WO2014071960A1 - Elektromotor mit verbesserter induktivität und verfahren zum wickeln und verschalten von spulen - Google Patents

Elektromotor mit verbesserter induktivität und verfahren zum wickeln und verschalten von spulen Download PDF

Info

Publication number
WO2014071960A1
WO2014071960A1 PCT/EP2012/004648 EP2012004648W WO2014071960A1 WO 2014071960 A1 WO2014071960 A1 WO 2014071960A1 EP 2012004648 W EP2012004648 W EP 2012004648W WO 2014071960 A1 WO2014071960 A1 WO 2014071960A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
coils
electric motor
pole
motor according
Prior art date
Application number
PCT/EP2012/004648
Other languages
English (en)
French (fr)
Inventor
Sergey ZATSARININ
Original Assignee
Elegant Ideas Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elegant Ideas Foundation filed Critical Elegant Ideas Foundation
Priority to US14/441,222 priority Critical patent/US20150288229A1/en
Priority to CN201280076958.8A priority patent/CN104937824A/zh
Priority to PCT/EP2012/004648 priority patent/WO2014071960A1/de
Priority to JP2015540049A priority patent/JP2015534451A/ja
Publication of WO2014071960A1 publication Critical patent/WO2014071960A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/02Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type
    • H02K37/04Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated within the stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/02Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type
    • H02K37/06Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated around the stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • the invention relates to an electric motor, in particular a reluctance motor having an armature, comprising a magnetizable material, wherein the armature has a plurality of pole shoes and an actuator which is movably disposed and mounted against the armature, which includes a magnetizable material and the at least two having magnetizable pole ends.
  • the invention also relates to a method for producing an electric motor, in particular a reluctance motor and the use of an electric motor, in particular a reluctance motor
  • the invention belongs to the field of electrical engineering and in particular relates to reluctance motors with high torque.
  • reluctance motors a type of non-contact reluctance electric machines (reluctance motors) and can operate in a wide speed range of the machine shaft (from several revolutions per minute to several hundred thousand revolutions per minute) and in automatic systems, in autonomous systems of electrical equipment, in room technology, in air and road traffic, can be used as controlled and uncontrolled vehicle engines.
  • the technical result achieved by the application of this invention is to obtain a reliable and technologically high-quality construction of the non-contact reluctance motor with high energy values and operating characteristics at the wide speed range of the machine shaft and high specific power.
  • a large number of different electric motors are known from the prior art.
  • coils are flowed through by a current in order to generate a magnetic field.
  • the magnetic field is usually generated in a magnetizable iron core, which serves as an anchor.
  • a rotor which is rotatably mounted in the alternating magnetic fields is itself magnetic or at least magnetizable.
  • the rotor then being referred to as an actuator in the present invention and is often referred to in the art as a runner.
  • the terms actor and runner are therefore equivalent.
  • the armature is a stator in the sense of the present invention.
  • Reluctance motors are known in contact-free design. But these engines have unsatisfactory mass and dimensions, and recent improvements have resulted in a significant complication of engine design.
  • the object of the invention is therefore to overcome the disadvantages of the prior art.
  • a fast switching electric motor should be provided.
  • the electric motor should generate as even as possible a middle moment and provide this with the largest possible rotational range in the case of rotary motors.
  • the structure of the engine should be as simple and inexpensive. Further objects are readily apparent from the disadvantages of non-inventive electric motors or from the advantages of motors according to the invention.
  • an electric motor in particular a reluctance motor having an armature, comprising a magnetizable material, wherein the armature has a plurality of pole pieces, an actuator which is movably disposed and mounted against the armature, which includes a magnetizable material and the at least two magnetizable pole ends and an even number of coils, which are arranged between the pole shoes and their windings enclose the armature such that the coils extend in regions along the armature, so that the armature by means of the coils is magnetizable.
  • the anchor has at least two pole pieces. Two pole shoes may be sufficient for an annular armature.
  • the coils are electrically connected such that upon application of an electrical voltage to the coils, the magnetic fields generated by two coils adjacent to a pole, are aligned such that at the pole piece arranged therebetween the same magnetic Polarization caused by both coils.
  • the inventive interconnection of the coils, the induced magnetic fields and thus the mutually induced electric currents in the coils can compensate each other, so that undesirable effects of inertia of the motor according to the invention are avoided.
  • the coils on the armature are electrically connected in pairs in opposite directions and magnetically in pairs (parallel).
  • the armature and / or the actuator consists or consist of a magnetizable material and / or the magnetizable material of the armature and / or the actuator has a magnetic permeability of at least 100 H / m, preferably a magnetic Permeability of at least 1000 H / m, more preferably has a magnetic permeability of at least 10,000 H / m.
  • an electric motor according to the invention can be operated with high efficiency.
  • the number of pole shoes is equal to the number of pole ends.
  • This embodiment is particularly suitable for reluctance motors with rotatable armature according to the invention.
  • the number of coils is equal to the number of pole shoes and / or the number of coils is an integer multiple of the number of pole shoes.
  • the armature is annular, wherein the annular armature has an even number of pole pieces and the actuator is a rotor which is rotatably mounted to the annular armature, preferably rotatably mounted in the interior of the annular armature is, wherein the coils extend in regions along the circumference of the annular armature, so that the annular armature is magnetizable by means of the coils.
  • the teaching of the invention has a particularly advantageous.
  • the rotor has an integer number of magnetizable poles.
  • This embodiment also contributes to the advantageous symmetry of the structure.
  • a development of the invention may provide that the annular armature and / or the rotor has or have an even rotational symmetry about the axis of rotation of the rotor, which is equal to the even number of pole pieces of the annular armature and / or the even number of pole ends of the rotor. This also further improves the symmetry of the overall structure and in particular the symmetry of the magnetizable structures, which leads to a further acceleration of the circuit behavior of the motor according to the invention.
  • a drive axle is arranged, about which the rotor is rotatably mounted in the annular armature.
  • the electric motor is a linear motor with a linear armature, and the linear armature has an odd number of pole shoes, wherein between each pole piece at least one coil is arranged, preferably between each pole piece one Coil is arranged.
  • the outer pole pieces of the armature of the linear motor do not contribute to the movement of the actuator.
  • the magnetic fields emerging from the outer pole shoes are weaker than the magnetic fields emerging from the inner pole shoes, which are flanked on both sides by coils. It is inventively preferred that the structure of the armature of the linear motor is symmetrical at least with respect to the number and shape of the poles and with respect to a mirror plane in the center of the armature perpendicular to the linear extent of the armature.
  • the linear armature has a pole piece more than coils are wound on the linear motor and between two adjacent pole pieces of the armature exactly one coil is arranged.
  • This measure serves the symmetrical structure of the engine with the already described advantages.
  • the number of turns of the coils between all pole pieces is identical to at least 45 ° of a winding, preferably to at least 45 ° is identical, more preferably to at least 5 ° identical, thereby further improving the symmetry of the construction is achieved.
  • the electrical conductor from which the coils are wound can generally be made in accordance with the invention for the electrical conductor from which the coils are wound to have a uniform cross section, in particular a cross section with a cross section deviation of at most 20%, preferably at most 10%, particularly preferably at most 2%.
  • this measure is also suitable for further improvement of the structure according to the invention.
  • the magnetizable material of the armature and / or the actuator consists of electrically conductive and electrically isolated layers, preferably electrically insulated steel layers, wherein between the electrically conductive layers, an insulator is disposed, preferably plastic layers between the electrically conductive layers are arranged.
  • an electric motor in particular a reluctance motor, preferably according to one of the preceding claims, in which an even number of coils are applied to an armature including a magnetizable material, wherein the coils between a Variety of pole pieces are arranged so that the windings of the coils enclose the armature such that the coils extend in regions along the armature, an actuator containing a magnetizable material with at least two pole ends is movably mounted against the armature.
  • the coils are electrically connected to one another in such a way that upon application of an electrical voltage to the coils, the magnetic fields generated by two adjacent coils to a pole piece, are aligned such that the same at the interposed pole piece magnetic polarization is generated at the pole piece of the two adjacent coils.
  • the invention is based on the surprising finding that the coils are not wound around the pole pieces of the armature of the reluctance motor, but rather around the armature itself. As a result, the induction currents in the coils of the electric motor can compensate each other. This has a particularly advantageous effect particularly with a suitable interconnection of the coils.
  • the invention a substantial reduction in the inductance of the armature winding is achieved, which leads to an increase in the rate of current increase in the armature winding and consequently also the switching frequency of the current in the armature winding, the number of revolutions of the rotor and thereby a higher output and specific power of the electric motor allows.
