WO2014069333A1 - 人工股関節 - Google Patents

人工股関節 Download PDF

Info

Publication number
WO2014069333A1
WO2014069333A1 PCT/JP2013/078863 JP2013078863W WO2014069333A1 WO 2014069333 A1 WO2014069333 A1 WO 2014069333A1 JP 2013078863 W JP2013078863 W JP 2013078863W WO 2014069333 A1 WO2014069333 A1 WO 2014069333A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
sleeve
neck portion
recess
outer peripheral
Prior art date
Application number
PCT/JP2013/078863
Other languages
English (en)
French (fr)
Inventor
美世 脇山
隆祥 下園
Original Assignee
京セラメディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラメディカル株式会社 filed Critical 京セラメディカル株式会社
Priority to US14/439,268 priority Critical patent/US20150272740A1/en
Priority to EP13850659.7A priority patent/EP2915506A4/en
Publication of WO2014069333A1 publication Critical patent/WO2014069333A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30332Conically- or frustoconically-shaped protrusion and recess
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30474Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using an intermediate sleeve interposed between both prosthetic parts to be coupled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30565Special structural features of bone or joint prostheses not otherwise provided for having spring elements
    • A61F2002/30571Leaf springs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/365Connections of heads to necks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys

Definitions

  • the present invention relates to an artificial hip joint in which a neck portion of a stem is fitted into a tapered recess of a bone head ball to join the bone head ball and the stem.
  • an artificial hip joint is made of a metal such as stainless steel, cobalt chrome alloy, and titanium alloy, and has a stem that is inserted into and fixed to the femur and a ceramic headball, and the headball and stem are connected to each other.
  • a polyethylene cup is fixed on the side of the acetabulum that is fixed integrally or by taper fitting and receives the head ball.
  • headballs are fixed to the neck formed at the tip of the metal stem by taper fitting, and the fitting when attached to the stem is changed by changing the depth or inner diameter of the recess, also called the taper hole.
  • the total length also referred to as “neck offset”) is adjusted.
  • a bone head ball made of ceramics such as alumina and zirconia, which are low friction and low wear materials is clinically used.
  • ceramic bone head balls have a problem that they are easily damaged due to incompatibility between the neck portion at the tip of the metal stem to be joined and the recess formed in the bone head ball.
  • a load of 5 times or more of the body weight is applied to the femoral head at the maximum. For example, if a person has a body weight of 80 kg, a maximum load of about 400 kg is repeatedly applied. As described above, since a large force always acts on the hip joint of the human body for a long period of time, the artificial hip joint requires a high strength.
  • the hip prosthesis is required to have a high safety factor from the viewpoint of long-term durability.
  • the stress distribution in the recess of the headball can be reduced even by incompatibility due to slight neck wrinkles. There is a problem that it becomes non-uniform and induces cracking of the headball by local stress concentration.
  • the thickness of the sleeve is changed, and the neck portion is fitted into the recess at a position deeper in the insertion direction of the neck portion than the opening of the recess, thereby destroying the ceramic head ball.
  • Strength is increased.
  • the fitting length between the neck portion and the sleeve is shortened, the possibility that the neck portion is fitted obliquely increases.
  • the total height of the head ball is increased in order to ensure the fitting length, it will be difficult to ensure a sufficient thickness in the stress concentration area generated near the opening of the recess, and the required strength can be obtained. There is a problem of disappearing.
  • An object of the present invention is to provide an artificial hip joint that can secure a fitting length without increasing the total height of the bone head ball, reduce stress concentration, and reduce stress generated in the bone head ball. is there.
  • the present invention includes a stem having a neck portion having a frustoconical outer peripheral surface having a small diameter toward the tip; A head bone in which a recess into which the neck portion can be inserted is formed, and the inner surface defining the recess includes a frustoconical inner peripheral surface having a small diameter in the insertion direction of the neck portion.
  • a sphere A sleeve interposed between an outer peripheral surface of the neck portion inserted into the recess and the inner peripheral surface of the skull ball,
  • the sleeve has an inner peripheral portion that comes into contact with the outer peripheral surface of the neck portion, and an outer peripheral portion that comes into contact with the inner peripheral surface of the skull head ball in a region farther in the insertion direction than the opening of the recess.
  • the present invention also includes a stem having a neck portion having a frustoconical outer peripheral surface having a small diameter toward the tip, A head bone in which a recess into which the neck portion can be inserted is formed, and the inner surface defining the recess includes a frustoconical inner peripheral surface having a small diameter in the insertion direction of the neck portion.
  • a sphere A sleeve interposed between an outer peripheral surface of the neck portion inserted into the recess and the inner peripheral surface of the skull ball,
  • the sleeve has an inner peripheral portion that contacts an outer peripheral surface of the neck portion, and an outer peripheral portion that contacts an inner peripheral surface of the skull head ball, and between the inner peripheral portion and the outer peripheral portion,
  • a hip prosthesis characterized in that a slit extending in the insertion direction is formed from one end arranged on the opening side of the sleeve.
  • the present invention provides a stem having a neck portion having a frustoconical outer peripheral surface having a small diameter toward the tip, A head bone in which a recess into which the neck portion can be inserted is formed, and the inner surface defining the recess includes a frustoconical inner peripheral surface having a small diameter in the insertion direction of the neck portion.
  • the present invention provides a stem having a neck portion having a frustoconical outer peripheral surface having a small diameter toward the tip, A bone head ball having a recess into which the neck portion can be inserted, wherein the inner surface defining the recess includes a frustoconical inner peripheral surface having a small diameter in the insertion direction of the neck portion.
  • An artificial hip joint characterized by In the present invention, it is preferable that the sleeve is made of Ti or a Ti alloy.
  • the inner peripheral portion of the sleeve is in contact with the outer peripheral surface of the neck portion, and the outer peripheral portion of the sleeve is in contact with a region farther in the insertion direction than the opening of the recess in the inner peripheral surface of the skull head ball. Therefore, the stress concentration portion generated in the headball can be moved to a site having a larger cross-sectional area than the opening of the headball. As a result, it is possible to provide an artificial hip joint that can alleviate the stress concentration and reduce the stress generated in the head ball.
  • the fitting length between the outer peripheral surface of the neck portion and the inner peripheral portion of the sleeve that is in contact with the outer peripheral surface can be made sufficiently long, it is possible to secure the fixing strength of the head ball to the neck portion. Therefore, it is possible to reduce the size of the head ball by reducing the total height of the head head ball to such an extent that the minimum necessary head head ball sliding area can be obtained. Since the inner peripheral portion of the sleeve serves as a guide when the bone head ball is mounted on the neck portion, the possibility that the head head ball and the neck portion are fitted obliquely can be reduced.
  • the inner peripheral portion of the sleeve is in contact with the outer peripheral surface of the neck portion, the outer peripheral portion is in contact with the inner peripheral surface of the skull head ball, and between the inner peripheral portion and the outer peripheral portion, A slit extending in the insertion direction from one end is formed.
  • the sleeve is realized by a multilayer structure in which a plurality of sleeve portions are stacked. As a result, it is possible to alleviate the stress generated in the head ball by causing slippage at the interfaces of the plurality of sleeve portions.
  • the inner peripheral portion of the sleeve contacts the outer peripheral surface of the neck portion
  • the outer peripheral portion contacts the inner peripheral surface of the recess
  • the flange portion contacts the peripheral surface of the opening of the recess.
  • the sleeve is made of Ti or Ti alloy suitable for corrosion resistance and spreadability, the head strength of the artificial hip joint can be improved, and at the same time, the fitting force between the head and neck can be improved. Can do.
  • FIG. 2 is a perspective view of a sleeve 2A used in the artificial hip joint 1A shown in FIG. It is a figure which shows the stress analysis model of an artificial hip joint. It is a stress distribution diagram which shows the analysis result of Example 1 which simulated 1 A of artificial hip joints shown in FIG. 6 is a stress distribution diagram showing an analysis result of Comparative Example 1. FIG. 6 is a stress distribution diagram showing the analysis result of Comparative Example 2. FIG. It is sectional drawing which shows the artificial hip joint 1B which concerns on Embodiment 2 of this invention.
  • FIG. 8 is a stress distribution diagram showing an analysis result of Example 2 simulating the artificial hip joint 1 ⁇ / b> B shown in FIG. 7. It is sectional drawing which shows 1C of artificial hip joints which concern on Embodiment 3 of this invention. It is a perspective view of the sleeve 2C used for the artificial hip joint 1C shown in FIG. It is a disassembled perspective view of the sleeve 2C used for the artificial hip joint 1C shown in FIG. It is a stress distribution diagram which shows the stress analysis result of Example 3 which simulated 1 C of artificial hip joints shown in FIG.
  • FIG. 1 It is sectional drawing which shows 1D of artificial hip joints which concern on Embodiment 4 of this invention. It is a perspective view of sleeve 2D used for artificial hip joint 1D shown in FIG. It is a stress distribution figure which shows the stress analysis result of Example 4 which simulated artificial hip joint 1D shown in FIG.
  • FIG. 1 is a cross-sectional view showing an artificial hip joint 1A according to Embodiment 1 of the present invention
  • FIG. 2 is a perspective view of a sleeve 2A used in the artificial hip joint 1A shown in FIG.
  • the artificial hip joint 1A of the present embodiment includes a stem 6, a bone head ball 8, and a sleeve 2A.
  • the stem 6 has a neck portion 5 having a frustoconical outer peripheral surface 4 having a small diameter toward the tip 3.
  • the femoral head ball 8 is formed with a recess 7 into which the neck portion 5 can be inserted, and an inner surface 9 defining the recess 7 has a frustoconical inner peripheral surface 10 having a smaller diameter in the insertion direction A of the neck portion 5. including.
  • the sleeve 2 ⁇ / b> A is interposed between the outer peripheral surface 4 of the neck portion 5 inserted into the recess 7 and the inner peripheral surface 10 of the bone head ball 8.
  • the stem 6 is made of a metal such as stainless steel, cobalt chrome alloy, or titanium alloy, and a neck portion 5 to which the head ball 8 is attached is provided at the end opposite to the side inserted into the femur.
  • the bone head ball 8 is made of a ceramic material such as alumina or zirconia which is a low friction and low wear material.
  • the sleeve 2A is an annular member that is made of titanium (Ti) or a titanium alloy and has an outer shape that is substantially frustoconical. In use, it may be mounted in the recess 7 of the osteophyte ball 8 in advance. There are a plurality of types of standards for the taper shape of the neck portion 5.
  • the shape of the sleeve 2 ⁇ / b> A is adjusted so that it can be combined with a taper shape corresponding to the standard of the neck portion 5 to be attached to one bone head ball 8.
  • the illustrated sleeve 2A has a cylindrical shape with an end portion on the small diameter side opened, but may have a cup shape with the end portion on the small diameter side closed.
  • the sleeve 2 ⁇ / b> A of the present embodiment has an inner peripheral portion 13 that comes into contact with the outer peripheral surface 4 of the neck portion 5 and an outer peripheral portion 16 that comes into contact with the inner peripheral surface 10 of the skull ball 8, and is along the insertion direction A.
  • the second length L2 of the outer peripheral portion 16 is formed shorter than the total length (equal to the entire length of the sleeve) L1 of the inner peripheral portion 13 when viewed.
  • the edge on the large diameter side of the outer peripheral portion 16 is set to be positioned at a distance ⁇ L1 in the insertion direction A from the end surface 15 of the opening 14.
  • the sleeve 2A does not protrude from the recess 7 of the osteophyte ball 8. In the case of projecting, it is desirable to set so as not to go outside the phantom spherical surface including the outer surface of the head ball 8.
  • the inner peripheral portion 13 has an inner peripheral portion 17 that is longer than the outer peripheral portion 16 by the third length L 3, thereby effectively contacting the outer peripheral surface 4 of the neck portion 5 and a required fitting length to the neck portion 5.
  • L4 can be secured.
  • the fitting length L4 and the neck offset (the distance from the center of the bone head ball 8 to the tip of the neck portion 5) with respect to the neck portion 5 of the bone head ball 8 can be adjusted by the thickness T of the sleeve 2A. That is, when the thickness T of the sleeve 2A is increased, the inner diameter is reduced, so that the fitting length L4 is shortened and the neck offset is increased.
  • the thickness T of the sleeve 2A is reduced, the inner diameter is increased, so that the fitting length L4 is increased and the neck offset is reduced.
  • the thickness of the sleeve 2A is not particularly limited, but is preferably in the range of 0.5 to 5.0 mm for practical use.
  • the fitting length L4 between the inner peripheral portion 13 and the outer peripheral surface 4 can be changed, and the position of the skull ball 8 with respect to the neck portion 5 can be adjusted.
  • different offsets can be set for the same headball 8 and stem 6.
  • the same or a few kinds of the head ball 8 and the stem 6 can be used by interposing the sleeve 2A. That is, even with stems 6 of different standards, by matching the shape of the sleeve 2A disposed between the bone head ball 8 and the neck portion 5, the bone head ball 8 and the neck portion 5 can be adapted to fit the fitting length. It becomes possible to adjust L4. Thus, a stable fitting state between the head ball 8 and the neck portion 5 can be obtained by the sleeve 2A to be interposed.
  • the outer peripheral portion 16 extends from the position retracted in the insertion direction A by the length ⁇ L1 from the end face 15 of the opening 14, that is, from the middle of the recess 7 to the inner periphery of the skull ball 8 in the insertion direction A over the second length L2. In contact with the surface 10.
  • the region where the skull ball 8 and the outer peripheral portion 16 of the sleeve 2A are in contact with each other avoids a relatively thin region in the range of the length ⁇ L1 from the end surface 15.
  • the area is changed to a relatively large cross-sectional area.
  • the stress concentrated portion of the head ball 8 can be moved to a position having a large cross-sectional area advantageous for strength, and the maximum principal stress generated can be reduced.
  • the artificial hip joint 1A exhibits the following effects. Since the region where the inner peripheral surface 10 of the head ball 8 and the outer peripheral portion 16 of the sleeve 2A are in contact with each other is changed to a region where the thickness B is large and the strength is high, the location where the stress is concentrated in this region moves. It is possible to prevent the strength from being reduced and broken. Since the fitting length L4 of the outer peripheral surface 4 of the neck portion 5 of the stem 6 and the inner peripheral portion 13 of the sleeve 2A in contact with the outer peripheral surface 4 is set to a sufficient length, the fitting strength of the femoral head ball 8 to the neck portion 5 can be secured. .
  • the total height H of the bone head ball 8 can be reduced to the extent that the necessary minimum bone head ball sliding area can be obtained, and the size of the bone head ball 8 can be reduced.
  • the large fitting length L4 can be ensured and excellent fixing strength can be expressed.
  • the inner peripheral portion 17 of the sleeve 2A is provided with the inner peripheral portion 17 longer than the outer peripheral portion 16 by the third length L3, the inner peripheral portion 17 attaches the head ball 8 to the neck portion 5. The possibility of engaging with the neck portion 5 at an angle can be sufficiently reduced.
  • FIG. 3 is a diagram showing a stress analysis model of an artificial hip joint.
  • FIG. 4 is a stress distribution diagram showing an analysis result of Example 1 simulating the artificial hip joint 1A shown in FIG.
  • FIG. 5 is a stress distribution diagram showing the analysis result of Comparative Example 1.
  • FIG. 6 is a stress distribution diagram showing the analysis result of Comparative Example 2.
  • the same reference numerals are assigned to portions corresponding to the artificial hip joint 1A in FIG.
  • the present inventor conducted stress analysis by a finite element method (abbreviated as FEM) in order to confirm the stress generated when an external force is applied to the bone head ball 8 in the artificial hip joint 1A according to the first embodiment.
  • the analysis method uses the stress analysis model shown in FIG. 3, and the analysis model simulating the artificial hip joint 1A of FIG. 1 as an analysis target is “Example 1”, and the analysis model simulating an artificial hip joint in which no sleeve is incorporated.
  • Example 1 the analysis model simulating an artificial hip joint in which no sleeve is incorporated.
  • Comparative Example 2 an analysis model simulating an artificial hip joint in which a simple spindle-shaped sleeve having a uniform thickness was incorporated as in the above-described prior art was set as “Comparative Example 2”.
  • the material of the member corresponding to the bone head ball 8 is alumina
  • the material of the member corresponding to the neck portion 5 of the stem is CCM (cobalt-chromium-molybdenum alloy), and corresponds to the sleeves 2 and 2A.
  • the material of the member to be used is Ti-6Al-4V.
  • the stress distribution generated in the bone head ball 8 and the maximum principal stress value when a load F of 46 kN was applied to the bone head ball 8 were calculated.
  • the load of 46 kN used in the analysis is a criterion for the average strength of the cephalic bulb 8 according to the guidance of the Food and Drug Administration (abbreviated as FDA).
  • the software used for the FEM analysis is general-purpose analysis software “ANSYS Workbench ver.13”. Table 1 shows the set values of the FEM analysis conditions. In Table 1, alumina corresponds to the skull, CCM corresponds to the neck, Ti-6Al-4V corresponds to the sleeve, Fe corresponds to the pressing jig, and Cu corresponds to the copper ring.
  • Example 1 (Embodiment 1), Comparative Example 1 (without sleeve), and Comparative Example 2 (with spindle-shaped sleeve), stress generated when a load F of 46 kN is applied to the bone ball 8 by the pressing jig 30 Distributions are shown in FIGS. 4, 5, and 6, respectively. In each figure, the generation position of the maximum principal stress is indicated by R. Table 2 shows the maximum principal stress value (unit MPa) obtained by the analysis.
  • Example 1 using the sleeve 2A according to the first embodiment, it was confirmed that the maximum principal stress value generated in the femoral head ball 8 was the lowest.
  • the maximum principal stress is set as shown in FIG. 4 by setting the contact portion between the sleeve 2A and the head ball 8 to a portion having a large cross-sectional area while avoiding the opening 14 and the vicinity thereof having a small thickness. Is moved to the back side in the insertion direction A in the recess 7. As a result, it is considered that the maximum principal stress value in Example 1 was lower than that in Comparative Examples 1 and 2. In addition, it is considered that the breaking strength increases.
  • the interface is increased as compared with the case where the sleeve 2A is not provided, so that slip occurs between the headball 8 and the neck portion 5, and stress generated in the headball 8 due to this slip is reduced. Since the action works, it is considered that the effect of reducing the stress generated in the bone ball 8 is exhibited in cooperation with this action.
  • Comparative Example 2 In the comparative example 2 shown in FIG. 6, the stress is concentrated in the vicinity of the thinnest opening portion 14 in the bone ball 8. Also, the value of the maximum principal stress is much larger than that of Example 1. However, in Comparative Example 2, since the sleeve 2 is interposed between the head ball 8 and the neck portion 5, the interface is increased, so that stress is reduced due to slippage. It is considered that the maximum principal stress value is a little lower than that of Comparative Example 1 having no sleeve due to the stress lowering action of the sleeve 2. As a result, it is considered that Comparative Example 2 has a slightly higher breaking strength than Comparative Example 1.
  • FIG. 7 is a cross-sectional view showing an artificial hip joint 1B according to Embodiment 2 of the present invention.
  • FIG. 8 is a perspective view of a sleeve 2B used in the artificial hip joint 1B. Note that portions corresponding to those of the first embodiment are denoted by the same reference numerals.
  • the artificial hip joint 1B of the present embodiment is common to the first embodiment in that it includes a stem 6, a head ball 8, and a sleeve 2B.
  • the stem 6 has a neck portion 5 having a frustoconical outer peripheral surface 4 having a small diameter toward the tip, and a recess 7 into which the neck portion 5 can be inserted is formed to define the recess 7.
  • the inner surface includes a frustoconical inner peripheral surface 10 having a smaller diameter in the insertion direction of the neck portion 5.
  • the sleeve 2 ⁇ / b> B is interposed between the outer peripheral surface 4 of the neck portion 5 inserted in the recess 7 and the inner peripheral surface 10 of the bone head ball 8.
  • the sleeve 2 ⁇ / b> B has an inner peripheral portion 13 that contacts the outer peripheral surface 4 of the neck portion 5, and an outer peripheral portion 16 that contacts the inner peripheral surface 10 of the bone head ball 8, and the inner peripheral portion 13 and the outer peripheral portion 16
  • a substantially cylindrical slit 12 is formed extending from the one end portion of the sleeve 2 ⁇ / b> B arranged on the opening 14 side in the insertion direction A.
  • the formation length L5 of the slit 12 in the sleeve 2B is such that the outer peripheral portion 16 can bend following the deformation when the head ball 8 receives a load. It is set so that it can be moved to a location where the thickness is relatively large.
  • the fitting lengths of the inner and outer surfaces of the sleeve 2B are equal and set to a sufficient length. For this reason, the risk of fitting the neck portion 5 diagonally can be made as low as the conventional simple weight-like sleeve 2.
  • FIG. 9 is a stress distribution diagram showing an analysis result of a model simulating the artificial hip joint 1B of the present embodiment.
  • the analysis method is in accordance with Analysis Example 1. That is, the stress analysis model shown in FIG. 3 is used, and the analysis model simulating the artificial hip joint 1B of FIG. 7 is set as “analysis target” as “Example 2”, and the load F of 46 kN is applied to the femoral head ball 8. Stress was analyzed by FEM analysis.
  • the software used for the FEM analysis is the general-purpose analysis software “ANSYS Workbench ver.13” similar to the analysis example 1, and the setting values of the FEM analysis conditions are the same as those of the analysis example 1.
  • the maximum principal stress value generated in the head ball 8 is reduced by using the sleeve 2B according to the second embodiment.
  • the generation position R of the maximum principal stress moves from the opening 14 of the recess 7 to the back as shown in FIG.
  • the maximum principal stress value decreases.
  • the interface is increased by interposing the sleeve 2B, slipping occurs between the bone head ball 8, the sleeve 2B, and the neck portion 5, and the action of reducing the stress generated in the bone head ball 8 due to this slipping works. . Therefore, in cooperation with this action, it is considered that the effect of reducing the stress generated in the bone ball 8 is exhibited.
  • the destruction of the femoral head ball 8 can be achieved compared to the case where the sleeve is not used (Comparative Example 1) or the case where the simple spindle-shaped conventional sleeve 2 (Comparative Example 2) is used. Strength can be improved.
  • FIG. 10 is a cross-sectional view showing an artificial hip joint 1C according to Embodiment 3 of the present invention.
  • FIG. 11 is a perspective view of a sleeve 2C used in the artificial hip joint 1C.
  • FIG. 12 is an exploded perspective view of a sleeve 2C used in the artificial hip joint 1C. The parts corresponding to those of the first embodiment are denoted by the same reference numerals.
  • the artificial hip joint 1C of the present embodiment includes a stem 6, a head ball 8, and a sleeve 2C.
  • the stem 6 has a neck portion 5 having a frustoconical outer peripheral surface 4 having a small diameter toward the tip.
  • the femoral head ball 8 includes a recess 7 into which the neck portion 5 can be inserted, and an inner surface defining the recess 7 includes a frustoconical inner peripheral surface 10 having a smaller diameter in the insertion direction of the neck portion 5.
  • the sleeve 2 ⁇ / b> C is interposed between the outer peripheral surface 4 of the neck portion 5 inserted into the recess 7 and the inner peripheral surface 10 of the bone head ball 8.
  • the sleeve 2C has a multilayer structure in which a plurality of sleeve portions having substantially the same shape are stacked, and has a two-layer structure in this embodiment.
  • the sleeve 2C of the present embodiment is fitted into the hollow frustum-shaped outer cylinder portion 2a and the outer cylinder portion 2a, and is longer in the axial direction than the outer cylinder portion 2a. And a hollow frustum-shaped inner cylinder portion 2b.
  • the outer peripheral surface of the outer cylindrical portion 2 a constitutes an outer peripheral portion 16 in contact with the inner peripheral surface 10 of the skull ball 8
  • the inner peripheral surface of the inner cylindrical portion 2 b is formed on the outer peripheral surface 4 of the neck portion 5.
  • the inner peripheral part 13 which contacts is comprised.
  • the end surfaces on the small diameter side are set to coincide with each other.
  • the sleeve 2C is formed so that the overall length L6 of the outer cylindrical portion 2a is shorter than the overall length L1 (equal to the overall length of the sleeve) L1 of the inner cylindrical portion 2b when viewed along the insertion direction A.
  • a gap S is formed between the protruding portion 18 and the inner peripheral surface 10 of the skull ball 8.
  • the stress concentration portion is It can be moved to a thick region on the back side of the recess 7 that is separated from the end face 15 of the femoral head ball 8 by a certain length ⁇ L3.
  • the sleeve 2 ⁇ / b> C can prevent stress from being concentrated on a relatively thin portion near the opening 14, so that the fracture strength of the femoral head ball 8 can be improved.
  • the sleeve 2C of the present embodiment has a structure in which the outer cylinder part 2a and the inner cylinder part 2b having substantially the same shape are overlapped with each other.
  • the sliding surface between the inner cylinder portions 2b increases, and the stress generated in the bone ball 8 can be reduced.
  • the sleeve 2C of the present embodiment is a combination of a simple spindle-shaped outer cylinder part 2a and inner cylinder part 2b, it is easy to process and is excellent in productivity. Furthermore, since it has a multilayer structure, the thickness can be easily adjusted.
  • the outer cylinder portion 2a and the inner cylinder portion 2b do not necessarily have the same taper.
  • the sleeve 2C can have a multilayer structure of three or more layers.
  • FIG. 13 is a stress distribution diagram showing an analysis result of a model simulating the artificial hip joint 1C of the present embodiment.
  • the analysis method is in accordance with Analysis Example 1. That is, the stress analysis model shown in FIG. 3 is used, and the analysis model simulating the artificial hip joint 1C of FIG. 10 is set as “analysis target” as “Example 3”, and the load F of 46 kN is applied to the femoral head ball 8. Stress was analyzed by FEM analysis.
  • the software used for the FEM analysis is the general-purpose analysis software “ANSYS Workbench ver.13” similar to the analysis example 1, and the setting values of the FEM analysis conditions are the same as those of the analysis example 1.
  • Example 3 since the position where the outer tube portion 2a of the sleeve 2C is in contact with the inner peripheral surface 10 of the skull ball 8 is separated from the opening 14, as shown in FIG. It moves from the opening 14 of the recess 7 to the back side. As a result, the maximum principal stress value decreases. Further, since the interface is increased by interposing the sleeve 2C having the two-layer structure, a slip occurs between the bone head ball 8 and the neck portion 5, and an action of reducing the stress generated in the bone head ball 8 due to the slip works. . Therefore, in cooperation with this action, it is considered that the effect of reducing the stress generated in the bone ball 8 is exhibited.
  • the hip prosthesis 1C moves the stress concentration portion to a region having a high strength, so that the maximum principal stress value generated in the bone ball 8 can be reduced and the fracture strength of the bone ball 8 can be improved. it can. Further, by using the sleeve 2C having a multilayer structure, the interface is increased, and slipping occurs between the outer cylinder part 2a and the inner cylinder part 2b. This also has the effect of reducing the stress generated in the bone head ball 8. It is done.
  • FIG. 14 is a cross-sectional view showing an artificial hip joint 1D according to Embodiment 4 of the present invention.
  • FIG. 15 is a perspective view of a sleeve 2D used in the artificial hip joint 1D. Note that the same reference numerals are given to portions corresponding to the above-described embodiment.
  • the artificial hip joint 1D of the present embodiment is common to the first embodiment in that it includes a stem 6, a head ball 8, and a sleeve 2D.
  • the stem 6 has a neck portion 5 having a frustoconical outer peripheral surface 4 having a small diameter toward the tip.
  • the femoral head ball 8 includes a recess 7 into which the neck portion 5 can be inserted, and an inner surface defining the recess 7 includes a frustoconical inner peripheral surface 10 having a smaller diameter in the insertion direction of the neck portion 5.
  • the sleeve 2 ⁇ / b> D is interposed between the outer peripheral surface 4 of the neck portion 5 inserted into the recess 7 and the inner peripheral surface 10 of the bone head ball 8.
  • the sleeve 2 ⁇ / b> D of the present embodiment includes an inner peripheral portion 13 that contacts the outer peripheral surface 4 of the neck portion 5, an outer peripheral portion 16 that contacts the inner peripheral surface 10 of the recess 7, and a flange portion 19 that spreads toward the opening 14. And have. And the flange part 19 formed in the edge part by the side of the opening part 14 is set as the structure which surface-contacts with the end surface 15 which is the surrounding surface of the opening part 14 of the skull head ball 8.
  • FIG. In the present embodiment, the end face 15 of the osteophyte ball 8 is set at a location having a relatively large thickness.
  • the radius of the flange portion 19 and the thickness U seen along the insertion direction A are set so that the flange portion 19 does not come out of the phantom spherical surface including the surface of the head ball 8. Therefore, it is desirable to reduce the thickness U when the radius of the flange portion 19 is increased, and to decrease the radius of the flange portion 19 when the thickness U is increased.
  • the sleeve 2D of the present embodiment does not need to secure a region for forming the gap S or the slit 12 near the opening 14 of the head 8. That is, since the outer peripheral portion 16 of the sleeve 2D contacts the inner peripheral surface 10 of the skull ball 8 from the position of the opening 14, a sufficient fitting length can be secured even if the total height H of the skull head ball 8 is reduced. it can. Therefore, the bone head ball 8 can be reduced to such an extent that the minimum necessary bone head sliding area can be secured, so that a small bone head ball 8 can be provided. If the bone head ball 8 is downsized, the sliding area is also reduced, so that the surface of the bone head ball 8 can be easily polished.
  • a gap S or a slit 12 may be formed in the vicinity of the opening 14 of the head ball 8 in order to reduce the maximum principal stress value.
  • the length of the inner peripheral portion 13 when the sleeve 2D is viewed along the insertion direction A is a length including the flange portion 19
  • the sleeve 2D is fitted to the neck portion 5 with respect to the total height H of the femoral head ball 8.
  • the total length L8 can be increased. Therefore, in order to fix the bone head ball 8 to the stem 6, when the neck portion 5 is fitted into the sleeve 2 ⁇ / b> D, the possibility of fitting the neck portion 5 obliquely is reduced, and the fracture strength of the bone head ball 8 is reduced. A decrease can be prevented.
  • the sleeve 2 ⁇ / b> D receives a load at the outer peripheral portion 16 and the flange portion 19, the stress generated in the bone head ball 8 is distributed in the direction along the outer peripheral portion 16 from the opening portion 14 and in the direction along the flange portion 19. As a result, the value of the maximum principal stress decreases.
  • the end face 15 with which the flange portion 19 is in contact is set at a location having a large thickness, so that the breaking strength can be improved.
  • FIG. 16 is a stress distribution diagram showing an analysis result of a model simulating the artificial hip joint 1D of the present embodiment.
  • the analysis method is in accordance with Analysis Example 1. That is, when the stress analysis model shown in FIG. 3 is used and the analysis model simulating the artificial hip joint 1D of FIG. 14 is set as “analysis target” as “Example 4”, a load F of 46 kN is applied to the femoral head ball 8. Stress was analyzed by FEM analysis.
  • the software used for the FEM analysis is the general-purpose analysis software “ANSYS Workbench ver.13” similar to the analysis example 1, and the setting values of the FEM analysis conditions are the same as those of the analysis example 1.
  • Example 4 As shown in FIG. 16, the generation position R of the maximum principal stress is in the vicinity of the opening 14, but the value is sufficiently smaller than those of Comparative Examples 1 and 2. This is because the flange portion 19 in contact with the end face 15 of the skull ball 8 is formed on the sleeve 2D, so that when the load F is applied to the skull ball 8, the stress generated in the vicinity of the opening 14 of the skull ball 8 is This is considered to be due to dispersion not only in the 16 directions but also in the flange portion 19 direction.
  • the following excellent effects are exhibited.
  • a plurality of types of taper shapes can be selected and mounted on one headball 8. It becomes possible.
  • By adjusting the thickness T of the sleeves 2A to 2D it is possible to change the neck offset with one femoral head ball 8.
  • the artificial hip joints 1A to 1D include a ceramic bone head ball 8, a metal stem 6, and sleeves 2A to 2D. Therefore, depending on the selection of the sleeves 2A to 2D, Combination with various stems 6 becomes possible, and various types of artificial hip joints having different sizes and materials can be provided.
  • the taper fitting length that comes into contact with the outer peripheral portion 16 of the sleeves 2A to 2D and the inner peripheral surface 10 of the skull ball 8 and the taper fitting that comes into contact with the outer peripheral surface 4 of the inner peripheral portion 13 and the neck portion 5 of the stem 6 Since each length can be secured to a sufficient length, the possibility of fitting the neck portion 5 obliquely can be reduced. Further, since the stress concentration portion of the bone head ball 8 can be moved to a position advantageous in strength or the stress can be dispersed, the maximum principal stress value of the bone head ball 8 is reduced, and the fracture strength of the bone head ball 8 is reduced. Can be improved.
  • the outer peripheral portion 16 of the sleeves 2A to 2D and the inner peripheral surface 10 of the head ball 8 are brought into surface contact with the same taper angle.
  • the neck portion 5 The so-called “back contact” fitting structure in which the mounted sleeves 2A to 2D are brought into contact with the inner peripheral surface 10 of the recess 7 at a position deeper in the insertion direction of the neck portion 5 than the recess 7 of the skull 8 It is good.
  • the taper angle of the inner peripheral portion 13 of the sleeves 2A to 2D is made larger than the taper angle of the outer peripheral surface 4 of the neck portion 5, thereby making the tip 3 of the neck portion 5
  • a so-called “back contact” fitting structure may be adopted in which the sleeves 2A to 2D are brought into contact with the inner peripheral portion 13 at a deep position.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

 本発明は、骨頭球の全高を大きくせずに嵌合長を確保し、かつ応力の集中を回避して、骨頭球に発生する応力の緩和を図ることができる人工股関節に関する。先端(3)に向かって小径となる円錐台状の外周面(4)を有するネック部(5)を有するステム(6)と、ネック部(5)を挿入可能な凹所(7)が形成され、凹所(7)を規定する内面が、ネック部(5)の挿入方向に向かって小径となる円錐台状の内周面(10)を含む骨頭球(8)と、凹所(7)に挿入されたネック部(5)の外周面(4)と骨頭球(8)の内周面(10)との間に介装されるスリーブ(2A)とを含む。スリーブ(2A)は、ネック部(5)の外周面(4)に接触する内周部(13)と、骨頭球(8)の内周面(10)に、凹所(7)の開口部(14)から挿入方向Aに退避した位置を始端として接触する外周部(16)とを有する。

Description

人工股関節
 本発明は、骨頭球のテーパ形状の凹所にステムのネック部を嵌合させて、骨頭球とステムとを結合する人工股関節に関する。
 従来から、人工股関節は、ステンレス鋼、コバルトクロム合金およびチタン合金などの金属から成り、大腿骨へ挿入されて固定されるステムと、セラミックス製の骨頭球とを有し、骨頭球とステムとが一体的またはテーパ嵌合によって固定され、骨頭球を受座する臼蓋側には、ポリエチレン製カップが固定されている。
 骨頭球は、金属製のステムの先端部に形成したネック部に、テーパ嵌合によって固定する構造が多く、テーパ孔とも呼ばれる凹所の深さや内径を変えることによって、ステムに取付けた際の嵌合長(「ネックオフセット」ともいう。)を調整するように構成されている。
 骨頭球は、臼蓋側のポリエチレン製カップとの組合せを考慮して、低摩擦、低摩耗の材質であるアルミナ、ジルコニアなどのセラミックス製のものが臨床使用されている。ところが、セラミックス製の骨頭球は、結合される金属製のステムの先端部のネック部と、骨頭球に形成される凹所との不適合によって、破損などが生じ易いという問題がある。
 ところで大腿骨の骨頭には、最大、体重の5倍以上の荷重が作用すると言われており、たとえば体重80kgの人であれば、約400kgの最大荷重が繰り返し作用することになる。このように人体の股関節には、常に大きな力が長期間にわたり作用するため、人工股関節には大きな強度が必要である。
 また、人工股関節は、長期間にわたる耐久性という点からも、高い安全係数が要求される。しかしながら現実には、セラミックス製の骨頭球に形成される凹所にステムのネック部を挿入するに際し、ネック部のわずかな疵などによる不適合によってさえも、骨頭球の凹所部分における応力の分布が一様でなくなり、局部的な応力集中によって骨頭球の割れを誘発するなどの問題がある。
 このような問題を解決するため、セラミックス製の骨頭球に形成される凹所内にステムのネック部が挿入され固定される人工股関節において、前記凹所の内周面とステムのネック部の外周面との間に、錐状のスリーブを介装させる技術が活用されている。
 このような従来技術では、スリーブの厚みの調整によって、骨頭球に対するネック部の嵌合長、つまりネックオフセットを変更することが容易となり、セラミックス製の骨頭球の種類を多く準備することなく、一種類の骨頭球でも、複数の異なる嵌合長に対応することが可能となる(たとえば、特許文献1,2および非特許文献1参照)。
特開平3-47253号公報 特開2002-330983号公報
「NEWS RELEASE 新技術・新製品のご案内 人工股関節用・新世代セラミックヘッドとビタミンE入りライナー、最先端テクノロジーの組み合わせで、日本展開」、[online]、2012年5月15日、バイオメット・ジャパン株式会社、[平成24年10月29日検索]、インターネット(URL:https://www.biomet.co.jp/information/img/Biomet_Release0515.pdf)
 前述の従来技術では、スリーブの厚みを変化させ、ネック部を凹所の開口部よりもネック部の挿入方向に奥まった位置で該凹所に嵌合させることによって、セラミックス製の骨頭球の破壊強度を増大させている。しかし、ネック部とスリーブとの嵌合長が短くなることによって、ネック部が斜めに嵌合する可能性が高くなる。また、嵌合長を確保するために骨頭球の全高を大きくすると、凹所の開口部付近に発生する応力集中部に充分な厚みを確保することが困難となり、必要な強度を得ることができなくなってしまうという問題がある。
 本発明の目的は、骨頭球の全高を大きくせずに嵌合長を確保し、かつ応力集中を緩和して、骨頭球に発生する応力の低減を図ることができる人工股関節を提供することである。
 本発明は、先端に向かって小径となる円錐台状の外周面を有するネック部を有するステムと、
 前記ネック部を挿入可能な凹所が形成される骨頭球であって、前記凹所を規定する内面が、前記ネック部の挿入方向に向かって小径となる円錐台状の内周面を含む骨頭球と、
 前記凹所に挿入された前記ネック部の外周面と前記骨頭球の前記内周面との間に介装されるスリーブと、を含み、
 前記スリーブは、前記ネック部の外周面に接触する内周部と、前記骨頭球の内周面に前記凹所の開口部よりも前記挿入方向に離れた領域で接触する外周部とを有することを特徴とする人工股関節である。
 また本発明は、先端に向かって小径となる円錐台状の外周面を有するネック部を有するステムと、
 前記ネック部を挿入可能な凹所が形成される骨頭球であって、前記凹所を規定する内面が、前記ネック部の挿入方向に向かって小径となる円錐台状の内周面を含む骨頭球と、
 前記凹所に挿入された前記ネック部の外周面と前記骨頭球の前記内周面との間に介装されるスリーブと、を含み、
 前記スリーブは、前記ネック部の外周面に接触する内周部と、前記骨頭球の内周面に接触する外周部とを有し、前記内周部と前記外周部との間には、該スリーブの前記開口部側に配置される一端部から前記挿入方向に延びるスリットが形成されることを特徴とする人工股関節である。
 さらに本発明は、先端に向かって小径となる円錐台状の外周面を有するネック部を有するステムと、
 前記ネック部を挿入可能な凹所が形成される骨頭球であって、前記凹所を規定する内面が、前記ネック部の挿入方向に向かって小径となる円錐台状の内周面を含む骨頭球と、
 前記凹所に挿入された前記ネック部の外周面と前記骨頭球の前記内周面との間に介装されるスリーブと、を含み、
 前記スリーブは、複数のスリーブ部分が積重された多層構造であることを特徴とする人工股関節である。
 さらに本発明は、先端に向かって小径となる円錐台状の外周面を有するネック部を有するステムと、
 前記ネック部を挿入可能な凹所が形成された骨頭球であって、前記凹所を規定する内面が、前記ネック部の挿入方向に向かって小径となる円錐台状の内周面を含む骨頭球と、
 前記凹所に挿入された前記ネック部の外周面と前記骨頭球の前記内周面との間に介装されるスリーブと、を含み、
 前記スリーブは、前記ネック部の外周面に接触する内周部と、前記凹所の内周面に接触する外周部と、前記凹所の開口部の周囲表面に接触するフランジ部とを有することを特徴とする人工股関節である。
 さらに本発明は、前記スリーブは、TiまたはTi合金から成ることが好ましい。
 本発明によれば、スリーブの内周部がネック部の外周面に接触し、スリーブの外周部は、骨頭球の内周面における凹所の開口部よりも挿入方向に離れた領域で接触するので、骨頭球に生じる応力集中部を、骨頭球の開口部よりも断面積の大きな部位へ移動させることができる。これによって、応力集中を緩和して、骨頭球に発生する応力の低減を図ることが可能な人工股関節を提供できる。ネック部の外周面とそれに接触しているスリーブの内周部の嵌合長を充分な長さにできるから、骨頭球のネック部に対する固定強度を確保できる。よって、必要最小限の骨頭球摺動面積を得られる程度まで骨頭球の全高を低くして、骨頭球の小型化を実現できる。スリーブの内周部が、骨頭球をネック部に装着するときのガイドとなるので、骨頭球とネック部とが斜めに嵌合する可能性を低くできる。
 また本発明によれば、スリーブの内周部がネック部の外周面に接触し、外周部は骨頭球の内周面に接触し、これら内周部と外周部との間には、スリーブの一端部から挿入方向に延びるスリットが形成される。これにより、骨頭球に生じる応力集中部を、骨頭球の開口部よりも断面積の大きな部位へ移動させることにより、応力集中を緩和することができる。
 さらに本発明によれば、スリーブは、複数のスリーブ部分が積重された多層構造によって実現される。これにより、複数のスリーブ部分の界面ですべりが生じることにより、骨頭球に生じる応力の緩和を図ることができる。
 さらに本発明によれば、スリーブの内周部がネック部の外周面に接触し、外周部は凹所の内周面に接触し、フランジ部は、凹所の開口部の周囲表面に接触する。これにより、骨頭球の開口部付近に生じる応力集中を、スリーブの外周部に沿う方向と、フランジ部に沿う方向とに分散させて、応力の緩和を図ることができる。
 さらに本発明によれば、スリーブは、耐食性、展延性に適したTiまたはTi合金から成るので、人工股関節の骨頭強度を向上させることができると同時に、骨頭とネックとの嵌合力を向上させることができる。
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の実施形態1に係る人工股関節1Aを示す断面図である。 図1に示す人工股関節1Aに用いられるスリーブ2Aの斜視図である。 人工股関節の応力解析モデルを示す図である。 図1に示す人工股関節1Aを模擬した実施例1の解析結果を示す応力分布図である。 比較例1の解析結果を示す応力分布図である。 比較例2の解析結果を示す応力分布図である。 本発明の実施形態2に係る人工股関節1Bを示す断面図である。 図7に示す人工股関節1Bに用いられるスリーブ2Bの斜視図である。 図7に示す人工股関節1Bを模擬した実施例2の解析結果を示す応力分布図である。 本発明の実施形態3に係る人工股関節1Cを示す断面図である。 図10に示す人工股関節1Cに用いられるスリーブ2Cの斜視図である。 図10に示す人工股関節1Cに用いられるスリーブ2Cの分解斜視図である。 図10に示す人工股関節1Cを模擬した実施例3の応力解析結果を示す応力分布図である。 本発明の実施形態4に係る人工股関節1Dを示す断面図である。 図14に示す人工股関節1Dに用いられるスリーブ2Dの斜視図である。 図14に示す人工股関節1Dを模擬した実施例4の応力解析結果を示す応力分布図である。
 以下図面を参考にして本発明の好適な実施形態を詳細に説明する。
(実施形態1)
 図1は本発明の実施形態1に係る人工股関節1Aを示す断面図であり、図2は図1に示す人工股関節1Aに用いられるスリーブ2Aの斜視図である。本実施形態の人工股関節1Aは、ステム6と、骨頭球8と、スリーブ2Aとを含む。ステム6は、先端3に向かって小径となる円錐台状の外周面4を有するネック部5を有する。骨頭球8は、ネック部5を挿入可能な凹所7が形成され、凹所7を規定する内面9が、ネック部5の挿入方向Aに向かって小径となる円錐台状の内周面10を含む。スリーブ2Aは、凹所7に挿入されたネック部5の外周面4と骨頭球8の内周面10との間に介装される。
 ステム6は、ステンレス鋼、コバルトクロム合金、またはチタン合金などの金属で製作され、大腿骨に挿入される側とは反対の端部に、骨頭球8が装着されるネック部5が設けられる。骨頭球8は、低摩擦、低摩耗の材質であるアルミナ、ジルコニアなどのセラミックス製のものが採用される。
 スリーブ2Aは、チタン(Ti)またはチタン合金で製作され、外形がほぼ円錐台状をなす環状の部材である。使用に際しては、予め、骨頭球8の凹所7内へ装着しておいてもよい。ネック部5のテーパ形状には、複数種類の規格がある。スリーブ2Aの形状は、1つの骨頭球8に対し、装着対象となるネック部5の規格に対応したテーパ形状と組み合わせることが可能なように調整されている。なお、図示するスリーブ2Aは、小径側の端部を開口させた筒状の形態としているが、小径側端部が閉鎖されたカップ状の形態としてもよい。
 本実施形態のスリーブ2Aは、ネック部5の外周面4に接触する内周部13と、骨頭球8の内周面10に接触する外周部16とを有しており、挿入方向Aに沿って見たときの内周部13の全長(スリーブ全長に等しい)L1に比べて、外周部16の第2長さL2は短く形成される。すなわち、外周部16における大径側の端縁が、開口部14の端面15よりも挿入方向Aに距離ΔL1だけ離れた位置となるように設定されている。このため内周部13には、外周部16との長さの差分に基づき、厚みの薄い第3長さL3(=L1-L2)の内周部分17が形成される。このように、スリーブ2Aは、挿入方向Aに沿って見たときに、ネック部5の外周面4に対する内周部13の接触位置と、骨頭球8の内周面10に対する外周部16の接触位置とが異なっている。
 スリーブ2Aは、骨頭球8の凹所7から突出させないことが望ましい。突出させる場合、骨頭球8の外表面を含む仮想球面の外側へ出ないように設定することが望ましい。
 内周部13は、外周部16よりも第3長さL3だけ長い内周部分17を有することによって、ネック部5の外周面4に有効に接触して、ネック部5に対する所要の嵌合長L4を確保することができる。スリーブ2Aの厚みTにより、この嵌合長L4と、骨頭球8のネック部5に対するネックオフセット(骨頭球8の中心からネック部5の先端までの距離)とを調整することが可能である。すなわち、スリーブ2Aの厚みTを大きくすると、内径が縮小するから、嵌合長L4が短くなり、ネックオフセットが増加する。反対にスリーブ2Aの厚みTを小さくすると、内径が拡大するから、嵌合長L4が長くなり、ネックオフセットが減少する。スリーブ2Aの厚みについては、特に制限はないが、実用上0.5~5.0mmの範囲とするのが望ましい。
 このように、スリーブ2Aの厚みTを変更することで、内周部13と外周面4との嵌合長L4を変更し、ネック部5に対する骨頭球8の位置を調整することが可能であるから、厚みTの異なるスリーブ2Aを用意することで、同じ骨頭球8とステム6に対し、異なるオフセットを設定することが可能となる。
 また、ネック部5のテーパ形状に関する規格の相違に対しても、スリーブ2Aを介装させることによって、同一または少数種類の骨頭球8およびステム6を使用することが可能となる。すなわち、異なる規格のステム6であっても、骨頭球8とネック部5との間に配置するスリーブ2Aの形状を対応させることによって、骨頭球8とネック部5とを適合させ、嵌合長L4を調整することが可能となる。このように、介装させるスリーブ2Aによって、骨頭球8とネック部5との安定な嵌合状態を得ることができる。
 外周部16は、開口部14の端面15よりも長さΔL1だけ挿入方向Aに退避した位置から、すなわち凹所7の途中から、挿入方向Aに第2長さL2にわたって骨頭球8の内周面10に接触している。外周部16の接触領域を端面15から退避させたことによって、骨頭球8とスリーブ2Aの外周部16との接触する領域が、端面15から長さΔL1の範囲の比較的厚みの薄い領域を避けて、比較的断面積の大きな領域へ変更となる。これによって、骨頭球8の応力集中部を強度に有利な断面積の大きい位置へ移動させるとともに、発生する最大主応力を低減することができる。
 本実施形態に係る人工股関節1Aは、以下に述べるような効果を発揮する。骨頭球8の内周面10とスリーブ2Aの外周部16とが接触する領域を、厚みBが大きく、強度の高い領域に変更したので、この領域に応力集中する箇所が移動し、骨頭球8の強度低下および破壊を防止することができる。ステム6のネック部5の外周面4とそれに接触しているスリーブ2Aの内周部13の嵌合長L4を充分な長さとしたので、骨頭球8のネック部5に対する嵌合強度を確保できる。よって、必要最小限の骨頭球摺動面積を得られる程度まで、骨頭球8の全高Hを低くして、骨頭球8の小型化を実現できるとともに、骨頭球8の全高Hに対し、充分に大きな嵌合長L4を確保して、優れた固定強度を発現させることができる。また、スリーブ2Aの内周部13に、外周部16よりも第3長さL3だけ長い内周部分17を設けることによって、この内周部分17が、骨頭球8をネック部5に装着するときのガイドとなり、ネック部5に対し斜めに嵌合する可能性を充分に低くすることができる。
(解析例1)
 図3は、人工股関節の応力解析モデルを示す図である。図4は、図1に示す人工股関節1Aを模擬した実施例1の解析結果を示す応力分布図である。図5は、比較例1の解析結果を示す応力分布図である。図6は、比較例2の解析結果を示す応力分布図である。各図において、図1の人工股関節1Aと対応する部分には、同一の参照符号を付す。
 本件発明者は、実施形態1に係る人工股関節1Aにおいて、骨頭球8に外力を加えたときに発生する応力を確認するため、有限要素法(Finite Element Method;略称FEM)による応力解析を実施した。解析方法は、図3に示す応力解析モデルを用い、解析対象として、図1の人工股関節1Aを模擬した解析モデルを「実施例1」とし、スリーブが組込まれていない人工股関節を模擬した解析モデルを「比較例1」とし、前記従来技術と同様に厚みが一様な単純錘状のスリーブが組込まれた人工股関節を模擬した解析モデルを「比較例2」とした。
 図3の応力解析モデルにおいて、骨頭球8に相当する部材の材質をアルミナとし、ステムのネック部5に相当する部材の材質をCCM(コバルト-クロム-モリブデン合金)とし、スリーブ2,2Aに相当する部材の材質をTi-6Al-4Vとする。実施例1、比較例1、比較例2の間で、骨頭球8のデザインは統一した。ネック部5のデザインは、実施例1、比較例2で同じである。しかし、比較例1のネック部5のデザインは、スリーブの厚みに相当する分だけ、実施例1および比較例2のネック部5よりも太くしたものとした。
 そして、先端に銅製リング20を装着した鉄製の押圧治具30によって、骨頭球8に対し、46kNの荷重Fを付加したときに骨頭球8に生じる応力分布と、最大主応力値とを算出した。なお、解析に使用した荷重46kNは、食品医薬品局(Food and Drug Administration;略称FDA)のガイダンスによる骨頭球8の平均強度のクライテリアである。FEM解析に用いたソフトウェアは、汎用解析ソフトウェア「ANSYS Workbench ver.13」である。FEM解析条件の設定値を表1に示す。表1中のアルミナは骨頭球に、CCMはネック部に、Ti-6Al-4Vはスリーブに、Feは押圧冶具に、Cuは銅製リングにそれぞれ対応する。
Figure JPOXMLDOC01-appb-T000001
(FEM解析結果)
 実施例1(実施形態1)、比較例1(スリーブなし)、および比較例2(錘状スリーブ付き)において、押圧治具30により骨頭球8に46kNの荷重Fを負荷したときに発生する応力分布を、それぞれ図4、図5、図6に示す。各図中には、最大主応力の発生位置をRで示す。また、解析により得られた最大主応力値(単位MPa)を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 前記解析結果から判るように、実施形態1に係るスリーブ2Aを用いた実施例1において、骨頭球8に生じる最大主応力値が最も低いことが確認された。実施例1では、スリーブ2Aと骨頭球8との接触箇所を、厚みの薄い開口部14およびその近傍を避け、断面積の大きい箇所に設定することで、図4に示すように、最大主応力の発生位置Rが、凹所7における挿入方向Aの奥側へ移動する。その結果、実施例1は、比較例1および比較例2と比べて、最大主応力値が低下したと考えられる。また、これに伴い、破壊強度が増大すると考えられる。さらに、スリーブ2Aを介装させることによって、スリーブ2Aがない場合より界面が増えるため、骨頭球8とネック部5との間で滑りが生じ、この滑りによって骨頭球8に発生する応力を小さくする作用が働くので、この作用とも協働して、骨頭球8に生じる応力を減少させる効果が発揮されると考えられる。
 図5に示す比較例1は、骨頭球8とネック部5とが直接接触している。このため、図5に示すごとく、骨頭球8における厚みの最も薄い部分である開口部14付近に応力が集中する。また最大主応力の値も、実施例1と比べて、はるかに大きい。さらに、開口部14付近の厚みの薄い領域に応力が集中するため、最大主応力値が高くなる。その結果、破壊強度が低くなると考えられる。
 図6に示す比較例2では、骨頭球8における厚みの最も薄い開口部14付近に応力が集中している。また、最大主応力の値も、実施例1と比べてはるかに大きい。ただし比較例2では、骨頭球8とネック部5との間にスリーブ2を介装させたことによって、界面が増えるから、滑りによる応力低下がもたらされる。このようなスリーブ2による応力低下作用により、スリーブがない比較例1と比べて、少し低い最大主応力値になったと考えられる。その結果、比較例2は、比較例1と比べて、破壊強度が少し高くなると考えられる。
 以上述べた解析結果から、実施例1のスリーブ2Aを使用することによって、スリーブを使用しない場合(比較例1)や従来の単純錘状のスリーブ2(比較例2)を使用した場合よりも、最大主応力値が低くなることが確認できた。その結果、骨頭球8の破壊強度が向上すると考えられる。
(実施形態2)
 図7は、本発明の実施形態2に係る人工股関節1Bを示す断面図である。図8は、この人工股関節1Bに用いるスリーブ2Bの斜視図である。なお、前述の実施形態1と対応する部分には、同一の参照符を付す。
 本実施形態の人工股関節1Bは、ステム6と、骨頭球8と、スリーブ2Bとを含む点は、実施形態1と共通である。ステム6は、先端に向かって小径となる円錐台状の外周面4を有するネック部5を有する骨頭球8は、ネック部5を挿入可能な凹所7が形成され、凹所7を規定する内面が、ネック部5の挿入方向に向かって小径となる円錐台状の内周面10を含む。スリーブ2Bは、凹所7に挿入されたネック部5の外周面4と骨頭球8の内周面10との間に介装される。
 前記スリーブ2Bは、ネック部5の外周面4に接触する内周部13と、骨頭球8の内周面10に接触する外周部16とを有し、内周部13と外周部16との間に、スリーブ2Bにおける開口部14側に配置される一端部から挿入方向Aに延び、装着状態でほぼ円筒状のスリット12が形成される。
 スリーブ2Bにスリット12を形成したことによって、骨頭球8に荷重が負荷されたときに、骨頭球8の開口部14付近が変形するが、これに合わせて、骨頭球8の内周面10と接触するスリーブ2Bの外周部16が撓むことが可能となる。その結果、骨頭球8の端面15から一定長さΔL2の範囲の、比較的厚みの薄い部分に応力を集中させないようにすることができ、骨頭球8の破壊強度を向上させることができる。
 スリーブ2Bにおけるスリット12の形成長さL5は、外周部16が、骨頭球8が荷重を受けたときの変形に追随して撓むことができ、それによって、応力集中部を、骨頭球8の厚みが比較的大きい箇所へ移動させることが可能なように設定される。
 なお本実施形態にあっては、従来の単純錘状のスリーブ2と同様に、スリーブ2Bの内外面の嵌合長が等しく、かつ充分な長さに設定されている。このため、ネック部5を斜めに嵌合させるリスクを、従来の単純錘状のスリーブ2と同等に低くすることができる。
(解析例2)
 実施形態2に係る人工股関節1Bの骨頭球8に外力が加わったときに生じる応力について、実施形態1と同様に、解析を行った。図9は本実施形態の人工股関節1Bを模擬したモデルの解析結果を示す応力分布図である。解析方法は、解析例1に準じる。すなわち、図3に示す応力解析モデルを用い、解析対象として、図7の人工股関節1Bを模擬した解析モデルを「実施例2」とし、骨頭球8に46kNの荷重Fを加えたときに発生する応力を、FEM解析により解析した。FEM解析に用いたソフトウェアは、解析例1と同様の汎用解析ソフトウェア「ANSYS Workbench ver.13」であり、FEM解析条件の設定値は、解析例1と共通である。
(FEM解析結果)
 解析結果を図9および表3に示す。なお、表3中の「比較例1」「比較例2」は、解析例1と共通である。
Figure JPOXMLDOC01-appb-T000003
 前記解析結果から判るように、実施形態2に係るスリーブ2Bを用いることにより、骨頭球8に生じる最大主応力値が低減することが確認された。実施例2では、スリーブ2Bがスリット12を有することにより、図9に示すように、最大主応力の発生位置Rが凹所7の開口部14から奥側へ移動する。その結果、最大主応力値が低下する。また、スリーブ2Bを介装させることによって、界面が増えるため、骨頭球8とスリーブ2Bとネック部5との間で滑りが生じ、この滑りによって骨頭球8に発生する応力を小さくする作用が働く。よって、この作用とも協働して、骨頭球8に生じる応力を減少させる効果が発揮されると考えられる。
 以上を要するに、本実施形態のスリーブ2Bを使用することによって、スリーブを使用しない場合(比較例1)や単純錘状の従来スリーブ2(比較例2)を使用する場合より、骨頭球8の破壊強度を向上させることができる。
(実施形態3)
 図10は本発明の実施形態3に係る人工股関節1Cを示す断面図である。図11はこの人工股関節1Cに用いるスリーブ2Cの斜視図である。図12はこの人工股関節1Cに用いるスリーブ2Cの分解斜視図である。なお、前記実施形態1と対応する部分には、同一の参照符を付す。
 本実施形態の人工股関節1Cは、ステム6と、骨頭球8と、スリーブ2Cとを含む。ステム6は、先端に向かって小径となる円錐台状の外周面4を有するネック部5を有する。骨頭球8は、ネック部5を挿入可能な凹所7が形成され、凹所7を規定する内面が、ネック部5の挿入方向に向かって小径となる円錐台状の内周面10を含む。スリーブ2Cは、凹所7に挿入されたネック部5の外周面4と骨頭球8の内周面10との間に介装される。当該スリーブ2Cが、ほぼ同一形状の複数のスリーブ部分を積重して多層構造としたものであり、本実施形態では2層構造を呈する。
 本実施形態のスリーブ2Cは、図11および図12に示すように、中空円錐台状の外筒部分2aと、この外筒部分2aに内嵌され、外筒部分2aより軸方向長さが長く形成された中空円錐台状の内筒部分2bとを有する。このスリーブ2Cにおいては、外筒部分2aの外周面が、骨頭球8の内周面10に接する外周部16を構成し、内筒部分2bの内周面が、ネック部5の外周面4に接する内周部13を構成する。なお本実施形態では、外筒部分2aと内筒部分2bとを重ね合わせたとき、小径側の端面が一致するように設定した。
 スリーブ2Cは、挿入方向Aに沿って見たときの内筒部分2bの全長(スリーブ全長に等しい)L1に比べて、外筒部分2aの全長L6が短く形成されるので、内筒部分2bと外筒部分2aとを積重したときに、内筒部分2bは、外筒部分2aの一端から、両者の長さの差分L7(=L1-L6)の長さだけ突出する。この突出部分18と、骨頭球8の内周面10との間には、間隙Sが形成される。
 スリーブ2Cの開口部14付近に間隙Sを形成して、骨頭球8の内周面10と接しない領域を設けたことによって、骨頭球8に荷重が負荷されたときに、応力集中部を、骨頭球8の端面15から一定長さΔL3だけ離れた、凹所7の奥側の厚みの大きい領域へ移動させることができる。その結果、スリーブ2Cは、開口部14近傍の比較的厚みの薄い部分に応力を集中させないようにすることができるから、骨頭球8の破壊強度を向上させることができる。
 しかも本実施形態のスリーブ2Cは、ほぼ同一形状の外筒部分2aと内筒部分2bとを2重に重ね合わせた構造になっているので、スリーブが単体の場合よりも、外筒部分2aと内筒部分2bどうしの滑り面が増加し、骨頭球8に生じる応力を小さくすることができる。
 本実施形態のスリーブ2Cは、単純な錘状の外筒部分2aと内筒部分2bとの組み合わせであるから、加工が容易であり、生産性に優れる。さらに、多層構造であるから、厚みの調整が容易である。なお、外筒部分2aと内筒部分2bとは、必ずしも同一テーパとしなくてもよい。またスリーブ2Cは、3層以上の多層構造とすることも可能である。
(解析例3)
 実施形態3に係る人工股関節1Cの骨頭球8に外力が加わったときに生じる応力について、実施形態1と同様に、解析を行った。図13は、本実施形態の人工股関節1Cを模擬したモデルの解析結果を示す応力分布図である。解析方法は、解析例1に準じる。すなわち、図3に示す応力解析モデルを用い、解析対象として、図10の人工股関節1Cを模擬した解析モデルを「実施例3」とし、骨頭球8に46kNの荷重Fを加えたときに発生する応力を、FEM解析により解析した。FEM解析に用いたソフトウェアは、解析例1と同様の汎用解析ソフトウェア「ANSYS Workbench ver.13」であり、FEM解析条件の設定値は、解析例1と共通である。
(FEM解析結果)
 解析結果を図13および表4に示す。なお、表4中の「比較例1」「比較例2」は、解析例1と共通である。
Figure JPOXMLDOC01-appb-T000004
 前記解析結果から判るように、実施形態3に係るスリーブ2Cを用いることにより、骨頭球8に生じる最大主応力値が低減することが確認された。実施例3では、スリーブ2Cの外筒部分2aが骨頭球8の内周面10と接する位置を開口部14から離隔させたので、図13に示すように、最大主応力の発生位置Rが、凹所7の開口部14から奥側へ移動する。その結果、最大主応力値が低下する。また、2層構造のスリーブ2Cを介装させることによって界面が増えるため、骨頭球8とネック部5との間で滑りが生じ、この滑りによって骨頭球8に発生する応力を小さくする作用が働く。よって、この作用とも協働して、骨頭球8に生じる応力を減少させる効果が発揮されると考えられる。
 以上を要するに、本実施形態の人工股関節1Cは、応力集中部を強度の大きい領域に移動させるから、骨頭球8に生じる最大主応力値を低下させ、骨頭球8の破壊強度を向上させることができる。また、多層構造のスリーブ2Cを用いることによって、界面が増え、外筒部分2aおよび内筒部分2bとの間で滑りが生じるから、これによっても骨頭球8に発生する応力が小さくなる効果が得られる。
(実施形態4)
 図14は本発明の実施形態4の人工股関節1Dを示す断面図である。図15はこの人工股関節1Dに用いるスリーブ2Dの斜視図である。なお、前述の実施形態と対応する部分には、同一の参照符を付す。
 本実施形態の人工股関節1Dは、ステム6と、骨頭球8と、スリーブ2Dとを含む点は、実施形態1と共通である。ステム6は、先端に向かって小径となる円錐台状の外周面4を有するネック部5を有する。骨頭球8は、ネック部5を挿入可能な凹所7が形成され、凹所7を規定する内面が、ネック部5の挿入方向に向かって小径となる円錐台状の内周面10を含む。スリーブ2Dは、凹所7に挿入されたネック部5の外周面4と骨頭球8の内周面10との間に介装される。
 本実施形態のスリーブ2Dは、ネック部5の外周面4に接触する内周部13と、凹所7の内周面10に接触する外周部16と、開口部14側に広がったフランジ部19とを有する。そして、開口部14側の端部に形成したフランジ部19が、骨頭球8の開口部14の周囲表面である端面15と面接触する構造とする。また本実施形態では、骨頭球8の端面15を、厚みの比較的大きい箇所に設定した。
 フランジ部19の半径と、挿入方向Aに沿って見た厚みUとは、フランジ部19が、骨頭球8の表面を含む仮想球面の外側に出ないように設定するのが望ましい。したがって、フランジ部19の半径を大きくするときは厚みUを薄く形成し、厚みUを大きくするときはフランジ部19の半径を小さく形成することが望ましい。
 本実施形態のスリーブ2Dは、前記実施形態1~3とは異なり、骨頭球8の開口部14付近に、間隙Sやスリット12を形成する領域を確保する必要がない。つまり、スリーブ2Dの外周部16は、骨頭球8の内周面10と、開口部14位置から接するため、骨頭球8の全高Hを小さくしても、充分な嵌合長を確保することができる。よって、必要最低限の骨頭摺動面積を確保し得る程度まで、骨頭球8の縮小化が可能であるから、小型の骨頭球8の提供を図れる。骨頭球8を小型化すれば、摺動面積も縮小されるから、骨頭球8表面の研磨加工が容易になる。なおスリーブ2Dは、最大主応力値を低下させるために、骨頭球8の開口部14付近に、間隙Sやスリット12を形成してもよい。
 さらに、スリーブ2Dは、挿入方向Aに沿って見たときの内周部13の長さが、フランジ部19を含む長さとなるので、骨頭球8の全高Hに対し、ネック部5との嵌合長L8を長くすることができる。よって、骨頭球8をステム6に固定するため、スリーブ2D内にネック部5を嵌合させる際に、ネック部5を斜めに嵌合させる可能性を低下させるとともに、骨頭球8の破壊強度の低下を防止することができる。
 本実施形態に係る人工股関節1Dは、骨頭球8に荷重が作用したときに、この荷重は、骨頭球8を介して、スリーブ2Dにも作用する。スリーブ2Dは、外周部16とフランジ部19とで荷重を受けるから、骨頭球8に生じる応力は、開口部14から外周部16に沿う方向と、フランジ部19に沿う方向とに分散される。その結果、最大主応力の値が低下する。しかも本実施形態では、フランジ部19が接する端面15を、厚みの大きい箇所に設定したから、破壊強度を向上させることができる。
(解析例4)
 実施形態4に係る人工股関節1Dの骨頭球8に外力が加わったときに生じる応力について、実施形態1と同様に、解析を行った。図16は、本実施形態の人工股関節1Dを模擬したモデルの解析結果を示す応力分布図である。解析方法は、解析例1に準じる。すなわち、図3に示す応力解析モデルを用い、解析対象として、図14の人工股関節1Dを模擬した解析モデルを「実施例4」とし、骨頭球8に46kNの荷重Fを加えたときに発生する応力を、FEM解析により解析した。FEM解析に用いたソフトウェアは、解析例1と同様の汎用解析ソフトウェア「ANSYS Workbench ver.13」であり、FEM解析条件の設定値は、解析例1と共通である。
(FEM解析結果)
 解析結果を図16および表5に示す。なお、表5中の「比較例1」「比較例2」は、解析例1と共通である。
Figure JPOXMLDOC01-appb-T000005
 前記解析結果から判るように、実施形態4に係るスリーブ2Dを用いることによって、骨頭球8に生じる最大主応力値が低減することが確認された。実施例4では、図16に示すように、最大主応力の発生位置Rが開口部14付近となっているが、その値は、比較例1,2よりも充分小さくなっている。これは、スリーブ2Dに骨頭球8の端面15と接するフランジ部19を形成したので、骨頭球8に荷重Fが加わったときに、骨頭球8の開口部14近傍で発生する応力が、外周部16方向だけでなく、フランジ部19方向へも分散するためであると考えられる。
 本発明に係る前述の各実施形態によれば、以下に掲げるような優れた効果を発揮する。ステム6のネック部5の様々な規格のテーパ形状に合わせて、スリーブ2A~2Dの形状を調整することによって、1つの骨頭球8に対し、複数種類のテーパ形状を選択して搭載することが可能になる。スリーブ2A~2Dの厚みTを調整することによって、1つの骨頭球8で、ネックオフセットの変更が可能になる。
 本発明に係る人工股関節1A~1Dは、セラミックス製の骨頭球8と金属製のステム6とスリーブ2A~2Dとを含んで構成されるので、スリーブ2A~2Dの選択によって、各種骨頭球8と各種ステム6との組み合わせが可能となり、サイズおよび材質の異なる多種の人工股関節を提供することができる。
 また、スリーブ2A~2Dの外周部16と骨頭球8の内周面10と接触するテーパ嵌合長、および、内周部13とステム6のネック部5の外周面4と接触するテーパ嵌合長を、それぞれ充分な長さに確保できるから、ネック部5を斜めに嵌合させる可能性を低下させることができる。さらに、骨頭球8の応力集中部を、強度に有利な位置へ移動させ、あるいは、応力を分散させることができるから、骨頭球8の最大主応力値を低下させ、骨頭球8の破壊強度を向上させることができる。
 なお、図示する実施形態では、スリーブ2A~2Dの外周部16と、骨頭球8の内周面10とのテーパ角度を同じにして、面接触させているが、骨頭球8の最大主応力値をより低下させ、骨頭球8の破壊強度をより向上させるため、スリーブ2A~2Dの外周部16のテーパ角度を骨頭球8の内周面10のテーパ角度より小さくすることで、ネック部5に装着したスリーブ2A~2Dを、骨頭球8の凹所7よりもネック部5の挿入方向に奥まった位置で、凹所7の内周面10に接触させる、いわば「奥当たり」の嵌合構造としてもよい。
 また、骨頭球8の破壊強度をより向上させるため、スリーブ2A~2Dの内周部13のテーパ角度をネック部5の外周面4のテーパ角度より大きくすることで、ネック部5の先端3を、スリーブ2A~2Dの奥まった位置で内周部13に接触させる、いわば「奥当たり」の嵌合構造としてもよい。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
 1A~1D 人工股関節
 2A~2D スリーブ
 3 先端
 4 外周面
 5 ネック部
 6 ステム
 7 凹所
 8 骨頭球
 9 内面
 10 内周面
 13 内周部
 14 開口部
 15 端面
 16 外周部
 17 内周部分
 18 突出部分
 19 フランジ部

Claims (5)

  1.  先端に向かって小径となる円錐台状の外周面を有するネック部を有するステムと、
     前記ネック部を挿入可能な凹所が形成される骨頭球であって、前記ネック部の挿入方向に向かって小径となる円錐台状の内周面を有する内面によって前記凹所が規定される骨頭球と、
     前記凹所に挿入された前記ネック部の外周面と前記骨頭球の前記内周面との間に介装されるスリーブと、を含み、
     前記スリーブは、前記ネック部の外周面に接触する内周部と、前記骨頭球の内周面に、前記凹所の開口部から前記挿入方向に退避した位置を始端として接触する外周部とを有することを特徴とする人工股関節。
  2.  先端に向かって小径となる円錐台状の外周面を有するネック部を有するステムと、
     前記ネック部を挿入可能な凹所が形成される骨頭球であって、前記ネック部の挿入方向に向かって小径となる円錐台状の内周面を有する内面によって前記凹所が規定される骨頭球と、
     前記凹所に挿入された前記ネック部の外周面と前記骨頭球の前記内周面との間に介装されるスリーブと、を含み、
     前記スリーブは、前記ネック部の外周面に接触する内周部と、前記骨頭球の内周面に接触する外周部とを有し、前記内周部と前記外周部との間には、該スリーブの前記開口部側に配置される一端部から前記挿入方向に延びるスリットが形成されることを特徴とする人工股関節。
  3.  先端に向かって小径となる円錐台状の外周面を有するネック部を有するステムと、
     前記ネック部を挿入可能な凹所が形成される骨頭球であって、前記ネック部の挿入方向に向かって小径となる円錐台状の内周面を有する内面によって前記凹所が規定される骨頭球と、
     前記凹所に挿入された前記ネック部の外周面と前記骨頭球の前記内周面との間に介装されるスリーブと、を含み、
     前記スリーブは、複数のスリーブ部分が積重された多層構造であることを特徴とする人工股関節。
  4.  先端に向かって小径となる円錐台状の外周面を有するネック部を有するステムと、
     前記ネック部を挿入可能な凹所が形成された骨頭球であって、前記ネック部の挿入方向に向かって小径となる円錐台状の内周面を有する内面によって前記凹所が規定される骨頭球と、
     前記凹所に挿入された前記ネック部の外周面と前記骨頭球の前記内周面との間に介装されるスリーブと、を含み、
     前記スリーブは、前記ネック部の外周面に接触する内周部と、前記凹所の内周面に接触する外周部と、前記凹所の開口部の周囲表面に接触するフランジ部とを有することを特徴とする人工股関節。
  5.  前記スリーブは、TiまたはTi合金から成ることを特徴とする請求項1~4のいずれか1つに記載の人工股関節。
PCT/JP2013/078863 2012-10-31 2013-10-24 人工股関節 WO2014069333A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/439,268 US20150272740A1 (en) 2012-10-31 2013-10-24 Artificial hip joint
EP13850659.7A EP2915506A4 (en) 2012-10-31 2013-10-24 ARTICULATION OF ARTIFICIAL HIP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012240097A JP2014087531A (ja) 2012-10-31 2012-10-31 人工股関節
JP2012-240097 2012-10-31

Publications (1)

Publication Number Publication Date
WO2014069333A1 true WO2014069333A1 (ja) 2014-05-08

Family

ID=50627242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078863 WO2014069333A1 (ja) 2012-10-31 2013-10-24 人工股関節

Country Status (4)

Country Link
US (1) US20150272740A1 (ja)
EP (1) EP2915506A4 (ja)
JP (1) JP2014087531A (ja)
WO (1) WO2014069333A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014005644A1 (en) * 2012-07-05 2014-01-09 Limacorporate S.P.A. Humeral implant for a shoulder prosthesis
WO2014052768A2 (en) * 2012-09-27 2014-04-03 The Regeneral Hospital Corporation D/B/A Massachusetts General Hospital Femoral heads, mobile inserts, acetabular components, and modular junctions for orthopedic implants and methods of using femoral heads, mobile inserts, acetabular components, and modular junctions for orthopedic implants
US9615927B2 (en) 2015-03-31 2017-04-11 Depuy Ireland Unlimited Company Orthopaedic surgical instrument system and method for protecting a femoral stem taper
DE102017004911B3 (de) * 2017-05-16 2018-05-30 Aristotech Holding Gmbh Kupplungsvorrichtung zum Verbinden von Prothesenkomponenten über einen selbsthemmenden Klemmsitz
US20230116976A1 (en) * 2021-10-18 2023-04-20 Encore Medical, L.P. (D/B/A Djo Surgical) Implant trial head

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161959A (ja) * 1986-12-25 1988-07-05 京セラ株式会社 人工股関節
JPH0347252A (ja) * 1989-03-20 1991-02-28 Bristol Myers Squibb Co 人工器官
JPH0347253A (ja) 1989-02-08 1991-02-28 Smith & Nephew Richards Inc 股関節用モジュラー補てつ具
JPH03176047A (ja) * 1989-09-26 1991-07-31 Ngk Spark Plug Co Ltd 人工骨頭及びその製造方法
JPH067386A (ja) * 1992-03-24 1994-01-18 Smith & Nephew Richards Inc モジュール式医療用移植体に用いられる二重組成連結器具
JPH10323361A (ja) * 1997-03-10 1998-12-08 Johnson & Johnson Professional Inc 関節補綴用の被覆した耐負荷面
JP2002510223A (ja) * 1997-06-04 2002-04-02 メタゲン エルエルシー モジュール化プロテーゼ
JP2002330983A (ja) 2001-03-13 2002-11-19 Nicholas G Sotereanos 股関節インプラントアッセンブリ
US20060188845A1 (en) * 2003-10-01 2006-08-24 Signal Medical Corporation Implant bore insert

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2310120A2 (fr) * 1975-05-05 1976-12-03 Ceraver Prothese osseuse en alumine frittee
CH593053A5 (ja) * 1975-06-03 1977-11-15 Sulzer Ag
CH598806A5 (ja) * 1975-10-27 1978-05-12 Sulzer Ag
CH612586A5 (ja) * 1977-05-23 1979-08-15 Sulzer Ag
EP0011665A1 (de) * 1978-11-23 1980-06-11 Osteo Ag Satz von Endoprothesenteilen und Verfahren zur Anpassung der Halslänge dieser Endoprothese
CH661431A5 (de) * 1983-11-15 1987-07-31 Sulzer Ag Femurkopfprothese.
FR2580170B1 (fr) * 1985-04-12 1987-11-27 Meta Ceram Tete femorale pour prothese de hanche
FR2584603B1 (fr) * 1985-07-09 1990-03-30 Brunet Jean Louis Prothese de la hanche perfectionnee
US4846841A (en) * 1986-04-25 1989-07-11 Indong Oh Femoral Prosthesis
US5413610A (en) * 1986-12-25 1995-05-09 Kyocera Corporation Artificial hip joint
US4995883A (en) * 1989-02-08 1991-02-26 Smith & Nephew Richards Inc. Modular hip prosthesis
US5108452A (en) * 1989-02-08 1992-04-28 Smith & Nephew Richards Inc. Modular hip prosthesis
US4921500A (en) * 1989-02-28 1990-05-01 Osteonics Corp. Femoral head adaptor for interoperative assembly
US5066304A (en) * 1989-03-20 1991-11-19 Zimmer, Inc. Prosthetic interpositional device/coupler
US5362311A (en) * 1990-01-05 1994-11-08 Kyocera Corporation Artificial hip joint
GB9017402D0 (en) * 1990-08-08 1990-09-19 Howmedica Total hip replacement femoral component
US5133769A (en) * 1990-11-09 1992-07-28 Sulzer Brothers Cap for a femur head
DE4035614A1 (de) * 1990-11-09 1992-05-14 Friedrichsfeld Ag Verbindungsanordnung fuer ein kugelgelenk
US5156624A (en) * 1991-09-06 1992-10-20 Zimmer, Inc. Head adaptor for hip prosthesis
US5735905A (en) * 1995-04-27 1998-04-07 Southwest Research Institute Shock absorbing element for a load bearing prosthesis
US5858020A (en) * 1995-12-05 1999-01-12 Metagen, Llc Modular prosthesis
DE19813074A1 (de) * 1998-03-25 1999-09-30 Ceram Tec Ag Innovative Cerami Klemmsitz-Verbindung zwischen Prothesenkomponenten von Gelenk-Prothesen
US6336941B1 (en) * 1998-08-14 2002-01-08 G. V. Subba Rao Modular hip implant with shock absorption system
DE19904437A1 (de) * 1999-02-04 2000-08-10 Ceramtec Ag Klemmsitz-Verbindung zwischen Prothesenkomponenten von Gelenk-Prothesen
GB0015855D0 (en) * 2000-06-28 2000-08-23 Univ London Replacement of bearing surfaces for hip prosthesis
JP4266543B2 (ja) * 2000-10-30 2009-05-20 ツィマー ゲーエムベーハー 近位心出し装置を備える人工大腿骨幹
EP1258233A1 (de) * 2001-05-18 2002-11-20 Sulzer Orthopedics Ltd. Probierkugeln für Hüftgelenkprothesen
GB0122295D0 (en) * 2001-09-14 2001-11-07 Benoist Girard Sas Resilient thimble for ball head of prosthetic joint
ITUD20020173A1 (it) * 2002-08-05 2004-02-06 Lima Lto Spa Protesi femorale per l'articolazione dell'anca.
DE10303660B4 (de) * 2003-01-23 2016-03-31 Merete Medical Gmbh Hüftendoprothesen- System
DE10322174A1 (de) * 2003-05-14 2005-02-10 Merete Medical Gmbh Steckadapter für eine Hüftendoprothese
GB0403363D0 (en) * 2004-02-16 2004-03-17 Depuy Int Ltd Surgical instrument
JP4637168B2 (ja) * 2004-03-31 2011-02-23 サイオン オーソピディクス アクチェンゲゼルシャフト 人工関節のセメントレス固定のためのダブルシェルインプラント
EP1726273A1 (de) * 2005-05-24 2006-11-29 Zimmer GmbH Hüftgelenkprothese
US20080004710A1 (en) * 2006-06-30 2008-01-03 Howmedica Osteonics Corp. Femoral head resurfacing
DE102007031667A1 (de) * 2006-08-04 2008-02-14 Ceramtec Ag Innovative Ceramic Engineering Einfügen von schwingungsdämpfenden Elementen in Prothesensysteme zur Manipulation und Dämpfung der Eigenfrequenzen
US8177851B2 (en) * 2008-12-19 2012-05-15 Depuy Products, Inc. Prosthetic liner for an acetabular prosthesis
CN102458311A (zh) * 2009-05-07 2012-05-16 史密夫和内修有限公司 用于假体的模块化试验头
DE102009035259B4 (de) * 2009-07-29 2013-03-07 Merete Medical Gmbh Gelenkprothesen-System
US9180013B2 (en) * 2011-09-27 2015-11-10 DePuy Synthes Products, Inc. Deflection resistant acetabular cup

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161959A (ja) * 1986-12-25 1988-07-05 京セラ株式会社 人工股関節
JPH0347253A (ja) 1989-02-08 1991-02-28 Smith & Nephew Richards Inc 股関節用モジュラー補てつ具
JPH0347252A (ja) * 1989-03-20 1991-02-28 Bristol Myers Squibb Co 人工器官
JPH03176047A (ja) * 1989-09-26 1991-07-31 Ngk Spark Plug Co Ltd 人工骨頭及びその製造方法
JPH067386A (ja) * 1992-03-24 1994-01-18 Smith & Nephew Richards Inc モジュール式医療用移植体に用いられる二重組成連結器具
JPH10323361A (ja) * 1997-03-10 1998-12-08 Johnson & Johnson Professional Inc 関節補綴用の被覆した耐負荷面
JP2002510223A (ja) * 1997-06-04 2002-04-02 メタゲン エルエルシー モジュール化プロテーゼ
JP2002330983A (ja) 2001-03-13 2002-11-19 Nicholas G Sotereanos 股関節インプラントアッセンブリ
US20060188845A1 (en) * 2003-10-01 2006-08-24 Signal Medical Corporation Implant bore insert

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Information about New Technology and New Products: New Generation Ceramic Head and Liner Containing Vitamin E for Artificial Hip Joint Tied Up with Latest Technology Introduced in Japan", BIOMET NEWS RELEASE, 15 May 2012 (2012-05-15), Retrieved from the Internet <URL:https://www.biomet.co.jp/information/img/Biomet_Release0515.pdf>
See also references of EP2915506A4 *

Also Published As

Publication number Publication date
EP2915506A4 (en) 2016-07-13
JP2014087531A (ja) 2014-05-15
US20150272740A1 (en) 2015-10-01
EP2915506A1 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2014069333A1 (ja) 人工股関節
US7892289B2 (en) Implant bore insert
EP2953586B1 (en) Apparatus for positioning a prosthesis
US4770661A (en) Conversion femoral endoprosthesis
JP2610017B2 (ja) 直接固定型人工股関節
EP2001410B1 (en) Prosthetic implant and assembly method
US8926707B2 (en) Femoral implant
US10792157B2 (en) Fused femoral stem system
EP3193787A1 (en) Acetabular prosthesis liner
US9700417B2 (en) Prosthesis having a large femoral head
US8142511B2 (en) Bi-material prosthesis component
EP2967884B1 (en) Radial head implant
JP6659923B2 (ja) シンキングおよび着脱可能な弾性結合インプラントシステム
US9629690B2 (en) Sonotrode for the introduction of ultrasonic energy
US20190192299A1 (en) Device and method for manufacturing artificial solid bone
CA1227301A (en) Hip joint socket
US9427322B1 (en) Hip implant
JP2018534082A (ja) 体内プロテーゼ用のリング状のセラミックインサート
CN106580521B (zh) 一种复合球头人工髋关节
US20160262896A1 (en) Composite metallic-ceramic implants and related methods
JP7515803B1 (ja) デュアルモビリティカップ
RU2792741C1 (ru) Головка эндопротеза тазобедренного сустава
JP2011194229A (ja) モジュール式頸部型プロテーゼ要素及びプロテーゼ集合体
JP2012065940A (ja) 人工股関節用ステム
JP2912879B2 (ja) 人工股関節

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850659

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013850659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013850659

Country of ref document: EP

Ref document number: 14439268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE