圧を、選択部34にて選択された蓄電池セルに印加して、その蓄電池セルを充電する。
 モニタ部33は、直列セル31の各端子に接続される。モニタ部33は、蓄電池セル31-1~31-nのそれぞれの劣化の状態を表す劣化情報を、各端子を介して取得し、劣化情報を制御部35へ送信する。
 蓄電池セルの劣化の状態は、SOH(State of Health)と呼ばれるパラメータで示される。SOHとしては、例えば、出力電圧(具体的には、蓄電池セルの端子間の電圧)、内部インピーダンス、電池残量、充電率、有効蓄電量のいずれか、またはその組み合わせ、などが採用される。
 制御部35は、モニタ部33から劣化情報を受信すると、劣化情報に基づいて、蓄電池セル31-1~31-nの少なくとも1つの蓄電池セルを選定し、かつ、蓄電池セルへ印加するための印加電圧を決定する。
 印加電圧は、直流電圧でもよいし、パルス電圧でもよい。印加電圧が直流電圧の場合、制御部35は、劣化情報に基づいて、その直流電圧の値を調整する。また、印加電圧がパルス状の電圧の場合、制御部35は、劣化情報に基づいて、そのパルス状の電圧のデューティ比を調整する。
 このとき、制御部35は、蓄電池セルの劣化が少ないほど、直流電圧の値またはパルス電圧のデューティ比を高くすることで、蓄電池セルの充電量を高くする。
 制御部35は、選定された蓄電池セルを示す選択信号を、選択部34へ送信し、決定された印加電圧を示す給電信号を、給電部32へ送信して、選択部34が選択する蓄電池セルを切り替えるとともに、給電部32が供給する電力を調節する。
 以下、蓄電池装置30の動作について説明する。
 図7は、蓄電池装置30が外部電源36から充電されるときの動作の一例を説明するためのフローチャートである。
 外部電源36が蓄電池装置30に接続されると、蓄電池装置30のモニタ部33は、蓄電池セル31-1~31-nのそれぞれの劣化情報を取得し続ける(ステップS101)。なお、ここでは、劣化情報は、有効蓄電量および出力電圧を示すものとする。
 モニタ部33は、取得した劣化情報を制御部35送信し続ける(ステップS102)。
 制御部35は、モニタ部33から劣化情報を受信する(ステップS103)。
 制御部35は、受信した劣化情報に示される有効蓄電量に基づいて、各蓄電池セルに対して、給電部32が充電を終了するときの電圧である上限電圧を設定する(ステップS104)。例えば、制御部35は、蓄電池セルの有効蓄電量が多いほど、上限電圧を高くするなどして、上限電圧を設定する。
 制御部35は、受信した劣化情報に基づいて、現在の出力電圧が上限電圧よりも低い蓄電池セルがあるか否かを判断する(ステップS105)。
 現在の出力電圧が上限電圧よりも低い蓄電池セルがない場合、制御部35は、給電部32に給電停止信号を送信し、印加電圧の印加を停止させ、かつ、選択部34に選択停止信号を送信し、蓄電池セルの選択を終了させる(ステップS114)。
 現在の出力電圧が上限電圧よりも低い蓄電池セルがある場合、制御部35は、保持しているカウンタの値に基づいて、各蓄電池セルに対して閾値を定める(ステップS106)。なお、制御部35は、ステップS105にて、出力電圧が上限電圧よりも低い蓄電池セルがあると判断するたびに、カウンタの値をインクリメントする。制御部35は、カウンタの値をインクリメントすると、閾値を増加させて設定する。また制御部35は、カウンタの値が予め定められた値になると、閾値を上限電圧と等しい値に設定する。
 制御部35は、現在の出力電圧が閾値よりも低い蓄電池セルがあるか否かを判断する(ステップS107)。
 現在の出力電圧が閾値よりも低い蓄電池セルがない場合、制御部35は、ステップS105の処理へ戻る。
 現在の出力電圧が閾値よりも低い蓄電池セルがある場合、制御部35は、受信した劣化情報に基づいて、現在の出力電圧が閾値よりも低い蓄電池セルの中で、有効蓄電量が最も多い蓄電池セルを、劣化が最も少ない蓄電池セルとして選定する。さらに、制御部35は、劣化情報に基づいて、印加電圧を決定する(ステップS108)。
 制御部35は、選定した蓄電池セルを示す選択信号を選択部34へ送信し、かつ、決定された印加電圧を示す給電信号を給電部32へ送信する(ステップS109)。
 選択部34は、ステップS109で送信された選択信号を受信して、選択信号に示される蓄電池セルを選択する(ステップS110)。
 給電部32は、ステップS109で送信された給電信号を受信して、給電信号に示される印加電圧を、選択部34にて選択された蓄電池セルに印加して、蓄電池セルを充電する(ステップS111)。
 制御部35は、劣化情報に基づいて、給電部32が充電している蓄電池セルの現在の出力電圧が閾値よりも高いか否かを判断する(ステップS112)。
 給電部32が充電している蓄電池セルの現在の出力電圧が閾値よりも高くない場合、制御部35は、ステップS112の処理に戻る。
 給電部32が充電している蓄電池セルの現在の出力電圧が閾値よりも高い場合、制御部35は、ステップS107の処理へ戻る(S113)。
 上記の動作では、劣化の進んだ蓄電池セルよりも、劣化の少ない蓄電池セルが先に充電され、劣化の進んだ蓄電池セルよりも高い閾値になるまで充電される。この処理が、閾値の増加とともに繰り返され、最終的に、劣化の少ない蓄電池セルの充電が終了するときの電圧が、劣化の進んだ蓄電池セルの充電が終了するときの電圧よりも高いものとなる。
 以下、本発明の第1の実施形態における蓄電池装置30のSOHの変化について説明する。
 ここでは、SOHとして、有効蓄電量を採用する。有効蓄電量とは、蓄電池の現在の満充電時の蓄電量の、蓄電池の初期状態での満充電時の蓄電量に対する割合である。以下では、有効蓄電量の単位はパーセントとする。また、蓄電池セルの数nは2とする。
 図8は、直列に接続された二つの蓄電池セルから構成される比較用蓄電池装置、蓄電池装置30、および、各蓄電池セルのそれぞれにおける、SOHと、充放電が行われた回数であるサイクル数との関係を示すグラフである。
 以下、比較用蓄電池装置のSOHをSOH1、蓄電池装置30のSOHをSOH2、比較用蓄電池の二つの蓄電池セルのSOHをそれぞれSOH3およびSOH4、蓄電池セル31-1のSOHをSOH5、蓄電池セル31-2のSOHをSOH6とする。
 また、SOHが70%となったサイクル数が、比較用蓄電池装置および蓄電池装置30の寿命とされている。
 各蓄電池セルが初期状態にあるとき、SOH3、SOH4、SOH5およびSOH6は全て100%である。したがって、初期状態におけるSOH1およびSOH2も100%である。
 比較用蓄電池の場合は、サイクル数Mが経過したとき、各蓄電池セルが、それぞれ経年や充放電によって劣化して、SOH3が80%になり、SOH4が60%になったとする。
 このとき、SOH1は、SOH3とSOH4の平均値である70%になるので、比較用電池の寿命は、サイクル数がMになったときとなる。
 一方、蓄電池装置30の場合、サイクル数Mより小さいあるサイクル数Nになったときに、図7のステップS104により、その上限電圧が高くなるように予め設定されていたため、SOH5が増加する。
 このとき、サイクル数がMになったときに、SOH5は90%となり、SOH3の80%よりも大きくなったとする。一方、SOH6は60%で、SOH4と等しくなったとする。
 この場合、サイクル数Mが経過したとき、SOH2は75%となり、SOH1の場合の70%よりも大きく、蓄電池装置30は寿命に達していない。このように、蓄電池装置30の寿命を比較用蓄電池装置の寿命よりも長くすることが可能になる。
 以上説明したように、本実施形態によれば、蓄電池装置30は、直列に接続された複数の蓄電池セルと、各蓄電池セルの端子を介して電圧を計測し、その電圧に基づいて複数の蓄電池セルのそれぞれの劣化の状態を示す劣化情報を取得するモニタ部33と、複数の蓄電池セルの少なくとも一つを選択する選択部34と、選択部34にて選択された蓄電池セルに電力を供給して、その蓄電池セルを充電する給電部32と、モニタ部33にて取得された劣化情報に基づいて、選択部34が選択する蓄電池セルを切り替えるとともに、給電部32が供給する電力を調節する制御部35と、を有している。このため、寿命をより向上させることが可能になる。
 また、本実施形態では、蓄電池装置30において、給電部32が充電するときの電圧は、直流電圧であり、制御部35は、劣化情報に基づいて、直流電圧の値を調整する。このため、選択部34にて選択される蓄電池セルを、その劣化の度合いに応じて、定電圧で充電を行うことが可能になる。
 また、本実施形態では、蓄電池装置30において、制御部35は、劣化情報に基づいて、選択部34にて選択された蓄電池セルの劣化が少ないほど、直流電圧の値を高くする。
このため、劣化の少ない蓄電池セルの充電が終了するときの電圧を高くすることができる。
 また、本実施形態では、蓄電池装置30において、給電部32が充電するときの電圧は、パルス電圧であり、制御部35は、劣化情報に基づいて、パルス電圧のデューティ比を調整する。このため、選択される蓄電池セルを、その劣化の度合いに応じて、パルス充電を行うことが可能になる。
 また、本実施形態では、蓄電池装置30において、給電部32が充電するときの電圧は、パルス電圧であり、制御部35は、劣化情報に基づいて、パルス電圧のデューティ比を調整する。このため、高速で、劣化の少ない蓄電池セルの充電が終了するときの電圧を高くすることができる。
 (第2の実施の形態)
 図9は、本実施形態の蓄電池装置の構成を示すブロック図である。
 図9に示される蓄電池装置40は、直列セル31と、給電部42と、モニタ部33と、選択部34と、制御部45と、蓄積部47と、から構成される。また、蓄電池装置40は、外部電源36と接続されている。
 給電部42は、蓄積部47に接続されていて、蓄積部47は、給電部42および選択部34に接続されていて、選択部34を介して、選択部34にて選択された蓄電池セルと接続される点が、図5に示される第1の実施形態の構成と異なる。
 給電部42は、制御部45から、蓄積部47へ印加する印加電圧を示す給電信号を受信して、その給電信号が示す印加電圧を、蓄積部47へ印加し、蓄積部47へ電力を供給する。
 蓄積部47は、給電部42から電力を供給され、かつ、選択部34にて選択された蓄電池セルと電力の授受を行い、電力を一次的に蓄積する。蓄積部47は、キャパシタ、蓄電池セル、蓄電池のいずれかであることが好ましい。
 制御部45は、モニタ部33から劣化情報を受信すると、劣化情報に基づいて、蓄積部47と電力の授受を行う蓄電池セル31-1~31-nの少なくとも1つの蓄電池セルを選定し、かつ、給電部42が蓄積部47へ印加するための印加電圧を決定する。制御部45は、選定した蓄電池セルを示す選択信号を選択部34へ送信し、かつ、決定された印加電圧を示す給電信号を給電部42へ送信する。
 制御部45は、劣化情報に基づいて、複数の蓄電池セルのうち、第1の蓄電池セルから蓄積部47に電力が供給され、第1の蓄電池セルより劣化の少ない第2の蓄電池セルに蓄積部47から電力が供給されるように、選択部34にて選択される蓄電池セルを切り替える。
 本実施形態においては、蓄積部47が電力を一次的に蓄積することにより、劣化の進んだ蓄電池セルの電力を、劣化の少ない蓄電池セルへ移すことにより、劣化の少ない蓄電池セルの電力を高める点が、第1の実施形態と異なる。
 以下、図9に示される蓄電池装置40の動作について説明する。
 図10は、蓄電池装置40が外部電源36により充電されるときの動作を示すフローチャートである。
 モニタ部33は、蓄電池セル31-1~31-nの劣化情報を取得し続ける。モニタ部33は、取得した劣化情報を制御部45へ送信し続ける。制御部45は、モニタ部33から劣化情報を受信する(ステップS201)。
 制御部45は、受信した劣化情報に示される有効蓄電量に基づいて、各蓄電池セルに対して、給電部42が充電を終了するときの電圧である上限電圧を設定する(ステップS202)。例えば、制御部45は、蓄電池セルの有効蓄電量が多いほど、上限電圧を高くするなどして、上限電圧を設定する。
 制御部45は、受信した劣化情報に基づいて、現在の出力電圧が上限電圧よりも低い蓄電池セルがあるか否かを判断する(ステップS203)。
 現在の出力電圧が上限電圧よりも低い蓄電池セルがない場合、制御部45は、給電部42に給電停止信号を送信し、印加電圧の印加を停止させ、かつ、選択部34に選択停止信号を送信し、蓄電池セルの選択を終了させる(ステップS219)。
 現在の出力電圧が上限電圧よりも低い蓄電池セルがある場合、制御部45は、保持しているカウンタの値に基づいて、各蓄電池セルに対して閾値を定める(ステップS204)。なお、制御部45は、ステップS203にて、出力電圧が上限電圧よりも低い蓄電池セルがあると判断するたびに、カウンタの値をインクリメントする。制御部45は、カウンタの値をインクリメントすると、閾値を増加させて設定する。また制御部45は、カウンタの値が予め定められた値になると、閾値を上限電圧と等しい値に設定する。
 制御部45は、現在の出力電圧が閾値よりも低い蓄電池セルがあるか否かを判断する(ステップS205)。
 現在の出力電圧が閾値よりも低い蓄電池セルがない場合、制御部45は、ステップS203の処理へ戻る。
 現在の出力電圧が閾値より低い蓄電池セルがある場合、制御部45は、劣化情報に基づいて、現在の出力電圧が閾値より高い蓄電池セルの中で、現在の出力電圧が閾値よりも低い全ての蓄電池セルよりも有効蓄電量が少ない蓄電池セルを、劣化が進んだ蓄電池セルとしたとき、劣化が進んだ蓄電池セルがあるか否かを判断する(ステップS206)。
 現在の出力電圧が閾値より高い蓄電池セルの中で、劣化が進んだ蓄電池セルがない場合には、ステップS213へ進む。
 現在の出力電圧が閾値より高い蓄電池セルの中で、劣化が進んだ蓄電池セルがある場合には、制御部45は、劣化が進んだ蓄電池セルの中で、有効蓄電量が最も小さい蓄電池セルを、その中で劣化が最も進んだ蓄電池セルとして選定し、かつ、劣化情報に基づいて、給電部42が蓄積部47に印加する印加電圧を決定する(ステップS207)。
 制御部45は、選定した蓄電池セルを示す選択信号を選択部34へ送信し、かつ、決定された印加電圧を示す給電信号を給電部42へ送信する(ステップS208)。
 選択部34は、ステップS208で送信された選択信号を受信して、選択信号に示される蓄電池セルを選択する(ステップS209)。