  • Reducing the inductance of the armature winding which is in a two-digit range, also adds an active character to the input resistance of the armature coil, and substantially eliminates the generation of disturbing self-induction voltages, which significantly increases the reliability of the operation of electronic circuit switching stages.
  • the motor can be powered with significantly less voltage, which is achieved by an almost complete lack of reactance of the armature winding.
  • the present reluctance motor has the following advantages:
  • the rotor and the stator are designed as packages of soft magnetic sheet material.
  • the rotor has no windings and permanent magnets.
  • the windings have only the stator.
  • the coils of the armature windings can be made separately and later placed on the split magnetic body of the armature.
  • a high specific working power of the motor is linearly proportional to the square of the rotational speed and is limited in the present electric motors only by the stability of the structure and the strength of the materials.
  • the calculated work output can be in the double-digit kW range per 1 kg of the engine. This power per kg of the engine can not be achieved by other electric motors.
  • the electric motor control magnet is controlled by highly efficient semiconductor switches - transistors, IGBT or MOSFET (HEXFET), whose safety and reliability are considerably greater than those of any mechanical parts; e.g. Collectors, brushes, bearings.
  • IGBT IGBT
  • MOSFET MOSFET
  • Reluctance motors have neither in the rotor, nor in the stator permanent magnets, so that the electric motor according to the invention can compete successfully with his performance features with converter motors with permanent magnets and thus is much easier to build.
  • the reluctance motor costs on average 4 times less, has much higher safety, a wider speed range, a wider operating temperature range. From the construction principle, the reluctance motor basically has no power limitations.
  • the rotor has no windings and can be used as a package of soft magnetic sheet material, for. B. from ordinary Dynamo sheet.
  • the reluctance motor according to the invention can be produced with a hollow rotor.
  • the thickness of the rotor back must be at least half the Polumble.
  • the mass / dimensions of the electric motor, its power at the target torque and speed range can be optimized by tuning the stator and Rotorpoliere.
  • the simplicity of the construction of the reluctance motor according to the invention reduces the expense in its manufacture. In principle, it can even be produced in companies that are not specialized in the field of electrical engineering. For the series production of reluctance motors, one needs only a common mechanical equipment - stamping for the production of stator and rotor core cores, turning and milling machines for machining the shaft and housing parts are already sufficient.
  • the construction according to the invention lacks complex and technologically complicated production steps, such. As the production of a collector and brushes of the collector motor or a spout of the rotor cage from the induction motor. According to preliminary estimates, the cost and time involved in the production of a reluctance motor is 70% less than that of the collector motor and 40% less than that of the induction motor.
  • the structure of the electric motor can be flat, oblong, inverse or linear.
  • armature punching of rotor and stator (armature)
  • the simplicity of the design provides the reluctance motor with greater reliability than other types of electrical machines.
  • a wide speed range (from a few revolutions per minute to hundreds of revolutions per minute) can be realized with the electric motor according to the invention.
  • a high efficiency is achieved in a wide speed range, since the coil generates no counterforce.
  • reluctance motors according to the invention are fed (excited) by unipolar pulses, a simple electronic switch is sufficient for the control.
  • a simple electronic switch is sufficient for the control.
  • the shape of the current pulses of phase windings of the electric motor can be changed continuously.
  • the natural mechanical characteristic of the reluctance motor is determined by the recoil principle of the operation of the electric machine and resembles a hyperbolic shape.
  • the main characteristic of this characteristic an average power constancy at the machine shaft - proves to be extremely useful for electric drives with limited source power, since the condition of their underloadability is realized.
  • the price for a reluctance motor is the lowest among all known constructions of electric motors. And finally, the efficiency of the reluctance motor according to the invention increases due to the much smaller energy consumption, due to the high efficiency of the electric motor and Application of austerity management strategies in dynamic operations.
  • the reluctance motor according to the invention can be offered primarily for vehicle systems that are operated under particularly difficult operating conditions (eg cars, off-road vehicles, industrial tractors). It can also be used in industrial plants. This gives good industrial and commercial applicability of the solution according to the invention.
  • Inventive are, for example, electric motors consisting of an armature core with pronounced armature poles, made as a stacked package of isolated dynamo sheets, wherein the number of anchor poles is at least 2n (n is an integer), between salient poles of the armature, the magnet body, there is the armature winding in which each coil wraps around the magnetic body between salient poles of the armature.
  • the rotor without winding contains the shaft on which the magnetic body of the rotor is located with pole edges, manufactured as a layered stack of insulated dynamo sheets, the number of rotor poles is equal to the number of anchor poles.
  • the operation of the armature of the reluctance motor according to the invention is characterized in that the armature winding consists of two identical coils with the same number of turns and the cable of the same cross-section, which have the opposite sense of winding and are connected in series so that the working current flowing through said coils a Magnetic current generated by the same direction poles.
  • Such a circuit of the coils (bifilar) is characterized by minimally possible total inductance and almost complete compensation of the self-induction voltage of individual coils.
  • the armature winding coils generate twice the magnet current in armature poles, with minimal inductance and no self-induction voltage at coil ends, which can significantly improve the operating characteristics of the electric motor, achieve high power factor at the wide shaft speed range, and high specific power.
  • Exemplary embodiments of the invention are explained below with reference to seven diagrammatically illustrated figures, without, however, limiting the invention. Showing:
  • Figure 1 is a schematic perspective view of an electric motor according to the invention with two pole pieces;
  • Figure 2 is a schematic perspective view of an electric motor according to the invention with four pole pieces;
  • Figure 3 is a schematic perspective view of an elongated electric motor according to the invention with two pole pieces;
  • Figure 4 is a schematic perspective view of an electric motor according to the invention with two pole shoes, in which the rotor is arranged externally around the armature;
  • Figure 5 is a schematic perspective view of an electric motor according to the invention, each with two pole pieces, in which a plurality of units are connected to a rotor axis;
  • Figure 6 is a schematic perspective view of a linear motor according to the invention.
  • FIG. 7 shows a diagram of an oscilloscope which has been recorded on a motor according to the invention according to FIG.
  • FIG. 1 shows a perspective view of a reluctance motor according to the invention.
  • the reluctance motor has an annular closed anchor 1 made of layered steel.
  • a rotor 2 is arranged, which is rotatably mounted in the annular armature 1 and which is also made of layered steel.
  • two coils 3, 4 are wound on the annular armature 1, which thus extend along the circumference of the annular armature 1 along the elongate extent of the armature 1.
  • the coils 3, 4 are wound from copper and surrounded by a housing. Strictly speaking, only the housing around the coils 3, 4 can be seen in FIG.
  • the turns of the wire are wound around the torus surface of the annular armature 1.
  • the annular armature 1 may initially be in two parts and only after the winding of the two coils 3, 4 are joined to the toms shown.
  • a control unit 5 is used to control the voltage supply of the coils 3, 4.
  • two pole shoes 7, 8 are formed on the annular armature 1, which extend in some areas into the interior of the annular armature 1 in the direction of the rotor 2.
  • the coils 3, 4 are wound in opposite directions and connected in series.
  • the coils 3, 4 are thus arranged mirror-inverted to one another on the annular armature 1.
  • the stator / armature 1 of the non-contact electric machine of Figure 1 has an armature core with distinct pole pieces 7, 8 of the annular armature 1, which is made as a layered package of mutually insulated dynamo sheets, wherein the number of anchor pole pieces 7, 8 is at least two, or divisible by 2.
  • the armature winding Between distinct pole pieces 7, 8 of the armature 1, on the magnetic body 1, there is the armature winding, in which each coil 3, 4, the magnetic body 1 between the salient pole pieces 7, 8 of the armature 1 surrounds.
  • the coils 3, 4 of the armature winding are connected in pairs opposite to the current and in pairs magnetic current parallel.
  • the windingless rotor 2 contains the shaft 12 as the axis of rotation of the rotor 2, on which the magnetic body of the rotor 2 with Polkanten 14 is located.
  • the rotor 2 is also made as a stacked package of insulated dynamo sheets, wherein the number of rotor pole ends 14 is equal to the number of anchor poles 7, 8.
  • the armature winding consists of two equal coils 3, 4 of the same number of turns made of a wire of uniform cross-section within the limits of the manufacturing process, such as the winding device.
  • the coils 3, 4 have an opposite winding sense, that is an opposite turn, and are connected one behind the other in such a way that the working current flowing through the mentioned coils generates a magnetic current which causes a magnetic polarity of the pole shoes 7, 8 in the same direction. For example: North Pole 7 and South Pole 8. When the current direction is reversed, the magnetic poles change in the opposite direction.
  • the armature 1 of this motor is a magnetizable Toroidal magnetic body (magnetic ring) with two (or divisible by 2) identical windings, which lie symmetrically on the magnetic body, connected in opposite directions (variant of the bifilar winding) and are coupled together by almost total mutual induction.
  • Such a circuit of the coils 3, 4 (bifilar circuit) is characterized by a minimum possible total inductance and almost complete compensation of the self-induction voltage of individual coils 3, 4.
  • the stated object is achieved - the coils 3, 4 of the armature winding generate the double magnetic current in Ankerpol marn 7, 8, while they have minimal inductance and cause no self-induction voltage at coil ends.
  • the total inductance and the resulting self-induction voltage of the structure are determined by the similarity of the electrical and geometric properties of the coils 3, 4.
  • FIG. 2 shows a schematic perspective view of an electric motor according to the invention with four pole pieces 7, 8, 9, 10.
  • the electric motor has an armature core with pronounced pole pieces 7, 8, 9, 10 of the annular armature 1, as a layered package of mutually insulated dynamo sheets is manufactured, wherein the number of Ankerpol note 7, 8, 9, 10 is divisible by 2.
  • the magnetic body 1 there is the armature winding, in which each coil 3, 4, 3-1, 4-1 the magnetic body 1 between the salient pole pieces 7, 8, 9th , 10 of the armature 1 encloses.
  • the coils 3, 4, 3-1, 4-1 of the armature winding are connected in pairs opposite to the current and in pairs magnetic current parallel.
  • the windingless rotor 2 contains the shaft 12 as the axis of rotation of the rotor 2, on which the magnetic body of the rotor 2 with Polkanten 14 is located.
  • the rotor 2 is also made as a stacked package of insulated dynamo sheets, wherein the number of rotor pole ends 14 is equal to the number of anchor poles 7, 8, 9, 0.
  • the armature winding consists of four identical coils 3, 4, 3-1, 4-1 made with the same number of turns of a wire with a uniform cross section in the Limits of the manufacturing process, such as the winding device.
  • the coils 3, 4, 3-1, 4-1 have an opposite winding sense, that is to say an opposite turn, and are connected one behind the other in such a way that the working current flowing through said coils 3, 4, 3-1, 4-1 generates a magnetic current , which causes a co-magnetic direction of the pole pieces 7, 9 and the pole pieces 8, 10 in the same direction. For example: North Pole 7 and 9 and South Pole 8 and 0. When the current direction is reversed, the magnetic poles change in the opposite direction.
  • Figure 3 shows a schematic perspective view of an elongated electric motor according to the invention with two pole pieces 7, 8.
  • the electric motor has an armature core with distinct pole pieces 7, 8 of the annular armature 1, which is made as a stacked package of mutually insulated dynamo sheets, wherein the number Anchor pole pieces 7, 8 is divisible by 2.
  • the magnetic body 1 Between distinct pole pieces 7, 8 of the armature 1, the magnetic body 1, there is the armature winding in which each coil 3, 4 the magnetic body 1 between the pronounced Poi schizophrenian 7, 8 of the armature 1 umschi devist.
  • the coils 3, 4 of the armature winding are connected in pairs opposite to the current and in pairs magnetic current parallel.
  • the windingless rotor 2 contains the shaft 12 as the axis of rotation of the rotor 2, on which the magnetic body of the rotor 2 with Polkanten 14 is located.
  • the rotor 2 is also made as a stacked package of insulated dynamo sheets, wherein the number of rotor pole ends 14 is equal to the number of anchor poles 7, 8.
  • the armature winding consists of two equal coils 3, 4 of the same number of turns made of a wire of uniform cross-section within the limits of the manufacturing process, such as the winding device.
  • the coils 3, 4 have an opposite sense of winding, so an opposite turn and are connected in series so that the working current flowing through said coils 3, 4 generates a magnetic current causing a magnetic polarity of the pole pieces 7, 8 in the same direction. For example: North Pole 7 and South Pole 8. When the current direction is reversed, the magnetic poles change in the opposite direction.
  • elongated as well as flat motors can be realized with the invention.
  • Figure 4 shows a schematic perspective view of an electric motor according to the invention with two pole pieces 7, 8, in which the rotor 2 is arranged externally around the armature 1 around.
  • the electric motor has an armature core with distinct pole pieces 7, 8 of the annular armature 1, which is made as a layered package of mutually insulated dynamo sheets, wherein the number of anchor pole pieces 7, 8 is divisible by 2.
  • the pole pieces 7, 8 are directed outward in the direction of the rotor 2.
  • the coils 3, 4 of the armature winding are connected in pairs opposite to the current and in pairs magnetic current parallel.
  • the windingless rotor 2 contains the shaft 12 as the axis of rotation of the rotor 2, on which the magnetic body of the rotor 2 with Polkanten 14 is located.
  • the rotor 2 is also made as a stacked package of insulated dynamo sheets, wherein the number of rotor pole ends 14 is equal to the number of anchor poles 7, 8.
  • the armature winding consists of two equal coils 3, 4 of the same number of turns made of a wire of uniform cross-section within the limits of the manufacturing process, such as the winding device.
  • the coils 3, 4 have an opposite sense of winding, so an opposite turn and are connected in series so that the working current flowing through said coils 3, 4 generates a magnetic current causing a magnetic polarity of the pole pieces 7, 8 in the same direction. For example: North Pole 7 and South Pole 8. When the current direction is reversed, the magnetic poles change in the opposite direction.
  • Figure 5 shows a schematic perspective view of an electric motor according to the invention, each with two pole pieces 7, 8, 7-1, 8-1, 7-2, 8-2, in which a plurality of units are connected to a rotor axis 12.
  • the pole ends 14 of the rotors 2, 2-1, 2-2 are offset from each other, so that always a torque on the rotor axis 12 can be generated.
  • the electric motor has three anchor cores with salient pole pieces 7, 8, 7-1, 8-1, 7-2, 8.2 of the annular armature 1, 1-1, 1-2, which are isolated from each other as layered packages Dynamo sheets are made, wherein the number of anchor pole pieces 7, 8, 7-1, 8-1, 7-2, 8-2 is divisible by 2 for each of the three parts.
  • pole pieces 7, 8, 7-1, 8-1, 7-2, 8-2 are directed inwards in the direction of the rotors 2, 2-1, 2-2.
  • pole shoes 7, 8, 7-1, 8-1, 7-2, 8-2 of the armature 1, 1-1, 1-2, on the magnetic body 1, 1-1, 1-2 there are the armature windings in which each coil 3, 4,
  • the coils 3, 4, 3-1, 4-1, 3-2, 4-2 of the armature winding are connected in pairs opposite to the current and in pairs magnetic current parallel.
  • the windingless rotors 2, 2-1, 2-2 are centrally connected to the shaft 12 as a rotation axis of the rotors 2, 2-1, 2-2, on which the magnetic body of the rotors 2, 2-1, 2-2 with Polkanten 14 are located.
  • the rotors 2, 2-1, 2-2 are also manufactured as a stacked package of insulated dynamo sheets, wherein the number of rotor pole ends 14 equal to the number of armature poles 7, 8, 7-1, 8-1, 7-2, 8- 2 is.
  • the armature windings each consist of two identical coils 3, 4, 3-1, 4-1, 3-2,
  • the coils 3, 4, 3-1, 4-1, 3-2, 4-2 have an opposite winding sense, that is to say an opposite turn, and are connected one behind the other in such a way that the windings indicated by the coils 3, 4, 3-1, 4-1, 3-2, 4-2 produces a magnetic current which causes the magnetic poles of the pole shoes 7, 8, 7-1, 8-1, 7-2, 8-2 to have the same direction of polarity. For example: North Pole 7, 7-1, 7-2 and South Pole 8, 8-1, 8-2. When reversing the current direction, the opposite direction of the magnetic poles takes place.
  • FIG. 6 shows a schematic perspective illustration of a linear motor according to the invention with an armature 1 and a row of pole shoes 7, 8, 7-1, 8-1, 7-2, 8-2, 8-3 and coils 3, 4 constructed linearly one behind the other. 3-1, 4-1, 3-2, 4-2.
  • a rotor 2 or actuator 2 can be moved on the armature 1 back and forth.
  • this linear motor for example, automatic doors, sliding doors, robot arms, etc. can be operated.
  • the electric motor has an armature core with seven salient pole pieces 7, 8, 7-1, 8-1, 7-2, 8-2, 8-3 of the linear armature 1, which is made as a layered package of mutually insulated steel sheets, wherein the number of Ankerpol note 7, 8, 7-1, 8-1, 7-2, 8-2, 8-3 odd, so not divisible by two.
  • the armature winding in which each coil 3, 4, 3-1 , 4-1, 3-2, 4-2 surrounds the magnetic body 1 between the salient pole shoes 7, 8, 7-1, 8-1, 7- 2, 8-2, 8-3 of the armature 1.
  • the coils 3, 4, 3-1, 4-1, 3-2, 4-2 of the armature winding are connected in pairs opposite to the current and in pairs magnetic current parallel.
  • the windingless rotor 2 comprises two pole edges 14. In the construction as a linear motor, it is possible to realize the rotor with an odd number of pole edges (not shown in FIG. 6).
  • the rotor 2 is also made as a stacked package of insulated Dynamo sheets, wherein the number of Rotorpolenden 14 here is independent of the number of anchor poles 7, 8.
  • the armature winding consists of six equal coils 3, 4, 3-1, 4-1, 3-2, 4-2 of the same number of turns made of a wire of uniform cross-section within the limits of the manufacturing process, such as the winding device.
  • the coils 3, 4, 3-1, 4-1, 3-2, 4-2 have an opposite winding sense, that is to say an opposite turn, and are connected one behind the other in such a way that the windings indicated by the coils 3, 4, 3-1, 4-1, 3-2, 4-2 produces a magnetic current which causes an alternating magnetic polarity of the pole shoes 7, 8, 7-1, 8-1, 7-2, 8-2, 8-3. For example: North Pole 7, 7-1, 7-2, 8-3 and South Pole 8, 8-1, 8-2. When reversing the current direction, the opposite direction of the magnetic poles takes place.
  • FIG. 7 shows an oscillogram of voltage pulses applied to the armature winding (CH1) and the current (CH2) generated by this voltage through the armature winding.
  • the front length of the current pulse through the armature winding is 0.016 ms and is determined essentially by the front length of the pulse of the applied voltage, which allows an almost complete absence of inductance of the armature winding and thus practically the active resistance consider.
  • the pulse period of the feed of 0.1 ms is quite achievable, which allows 10,000 pulses per second.
  • the rotor speed can be 150,000 revolutions per minute.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Die Erfindung betrifft einen Elektrischer Motor, insbesondere Reluktanzmotor aufweisend einen Anker, beinhaltend ein magnetisierbares Material, wobei der Anker eine Mehrzahl von Polschuhen aufweist, einen Aktor, der beweglich gegen den Anker angeordnet und gelagert ist, der ein magnetisierbares Material beinhaltet und der zumindest zwei magnetisierbare Polenden aufweist und eine geradzahlige Anzahl von Spulen, die zwischen den Polschuhen angeordnet sind und deren Wicklungen den Anker derart umschließen, dass sich die Spulen bereichsweise entlang des Ankers erstrecken, so dass der Anker mit Hilfe der Spulen magnetisierbar ist. Die Erfindung betrifft auch ein Verfahren zur Herstellung eines elektrischen Motors, insbesondere eines Reluktanzmotors, bei dem eine geradzahlige Anzahl von Spulen auf einen Anker beinhaltend ein magnetisierbares Material aufgebracht werden, wobei die Spulen zwischen einer Vielzahl von Polschuhen angeordnet werden, so dass die Wicklungen der Spulen den Anker derart umschließen, dass sich die Spulen bereichsweise entlang des Ankers erstrecken, ein Aktor beinhaltend ein magnetisierbares Material mit zumindest zwei Polenden beweglich gegen den Anker gelagert wird. Schließlich betrifft die Erfindung auch die Verwendung eines solchen elektrischen Motors, insbesondere eines solchen Reluktanzmotors zum Antreiben einer Bewegung einer Vorrichtung oder eines Teils einer Vorrichtung.

Description

ELEKTROMOTOR MIT VERBESSERTER INDUKTIVITÄT UND VERFAHREN ZUM WICKELN UND
VERSCHALTEN VON SPULEN
Beschreibung
Die Erfindung betrifft einen elektrischen Motor, insbesondere einen Reluktanzmotor aufweisend einen Anker, beinhaltend ein magnetisierbares Material, wobei der Anker eine Mehrzahl von Polschuhen aufweist und einen Aktor, der beweglich gegen den Anker angeordnet und gelagert ist, der ein magnetisierbares Material beinhaltet und der zumindest zwei magnetisierbare Polenden aufweist.
Die Erfindung betrifft auch ein Verfahren zur Herstellung eines elektrischen Motors, insbesondere eines Reluktanzmotors und die Verwendung eines elektrischen Motors, insbesondere eines Reluktanzmotors
Die Erfindung gehört zum Gebiet der Elektrotechnik und betrifft insbesondere Reluktanzmotoren mit hohem Drehmoment. Vorgestellt wird eine Bauart von kontaktfreien elektrischen Reluktanzmaschinen (Reluktanzmotoren) und die in einem breiten Drehzahlbereich der Maschinenwelle (von einigen Umdrehungen pro Minute bis mehreren Hunderttausenden Umdrehungen pro Minute) arbeiten kann und dazu in Systemen der Automatik, in autonomen Systemen der Elektroausrüstung, in Raumtechnik, im Luft- und Strassenverkehr, als gesteuerte und ungesteuerte Fahrzeugmotoren verwendet werden kann.
Das durch Anwendung dieser Erfindung erreichte technische Ergebnis besteht im Gewinn einer zuverlässigen und technologisch hochwertigen Konstruktion des kontaktfreien Reluktanzmotors mit hohen Energiewerten und Betriebseigenschaften beim breiten Drehzahlbereich der Maschinenwelle und hoher spezifischen Leistung. Eine große Anzahl verschiedener Elektromotoren ist aus dem Stand der Technik bekannt. Dabei werden Spulen von einem Strom durchflössen, um ein magnetisches Feld zu erzeugen. Das magnetische Feld wird dazu meist in einem magnetisierbaren Eisenkern erzeugt, der als Anker dient. Ein Rotor, der drehbar in den wechselnden magnetischen Feldern gelagert ist, ist selbst magnetisch oder zumindest magnetisierbar. Dadurch wird eine Wechselwirkung zwischen den Wechselfeldern des Ankers und des Rotors möglich, so dass eine Bewegung des Rotors erzwungen wird. Alternativ kann ebenso der Anker bewegt werden.
Ferner ist auch ein Erzeugen einer linearen Bewegung durch Elektromotoren möglich, wobei der Rotor dann in der vorliegenden Erfindung als Aktor bezeichnet wird und der im Stand der Technik häufig auch als Läufer bezeichnet wird. Die Begriffe Aktor und Läufer sind damit äquivalent. Ebenso ist der Anker ein Stator im Sinne der vorliegenden Erfindung.
Es sind Reluktanzmotoren in kontaktfreier Ausführung bekannt. Aber diese Motoren weisen unbefriedigende Werte hinsichtlich Masse und Abmessungen auf, und die bisherigen Verbesserungsversuche führen zu einer wesentlichen Komplizierung der Motorkonstruktion.
Beim Schalten der Spulen erfolgen ein Aufbau oder ein Abbau des magnetischen Felds und damit eine Hysterese, die die Schaltgeschwindigkeit des Motors begrenzt. Beim Einschalten der Induktivität in den Gleichstromkreis entsteht dort - nach dem Lenz 'sehen Gesetz - Selbstinduktionsspannung, die der Änderung des Stromes im Kreis entgegenwirkt, indem sie die Stromsteigerung sowie den Stromabfall beim Öffnen des Stromkreises verlangsamt. Der Strom kann nicht sofort und unmittelbar auf den Nennwert steigen, und folglich steigt das Drehmoment des Motors nicht sehr schnell sondern asymptotisch bzw. exponentiell. Bei niedrigen Drehgeschwindigkeiten kann der Strom in der Motorwicklung nach Aufschalten des Spannungsimpulses seinen Nennwert erreichen, und das Moment des Motors entspricht annähernd dem Leistungsparameter. Doch beim Versuch der Erhöhung der Drehgeschwindigkeit steigt nicht nur die Geschwindigkeit der Kommutierung der Wicklungen, sondern es verringert sich die Zeit des Anlegens der Spannung an die Wicklung. Ab einer kritischen Geschwindigkeit kann der Strom in der Wicklung nicht mehr auf den Nennwert steigen, bevor die Wicklung schon wieder entspannt wird. Daraus resultiert eine nachteilige Verminderung des Drehmoments, der Motor beginnt die Schritte zu überspringen und bleibt letzten Endes stehen.
Die Aufgabe der Erfindung besteht also darin, die Nachteile des Stands der Technik zu überwinden. Insbesondere soll ein möglichst schnell schaltender Elektromotor bereitgestellt werden. Der Elektromotor soll möglichst ein gleichmäßiges mittleres Moment erzeugen und bei Drehmotoren dieses über einen möglichst großen Drehbereich bereitstellen. Zudem soll der Aufbau des Motors möglichst einfach und kostengünstig sein. Weitere Aufgaben ergeben sich ohne weiteres aus den Nachteilen nicht erfindungsgemäßer Elektromotoren beziehungsweise aus den Vorteilen erfindungsgemäßer Motoren. Die Aufgaben der Erfindung werden gelöst durch einen elektrischer Motor, insbesondere einen Reluktanzmotor aufweisend einen Anker, beinhaltend ein magnetisierbares Material, wobei der Anker eine Mehrzahl von Polschuhen aufweist, einen Aktor, der beweglich gegen den Anker angeordnet und gelagert ist, der ein magnetisierbares Material beinhaltet und der zumindest zwei magnetisierbare Polenden aufweist und eine geradzahlige Anzahl von Spulen, die zwischen den Polschuhen angeordnet sind und deren Wicklungen den Anker derart umschließen, dass sich die Spulen bereichsweise entlang des Ankers erstrecken, so dass der Anker mit Hilfe der Spulen magnetisierbar ist.
Der Anker weist zumindest zwei Polschuhe auf. Zwei Polschuhe können für einen ringförmigen Anker ausreichend sein.
Dabei kann vorgesehen sein, dass die Spulen derart elektrisch verschaltet sind, dass bei Anlegen einer elektrischen Spannung an den Spulen die magnetischen Felder, die durch zwei zu einem Polschuh benachbarten Spulen erzeugt werden, derart ausgerichtet sind, dass an dem dazwischen angeordneten Polschuh die gleiche magnetische Polarisierung durch beide Spulen entsteht.
Dies kann beispielsweise dadurch erreicht werden, dass zwei benachbarte Spulen gegensinnig gewickelt und in Reihe geschaltet sind. Alternativ dazu ist es auch möglich zwei benachbarte Spulen gleichsinnig zu wickeln und parallel zu schalten. Eine gegensinnige Windung der Spulen wird erreicht, indem eine Spule links herum die andere rechts herum auf den Anker aufgewickelt wird. Die eine Spule weist also eine Linkswindung, die andere Spule eine Rechtswindung auf.
Durch die erfindungsgemäße Verschaltung der Spulen können sich die induzierten magnetischen Felder und damit die gegenseitig induzierten elektrischen Ströme in den Spulen gegenseitig kompensieren, so dass unerwünschte Trägheitseffekte des erfindungsgemäßen Motors vermieden werden.
die Spulen auf dem Anker elektrisch paarweise gegenläufig und magnetisch paarweise parallel (gleichläufig) angeschlossen sind.
Es kann erfindungsgemäß auch vorgesehen sein, dass der Anker und/oder der Aktor aus einem magnetisierbaren Material besteht oder bestehen und/oder das magnetisierbare Material des Ankers und/oder des Aktors eine magnetische Permeabilität von zumindest 100 H/m aufweist, bevorzugt eine magnetische Permeabilität von zumindest 1000 H/m, besonders bevorzugt eine magnetische Permeabilität von zumindest 10.000 H/m aufweist.
Bei diesen Werten ist ein erfindungsgemäßer Elektromotor bei hohem Wirkungsgrad betreibbar.
Es kann auch vorgesehen sein, dass die Anzahl der Polschuhe gleich der Anzahl der Polenden ist.
Diese Ausführungsform ist besonders für erfindungsgemäße Reluktanzmotoren mit drehbarem Anker geeignet.
Ferner kann vorgesehen sein, dass die Anzahl der Spulen gleich der Anzahl der Polschuhe ist und/oder die Anzahl der Spulen ein ganzzahliges Vielfaches der Anzahl der Polschuhe ist.
Gemäß einer besonders bevorzugten Weiterbildung der Erfindung kann vorgesehen sein, dass der Anker ringförmig ist, wobei der ringförmige Anker eine geradzahlige Anzahl von Polschuhen aufweist und der Aktor ein Rotor ist, der drehbar zum ringförmigen Anker gelagert ist, vorzugsweise drehbar im Inneren des ringförmigen Ankers gelagert ist, wobei sich die Spulen bereichsweise entlang des Umfangs des ringförmigen Ankers erstrecken, so dass der ringförmige Anker mit Hilfe der Spulen magnetisierbar ist.
Durch die hohe Symmetrie eines ringförmigen Ankers wirkt sich die erfindungsgemäße Lehre besonders vorteilhaft aus. Je höher die Symmetrie der Spulen ist, desto besser sind diese miteinander gekoppelt, so dass weniger störende Induktionsströme auftreten.
Bei solchen Elektromotoren kann dabei vorgesehen sein, dass der Rotor eine ganzzahlige Anzahl von magnetisierbaren Polen aufweist.
Diese Ausführung trägt ebenfalls zur Vorteilhaften Symmetrie des Aufbaus bei.
Auch kann vorgesehen sein, dass jeweils so viele Spulen zwischen zwei Polschuhen um ringförmigen Anker angeordnet sind, die einem ganzzahligen Vielfachen der Anzahl der Polschuhe entsprechen.
Mit diesem Aufbau können auch mehr als eine Spule zwischen den Polschuhen angeordnet werden. Eine Weiterbildung der Erfindung kann vorsehen, dass der ringförmige Anker und/oder der Rotor eine geradzahlige Drehsymmetrie um die Drehachse des Rotors aufweist oder aufweisen, die gleich der geradzahligen Anzahl der Polschuhe des ringförmigen Ankers und/oder der geradzahligen Anzahl der Polenden des Rotors ist. Auch hierdurch werden die Symmetrie des Gesamtaufbaus und insbesondere die Symmetrie der magnetisierbaren Strukturen weiter verbessert, was zu einer weiteren Beschleunigung des Schaltungsverhaltens des erfindungsgemäßen Motors führt.
Auch kann vorgesehen sein, dass in der Drehachse des Rotors eine Antriebsachse angeordnet ist, um die der Rotor drehbar in dem ringförmigen Anker gelagert ist. Gemäß einer alternativen Ausgestaltungsform der Erfindung kann vorgesehen sein, dass der elektrische Motor ein Linear-Motor mit einem linearen Anker ist, und der lineare Anker eine ungeradzahlige Anzahl von Polschuhen aufweist, wobei zwischen jedem Polschuh wenigstens eine Spule angeordnet ist, vorzugsweise zwischen jedem Polschuh eine Spule angeordnet ist.
Die äußeren Polschuhe des Ankers des linearen Motors tragen nicht zur Bewegung des Aktors bei. Die aus den äußeren Polschuhen austretenden magnetischen Felder sind schwächer als die aus den inneren Polschuhen austretenden magnetischen Felder, die beidseitig von Spulen flankiert werden. Es ist erfindungsgemäß bevorzugt, dass der Aufbau des Ankers des linearen Motors symmetrisch ist zumindest bezüglich der Anzahl und Form der Pole und in Bezug auf eine Spiegelebene in der Mitte des Ankers senkrecht zur linearen Ausdehnung des Ankers.
Die Umsetzung eines erfindungsgemäßen Linearmotors weist die gleichen Vorteile auf wie die Umsetzung als Rotationsmotor.
Dabei kann vorgesehen sein, dass der lineare Anker einen Polschuh mehr aufweist, als Spulen auf den linearen Motor gewickelt sind und zwischen zwei benachbarten Polschuhen des Ankers genau eine Spule angeordnet ist.
Diese Maßnahme dient dem symmetrischen Aufbau des Motors mit den bereits geschilderten Vorteilen.
Gemäß einer Weiterbildung der Erfindung kann auch vorgesehen sein, dass zwischen zwei Polschuhen des Ankers immer die gleiche Anzahl von Spulenwindungen durch die Spulen gewickelt ist. Hierdurch wird die Symmetrie der Spulen zueinander erhöht.
Dabei kann vorgesehen sein, dass die Anzahl der Windungen der Spulen zwischen allen Polschuhen bis auf wenigstens 45° einer Windung identisch ist, vorzugsweise bis auf wenigstens 45° identisch ist, besonders bevorzugt bis auf wenigstens 5° identisch ist, wodurch eine weitere Verbesserung der Symmetrie des Aufbaus erreicht wird.
Bei erfindungsgemäßen Motoren kann allgemein erfindungsgemäß vorgesehen sein, dass der elektrische Leiter, aus dem die Spulen gewickelt sind einen gleichmäßigen Querschnitt aufweist, insbesondere eine Querschnitt mit einer Querschnittsabweichung von höchstens 20%, bevorzugt von höchstens 10%, besonders bevorzugt von höchstens 2%.
Da dies der Symmetrie des Elektronenflusses durch die Spulenwindungen zuträglich ist, ist auch diese Maßnahme zur weiteren Verbesserung des erfindungsgemäßen Aufbaus geeignet.
Auch kann erfindungsgemäß vorgesehen sein, dass das magnetisierbare Material des Ankers und/oder des Aktors aus elektrisch leitenden und voneinander elektrisch isolierten Schichten besteht, vorzugsweise aus elektrisch voneinander isolierten Stahlschichten, wobei zwischen den elektrisch leitenden Schichten ein Isolator angeordnet ist, vorzugsweise Kunststoffschichten zwischen den elektrisch leitenden Schichten angeordnet sind.
Hierdurch wird ein besonders gut magnetisierbares Material bereitgestellt, mit dem der Wirkungsgrad eines erfindungsgemäßen Aufbaus weiter verbessert werden kann.
Die der Erfindung zugrundeliegenden Aufgaben werden auch gelöst durch ein Verfahren zur Herstellung eines elektrischen Motors, insbesondere eines Reluktanzmotors, vorzugsweise nach einem der vorangehenden Ansprüche, bei dem eine geradzahlige Anzahl von Spulen auf einen Anker beinhaltend ein magnetisierbares Material aufgebracht werden, wobei die Spulen zwischen einer Vielzahl von Polschuhen angeordnet werden, so dass die Wicklungen der Spulen den Anker derart umschließen, dass sich die Spulen bereichsweise entlang des Ankers erstrecken, ein Aktor beinhaltend ein magnetisierbares Material mit zumindest zwei Polenden beweglich gegen den Anker gelagert wird. Dabei kann vorgesehen sein, dass die Spulen derart elektrisch miteinander verschaltet werden, dass bei Anlegen einer elektrischen Spannung an den Spulen die magnetischen Felder, die durch zwei zu einem Polschuh benachbarten Spulen erzeugt werden, derart ausgerichtet sind, dass an dem dazwischen angeordneten Polschuh die gleiche magnetische Polarisierung an dem Polschuh von den beiden benachbarten Spulen erzeugt wird.
Erfindungsgemäße Verfahren können sich auch durch die Realisierung aller geeigneten Merkmale des Elektromotors auszeichnen, die bereits zuvor geschildert wurden.
Schließlich werden die der Erfindung zugrundeliegende Erkenntnisse auch realisiert durch die Verwendung eines elektrischen solchen Motors, insbesondere eines solchen Reluktanzmotors zum Antreiben einer Bewegung einer Vorrichtung oder eines Teils einer Vorrichtung.
Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass die Spulen nicht um die Polschuhe des Ankers des Reluktanzmotors gewickelt werden sondern um den Anker selbst. Dadurch können sich die Induktionsströme in den Spulen des Elektromotors gegenseitig kompensieren. Dies wirkt sich insbesondere bei einer geeigneten Verschaltung der Spulen miteinander besonders vorteilhaft aus.
Durch die Erfindung wird eine wesentliche Senkung der Induktivität der Ankerwicklung erreicht, was zu einer Erhöhung der Geschwindigkeit des Stromanstiegs in der Ankerwicklung führt und folglich auch die Schalthäufigkeit des Stroms in der Ankerwicklung, die Umdrehungszahl des Rotors und dadurch eine höhere abgegebene und spezifische Leistung des Elektromotors ermöglicht. Die Senkung der Induktivität der Ankerwicklung, die in einem zweistelligen Bereich liegt, verleiht dem Eingangswiderstand der Ankerspule außerdem einen aktiven Charakter, und schließt weitgehend die Entstehung störender Selbstinduktionsspannungen aus, was die Zuverlässigkeit der Arbeit von Schaltstufen des elektronischen Schalters wesentlich erhöht. Ferner kann der Motor mit bedeutend weniger Spannung gespeist werden, was durch ein fast völliges Fehlen der Reaktanz der Ankerwicklung erreicht wird. Auch ein störendes Aussenden von elektromagnetischen Wellen durch den Motor sowohl durch die Luft, als auch durch die elektrischen Leitungen kann durch einen erfindungsgemäßen Elektromotor äußerst weitgehend vermieden werden. Dadurch ist der erfindungsgemäße Elektromotor auch zusammen mit empfidlicher Elektronik oder in sensiblen Umgebungen einsetzbar, die normalerweise emfindlich auf solche Störungen reagieren.
Somit weist der vorliegende Reluktanzmotor folgende Vorteile auf:
Einfache Konstruktion: Der Rotor und der Stator sind als Pakete aus weichmagnetischem Blechmaterial ausgeführt. Der Rotor hat keine Wicklungen und Dauermagnete. Die Wicklungen hat nur der Stator. Zur Minderung des Aufwands können die Spulen der Ankerwicklungen getrennt gefertigt und später auf den geteilten Magnetkörper des Ankers gesetzt werden.
Eine hohe spezifische Arbeitsleistung des Motors ist linear proportional dem Quadrat der Rotationsgeschwindigkeit und ist bei den vorliegenden Elektromotoren nur begrenzt durch die Stabilität des Aufbaus und die Festigkeit der Materialien. Die errechnete Arbeitsleistung kann im zweistelligen kW-Bereich pro 1 kg des Motors liegen. Diese Arbeitsleistung pro kg des Motors kann durch andere Elektromotoren nicht erreicht werden.
Kein mechanischer Schalter: Der Stellmagnet des Elektromotors wird durch hocheffektive Halbleiterkraftschalter gesteuert - Transistoren, IGBT bzw. MOSFET (HEXFET), deren Sicherheit und Zuverlässigkeit beträchtlich grösser ist als die von beliebigen mechanischen Teilen; z.B. Kollektoren, Bürsten, Lager.
Keine Dauermagnete. Reluktanzmotoren haben weder im Rotor, noch im Stator Dauermagnete, so dass der erfindungsgemäße Elektromotor mit seinen Leistungsmerkmalen erfolgreich mit Stromrichtermotoren mit Dauermagneten konkurrieren kann und dadurch wesentlich einfacher aufzubauen ist. Bei gleichen elektrischen Daten und bezüglich Gewicht und/oder Abmessungen kostet der Reluktanzmotor im Durchschnitt um das 4-fache weniger, hat wesentlich höhere Sicherheit, einen breiteren Drehzahlbereich, einen breiteren Betriebstemperaturbereich. Vom Konstruktionsprinzip her hat der Reluktanzmotor grundsätzlich keine Leistungsbegrenzungen.
Der Rotor weist keine Wicklungen auf und kann als Paket aus weichmagnetischem Blechmaterial, z. B. aus gewöhnlichem Dynamoblech, ausgeführt werden.
Für die Herstellung des Reluktanzmotors benötigt man um das 2- bis 3-fache weniger Kupfer als für Kollektormotoren gleicher Leistung und um 1,3-fache weniger Kupfer als für einen Asynchronmotor. Die Wärmeentwicklung erfolgt hauptsächlich im Stator (Anker), dabei werden durch eine abgedichtete Konstruktion, Luft- oder Wasserkühlung leicht realisierbar. Im Betriebszustand braucht der Rotor keine Kühlung. Für die Abkühlung des Reluktanzmotors reicht die Kühlung der äußeren Statoroberfläche (Ankeroberfläche) aus.
Der erfindungsgemäße Reluktanzmotor kann mit einem hohlen Rotor hergestellt werden. Die Dicke des Rotorrückens muss dabei mindestens die Hälfte der Polbreite betragen. Die Masse/Abmessungen des Elektromotors, seine Leistung beim Sollmoment und Drehzahlbereich können mittels Abstimmung der Stator- und Rotorpolzahl optimiert werden.
Die Einfachheit der Konstruktion des erfindungsgemäßen Reluktanzmotors verringert den Aufwand bei seiner Herstellung. Grundsätzlich kann er sogar in Betrieben hergestellt werden, die nicht auf dem Gebiet des Elektromaschinenbaus spezialisiert sind. Für die Serienfertigung von Reluktanzmotoren braucht man nur eine gewöhnliche mechanische Ausrüstung - Stanzen für Fertigung der Stator- und Rotorblechkerne, Dreh- und Fräsmaschinen zur Bearbeitung der Welle und Gehäusesteile reichen bereits aus. Der erfindungsgemäßen Konstruktion fehlen aufwändige und technologisch komplizierte Herstellungsschritte, wie z. B. die Herstellung eines Kollektors und Bürsten des Kollektormotors oder ein Ausguss des Rotorkäfigs vom Asynchronmotor. Nach vorläufiger Einschätzung beträgt der kostenmäßige und zeitmäßige Aufwand bei der Herstellung eines Reluktanzmotors um 70% weniger als der beim Kollektormotor und um 40% weniger als der beim Asynchronmotor.
Ein weiterer Vorteil ist in der flexiblen Bauweise zu sehen. Dank der Einfachheit der Ankerwicklung und dem Fehlen der Windungen und der Magnete am Rotor wird die hohe Flexibilität der Bauweise des Reluktanzmotors gewährleistet. Der Aufbau des Elektromotors kann flach, länglich, invers oder linear sein. Zur Produktion einer ganzen Reihe von Elektromotoren verschiedener Leistung kann man ein und denselben Stanzensatz für Ausstanzen von Rotor und Stator (Anker) anwenden, da es zur Leistungssteigerung reicht, die Länge des Rotor- und Statorsatzes entsprechend zu vergrößern. Es ist nicht schwer, die Maschine mit dem Stator sowohl außerhalb des Rotors als auch umgekehrt zu fertigen sowie die Elektronik ins Maschinengehäuse einzubauen. Die Einfachheit der Konstruktion sichert dem Reluktanzmotor höhere Zuverlässigkeit als die der anderen Typen von Elektromaschinen.
Ein breiter Drehzahlbereich (von einigen Umdrehungen pro Minute bis hunderten Umdrehungen pro Minute) kann mit dem erfindungsgemäßen Elektromotor realisiert werden.
Eine hohe Nutzwirkung wird in einem breiten Drehzahlbereich erreicht, da die Spule keine Gegenkraft erzeugt.
Mit erfindungsgemäßen Elektromotoren ist eine bequeme Verbindung mit moderner Digitalelektronik möglich.
Da erfindungsgemäße Reluktanzmotoren durch unipolare Impulse gespeist (angeregt) werden, ist für die Steuerung ein einfacher elektronischer Schalter ausreichend. Mittels einer Steuerung des Impulsschaltverhältnisses von Hochstromtransistoren des elektronischen Schalters kann die Form der Stromimpulse von Phasenwicklungen des Elektromotors stufenlos geändert werden. Die natürliche mechanische Charakteristik des Reluktanzmotors wird durch Rückstoßprinzip der Funktionsweise der elektrischen Maschine bestimmt und gleicht einer Hyperbelform. Das Hauptmerkmal dieser Charakteristik - eine mittlere Leistungskonstanz an der Maschinenwelle - erweist sich als außerordentlich nützlich für Elektroantriebe mit begrenzter Quellenleistung, da dabei die Bedingung ihrer Unterbelastbarkeit realisiert wird. Die Anwendung eines geschlossenen Steuersystems mit Rückmeldungen nach Geschwindigkeit und Belastung ermöglicht den Erhalt von mechanischen Charakteristiken beliebiger vorgegebener Form, einschließlich absolut starre Formen (astatische Formen), und führt zu keiner Komplizierung des Steuersystems, da sein Prozessor über große Redundanz an Schnelligkeit und Speicher verfügt. Das Feld der erfindungsgemäß zugänglichen mechanischen Charakteristiken deckt praktisch durchgehend alle vier Quadranten der Moment-Geschwindigkeits-Ebene innerhalb des Begrenzungsgebiets eines spezifischen Elektroantriebs ab.
Der Preis für einen Reluktanzmotor ist der niedrigste unter allen bekannten Konstruktionen von elektrischen Motoren. Und schließlich steigt die Effizienz des erfindungsgemäßen Reluktanzmotors infolge des wesentlich kleineren Energieverbrauchs, der durch den hohen Wirkungsgrad des Elektromotors und Anwendung der Sparsteuerungsstrategien in dynamischen Betriebsweisen bedingt ist.
Dank der kontaktfreien Schaltung, hoher mechanischer Beanspruchbarkeit und Festigkeit des Rotors kann der erfindungsgemäße Reluktanzmotor in erster Linie für Fahrzeuganlagen angeboten werden, die unter besonders schwierigen Einsatzbedingungen betrieben werden (z. B. Autos, Geländewagen, Industrietraktoren). Sie kann auch bei Industrieanlagen eingesetzt werden. Hierdurch ist eine gute industrielle und gewerbliche Anwendbarkeit der erfindungsgemäßen Lösung gegeben.
Erfindungsgemäße sind beispielsweise Elektromotoren, bestehend aus einem Ankerkem mit ausgeprägten Ankerpolen, gefertigt als geschichtetes Paket aus isolierten Dynamoblechen, wobei die Zahl der Ankerpole ist mindestens 2n (n ist eine Ganze Zahl), zwischen ausgeprägten Polen des Ankers, am Magnetkörper, befindet sich die Ankerwicklung, in der jede Spule den Magnetkörper zwischen ausgeprägten Polen des Ankers umschlingt. Der wicklungslose Rotor enthält die Welle, auf der sich der Magnetkörper des Rotors mit Polkanten befindet, gefertigt als geschichtetes Paket aus isolierten Dynamoblechen, die Zahl der Rotorpole ist der Zahl der Ankerpole gleich.
Die Wirkungsweise des Ankers des erfindungsgemäßen Reluktanzmotors zeichnet sich dadurch aus, dass die Ankerwicklung aus zwei gleichen Spulen mit gleicher Windungszahl und dem Kabel vom gleichen Querschnitt besteht, die den entgegengesetzten Wickelsinn haben und hintereinander so geschaltet sind, dass der durch die genannten Spulen fließende Arbeitsstrom einen Magnetstrom durch gleichsinnige Pole erzeugt. Eine solche Schaltung der Spulen (bifilar) zeichnet sich durch minimal mögliche Gesamtinduktivität und fast völlige Kompensierung der Selbstinduktionsspannung von einzelnen Spulen aus. Auf solche Weise erzeugen die Spulen der Ankerwicklung den doppelten Magnetstrom in Ankerpolen, dabei haben sie minimale Induktivität und keine Selbstinduktionsspannung an Wicklungsenden, wodurch man die Betriebseigenschaften des Elektromotors beträchtlich verbessern, hohe Energiekennziffer beim breiten Drehzahlbereich der Welle und hohe spezifische Leistung erreichen kann. Im Folgenden werden Ausführungsbeispiele der Erfindung anhand von sieben schematisch dargestellten Figuren erläutert, ohne jedoch dabei die Erfindung zu beschränken. Dabei zeigt:
Figur 1: eine schematische perspektivische Darstellung eines erfindungsgemäßen Elektromotors mit zwei Polschuhen;
Figur 2: eine schematische perspektivische Darstellung eines erfindungsgemäßen Elektromotors mit vier Polschuhen;
Figur 3: eine schematische perspektivische Darstellung eines langestreckten erfindungsgemäßen Elektromotors mit zwei Polschuhen;
Figur 4: eine schematische perspektivische Darstellung eines erfindungsgemäßen Elektromotors mit zwei Polschuhen, bei dem der Rotor außen um den Anker herum angeordnet ist;
Figur 5: eine schematische perspektivische Darstellung eines erfindungsgemäßen Elektromotors mit jeweils zwei Polschuhen, bei dem mehrere Einheiten an einer Rotorachse angeschlossen sind;
Figur 6: eine schematische perspektivische Darstellung eines erfindungsgemäßen Linearmotors; und
Figur 7: ein Diagramm eines Oszilloskops, das an einem erfindungsgemäßen Motor nach Figur 2 aufgenommen wurde.
Die Figur 1 zeigt eine perspektivische Darstellung eines erfindungsgemäßen Reluktanzmotors. Der Reluktanzmotor weist einen ringförmig geschlossenen Anker 1 aus geschichtetem Stahl auf. Im inneren des ringförmigen Ankers 1 ist ein Rotor 2 angeordnet, der drehbar in dem ringförmigen Anker 1 gelagert ist und der ebenfalls aus geschichtetem Stahl gefertigt ist. Einander gegenüberliegend sind zwei Spulen 3, 4 auf den ringförmigen Anker 1 gewickelt, die sich entlang des Umfangs des ringförmigen Ankers 1 also entlang der länglichen Ausdehnung des Ankers 1 erstecken. Die Spulen 3, 4 sind aus Kupfer gewickelt und von einem Gehäuse umgeben. Genaugenommen ist in Figur 1 nur das Gehäuse um die Spulen 3, 4 zu erkennen.
Die Windungen des Drahts werden um die Torus-Oberfläche des ringförmigen Ankers 1 gewickelt. Der ringförmige Anker 1 kann zunächst zweiteilig vorliegen und erst nach dem Aufwickeln der beiden Spulen 3, 4 zu dem gezeigten Toms zusammengefügt werden.
Eine Steuereinheit 5 dient der Steuerung der Spannungsversorgung der Spulen 3, 4. Zwischen den Spulen 3, 4 sind an dem ringförmigen Anker 1 zwei Polschuhe 7, 8 ausgeformt, die sich bereichsweise ins Innere des ringförmigen Ankers 1 in Richtung des Rotors 2 erstrecken. Die Spulen 3, 4 sind entgegengesetzt gewickelt und in Reihe geschaltet. Die Spulen 3, 4 sind also spiegelbildlich zueinander auf dem ringförmigen Anker 1 angeordnet. Durch diese Anordnung und Verschaltung der Spulen 3, 4 miteinander wird an den beiden Polschuhen 7, 8 eine entgegengesetzte und wechselnde magnetische Polung erzeugt.
Die gestellte Aufgabe der Erfindung wird also beispielsweise dadurch gelöst, dass der Stator/Anker 1 der kontaktfreien elektrischen Maschine nach Figur 1 über einen Ankerkern mit ausgeprägten Polschuhen 7, 8 des ringförmigen Ankers 1 verfügt, der als geschichtetes Paket aus voneinander isolierten Dynamoblechen gefertigt ist, wobei die Zahl der Ankerpolschuhe 7, 8 mindestens zwei, bzw. durch 2 teilbar ist. Zwischen ausgeprägten Polschuhen 7, 8 des Ankers 1 , am Magnetkörper 1 , befindet sich die Ankerwicklung, in der jede Spule 3, 4 den Magnetkörper 1 zwischen den ausgeprägten Polschuhen 7, 8 des Ankers 1 umschließt. Die Spulen 3, 4 der Ankerwicklung sind paarweise Stromgegensinnig und paarweise Magnetstromparallel geschaltet. Der wicklungslose Rotor 2 enthält die Welle 12 als Drehachse des Rotors 2, auf der sich der Magnetkörper des Rotors 2 mit Polkanten 14 befindet. Der Rotor 2 ist ebenfalls als geschichtetes Paket aus isolierten Dynamoblechen gefertigt, wobei die Zahl der Rotorpolenden 14 gleich der Zahl der Ankerpole 7, 8 ist.
Die Ankerwicklung besteht aus zwei gleichen Spulen 3, 4 mit gleicher Windungszahl gefertigt aus einem Draht mit gleichmäßigem Querschnitt in den Grenzen des Herstellungsverfahrens, wie beispielsweise der Wicklungsvorrichtung. Die Spulen 3, 4 haben einen entgegengesetzten Wickelsinn, also eine entgegengesetzte Windung und sind hintereinander so geschaltet, dass der durch die genannten Spulen fließende Arbeitsstrom einen Magnetstrom erzeugt, der eine gleichsinnige magnetische Polung der Polschuhe 7, 8 verursacht. Zum Beispiel: Nordpol 7 und Südpol 8. Bei der Umkehrung der Stromrichtung erfolgt der gegensinnige Wechsel der Magnetpole. Der Anker 1 dieses Motors ist ein magnetisierbarer Toroidmagnetkörper (Magnetring) mit zwei (bzw. durch 2 teilbaren) identischen Wicklungen, die symmetrisch auf dem Magnetkörper liegen, gegensinnig geschaltet (Variante der Bifilarwicklung) und durch fast totale Gegeninduktion miteinander gekoppelt sind.
Eine solche Schaltung der Spulen 3, 4 (bifilare Schaltung) zeichnet sich durch eine minimal mögliche Gesamtinduktivität und fast vollständige Kompensierung der Selbstinduktionsspannung von einzelnen Spulen 3, 4 aus. Auf diese Weise wird die gestellte Aufgabe gelöst - die Spulen 3, 4 der Ankerwicklung erzeugen den doppelten Magnetstrom in Ankerpolschuhen 7, 8, dabei haben sie minimale Induktivität und verursachen keine Selbstinduktionsspannung an Wicklungsenden. Die Gesamtinduktivität und die daraus resultierende Selbstinduktionsspannung des Aufbaus werden durch die Ähnlichkeit der elektrischen und geometrischen Eigenschaften der Spulen 3, 4 bestimmt.
Die Motorspeisung, Erzeugung von Arbeitsstromimpulsen, Synchronisierung der Phase der Arbeitsstromimpulsgabe erfolgt durch die Steuereinheit 5 nach Signalen eines Positionsgebers (in Figur 1 nicht gezeigt) des Rotors 2 und ist ohne Besonderheiten.
Figur 2 zeigt eine schematische perspektivische Darstellung eines erfindungsgemäßen Elektromotors mit vier Polschuhen 7, 8, 9, 10. Der Elektromotor verfügt über einen Ankerkern mit ausgeprägten Polschuhen 7, 8, 9, 10 des ringförmigen Ankers 1 , der als geschichtetes Paket aus voneinander isolierten Dynamoblechen gefertigt ist, wobei die Zahl der Ankerpolschuhe 7, 8, 9, 10 durch 2 teilbar ist. Zwischen ausgeprägten Polschuhen 7, 8, 9, 10 des Ankers 1 , am Magnetkörper 1 , befindet sich die Ankerwicklung, in der jede Spule 3, 4, 3-1 , 4-1 den Magnetkörper 1 zwischen den ausgeprägten Polschuhen 7, 8, 9, 10 des Ankers 1 umschließt. Die Spulen 3, 4, 3-1 , 4-1 der Ankerwicklung sind paarweise Stromgegensinnig und paarweise Magnetstromparallel geschaltet. Der wicklungslose Rotor 2 enthält die Welle 12 als Drehachse des Rotors 2, auf der sich der Magnetkörper des Rotors 2 mit Polkanten 14 befindet. Der Rotor 2 ist ebenfalls als geschichtetes Paket aus isolierten Dynamoblechen gefertigt, wobei die Zahl der Rotorpolenden 14 gleich der Zahl der Ankerpole 7, 8, 9, 0 ist.
Die Ankerwicklung besteht aus vier gleichen Spulen 3, 4, 3-1, 4-1 mit gleicher Windungszahl gefertigt aus einem Draht mit gleichmäßigem Querschnitt in den Grenzen des Herstellungsverfahrens, wie beispielsweise der Wicklungsvorrichtung. Die Spulen 3, 4, 3-1, 4-1 haben einen entgegengesetzten Wickelsinn, also eine entgegengesetzte Windung und sind hintereinander so geschaltet, dass der durch die genannten Spulen 3, 4, 3-1 , 4-1 fließende Arbeitsstrom einen Magnetstrom erzeugt, der eine gleichsinnige magnetische Polung der Polschuhe 7, 9 und der Polschuhe 8, 10 verursacht. Zum Beispiel: Nordpol 7 und 9 und Südpol 8 und 0. Bei der Umkehrung der Stromrichtung erfolgt der gegensinnige Wechsel der Magnetpole.
Es ist aus der Erfindung ersichtlich, dass auch ohne weiteres eine größere ganzzahlige Anzahl von Polschuhen und Spulen realisiert werden kann.
Figur 3 zeigt eine schematische perspektivische Darstellung eines langestreckten erfindungsgemäßen Elektromotors mit zwei Polschuhen 7, 8. Der Elektromotor verfügt über einen Ankerkern mit ausgeprägten Polschuhen 7, 8 des ringförmigen Ankers 1, der als geschichtetes Paket aus voneinander isolierten Dynamoblechen gefertigt ist, wobei die Zahl der Ankerpolschuhe 7, 8 durch 2 teilbar ist. Zwischen ausgeprägten Polschuhen 7, 8 des Ankers 1 , am Magnetkörper 1 , befindet sich die Ankerwicklung, in der jede Spule 3, 4 den Magnetkörper 1 zwischen den ausgeprägten Poischuhen 7, 8 des Ankers 1 umschiießt. Die Spuien 3, 4 der Ankerwicklung sind paarweise Stromgegensinnig und paarweise Magnetstromparallel geschaltet. Der wicklungslose Rotor 2 enthält die Welle 12 als Drehachse des Rotors 2, auf der sich der Magnetkörper des Rotors 2 mit Polkanten 14 befindet. Der Rotor 2 ist ebenfalls als geschichtetes Paket aus isolierten Dynamoblechen gefertigt, wobei die Zahl der Rotorpolenden 14 gleich der Zahl der Ankerpole 7, 8 ist.
Die Ankerwicklung besteht aus zwei gleichen Spulen 3, 4 mit gleicher Windungszahl gefertigt aus einem Draht mit gleichmäßigem Querschnitt in den Grenzen des Herstellungsverfahrens, wie beispielsweise der Wicklungsvorrichtung. Die Spulen 3, 4 haben einen entgegengesetzten Wickelsinn, also eine entgegengesetzte Windung und sind hintereinander so geschaltet, dass der durch die genannten Spulen 3, 4 fließende Arbeitsstrom einen Magnetstrom erzeugt, der eine gleichsinnige magnetische Polung der Polschuhe 7, 8 verursacht. Zum Beispiel: Nordpol 7 und Südpol 8. Bei der Umkehrung der Stromrichtung erfolgt der gegensinnige Wechsel der Magnetpole. Es sind also mit der Erfindung langgestreckte ebenso wie flache Motoren realisierbar.
Figur 4 zeigt eine schematische perspektivische Darstellung eines erfindungsgemäßen Elektromotors mit zwei Polschuhen 7, 8, bei dem der Rotor 2 außen um den Anker 1 herum angeordnet ist. Der Elektromotor verfügt über einen Ankerkern mit ausgeprägten Polschuhen 7, 8 des ringförmigen Ankers 1 , der als geschichtetes Paket aus voneinander isolierten Dynamoblechen gefertigt ist, wobei die Zahl der Ankerpolschuhe 7, 8 durch 2 teilbar ist. Die Polschuhe 7, 8 sind dabei nach außen in Richtung des Rotors 2 gerichtet. Zwischen ausgeprägten Polschuhen 7, 8 des Ankers 1 , am Magnetkörper 1 , befindet sich die Ankerwicklung, in der jede Spule 3, 4 den Magnetkörper 1 zwischen den ausgeprägten Polschuhen 7, 8 des Ankers 1 umschließt. Die Spulen 3, 4 der Ankerwicklung sind paarweise Stromgegensinnig und paarweise Magnetstromparallel geschaltet. Der wicklungslose Rotor 2 enthält die Welle 12 als Drehachse des Rotors 2, auf der sich der Magnetkörper des Rotors 2 mit Polkanten 14 befindet. Der Rotor 2 ist ebenfalls als geschichtetes Paket aus isolierten Dynamoblechen gefertigt, wobei die Zahl der Rotorpolenden 14 gleich der Zahl der Ankerpole 7, 8 ist.
Die Ankerwicklung besteht aus zwei gleichen Spulen 3, 4 mit gleicher Windungszahl gefertigt aus einem Draht mit gleichmäßigem Querschnitt in den Grenzen des Herstellungsverfahrens, wie beispielsweise der Wicklungsvorrichtung. Die Spulen 3, 4 haben einen entgegengesetzten Wickelsinn, also eine entgegengesetzte Windung und sind hintereinander so geschaltet, dass der durch die genannten Spulen 3, 4 fließende Arbeitsstrom einen Magnetstrom erzeugt, der eine gleichsinnige magnetische Polung der Polschuhe 7, 8 verursacht. Zum Beispiel: Nordpol 7 und Südpol 8. Bei der Umkehrung der Stromrichtung erfolgt der gegensinnige Wechsel der Magnetpole.
Figur 5 zeigt eine schematische perspektivische Darstellung eines erfindungsgemäßen Elektromotors mit jeweils zwei Polschuhen 7, 8, 7-1 , 8-1 , 7-2, 8- 2, bei dem mehrere Einheiten an einer Rotorachse 12 angeschlossen sind. Die Polenden 14 der Rotoren 2, 2-1, 2-2 sind gegeneinander versetzt, so dass immer ein Drehmoment auf der Rotorachse 12 erzeugt werden kann. Der Elektromotor verfügt über drei Ankerkerne mit ausgeprägten Polschuhen 7, 8, 7-1 , 8-1 , 7-2, 8.2 des ringförmiger Anker 1 , 1-1 , 1-2, die als geschichtete Pakete aus voneinander isolierten Dynamoblechen gefertigt sind, wobei die Zahl der Ankerpolschuhe 7, 8, 7-1 , 8-1, 7-2, 8-2 für jeden der drei Teile durch 2 teilbar ist. Die Polschuhe 7, 8, 7-1 , 8-1 , 7-2, 8-2 sind dabei nach innen in Richtung der Rotoren 2, 2-1 , 2-2 gerichtet. Zwischen ausgeprägten Polschuhen 7, 8, 7-1, 8-1 , 7-2, 8-2 der Anker 1 , 1-1, 1-2, am Magnetkörper 1 , 1-1 , 1-2, befinden sich die Ankerwicklungen, in der jede Spule 3, 4,
3- 1 , 4-1 , 3-2, 4-2 die Magnetkörper 1 , 1-1 , 1-2 zwischen den ausgeprägten Polschuhen 7, 8, 7-1, 8-1, 7-2, 8-2 der Anker 1 , 1-1 , 1-2 umschließen. Die Spulen 3, 4, 3-1, 4-1 , 3-2, 4-2 der Ankerwicklung sind paarweise Stromgegensinnig und paarweise Magnetstromparallel geschaltet. Die wicklungslose Rotoren 2, 2-1 , 2-2 sind zentral an die Welle 12 als Drehachse der Rotoren 2, 2-1, 2-2 angeschlossen, auf der sich die Magnetkörper der Rotoren 2, 2-1, 2-2 mit Polkanten 14 befinden. Die Rotoren 2, 2-1 , 2-2 sind ebenfalls als geschichtetes Paket aus isolierten Dynamoblechen gefertigt, wobei die Zahl der Rotorpolenden 14 gleich der Zahl der Ankerpolen 7, 8, 7-1 , 8-1 , 7-2, 8-2 ist.
Die Ankerwicklungen bestehen aus jeweils zwei gleichen Spulen 3, 4, 3-1 , 4-1 , 3-2,
4- 2 mit gleicher Windungszahl gefertigt aus einem Draht mit gleichmäßigem Querschnitt in den Grenzen des Herstellungsverfahrens, wie beispielsweise der Wicklungsvorrichtung. Die Spulen 3, 4, 3-1 , 4-1 , 3-2, 4-2 haben einen entgegengesetzten Wickelsinn, also eine entgegengesetzte Windung und sind hintereinander so geschaltet, dass der durch die genannten Spulen 3, 4, 3-1 , 4-1 , 3- 2, 4-2 fließende Arbeitsstrom einen Magnetstrom erzeugt, der eine gleichsinnige magnetische Polung der Polschuhe 7, 8, 7-1 , 8-1 , 7-2, 8-2 verursacht. Zum Beispiel: Nordpole 7, 7-1, 7-2 und Südpole 8, 8-1 , 8-2. Bei der Umkehrung der Stromrichtung erfolgt der gegensinnige Wechsel der Magnetpole.
Die Merkmale der erfindungsgemäßen Ausführungsbeispiele nach den Figuren 1 bis 5 lassen sich ohne weiteres miteinander kombinieren und erweitern, so dass eine große Anzahl verschiedener Ausführungsformen der Erfindung vorstellbar ist.
Figur 6 zeigt eine schematische perspektivische Darstellung eines erfindungsgemäßen Linearmotors mit einem Anker 1 und einer Reihe linear hintereinander aufgebauter Polschuhe 7, 8, 7-1 , 8-1 , 7-2, 8-2, 8-3 und Spulen 3, 4, 3- 1 , 4-1 , 3-2, 4-2. Ein Läufer 2 oder Aktor 2 kann auf dem Anker 1 hin und her bewegt werden. Mit diesem Linearmotor lassen sich beispielsweise automatische Türen, Schiebetüren, Roboterarme, usw. betätigen. Der Elektromotor verfügt über einen Ankerkern mit sieben ausgeprägten Polschuhen 7, 8, 7-1 , 8-1 , 7-2, 8-2, 8-3 des linearen Ankers 1 , der als geschichtetes Paket aus voneinander isolierten Stahlblechen gefertigt ist, wobei die Zahl der Ankerpolschuhe 7, 8, 7-1, 8-1 , 7-2, 8-2, 8-3 ungerade, also nicht durch zwei teilbar ist. Zwischen ausgeprägten Polschuhen 7, 8, 7-1 , 8-1 , 7-2, 8-2, 8-3 des Ankers 1 , am Magnetkörper 1 , befindet sich die Ankerwicklung, in der jede Spule 3, 4, 3-1 , 4-1 , 3- 2, 4-2 den Magnetkörper 1 zwischen den ausgeprägten Polschuhen 7, 8, 7-1, 8-1 , 7- 2, 8-2, 8-3 des Ankers 1 umschließt. Die Spulen 3, 4, 3-1, 4-1 , 3-2, 4-2 der Ankerwicklung sind paarweise Stromgegensinnig und paarweise Magnetstromparallel geschaltet. Der wicklungslose Läufer 2 umfasst zwei Polkanten 14. Bei dem Aufbau als linearer Motor ist es möglich den Läufer mit einer ungeradzahligen Anzahl von Polkanten zu realisieren (in Figur 6 nicht gezeigt). Der Läufer 2 ist ebenfalls als geschichtetes Paket aus isolierten Dynamoblechen gefertigt, wobei die Zahl der Rotorpolenden 14 hier unabhängig von der Zahl der Ankerpole 7, 8 ist.
Die Ankerwicklung besteht aus sechs gleichen Spulen 3, 4, 3-1 , 4-1 , 3-2, 4-2 mit gleicher Windungszahl gefertigt aus einem Draht mit gleichmäßigem Querschnitt in den Grenzen des Herstellungsverfahrens, wie beispielsweise der Wicklungsvorrichtung. Die Spulen 3, 4, 3-1 , 4-1 , 3-2, 4-2 haben einen entgegengesetzten Wickelsinn, also eine entgegengesetzte Windung und sind hintereinander so geschaltet, dass der durch die genannten Spulen 3, 4, 3-1 , 4-1 , 3- 2, 4-2 fließende Arbeitsstrom einen Magnetstrom erzeugt, der eine abwechselnde magnetische Polung der Polschuhe 7, 8, 7-1 , 8-1 , 7-2, 8-2, 8-3 verursacht. Zum Beispiel: Nordpol 7, 7-1 , 7-2, 8-3 und Südpol 8, 8-1 , 8-2. Bei der Umkehrung der Stromrichtung erfolgt der gegensinnige Wechsel der Magnetpole.
Zwecks Prüfung der Leistungsfähigkeit des Gegenstandes der Erfindung wurde das Muster des beschriebenen Motors nach Figur 2 gefertigt, das die vorteilhaft Motoreigenschaften bestätigt hat. In Figur 7 ist ein Oszillogramm von an die Ankerwicklung (CH1) angelegten Spannungsimpulsen und des durch diese Spannung erzeugten Stromes (CH2) durch die Ankerwicklung dargestellt. Wie man aus Oszillogramm sehen kann, beträgt die Frontlänge des Stromimpulses durch die Ankerwicklung 0,016 ms und wird im Wesentlichen anhand der Frontlänge des Impulses der angelegten Spannung bestimmt, was ein fast völliges Fehlen der Induktivität der Ankerwicklung ermöglicht und so praktisch den aktiven Widerstand zu berücksichtigen. Bei einer solchen Frontlänge des Stromimpulses durch die Ankerwicklung ist die Impulsperiode der Speisung von 0,1 ms durchaus erreichbar, was 10.000 Impulse pro Sekunde ermöglicht. Mit vier Polen des Ankers und Rotors kann die Rotordrehzahl 150.000 Umdrehungen pro Minute betragen.
Die in der voranstehenden Beschreibung, sowie den Ansprüchen, Figuren und Ausführungsbeispielen offenbarten Merkmale der Erfindung können sowohl einzeln, als auch in jeder beliebigen Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.
Bezugszeichenliste
1 Anker / magnetisierbarer Ring
2,2-1,2-2 Aktor /Rotor
3,4,3-1,3-2 Spule
4- , 4-2 Spule
5 Steuereinheit / Spannungsquelle
7, 8, 9, 10 Polschuh
7- 1,7-2 Polschuh
8- 1 , 8-2, 8-3 Polschuh
12 Rotorachse
14 Magnetisierbare Polende des Rotors

Claims

Elektrischer Motor, insbesondere Reluktanzmotor aufweisend
einen Anker (1), beinhaltend ein magnetisierbares Material, wobei der Anker
(1) eine Mehrzahl von Polschuhen (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) aufweist,
einen Aktor (2, 2-1 , 2-2), der beweglich gegen den Anker (1) angeordnet und gelagert ist, der ein magnetisierbares Material beinhaltet und der zumindest zwei magnetisierbare Polenden (14) aufweist und
eine geradzahlige Anzahl von Spulen (3, 3-1, 3-2, 4, 4-1, 4-2), die zwischen den Polschuhen (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) angeordnet sind und deren Wicklungen den Anker (1) derart umschließen, dass sich die Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) bereichsweise entlang des Ankers (1) erstrecken, so dass der Anker (1) mit Hilfe der Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) magnetisierbar ist.
Elektrischer Motor nach Anspruch 1, dadurch gekennzeichnet, dass
die Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) derart elektrisch verschaltet sind, dass bei Anlegen einer elektrischen Spannung an den Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) die magnetischen Felder, die durch zwei zu einem Polschuh (7, 8, 9, 10, 7-1, 7-2, 8-1 , 8-2, 8-3) benachbarten Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) erzeugt werden, derart ausgerichtet sind, dass an dem dazwischen angeordneten Polschuh (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) die gleiche magnetische Polarisierung durch beide Spulen (3, 3-1, 3-2, 4, 4-1 , 4-2) entsteht.
Elektrischer Motor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) auf dem Anker (1) elektrisch paarweise gegenläufig und magnetisch paarweise parallel angeschlossen sind.
Elektrischer Motor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
der Anker (1) und/oder der Aktor (2, 2-1 , 2-2) aus einem magnetisierbaren Material besteht oder bestehen und/oder das magnetisierbare Material des Ankers (1) und/oder des Aktors (2, 2-1 , 2-2) eine magnetische Permeabilität von zumindest 100 H/m aufweist, bevorzugt eine magnetische Permeabilität von zumindest 1000 H/m, besonders bevorzugt eine magnetische Permeabilität von zumindest 10.000 H/m aufweist.
Elektrischer Motor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
die Anzahl der Polschuhe (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2) gleich der Anzahl der Polenden (14) ist.
Elektrischer Motor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
die Anzahl der Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) gleich der Anzahl der Polschuhe (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2) ist und/oder die Anzahl der Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) ein ganzzahliges Vielfaches der Anzahl der Polschuhe (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2) ist.
Elektrischer Motor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
der Anker (1) ringförmig ist, wobei der ringförmige Anker (1) eine geradzahlige Anzahl von Polschuhen (7, 8, 9, 10, 7-1, 7-2, 8-1, 8-2) aufweist und der Aktor (2, 2-1 , 2-2) ein Rotor (2, 2-1 , 2-2) ist, der drehbar zum ringförmigen Anker (1) gelagert ist, vorzugsweise drehbar im Inneren des ringförmigen Ankers (1) gelagert ist, wobei sich die Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) bereichsweise entlang des Umfangs des ringförmigen Ankers (1) erstrecken, so dass der ringförmige Anker (1) mit Hilfe der Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) magnetisierbar ist.
Elektrischer Motor nach Anspruch 7, dadurch gekennzeichnet, dass
der Rotor (2, 2-1 , 2-2) eine ganzzahlige Anzahl von magnetisierbaren Polen
(7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2) aufweist.
Elektrischer Motor nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass jeweils so viele Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) zwischen zwei Polschuhen (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2) um ringförmigen Anker (1) angeordnet sind, die einem ganzzahligen Vielfachen der Anzahl der Polschuhe (7, 8, 9, 10, 7-1 , 7- 2, 8-1 , 8-2) entsprechen.
10. Elektrischer Motor nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass
der ringförmige Anker (1) und/oder der Rotor (2, 2-1 , 2-2) eine geradzahlige Drehsymmetrie um die Drehachse des Rotors (2, 2-1 , 2-2) aufweist oder aufweisen, die gleich der geradzahligen Anzahl der Polschuhe (7, 8, 9, 10, 7- 1 , 7-2, 8-1 , 8-2) des ringförmigen Ankers (1) und/oder der geradzahligen Anzahl der Polenden (14) des Rotors (2, 2-1 , 2-2) ist.
11. Elektrischer Motor nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass
in der Drehachse des Rotors (2, 2-1 , 2-2) eine Antriebsachse (12) angeordnet ist, um die der Rotor (2, 2-1 , 2-2) drehbar in dem ringförmigen Anker (1) gelagert ist.
12. Elektrischer Motor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass
der elektrische Motor ein Linear-Motor mit einem linearen Anker (1) ist, und der lineare Anker (1) eine ungeradzahlige Anzahl von Polschuhen (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) aufweist, wobei zwischen jedem Polschuh (7, 8, 9, 10,
7- 1 , 7-2, 8-1 , 8-2, 8-3) wenigstens eine Spule (3, 3-1, 3-2, 4, 4-1 , 4-2) angeordnet ist, vorzugsweise zwischen jedem Polschuh (7, 8, 9, 10, 7-1 , 7-2,
8- 1 , 8-2, 8-3) eine Spule (3, 3-1 , 3-2, 4, 4-1 , 4-2) angeordnet ist.
13. Elektrischer Motor nach Anspruch 12, dadurch gekennzeichnet, dass
der lineare Anker (1) einen Polschuh (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) mehr aufweist, als Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) auf den linearen Motor gewickelt sind und zwischen zwei benachbarten Polschuhen (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) des Ankers (1) genau eine Spule (3, 3-1 , 3-2, 4, 4-1 , 4-2) angeordnet ist.
14. Elektrischer Motor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
zwischen zwei Polschuhen (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) des Ankers (1) immer die gleiche Anzahl von Spulenwindungen durch die Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) gewickelt ist.
15. Elektrischer Motor nach Anspruch 14, dadurch gekennzeichnet, dass
die Anzahl der Windungen der Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) zwischen allen Polschuhen (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) bis auf wenigstens 45° einer Windung identisch ist, vorzugsweise bis auf wenigstens 45° identisch ist, besonders bevorzugt bis auf wenigstens 5° identisch ist.
16. Elektrischer Motor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
der elektrische Leiter, aus dem die Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) gewickelt sind einen gleichmäßigen Querschnitt aufweist, insbesondere eine Querschnitt mit einer Querschnittsabweichung von höchstens 20%, bevorzugt von höchstens 10%, besonders bevorzugt von höchstens 2%.
17. Elektrischer Motor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
das magnetisierbare Material des Ankers (1) und/oder des Aktors (2, 2-1 , 2-2) aus elektrisch leitenden und voneinander elektrisch isolierten Schichten besteht, vorzugsweise aus elektrisch voneinander isolierten Stahlschichten, wobei zwischen den elektrisch leitenden Schichten ein Isolator angeordnet ist, vorzugsweise Kunststoffschichten zwischen den elektrisch leitenden Schichten angeordnet sind.
18. Verfahren zur Herstellung eines elektrischen Motors, insbesondere eines Reluktanzmotors, vorzugsweise nach einem der vorangehenden Ansprüche, bei dem
eine geradzahlige Anzahl von Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) auf einen Anker (1) beinhaltend ein magnetisierbares Material aufgebracht werden, wobei die Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) zwischen einer Vielzahl von Polschuhen (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) angeordnet werden, so dass die Wicklungen der Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) den Anker (1) derart umschließen, dass sich die Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) bereichsweise entlang des Ankers (1) erstrecken,
ein Aktor (2, 2-1 , 2-2) beinhaltend ein magnetisierbares Material mit zumindest zwei Polenden (14) beweglich gegen den Anker (1) gelagert wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass
die Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) derart elektrisch miteinander verschaltet werden, dass bei Anlegen einer elektrischen Spannung an den Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-2) die magnetischen Felder, die durch zwei zu einem Polschuh (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) benachbarten Spulen (3, 3-1 , 3-2, 4, 4-1 , 4-
2) erzeugt werden, derart ausgerichtet sind, dass an dem dazwischen angeordneten Polschuh (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-3) die gleiche magnetische Polarisierung an dem Polschuh (7, 8, 9, 10, 7-1 , 7-2, 8-1 , 8-2, 8-
3) von den beiden benachbarten Spulen (3, 3-1 , 3-2, 4, 4-1, 4-2) erzeugt wird.
20. Verwendung eines elektrischen Motors nach einem der Ansprüche 1 bis 17, insbesondere eines Reluktanzmotors nach einem der Ansprüche 1 bis 17 zum Antreiben einer Bewegung einer Vorrichtung oder eines Teils einer Vorrichtung.
PCT/EP2012/004648 2012-11-08 2012-11-08 Elektromotor mit verbesserter induktivität und verfahren zum wickeln und verschalten von spulen WO2014071960A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/441,222 US20150288229A1 (en) 2012-11-08 2012-11-08 Electric motor with improved inductance and method for winding and interconnecting coils
CN201280076958.8A CN104937824A (zh) 2012-11-08 2012-11-08 电感得以改善的电动机和将线圈卷绕并互连的方法
PCT/EP2012/004648 WO2014071960A1 (de) 2012-11-08 2012-11-08 Elektromotor mit verbesserter induktivität und verfahren zum wickeln und verschalten von spulen
JP2015540049A JP2015534451A (ja) 2012-11-08 2012-11-08 インダクタンスを改善した電気モーター並びにコイルの巻線及び相互接続の方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/004648 WO2014071960A1 (de) 2012-11-08 2012-11-08 Elektromotor mit verbesserter induktivität und verfahren zum wickeln und verschalten von spulen

Publications (1)

Publication Number Publication Date
WO2014071960A1 true WO2014071960A1 (de) 2014-05-15

Family

ID=47355993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/004648 WO2014071960A1 (de) 2012-11-08 2012-11-08 Elektromotor mit verbesserter induktivität und verfahren zum wickeln und verschalten von spulen

Country Status (4)

Country Link
US (1) US20150288229A1 (de)
JP (1) JP2015534451A (de)
CN (1) CN104937824A (de)
WO (1) WO2014071960A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017107099A1 (zh) * 2015-12-23 2017-06-29 深圳市东方美信电子科技有限公司 永磁无刷电机
RU2742393C1 (ru) * 2020-08-10 2021-02-05 Леонид Борисович Листков Однофазный генератор переменного тока

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2719685C1 (ru) * 2019-12-07 2020-04-21 Олег Михайлович Тришин Статор электродвигателя

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1206555A (en) * 1968-04-24 1970-09-23 Ncr Co Electrical stepping motor systems
EP0254347A1 (de) * 1986-07-17 1988-01-27 Koninklijke Philips Electronics N.V. Elektrische Maschine
EP0343845A2 (de) * 1988-05-27 1989-11-29 Switched Reluctance Drives Ltd Elektrische Maschinen
DE4445038A1 (de) * 1994-12-16 1996-06-20 Univ Dresden Tech Semilinearantrieb für Stückgut

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2790098A (en) * 1953-12-03 1957-04-23 Nyyssonen Einard Polyphase synchronous machine
US4315171A (en) * 1977-05-23 1982-02-09 Ernest Schaeffer Step motors
JPH0332387A (ja) * 1989-06-27 1991-02-12 Secoh Giken Inc 複数相のリラクタンス型電動機
JP3740704B2 (ja) * 1995-02-23 2006-02-01 松下電工株式会社 自動ドア開閉装置
JPH09247911A (ja) * 1996-03-05 1997-09-19 Nippon Electric Ind Co Ltd スイッチド・リラクタンスモータ
WO1999019962A1 (en) * 1997-10-16 1999-04-22 Omnidyne Inc. Generators and transformers with toroidally wound stator winding
JP4029519B2 (ja) * 1999-04-12 2008-01-09 株式会社デンソー 車両用交流発電機の固定子
KR20010003881A (ko) * 1999-06-25 2001-01-15 배길성 스위치드 릴럭턴스 모터
JP2001028851A (ja) * 1999-07-13 2001-01-30 Nissan Motor Co Ltd モータおよびスタータ・ジェネレータ
KR100442122B1 (ko) * 2001-07-31 2004-07-30 한국전기연구원 영구 자석을 이용한 브러시리스 발전기
JP2003189589A (ja) * 2001-12-21 2003-07-04 Canon Inc 可動磁石型リニアモータ、露光装置及びデバイス製造方法
JP4447619B2 (ja) * 2007-03-20 2010-04-07 株式会社日本自動車部品総合研究所 積層鉄心
JP2008283785A (ja) * 2007-05-10 2008-11-20 Denso Corp スイッチドリラクタンスモータ
US7843104B2 (en) * 2008-01-23 2010-11-30 General Electric Company Stator and stator components of dynamoelectric machines and process of inhibiting joule heating therein
JP2012175851A (ja) * 2011-02-23 2012-09-10 Yaskawa Electric Corp リニアモータ電機子およびリニアモータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1206555A (en) * 1968-04-24 1970-09-23 Ncr Co Electrical stepping motor systems
EP0254347A1 (de) * 1986-07-17 1988-01-27 Koninklijke Philips Electronics N.V. Elektrische Maschine
EP0343845A2 (de) * 1988-05-27 1989-11-29 Switched Reluctance Drives Ltd Elektrische Maschinen
DE4445038A1 (de) * 1994-12-16 1996-06-20 Univ Dresden Tech Semilinearantrieb für Stückgut

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017107099A1 (zh) * 2015-12-23 2017-06-29 深圳市东方美信电子科技有限公司 永磁无刷电机
RU2742393C1 (ru) * 2020-08-10 2021-02-05 Леонид Борисович Листков Однофазный генератор переменного тока
WO2022035355A1 (ru) * 2020-08-10 2022-02-17 Леонид Борисович ЛИСТКОВ Однофазный генератор переменного тока

Also Published As

Publication number Publication date
CN104937824A (zh) 2015-09-23
US20150288229A1 (en) 2015-10-08
JP2015534451A (ja) 2015-11-26

Similar Documents

Publication Publication Date Title
DE102007007578B4 (de) Elektrische Maschine
DE112006002546B4 (de) Elektromotor mit asymmetrischen Polen
DE102012012605B4 (de) Synchronmotor
DE112005003694T5 (de) Magnetmotor
EP3545610B1 (de) Synchron-maschine mit magnetischer drehfelduntersetzung und flusskonzentration
EP1858142A1 (de) Linearmotor
DE202010015364U1 (de) Bürstenloser Elektromotor oder Generator in Schalenbauweise
DE102013215641A1 (de) elektrische Rotationsmaschine und diese verwendendes elektrisches Servolenksystem
DE102005058030A1 (de) Rotierende Elektromaschine
DE102021102807A1 (de) Magneten, Polschuhe und Schlitzöffnungen eines Axialflussmotors
DE3730615A1 (de) Elektrische maschine mit permanentmagnet-erregung
DE102018102216A1 (de) Lenksystem mit Reluktanzbremse
EP2556580A2 (de) Stator und verfahren zur herstellung eines stators
EP2479872B1 (de) Permanenterregte synchronmaschine mit einem rotor
DE3122049A1 (de) Kollektorloser gleichstromaussenlaeufermotor
WO2014071960A1 (de) Elektromotor mit verbesserter induktivität und verfahren zum wickeln und verschalten von spulen
EP2731241B1 (de) Elektromotor mit verbesserter Induktivität
DE102012021963A1 (de) Elektromotor mit verbesserter Induktivität und Verfahren zum Wickeln und Verschalten von Spulen
DE3931484C2 (de)
WO2001099254A1 (de) Vorrichtungen für roboterantriebseinheiten
DE112021005411T5 (de) Elektrische maschine mit kombiniertem axial- und radialfluss
EP2067237B1 (de) Synchronmaschine
DE102019005465A1 (de) Elektrische rotationsmaschine, ausgestattet mit einem rotor verringerter masse
WO1999063646A1 (de) Dreiphasengleichstrommotor mit elektronischer kommutierung und hoher motorleistung
DE4205778A1 (de) Rotatorisch elektrische maschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540049

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14441222

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12799508

Country of ref document: EP

Kind code of ref document: A1