WO2017107099A1 - 永磁无刷电机 - Google Patents

永磁无刷电机 Download PDF

Info

Publication number
WO2017107099A1
WO2017107099A1 PCT/CN2015/098432 CN2015098432W WO2017107099A1 WO 2017107099 A1 WO2017107099 A1 WO 2017107099A1 CN 2015098432 W CN2015098432 W CN 2015098432W WO 2017107099 A1 WO2017107099 A1 WO 2017107099A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
core
brushless motor
magnet brushless
rotating shaft
Prior art date
Application number
PCT/CN2015/098432
Other languages
English (en)
French (fr)
Inventor
张舒
张铭金
文奕婕
Original Assignee
深圳市东方美信电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市东方美信电子科技有限公司 filed Critical 深圳市东方美信电子科技有限公司
Priority to CN201580001119.3A priority Critical patent/CN105874687B/zh
Priority to PCT/CN2015/098432 priority patent/WO2017107099A1/zh
Publication of WO2017107099A1 publication Critical patent/WO2017107099A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention belongs to the field of electric motors, and in particular to a permanent magnet brushless motor.
  • An electric machine generally includes a stator and a rotor, and the rotor is mounted on a rotating shaft to drive the rotating shaft.
  • the prior art motor generally uses a permanent magnet punched with a plurality of pairs of magnetic poles as a rotor, correspondingly supports a plurality of core coils through an annular frame to form a stator, and a plurality of core coils surround the rotor, thereby being generated by the iron core coil.
  • the magnetic field is varied to drive the rotor to drive the shaft for transport.
  • this type of motor since it is necessary to arrange a plurality of pairs of iron core coil structures around the rotor, the volume of the radial motor is increased, which is disadvantageous to the miniaturization of the motor.
  • An object of the present invention is to provide a permanent magnet brushless motor, which aims to solve the problem that the existing motor has a large radial volume and is not conducive to miniaturization of the motor.
  • a permanent magnet brushless motor including a casing and a rotating shaft mounted in the casing, the permanent magnet brushless motor further comprising: driving the rotating shaft to rotate along An axially aligned at least two-phase electromagnetic driving phase of the rotating shaft; each electromagnetic driving phase includes an annular permanent magnet fixed on the rotating shaft and an excitation unit fixed on the casing, the excitation unit including a coil for driving the magnetic field and a field core for guiding the two poles of the driving magnetic field to opposite sides of the annular permanent magnet, the coil being disposed on a side of the rotating shaft.
  • the present invention provides at least two phases of electromagnetic drive phase, and each phase of the electromagnetic drive phase further includes an excitation unit and a ring-shaped permanent magnet, and the coil of the excitation unit is disposed on a side of the rotating shaft, and the coil is generated by the exciting core.
  • the two poles of the driving magnetic field are respectively guided to opposite sides of the annular permanent magnet, thereby electromagnetically passing through the phases
  • the driving phase cooperates with the driving shaft to rotate, and the coil of the annular permanent magnet is radially reduced, and the width of the radial permanent magnet core of the annular permanent magnet can be reduced to reduce the volume of the motor.
  • FIG. 1 is a schematic perspective view of a permanent magnet brushless motor according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of an internal portion of the permanent magnet brushless motor of FIG. 1;
  • FIG. 3 is a schematic exploded view of the permanent magnet brushless motor of FIG. 1;
  • FIG. 4 is a schematic exploded view of the electromagnetic driving phase of FIG. 3;
  • FIG. 5 is a perspective structural view of a first type of field core in the permanent magnet brushless motor of FIG. 1;
  • FIG. 6 is a front elevational view showing a second excitation core of the permanent magnet brushless motor of FIG. 1;
  • FIG. 7 is a side view showing the structure of a third type of field core in the permanent magnet brushless motor of FIG. 1.
  • FIG. 8 is a schematic diagram showing the internal structure of a permanent magnet brushless motor according to a second embodiment of the present invention.
  • FIG. 9 is a front elevational view showing the field of the field core of FIG. 8;
  • FIG. 10 is a side view showing the structure of another type of field core in the permanent magnet brushless motor of FIG. 8.
  • one of the annular permanent magnets has two magnetic poles of opposite polarities in diameter, and the two magnetic poles are defined as a pair of magnetic poles, and when the annular permanent magnet has only one pair of magnetic poles, It is called a pair of magnetic poles; and when a ring-shaped permanent magnet has a plurality of pairs of magnetic poles, it is called a plurality of pairs of magnetic poles.
  • the angle between the straight lines on the two coaxial permanent magnets is the two annular The magnetic pole angle difference of the magnet.
  • the angle of the magnetic induction lines of the two annular permanent magnets is a magnetic pole angle difference; and for a ring-shaped permanent magnet filled with a plurality of pairs of magnetic poles, two annular permanent magnets The angle between the corresponding magnetic lines of the same pair of magnetic poles is the magnetic pole angle difference.
  • a permanent magnet brushless motor includes a casing and a rotating shaft installed in the casing, the permanent magnet brushless motor further comprising: for driving the rotating shaft to rotate and arranged along an axial direction of the rotating shaft At least two-phase electromagnetic drive phase; each electromagnetic drive phase includes an annular permanent magnet fixed to the rotating shaft and an excitation unit fixed to the housing, the excitation unit including a coil for generating a driving magnetic field and The two poles of the driving magnetic field are respectively guided to the exciting cores on opposite sides of the annular permanent magnet, and the coils are disposed on the side of the rotating shaft.
  • each phase of the electromagnetic driving phase further comprises an excitation unit and a ring-shaped permanent magnet, and the coil of the excitation unit is disposed on a side of the rotating shaft, and the driving magnetic field generated by the coil by the exciting core
  • the two poles are respectively guided to opposite sides of the annular permanent magnet, so as to drive the rotation of the rotating shaft through the electromagnetic driving phases of the phases, and simultaneously reduce the coil of the annular permanent magnet in the radial direction, and the radial excitation of the annular permanent magnet can be reduced.
  • the width of the core to reduce the size of the motor.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a permanent magnet brushless motor 100 includes a casing 10, a rotating shaft 20, and a three-phase electromagnetic driving phase 30; the casing 10 is used to protect the rotating shaft 20 and Each electromagnetic drive phase 30.
  • the rotating shaft 20 is mounted in the casing 10 to support the rotating shaft 20 and to rotate the rotating shaft 20.
  • the three-phase electromagnetic drive phases 30 are sequentially arranged along the axial direction of the rotary shaft 20 to drive the rotary shaft 20 to rotate.
  • Each of the electromagnetic drive phases 30 includes an annular permanent magnet 31 and an excitation unit 40.
  • the annular permanent magnet 31 is fixed on the rotating shaft 20.
  • the excitation unit 40 is fixed on the casing 10 for driving the annular permanent magnet 31 to rotate, thereby driving the rotating shaft 20 to rotate. Then the annular permanent magnet 31 acts as a rotor and the corresponding excitation unit 40 acts as a stator.
  • each excitation unit 40 includes a coil 41 and a field core 50.
  • the coil 41 is disposed on the side of the rotating shaft 20 for generating a driving magnetic field, and the exciting core 50 is used.
  • the two poles of the driving magnetic field generated by the coil 41 are respectively guided to opposite sides of the annular permanent magnet 31 to drive the annular permanent magnet 31 to rotate.
  • Each of the excitation units 40 can drive the corresponding annular permanent magnet 31 to rotate, so that the three-phase electromagnetic drive phase 30 of the present embodiment can smoothly and directionally drive the rotation of the rotary shaft 20.
  • the coil 41 When the coil 41 is disposed on the side of the rotating shaft 20, the coil 41 is correspondingly disposed outside the annular permanent magnet 31, and the two poles of the driving magnetic field generated by the coil 41 are respectively guided to the opposite two of the annular permanent magnet 31 by the exciting core 50. Side, you can reduce the ring permanent magnet
