WO2014069726A1 - High magnetic field measurement system comprising extremely low temperature stage, and method for controlling same - Google Patents

High magnetic field measurement system comprising extremely low temperature stage, and method for controlling same Download PDF

Info

Publication number
WO2014069726A1
WO2014069726A1 PCT/KR2013/002159 KR2013002159W WO2014069726A1 WO 2014069726 A1 WO2014069726 A1 WO 2014069726A1 KR 2013002159 W KR2013002159 W KR 2013002159W WO 2014069726 A1 WO2014069726 A1 WO 2014069726A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
measurement
cryogenic
magnetic field
high magnetic
Prior art date
Application number
PCT/KR2013/002159
Other languages
French (fr)
Korean (ko)
Inventor
최연석
김동락
복민갑
전종수
이종현
Original Assignee
한국기초과학지원연구원
윤슬(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원, 윤슬(주) filed Critical 한국기초과학지원연구원
Publication of WO2014069726A1 publication Critical patent/WO2014069726A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0082Compensation, e.g. compensating for temperature changes

Definitions

  • the present invention relates to a high magnetic field measuring system including a cryogenic stage and a control method thereof, and more particularly, to measuring characteristics of a sample by using a high magnetic field in a cryogenic and vacuum state. It is intended for quick and easy measurement.
  • the present invention relates to a high magnetic field measurement system including a cryogenic stage that enables the position of a sample in a high magnetic field to be easily changed using a triaxial stage having only a mechanical configuration, and a control method thereof.
  • analytical devices that measure magnetic characteristics by applying an external magnetic field at low temperature or cryogenic temperature are made of liquid nitrogen or liquid helium to make a low temperature or cryogenic condition. Not only this, but also a problem that requires a large amount of liquid nitrogen or liquid helium.
  • Korean Patent Publication No. 10-1002118 "Mossbauer Spectroscopy System for Applying a Magnetic Field at Cryogenic Temperature by Using a Freezer," which is one of the technologies for solving this problem, uses a freezer without using liquid nitrogen or liquid helium.
  • the present invention relates to an apparatus for measuring magnetic properties of a sample while maintaining a cryogenic state, and solves the problems caused by the use of liquid nitrogen or liquid helium.
  • the measurer uses a sample rod to move the sample to the measurement position to measure. This is because, due to the structural characteristics of the analyzer for measuring the characteristics of the sample in the magnetic field, electronic devices or components affected by the magnetic field cannot be used.
  • the present invention in the process of measuring the magnetic properties of the sample, the position and angle of the sample easily through the external operation in the state in which the sample is placed in the measurement position under a high magnetic environment environment It is an object of the present invention to provide a high magnetic field measurement system including an adjustable cryogenic stage and a control method thereof.
  • a high magnetic field measuring system including a cryogenic stage comprises a measurement chamber configured in a superconducting coil for generating a high magnetic field; A triaxial stage constructed in the measurement chamber; A cooling stage coupled to an upper portion of the triaxial stage to place a sample thereon; A vacuum chamber configured to form a vacuum pump for making the inside of the measurement chamber into a vacuum state; A three axis controller for controlling at least one of movement and rotation of the three axis stage; And a cryogenic cooling device for cooling the cooling stage to cryogenic.
  • the measurement chamber and the vacuum chamber is spatially connected by a hollow connection tube
  • the three-axis control device is configured inside the connection tube includes a control line for transmitting power to control the three-axis stage
  • the cryogenic cooling device may include a cooling line configured in the connection pipe to supply cold air to the cooling stage.
  • control line and the cooling line may be connected by at least one thermal link.
  • the cooling line may include a refrigerant pipe for refrigerant circulation between the cryogenic cooling device and the cooling stage.
  • At least a portion of the refrigerant pipe may be formed of a flexible pipe or a bellows pipe.
  • the cooling stage may be fixedly installed on the upper portion of the rotating unit.
  • the X-axis moving unit may further include: a first fixing plate fixed to the lower surface of the measurement chamber; A screw bolt installed to be rotatable to the first fixing plate and rotating by receiving power from the control line; And a first moving plate which moves in a rotational axis direction of the screw bolt in response to the rotation of the screw bolt.
  • the Y-axis moving unit may further include: a second fixing plate fixedly installed on an upper portion of the first moving plate; A second moving plate configured on an upper portion of the second fixing plate; And it may include a rack pinion gear (Rack Pinion Gear) for receiving the power from the control line to move the second moving plate in a direction orthogonal to the rotation axis direction of the screw bolt.
  • a rack pinion gear Riv Pinion Gear
  • the rotating unit may further include: a third fixing plate fixed to an upper portion of the second moving plate; A rotating plate configured on an upper portion of the third fixing plate; And it may include a worm gear (Worm Gear) or bevel gear (Bevel Gear) to rotate the rotating plate by receiving the power from the control line Z axis as the rotating shaft.
  • a third fixing plate fixed to an upper portion of the second moving plate
  • a rotating plate configured on an upper portion of the third fixing plate
  • it may include a worm gear (Worm Gear) or bevel gear (Bevel Gear) to rotate the rotating plate by receiving the power from the control line Z axis as the rotating shaft.
  • a control method of a high magnetic field measuring system including a cryogenic stage includes a sample seating step of moving a cooling stage and a three-axis stage in which a sample is placed into a measurement chamber; A vacuum forming step of operating a vacuum pump to vacuum the inside of the measurement chamber; A cryogenic cooling step of operating the cryogenic cooling device to make the inside of the measurement chamber cryogenic; And it may include a measuring step of measuring the characteristics of the sample using a high magnetic field generated by supplying electrical energy to the superconducting coil.
  • the measuring step may include a position adjusting step of adjusting the position of the sample by controlling the three-axis stage.
  • the measuring step may include: a measuring item calling step of calling a measuring item for measuring a characteristic of the sample; And a measurement order setting step of setting a measurement order corresponding to the measurement item, wherein the position adjustment step may adjust the position of the sample according to the measurement order.
  • the measuring step if all the characteristics of each of the measurement items of the sample in accordance with the measurement order, the measurement information providing step of performing at least one of collecting, storing, transmitting and displaying the measurement information of the characteristics of each measurement item It may further include.
  • the present invention makes it possible to easily adjust the position and angle of the sample in accordance with the change in position by operating from the outside in a state where the sample is placed in the measurement position in the cryogenic high magnetic field environment,
  • the advantage is that the properties can be measured continuously in a short time.
  • the present invention by using a three-axis stage consisting of only a mechanical configuration, without using an electronic device, it is possible to change the position of the sample placed in the cryogenic high magnetic field environment, thereby reducing the error or error caused by the change of the position and angle of the sample It can be prevented in advance, and it is effective to secure the reliability of the measurement information.
  • FIG. 1 is a block diagram illustrating a high magnetic field measurement system including a cryogenic stage according to the present invention.
  • FIG. 2 is a perspective view illustrating a triaxial stage and a cooling stage of FIG. 1.
  • FIG. 3 is a perspective view illustrating the movement of the triaxial stage of FIG. 2 to the X axis.
  • FIG. 4 is a perspective view illustrating the movement of the triaxial stage of FIG. 2 to the Y axis.
  • FIG. 5 is a perspective view illustrating the rotation of the triaxial stage of FIG. 2.
  • FIG. 6 is a partially enlarged perspective view illustrating a thermal link of FIG. 1.
  • FIG. 7 is a partially enlarged perspective view illustrating another embodiment of the refrigerant pipe of FIG. 2.
  • FIG. 8 is a flow chart illustrating a control method of a high magnetic field measurement system including a cryogenic stage according to the present invention.
  • FIG. 9 is a flowchart specifically describing step S400 of FIG. 8.
  • FIG. 1 is a block diagram illustrating a high magnetic field measurement system including a cryogenic stage according to the present invention.
  • the high magnetic field measuring system A includes a measurement chamber 100, a three-axis stage 200, a cooling stage 300, a vacuum chamber 400, a three-axis controller 500 and a cryogenic cooling device. And 600.
  • the measurement chamber 100 is positioned under a high magnetic field environment generated by the superconducting coil C, and has a space portion including a triaxial stage 200 and a cooling stage 300 on which a sample is placed, and on one side thereof, a vacuum chamber.
  • the connector 420 may be configured to be spatially connected to the 400.
  • the three-axis stage 200 is installed to be fixed to one side, preferably the lower surface inside the measurement chamber 100, to change the position and angle of the sample placed on the upper portion of the cooling stage 300 in accordance with the external operation Can be operated.
  • the cooling stage 300 is fixedly installed on the upper portion of the triaxial stage 200, and serves to lower the temperature of the sample placed on the upper surface to a cryogenic state.
  • the vacuum chamber 400 is composed of a vacuum pump 410 on one side, by the operation of the vacuum pump 410 can make the interior of the measurement chamber 100 in a vacuum state.
  • a three-axis controller 500 and a cryogenic cooling device 600 are provided inside the vacuum chamber 400.
  • the three-axis controller 500 and the cryogenic cooling device 600 may be replaced with a vacuum chamber if the sealing property of each component that is spatially connected to the vacuum chamber 400 can be ensured. 400 can be configured outside.
  • the three-axis controller 500 controls at least one of the movement and rotation of the three-axis stage 200, may include a stepper motor (Stepper motor).
  • the power generated in the three-axis control device 500 is transmitted to the three-axis stage 200 through the control line 510.
  • the transmission of the power may be made by using gears for converting the rotational motion into a linear motion or a rotational motion of another rotational shaft.
  • the cryogenic cooling apparatus 600 cools the cooling stage 300 to a cryogenic state through heat exchange of the refrigerant, and the refrigerant cooled in the cryogenic cooling apparatus 600 is supplied to the cooling stage 300 through the cooling line 610. do.
  • the cryogenic cooling device 600, the cooling line 610 and the cooling stage 300 is preferably configured such that the refrigerant to be heat exchanged to move the independent circulation loop.
  • the three-axis stage 200 and the control line 510 are operated by a mechanical configuration.
  • heat may be generated by friction between the components in a process of transmitting power. It may act as a factor of raising the temperature inside the measurement chamber 100.
  • the present invention by connecting the cooling line 610 and the control line 510 in which the refrigerant moves to the thermal link (700), the cold air flowing out of the cooling line 610 control line ( By supplying 510, it is possible to offset the heat generated by the mechanical configuration.
  • FIG. 2 is a perspective view illustrating a triaxial stage and a cooling stage of FIG. 1.
  • the three-axis stage 200 includes an X-axis moving unit 210 for moving the cooling stage 300 in the X-axis direction and a Y-axis moving unit for moving the cooling stage 300 in the Y-axis direction ( 220 and a rotating unit 230 for rotating the cooling stage 300.
  • the three-axis stage 200, the X-axis moving unit 210, Y-axis moving unit 220 and the rotating unit 230 may be sequentially stacked and installed, the cooling stage 300 is a rotating unit ( 230 may be fixed to the upper portion.
  • the X-axis moving part 210 may include a first fixing flat plate 211, a first moving plate 212, a screw bolt 213, and a moving guide 214.
  • the first fixing plate 211 may be fixedly installed on the lower surface of the measurement chamber 100, and the screw bolt 213 may be rotatable.
  • the first moving plate 212 may be screwed to the screw bolt 213, and may be configured to linearly move along the moving guide 214 configured to be parallel to the rotation shaft of the screw bolt 213.
  • the movement guide 214 may include a linear motion (LM) guide.
  • the Y-axis moving part 220 may include a second fixed plate 221, a second moving plate 222, and a rack gear 223.
  • the second fixing plate 221 may be fixedly installed on the upper portion of the first moving plate 212 of the X-axis moving unit 210, and pinion gear (Pinion gear) coupled to the rack gear 223 therein (shown) Not).
  • the pivot shaft of the pinion gear may be the same as or parallel to the pivot shaft of the screw bolt 213. Accordingly, the X-axis moving unit 210 and the Y-axis moving unit 220 may move in parallel and orthogonal directions, respectively, with respect to the same rotation axis.
  • the second moving plate 222 may be configured above the second fixing plate 221 and may be moved by the rack gear 223 linearly corresponding to the rotation of the rack gear.
  • the configuration of the X-axis moving unit 210 and the Y-axis moving unit 220 can be changed to each other, or may be changed to another configuration to perform the same function.
  • the rotating unit 230 may include a third fixing plate 231 and a rotating plate 232.
  • the third fixing plate 231 may be fixedly installed on the upper portion of the second moving plate 222 of the Y-axis moving unit 220.
  • the rotating plate 232 may be configured in the third fixed plate 231 to rotate by receiving power from the control line 510.
  • the rotating plate 232 may rotate the Z axis perpendicular to the plane formed by the movement of the X-axis moving unit 210 and the Y-axis moving unit 220 to the rotating axis.
  • the power transmitted from the control line 510 may be the same as or parallel to the rotational axis of the screw bolt 213, in order to convert this rotational movement into a rotational movement using the Z-axis rotational rotation, the rotating plate 232 Can be rotated by a worm gear or a bevel gear.
  • the cooling line 610 may include a refrigerant pipe 611 for refrigerant circulation between the cryogenic cooling device 600 and the cooling stage 300.
  • the refrigerant pipe 611 may be configured in a zigzag form in the interior of the cooling stage 300 in order to achieve a greater amount of heat exchange.
  • a sample holder 310 in which a sample is placed may be formed at one side of the cooling stage 300, and a transparent window 320 may be formed at a lower portion of the sample holder 310 to transmit light (light). Can be.
  • FIG. 3 is a perspective view illustrating the movement of the triaxial stage of FIG. 2 to the X axis.
  • the X-axis moving unit 210 may move the cooling stage 300 configured on the upper part of the rotating unit 230 in the X-axis direction by using the power transmitted through the control line 510.
  • FIG. 4 is a perspective view illustrating the movement of the triaxial stage of FIG. 2 to the Y axis.
  • the pinion gear of the Y-axis moving unit 220 is provided. While not shown, the second moving plate 222 fixed to the rack gear 223 may move in a direction perpendicular to the direction of the power transmission axis Ax.
  • the Y-axis moving unit 220 may move the cooling stage 300 configured at the upper portion of the rotating unit 230 in the Y-axis direction by using the power transmitted through the control line 510.
  • FIG. 5 is a perspective view illustrating the rotation of the triaxial stage of FIG. 2.
  • the rotating unit 230 may rotate the cooling stage 300 configured at the upper portion of the rotating unit 230 using the Z-axis as the rotating shaft by using the power transmitted through the control line 510.
  • FIG. 6 is a partially enlarged perspective view illustrating a thermal link of FIG. 1.
  • the thermal link 700 may be configured to be in contact with the external surfaces of the control line 510 and the cooling line 610 to supply the cool air of the cooling line 610 to the control line 510.
  • the width of the thermal link 700 is configured to be minimized, and as shown in FIG. 1, a plurality of thermal links 700 may be configured at predetermined intervals.
  • FIG. 7 is a partially enlarged perspective view illustrating another embodiment of the refrigerant pipe of FIG. 2.
  • At least a portion of the refrigerant pipe 611 may be formed as a bellows pipe 612.
  • the refrigerant pipe 611 and the cooling stage 300 are stably connected to each other even when the cooling stage 300 moves or rotates.
  • the circulation can be made smoothly.
  • At least a part of the refrigerant pipe 611 may be formed as a flexible pipe.
  • FIG. 8 is a flow chart illustrating a control method of a high magnetic field measurement system including a cryogenic stage according to the present invention.
  • the measurer may move the cooling stage 300 and the three-axis stage 200 on which the sample is placed into the measurement chamber 100 to seat the sample at the measurement position (step S100).
  • the measurer When the sample is located at the desired position, the measurer operates the vacuum pump 410 to make the inside of the measuring chamber 100 in a vacuum state (step S200), and operates the cryogenic cooling device 600 to open the inside of the measuring chamber 100. Make the cryogenic state (step S300).
  • the measurer supplies electric energy to the superconducting coil c and generates a high magnetic field to measure the characteristics of the sample (step S400).
  • Such a series of processes can be operated by the measurer, but is preferably controlled automatically through the measurement control device 800 as shown in FIG.
  • FIG. 9 is a flowchart specifically describing step S400 of FIG. 8.
  • the measurement control device 800 may call a measurement item for measuring the characteristic of the sample (step S401).
  • the measurement items are classified according to the position and angle of the sample, and may be preset and stored in the measurement control device 800 according to the requirements of those skilled in the art.
  • the measurement item may be input to the measurement control device 800 by the measurer.
  • the measurement control apparatus 800 may set the measurement order corresponding to the measurement item (step S402). For example, the measurement control device 800 may move a certain distance to the X axis after the first measurement, and then measure the second measurement, a third distance to the Y axis, a third measurement, and rotate by ⁇ to set the measurement order. have.
  • the measurement control device 800 may adjust the position of the sample by controlling the three-axis stage 200 through the three-axis control device 500 in accordance with the measurement order (step S403), and when the adjustment of the position is completed, Measurement can be performed (step S404).
  • the measurement control device 800 may repeat steps 'S403' and 'S404', and if the characteristics of each measurement item of the sample are measured according to the measurement procedure (step S405). In addition, after collecting and storing the measurement information of the characteristic of each measurement item according to the requirements of those skilled in the art, it may be transmitted to an external display device for display (step S406).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

The present invention relates to a high magnetic field measurement system comprising an extremely low temperature stage and to a method for controlling the same. More particularly, the present invention relates to a system and a method for controlling same, in which the characteristics of a sample based on the location variation can be quickly and easily measured by measuring the characteristics of the sample using a high magnetic field at an extremely low temperature and in a vacuum state. Particularly, the system of the present invention may easily adjust the location and angle of a relevant sample through the manipulation from an external source at the state where the sample is placed on a measurement location under an extremely low temperature high magnetic field environment, by using a three-axis stage that only has a mechanical configuration rather than an electronic device, thus continuously measuring the characteristics of the sample based on the location variation in a short period of time. Further, various measurement results can be obtained in a short period of time, and thus load to the measurement system and to each device can be minimized, thereby improving the life of a product. Accordingly, reliability and competitiveness can be improved not only in the field of magnetic characteristic measurement device and system in an extremely low temperature high magnetic field environment but also in related or similar fields.

Description

극저온 스테이지를 포함하는 고자기장 측정 시스템 및 그 제어 방법High magnetic field measurement system including cryogenic stage and control method thereof
본 발명은 극저온 스테이지를 포함하는 고자기장 측정 시스템 및 그 제어 방법에 관한 것으로서, 보다 상세하게는 극저온 및 진공 상태에서 고자기장을 이용하여 시료의 특성을 측정함에 있어, 위치변화에 따른 시료의 특성을 신속하고 용이하게 측정할 수 있도록 한 것이다.The present invention relates to a high magnetic field measuring system including a cryogenic stage and a control method thereof, and more particularly, to measuring characteristics of a sample by using a high magnetic field in a cryogenic and vacuum state. It is intended for quick and easy measurement.
특히, 본 발명은 기계적인 구성만으로 이루어진 3축스테이지를 이용하여 고자기장 내에서 시료의 위치를 용이하게 변경할 수 있도록 한 극저온 스테이지를 포함하는 고자기장 측정 시스템 및 그 제어 방법에 관한 것이다.In particular, the present invention relates to a high magnetic field measurement system including a cryogenic stage that enables the position of a sample in a high magnetic field to be easily changed using a triaxial stage having only a mechanical configuration, and a control method thereof.
일반적으로, 저온 또는 극저온에서 외부자기장을 인가하여 자기적 특성을 측정하는 분석장치들은 액체질소 또는 액체헬륨을 사용하여 저온 또는 극저온 상태를 만들게 되는바, 분석장치를 가동하는 과정에서 냉각을 위하여 많은 시간이 소요될 뿐만 아니라, 많은 양의 액체질소 또는 액체헬륨을 필요로 하는 문제점이 있었다.In general, analytical devices that measure magnetic characteristics by applying an external magnetic field at low temperature or cryogenic temperature are made of liquid nitrogen or liquid helium to make a low temperature or cryogenic condition. Not only this, but also a problem that requires a large amount of liquid nitrogen or liquid helium.
이러한 문제점을 해결하기 위한 기술 중 하나인 대한민국 등록특허공보 제10-1002118호 "냉동기를 이용하여 극저온에서 자기장을 인가하는 뫼스바우어 분광시스템"은, 액체질소 또는 액체헬륨을 사용하지 않고 냉동기를 이용하여 극저온상태를 유지하면서 시료의 자기적 특성을 측정하는 장치에 대한 것으로, 상기한 액체질소 또는 액체헬륨의 사용에 따른 문제점은 해결하고 있다.Korean Patent Publication No. 10-1002118, "Mossbauer Spectroscopy System for Applying a Magnetic Field at Cryogenic Temperature by Using a Freezer," which is one of the technologies for solving this problem, uses a freezer without using liquid nitrogen or liquid helium. The present invention relates to an apparatus for measuring magnetic properties of a sample while maintaining a cryogenic state, and solves the problems caused by the use of liquid nitrogen or liquid helium.
한편, 시료의 자기적 특성을 측정하는 분석장치는, 측정자가 시료봉을 이용하여 해당 시료를 측정위치까지 이동시키고 측정하게 된다. 이러한 이유는, 자기장 내에서 시료의 특성을 측정하는 분석장치의 구조적인 특징으로 인해, 자기장의 영향을 받는 전자소자 또는 부품 등은 사용하지 못하기 때문이다.On the other hand, in the analysis device for measuring the magnetic properties of the sample, the measurer uses a sample rod to move the sample to the measurement position to measure. This is because, due to the structural characteristics of the analyzer for measuring the characteristics of the sample in the magnetic field, electronic devices or components affected by the magnetic field cannot be used.
이로 인해, 종래의 자기적 특성을 측정하는 분석장치들은, 동일한 시료에 대하여 시료의 위치 등을 변경하면서 여러 번 측정할 필요가 있는 경우, 측정자가 측정할 때마다 시료를 꺼내고 위치를 변경한 후 다시 분석장치에 설치하여 측정해야만 하는 번거로움이 있었다.For this reason, conventional analyzers for measuring magnetic properties need to take several samples while changing the position of the sample with respect to the same sample. There was the hassle of having to install and measure the analyzer.
또한, 매 측정시마다 측정환경(예를 들어, 극저온상태 및 진공상태 형성)을 다시 조성해야 할 뿐만 아니라, 이전 측정환경과 동일한 환경을 재설정하는 것에도 어려움이 있기 때문에, 동일한 시료에 대해서 측정값의 정확도가 저하될 수 있다.In addition, it is not only necessary to reestablish the measurement environment (for example, to form a cryogenic state and a vacuum state) at each measurement, but also to reset the same environment as the previous measurement environment. Accuracy may be degraded.
이러한 문제점은 대한민국 등록특허공보 제10-1002118호 "냉동기를 이용하여 극저온에서 자기장을 인가하는 뫼스바우어 분광시스템"의 경우에도 동일하다.This problem is the same in the case of the Republic of Korea Patent Publication No. 10-1002118 "Mossbauer spectroscopy system for applying a magnetic field at cryogenic temperature using a refrigerator."
상기와 같은 문제점을 해결하기 위해서, 본 발명은 시료의 자기적 특성을 측정하는 과정에서, 고자기장 환경 하에 시료가 측정위치에 놓여진 상태에서 외부에서의 조작을 통해 해당 시료의 위치 및 각도를 용이하게 조정할 수 있는 극저온 스테이지를 포함하는 고자기장 측정 시스템 및 그 제어 방법을 제공하는데 목적이 있다.In order to solve the above problems, the present invention in the process of measuring the magnetic properties of the sample, the position and angle of the sample easily through the external operation in the state in which the sample is placed in the measurement position under a high magnetic environment environment It is an object of the present invention to provide a high magnetic field measurement system including an adjustable cryogenic stage and a control method thereof.
특히, 본 발명은 전자장치를 이용하지 않고 기계적 구성만으로 시료의 위치 및 각도 등을 조절할 수 있는 극저온 스테이지를 포함하는 고자기장 측정 시스템 및 그 제어 방법을 제공하는데 목적이 있다.In particular, it is an object of the present invention to provide a high magnetic field measurement system including a cryogenic stage capable of adjusting the position and angle of a sample by a mechanical configuration without using an electronic device, and a control method thereof.
상기와 같은 목적을 달성하기 위해서, 본 발명에 따른 극저온 스테이지를 포함하는 고자기장 측정 시스템은, 고자기장을 발생시키는 초전도코일 내에 구성되는 계측챔버; 상기 계측챔버 내에 구성되는 3축스테이지; 상기 3축스테이지의 상부에 결합되어 시료가 놓여지는 냉각스테이지; 상기 계측챔버의 내부를 진공상태로 만들기 위한 진공펌프가 구성되는 진공챔버; 상기 3축스테이지의 이동 및 회동 중 적어도 하나를 제어하는 3축제어장치; 및 상기 냉각스테이지를 극저온으로 냉각하는 극저온냉각장치를 포함한다.In order to achieve the above object, a high magnetic field measuring system including a cryogenic stage according to the present invention comprises a measurement chamber configured in a superconducting coil for generating a high magnetic field; A triaxial stage constructed in the measurement chamber; A cooling stage coupled to an upper portion of the triaxial stage to place a sample thereon; A vacuum chamber configured to form a vacuum pump for making the inside of the measurement chamber into a vacuum state; A three axis controller for controlling at least one of movement and rotation of the three axis stage; And a cryogenic cooling device for cooling the cooling stage to cryogenic.
또한, 상기 계측챔버와 진공챔버는 중공의 연결관에 의해 공간적으로 연결되고, 상기 3축제어장치는 상기 연결관의 내부에 구성되어 상기 3축스테이지를 제어하는 동력을 전달하는 제어라인을 포함하며, 상기 극저온냉각장치는 상기 연결관의 내부에 구성되어 상기 냉각스테이지에 냉기를 공급하는 냉각라인을 포함할 수 있다.In addition, the measurement chamber and the vacuum chamber is spatially connected by a hollow connection tube, the three-axis control device is configured inside the connection tube includes a control line for transmitting power to control the three-axis stage, The cryogenic cooling device may include a cooling line configured in the connection pipe to supply cold air to the cooling stage.
또한, 상기 제어라인 및 냉각라인은 적어도 하나의 써멀링크(Thermal link)로 연결될 수 있다.In addition, the control line and the cooling line may be connected by at least one thermal link.
또한, 상기 냉각라인은, 상기 극저온냉각장치와 냉각스테이지 간의 냉매순환을 위한 냉매관을 포함할 수 있다.The cooling line may include a refrigerant pipe for refrigerant circulation between the cryogenic cooling device and the cooling stage.
또한, 상기 냉매관의 적어도 일부는, 플랙시블(Flexible)관 또는 벨로우즈(Bellows)관으로 형성될 수 있다.In addition, at least a portion of the refrigerant pipe may be formed of a flexible pipe or a bellows pipe.
또한, 상기 3축스테이지는, 상기 냉각스테이지를 X축 방향으로 이동시키는 X축이동부; 상기 냉각스테이지를 Y축 방향으로 이동시키는 Y축이동부; 및 상기 냉각스테이지를 회동시키는 회동부를 포함할 수 있다.In addition, the three-axis stage, the X-axis moving unit for moving the cooling stage in the X-axis direction; A Y-axis moving unit which moves the cooling stage in the Y-axis direction; And it may include a rotating part for rotating the cooling stage.
또한, 상기 3축스테이지는 상기 X축이동부, Y축이동부 및 회동부가 순차적으로 적층되어 고정설치되며, 상기 냉각스테이지는 상기 회동부의 상부에 고정설치될 수 있다.In addition, the three-axis stage, the X-axis moving unit, the Y-axis moving unit and the rotating unit is sequentially stacked and fixed, the cooling stage may be fixedly installed on the upper portion of the rotating unit.
또한, 상기 X축이동부는, 상기 계측챔버의 하부면에 고정설치되는 제1 고정플렛(Flat); 상기 제1 고정플렛에 회동가능하도록 설치되고 상기 제어라인으로부터 동력을 전달받아 회동하는 스크류볼트; 및 상기 스크류볼트의 회동에 대응하여 상기 스크류볼트의 회동축방향으로 이동하는 제1 이동플렛을 포함할 수 있다.The X-axis moving unit may further include: a first fixing plate fixed to the lower surface of the measurement chamber; A screw bolt installed to be rotatable to the first fixing plate and rotating by receiving power from the control line; And a first moving plate which moves in a rotational axis direction of the screw bolt in response to the rotation of the screw bolt.
또한, 상기 Y축이동부는, 상기 제1 이동플렛의 상부에 고정설치되는 제2 고정플렛; 상기 제2 고정플렛의 상부에 구성되는 제2 이동플렛; 및 상기 제어라인으로부터 동력을 전달받아 상기 제2 이동플렛을 상기 스크류볼트의 회동축방향에 직교방향으로 이동시키는 랙피니언기어(Rack Pinion Gear)를 포함할 수 있다.The Y-axis moving unit may further include: a second fixing plate fixedly installed on an upper portion of the first moving plate; A second moving plate configured on an upper portion of the second fixing plate; And it may include a rack pinion gear (Rack Pinion Gear) for receiving the power from the control line to move the second moving plate in a direction orthogonal to the rotation axis direction of the screw bolt.
또한, 상기 회동부는, 상기 제2 이동플렛의 상부에 고정설치되는 제3 고정플렛; 상기 제3 고정플렛의 상부에 구성되는 회동플렛; 및 상기 제어라인으로부터 동력을 전달받아 Z축을 회동축으로 하여 상기 회동플렛을 회동시키는 웜기어(Worm Gear) 또는 베벨기어(Bevel Gear)를 포함할 수 있다.The rotating unit may further include: a third fixing plate fixed to an upper portion of the second moving plate; A rotating plate configured on an upper portion of the third fixing plate; And it may include a worm gear (Worm Gear) or bevel gear (Bevel Gear) to rotate the rotating plate by receiving the power from the control line Z axis as the rotating shaft.
또한, 본 발명에 따른 극저온 스테이지를 포함하는 고자기장 측정 시스템의 제어 방법은, 시료가 놓여지는 냉각스테이지 및 3축스테이지를 계측챔버 내부로 이동시키는 시료안착단계; 진공펌프를 동작하여 상기 계측챔버 내부를 진공상태로 만드는 진공형성단계; 극저온냉각장치를 동작하여 상기 계측챔버 내부를 극저온상태로 만드는 극저온냉각단계; 및 초전도코일에 전기에너지를 공급하여 발생하는 고자기장을 이용하여 상기 시료의 특성을 측정하는 측정단계를 포함할 수 있다.In addition, a control method of a high magnetic field measuring system including a cryogenic stage according to the present invention includes a sample seating step of moving a cooling stage and a three-axis stage in which a sample is placed into a measurement chamber; A vacuum forming step of operating a vacuum pump to vacuum the inside of the measurement chamber; A cryogenic cooling step of operating the cryogenic cooling device to make the inside of the measurement chamber cryogenic; And it may include a measuring step of measuring the characteristics of the sample using a high magnetic field generated by supplying electrical energy to the superconducting coil.
또한, 상기 측정단계는, 상기 3축스테이지를 제어하여 상기 시료의 위치를 조정하는 위치조정단계를 포함할 수 있다.In addition, the measuring step may include a position adjusting step of adjusting the position of the sample by controlling the three-axis stage.
또한, 상기 측정단계는, 상기 시료의 특성을 측정하기 위한 측정항목을 호출하는 측정항목 호출단계; 및 상기 측정항목에 대응하여 측정순서를 설정하는 측정순서 설정단계를 더 포함하고, 상기 위치조정단계는, 상기 측정순서에 따라 상기 시료의 위치를 조정할 수 있다.The measuring step may include: a measuring item calling step of calling a measuring item for measuring a characteristic of the sample; And a measurement order setting step of setting a measurement order corresponding to the measurement item, wherein the position adjustment step may adjust the position of the sample according to the measurement order.
또한, 상기 측정단계는, 상기 측정순서에 따라 상기 시료의 측정항목별 특성이 모두 측정되면, 상기 측정항목별 특성의 측정정보를 취합, 저장, 전송 및 디스플레이 중 적어도 하나를 수행하는 측정정보 제공단계를 더 포함할 수 있다.In addition, the measuring step, if all the characteristics of each of the measurement items of the sample in accordance with the measurement order, the measurement information providing step of performing at least one of collecting, storing, transmitting and displaying the measurement information of the characteristics of each measurement item It may further include.
상기와 같은 해결수단에 의해, 본 발명은 극저온 고자기장 환경 하에 시료가 측정위치에 놓여진 상태에서 외부에서의 조작을 통해 해당 시료의 위치 및 각도를 용이하게 조정할 수 있도록 함으로써, 위치변화에 따른 시료의 특성을 짧은 시간 내에 연속적으로 측정할 수 있는 장점이 있다.By means of the above-described solution, the present invention makes it possible to easily adjust the position and angle of the sample in accordance with the change in position by operating from the outside in a state where the sample is placed in the measurement position in the cryogenic high magnetic field environment, The advantage is that the properties can be measured continuously in a short time.
특히, 본 발명은 전자장치를 이용하지 않고 기계적인 구성만으로 이루어진 3축스테이지를 이용하여, 극저온 고자기장 환경 하에 놓여진 시료의 위치를 변경할 수 있도록 함으로써, 시료의 위치 및 각도 변경에 따른 오차나 오류를 미연에 방지할 수 있으며, 측정정보의 신뢰성을 충분히 확보할 수 있는 효과가 있다.In particular, the present invention by using a three-axis stage consisting of only a mechanical configuration, without using an electronic device, it is possible to change the position of the sample placed in the cryogenic high magnetic field environment, thereby reducing the error or error caused by the change of the position and angle of the sample It can be prevented in advance, and it is effective to secure the reliability of the measurement information.
또한, 짧은 시간 동안 다양한 측정결과를 얻을 수 있음은 물론, 이를 통해 측정시스템 및 각 장치들의 부담을 최소화할 수 있으므로, 제품의 수명을 향상시킬 수 있는 효과가 있다.In addition, various measurement results can be obtained for a short time, and as a result, the burden on the measurement system and each device can be minimized, thereby improving the life of the product.
따라서, 극저온 고자기장 환경에서의 자기특성 측정 장치 및 시스템 분야는 물론, 이와 연관 내지 유사한 분야에서 신뢰성 및 경쟁력을 향상시킬 수 있다.Therefore, it is possible to improve the reliability and competitiveness in the field of magnetic properties measuring apparatus and system in the cryogenic high magnetic field environment, as well as related or similar fields.
도 1은 본 발명에 따른 극저온 스테이지를 포함하는 고자기장 측정 시스템을 설명하는 구성도이다.1 is a block diagram illustrating a high magnetic field measurement system including a cryogenic stage according to the present invention.
도 2는 도 1의 3축스테이지 및 냉각스테이지를 설명하는 사시도이다.FIG. 2 is a perspective view illustrating a triaxial stage and a cooling stage of FIG. 1. FIG.
도 3은 도 2의 3축스테이지가 X축으로 이동하는 것을 설명하는 사시도이다.3 is a perspective view illustrating the movement of the triaxial stage of FIG. 2 to the X axis.
도 4는 도 2의 3축스테이지가 Y축으로 이동하는 것을 설명하는 사시도이다.4 is a perspective view illustrating the movement of the triaxial stage of FIG. 2 to the Y axis.
도 5는 도 2의 3축스테이지가 회동하는 것을 설명하는 사시도이다.FIG. 5 is a perspective view illustrating the rotation of the triaxial stage of FIG. 2. FIG.
도 6은 도 1의 써멀링크(Thermal link)를 설명하는 부분확대 사시도이다.6 is a partially enlarged perspective view illustrating a thermal link of FIG. 1.
도 7은 도 2의 냉매관에 대한 다른 실시예를 설명하는 부분확대 사시도이다.7 is a partially enlarged perspective view illustrating another embodiment of the refrigerant pipe of FIG. 2.
도 8은 본 발명에 따른 극저온 스테이지를 포함하는 고자기장 측정 시스템의 제어 방법을 설명하는 흐름도이다.8 is a flow chart illustrating a control method of a high magnetic field measurement system including a cryogenic stage according to the present invention.
도 9는 도 8의 단계 'S400'을 구체적으로 설명하는 순서도이다.FIG. 9 is a flowchart specifically describing step S400 of FIG. 8.
본 발명에 따른 극저온 스테이지를 포함하는 고자기장 측정 시스템 및 그 제어 방법에 대한 예는 다양하게 적용할 수 있으며, 이하에서는 첨부된 도면을 참조하여 가장 바람직한 실시 예에 대해 설명하기로 한다.Examples of a high magnetic field measurement system including a cryogenic stage and a control method thereof according to the present invention can be applied in various ways, and the most preferred embodiment will be described below with reference to the accompanying drawings.
도 1은 본 발명에 따른 극저온 스테이지를 포함하는 고자기장 측정 시스템을 설명하는 구성도이다.1 is a block diagram illustrating a high magnetic field measurement system including a cryogenic stage according to the present invention.
도 1을 참조하면, 고자기장 측정 시스템(A)은 계측챔버(100), 3축스테이지(200), 냉각스테이지(300), 진공챔버(400), 3축제어장치(500) 및 극저온냉각장치(600)를 포함한다.Referring to FIG. 1, the high magnetic field measuring system A includes a measurement chamber 100, a three-axis stage 200, a cooling stage 300, a vacuum chamber 400, a three-axis controller 500 and a cryogenic cooling device. And 600.
계측챔버(100)는 초전도코일(C)에서 발생하는 고자기장 환경 하에 위치되며, 3축스테이지(200) 및 시료가 놓여지는 냉각스테이지(300)가 구성되는 공간부가 형성되고, 일측면에는 진공챔버(400)와 공간적으로 연결되는 연결관(420)이 구성될 수 있다.The measurement chamber 100 is positioned under a high magnetic field environment generated by the superconducting coil C, and has a space portion including a triaxial stage 200 and a cooling stage 300 on which a sample is placed, and on one side thereof, a vacuum chamber. The connector 420 may be configured to be spatially connected to the 400.
3축스테이지(200)는 계측챔버(100) 내부의 일측, 바람직하게는 하부면에 고정되도록 설치되며, 외부의 조작에 따라 냉각스테이지(300)의 상부에 놓여지는 시료의 위치 및 각도를 변경하도록 동작될 수 있다.The three-axis stage 200 is installed to be fixed to one side, preferably the lower surface inside the measurement chamber 100, to change the position and angle of the sample placed on the upper portion of the cooling stage 300 in accordance with the external operation Can be operated.
냉각스테이지(300)는 3축스테이지(200)의 상부에 고정설치되며, 상부면에 놓여지는 시료의 온도를 극저온 상태까지 하강시키는 역할을 수행한다.The cooling stage 300 is fixedly installed on the upper portion of the triaxial stage 200, and serves to lower the temperature of the sample placed on the upper surface to a cryogenic state.
진공챔버(400)는 일측에 진공펌프(410)가 구성되며, 진공펌프(410)의 동작에 의해 계측챔버(100)의 내부를 진공상태로 만들 수 있다.The vacuum chamber 400 is composed of a vacuum pump 410 on one side, by the operation of the vacuum pump 410 can make the interior of the measurement chamber 100 in a vacuum state.
도 1에서, 진공챔버(400), 연결관(420) 및 계측챔버(100)의 밀폐성을 향상시키기 위하여, 진공챔버(400) 내부에 3축제어장치(500) 및 극저온냉각장치(600)가 구성되는 것으로 나타내었으나 이에 한정하는 것은 아니며, 진공챔버(400)와 공간적으로 연결되는 각 구성들의 밀폐성이 충분히 보장될 수 있으면, 3축제어장치(500) 및 극저온냉각장치(600)를 진공챔버(400)의 외부에 구성할 수 있다. In FIG. 1, in order to improve the sealing property of the vacuum chamber 400, the connection pipe 420, and the measurement chamber 100, a three-axis controller 500 and a cryogenic cooling device 600 are provided inside the vacuum chamber 400. Although the present invention is not limited thereto, the three-axis controller 500 and the cryogenic cooling device 600 may be replaced with a vacuum chamber if the sealing property of each component that is spatially connected to the vacuum chamber 400 can be ensured. 400 can be configured outside.
3축제어장치(500)는 3축스테이지(200)의 이동 및 회동 중 적어도 하나를 제어하는 것으로, 스테퍼 모터(Stepper motor)를 포함할 수 있다.The three-axis controller 500 controls at least one of the movement and rotation of the three-axis stage 200, may include a stepper motor (Stepper motor).
또한, 3축제어장치(500)에서 발생된 동력은 제어라인(510)을 통해 3축스테이지(200)로 전달된다. 이때, 동력의 전달은 회전운동을 직선운동 또는 다른 회동축의 회전운동으로 변환하는 기어들을 이용하여 이루어질 수 있다.In addition, the power generated in the three-axis control device 500 is transmitted to the three-axis stage 200 through the control line 510. At this time, the transmission of the power may be made by using gears for converting the rotational motion into a linear motion or a rotational motion of another rotational shaft.
극저온냉각장치(600)는 냉매의 열교환을 통해 냉각스테이지(300)를 극저온 상태로 냉각하는 것으로, 극저온냉각장치(600)에서 냉각된 냉매는 냉각라인(610)을 통해 냉각스테이지(300)로 공급된다. 여기서, 극저온냉각장치(600), 냉각라인(610) 및 냉각스테이지(300)는 열교환되는 냉매가 독립된 순환루프를 이동하도록 구성됨이 바람직하다.The cryogenic cooling apparatus 600 cools the cooling stage 300 to a cryogenic state through heat exchange of the refrigerant, and the refrigerant cooled in the cryogenic cooling apparatus 600 is supplied to the cooling stage 300 through the cooling line 610. do. Here, the cryogenic cooling device 600, the cooling line 610 and the cooling stage 300 is preferably configured such that the refrigerant to be heat exchanged to move the independent circulation loop.
한편, 3축스테이지(200) 및 제어라인(510) 등은 기계적 구성에 의해 동작되는 바, 기계장치의 경우 동력을 전달하는 과정에서 각 구성간의 마찰에 의해 열이 발생될 수 있으며, 이러한 열에너지는 계측챔버(100) 내부의 온도를 상승시키는 요인으로 작용할 수 있다.Meanwhile, the three-axis stage 200 and the control line 510 are operated by a mechanical configuration. In the case of a mechanical device, heat may be generated by friction between the components in a process of transmitting power. It may act as a factor of raising the temperature inside the measurement chamber 100.
이를 방지하기 위하여 본 발명은, 냉매가 이동하는 냉각라인(610)과 제어라인(510)을 써멀링크(Thermal link)(700)로 연결하여, 냉각라인(610)에서 유출되는 냉기가 제어라인(510)으로 공급되도록 함으로써, 기계적 구성에 의해 발생되는 열을 상쇄시키도록 할 수 있다.In order to prevent this, the present invention, by connecting the cooling line 610 and the control line 510 in which the refrigerant moves to the thermal link (700), the cold air flowing out of the cooling line 610 control line ( By supplying 510, it is possible to offset the heat generated by the mechanical configuration.
도 2는 도 1의 3축스테이지 및 냉각스테이지를 설명하는 사시도이다.FIG. 2 is a perspective view illustrating a triaxial stage and a cooling stage of FIG. 1. FIG.
도 2를 참조하면, 3축스테이지(200)는 냉각스테이지(300)를 X축 방향으로 이동시키는 X축이동부(210), 냉각스테이지(300)를 Y축 방향으로 이동시키는 Y축이동부(220) 및 냉각스테이지(300)를 회동시키는 회동부(230)를 포함할 수 있다.Referring to FIG. 2, the three-axis stage 200 includes an X-axis moving unit 210 for moving the cooling stage 300 in the X-axis direction and a Y-axis moving unit for moving the cooling stage 300 in the Y-axis direction ( 220 and a rotating unit 230 for rotating the cooling stage 300.
또한, 3축스테이지(200)는 X축이동부(210), Y축이동부(220) 및 회동부(230)가 순차적으로 적층되어 고정설치될 수 있으며, 냉각스테이지(300)는 회동부(230)의 상부에 고정설치될 수 있다.In addition, the three-axis stage 200, the X-axis moving unit 210, Y-axis moving unit 220 and the rotating unit 230 may be sequentially stacked and installed, the cooling stage 300 is a rotating unit ( 230 may be fixed to the upper portion.
X축이동부(210)는 제1 고정플렛(Flat)(211), 제1 이동플렛(212), 스크류볼트(213) 및 이동가이드(214)를 포함할 수 있다.The X-axis moving part 210 may include a first fixing flat plate 211, a first moving plate 212, a screw bolt 213, and a moving guide 214.
제1 고정플렛(211)은 계측챔버(100)의 하부면에 고정설치될 수 있으며, 스크류볼트(213)가 회동가능하도록 구성될 수 있다.The first fixing plate 211 may be fixedly installed on the lower surface of the measurement chamber 100, and the screw bolt 213 may be rotatable.
또한, 제1 이동플렛(212)은 스크류볼트(213)에 나사결합되며, 스크류볼트(213)의 회동축에 나란하게 구성되는 이동가이드(214)를 따라 직선운동하도록 구성될 수 있다. 여기서, 이동가이드(214)는 LM(Linear Motion) 가이드를 포함할 수 있다.In addition, the first moving plate 212 may be screwed to the screw bolt 213, and may be configured to linearly move along the moving guide 214 configured to be parallel to the rotation shaft of the screw bolt 213. Here, the movement guide 214 may include a linear motion (LM) guide.
Y축이동부(220)는 제2 고정플렛(221), 제2 이동플렛(222) 및 랙기어(Rack gear)(223)를 포함할 수 있다.The Y-axis moving part 220 may include a second fixed plate 221, a second moving plate 222, and a rack gear 223.
제2 고정플렛(221)은 X축이동부(210)의 제1 이동플렛(212)의 상부에 고정설치될 수 있으며, 내부에 랙기어(223)와 결합되는 피니언기어(Pinion gear)(도시하지 않음)를 포함할 수 있다. 여기서, 피니언기어의 회동축은 스크류볼트(213)의 회동축과 동일 내지 나란할 수 있다. 따라서, X축이동부(210) 및 Y축이동부(220)는 동일한 회동축에 대하여 각각 나란한 방향 및 직교하는 방향으로 이동할 수 있다.The second fixing plate 221 may be fixedly installed on the upper portion of the first moving plate 212 of the X-axis moving unit 210, and pinion gear (Pinion gear) coupled to the rack gear 223 therein (shown) Not). Here, the pivot shaft of the pinion gear may be the same as or parallel to the pivot shaft of the screw bolt 213. Accordingly, the X-axis moving unit 210 and the Y-axis moving unit 220 may move in parallel and orthogonal directions, respectively, with respect to the same rotation axis.
제2 이동플렛(222)은 제2 고정플렛(221)의 상부에 구성될 수 있으며, 랙기어의 회동에 대응하여 직선운동하는 랙기어(223)에 의해 이동될 수 있다.The second moving plate 222 may be configured above the second fixing plate 221 and may be moved by the rack gear 223 linearly corresponding to the rotation of the rack gear.
물론, 당업자의 요구에 따라 X축이동부(210) 및 Y축이동부(220)의 구성이 서로 바뀌거나, 동일한 기능을 수행하는 다른 구성으로 변경될 수 있음은 물론이다.Of course, the configuration of the X-axis moving unit 210 and the Y-axis moving unit 220 according to the needs of those skilled in the art can be changed to each other, or may be changed to another configuration to perform the same function.
회동부(230)는 제3 고정플렛(231) 및 회동플렛(232)을 포함할 수 있다.The rotating unit 230 may include a third fixing plate 231 and a rotating plate 232.
제3 고정플렛(231)은 Y축이동부(220)의 제2 이동플렛(222)의 상부에 고정설치될 수 있다.The third fixing plate 231 may be fixedly installed on the upper portion of the second moving plate 222 of the Y-axis moving unit 220.
회동플렛(232)은 제어라인(510)으로부터 동력을 전달받아 회동하도록 제3 고정플렛(231)에 구성될 수 있다. 여기서, 회동플렛(232)은 X축이동부(210) 및 Y축이동부(220)의 이동에 의해 형성되는 면에 수직인 Z축을 회동축으로 회동할 수 있다.The rotating plate 232 may be configured in the third fixed plate 231 to rotate by receiving power from the control line 510. Here, the rotating plate 232 may rotate the Z axis perpendicular to the plane formed by the movement of the X-axis moving unit 210 and the Y-axis moving unit 220 to the rotating axis.
이때, 제어라인(510)으로부터 전달되는 동력은 스크류볼트(213)의 회동축과 동일 내지 나란할 수 있으며, 이러한 회전운동을 Z축을 회동축으로 하는 회전운동으로 변환하기 위하여, 회동플렛(232)은 웜기어(Worm Gear) 또는 베벨기어(Bevel Gear)에 의해 회동할 수 있다.At this time, the power transmitted from the control line 510 may be the same as or parallel to the rotational axis of the screw bolt 213, in order to convert this rotational movement into a rotational movement using the Z-axis rotational rotation, the rotating plate 232 Can be rotated by a worm gear or a bevel gear.
도 2에서, 냉각라인(610)은 극저온냉각장치(600)와 냉각스테이지(300) 간의 냉매순환을 위한 냉매관(611)을 포함할 수 있다.In FIG. 2, the cooling line 610 may include a refrigerant pipe 611 for refrigerant circulation between the cryogenic cooling device 600 and the cooling stage 300.
이때, 냉매관(611)은 보다 많은 양의 열교환이 이루어지도록 하기 위하여, 냉각스테이지(300)의 내부에서 지그재그 형태로 구성될 수 있다.At this time, the refrigerant pipe 611 may be configured in a zigzag form in the interior of the cooling stage 300 in order to achieve a greater amount of heat exchange.
또한, 냉각스테이지(300)의 일측에는 시료가 놓여지는 시료홀더(310)가 형성될 수 있고, 시료홀더(310)의 하부에는 빛(조명)이 투과할 수 있는 투명창(320)이 구성될 수 있다.In addition, a sample holder 310 in which a sample is placed may be formed at one side of the cooling stage 300, and a transparent window 320 may be formed at a lower portion of the sample holder 310 to transmit light (light). Can be.
도 3은 도 2의 3축스테이지가 X축으로 이동하는 것을 설명하는 사시도이다.3 is a perspective view illustrating the movement of the triaxial stage of FIG. 2 to the X axis.
도 3에서, 제어라인(510)을 통해 전달되는 동력이 동력전달축(Ax)을 기준으로 회전운동의 형태로 X축이동부(210)에 공급되면, X축이동부(210)의 스크류볼트(213)가 회동되면서, 스크류볼트(213)와 나사결합된 제1 이동플렛(212)이 동력전달축(Ax) 방향을 따라 이동할 수 있다.In FIG. 3, when the power transmitted through the control line 510 is supplied to the X-axis moving unit 210 in the form of a rotational movement based on the power transmission axis Ax, the screw bolt of the X-axis moving unit 210 is rotated. As the 213 is rotated, the first moving plate 212 screwed with the screw bolt 213 may move along the direction of the power transmission axis Ax.
따라서, X축이동부(210)는 제어라인(510)을 통해 전달되는 동력을 이용하여 회동부(230)의 상부에 구성되는 냉각스테이지(300)를 X축방향으로 이동시킬 수 있다.Therefore, the X-axis moving unit 210 may move the cooling stage 300 configured on the upper part of the rotating unit 230 in the X-axis direction by using the power transmitted through the control line 510.
도 4는 도 2의 3축스테이지가 Y축으로 이동하는 것을 설명하는 사시도이다.4 is a perspective view illustrating the movement of the triaxial stage of FIG. 2 to the Y axis.
도 4에서, 제어라인(510)을 통해 전달되는 동력이 동력전달축(Ax)을 기준으로 회전운동의 형태로 Y축이동부(220)에 공급되면, Y축이동부(220)의 피니언기어(도시하지 않음)가 회동하면서, 랙기어(223)에 고정설치된 제2 이동플렛(222)이 동력전달축(Ax) 방향에 수직방향을 따라 이동할 수 있다.In FIG. 4, when the power transmitted through the control line 510 is supplied to the Y-axis moving unit 220 in the form of a rotational movement based on the power transmission axis Ax, the pinion gear of the Y-axis moving unit 220 is provided. While not shown, the second moving plate 222 fixed to the rack gear 223 may move in a direction perpendicular to the direction of the power transmission axis Ax.
따라서, Y축이동부(220)는 제어라인(510)을 통해 전달되는 동력을 이용하여 회동부(230)의 상부에 구성되는 냉각스테이지(300)를 Y축방향으로 이동시킬 수 있다.Accordingly, the Y-axis moving unit 220 may move the cooling stage 300 configured at the upper portion of the rotating unit 230 in the Y-axis direction by using the power transmitted through the control line 510.
도 5는 도 2의 3축스테이지가 회동하는 것을 설명하는 사시도이다.FIG. 5 is a perspective view illustrating the rotation of the triaxial stage of FIG. 2. FIG.
도 5에서, 제어라인(510)을 통해 전달되는 동력이 동력전달축(Ax)을 기준으로 회전운동의 형태로 회동부(230)에 공급되면, 제3 고정플렛(231)과 회동플렛(232) 사이에 구성된 웜기어(Worm gear)에 의해 회동플렛(232)을 회동시킬 수 있다.In FIG. 5, when the power transmitted through the control line 510 is supplied to the rotating unit 230 in the form of a rotational movement with respect to the power transmission axis Ax, the third fixed plate 231 and the rotating plate 232. The rotating plate 232 can be rotated by a worm gear (Worm gear) configured between.
따라서, 회동부(230)는 제어라인(510)을 통해 전달되는 동력을 이용하여 회동부(230)의 상부에 구성되는 냉각스테이지(300)를 Z축을 회동축으로 하여 회동시킬 수 있다.Therefore, the rotating unit 230 may rotate the cooling stage 300 configured at the upper portion of the rotating unit 230 using the Z-axis as the rotating shaft by using the power transmitted through the control line 510.
도 6은 도 1의 써멀링크(Thermal link)를 설명하는 부분확대 사시도이다.6 is a partially enlarged perspective view illustrating a thermal link of FIG. 1.
도 6을 참조하면, 써멀링크(700)는 제어라인(510) 및 냉각라인(610)의 외부면에 접촉되도록 구성되어, 냉각라인(610)의 냉기를 제어라인(510)으로 공급할 수 있다.Referring to FIG. 6, the thermal link 700 may be configured to be in contact with the external surfaces of the control line 510 and the cooling line 610 to supply the cool air of the cooling line 610 to the control line 510.
이때, 써멀링크(700)의 폭이 클수록 전달되는 냉기의 양이 많아질 수는 있으나, 제어라인(510)과 접촉되는 면적이 넓어질 경우, 제어라인(510)의 움직임에 의해 발생되는 열에너지가 증가할 수 있다.At this time, the larger the width of the thermal link 700, the greater the amount of cold air delivered, but if the area in contact with the control line 510 is wide, the heat energy generated by the movement of the control line 510 is Can increase.
따라서, 써멀링크(700)의 폭은 최소화하여 구성하고, 도 1에 나타난 바와 같이 다수의 써멀링크(700)를 일정간격마다 구성할 수 있다.Therefore, the width of the thermal link 700 is configured to be minimized, and as shown in FIG. 1, a plurality of thermal links 700 may be configured at predetermined intervals.
도 7은 도 2의 냉매관에 대한 다른 실시예를 설명하는 부분확대 사시도이다.7 is a partially enlarged perspective view illustrating another embodiment of the refrigerant pipe of FIG. 2.
도 7을 참조하면, 냉매관(611)의 적어도 일부는 벨로우즈(Bellows)관(612)으로 형성될 수 있다.Referring to FIG. 7, at least a portion of the refrigerant pipe 611 may be formed as a bellows pipe 612.
이와 같이, 냉매관(611)의 적어도 일부를 벨로우즈관(612)으로 형성하면, 냉각스테이지(300)가 이동하거나 회동하더라도 냉매관(611)과 냉각스테이지(300)가 안정적으로 연결되어, 냉매의 순환이 원활하게 이루어질 수 있다.As such, when at least a portion of the refrigerant pipe 611 is formed as the bellows pipe 612, the refrigerant pipe 611 and the cooling stage 300 are stably connected to each other even when the cooling stage 300 moves or rotates. The circulation can be made smoothly.
또한, 냉매관(611)의 적어도 일부는 플랙시블(Flexible)관으로 형성될 수도 있다.In addition, at least a part of the refrigerant pipe 611 may be formed as a flexible pipe.
도 8은 본 발명에 따른 극저온 스테이지를 포함하는 고자기장 측정 시스템의 제어 방법을 설명하는 흐름도이다.8 is a flow chart illustrating a control method of a high magnetic field measurement system including a cryogenic stage according to the present invention.
도 8을 참조하면, 측정자는 시료가 놓여지는 냉각스테이지(300) 및 3축스테이지(200)를 계측챔버(100) 내부로 이동시켜 측정위치에 시료를 안착시킬 수 있다(단계 S100).Referring to FIG. 8, the measurer may move the cooling stage 300 and the three-axis stage 200 on which the sample is placed into the measurement chamber 100 to seat the sample at the measurement position (step S100).
시료가 원하는 위치에 위치하면, 측정자는 진공펌프(410)를 동작하여 계측챔버(100) 내부를 진공상태로 만들고(단계 S200), 극저온냉각장치(600)를 동작하여 계측챔버(100) 내부를 극저온상태로 만든다(단계 S300).When the sample is located at the desired position, the measurer operates the vacuum pump 410 to make the inside of the measuring chamber 100 in a vacuum state (step S200), and operates the cryogenic cooling device 600 to open the inside of the measuring chamber 100. Make the cryogenic state (step S300).
상기와 같이, 시료가 측정위치에 위치되고 계측환경의 조성이 완료되면, 측정자는 초전도코일(c)에 전기에너지를 공급하고 고자기장을 발생시켜 시료의 특성을 측정한다(단계 S400).As described above, when the sample is located at the measurement position and the composition of the measurement environment is completed, the measurer supplies electric energy to the superconducting coil c and generates a high magnetic field to measure the characteristics of the sample (step S400).
이와 같은 일련의 과정은 측정자에 의해 조작될 수 있으나, 도 1에 나타난 바와 같이 계측제어장치(800)를 통해 자동제어 됨이 바람직하다.Such a series of processes can be operated by the measurer, but is preferably controlled automatically through the measurement control device 800 as shown in FIG.
이하에서, 계측제어장치(800)를 통해 다양한 위치변화에 따른 시료의 특성을 측정하는 과정에 대하여 살펴보기로 한다.Hereinafter, the process of measuring the characteristics of the sample according to various position changes through the measurement control device 800 will be described.
도 9는 도 8의 단계 'S400'을 구체적으로 설명하는 순서도이다.FIG. 9 is a flowchart specifically describing step S400 of FIG. 8.
도 9를 참조하면, 계측제어장치(800)는 시료의 특성을 측정하기 위한 측정항목을 호출할 수 있다(단계 S401). 여기서, 측정항목은 시료의 위치 및 각도에 따라 분류한 것으로, 당업자의 요구에 따라 미리 설정하여 계측제어장치(800)에 저장될 수 있다. 또한, 측정항목은 측정자에 의해 계측제어장치(800)에 입력될 수 있다.Referring to FIG. 9, the measurement control device 800 may call a measurement item for measuring the characteristic of the sample (step S401). Here, the measurement items are classified according to the position and angle of the sample, and may be preset and stored in the measurement control device 800 according to the requirements of those skilled in the art. In addition, the measurement item may be input to the measurement control device 800 by the measurer.
계측제어장치(800)는 측정항목에 대응하여 측정순서를 설정할 수 있다(단계 S402). 예를 들어, 계측제어장치(800)는 최초측정 후 X축으로 일정거리 이동하여 2번째 측정, Y축으로 일정거리 이동하여 3번째 측정 및 θ만큼 회전하여 4번째 측정 등으로 측정순서를 설정할 수 있다.The measurement control apparatus 800 may set the measurement order corresponding to the measurement item (step S402). For example, the measurement control device 800 may move a certain distance to the X axis after the first measurement, and then measure the second measurement, a third distance to the Y axis, a third measurement, and rotate by θ to set the measurement order. have.
계측제어장치(800)는 측정순서에 따라 3축제어장치(500)를 통해 3축 스테이지(200)를 제어하여 시료의 위치를 조정할 수 있고(단계 S403), 위치의 조정이 완료되면 시료에 대한 측정을 수행할 수 있다(단계 S404).The measurement control device 800 may adjust the position of the sample by controlling the three-axis stage 200 through the three-axis control device 500 in accordance with the measurement order (step S403), and when the adjustment of the position is completed, Measurement can be performed (step S404).
계측제어장치(800)는 추가적으로 측정할 측정항목이 있는 경우, 단계 'S403' 및 단계 'S404'를 반복수행 할 수 있고, 측정순서에 따라 시료의 측정항목별 특성이 모두 측정되면(단계 S405), 측정된 측정항목별 특성의 측정정보를 당업자의 요구에 따라 선택적으로 취합 및 저장 한 후, 외부의 디스플레이장치로 전송하여 디스플레이할 수 있다(단계 S406).If there are additional measurement items to measure, the measurement control device 800 may repeat steps 'S403' and 'S404', and if the characteristics of each measurement item of the sample are measured according to the measurement procedure (step S405). In addition, after collecting and storing the measurement information of the characteristic of each measurement item according to the requirements of those skilled in the art, it may be transmitted to an external display device for display (step S406).
이상에서 본 발명에 의한 극저온 스테이지를 포함하는 고자기장 측정 시스템 및 그 제어 방법에 대하여 설명하였다. 이러한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.The high magnetic field measuring system including the cryogenic stage and the control method thereof according to the present invention have been described above. Such a technical configuration of the present invention will be understood by those skilled in the art that the present invention can be implemented in other specific forms without changing the technical spirit or essential features of the present invention.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 전술한 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지는 것이므로, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the above-described embodiments are to be understood in all respects as illustrative and not restrictive, and the scope of the present invention is indicated by the appended claims rather than the foregoing description, and therefore the meaning of the claims. And all changes or modifications derived from the scope and equivalent concept thereof should be construed as being included in the scope of the present invention.
극저온 고자기장 환경에서의 자기특성 측정 장치 및 시스템 분야는 물론, 이와 연관 내지 유사한 분야에서 신뢰성 및 경쟁력을 향상시킬 수 있다.It is possible to improve the reliability and competitiveness in the field of magnetic properties measuring apparatus and system in the cryogenic high magnetic environment, as well as related or similar fields.

Claims (14)

  1. 고자기장을 발생시키는 초전도코일 내에 구성되는 계측챔버;A measurement chamber configured in a superconducting coil for generating a high magnetic field;
    상기 계측챔버 내에 구성되는 3축스테이지;A triaxial stage constructed in the measurement chamber;
    상기 3축스테이지의 상부에 결합되어 시료가 놓여지는 냉각스테이지;A cooling stage coupled to an upper portion of the triaxial stage to place a sample thereon;
    상기 계측챔버의 내부를 진공상태로 만들기 위한 진공펌프가 구성되는 진공챔버;A vacuum chamber configured to form a vacuum pump for making the inside of the measurement chamber into a vacuum state;
    상기 3축스테이지의 이동 및 회동 중 적어도 하나를 제어하는 3축제어장치; 및A three axis controller for controlling at least one of movement and rotation of the three axis stage; And
    상기 냉각스테이지를 극저온으로 냉각하는 극저온냉각장치를 포함하는 극저온 스테이지를 포함하는 고자기장 측정 시스템.And a cryogenic stage comprising a cryogenic cooling device for cooling the cooling stage to cryogenic temperature.
  2. 제 1항에 있어서,The method of claim 1,
    상기 계측챔버와 진공챔버는 중공의 연결관에 의해 공간적으로 연결되고,The measuring chamber and the vacuum chamber are spatially connected by a hollow connecting tube,
    상기 3축제어장치는 상기 연결관의 내부에 구성되어 상기 3축스테이지를 제어하는 동력을 전달하는 제어라인을 포함하며,The three axis control device includes a control line configured to transfer power for controlling the three axis stage is configured inside the connection pipe,
    상기 극저온냉각장치는 상기 연결관의 내부에 구성되어 상기 냉각스테이지에 냉기를 공급하는 냉각라인을 포함하는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템.The cryogenic cooling device is a high magnetic field measurement system comprising a cryogenic stage, characterized in that the cooling pipe is configured to be provided inside the connection pipe for supplying cold air to the cooling stage.
  3. 제 2항에 있어서,The method of claim 2,
    상기 제어라인 및 냉각라인은 적어도 하나의 써멀링크(Thermal link)로 연결되는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템.The control line and the cooling line is a high magnetic field measuring system comprising a cryogenic stage, characterized in that connected by at least one thermal link (Thermal link).
  4. 제 2항에 있어서,The method of claim 2,
    상기 냉각라인은,The cooling line,
    상기 극저온냉각장치와 냉각스테이지 간의 냉매순환을 위한 냉매관을 포함하는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템.A high magnetic field measurement system comprising a cryogenic stage, characterized in that it comprises a refrigerant pipe for refrigerant circulation between the cryogenic cooling device and the cooling stage.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 냉매관의 적어도 일부는,At least part of the refrigerant pipe,
    플랙시블(Flexible)관 또는 벨로우즈(Bellows)관으로 형성되는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템.A high magnetic field measurement system comprising a cryogenic stage, characterized in that it is formed of a flexible tube or bellows tube.
  6. 제 1항에 있어서,The method of claim 1,
    상기 3축스테이지는,The triaxial stage,
    상기 냉각스테이지를 X축 방향으로 이동시키는 X축이동부;An X-axis moving unit which moves the cooling stage in the X-axis direction;
    상기 냉각스테이지를 Y축 방향으로 이동시키는 Y축이동부; 및A Y-axis moving unit which moves the cooling stage in the Y-axis direction; And
    상기 냉각스테이지를 회동시키는 회동부를 포함하는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템.High magnetic field measurement system comprising a cryogenic stage, characterized in that it comprises a rotating part for rotating the cooling stage.
  7. 제 6항에 있어서,The method of claim 6,
    상기 3축스테이지는 상기 X축이동부, Y축이동부 및 회동부가 순차적으로 적층되어 고정설치되며,The three-axis stage, the X-axis moving unit, the Y-axis moving unit and the rotating unit is sequentially laminated and fixed,
    상기 냉각스테이지는 상기 회동부의 상부에 고정설치되는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템.The cooling stage is a high magnetic field measurement system comprising a cryogenic stage, characterized in that fixed to the upper portion of the rotating part.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 X축이동부는,The X-axis moving unit,
    상기 계측챔버의 하부면에 고정설치되는 제1 고정플렛(Flat);A first fixing plate fixed to the lower surface of the measurement chamber;
    상기 제1 고정플렛에 회동가능하도록 설치되고 상기 제어라인으로부터 동력을 전달받아 회동하는 스크류볼트; 및A screw bolt installed to be rotatable to the first fixing plate and rotating by receiving power from the control line; And
    상기 스크류볼트의 회동에 대응하여 상기 스크류볼트의 회동축방향으로 이동하는 제1 이동플렛을 포함하는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템.A high magnetic field measuring system comprising a cryogenic stage, characterized in that it comprises a first moving plate moving in the direction of the rotational axis of the screw bolt corresponding to the rotation of the screw bolt.
  9. 제 8항에 있어서,The method of claim 8,
    상기 Y축이동부는,The Y-axis moving unit,
    상기 제1 이동플렛의 상부에 고정설치되는 제2 고정플렛;A second fixing plate fixedly installed on an upper portion of the first moving plate;
    상기 제2 고정플렛의 상부에 구성되는 제2 이동플렛; 및A second moving plate configured on an upper portion of the second fixing plate; And
    상기 제어라인으로부터 동력을 전달받아 상기 제2 이동플렛을 상기 스크류볼트의 회동축방향에 직교방향으로 이동시키는 랙피니언기어(Rack Pinion Gear)를 포함하는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템.High magnetic field measurement comprising a cryogenic stage, characterized in that it comprises a rack pinion gear for receiving power from the control line to move the second moving plate in a direction orthogonal to the rotational axis direction of the screw bolt. system.
  10. 제 9항에 있어서,The method of claim 9,
    상기 회동부는,The rotating part,
    상기 제2 이동플렛의 상부에 고정설치되는 제3 고정플렛;A third fixing plate fixedly installed on an upper portion of the second moving plate;
    상기 제3 고정플렛의 상부에 구성되는 회동플렛; 및A rotating plate configured on an upper portion of the third fixing plate; And
    상기 제어라인으로부터 동력을 전달받아 Z축을 회동축으로 하여 상기 회동플렛을 회동시키는 웜기어(Worm Gear) 또는 베벨기어(Bevel Gear)를 포함하는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템.High magnetic field measurement system comprising a cryogenic stage characterized in that it comprises a worm gear (Worm Gear) or a bevel gear (Rom) to rotate the rotating plate by receiving the power from the control line Z axis as a rotating shaft.
  11. 시료가 놓여지는 냉각스테이지 및 3축스테이지를 계측챔버 내부로 이동시키는 시료안착단계;A sample seating step of moving the cooling stage and the three-axis stage in which the sample is placed into the measurement chamber;
    진공펌프를 동작하여 상기 계측챔버 내부를 진공상태로 만드는 진공형성단계;A vacuum forming step of operating a vacuum pump to vacuum the inside of the measurement chamber;
    극저온냉각장치를 동작하여 상기 계측챔버 내부를 극저온상태로 만드는 극저온냉각단계; 및A cryogenic cooling step of operating the cryogenic cooling device to make the inside of the measurement chamber cryogenic; And
    초전도코일에 전기에너지를 공급하여 발생하는 고자기장을 이용하여 상기 시료의 특성을 측정하는 측정단계를 포함하는 극저온 스테이지를 포함하는 고자기장 측정 시스템의 제어 방법.A control method of a high magnetic field measuring system including a cryogenic stage including a measuring step of measuring characteristics of a sample using a high magnetic field generated by supplying electrical energy to a superconducting coil.
  12. 제 11항에 있어서,The method of claim 11,
    상기 측정단계는,The measuring step,
    상기 3축스테이지를 제어하여 상기 시료의 위치를 조정하는 위치조정단계를 포함하는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템의 제어 방법.And a position adjusting step of adjusting the position of the sample by controlling the three-axis stage.
  13. 제 12항에 있어서,The method of claim 12,
    상기 측정단계는,The measuring step,
    상기 시료의 특성을 측정하기 위한 측정항목을 호출하는 측정항목 호출단계; 및A measurement item calling step of calling a measurement item for measuring a characteristic of the sample; And
    상기 측정항목에 대응하여 측정순서를 설정하는 측정순서 설정단계를 더 포함하고,The method may further include a measurement order setting step of setting a measurement order corresponding to the measurement item.
    상기 위치조정단계는,The position adjustment step,
    상기 측정순서에 따라 상기 시료의 위치를 조정하는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템의 제어 방법.Control method of a high magnetic field measuring system comprising a cryogenic stage, characterized in that for adjusting the position of the sample in accordance with the measuring sequence.
  14. 제 13항에 있어서,The method of claim 13,
    상기 측정단계는,The measuring step,
    상기 측정순서에 따라 상기 시료의 측정항목별 특성이 모두 측정되면, 상기 측정항목별 특성의 측정정보를 취합, 저장, 전송 및 디스플레이 중 적어도 하나를 수행하는 측정정보 제공단계를 더 포함하는 것을 특징으로 하는 극저온 스테이지를 포함하는 고자기장 측정 시스템의 제어 방법.If all the characteristics of the measurement items of the sample in accordance with the measurement order is measured, further comprising the measurement information providing step of performing at least one of collecting, storing, transmitting and displaying the measurement information of the characteristics of each measurement item Control method of a high magnetic field measurement system comprising a cryogenic stage.
PCT/KR2013/002159 2012-11-01 2013-03-18 High magnetic field measurement system comprising extremely low temperature stage, and method for controlling same WO2014069726A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0122776 2012-11-01
KR1020120122776A KR101242677B1 (en) 2012-11-01 2012-11-01 High magnetic field measurement system with extremely low temperature stage and controlling method therefore

Publications (1)

Publication Number Publication Date
WO2014069726A1 true WO2014069726A1 (en) 2014-05-08

Family

ID=48181719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002159 WO2014069726A1 (en) 2012-11-01 2013-03-18 High magnetic field measurement system comprising extremely low temperature stage, and method for controlling same

Country Status (2)

Country Link
KR (1) KR101242677B1 (en)
WO (1) WO2014069726A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108430850A (en) * 2016-01-25 2018-08-21 日产自动车株式会社 The coast stop control method and control device of vehicle
CN108885032A (en) * 2016-03-16 2018-11-23 住友重机械工业株式会社 Movable stage cooling device and movable stage cooling system
CN111965243A (en) * 2020-07-29 2020-11-20 华南理工大学 Magnetic field loading dynamic control device for experiment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445248B (en) * 2018-05-16 2024-02-27 大连交通大学 Low-temperature two-dimensional vacuum sample stage
KR102481575B1 (en) * 2021-05-31 2022-12-28 에코피아 주식회사 Seebeck coefficient and hall effect measuring device with vacuum chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121713A (en) * 1998-10-09 2000-04-28 Taiyo Toyo Sanso Co Ltd Low temperature specimen position control equipment
KR20100045551A (en) * 2008-10-24 2010-05-04 국민대학교산학협력단 Mossbauer spectroscopy of biased magnetic field on cryogenic using a refrigerator
KR20100063327A (en) * 2008-12-03 2010-06-11 한국전기연구원 Apparatus to measure the angular magnetic field dependency of superconducting property
KR20120054135A (en) * 2010-11-19 2012-05-30 한국기초과학지원연구원 Superconducting magnet system using cryogenic refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121713A (en) * 1998-10-09 2000-04-28 Taiyo Toyo Sanso Co Ltd Low temperature specimen position control equipment
KR20100045551A (en) * 2008-10-24 2010-05-04 국민대학교산학협력단 Mossbauer spectroscopy of biased magnetic field on cryogenic using a refrigerator
KR20100063327A (en) * 2008-12-03 2010-06-11 한국전기연구원 Apparatus to measure the angular magnetic field dependency of superconducting property
KR20120054135A (en) * 2010-11-19 2012-05-30 한국기초과학지원연구원 Superconducting magnet system using cryogenic refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108430850A (en) * 2016-01-25 2018-08-21 日产自动车株式会社 The coast stop control method and control device of vehicle
CN108430850B (en) * 2016-01-25 2021-01-15 日产自动车株式会社 Coast stop control method and control device for vehicle
CN108885032A (en) * 2016-03-16 2018-11-23 住友重机械工业株式会社 Movable stage cooling device and movable stage cooling system
CN108885032B (en) * 2016-03-16 2020-08-25 住友重机械工业株式会社 Movable table cooling device and movable table cooling system
CN111965243A (en) * 2020-07-29 2020-11-20 华南理工大学 Magnetic field loading dynamic control device for experiment

Also Published As

Publication number Publication date
KR101242677B1 (en) 2013-03-18

Similar Documents

Publication Publication Date Title
WO2014069726A1 (en) High magnetic field measurement system comprising extremely low temperature stage, and method for controlling same
JP2001284416A (en) Low temperature test device
WO2020130372A1 (en) Charging/discharging device comprising movable temperature measuring instrument for secondary battery and cooling fan
JP5555633B2 (en) Method for inspecting a test substrate under a predetermined temperature condition and an inspection apparatus capable of setting the temperature condition
US9632108B2 (en) Method for verifying a test substrate in a prober under defined thermal conditions
TW200406862A (en) Probe apparatus for temperature control of the examined body and probe examining method
WO2014026369A1 (en) Warehouse temperature and humidity monitoring method and monitoring system
CN108780122B (en) For the modular track system of the device under test, rail system, mechanism and equipment
US20190019711A1 (en) Prober
JP2015094734A (en) Inspection device
KR20100057118A (en) Probe station of variable temperature
CN114624473A (en) Closed-cycle probe station
WO2015099370A1 (en) Curved panel display defect repair device
CN107957637B (en) High-low temperature test environment providing device, adjusting method and testing device
WO2020226194A1 (en) Probe assembly and micro vacuum probe station comprising same
US20070132471A1 (en) Method and apparatus for testing integrated circuits over a range of temperatures
WO2017200324A1 (en) Substrate defect inspection device and inspection method using same
CN115032230A (en) Test equipment for thermoelectric material device
CN112881155B (en) Mechanical test environment box
WO2014098346A1 (en) System and method for predicting initial cooling of superconducting magnet
Hofmann et al. The cryogenic MOS unit for LUCIFER
CN219997240U (en) Multidimensional fault injection equipment
WO2024063395A1 (en) Magnetocaloric material property evaluation device
CN219842447U (en) Heating device and thermal performance detection system
CN216899235U (en) Light sensation testing device capable of automatically adjusting light source distance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852240

Country of ref document: EP

Kind code of ref document: A1