 給電部42は、ステップS208で送信された給電信号を受信して、給電信号に示される印加電圧を、蓄積部47へ印加し、電力を供給する。蓄積部47は、選択部34を介して、選択部34にて選択された蓄電池セルから電力を受け取り、電力を一次的に蓄積する(ステップS210)。ステップS210にて、給電部42が蓄積部47へ印加する電圧は、選択部34にて選択された蓄電池セルから蓄積部47への電力の移行を制御する働きをも有する。
 制御部45は、選択部34にて選択された蓄電池セルの電圧がその蓄電池セルの閾値より低いか否かを判断する(ステップS211)。
 選択部34にて選択された蓄電池セルの現在の電圧が閾値より低くない場合には、制御部45は、ステップS211の処理に戻る。
 選択部34にて選択された蓄電池セルの現在の電圧が閾値より低い場合には、制御部45は、給電部42に給電停止信号を送信し、印加電圧の印加を停止させ、蓄積部47へ電力を供給することを終了させる(ステップS212)。
 制御部45は、劣化情報に基づいて、現在の電圧が閾値より低い蓄電池セルの中から、有効蓄電量が最も大きい蓄電池セルを、劣化が最も少ない蓄電池セルとして選定し、劣化情報に基づいて、蓄積部47に印加する印加電圧を決定する(ステップS213)。
 制御部45は、選定された蓄電池セルを示す選択信号を選択部34へ送信し、かつ、決定された印加電圧を示す給電信号を給電部42へ送信する(ステップS214)。
 選択部34は、ステップS214で送信された選択信号を受信し、選択信号に示される蓄電池セルを選択する(ステップS215)。
 給電部42は、ステップS214で送信された給電信号を受信して、給電信号に示される印加電圧を、蓄積部47に印加して、電力を供給し、蓄積部47はその電力を一次的に蓄積する。蓄積部47は、選択部34を介して、選択部34にて選択された蓄電池セルへそれまで一次的に蓄積された電力を放出する(ステップS216)。
 制御部45は、選択部34にて選択された蓄電池セルの現在の電圧が閾値より高いか否かを判断する(ステップS217)。
 制御部45は、選択部34にて選択された蓄電池セルの現在の電圧が閾値より高くない場合には、ステップS217の処理に戻る。
 選択部34にて選択された蓄電池セルの現在の電圧が閾値より高い場合には、制御部45が、給電部42に給電停止信号を送信して、蓄積部47へ電力を供給することを終了させる(ステップS218)。
 ステップS218の処理が終了したあとは、制御部45は、ステップS205の処理に戻る。
 図10に示されるフローチャートにおいては、蓄積部47が、劣化の進んだ蓄電池セルおよび給電部42からの電力を一次的に蓄積して、その後に、劣化の少ない蓄電池セルに、蓄積部47からの電力が供給されることによって、劣化の進んだ蓄電池セルよりも先に充電され、劣化の進んだ蓄電池セルよりも高い閾値になるまで充電される。この処理が、閾値の増加とともに繰り返され、最終的に、劣化の少ない蓄電池セルの充電が終了するときの電圧が、劣化の進んだ蓄電池セルよりも高いものとなる。
 以上説明したように本実施形態によれば、蓄電池装置40は、選択部34にて選択された蓄電池セルと電力の授受を行い、その授受される電力を蓄積する蓄積部47をさらに有し、制御部45は、劣化情報に基づいて、複数の蓄電池セルのうち、第1の蓄電池セルから蓄積部47に電力が供給され、第1の蓄電池セルより劣化の少ない第2の蓄電池セルに蓄積部47から電力が供給されるように、選択部34にて選択される蓄電池セルを切り替える。このため、寿命をより向上させることが可能になり、直列セル31の各蓄電池セルの充電状態のバランスをとることができる。
 また、本実施形態においては、給電部42が蓄積部47を介さずに選択部34へ接続され、選択部34を介して、選択部34にて選択された蓄電池セルと接続される構成とした場合にも、同様の動作が行われれば、同様の効果が得られる。
 以上、これまで述べてきた各実施形態は、本発明の好適な実施形態であり、上記実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
 本出願は、2011年12月22日に出願された日本出願特願2011-281591を基礎とする優先権を主張し、その開示の全てをここに取り込む。
30 蓄電池装置
31 直列セル
31-1から31-n 蓄電池セル
32 給電部
33 モニタ部
34 選択部
34-1から34-n スイッチ
35 制御部
36 外部電源
40 蓄電池装置
42 給電部
45 制御部
47 蓄積部

Claims (9)

  1.  直列に接続された複数の蓄電池セルと、
     各蓄電池セルの端子を介して電圧を計測し、当該電圧に基づいて前記複数の蓄電池セルのそれぞれの劣化の状態を示す劣化情報を取得するモニタ部と、
     前記複数の蓄電池セルの少なくとも一つを選択する選択部と、
     前記選択部にて選択された蓄電池セルに電力を供給して、該蓄電池セルを充電する給電部と、
     前記モニタ部にて取得された劣化情報に基づいて、前記選択部が選択する蓄電池セルを切り替えるとともに、前記給電部が供給する電力を調節する制御部と、を有する蓄電池装置。