  • the number of coils 41 arranged radially of the body 31 and the width of the radial field core 50 of the annular permanent magnet 31 reduce the volume of the motor to produce a micromotor.
  • the permanent magnet brushless motor 100 having the two-phase electromagnetic drive phase 30 can also drive its rotation shaft 20 to rotate. That is, the electromagnetic driving phase 30 of the permanent magnet brushless motor 100 can also drive the rotating shaft 20 to rotate smoothly for at least two phases, and the output torque of the permanent magnet brushless motor 100 can be increased by increasing the electromagnetic driving phase 30, and the torque is reduced.
  • the fluctuation of the permanent magnet brushless motor 100 makes the rotation of the permanent magnet brushless motor 100 smoother.
  • the magnetic pole angle difference between two adjacent annular permanent magnets 31 is 120 degrees.
  • the excitation unit 40 of the three-phase electromagnetic drive phase 30 can sequentially drive the rotation of the annular permanent magnet 31, and the phase difference of the driving power source can be 120 degrees to smoothly drive the rotation of the rotary shaft 20, and the motor can be smoothly started.
  • the magnetic pole angle difference of the two annular permanent magnets 31 can be set to 180 degrees.
  • the excitation unit 40 of the two-phase electromagnetic driving phase 30 can alternately drive the rotation of the annular permanent magnet 31, and the phase difference of the driving power source can be 180 degrees to smoothly drive the rotation of the rotating shaft 20, and the motor can be smoothly started.
  • the product of the phase number of the electromagnetic drive phase 30 and the magnetic pole angle difference of the adjacent two annular permanent magnets 31 is equal to 360 degrees. It is possible to sequentially drive the ring-shaped permanent magnet 31 to rotate by the excitation unit 40 of each phase electromagnetic driving phase 30, so that the motor can be smoothly started and rotated, and the driving circuit can be conveniently designed.
  • a plurality of identical electromagnetic drive phases 30 may be arranged on the same spindle 20 to increase the torque.
  • each of the annular permanent magnets 31 is filled with a pair of magnetic poles, that is, one half of the annular permanent magnet 31 is an N pole, and the other half is an S pole, so that the excitation unit of the three-phase electromagnetic driving phase 30 40 sequentially drives its annular permanent magnet 31 to rotate by 120 degrees to control the step angle control of the rotating shaft 20 by the phase angle difference of the power supply of each phase electromagnetic driving phase 30, and the step control is simpler.
  • the annular permanent magnets 31 can also be charged with a plurality of pairs of magnetic poles, so that the step angle of the rotating shaft 20 can be better controlled.
  • the more pairs of magnetic poles on the annular permanent magnet 31, the electromagnetic driving phases of the phases 30 The phase angle difference of the power source to control the rotation angle of the rotating shaft 20 is also more accurate. Simultaneously setting multiple pairs of magnetic poles can also reduce torque ripple to drive the rotating shaft 20 more smoothly.
  • each of the field cores 50 includes a first core 51 and a second core 52, and a first core 51 and The second cores 52 are each formed by stacking a plurality of silicon steel sheets.
  • the first core 51 and the second core 52 are oppositely disposed, and the first core 51 and the second core 52 are respectively located on opposite sides of the annular permanent magnet 31; the first ends of the first core 51 are respectively provided with the first The connecting post 512, each of the first connecting posts 512 extends from the corresponding end of the first core 51 toward the second core 52, and the second connecting core 522 is respectively provided with a second connecting post 522, each second The connecting post 522 extends from the corresponding end of the second core 52 toward the first core 51, and each of the first connecting posts 512 abuts the corresponding second connecting post 522.
  • Each of the excitation units 40 includes two coils 41.
  • the two first connecting posts 512 are respectively inserted into the two coils 41, and the corresponding two second connecting posts 522.
  • the two coils 41 are also inserted into the first connecting post 512 and the second connecting post 522 respectively.
  • the structure is configured to be inserted into the corresponding coil 41 through the first connecting post 512 and the second connecting post 522, so that the coil 41 can be wound first and then placed on the first connecting post 512 and the second connecting post 522, which is convenient.
  • the winding and mounting of the coil 41 can be automated.
  • each of the excitation units 40 uses two coils 41, and the first core 51 and the second core 52 are guided, so that the strength of the magnetic field generated by the excitation unit 40 can be enhanced.
  • the structure can make the first core 51 and the second core 52 have a larger area directly opposite to the annular permanent magnet 31, and can pass a larger magnetic flux, thereby making a ring-shaped permanent magnet using a material having a stronger magnetic strength. 31.
  • a first plate body 514 is protruded from the first iron core 51 in a direction toward the second iron core 52.
  • the first plate body 514 is located on the first iron core 51 corresponding to the position of the annular permanent magnet 31, first
  • first arc-shaped groove 515 is formed on the plate body 514.
  • a second plate body 524 is protruded from the second core 52 in a direction toward the first core 51.
  • the second plate body 524 is located on the second core 52.
  • the second plate body 524 is provided with a second arc-shaped groove 525; when the first core 51 is in contact with the second core 52, the first plate 514 is The two plates 524 are oppositely disposed, so that the annular permanent magnet 31 is located in the accommodating space formed by the first arc-shaped groove 515 and the second arc-shaped groove 525, that is, the annular permanent magnet 31 is fit and received in the first arc shape.
  • the slot 515 and the second arcuate slot 525 are spaced apart from each other; and the first plate 514 is spaced apart from the second plate 524 to prevent the first plate 514 from being short-circuited with the second plate 524.
  • the structural design can make the first core 51 and the second core 52 have a larger area facing the annular permanent magnet 31 to accommodate a larger magnetic flux, and thus a stronger magnetic material (such as neodymium boron) can be used.
  • the annular permanent magnet 31 is fabricated; and the direction of the driving magnetic field generated by the coil 41 is better guided along the radial direction of the annular permanent magnet 31.
  • the first connecting post 512 has a first end 523 adjacent to the second connecting post 522, and the second connecting post 52 is directly adjacent to the second end 523 of the first connecting post 512; at the first connecting post 512 Abutting the second connecting post 522, the first end 523 is mated with the second end 523, and the first end 523 is similar or identical to the second end 523.
  • the first end 523 and the second end 523 can have various shapes:
  • the first end 523 of the first connecting post 512 and the second end 523 of the second connecting post 522 are provided in the first shape, the first end 523 and the second end. 523 are all flat.
  • the second shape of the first end 523b of the first connecting post 512b and the second end 523b of the second connecting post 522b are provided in this embodiment: along the axial direction of the rotating shaft 20, the first The second end 523b is toothed, and the second end 523b is also toothed so that the first connecting post 512b abuts the second connecting post 522b, and the second end 523b can be engaged with the toothed first end 523b.
  • the structure can reduce magnetic flux leakage with respect to the first shape structure described above.
  • the first end 51b and the second end 523b may be provided with a corrugated or zigzag shape or the like along the axial direction of the rotating shaft 20.
  • a third shape of the first end 523c of the first connecting post 512c and the second end 523c of the second connecting post 522c is provided in this embodiment: along the radial direction of the rotating shaft 20, the first The end 523c is toothed, and the second end 523c is also toothed so that the first connecting post 512c is in abutment with the second connecting post 522c, and the toothed second end 523c can be engaged with the toothed first end 523c.
  • the structure can reduce magnetic flux leakage with respect to the first shape structure described above.
  • the first end 523c and the second end 523c may be provided with a corrugated shape or a zigzag shape or the like along the axial direction of the rotating shaft 20.
  • the permanent magnet brushless motor 100 further includes an isolation bracket 25 disposed between two adjacent field cores 50.
  • the spacer bracket 25 is provided to isolate the adjacent two field cores 50, thereby preventing mutual influence between the adjacent two field cores 50.
  • the isolation bracket 25 can also be provided to ensure the action of the field core 50, and the fixing between the two adjacent field cores 50 can be made more compact.
  • the opposite sides of the isolation bracket 25 respectively protrude from the extended filling block 251, and the filling block 251 extends into the gap between the corresponding first plate body 514 and the second plate body 524. Since the first plate body 514 is spaced apart from the second plate body 524 and the filling block 251 is inserted in the gap, impurities can be prevented from entering the first arcuate groove 515 and the second plate body 524 of the first plate body 514. Two arc-shaped grooves 525. At the same time, the structure can also be used to fix the first core 51 and the second core 52 relatively tightly in the assembly.
  • the excitation unit 40 further includes a support bobbin 42 supporting the coil 41, and the support bobbin 42 is sleeved on the corresponding first connecting post 512 and the second connecting post 522.
  • the support frame 42 is disposed, and the coil 41 is wound around the support frame 42 to facilitate the winding of the coil 41 and the mounting on the first connecting post 512 and the second connecting post 522, and the coil 41 can also be protected.
  • the casing 10 includes a front cover 11, a rear cover 12, and a connecting rod 13 connecting the front cover 11 and the rear cover 12.
  • the front cover 11 and the rear cover 12 are cooperatively clamped, and further include connecting the electromagnetic driving phases 30.
  • the excitation unit 40 has a boring hole 111 through which the rotating shaft 20 passes. The excitation unit 40 of each phase of the electromagnetic drive phase 30 is held by the front cover 11 and the rear cover 12 to fix the phase electromagnetic drive phases 30.
  • the connecting rod 13 may be a screw, or may be another connecting sleeve or the like.
  • the field core 50 of each excitation unit 40 is provided with a through hole for the connecting rod 13 to pass through. 53. After each of the excitation cores 50 is installed, the connecting rod 13 can be inserted into the corresponding through hole 53 to position the exciting core 50, and then the front cover 11 and the rear cover 12 are clamped to the respective exciting cores. 50.
  • a receptacle 252 is also disposed on each of the spacer brackets 25 corresponding to the position of the connecting rod 13 to position the spacer bracket 25. Further, the structural design can resist the adjacent two exciting cores 50 by the spacer bracket 25, so that the respective field cores 50 are held by the front cover 11 and the rear cover 12, and the field core 50 can be prevented from being lifted.
  • bearings 21 are mounted on the rotating shaft 20 at positions corresponding to the front cover 11 and the rear cover 12, respectively.
  • a bearing 21 is provided on the rotating shaft 20 to facilitate more flexible rotation of the rotating shaft 20 in the casing 10.
  • a position of the rear cover 12 corresponding to the bearing 21 is provided with a receiving groove 121 for accommodating the bearing 21.
  • a snap ring 211 is further mounted on the rotating shaft 20 on both sides of the bearing 21.
  • the bearing 21 is held by the snap ring 211 to prevent the bearing 21 from coming off.
  • a shaft sleeve 22 is further mounted on the rotating shaft 20, and each of the annular permanent magnets 31 is fixed on the sleeve 22.
  • the sleeve 22 is disposed on the rotating shaft 20, and the annular permanent magnets 31 are mounted on the sleeve 22 to protect the rotating shaft 20.
  • the sleeve 22 can be mounted on the rotating shaft 20 by an interference fit, and the annular permanent magnet 31 can be mounted on the sleeve 22 by an interference fit.
  • the sleeve 22 can also be used to secure the sleeve 22 to the spindle 20 via a pin.
  • a convex ring 221 is protruded from the sleeve 22 corresponding to a position between adjacent two annular permanent magnets 31. .
  • the provision of the convex ring 221 on the sleeve 22 serves to position the annular permanent magnet 31.
  • the number of bushings 22 needs to be one less than the number of phases of the electromagnetically driven phase 30.
  • the sleeve 22 may be provided only as one, and a convex ring 221 is disposed on the sleeve 22.
  • the sleeve 22 should be one less than the number of phases of the electromagnetic driving phase 30, and only one convex ring 221 is disposed on each of the sleeves 22.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • the difference between the permanent magnet brushless motor of the embodiment and the permanent magnet brushless motor 100 of the first embodiment is as follows:
  • Each of the field cores 50d includes a first core 51d and a second core 52d, and the first core 5 Id and the second core 52d are each formed by laminating a plurality of sheets of silicon steel.
  • the first core 5 Id and the second core 52d are oppositely disposed, and the first core 5 Id and the second core 52d are respectively located on opposite sides of the annular permanent magnet 3 Id; one end of the first core 5 Id is provided a first connecting post 512d, the first connecting post 512d extends from a corresponding end of the first core 51d toward the second core 52d; the second core 52d has a second connection corresponding to one end of the first connecting post 512d
  • the second connecting post 522d extends from the corresponding end of the second core 52d toward the first core 51d, and the first connecting post 512d abuts the second connecting post 522d.
  • each of the excitation units 40d of the structure includes only one coil 41d.
  • the first connecting post 512d is inserted into the coil 41d, and the corresponding second connecting post 522d is also inserted.
  • the coil 41d is butted against the first connecting post 512d, and the coil 41d is sleeved on the first connecting post 512d and the second connecting post 522d.
  • the structure design is provided with only one coil 41d in each of the excitation units 40d, so that the volume of the field core 50d can be further reduced, thereby making a more compact motor.
  • the design can be wound around the coil 41d and then placed on the first connecting post 51 2d and the second connecting post 522d to facilitate the winding and mounting of the coil 41d, and the same can be automated.
  • the structure can make the area of the first core 51d and the second core 52d directly opposite to the annular permanent magnet 31d larger, and can pass a larger magnetic flux, thereby making a ring-shaped permanent magnet using a material having a stronger magnetic strength. 31d.
  • the first connecting post 512d has a first end 523d adjacent to the second connecting post 522d, and the second connecting post 522d is directly adjacent to the second end 523d of the first connecting post 512d; at the first connecting post 512d and Second connection
  • the post 522d is butted, and the first end 523d is matched with the second end 523d, and the first end 523d is similar or identical to the second end 523d.
  • the first end 523d and the second end 523d can have various shapes.
  • first end 523d of the first connecting post 512d and the second end 523d of the second connecting post 522d have a first shape, and the first end 523d and the second end 523d are both planar.
  • first end 523d and the second end 523d may be provided in a tooth shape, a corrugated shape, a zigzag shape or the like along the radial direction of the rotating shaft 20d.
  • first end 523e of the first connecting post 512e and the second end 523e of the second connecting post 522e is provided in this embodiment: in the radial direction of the rotating shaft, the first end 523e tooth shape, and also on the second end tooth 523e, 512e so that the first and the second connection post mating connector inch column 522e, a second end of the tooth 52 3 e can be toothed with the first end 5 23e Engaged.
  • the structure can reduce magnetic flux leakage with respect to the first shape structure described above.
  • the first end 523e and the second end 523e may be provided with a corrugated shape or a zigzag shape or the like along the axial direction of the rotating shaft.
  • the other structure of the permanent magnet brushless motor of the present embodiment is the same as that of the permanent magnet brushless motor 100 of the first embodiment, and is not cumbersome here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种永磁无刷电机(100),包括机壳(10)、转轴(20)和沿转轴(20)的轴向排列的至少两相电磁驱动相(30);各电磁驱动相(30)包括环形永磁体(31)和励磁单元(40),励磁单元(40)包括线圈(41)和用于将驱动磁场的两极分别引导至环形永磁体(31)的相对两侧的励磁铁芯(50)。通过励磁铁芯(50)将线圈(41)的驱动磁场的两极分别引导至环形永磁体(31)的相对两侧,从而通过各相电磁驱动相(30)来配合驱动转轴(20)转动,同时减少环形永磁体(31)径向设置的线圈,可缩小环形永磁体径向励磁铁芯的宽度,从而减小电机的体积。

