WO2014069886A1 - 인듀서가 마련된 직접 분사식 디젤 엔진의 연소실 - Google Patents

인듀서가 마련된 직접 분사식 디젤 엔진의 연소실 Download PDF

Info

Publication number
WO2014069886A1
WO2014069886A1 PCT/KR2013/009708 KR2013009708W WO2014069886A1 WO 2014069886 A1 WO2014069886 A1 WO 2014069886A1 KR 2013009708 W KR2013009708 W KR 2013009708W WO 2014069886 A1 WO2014069886 A1 WO 2014069886A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
inducer
diesel engine
injector
cylinder head
Prior art date
Application number
PCT/KR2013/009708
Other languages
English (en)
French (fr)
Inventor
이종윤
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to CN201380057215.0A priority Critical patent/CN104781518B/zh
Priority to US14/439,943 priority patent/US9810140B2/en
Publication of WO2014069886A1 publication Critical patent/WO2014069886A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0663Details related to the fuel injector or the fuel spray having multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a combustion chamber of a direct injection diesel engine, and more particularly, to provide an inducer in a cylinder head to enhance the squish or swirl flow of air, thereby improving the mixing of fuel and air.
  • a combustion chamber of a diesel engine to be improved.
  • gasoline engines mix air and fuel uniformly before commencement of combustion, and then ignite them with a spark plug to burn them.
  • diesel engines only the air is sucked, compressed at a high compression ratio, and the fuel is injected at high pressure.
  • the principle is to allow self-ignition combustion to be reached.
  • a method of burning the fuel injected from the injector by swirling in a combustion chamber (bowl) formed in the piston to mix the fuel and air well is used.
  • Combustion chambers of such diesel engines should be designed to maintain smoke without deterioration even with low smoke and injection timing delay. That is, the combustion chamber of the diesel engine impinges the injection fuel against the combustion chamber wall to promote the formation of the mixer, preserves the swirl flow in the combustion chamber, suppresses the fuel vapor flow to the squish region formed between the piston and the cylinder head, and the flow of air Should be able to be active.
  • the diesel engine should optimize the shape of the combustion chamber so as to realize the optimum mixing of air and fuel in the combustion chamber in order to realize engine performance and exhaust gas improvement.
  • 1 and 2 are a plan view and a cross-sectional view of a conventional diesel engine combustion chamber, in which the fuel injected from the injector 70 in the combustion chamber of the diesel engine is concave-shaped combustion bowl 30 for swirling and squeezing flow on the piston 10. ) Is provided.
  • the piston 10 is in contact with the inner circumferential surface of the cylinder block 20 and the up and down movement to compress or expand the air in the combustion bowl 30, with the fuel injected from the injector 70 is compressed Is mixed with the air and the combustion proceeds.
  • the squishy flow of the hop-mixer flowing from the initial combustion bowl to the squish region is not concentrated in the direction of the injection hole of the injector, resulting in poor mixing of air and fuel, and preservation of swirl flow and combustion chamber.
  • the turbulence intensity in the vicinity of the wall is lowered, resulting in a lack of air in the squish region and squish flow to be burned at the end of combustion, which adversely affects engine performance and exhaust gas reduction.
  • the present invention has been proposed to solve the above problems, by inducing the squish flow of the mixer flow from the initial combustion bowl to the squish region to improve the preservation of the swirl flow and turbulence intensity, towards the injection hole of the injector It is an object of the present invention to provide a combustion chamber of a diesel engine that realizes engine performance improvement and exhaust gas reduction by concentrating air.
  • the combustion chamber of the direct injection diesel engine according to the present invention, the combustion bowl 30 of the concave shape so that the fuel injected from the injector 70 and the air, and the injector 70 And a cylinder head 50 positioned above the combustion bowl 30, a cylinder block 20 positioned below the cylinder head 50, and lifting and lowering within the cylinder block 20. It includes a piston 10 facing the head 50, the bottom surface of the cylinder head 50 is provided with a plurality of radial inducers 60 around the injector 70.
  • the inducer 60 is disposed between the plurality of main inducers 61 and the main inducer 61 and the plurality of sub inducers 62 having a length smaller than that of the main inducer 61. Is prepared.
  • main inducer 61 and the sub inducer 62 are alternately disposed toward the injection hole 71 provided at the end of the injector 70 and the adjacent injection hole 71.
  • the inducer 60 is protruded downward from the bottom of the cylinder head 50, the height of the inducer 60, 1 / of the distance between the combustion chamber ceiling surface and the upper surface of the piston 10. It is provided in 2 times or more and 2 times or less.
  • the inducer 60 has a cross section in the vertical direction in the shape of a triangle, but the inclination of the inclined surfaces of both sides is different from each other is formed asymmetrically.
  • the inducer 60 is disposed in a spiral shape around the injector 70.
  • a plurality of injection holes 71 are provided between the inducer 60 and the adjacent inducer 60.
  • FIG. 1 is a plan view of a combustion chamber of a direct injection diesel engine according to the prior art
  • FIG. 2 is a cross-sectional view in the A-A direction of a direct injection diesel engine combustion chamber according to the prior art
  • FIG. 3 is a plan view of a combustion chamber of a direct injection diesel engine according to the present invention.
  • FIG. 4 is a cross-sectional view of the B-B direction of FIG.
  • FIG. 5 is a cross-sectional view in the C-C direction of FIG.
  • FIG. 6 is an explanatory diagram of a combustion chamber of a diesel engine according to the present invention.
  • FIG. 7 and 8 are explanatory diagrams of a combustion chamber state at a piston top dead center
  • FIG. 9 is an explanatory diagram showing a change in flow in a combustion chamber.
  • the combustion chamber of the diesel engine according to the present invention has a concave shape so that fuel injected from the injector 70 may be mixed with air while causing swirl or squish flow.
  • Combustion bowl (30) the injector 70 is provided with a cylinder head 50 located above the combustion bowl 30, the cylinder block 20 located below the cylinder head 50 and
  • the cylinder block 20 includes a piston 10 which moves up and down to face the cylinder head 50.
  • the cylinder head 50 is provided with an injector 70 for injecting fuel at a high pressure toward the center of the combustion bowl 30, and a plurality of injection holes 71 are provided at the end of the injector 70.
  • a plurality of radial inducers 60 are provided on the bottom surface of the cylinder head 50 around the injector 70.
  • the inducer 60 is a guide member for concentrating the squeegee flow or the swirl flow in the combustion chamber to the injection hole 71 of the injector 70.