  2.  請求項1に記載の蓄電池装置において、
     前記給電部が充電するときの電圧は、直流電圧であり、
     前記制御部は、前記劣化情報に基づいて、前記直流電圧の値を調整する、蓄電池装置。
  3.  請求項2に記載の蓄電池装置において、
     前記制御部は、前記劣化情報に基づいて、前記選択部にて選択された蓄電池セルの劣化が少ないほど、前記直流電圧の値を高くする、蓄電池装置。
  4.  請求項1に記載の蓄電池装置において、
     前記給電部が充電するときの電圧は、パルス電圧であり、
     前記制御部は、前記劣化情報に基づいて、前記パルス電圧のデューティ比を調整する、蓄電池装置。
  5.  請求項4に記載の蓄電池装置において、
     前記制御部は、前記劣化情報に基づいて、前記選択部にて選択された蓄電池セルの劣化が少ないほど、前記パルス電圧のデューティ比を高くする、蓄電池装置。
  6.  請求項1ないし5のいずれか1項に記載の蓄電池装置において、
     前記選択部にて選択された蓄電池セルと電力の授受を行い、当該授受される電力を蓄積する蓄積部をさらに有し、
     前記制御部は、前記劣化情報に基づいて、前記複数の蓄電池セルのうち、第1の蓄電池セルから前記蓄積部に電力が供給され、前記第1の蓄電池セルより劣化の少ない第2の蓄電池セルに前記蓄積部から電力が供給されるように、前記選択部にて選択される蓄電池セルを切り替える、蓄電池装置。
  7.  請求項6に記載の蓄電池装置において、
     前記蓄積部は、キャパシタ、蓄電池セル、蓄電池のいずれかを有する蓄電池装置。
  8.  請求項1ないし7のいずれか1項に記載の蓄電池装置において、
     前記蓄電池セルは、リチウムイオン蓄電池セルである蓄電池装置。
  9.  直列に接続された複数の蓄電池セルを有する蓄電池装置で行われる充電制御方法であって、
     各蓄電池セルの端子を介して電圧を計測し、当該電圧に基づいて前記複数の蓄電池セルのそれぞれの劣化の状態を示す劣化情報を取得し、
     前記複数の蓄電池セルの少なくとも一つを選択し、
     前記選択ステップにて選択された蓄電池セルに電力を供給して、該蓄電池セルを充電し、
     前記取得された劣化情報に基づいて、前記選択される蓄電池セルを切り替えるとともに、前記給電ステップが供給する電力を調節する、充電制御方法。
PCT/JP2012/079333 2011-12-22 2012-11-13 蓄電池装置および充電制御方法 WO2013094344A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013550182A JP6102746B2 (ja) 2011-12-22 2012-11-13 蓄電池装置および充電制御方法
US14/366,698 US9472976B2 (en) 2011-12-22 2012-11-13 Storage battery device and charging control method
EP12859273.0A EP2797203B1 (en) 2011-12-22 2012-11-13 Storage battery device and charging control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-281591 2011-12-22
JP2011281591 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094344A1 true WO2013094344A1 (ja) 2013-06-27

Family

ID=48668243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079333 WO2013094344A1 (ja) 2011-12-22 2012-11-13 蓄電池装置および充電制御方法

Country Status (4)

Country Link
US (1) US9472976B2 (ja)
EP (1) EP2797203B1 (ja)
JP (1) JP6102746B2 (ja)
WO (1) WO2013094344A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182086A1 (ja) * 2022-03-23 2023-09-28 パナソニックIpマネジメント株式会社 蓄電システム、充電制御方法、及びプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140099741A (ko) * 2013-02-04 2014-08-13 삼성전자주식회사 충전장치 및 충전방법