Description

说明书 发明名称:永磁无刷电机
技术领域
[0001] 本发明属于电机领域, 尤其涉及一种永磁无刷电机。
背景技术
[0002] 电机一般包括定子和转子, 转子安装在转轴上, 以带动转轴转运。 现有技术的 电机一般是使用冲有多对磁极的永磁体作为转子, 对应通过环形架支撑多个铁 芯线圈来形成定子, 而多个铁芯线圈环绕该转子, 从而通过铁芯线圈产生的变 化磁场来驱动转子带动转轴转运。 但是这种结构的电机, 由于需要环绕转子设 置多对铁芯线圈结构, 因而会导致径向电机的体积增大, 不利于电机的微型化 技术问题
[0003] 本发明的目的在于提供一种永磁无刷电机, 旨在解决现有电机径向体积较大, 不利于电机的微型化的问题。
问题的解决方案
技术解决方案
[0004] 本发明是这样实现的, 一种永磁无刷电机, 包括机壳和安装于所述机壳中的转 轴, 所述永磁无刷电机还包括用于驱动所述转轴转动并沿所述转轴的轴向排列 的至少两相电磁驱动相; 各电磁驱动相包括固定于所述转轴上的环形永磁体和 固定于所述机壳上的励磁单元, 所述励磁单元包括用于产生驱动磁场的线圈和 用于将所述驱动磁场的两极分别引导至所述环形永磁体的相对两侧的励磁铁芯 , 所述线圈设置于所述转轴的侧边。
发明的有益效果
有益效果
[0005] 本发明通过设置至少两相电磁驱动相, 而每相电磁驱动相又包括励磁单元和环 形永磁体, 而励磁单元的线圈设置在转轴的侧边, 并通过励磁铁芯将线圈产生 的驱动磁场的两极分别引导至所述环形永磁体的相对两侧, 从而通过各相电磁 驱动相来配合驱动转轴转动, 同吋减少环形永磁体径向设置的线圈, 同吋可以 缩小环形永磁体径向励磁铁芯的宽度, 以减小电机的体积。
对附图的简要说明
附图说明
[0006] 图 1是本发明实施例一提供的一种永磁无刷电机的立体结构示意图;
[0007] 图 2是图 1的永磁无刷电机内部部分结构示意图;
[0008] 图 3是图 1的永磁无刷电机的分解结构示意图;
[0009] 图 4是图 3中电磁驱动相的分解结构示意图;
[0010] 图 5是图 1的永磁无刷电机中第一种励磁铁芯的立体结构示意图;
[0011] 图 6是图 1的永磁无刷电机中第二种励磁铁芯的正视结构示意图;
[0012] 图 7是图 1的永磁无刷电机中第三种励磁铁芯的侧视结构示意图。
[0013] 图 8是本发明实施例二提供的一种永磁无刷电机的内部结构示意图;
[0014] 图 9是图 8中励磁铁芯的正视结构示意图;
[0015] 图 10是图 8的永磁无刷电机中另一种励磁铁芯的侧视结构示意图。
本发明的实施方式
[0016] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0017] 为了方便描述, 定义: 环形永磁体的某条直径上具有极性相反的两个磁极, 则 该两个磁极定义为成对磁极, 当环形永磁体上仅具有一个成对磁极, 则称为一 对磁极; 而当环形永磁体上具有多个成对磁极, 则称为多对磁极。
[0018] 定义: 假设环形永磁体的某条直径方向具有一条直线, 且该直径方向上具有一 对磁极, 则同轴的两个环形永磁体上的该直线的夹角为该两个环形永磁体的磁 极角度差。 因而, 对于仅充有一对磁极的环形永磁体, 则两个该环形永磁体的 磁感线的夹角为磁极角度差; 而对于充有多对磁极的环形永磁体, 两个环形永 磁体上对应的同一对磁极的磁感线的夹角为磁极角度差。
[0019] 定义: 环形永磁体的相对两侧特指沿该环形永磁体某个直径方向上的相对两侧 [0020] 一种永磁无刷电机, 包括机壳和安装于所述机壳中的转轴, 所述永磁无刷电机 还包括用于驱动所述转轴转动并沿所述转轴的轴向排列的至少两相电磁驱动相 ; 各电磁驱动相包括固定于所述转轴上的环形永磁体和固定于所述机壳上的励 磁单元, 所述励磁单元包括用于产生驱动磁场的线圈和用于将所述驱动磁场的 两极分别引导至所述环形永磁体的相对两侧的励磁铁芯, 所述线圈设置于所述 转轴的侧边。
[0021] 通过设置至少两相电磁驱动相, 而每相电磁驱动相又包括励磁单元和环形永磁 体, 而励磁单元的线圈设置在转轴的侧边, 并通过励磁铁芯将线圈产生的驱动 磁场的两极分别引导至所述环形永磁体的相对两侧, 从而通过各相电磁驱动相 来配合驱动转轴转动, 同吋减少环形永磁体径向设置的线圈, 同吋可以缩小环 形永磁体径向励磁铁芯的宽度, 以减小电机的体积。
[0022] 以下通过两个实施例来具体说明本申请的永磁无刷电机。
[0023] 实施例一:
[0024] 请参阅图 1-图 7, 本发明实施例提供的一种永磁无刷电机 100, 包括机壳 10、 转 轴 20和三相电磁驱动相 30; 机壳 10用来保护转轴 20和各电磁驱动相 30。 转轴 20 安装在机壳 10中, 以便支撑转轴 20, 并使转轴 20转动。 三相电磁驱动相 30沿转 轴 20的轴向依次排列设置, 以便驱动转轴 20转动。 各电磁驱动相 30包括环形永 磁体 31和励磁单元 40, 环形永磁体 31固定于转轴 20上, 励磁单元 40固定于机壳 1 0上, 用来驱动环形永磁体 31转动, 进而带动转轴 20转动; 则环形永磁体 31作为 转子, 而对应的励磁单元 40作为定子。
[0025] 请参阅图 2、 图 3和图 4, 各励磁单元 40包括线圈 41和励磁铁芯 50, 线圈 41设置 在转轴 20的侧边, 用于产生驱动磁场, 而励磁铁芯 50则用于将线圈 41产生的驱 动磁场的两极分别引导至环形永磁体 31的相对两侧, 以驱动环形永磁体 31转动 。 各励磁单元 40可以驱动对应的环形永磁体 31转动, 从而本实施例的三相电磁 驱动相 30可以平稳且定向的驱动转轴 20转动。 而将线圈 41设置在转轴 20的侧边 , 则线圈 41对应设置在环形永磁体 31的外侧, 而通过励磁铁芯 50将线圈 41产生 的驱动磁场的两极分别引导至环形永磁体 31的相对两侧, 则可以减少环形永磁 体 31径向设置的线圈 41数量和缩小环形永磁体 31径向励磁铁芯 50的宽度, 进而 减小电机的体积, 以便制作微型电机。
[0026] 由于各励磁单元 40可以驱动对应的环形永磁体 31转动, 则对于具有两相电磁驱 动相 30的永磁无刷电机 100, 也可以驱动其转轴 20转动。 即该永磁无刷电机 100 的电磁驱动相 30也为至少两相即可以驱动其转轴 20平稳转动, 而通过增加电磁 驱动相 30可以增加该永磁无刷电机 100的输出力矩, 并减小力矩的波动, 使该永 磁无刷电机 100转动更为平稳。
[0027] 进一步地, 本实施例中, 相邻两个环形永磁体 31的磁极角度差为 120度。 这种 设计, 可以使三相电磁驱动相 30的励磁单元 40依次驱动其环形永磁体 31转动, 而驱动电源的相位差可以为 120度, 以平稳驱动转轴 20转动, 同吋可以保证电机 平稳启动。 在其它实施例中, 对于具有两相电磁驱动相 30的永磁无刷电机 100, 可以将两个环形永磁体 31的磁极角度差设为 180度。 则可以使两相电磁驱动相 30 的励磁单元 40交替驱动其环形永磁体 31转动, 而驱动电源的相位差可以为 180度 , 以平稳驱动转轴 20转动, 同吋可以保证电机平稳启动。 而对于具有更多相的 电磁驱动相 30的永磁无刷电机 100, 只要满足条件: 电磁驱动相 30的相数与相邻 两个环形永磁体 31的磁极角度差的乘积等于 360度。 就可以通过各相电磁驱动相 30的励磁单元 40依次驱动其环形永磁体 31转动, 以使电机能平稳启动和转动, 同吋方便设计驱动电路。 当然, 对于还有一些实施例中, 可以在同一转轴 20上 排列多个相同的电磁驱动相 30, 以增加转出扭矩。
[0028] 进一步地, 本实施例中, 各环形永磁体 31上充有一对磁极, 即该环形永磁体 31 的一半为 N极, 另一半为 S极, 使三相电磁驱动相 30的励磁单元 40依次驱动其环 形永磁体 31转动 120度, 以实现通过各相电磁驱动相 30的电源的相位角差来控制 转轴 20的步进控制, 步进控制更为简单。 在其它实施例中, 各环形永磁体 31上 也可以充多对磁极, 则可以更好的控制转轴 20的步进角度, 环形永磁体 31上成 对磁极越多, 则各相电磁驱动相 30的电源的相位角差来控制转轴 20转动角度也 越精确。 同吋设置多对磁极也可以减少力矩波动, 以更平稳的驱动转轴 20转动
[0029] 请一并参阅图 5, 各励磁铁芯 50包括第一铁芯 51和第二铁芯 52, 第一铁芯 51和 第二铁芯 52均由多片矽钢片叠合而成。 第一铁芯 51和第二铁芯 52相对设置, 且 第一铁芯 51和第二铁芯 52分别位于环形永磁体 31的相对两侧; 第一铁芯 51的两 端分别设有第一连接柱 512, 各第一连接柱 512由第一铁芯 51的对应端朝向第二 铁芯 52的方向延伸出, 第二铁芯 52的两端分别设有第二连接柱 522, 各第二连接 柱 522由第二铁芯 52的对应端朝向第一铁芯 51的方向延伸出, 各第一连接柱 512 与对应的第二连接柱 522对接。 各励磁单元 40包括两个线圈 41, 当第一铁芯 51与 第二铁芯 52对接组合吋, 两个第一连接柱 512分别插入两个线圈 41中, 相应的两 个第二连接柱 522也分别插入两个线圈 41, 并与对应的第一连接柱 512对接, 则 各线圈 41分别套在相应的第一连接柱 512与第二连接柱 522上。 该结构设置, 通 过第一连接柱 512和第二连接柱 522分别插入对应的线圈 41中, 从而可以先绕制 好线圈 41, 再套装在第一连接柱 512与第二连接柱 522上, 方便线圈 41的缠绕与 安装, 同吋可以实现自动化作业。 本实施例中, 各励磁单元 40使用两个线圈 41 , 通过第一铁芯 51与第二铁芯 52的引导, 从而可以加强该励磁单元 40产生的磁 场强度。 另外, 该结构可以使第一铁芯 51和第二铁芯 52与环形永磁体 31的正对 面的面积更大, 可以通过更大的磁通量, 进而可以使用磁力强度更大的材料制 作环形永磁体 31。
进一步地, 第一铁芯 51上朝向第二铁芯 52的方向凸出延伸有第一板体 514, 第 一板体 514位于第一铁芯 51上对应于环形永磁体 31的位置, 第一板体 514上幵设 有第一圆弧状槽 515; 第二铁芯 52上朝向第一铁芯 51的方向凸出延伸有第二板体 524, 第二板体 524位于第二铁芯 52上对应于环形永磁体 31的位置, 第二板体 524 上幵设有第二圆弧状槽 525 ; 当第一铁芯 51与第二铁芯 52对接吋, 第一板体 514 则与第二板体 524相对设置, 则使得环形永磁体 31位于第一圆弧状槽 515与第二 圆弧状槽 525形成的容置空间中, 即环形永磁体 31配合容置于第一圆弧状槽 515 与第二圆弧状槽 525中; 而第一板体 514与第二板体 524间隔幵, 可以防止第一板 体 514与第二板体 524短路。 该结构设计可以使第一铁芯 51和第二铁芯 52具有更 大的正对环形永磁体 31的面积, 以容纳更大的磁通量, 进而可以使用磁力更强 的材料 (如钕磁硼) 来制作该环形永磁体 31 ; 并更好的引导线圈 41产生的驱动 磁场的方向, 沿环形永磁体 31的径向。 [0031] 进一步地, 第一连接柱 512具有靠近第二连接柱 522的第一端 523, 第二连接柱 5 22直有靠近第一连接柱 512的第二端 523 ; 在第一连接柱 512与第二连接柱 522对 接吋, 该第一端 523与该第二端 523相配合, 则该第一端 523与该第二端 523相近 或相同。 具体地, 该第一端 523与该第二端 523可以有多种形状:
[0032] 请参阅图 5, 本实施例提供的第一连接柱 512的第一端 523与第二连接柱 522的第 二端 523的第一种形状, 该第一端 523与该第二端 523均呈平面状。
[0033] 请参阅图 6, 本实施例提供的第一连接柱 512b的第一端 523b与第二连接柱 522b 的第二端 523b的第二种形状: 沿转轴 20的轴向, 该第一端 523b呈齿状, 而该第 二端 523b也呈齿状, 以便第一连接柱 512b与第二连接柱 522b对接吋, 该齿状第 二端 523b可以与该齿状第一端 523b相啮合。 该结构相对于上述第一种形状结构 可以减少漏磁。 当然, 在其它实施例中, 沿转轴 20的轴向, 也可以将该第一端 5 23b与第二端 523b设置有波纹状或锯齿状等。
[0034] 请参阅图 7, 本实施例提供的第一连接柱 512c的第一端 523c与第二连接柱 522c 的第二端 523c的第三种形状: 沿转轴 20的径向, 该第一端 523c呈齿状, 而该第二 端 523c也呈齿状, 以便第一连接柱 512c与第二连接柱 522c对接吋, 该齿状第二端 523c可以与该齿状第一端 523c相啮合。 该结构相对于上述第一种形状结构可以减 少漏磁。 当然, 在其它实施例中, 沿转轴 20的轴向, 也可以将该第一端 523c与第 二端 523c设置有波纹状或锯齿状等。
[0035] 请参阅图 1、 图 2、 图 3和图 5, 进一步地, 该永磁无刷电机 100还包括设于相邻 两个励磁铁芯 50之间的隔离支架 25。 设置隔离支架 25将相邻两个励磁铁芯 50隔 离, 从而可以防止相邻两个励磁铁芯 50间的相互影响。 同吋设置隔离支架 25也 可以超到保证励磁铁芯 50的作用, 并可以使相邻两个励磁铁芯 50间固定更为紧 凑。
[0036] 更进一步地, 隔离支架 25的相对两侧分别凸出延伸的填充块 251, 填充块 251伸 入相应的第一板体 514与第二板体 524之间的间隙中。 由于第一板体 514与第二板 体 524间隔幵, 而在其间隙中插入填充块 251, 可以防止杂质进入第一板体 514的 第一圆弧状槽 515和第二板体 524的第二圆弧状槽 525中。 同吋该结构也可以在组 装吋将第一铁芯 51与第二铁芯 52相对夹持更紧固。 [0037] 进一步地, 励磁单元 40还包括支撑线圈 41的支撑骨架 42, 支撑骨架 42套于相应 的第一连接柱 512与第二连接柱 522上。 设置支撑骨架 42, 将线圈 41缠绕在支撑 骨架 42上, 可以方便线圈 41的缠绕及安装在第一连接柱 512和第二连接柱 522上 , 同吋也可以起到保护线圈 41的作用。
[0038] 进一步地, 机壳 10包括前盖 11、 后盖 12和连接前盖 11与后盖 12的连接杆 13, 前 盖 11与后盖 12配合夹持各还包括连接各电磁驱动相 30的励磁单元 40, 前盖 11上 幵设有供转轴 20穿过的幵孔 111。 通过前盖 11和后盖 12来将各相电磁驱动相 30的 励磁单元 40夹持住, 以将各相电磁驱动相 30固定住。
[0039] 具体地, 连接杆 13可以是螺杆, 也可以是其它连接套等。
[0040] 进一步地, 为了更好的固定住各相电磁驱动相 30的励磁单元 40进行定位与安装 , 各励磁单元 40的励磁铁芯 50上对应幵设有供连接杆 13穿过的通孔 53, 则在安 装各励磁铁芯 50吋, 可以将连接杆 13插入相应的通孔 53中, 以对励磁铁芯 50进 行定位, 再将前盖 11与后盖 12夹持住各励磁铁芯 50。
[0041] 进一步地, 各隔离支架 25上对应于连接杆 13的位置也幵设有插孔 252, 以便定 位隔离支架 25。 另外该结构设计可以通过隔离支架 25来抵持住相邻的两个励磁 铁芯 50, 从而通过前盖 11和后盖 12夹持各励磁铁芯 50吋, 可以防止励磁铁芯 50 翘起。
[0042] 进一步地, 转轴 20上对应于前盖 11与后盖 12的位置分别安装有轴承 21。 在转轴 20上设置轴承 21, 以方便转轴 20在机壳 10中能更为灵活的转动。 进一步地, 后 盖 12上对应于轴承 21的位置幵设有容置该轴承 21的容置槽 121。
[0043] 为了方便固定住轴承 21, 转轴 20上于轴承 21的两侧还安装有卡环 211。 通过卡 环 211固定住轴承 21, 以防止轴承 21脱落。
[0044] 进一步地, 转轴 20上还安装有轴套 22, 各环形永磁体 31固定于轴套 22上。 在转 轴 20上设置轴套 22, 再将各环形永磁体 31安装在轴套 22上, 可以起到保护转轴 2 0的作用。 具体地, 可以通过过盈配合将轴套 22安装在转轴 20上, 再通过过盈配 合将环形永磁体 31安装在轴套 22上。 在其它实施例中, 轴套 22也可以通过销键 将轴套 22固定在转轴 20上。
[0045] 进一步地, 轴套 22上对应于相邻两个环形永磁体 31之间的位置凸出有凸环 221 。 在轴套 22上设置凸环 221, 可以起到定位环形永磁体 31的作用。 进一步地, 为 了方便环形永磁体 31的安装, 本实施例中有两个轴套 22, 再每个轴套 22上设置 一个凸环 221。 在其它实施例中, 轴套 22的数量需要比电磁驱动相 30的相数少一 个。 如: 对于设有两相电磁驱动相 30的永磁无刷电机 100, 其轴套 22可以仅设置 为一个, 在该轴套 22上设置一个凸环 221。 而对于设有多相电磁驱动相 30的永磁 无刷电机 100, 其轴套 22应比其电磁驱动相 30的相数少一个, 而各轴套 22上仅设 置一个凸环 221。
[0046] 实施例二:
[0047] 请参阅图 8和图 9, 本实施例的永磁无刷电机与实施例一的永磁无刷电机 100的 区别为:
[0048] 各励磁铁芯 50d包括第一铁芯 51d和第二铁芯 52d, 第一铁芯 5 Id和第二铁芯 52d 均由多片矽钢片叠合而成。 第一铁芯 5 Id和第二铁芯 52d相对设置, 且第一铁芯 5 Id和第二铁芯 52d分别位于环形永磁体 3 Id的相对两侧; 第一铁芯 5 Id的一端设有 第一连接柱 512d, 第一连接柱 512d由第一铁芯 51d的对应端朝向第二铁芯 52d的 方向延伸出; 第二铁芯 52d对应于第一连接柱 512d的一端设有第二连接柱 522d, 第二连接柱 522d由第二铁芯 52d的对应端朝向第一铁芯 51d的方向延伸出, 第一 连接柱 512d与第二连接柱 522d对接。 则该结构的各励磁单元 40d仅包括一个线圈 41d, 当第一铁芯 51d与第二铁芯 52d对接组合吋, 第一连接柱 512d插入线圈 41d 中, 相应的第二连接柱 522d也插入该线圈 41d, 并与第一连接柱 512d对接, 则线 圈 41d套在第一连接柱 512d与第二连接柱 522d上。 该结构设计在每个励磁单元 40 d中仅设置一个线圈 41d, 从而可以进一步地减小励磁铁芯 50d的体积, 进而制作 更为微型的电机。 另外, 该设计可以先绕制好线圈 41d, 再套装在第一连接柱 51 2d与第二连接柱 522d上, 方便线圈 41d的缠绕与安装, 同吋可以实现自动化作业 。 另外, 该结构可以使第一铁芯 51d和第二铁芯 52d与环形永磁体 31d的正对面的 面积更大, 可以通过更大的磁通量, 进而可以使用磁力强度更大的材料制作环 形永磁体 31d。
[0049] 进一步地, 第一连接柱 512d具有靠近第二连接柱 522d的第一端 523d, 第二连接 柱 522d直有靠近第一连接柱 512d的第二端 523d; 在第一连接柱 512d与第二连接 柱 522d对接吋, 该第一端 523d与该第二端 523d相配合, 则该第一端 523d与该第 二端 523d相近或相同。 具体地, 该第一端 523d与该第二端 523d可以有多种形状 。 本实施例提供的第一连接柱 512d的第一端 523d与第二连接柱 522d的第二端 523 d的第一种形状, 该第一端 523d与该第二端 523d均呈平面状。 当然, 在其它实施 例中, 沿转轴 20d的径向, 也可以将该第一端 523d与第二端 523d设置有齿状、 波 纹状或锯齿状等。
[0050] 请参阅图 10, 本实施例提供的第一连接柱 512e的第一端 523e与第二连接柱 522e 的第二端 523e的另一种形状: 沿转轴的径向, 该第一端 523e呈齿状, 而该第二端 523e也呈齿状, 以便第一连接柱 512e与第二连接柱 522e对接吋, 该齿状第二端 52 3e可以与该齿状第一端 523e相啮合。 该结构相对于上述第一种形状结构可以减少 漏磁。 当然, 在其它实施例中, 沿转轴的轴向, 也可以将该第一端 523e与第二端 523e设置有波纹状或锯齿状等。
[0051] 本实施例的永磁无刷电机的其它结构与实施例一的永磁无刷电机 100的其它结 构相同, 在此不再累赘。
[0052] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
一种永磁无刷电机, 包括机壳和安装于所述机壳中的转轴, 其特征在 于, 所述永磁无刷电机还包括用于驱动所述转轴转动并沿所述转轴的 轴向排列的至少两相电磁驱动相; 各电磁驱动相包括固定于所述转轴 上的环形永磁体和固定于所述机壳上的励磁单元, 所述励磁单元包括 用于产生驱动磁场的线圈和用于将所述驱动磁场的两极分别引导至所 述环形永磁体的相对两侧的励磁铁芯, 所述线圈设置于所述转轴的侧 边。
如权利要求 1所述的永磁无刷电机, 其特征在于, 所述电磁驱动相的 相数与相邻两个所述环形永磁体的磁极角度差的乘积等于 360度。 如权利要求 2所述的永磁无刷电机, 其特征在于, 所述电磁驱动相为 两相, 两个所述环形永磁体的磁极角度差为 180度。
如权利要求 2所述的永磁无刷电机, 其特征在于, 所述电磁驱动相为 三相, 相邻两个所述环形永磁体的磁极角度差为 120度。
如权利要求 1所述的永磁无刷电机, 其特征在于, 各所述励磁铁芯包 括由多片矽钢片叠合而成的第一铁芯和由多片矽钢片叠合而成的第二 铁芯, 所述第一铁芯和所述第二铁芯分别位于所述环形永磁体的相对 两侧, 所述第一铁芯的至少一端朝向所述第二铁芯的方向延伸有插入 所述线圈中的第一连接柱, 所述第二铁芯上对应于所述第一连接端的 位置凸出延伸有插入所述线圈中第二连接柱, 所述第二连接柱与所述 第一连接柱对接。
如权利要求 5所述的永磁无刷电机, 其特征在于, 所述第一铁芯上对 应于所述环形永磁体的位置朝向所述第二铁芯的方向凸出延伸有第一 板体, 所述第一板体上幵设有第一圆弧状槽, 所述第二铁芯上对应于 所述环形永磁体的位置朝向所述第一铁芯的方向凸出延伸有第二板体 , 所述第二板体上幵设有第二圆弧状槽, 所述环形永磁体配合容置于 所述第一圆弧状槽与所述第二圆弧状槽中, 且所述第一板体与所述第 二板体间隔幵。 如权利要求 6所述的永磁无刷电机, 其特征在于, 还包括设于相邻两 个所述励磁铁芯之间的隔离支架。
如权利要求 7所述的永磁无刷电机, 其特征在于, 所述隔离支架的相 对两侧分别凸出延伸的填充块, 所述填充块伸入相应的所述第一板体 与所述第二板体之间的间隙中。
如权利要求 5所述的永磁无刷电机, 其特征在于, 所述第一连接柱具 有靠近所述第二连接柱的第一端, 所述第二连接柱直有靠近所述第一 连接柱的第二端; 沿所述转轴的轴向, 所述第一端呈齿状或波纹状, 所述第二端呈与所述第一端配合的齿状或波纹状。
如权利要求 5所述的永磁无刷电机, 其特征在于, 所述第一连接柱具 有靠近所述第二连接柱的第一端, 所述第二连接柱直有靠近所述第一 连接柱的第二端; 沿所述转轴的径向, 所述第一端呈齿状或波纹状, 所述第二端呈与所述第一端配合的齿状或波纹状。
如权利要求 5所述的永磁无刷电机, 其特征在于, 所述第一铁芯的两 端均设有所述第一连接柱, 所述第二铁芯的两端均设有所述第二连接 柱, 各相所述电磁驱动相包括两个所述线圈, 且两个所述线圈分别环 绕两个所述第一连接柱及对应的第二连接柱上。
如权利要求 5所述的永磁无刷电机, 其特征在于, 所述励磁单元还包 括支撑所述线圈的支撑骨架, 所述支撑骨架套于相应的所述第一连接 柱与所述第二连接柱上。
如权利要求 1-12任一项所述的永磁无刷电机, 其特征在于, 各所述环 形永磁体上充有多对磁极。
如权利要求 1-12任一项所述的永磁无刷电机, 其特征在于, 所述机壳 包括前盖、 后盖和连接所述前盖与所述后盖的连接杆, 所述前盖与所 述后盖配合夹持各所述还包括连接各所述电磁驱动相的励磁单元, 所 述前盖上幵设有供所述转轴穿过的幵孔。
如权利要求 14所述的永磁无刷电机, 其特征在于, 各所述励磁单元的 励磁铁芯上对应幵设有供所述连接杆穿过的通孔。
[权利要求 16] 如权利要求 14所述的永磁无刷电机, 其特征在于, 所述转轴上对应于 所述前盖与所述后盖的位置分别安装有轴承。
[权利要求 17] 如权利要求 1-12任一项所述的永磁无刷电机, 其特征在于, 所述转轴 上还安装有轴套, 各所述环形永磁体固定于所述轴套上。
PCT/CN2015/098432 2015-12-23 2015-12-23 永磁无刷电机 WO2017107099A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580001119.3A CN105874687B (zh) 2015-12-23 2015-12-23 永磁无刷电机
PCT/CN2015/098432 WO2017107099A1 (zh) 2015-12-23 2015-12-23 永磁无刷电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098432 WO2017107099A1 (zh) 2015-12-23 2015-12-23 永磁无刷电机

Publications (1)

Publication Number Publication Date
WO2017107099A1 true WO2017107099A1 (zh) 2017-06-29

Family

ID=56624009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098432 WO2017107099A1 (zh) 2015-12-23 2015-12-23 永磁无刷电机

Country Status (2)

Country Link
CN (1) CN105874687B (zh)
WO (1) WO2017107099A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201590743U (zh) * 2009-11-13 2010-09-22 安徽天祥空调科技有限公司 车用电动空调压缩机用无刷电动机的主体结构
CN102088213A (zh) * 2009-12-03 2011-06-08 北京盛世能创科技发展有限公司 一种直流电机的转子
CN102593990A (zh) * 2012-04-11 2012-07-18 葛建勇 一种无槽永磁无刷电机结构
WO2014071960A1 (de) * 2012-11-08 2014-05-15 Elegant Ideas Foundation Elektromotor mit verbesserter induktivität und verfahren zum wickeln und verschalten von spulen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208841A (zh) * 2011-03-31 2011-10-05 深圳市顺合泰电机有限公司 便于安装线匝的电机定子
CN103516066B (zh) * 2012-06-21 2018-07-10 德昌电机(深圳)有限公司 电磁驱动器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201590743U (zh) * 2009-11-13 2010-09-22 安徽天祥空调科技有限公司 车用电动空调压缩机用无刷电动机的主体结构
CN102088213A (zh) * 2009-12-03 2011-06-08 北京盛世能创科技发展有限公司 一种直流电机的转子
CN102593990A (zh) * 2012-04-11 2012-07-18 葛建勇 一种无槽永磁无刷电机结构
WO2014071960A1 (de) * 2012-11-08 2014-05-15 Elegant Ideas Foundation Elektromotor mit verbesserter induktivität und verfahren zum wickeln und verschalten von spulen

Also Published As

Publication number Publication date
CN105874687A (zh) 2016-08-17
CN105874687B (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
JP4586717B2 (ja) モータ
EP1624555A2 (en) Axial-gap dynamo-electric machine
JP2002262528A5 (zh)
EP3062426A1 (en) Single-phase brushless motor
US20090224619A1 (en) Brushless motor
CN110311527A (zh) 轴向磁通转子和轴向磁通电机
JP2014131376A (ja) 回転子、および、これを用いた回転電機
CA1266294A (en) Low profile electric motor having an inner stator, an annular rotor and an outer stator
US20130154405A1 (en) Hybrid rotary electrical machine
US20150229166A1 (en) Stator core and permanent magnet motor
JP2013102597A (ja) 電動機用ロータおよびブラシレスモータ
WO2014020756A1 (ja) 回転電機
TW201414142A (zh) 永久磁鐵埋設型馬達及其轉子
US7679256B2 (en) Rotary electric machine
JP2018082600A (ja) ダブルロータ型の回転電機
KR101382599B1 (ko) 코깅 상쇄형 듀얼로터 타입 모터
JP2010183648A (ja) 永久磁石回転電機及びそれを用いた電動車両
US20190140500A1 (en) Permanent magnet motor
KR101079050B1 (ko) 분할 스큐 코어 구조의 스테이터, 이를 이용한 bldc 모터 및 배터리 쿨링장치
WO2017107099A1 (zh) 永磁无刷电机
US20230042319A1 (en) Electrical machine including axial flux rotor and coreless stator
JP2011067070A (ja) 電動機
JP5714871B2 (ja) 電動モータ、および駆動装置
JP2005130685A (ja) リング状の固定子コイルを有する永久磁石型電動機
JP2011125127A (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911098

Country of ref document: EP

Kind code of ref document: A1