  • the inducer 60 is helically arranged around the injector 70 to guide the inducer 60. Squishy flow to swirl flow is directed toward the injection hole 71 of the injector 70 in the direction.
  • Squish flow refers to the flow that occurs at the end (TDC, top dead center) of the compression process in which the top surface of the piston 10 approaches the ceiling surface of the combustion chamber, that is, the bottom surface of the cylinder head 50. 10) refers to the flow of air rapidly generated in the direction of the center of the combustion bowl 30 of the piston 10 because the space between the top surface and the bottom of the cylinder head 50 is rapidly reduced.
  • the speed of the squishy flow is determined by the following equation.
  • V B volume of piston bowl
  • the combustion chamber of the diesel engine according to the present invention has a plurality of inducers (60) or guiders (Guider) on the bottom of the cylinder head (50).
  • inducers 60
  • guiders Guide
  • the diesel engine uses swirl flow to increase the mixing ratio of fuel and air in the combustion chamber and to uniformly distribute the fuel injected at high pressure in the combustion chamber space.
  • This swirl flow occurs in the direction of rotation from the center of the combustion chamber that occurs when air is sucked in through the inlet port.
  • the inducer 60 according to the present invention is provided to the main inducer 61 and the main inducer 61 extending while passing between the intake valve 51 and the exhaust valve 53.
  • the sub inducer 63 is formed toward the intake valve 51 to the exhaust valve 53.
  • the inducer 60 may be disposed spirally about the injector 70 when viewed from the bottom of the cylinder head 50. In some cases, the inducer 60 may be disposed in a straight line shape around the injector 70 or may have one or more bent portions to be provided in a serpentine shape.
  • the cross section in the combustion chamber BB direction is provided such that the inducer 60 protrudes from the bottom surface of the cylinder head 50, that is, the ceiling surface of the combustion chamber, and the protruded inducer 60. Since the volume of the combustion chamber is reduced by the volume of, the compression ratio in the combustion chamber is increased.
  • FIG. 5 shows a cross section in the C-C direction of FIG. 3, where the height of the main inducer 61 is represented by h and the width is represented by w.
  • the cross-sectional shape of the main inducer 61 may be the same as the sub inducer 62.
  • the height h and the width w of the main inducer 61 may be the same as the sub inducer 62.
  • the height (h) to the width (w) of the main inducer 61 is provided to be larger than the height or width of the sub-inducer 62, or in some cases the height of the sub-inducer (62)
  • the width may be provided larger than the height to the width of the main inducer 61.
  • the height h of the inducer 60 may be provided with a relationship of 0.5 * C ⁇ h ⁇ 2 * C when the distance between the ceiling surface of the combustion chamber and the piston top surface is C (Clearance height). .
  • the width (w) of the inducer 60 may be changed according to the swirl flow, and may be provided in a left-right asymmetric shape with respect to the center line, and the inclined surface of one side may be smoother than the inclined surface of the other side. That is, the inclination of the surface facing the swirl flow is provided in a hurry, the inclination of the surface opposite to the surface facing the swirl flow can be provided gently.
  • the injector 70 may have a plurality of injection holes 71 and may have eight injection holes as shown in FIG. 3. Accordingly, one side of the inducer 60 is provided between the injection hole 71 and the injection hole 71 so that the four main inducers 61 and the four sub inducers 62 each have the injection holes. It may be arranged in order between the 71 and the injection hole (71).
  • the inducer 60 may be disposed more than one between the injection hole 71 and the injection hole 71, the number of the inducer 60 may be larger than the number of the injection holes 71. Can be.
  • the number of the injection holes 71 of the injector 70 may be provided more than the inducer 60, in this case, between the main inducer 61 and the sub inducer 62 A number of injection holes 71 may be disposed.
  • each injection hole 71 Since there are eight injection holes 71 according to the present invention shown in FIG. 6, the angle between each injection hole 71 is provided at 45 degrees, and as the inducer 60 has a longer length, air inflow increases.
  • the intake valve 51 to the exhaust valve 53 may be appropriately extended and installed according to the size and arrangement.
  • the angle formed by the main inducer 61 and the sub inducer 62 may be different, and the length, width, and height may be variously changed.
  • Figure 8 shows the flow of the squishy flow and swirl flow of the upper surface of the piston 10 during the compression of the combustion chamber, it can be seen that the squishy flow and swirl flow in the combustion chamber is combined.
  • the inducer 60 by providing the inducer 60, the squish region is changed by redirecting the actual flow caused by the combined force of the squish flow and the swirl flow generated at the top dead center of the piston 10 to the center of the combustion chamber in which the injector 70 is located. Can move more air.
  • FIG. 9 is a plan view of the flow in the combustion chamber when the inducer 60 is provided according to the present invention.
  • the turbulence intensity of the cylinder ceiling flow is increased, and the air from the squish region is moved to the injector 70, so that the fuel and air mixture increases when the fuel is injected near the top dead center. .
  • a pip may be formed in a central portion of the upper surface of the piston 10, the pip protruding toward the injector 70 from the upper surface of the piston 10. Since the top surface of the pip is formed lower than the top surface of the piston 10, the combustion chamber provided between the pip and the bottom surface of the cylinder head 50 is shallower than the combustion chamber formed by the other top surface of the piston 10. Prepared.
  • the plurality of injection holes 71 provided at the end of the injector 70 may adjust the direction such that fuel is injected toward the pip.
  • the diameter of the injection hole 71 to the flow rate to be injected may be provided differently from each other.
  • the injector 70 has a plurality of injection holes 71 and an angle formed by the direction of the fuel injected from the injection holes 71 and the horizontal plane of the cylinder head may be provided at 10 degrees to 30 degrees.
  • the injector 70 to move up and down, it is possible to adjust the flow direction of the fuel injected from the injection hole 71, the fuel injected by the injection of the fuel and the pip effectively injected swirl And a spray direction of the spray hole 71 may be variously changed to squeeze flow.
  • a needle valve (not shown) may be provided inside the injector 70 to open and close the flow path by vertical slide movement of the needle valve, and to perform fuel spraying and spray stopping from the injection hole 71.
  • the combustion chamber of the diesel engine according to the present invention can be used in the combustion chamber of a diesel engine to improve the mixing of fuel and air by enhancing the squishy or swirl flow of air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

본 발명은 인젝터에서 분사되는 연료가 공기와 혼합될 수 있도록 오목한 형상의 보울이 마련된 디젤엔진의 연소실에 관한 것으로 상기 인젝터가 장착되며 상기 연소 보울의 상부에 위치하는 실린더 헤드, 상기 실린더 헤드의 하부에 위치하는 실린더 블록 및 상기 실린더 블록 내부에서 승강 운동하며 상기 실린더 헤드와 마주보는 피스톤을 포함하며, 상기 실린더 헤드의 저면은 상기 인젝터를 중심으로 방사형의 인듀서가 복 수개 마련되는 것을 특징으로 한다.

Description

인듀서가 마련된 직접 분사식 디젤 엔진의 연소실
본 발명은 직접 분사식 디젤 엔진의 연소실에 관한 것으로 더욱 상세하게는 실린더 헤드에 인듀서(Inducer)를 마련하여 공기의 스퀴시(Squish) 또는 스월(Swirl) 유동을 강화시킴으로써 연료와 공기의 혼합성을 향상시키려는 디젤 엔진의 연소실에 관한 것이다.
일반적으로 가솔린 엔진은 연소 개시 전에 공기와 연료를 균일하게 혼합시킨 후 점화플러그로 점화시켜 연소되도록 하는 것이 원칙이며, 디젤 엔진은 공기만을 흡입하여 고 압축비로 압축한 후 여기에 연료를 고압으로 분사시킴으로써 자기착화 연소에 도달되도록 하는 것이 원칙이다. 특히, 일반적인 디젤 엔진은 인젝터에서 분사되는 연료를 피스톤에 형성된 연소실(보울)에서 스월(Swirl)시켜 연료와 공기가 잘 혼합되도록 하여 연소시키는 방법이 주로 사용되고 있다.
이러한 디젤 엔진의 연소실은 낮은 스모크 및 분사시기 지연에도 스모크가 악화되지 않는 상태를 유지할 수 있도록 설계되어야 한다. 즉, 디젤 엔진의 연소실은 분사 연료를 연소실 벽면에 충돌시켜 혼합기 형성을 촉진시키고, 연소실 내 스월 유동을 보존시키며 피스톤과 실린더 헤드 사이에 형성되는 스퀴시 영역으로의 연료증기 흐름을 억제시키고 공기의 유동을 활발하게 할 수 있어야 한다.
이러한 디젤 엔진은 적정한 시기에 연소실 내 연료를 분사하여 흡입된 공기와 혼합시키면서 연소가 촉진되어 엔진 성능을 발휘하게 되는데, 이때 연료는 압축행정 말기에 분사를 시작하고 압축행정 말기에서 폭발행정 초기에 연소실 내에서 스월 유동에 의하여 공기와 혼합되어 연소 진행되며 그 후 스퀴시 유동에 의하여 미연소 스모크는 피스톤 탑부의 공기와 혼합되어 더욱 연소되므로써 스모크 생성이 억제되는 것이다.
따라서, 디젤 엔진은 엔진 성능 향상 및 배기가스 개선을 실현하기 위하여 연소실 내에서 공기와 연료의 최적 혼합을 실현할 수 있도록 연소실의 형상을 최적화 해야 한다.
도 1 및 2는 종래 디젤 엔진 연소실의 평면도 및 단면도로서 디젤 엔진의 연소실에는 인젝터(70)로부터 분사된 연료가 상기 피스톤(10)의 상부에서 스월 및 스퀴시 유동되기 위한 오목한 형상의 연소 보울(30)이 마련된다. 상기 피스톤(10)은 실린더블록(20)의 내주면과 습동되며 상, 하 운동을 하게됨으로써 상기 연소 보울(30) 내의 공기를 압축 또는 팽창시키고, 이와 함께 상기 인젝터(70)로부터 분사된 연료는 압축된 공기와 혼합되어 연소가 진행되는 것이다.
따라서, 흡기포트에 의해 흡기된 공기가 피스톤(10)의 상승운동에 의해 압축된 상태에서 인젝터(70)로부터 고압의 연료가 분사되면 상기 인젝터(70)에서 분사된 연료가 상기 피스톤(10)의 상면에 형성된 연소실에서 스퀴시 내지 스월을 일으키면서 난류를 형성하는 공기와 혼합되는 것이다.
그러나, 이러한 종래의 디젤 엔진의 연소실은 연소 초기 보울에서 스퀴시 영역으로 홉합기가 흐르는 스퀴시 유동이 인젝터의 분사공 방향으로 집중되지 못하여 공기와 연료의 혼합성이 떨어지며, 스월 유동의 보존성 및 연소실 벽면 부근에서의 난류 강도가 저하되어 연소 말기에 스퀴시 영역의 공기와 연소될 스퀴시 유동이 부족하게 됨으로써 엔진성능 및 배기가스 저감에 악영향을 미치게 된다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 연소 초기 연소 보울에서 스퀴시 영역으로 혼합기가 흐르는 스퀴시 흐름을 유도하여 스월 유동의 보존성과 난류 강도를 향상시키고, 인젝터의 분사공을 향해 공기를 집중시킴으로써 엔진 성능 향상과 배기가스 저감을 실현하는 디젤 엔진의 연소실을 제공하는 데 그 목적이 있다.
상기한 목적을 달성하기 위해, 본 발명에 따른 직접 분사식 디젤 엔진의 연소실은, 인젝터(70)에서 분사되는 연료가 공기와 혼합될 수 있도록 오목한 형상의 연소 보울(30)과, 상기 인젝터(70)가 장착되며 상기 연소 보울(30)의 상부에 위치하는 실린더 헤드(50), 상기 실린더 헤드(50)의 하부에 위치하는 실린더 블록(20) 및 상기 실린더 블록(20) 내부에서 승강 운동하며 상기 실린더 헤드(50)와 마주보는 피스톤(10)을 포함하며, 상기 실린더 헤드(50)의 저면은 상기 인젝터(70)를 중심으로 방사형의 인듀서(60)가 복 수개 마련된다.
또한, 상기 인듀서(60)는 복 수의 메인 인듀서(61)와 상기 메인 인듀서(61)의 사이에 배치되며 길이가 상기 메인 인듀서(61)보다 작은 복 수의 서브 인듀서(62)로 마련된다.
또한, 상기 메인 인듀서(61)와 서브 인듀서(62)는 상기 인젝터(70)의 단부에 마련된 분사공(71)과 이웃하는 분사공(71)의 사이를 향해 서로 번갈아가며 배치된다.
또한, 상기 인듀서(60)는 상기 실린더 헤드(50)의 저면에서 아래 방향으로 돌출 형성되되 상기 인듀서(60)의 높이는, 연소실 천정면과 상기 피스톤(10) 상단면 사이의 거리의 1/2배 이상 내지 2배 이하로 마련된다.
또한, 상기 인듀서(60)는 연직 방향으로의 단면이 삼각형의 형상으로 마련되되 양 측의 경사면의 기울기가 상이하게 마련되어 좌우 비대칭으로 형성된다.
또한, 상기 인듀서(60)는 상기 인젝터(70)를 중심으로 나선형상으로 배치된다.
또한, 상기 인듀서(60)와 인접하는 인듀서(60)의 사이에는 복수개의 분사공(71)이 마련된다.
상기와 같은 본 발명의 효과는 첫째, 종래기술에 비해 간단한 구성으로 연료와 공기의 혼합성을 증가시킬 수 있다. 둘째, 연료와 공기의 혼합성을 증가시킴으로써 엔진의 효율을 향상시키고 배기가스를 저감 시킬 수 있다.
도 1은 종래 기술에 따른 직접 분사식 디젤 엔진의 연소실 평면도,
도 2는 종래 기술에 따른 직접 분사식 디젤 엔진 연소실의 A-A 방향의 단면도,
도 3은 본 발명에 따른 직접 분사식 디젤 엔진의 연소실 평면도,
도 4는 도 2의 B-B 방향의 단면도,
도 5는 도 2의 C-C 방향으로의 단면도,
도 6은 본 발명에 따른 디젤 엔진의 연소실에 관한 설명도,
도 7 및 8는 피스톤 상사점에서의 연소실 상태에 대한 설명도,
도 9는 연소실내 유동의 변화를 보여주는 설명도이다.
이하, 첨부된 도면을 참조하면서 본 발명의 실시예에 따른 디젤 엔진의 연소실에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시 할 수 있도록 상세히 설명하기로 한다. 본 발명은 여기에서 설명하는 실시예들에 한정되지 않으며, 여러가지 상이한 형태로 구현될 수 있다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙이도록 한다.
도 3 및 도 4에 도시된 바와 같이 본 발명에 따른 디젤 엔진의 연소실은 인젝터(70)에서 분사되는 연료가 스월(Swirl) 또는 스퀴시(Squish) 유동을 일으키며 공기와 혼합될 수 있도록 오목한 형상의 연소 보울(Bowl, 30), 상기 인젝터(70)가 구비되며 상기 연소 보울(30)의 상부에 위치하는 실린더 헤드(50), 상기 실린더 헤드(50)의 하부에 위치하는 실린더 블록(20) 및 상기 실린더 블록(20) 내부에서 상기 실린더 헤드(50)와 마주보고 승강 운동하는 피스톤(10)을 포함한다.
상기 실린더헤드(50)는 상기 연소 보울(30)의 중심을 향해 연료를 고압으로 분사하는 인젝터(70)가 마련되어 있으며, 상기 인젝터(70)의 단부에는 복수의 분사공(71)이 마련되어 있다.
상기 피스톤(10)이 상기 실린더블록(20)의 내부에서 상하로 운동하면서 흡기포트(미도시)에서 흡입된 공기를 상기 연소 보울(30) 내부에서 압축 내지 팽창시킨다. 이때 디젤 엔진의 압축행정에 따라 상기 피스톤(10)이 상사점에 도달하여 상기 연소 보울(30) 내부에서 공기가 최대로 압축되는 경우 상기 인젝터(70)에서 연료가 고압으로 분사된다.
또한, 상기 실린더 헤드(50)의 저면에는 상기 인젝터(70)를 중심으로 방사형의 인듀서(60)가 복 수개 마련된다. 상기 인듀서(Inducer, 60)는 상기 연소실 내의 스퀴시 유동 내지 스월 유동을 상기 인젝터(70)의 분사공(71)으로 집중 시키기 위한 가이드부재이다.
즉, 도 3에 도시된 바와 같이 상기 실린더 헤드(50)를 평면으로 바라보는 경우 상기 인젝터(70)를 중심으로 상기 인듀서(60)가 나선형상으로 배치되어 상기 인듀서(60)가 안내하는 방향인 상기 인젝터(70)의 분사공(71)을 향해 스퀴시 유동 내지 스월 유동이 유도되는 것이다.
스퀴시(squish) 유동은 피스톤(10) 상단면이 연소실의 천장면 즉, 실린더 헤드(50)의 저면으로 다가가는 압축과정의 끝부분(TDC, 상사점)에서 일어나는 유동을 말하는데, 상기 피스톤(10) 상단면과 실린더 헤드(50) 저면 사이의 공간이 급격하게 작아져 피스톤(10)의 연소 보울(30)의 중심방향으로 급격하게 발생하는 공기의 유동을 말한다.
즉, 상기 연소 보울(30)의 가운데로 향하는 스퀴시 유동의 속도가 빠를수록 난류 운동이 강해지고 스퀴시 영역에서 인젝터(70)가 위치해 있는 연소실 중앙 부분으로 많은 양의 공기가 이동하게 된다. 이처럼 강력한 스퀴시 유동과 함께 인젝터(70)에서 고압으로 압축된 연료가 분사됨으로써 공기와 연료가 혼합하고 연소가 일어난다.
또한, 스퀴시 유동의 속도가 빠를수록 공기와 연료와의 혼합율이 증가되어 디젤 엔진의 연소 효율이 증가된다. 이때 스퀴시 유동의 속도는 아래의 식에 의해 결정된다.
Figure PCTKR2013009708-appb-I000001
Vsq: Squish 유동의 속도
Sq: 피스톤의 순간 속도
B: 연소실 Bore 직경
Db: 피스톤 bowl의 직경
VB: 피스톤 bowl의 부피
C: 피스톤 상단면과 연소실 천정면 사이 거리 (Clearance height)
Z: 피스톤 상사점과 피스톤 상단면 사이의 거리
즉, 최대 스퀴시 유동이 나오는 지점은 상사점 부근이므로(Z=0) 연소실의 형상이 같다면 스퀴시 유동을 빠르게 하기 위해서 피스톤 상단면과 연소실 천장면(실린더 헤드의 저면) 사이의 거리를 줄여야 한다. 하지만, 연소실 내 각 부품의 가공 오차와 부품 사이 오일 두께에서 발생되는 오차 그리고 열팽창으로 발생되는 오차 등을 고려하면 이 거리를 줄이는 데에는 기술적인 한계가 따른다.
이처럼, 스퀴시 유동을 빠르게 하는 기술은 실현의 어려움이 있는 바 본 발명에 따른 디젤 엔진의 연소실은 실린더 헤드(50)의 저면에 복 수의 인듀서(60, Inducer) 내지 가이더(Guider)를 마련함으로써 스퀴시유동 내지 스월 유동의 속도를 증가시키고 인젝터(70)의 분사공(71) 방향으로 집중시킴으로써 연료와 공기의 혼합율을 증가시킨다.
또한, 디젤 엔진에서는 연소실 내 연료와 공기와의 혼합율을 증가시키고 고압으로 분사된 연료를 연소실 공간상에 균일하게 분포시키기 위해 스월 유동을 이용한다.
이러한 스월 유동은 흡기구를 통해 공기가 흡입될 때 생기는 연소실 중심으로부터 회전하는 방향으로 생긴다. 이러한 스월 유동의 일부분을 스퀴시 유동의 방향과 같은 방향으로 전환시켜 연소실 중심부로 유입되는 공기속도를 증가시켜 난류 강도를 높이고 공기의 공급량을 증가시키면 연소실 중심에 있는 인젝터(70)에서 분무된 연료와 혼합율을 증가시킬 수 있다.
도 3에 도시된 바와 같이 본 발명에 따른 인듀서(60)는 흡기밸브(51)와 배기밸브(53)의 사이를 지나면서 연장 형성된 메인 인듀서(61)와 상기 메인 인듀서(61)에 비해 길이가 절반 이하로 마련되어 상기 흡기밸브(51) 내지 배기밸브(53)를 향해 형성된 서브 인듀서(63)를 포함한다.
상기 인듀서(60)는 상기 실린더 헤드(50)의 저면에서 바라보는 경우 상기 인젝터(70)를 중심으로 나선형으로 배치될 수 있다. 경우에 따라서는 상기 인듀서(60)는 상기 인젝터(70)를 중심으로 직선형상으로 배치되거나 하나 이상의 절곡부를 가지게 되어 구불구불한 형상으로 마련될 수 있다.
도 4에 도시된 바와 같이 연소실 B-B방향으로의 단면은 상기 인듀서(60)가 상기 실린더 헤드(50)의 저면 즉, 연소실의 천정면에서 돌출된 형상으로 마련되며, 돌출된 인듀서(60)의 부피만큼 연소실의 부피가 감소되므로 연소실 내의 압축비가 높아지게 된다.
또한, 상기 인듀서(60)의 부피 증가로 인한 연소실 부피의 감소만큼 연소실 내의 상기 연소 보울(30)의 형상을 조정하여 압축비를 맞추는 작업이 필요할 수 있다.
도 5는 도 3의 C-C방향으로의 단면을 나타내며, 상기 메인 인듀서(61)의 높이는 h로 나타내고, 너비는 w로 나타낸다. 상기 메인 인듀서(61)의 단면 형상은 상기 서브 인듀서(62)와 동일할 수 있다. 또한, 상기 메인 인듀서(61)의 높이(h)와 너비(w)는 상기 서브 인듀서(62)와 동일할 수 있다.
또한, 상기 메인 인듀서(61)의 높이(h) 내지 너비(w)가 상기 서브 인듀서(62)의 높이 내지 너비보다 크게 마련되거나, 경우에 따라서는 상기 서브 인듀서(62)의 높이 내지 너비가 상기 메인 인듀서(61)의 높이 내지 너비보다 크게 마련될 수도 있다.
상기 인듀서(60)의 높이(h)는 연소실의 천정면과 피스톤 상단면 사이의 거리를 C(Clearance height)라고 했을 때 0.5 * C < h < 2 * C 의 관계를 가지면서 마련될 수 있다.
또한, 스월 유동에 따라 상기 인듀서(60)의 너비(w)는 변경될 수 있으며, 중심선을 기준으로 좌우 비대칭의 형상으로 마련되어 일측의 경사면이 타측의 경사면보다 완만하게 마련될 수도 있다. 즉, 스월 유동이 향하는 면의 경사가 급하게 마련되고, 스월 유동이 향하는 면과 반대되는 면의 경사는 완만하게 마련될 수 있는 것이다.
도 6에 도시된 바와 같이, 상기 인젝터(70)는 복수의 분사공(71)을 가지며 도 3에 도시된 바와 같이 8개의 분사공을 가질 수도 있다. 따라서, 상기 인듀서(60)의 일측은 상기 분사공(71)과 분사공(71)의 사이를 향해 마련됨으로써 상기 메인 인듀서(61) 4개와 서브 인듀서(62) 4개가 각각 상기 분사공(71)과 분사공(71)의 사이에 순서대로 배치될 수 있다.
또한, 상기 인듀서(60)는 상기 분사공(71)과 분사공(71)의 사이에 둘 이상 배치될 수 있으므로, 상기 인듀서(60)의 개수가 상기 분사공(71)의 개수보다 많을 수 있다.
물론, 상기 인젝터(70)의 분사공(71)의 개수가 상기 인듀서(60)보다 많이 마련될 수 있으며, 이 경우에는 상기 메인 인듀서(61)와 서브 인듀서(62)의 사이에 복 수의 분사공(71)이 배치될 수 있다.
도 6에 도시된 본 발명에 따른 상기 분사공(71)은 8개이므로 각각의 분사공(71) 사이의 각도는 45도로 마련되고, 상기 인듀서(60)는 길이가 길수록 공기 유입량이 많아지므로 상기 흡기 밸브(51) 내지 배기 밸브(53)이 크기와 배치에 따라 적절하게 연장되어 설치될 수 있다.
또한, 상기 메인 인듀서(61)와 서브 인듀서(62)가 이루는 각도는 상이할 수 있으며, 길이, 너비 및 높이는 다양하게 변경되어 실시될 수 있다.
도 7은 연소실이 압축되는 과정에서 상기 피스톤(10)이 상사점에 도달한 상태의 공기흐름을 나타내는데, 연소실의 수직 단면에서 스퀴시 영역으로부터 연소 보울(30)의 중심으로 강력한 스퀴시 제트 플로우가 생기는 것을 알 수 있다.
또한, 도 8은 연소실이 압축되는 과정에서 상기 피스톤(10)의 상단면의 스퀴시 유동과 스월 유동의 흐름을 보여주는데, 연소실내 스퀴시 유동과 스월 유동이 합쳐지는 것을 알 수 있다. 이때 상기 인듀서(60)를 마련함으로써 피스톤(10) 상사점에서 발생한 스퀴시 유동과 스월 유동의 합력에 의한 실제 유동을 인젝터(70)가 위치에 있는 연소실의 중앙부로 방향을 전환시켜 스퀴시 영역에서 더 많은 양의 공기를 이동시킬 수 있다.
도 9는 본 발명에 따라 인듀서(60)를 마련하는 경우 연소실내의 유동을 평면에서 바라본 것으로, 연소실 내의 유동이 변화되어 급작스런 유동변화 및 중앙부 방향의 유동 속도가 증가하여 실린더 내부 특히 피스톤(10) 상사점에서 실린더 천정면 유동의 난류 강도가 강해지고 스퀴시 영역에서 나온 공기가 인젝터(70) 부근으로 이동되어 상사점 부근에서 연료가 분사될 때 연료와 공기의 혼합성이 증가됨을 알 수 있다.
또한, 상기 피스톤(10)의 상면 중앙부에는 핍이 형성될 수 있는데, 상기 핍은 상기 피스톤(10)의 상면에서 상기 인젝터(70)를 향해 돌출되어 있다. 상기 핍의 상단면이 상기 피스톤(10)의 상단면보다 낮게 형성되므로 상기 핍과 실린더 헤드(50) 저면 사이에 마련되는 연소실은 상기 피스톤(10)의 다른 상단면에 의해 형성되는 연소실보다 깊이가 얕게 마련된다.
상기 인젝터(70)의 단부에 마련된 복수의 분사공(71)은 연료가 상기 핍을 향해 분사되도록 방향을 조절할 수 있다. 또한, 상기 분사공(71)의 지름 내지 분사되는 유량은 각각 서로 상이하게 마련될 수 있다.
상기 인젝터(70)는 복수의 분사공(71)을 가지며 상기 분사공(71)에서 분사되는 연료의 방향과 실린더 헤드의 수평면이 이루는 각도는 10도 내지 30도로 마련될 수 있다.
또한, 상기 인젝터(70)를 상, 하 이동 가능하도록 마련함으로써, 상기 분사공(71)에서 분사되는 연료의 유동방향을 조절할 수 있으며, 분사되는 연료와 상기 핍이 효과적으로 충돌하여 분사되는 연료가 스월 및 스퀴시 유동되도록 상기 분사공(71)의 분사 방향을 다양하게 변경할 수 있다.
또한, 상기 인젝터(70)의 내부에는 니들 밸브(미도시)가 마련되어 상기 니들 밸브의 상하 슬라이드 운동에 의해 유로가 개폐되어 분사공(71)으로부터의 연료 분무 및 분무 정지를 실행할 수도 있다.
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 업이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
본 발명에 따른 디젤 엔진의 연소실은 공기의 스퀴시 유동 또는 스월 유동을 강화시킴으로써 연료와 공기의 혼합성을 향상시키려는 디젤 엔진의 연소실에 이용될 수 있다.

Claims (7)

  1. 인젝터(70)에서 분사되는 연료가 공기와 혼합될 수 있도록 오목한 형상의 연소 보울(30)이 마련된 디젤엔진의 연소실에 있어서,
    상기 인젝터(70)가 장착되며 상기 연소 보울(30)의 상부에 위치하는 실린더 헤드(50);
    상기 실린더 헤드(50)의 하부에 위치하는 실린더 블록(20); 및
    상기 실린더 블록(20) 내부에서 승강 운동하며 상기 실린더 헤드(50)와 마주보는 피스톤(10)을 포함하며,
    상기 실린더 헤드(50)의 저면에는 상기 인젝터(70)를 중심으로 방사형의 인듀서(60)가 복 수개 마련되는 것을 특징으로 하는 디젤 엔진의 연소실.
  2. 제1항에 있어서,
    상기 인듀서(60)는 복 수의 메인 인듀서(61)와 상기 메인 인듀서(61)의 사이에 배치되며 길이가 상기 메인 인듀서(61)보다 작은 복 수의 서브 인듀서(62)로 마련되는 것을 특징으로 하는 디젤 엔진의 연소실.
  3. 제2항에 있어서,
    상기 메인 인듀서(61)와 서브 인듀서(62)는 상기 인젝터(70)의 단부에 마련된 분사공(71)과 이웃하는 분사공(71)의 사이를 향해 서로 번갈아가며 배치되는 것을 특징으로 하는 디젤 엔진의 연소실.
  4. 제1항에 있어서,
    상기 인듀서(60)는 상기 실린더 헤드(50)의 저면에서 아래 방향으로 돌출 형성되되 상기 인듀서(60)의 높이는, 연소실 천정면과 상기 피스톤(10) 상단면 사이의 거리의 1/2배 이상 내지 2배 이하로 마련되는 것을 특징으로 하는 디젤 엔진의 연소실.
  5. 제 4항에 있어서,
    상기 인듀서(60)는 연직 방향으로의 단면이 삼각형의 형상으로 마련되되 양 측의 경사면의 기울기가 상이하게 마련되어 좌우 비대칭으로 형성되는 것을 특징으로 하는 디젤 엔진의 연소실.
  6. 제1항에 있어서,
    상기 인듀서(60)는 상기 인젝터(70)를 중심으로 나선형상으로 배치되는 것을 특징으로 하는 디젤 엔진의 연소실.
  7. 제1항에 있어서,
    상기 인듀서(60)와 인접하는 인듀서(60)의 사이에는 복수개의 분사공(71)이 마련되는 것을 특징으로 하는 디젤 엔진의 연소실.
PCT/KR2013/009708 2012-10-30 2013-10-30 인듀서가 마련된 직접 분사식 디젤 엔진의 연소실 WO2014069886A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380057215.0A CN104781518B (zh) 2012-10-30 2013-10-30 具有诱导体的直接喷射式柴油发动机的燃烧室
US14/439,943 US9810140B2 (en) 2012-10-30 2013-10-30 Combustion chamber of direct injection diesel engine having inducers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120121155A KR101970017B1 (ko) 2012-10-30 2012-10-30 인듀서가 마련된 직접 분사식 디젤 엔진의 연소실
KR10-2012-0121155 2012-10-30

Publications (1)

Publication Number Publication Date
WO2014069886A1 true WO2014069886A1 (ko) 2014-05-08

Family

ID=50627714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009708 WO2014069886A1 (ko) 2012-10-30 2013-10-30 인듀서가 마련된 직접 분사식 디젤 엔진의 연소실

Country Status (4)

Country Link
US (1) US9810140B2 (ko)
KR (1) KR101970017B1 (ko)
CN (1) CN104781518B (ko)
WO (1) WO2014069886A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367794B1 (ko) * 2015-03-26 2022-02-25 현대두산인프라코어(주) 엔진 조립체
KR102463187B1 (ko) * 2017-07-28 2022-11-03 현대자동차 주식회사 피스톤 및 이를 포함하는 엔진
CN109519299A (zh) * 2018-12-29 2019-03-26 昆山三动力有限公司 活塞、内燃机及动力机械装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108965A (ja) * 1996-06-25 1998-01-13 Shin A C Ii:Kk ディーゼルエンジンの燃焼室
JPH1182026A (ja) * 1997-09-09 1999-03-26 Isuzu Motors Ltd 直接噴射式エンジンの燃焼室
JP2006022781A (ja) * 2004-07-09 2006-01-26 Mitsubishi Heavy Ind Ltd 直接燃料噴射式ディーゼル機関
US20060081212A1 (en) * 2002-10-02 2006-04-20 Hill Philip G Direct injection combustion chamber geometry
US20120055439A1 (en) * 2009-02-26 2012-03-08 Herdin Ruediger Piston with depression

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2766738A (en) * 1953-07-24 1956-10-16 Daimler Benz Ag Internal combustion engine
CN1212471C (zh) * 2002-05-15 2005-07-27 江苏大学 直喷式柴油机预混合燃烧方法与装置
CN1320262C (zh) * 2003-08-06 2007-06-06 大连理工大学 内燃机喷雾导向系统
CN1260464C (zh) * 2004-11-30 2006-06-21 大连理工大学 内燃机喷雾扩散式燃烧系统
US7581526B2 (en) * 2005-09-01 2009-09-01 Harry V. Lehmann Device and method to increase fuel burn efficiency in internal combustion engines
US8127735B2 (en) * 2009-03-09 2012-03-06 GM Global Technology Operations LLC Engine assembly with valve seat vent passages and method of forming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108965A (ja) * 1996-06-25 1998-01-13 Shin A C Ii:Kk ディーゼルエンジンの燃焼室
JPH1182026A (ja) * 1997-09-09 1999-03-26 Isuzu Motors Ltd 直接噴射式エンジンの燃焼室
US20060081212A1 (en) * 2002-10-02 2006-04-20 Hill Philip G Direct injection combustion chamber geometry
JP2006022781A (ja) * 2004-07-09 2006-01-26 Mitsubishi Heavy Ind Ltd 直接燃料噴射式ディーゼル機関
US20120055439A1 (en) * 2009-02-26 2012-03-08 Herdin Ruediger Piston with depression

Also Published As

Publication number Publication date
US9810140B2 (en) 2017-11-07
KR101970017B1 (ko) 2019-04-17
CN104781518A (zh) 2015-07-15
CN104781518B (zh) 2017-05-31
KR20140056624A (ko) 2014-05-12
US20150308327A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
KR101996085B1 (ko) 질소 산화물 저감을 위한 직접 분사식 디젤 엔진의 연소실
US4207843A (en) Compression ignition direct injection internal combustion engine
CN107923305B (zh) 用于对置活塞式发动机的偏斜燃烧室
WO2013152870A1 (en) Piston of an internal combustion engine
US8528514B1 (en) Piston for reciprocating engines
US10731544B2 (en) Internal combustion engine and method for its operation
EP3277927A1 (en) Asymmetrically-shaped combustion chamber for opposed-piston engines
WO2019172710A1 (ko) 디젤 엔진용 피스톤 및 이를 포함하는 직분사식 디젤 엔진
US11199155B2 (en) Piston crown for a combustion system and an associated method thereof
WO2014069886A1 (ko) 인듀서가 마련된 직접 분사식 디젤 엔진의 연소실
JP2006183512A (ja) 内燃機関の燃焼室構造
EP1111216A2 (en) Combustion chamber for DISI engines with swirl airflows
US6269790B1 (en) Combustion chamber for DISI engines with exhaust side piston bowl
JPH0573898B2 (ko)
CN217107241U (zh) 一种发动机气缸盖、发动机及汽车
JP6515941B2 (ja) 火花点火式内燃機関
JPH0494413A (ja) 2ストロークディーゼルエンジン
JPS5934417A (ja) 2サイクルエンジン
JP6515942B2 (ja) 火花点火式内燃機関
CN111749784A (zh) 一种新型高效率点燃式发动机
JP2007303339A (ja) 内燃機関
CN111022210B (zh) 柴油天然气双燃料用高湍流活塞燃烧室
CN213235253U (zh) 一种活塞及发动机
CN212927995U (zh) 一种新型高效率点燃式发动机
US11549430B1 (en) Two-stroke engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14439943

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 25-09-2015)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 25.09.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13852132

Country of ref document: EP

Kind code of ref document: A1