WO2014141834A1 (ja) * 2013-03-13 2014-09-18 Necエナジーデバイス株式会社 電池パック、電気機器およびその制御方法
JP2015104165A (ja) * 2013-11-21 2015-06-04 ソニー株式会社 蓄電部材監視装置、蓄電装置および蓄電部材監視方法
KR20150128160A (ko) * 2014-05-08 2015-11-18 삼성에스디아이 주식회사 배터리 관리 장치
JP5864821B1 (ja) * 2014-07-24 2016-02-17 三菱電機株式会社 需給制御装置、充放電制御装置、蓄電装置、需給制御システムおよび需給制御方法
WO2019186659A1 (ja) * 2018-03-26 2019-10-03 株式会社東芝 蓄電制御装置、蓄電システム及び制御方法
EP3788256B1 (en) 2018-04-30 2022-12-07 Vestas Wind Systems A/S A rotor for a wind turbine with a pitch bearing unit
WO2020250342A1 (ja) * 2019-06-12 2020-12-17 三菱電機株式会社 充放電制御装置および充放電制御方法
TW202137620A (zh) * 2020-03-25 2021-10-01 飛宏科技股份有限公司 雙埠電池充電系統及其充電方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215322A (ja) 2002-12-26 2004-07-29 Ntt Data Corp バッテリの放電制御回路、充電制御回路および充放電制御回路
JP2005224024A (ja) * 2004-02-05 2005-08-18 Makita Corp 組電池及び電池パック
JP2007053828A (ja) * 2005-08-16 2007-03-01 Sharp Corp 二次電池充電装置及びそれを備えた電気機器
JP2009247145A (ja) 2008-03-31 2009-10-22 Japan Aerospace Exploration Agency 電源システム
JP2010097760A (ja) * 2008-10-15 2010-04-30 Mitsubishi Heavy Ind Ltd 蓄電システム
JP2010124634A (ja) * 2008-11-20 2010-06-03 Sumitomo Heavy Ind Ltd 充放電制御装置
JP2011155774A (ja) * 2010-01-27 2011-08-11 Toyota Motor Corp 蓄電素子の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253725A (ja) 1997-03-13 1998-09-25 Omron Corp バッテリー状態計測方法及び装置
JP2001268815A (ja) 2000-03-17 2001-09-28 Nippon Telegr & Teleph Corp <Ntt> 充電回路
JP3611104B2 (ja) * 2000-08-09 2005-01-19 松下電器産業株式会社 二次電池の充電制御方法
JP5091473B2 (ja) * 2006-12-14 2012-12-05 パナソニック株式会社 組電池制御方法、組電池制御回路、及びこれを備えた充電回路、電池パック
JP5035978B2 (ja) 2007-08-24 2012-09-26 株式会社日本自動車部品総合研究所 車両用dcdcコンバータ装置
JP5182576B2 (ja) 2008-09-29 2013-04-17 マツダ株式会社 車両用電源制御装置
TWI373258B (en) * 2009-05-20 2012-09-21 Wistron Corp Crt test system
KR20150108825A (ko) * 2013-01-21 2015-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 2차 전지, 2차 전지 모듈, 2차 전지 및 2차 전지 모듈의 충전 방법, 2차 전지 및 2차 전지 모듈의 방전 방법, 2차 전지 및 2차 전지 모듈의 구동 방법, 축전 시스템, 및 축전 시스템의 구동 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215322A (ja) 2002-12-26 2004-07-29 Ntt Data Corp バッテリの放電制御回路、充電制御回路および充放電制御回路
JP2005224024A (ja) * 2004-02-05 2005-08-18 Makita Corp 組電池及び電池パック
JP2007053828A (ja) * 2005-08-16 2007-03-01 Sharp Corp 二次電池充電装置及びそれを備えた電気機器
JP2009247145A (ja) 2008-03-31 2009-10-22 Japan Aerospace Exploration Agency 電源システム
JP2010097760A (ja) * 2008-10-15 2010-04-30 Mitsubishi Heavy Ind Ltd 蓄電システム
JP2010124634A (ja) * 2008-11-20 2010-06-03 Sumitomo Heavy Ind Ltd 充放電制御装置
JP2011155774A (ja) * 2010-01-27 2011-08-11 Toyota Motor Corp 蓄電素子の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797203A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182086A1 (ja) * 2022-03-23 2023-09-28 パナソニックIpマネジメント株式会社 蓄電システム、充電制御方法、及びプログラム

Also Published As

Publication number Publication date
EP2797203A4 (en) 2015-08-19
EP2797203B1 (en) 2019-08-07
JP6102746B2 (ja) 2017-03-29
US9472976B2 (en) 2016-10-18
EP2797203A1 (en) 2014-10-29
US20150130404A1 (en) 2015-05-14
JPWO2013094344A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6102746B2 (ja) 蓄電池装置および充電制御方法
JP5764260B2 (ja) 電池システムおよび中間電圧を供給するための方法
JP5975169B2 (ja) 充放電装置、充放電制御方法、及びプログラム
US20130187465A1 (en) Power management system
KR102010021B1 (ko) 배터리 팩 관리 장치 및 방법
KR20170022416A (ko) 배터리 시스템
KR20000057966A (ko) 충전용 배터리 관리기 및 그 관리기에 의한 충전용 배터리관리 방법
JP2013078242A (ja) 電源装置
JP2009247145A (ja) 電源システム
KR20130098611A (ko) 전지충전장치 및 그 방법
JP2015008630A (ja) 充電器、および電気システム
CN105210256A (zh) 电源装置
KR101567557B1 (ko) 이차 전지 셀의 전압 벨런싱 장치 및 방법
JP2010160955A (ja) 組電池の充電方法
JP2013116006A (ja) 電池均等化装置および方法
US11316352B2 (en) Battery management
JP5314626B2 (ja) 電源システム、放電制御方法および放電制御プログラム
JP2023501115A (ja) 再充電可能なエネルギー貯蔵装置を充電及び/又は放電するための方法
KR101733742B1 (ko) 2차 전지 충방전 시스템 및 그 구동 방법
US9035614B2 (en) Assembled battery charging method, charging control circuit, and power supply system
US11342776B2 (en) Battery charger and method for charging a battery
JP2021083299A (ja) 電池制御ユニットおよび電池システム
JP2010178500A (ja) 放電器、放電方法および直流電源システム
CN111585334A (zh) 一种光伏供电系统
KR20130021555A (ko) 다수의 배터리병렬연결방법 및 장치.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550182

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012859273

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14366698

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE