WO2014067472A1 - 一种信号处理方法、基站、终端、及系统 - Google Patents

一种信号处理方法、基站、终端、及系统 Download PDF

Info

Publication number
WO2014067472A1
WO2014067472A1 PCT/CN2013/086325 CN2013086325W WO2014067472A1 WO 2014067472 A1 WO2014067472 A1 WO 2014067472A1 CN 2013086325 W CN2013086325 W CN 2013086325W WO 2014067472 A1 WO2014067472 A1 WO 2014067472A1
Authority
WO
WIPO (PCT)
Prior art keywords
supplementary
synchronization signal
physical layer
synchronization
sequence
Prior art date
Application number
PCT/CN2013/086325
Other languages
English (en)
French (fr)
Inventor
邢艳萍
徐伟杰
贾民丽
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US14/438,330 priority Critical patent/US9980239B2/en
Priority to EP13851028.4A priority patent/EP2916601B1/en
Publication of WO2014067472A1 publication Critical patent/WO2014067472A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • a signal processing method, a base station, a terminal, and a system The application is filed on November 2, 2012, the Chinese Patent Office, the application number is 201210434756.8, and the invention name is "a signal processing method, a base station, a terminal, and a system".
  • Priority of Chinese Patent Application the entire contents of which is incorporated herein by reference.
  • the present invention relates to the field of wireless communication technologies, and in particular, to a signal processing method, a base station, a terminal, and a system. Background technique
  • the synchronization signals in the LTE (Long Term Evolution) system include PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the sequence of the PSS may be referred to as a primary synchronization sequence, and the sequence of the SSS may be referred to as a secondary synchronization sequence.
  • Cell search is the first step of the terminal entering the cell.
  • the terminal performs downlink synchronization with the base station through the cell search (the synchronization includes time synchronization and frequency synchronization), and acquires the physical layer cell ID (identification) of the cell through the detection of the synchronization signal, and then receives and reads the broadcast information of the cell.
  • a physical layer cell ID can be identified by a physical layer cell identification group identifier N (ranging from 0 - 167, carried by the secondary synchronization channel) representing the physical layer cell ID group, and representing the physical layer in the physical layer cell ID group.
  • the physical layer identifier in the physical layer cell identification group corresponds to the sequence of the PSS
  • the physical layer cell identification group identifier N corresponds to the sequence of the SSS.
  • the base station only determines the sequence of PSS and SSS, and transmits it at the corresponding time-frequency position.
  • the terminal synchronizes with the base station downlink time-frequency through the cell search, and acquires the physical layer cell ID by detecting the synchronization signal. Since the terminal does not know the timing of the base station and the sequence used by the synchronization signal before completing the cell search, it is necessary to perform correlation detection for each OFDM symbol using all sequences, thereby obtaining the timing of the own cell and the sequence used by the synchronization signal according to the correlation result. .
  • the wireless signal is severely occluded and greatly attenuated.
  • the terminal needs to perform multiple correlation detections to correctly complete the cell search.
  • the number of terminal-related detections may reach dozens or even hundreds of times. ⁇ Using the existing technology, the synchronization signal appears once every 5ms, the terminal needs To cache dozens or even hundreds of 5ms signals, very high requirements are placed on the terminal's cache. In addition, the cell search time is also longer.
  • An object of the present invention is to provide a signal processing method, a base station, a terminal, and a system, to solve the problem that when a network performs poorly, a terminal needs to buffer a large number of signals and a long cell search time when the network coverage is poor.
  • a signal transmission processing method includes:
  • a supplemental synchronization signal different from the synchronization signal is transmitted to the terminal on a predetermined second time-frequency resource, and the synchronization signal and the supplemental synchronization signal correspond to a same physical layer cell identifier.
  • a signal receiving processing method includes:
  • the downlink synchronization with the base station is completed using the supplemental synchronization signal, and the physical layer cell identity is determined.
  • a base station comprising:
  • a synchronization signal sending module configured to send a synchronization signal to the terminal on the predetermined first time-frequency resource
  • a supplementary synchronization signal sending module configured to send, to the terminal, a supplementary synchronization signal different from the synchronization signal on a predetermined second time-frequency resource, where the synchronization signal and the supplementary synchronization signal are the same physical layer cell identifier correspond.
  • a base station includes a processor and a data transceiving interface, wherein:
  • the processor is configured to: send a synchronization signal to the terminal on a predetermined first time-frequency resource; send a supplementary synchronization signal different from the synchronization signal to the terminal on a predetermined second time-frequency resource,
  • the synchronization signal and the supplementary synchronization signal correspond to a same physical layer cell identifier;
  • the data transceiving interface is used to implement data communication with the terminal.
  • a terminal comprising:
  • a first signal receiving module configured to receive a synchronization signal carried in a predetermined first time-frequency resource, and receive a supplementary synchronization signal carried in a predetermined second time-frequency resource
  • a first cell search module configured to perform downlink synchronization with the base station by using the synchronization signal and the supplementary synchronization signal, and determine a physical layer cell identifier, where the synchronization signal and the supplementary synchronization signal are the same physical layer cell identifier correspond;
  • a second signal receiving module configured to receive a supplementary synchronization signal that is carried in a predetermined second time-frequency resource
  • a second cell search module configured to perform downlink synchronization with the base station by using the supplementary synchronization signal, and determine a physical layer cell identifier .
  • a terminal includes a processor and a data transceiving interface, wherein:
  • the processor is configured to: receive a synchronization signal carried by a predetermined first time-frequency resource, and receive a supplemental synchronization signal carried by a predetermined second time-frequency resource; using the synchronization signal and the supplemental synchronization
  • the signal is synchronized with the downlink of the base station, and the physical layer cell identifier is determined, and the synchronization signal and the supplementary synchronization signal correspond to the same physical layer cell identifier; or
  • the processor is configured to: receive a supplemental synchronization signal carried by a predetermined second time-frequency resource; perform downlink synchronization with the base station by using the supplementary synchronization signal, and determine a physical layer cell identifier;
  • the data transceiving interface is used to implement data communication with a base station.
  • a communication system comprising:
  • a base station configured to send a synchronization signal to the terminal on the predetermined first time-frequency resource, and send a supplementary synchronization signal different from the synchronization signal to the terminal on the predetermined second time-frequency resource, the synchronization signal and
  • the supplementary synchronization signal corresponds to a same physical layer cell identifier
  • a terminal configured to receive a synchronization signal carried in a predetermined first time-frequency resource, and receive a supplemental synchronization signal carried in a predetermined second time-frequency resource, and use the synchronization signal and the supplementary synchronization signal to complete downlink with the base station Synchronizing, and determining a physical layer cell identifier; or for receiving the supplementary synchronization signal, using the supplementary synchronization signal to complete downlink synchronization with the base station, and determining a physical layer cell identifier.
  • the base station further sends a supplementary synchronization signal on the basis of transmitting the synchronization signal, which is equivalent to increasing the transmission frequency of the synchronization signal.
  • increasing the transmission frequency of the synchronization signal can increase the probability that the terminal performs correlation detection on the same number of signals to complete the cell search, which not only shortens the time of terminal cell search, but also reduces the terminal buffer. The amount of data, which in turn reduces the need for terminal caching.
  • FIG. 2 is a schematic diagram of a first time-frequency resource occupation according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a second time-frequency resource occupation according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a third time-frequency resource occupation according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a signal receiving method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another signal receiving method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the embodiment of the present invention provides a signal transmission processing method, in which the base station sends a synchronization signal to a terminal on a predetermined first time-frequency resource, and in a predetermined manner, in order to enable the terminal to complete the cell search as soon as possible and reduce the amount of buffered data. Transmitting, by the second time-frequency resource, a supplementary synchronization signal different from the synchronization signal, where the supplementary synchronization signal is used to enable the terminal to complete downlink synchronization with the base station and determine a physical layer cell identifier, the synchronization signal and the The supplementary synchronization signals all correspond to the same physical layer cell identifier.
  • the synchronization signal sent to the terminal on the first time-frequency resource is a synchronization signal defined in the existing communication standard.
  • the first time-frequency resource is used to carry a synchronization signal defined in an existing communication standard.
  • the time-frequency resource of the foregoing PSS and SSS, the second time-frequency resource refers to a time-frequency resource for carrying the supplementary synchronization signal defined by the embodiment of the present invention.
  • the base station and the terminal that performs the cell search based on the supplementary synchronization signal pre-arrange the second time-frequency resource, that is, the terminal knows the predetermined second time-frequency resource in advance.
  • the method provided by the embodiment of the present invention further sends a supplemental synchronization signal on the basis of transmitting the synchronization signal, which is equivalent to increasing the transmission frequency of the synchronization signal.
  • increasing the transmission frequency of the synchronization signal can increase the probability that the terminal performs correlation detection on the same number of signals to complete the cell search, which not only shortens the time of terminal cell search, but also reduces the terminal buffer. The amount of data, which in turn reduces the need for terminal caching.
  • the second time-frequency resource occupied by the supplementary synchronization signal is known in advance, and the terminal that performs the cell search by using the supplementary synchronization signal is referred to as the first-type terminal, and the second time occupied by the supplementary synchronization signal cannot be known in advance.
  • the traditional terminal of the frequency resource is called the second type terminal.
  • the embodiment of the present invention provides a signal transmission processing method, and the implementation manner thereof is as shown in FIG. 1 , and specifically includes the following operations:
  • Step 100 Send a synchronization signal to the terminal on the predetermined first time-frequency resource.
  • Step 110 Send, to the terminal, a supplementary synchronization different from the synchronization signal on a predetermined second time-frequency resource. Signal.
  • the supplemental synchronization signal is used to enable the terminal to complete downlink synchronization with the base station and determine a physical layer cell identity. Specifically, the supplementary synchronization signal is used by the first type terminal to complete downlink synchronization with the base station and determine a physical layer cell identifier.
  • the synchronization signal and the supplementary synchronization signal both correspond to the same physical layer cell identifier.
  • step numbers are not a limitation on the timing relationship of these two steps.
  • the timing relationship between the synchronization signal and the supplemental synchronization signal transmission is determined by the time-frequency resources they occupy.
  • the method provided by the embodiment of the present invention is applied to an LTE system, and is particularly suitable for an LTE network with poor coverage performance.
  • the synchronization signal described in the embodiment of the present invention is generated by a primary synchronization sequence and a secondary synchronization sequence, and specifically refers to a primary synchronization sequence and a secondary defined by 3GPP Release 11 (3rd Generation Partnership Project Release 11) and previous versions thereof. Synchronization sequence.
  • the supplemental synchronization signal described in the embodiment of the present invention is generated by the supplemental primary synchronization sequence and the supplementary secondary synchronization sequence.
  • the synchronization signal is generated by the primary synchronization sequence and the secondary synchronization sequence.
  • the primary synchronization sequence d u (n) is generated by a frequency domain Zadoff-Chu sequence (a sequence with an ideal periodic autocorrelation function and an optimal periodic cross-correlation function) with a length of 62, which uses the root index of the Zadoff-Chu sequence.
  • Zadoff-Chu sequence a sequence with an ideal periodic autocorrelation function and an optimal periodic cross-correlation function
  • the secondary synchronization sequence is obtained by using a cyclic shifting formula for two sequences of length 31, and the combining manner of the two sequences is different in subframe 0 and subframe 5.
  • the length of the secondary synchronization sequence is 31.
  • the sequence is a supplemental m sequence.
  • the terminal performing cell search based on the synchronization signal does not know the timing of the base station and the sequence of the synchronization signal used before completing the cell search. Therefore, the terminal uses the sequence of all synchronization signals for each OFDM symbol when performing cell search. And determining a sequence of timing and synchronization signals of the base station according to the correlation result.
  • the timing of the base station refers to the starting position of the radio frame.
  • the synchronization signal is used not only to determine the physical layer cell identity, but also to determine the timing of the cell. Specifically, after the terminal performing cell search based on the synchronization signal receives the synchronization signal, since the time-frequency resource occupied by the synchronization signal is known, the start position of the radio frame or the subframe can be determined. It can be seen that the supplementary primary synchronization sequence defined in the embodiment of the present invention cannot be the same as the primary synchronization sequence defined in the prior art, and the supplementary secondary synchronization sequence cannot be the same as the secondary synchronization sequence defined in the prior art. Otherwise, the terminal performing cell search based on the synchronization signal cannot determine the timing of the base station.
  • the supplementary primary synchronization sequence has a length N and corresponds to a physical layer identifier in the physical layer cell identification group; generating a secondary synchronization sequence different from the synchronization signal according to a predetermined rule Supplementary secondary synchronization sequence,
  • the supplementary secondary synchronization sequence has a length N and corresponds to the physical layer cell identification group identifier, where ⁇ is an integer not less than 62, and the supplementary synchronization signal is generated by the supplementary primary synchronization sequence and the supplementary secondary synchronization sequence.
  • the physical layer identifier and the physical layer cell identifier group identifier in the physical layer cell identifier group are used to determine the physical layer cell identifier.
  • predetermined rule for generating the supplementary primary synchronization sequence and the predetermined rule for generating the supplementary secondary synchronization sequence are separately predetermined rules, and may be the same rule or different rules.
  • the supplementary primary synchronization sequence corresponds to the physical layer identifier in the physical layer cell identifier group, that is, the physical layer identifier in the physical layer cell identifier group may be determined according to the supplementary primary synchronization sequence.
  • the supplementary secondary synchronization sequence corresponds to the physical layer cell identification group identifier, that is, the supplementary secondary synchronization sequence can determine the physical layer cell identification group identifier.
  • the rule used to generate the supplemental synchronization signal is determined in advance. Wherein, if two or more supplementary synchronization signals are generated, each of the supplementary synchronization signals is different, and the rules used to generate the respective supplementary synchronization signals are determined in advance.
  • At least one supplemental primary synchronization sequence may be generated using a predefined formula based on the physical layer identification within the physical layer cell identification group.
  • at least one scrambling sequence may be used to scramble the primary synchronization sequence to generate at least one supplementary primary synchronization sequence
  • at least one cyclic shift number may be used to cyclically shift the primary synchronization sequence to generate at least one supplementary primary synchronization. sequence.
  • the so-called cyclic shift number is the number of bits of the cyclic shift.
  • the present invention does not limit the formula used to generate the supplementary primary synchronization sequence, and only needs to generate a supplementary primary synchronization sequence corresponding to the physical layer identifier in the physical layer cell identification group according to the formula.
  • a supplementary root index different from the existing root index used to generate the primary synchronization sequence may be defined, and the correspondence between the physical layer identifier in the at least one set of the physical layer cell identification group and the supplementary # ⁇ index is determined.
  • the supplementary primary synchronization sequence may be generated by using the same frequency domain Zadoff-Chu sequence as the primary synchronization sequence, and the length of the generated supplementary primary synchronization sequence is the same as the length of the primary synchronization sequence, both of which are 62.
  • the correspondence between the supplementary root index u' and the physical layer identifier in the physical layer cell identification group may be directly agreed; Determining the correspondence between the supplementary root index u' and the root index u of the frequency domain Zadoff-Chu sequence used to generate the primary synchronization sequence, and further determining the supplementary root index u' and the physical layer identifier N in the physical layer cell identification group - Correspondence.
  • the autocorrelation can be further improved, thereby improving the detection probability; further, as the length of the synchronization sequence increases, the frequency band occupied by the signal is correspondingly widened, and the transmission of the supplementary synchronization signal is enhanced.
  • the power further increases the probability that the terminal successfully performs correlation detection to determine the supplemental synchronization signal. Therefore, in the embodiment of the present invention, the length of the generated supplemental synchronization signal may be greater than 62.
  • the supplementary primary synchronization sequence may be generated according to the frequency domain Zadoff-Chu sequence, which is different from the frequency domain Zadoff-Chu sequence used to generate the primary synchronization sequence, and the frequency domain Zadoff-Chu
  • the sequence selection is as long as the length of the generated supplementary primary synchronization sequence is greater than 62.
  • the parameters of the formula used to generate each supplementary primary synchronization sequence are not identical.
  • the supplementary root index used to generate each supplementary primary synchronization sequence is generated. Different.
  • the scrambling sequence used is not limited in the present invention. If two or more supplemental primary synchronization sequences are generated, the scrambling sequences used to generate each supplemental primary synchronization sequence are different when generating two or more supplemental primary synchronization sequences.
  • the specific cyclic shift mode is not limited in the present invention. If two or more supplemental primary synchronization sequences are generated, when generating two or more supplemental primary synchronization sequences, the number of bits that generate each supplemental primary synchronization sequence for cyclic shifting varies.
  • a formula for generating a supplementary secondary synchronization sequence may be defined in advance, and based on the physical layer cell identification group identifier, at least one supplementary secondary synchronization sequence is generated using a predefined formula.
  • at least one scrambling sequence may be used to scramble the secondary synchronization sequence to generate at least one supplementary secondary synchronization sequence
  • at least one cyclic shift number may be used to cyclically shift the secondary synchronization sequence to generate at least one supplementary secondary synchronization. sequence.
  • the present invention does not limit the formula used to generate the supplementary secondary synchronization sequence, and only needs to generate a supplementary secondary synchronization sequence corresponding to the physical layer cell identification group identifier according to the formula.
  • the corresponding relationship between the physical layer cell identifier group identifier N and the supplementary m sequence associated with the two groups may be determined, and at least one pair of associated supplementary m sequences corresponding to the physical layer cell identifier group identifier of the physical layer cell identifier may be determined.
  • the at least one pair of associated complementary m sequences are parameters, and the at least one supplemental secondary synchronization sequence is generated using a predetermined cyclic shift formula.
  • the association relationship of the two m sequences used to generate each supplementary secondary synchronization sequence is different, and is different from the association relationship with the two m sequences used to generate the secondary synchronization sequence.
  • the specific implementation manner may be expressed by the following formula: the combining manner of the two m sequences is different in subframe 0 and subframe 5:
  • subframe 5 In subframe 5 ⁇ , s, (mi) (n) (n) 1 (m, ° ) in) in subframe 0
  • the two s-sequences ⁇ "WO and ⁇ " ⁇ O?) are obtained by supplementing the m-sequence 0') with two different cyclic shifts, as follows:
  • x(T+5) (x(T + 2) + x(T)) mod 2, 0 ⁇ 7 ⁇ 25
  • the two scrambling code sequences c 0 (n) and O) are determined by the complementary primary synchronization sequence, which is obtained by the complementary m-sequence ⁇ ) according to different cyclic shifts, as follows:
  • the correspondence between the complementary m sequences of the two sets of associations and the identification of the physical layer cell identification group identifier N may be directly agreed; the two sets of associations may also be agreed upon.
  • the complementary m sequence is associated with the m-sequence associated with the two sets used to generate the secondary synchronization sequence, and the corresponding relationship between the complementary m-sequences of the two sets of associations and the physical layer cell identification group identifier N is determined.
  • the corresponding relationship between the two sets of supplementary m-sequences and the physical layer cell identifier group identifier N is the correspondence between the m values of the supplementary m-sequences of the two groups and the identity of the physical-layer cell identifier group N.
  • the length of the supplementary secondary synchronization sequence generated according to the above formula is 62.
  • the length of the generated supplemental synchronization signal may be greater than 62.
  • a supplementary secondary synchronization sequence can be generated using two associated m sequences of length N/2.
  • the embodiment of the present invention does not limit the used scrambling sequence.
  • the scrambling sequences used to generate each supplementary secondary synchronization sequence are different.
  • the specific cyclic shift mode is not limited in the present invention.
  • the number of bits generated for each supplemental secondary synchronization sequence to be cyclically shifted is different.
  • the base station and the first type of terminal further pre-agreed the mapping relationship between the supplementary synchronization signal and the second time-frequency resource.
  • a time-frequency resource pattern of a radio frame in which a time-frequency resource occupied by each supplemental synchronization signal is used is pre-agreed.
  • the supplemental synchronization signal may be carried on N subcarriers at the center of the system bandwidth, where N is the length of the supplemental synchronization signal.
  • at least one downlink OFDM (Orthogonal Frequency Division Multiplexing) symbol occupying a radio frame may be agreed upon.
  • the so-called idle OFDM symbol refers to a symbol that is not occupied by a PBCH (Physical Broadcast Channel), an existing primary synchronization sequence, and a secondary synchronization sequence. Further, the so-called idle OFDM symbol means that the PBCH is not used.
  • the existing primary synchronization sequence and secondary synchronization sequence occupy and have no CRS (Common Reference Signal) symbol.
  • the subcarrier spacing in the frequency domain corresponding to the OFDM symbol occupied by the supplementary synchronization signal is L*15KHz, L is an integer not less than 1, or L is greater than 0 and less than 1, and the specific value is pre-agreed by the base station and the terminal.
  • the specific implementation manner of the foregoing step 110 may be: following a predetermined supplementary synchronization signal and the second The mapping relationship of the time-frequency resources is sent to the terminal on the time-frequency resource of the OFDM symbol indicated by the mapping relationship in the center N subcarriers of the system bandwidth.
  • the sending the supplementary synchronization signal to the terminal on the OFDM symbol indicated by the mapping in the time domain specifically includes: using m radio frames as a period, and performing OFDM symbols on the predetermined n radio frames.
  • the terminal sends the supplementary synchronization signal, and the OFDM symbol carrying the supplementary synchronization signal in each radio frame is determined according to the mapping relationship between the supplementary synchronization signal and the second time-frequency resource. ! ! ! with! ! An integer that is not less than 1, when m is 1, that is, a supplementary synchronization signal is sent to the terminal on the OFDM symbol of each radio frame in the time domain; when m is greater than 1, the support m is 5 and n is 3.
  • a supplemental synchronization signal is sent to the terminal on the OFDM symbols in the predetermined 3 radio frames in each period, and each of the 3 radio frames carries the OFDM symbol of the supplemental synchronization signal according to the OFDM symbol.
  • the above mapping relationship is determined.
  • the supplementary primary synchronization sequence there is a correspondence between the supplementary primary synchronization sequence and the physical layer identifier N in the physical layer cell identification group.
  • the supplementary secondary synchronization sequence there is a corresponding relationship between the supplementary secondary synchronization sequence and the physical layer cell identification group identifier N. Therefore, the physical layer cell identity can be uniquely determined by the supplemental synchronization signal.
  • the physical layer cell identifier After the first type of terminal determines the supplementary synchronization signal through the correlation detection, the physical layer cell identifier can be determined.
  • the second time-frequency resource occupied by the supplementary synchronization signal is pre-agreed by the base station and the terminal.
  • the first type of terminal may determine the base station according to the supplementary synchronization signal and the occupied time-frequency resource. timing. It can be seen that if the first type of terminal can correctly receive the supplementary synchronization signal, the cell search can be completed based on the supplementary synchronization signal. Alternatively, the first type of terminal may also use the synchronization signal and the supplemental synchronization signal to determine the physical layer cell identity and timing.
  • the base station and the first type of terminal need to pre-agreed the second time-frequency resource occupied by the supplementary synchronization signal.
  • the base station since there is no second time-frequency resource corresponding to the base station, the capability of receiving the supplementary synchronization signal is not available. Therefore, if the base station includes a supplementary synchronization signal in the time-frequency resources scheduled for the second type of terminal, the base station may fail to decode.
  • the time-frequency resource other than the second time-frequency resource may be scheduled for the terminal, or And scheduling, for the terminal, a time-frequency resource that includes the second time-frequency resource, and notifying the second time-frequency resource to the terminal.
  • the type of the terminal can be determined by detecting the version number of the terminal.
  • the second type of terminal decoding failure is avoided by not scheduling the second time-frequency resource occupied by the synchronization signal for the second type of terminal. Or, by notifying the second time-frequency resource to the second type of terminal, the second type of terminal can remove the second time-frequency resource occupied by the supplementary synchronization signal when receiving the data, so as to correctly receive the downlink data sent by the base station.
  • the value of the supplementary root index u' in Table 1 is only an example and not a limitation, and the specific value may be determined according to the cross-correlation of the generated supplementary primary synchronization sequence with the primary synchronization sequence.
  • the cross-correlation between the supplemental primary synchronization sequences generated according to the determined supplemental root index u' and between the primary synchronization sequences is small.
  • generating a supplementary primary synchronization sequence using the same frequency domain Zadoff-Chu sequence as the existing primary synchronization sequence generation formula is only an example, and a physical layer cell identified by a physical layer cell may also be used using a predefined formula.
  • the physical layer identifier within the identification group generates the supplemental primary synchronization sequence as a parameter.
  • the primary synchronization sequence can also be scrambled or cyclically shifted to generate a supplemental primary synchronization sequence.
  • the implementation manner of generating the supplementary primary synchronization sequence by using the predefined formula to generate the supplementary primary synchronization sequence by using the physical layer identifier in the physical layer cell identification group of the physical layer cell as a parameter is further illustrated.
  • N N is an even number greater than 62
  • N is an even number greater than 62
  • the supplementary #>index u' of the supplementary primary synchronization sequence corresponds to the physical layer identifier N —— in the physical layer cell identification group.
  • the association relationship between the two sets of associated supplementary m sequences used (specifically, the relationship of m values m 0 ' and mi ') is different from that used to generate the secondary synchronization sequence
  • the association relationship between the two groups of m sequences (specifically, the relationship between m values m 0 and im).
  • the correspondence between the associated m value m Q and the associated supplementary m value m Q ' and i ⁇ and the physical layer cell identification group identifier N is as shown in Table 2. .
  • Table 2 Table 2
  • the values of the supplementary m values 13 ⁇ 4' and 1 ⁇ ' associated with the two groups in Table 2 are merely examples and are not limited. The specific values are not limited in the present invention, as long as the association between m 0 ' and mi ' is guaranteed. The relationship is different from m 0 and mi .
  • the generation of the supplementary secondary synchronization sequence based on the two supplementary m sequences is only an example, and the formula for generating the supplementary secondary synchronization sequence may be defined in advance, and the physical layer cell identification group identifier of the physical layer cell identifier is used as a parameter. This formula generates a supplementary secondary synchronization sequence.
  • the secondary synchronization sequence can also be scrambled or cyclically shifted to generate a supplementary secondary synchronization sequence.
  • the supplementary primary synchronization sequence is still generated by using the frequency domain Zadoff-Chu sequence as an example. If two primary synchronization sequences need to be generated, the first correspondence between the physical layer identifier and the supplementary index in the predetermined physical layer cell identification group is determined.
  • the complementary root-cord Iu' used in the first complementary primary synchronization sequence time-frequency domain Zadoff-Chu sequence is generated and the second generation is generated.
  • the supplementary root index u" used in the frequency-domain Zadoff-Chu sequence supplementing the primary synchronization sequence is different from the root index u of the frequency domain Zadoff-Chu sequence used to generate the PSS, supplementing the root index u', supplementing the root index u", root
  • the values of the supplementary root index u' and the supplementary root index u" in Table 3 are only an example and not a limitation, and the specific value may be determined according to the cross-correlation between the generated supplementary primary synchronization sequence and the primary synchronization sequence.
  • the supplementary secondary synchronization sequence is generated based on the two associated m-sequences, and the physical layer cell identification group of the physical layer cell identifier is determined according to the correspondence between the physical layer cell identifier group identifier ' ⁇ ' and the supplementary m-sequences associated with the two groups.
  • the association relationship between the two m sequences is different from the relationship between the two m sequences used to generate the secondary synchronization signal
  • determining according to the correspondence between the physical layer cell identifier group identifier N and the supplementary m sequence associated with the other two groups, determining another two m sequences corresponding to the physical layer cell identifier group identifier of the physical layer cell identifier, based on the other two
  • the m sequence generates a second supplementary secondary synchronization sequence, the association relationship of the other two m sequences is different from the relationship between the two m sequences used to generate the secondary synchronization signal, and the first complementary secondary synchronization sequence is generated.
  • the association relationship of the two m-sequences is different from the association relationship between the two m-sequences used to generate the second supplementary secondary synchronization sequence.
  • the relationship between the m values 13 ⁇ 4' and 13 ⁇ 4 ' of the two sets of associated supplementary m sequences used is different from the two sets of associations used to generate the secondary synchronization sequence.
  • the m values of the m sequence are m 0 and mi .
  • the relationship between the m values m 0 " and im " of the two sets of associated supplementary m sequences used is also different from the two sets of associations used to generate the secondary synchronization sequence.
  • the m-values m Q and rn ⁇ of the m-sequence take the physical layer cell identification group identifier N 0 ⁇ 10 as an example, the associated m-value m Q and the associated supplementary m-value mo' and the associated supplementary m-value mo" and And the physical layer cell identification group identifier N - the corresponding relationship is shown in Table 4.
  • the base station and the terminal performing cell search based on the supplementary synchronization signal also pre-agreed the mapping relationship between the supplementary synchronization signal and the second time-frequency resource.
  • the base station and the terminal for performing cell search based on the supplementary synchronization signal in the frequency domain, carrying the primary synchronization sequence, the secondary synchronization sequence, the supplementary primary synchronization sequence and the supplementary secondary synchronization sequence on the 62 subcarriers of the system bandwidth; in the time domain, A primary synchronization sequence is carried on the last OFDM symbol of slot 0 and slot 10, and a secondary synchronization sequence is carried on the second to last OFDM symbols of slot 0 and slot 10, outside of slot 0 and slot 10.
  • a supplemental primary synchronization sequence is carried on the last OFDM symbol of each slot, and a supplemental secondary synchronization sequence is carried on the second to last OFDM symbols of each slot except slot 0 and slot 10.
  • the transmission frequency of the synchronization signal is increased by 20 times, which greatly increases the probability that the terminal correctly performs cell search, thereby shortening the time of cell search and reducing the requirement for terminal buffering.
  • the synchronization signal transmission frequency is increased by 20 times, the overhead of system resources is also increased by 20 times.
  • the base station and the terminal performing cell search based on the supplemental synchronization signal may agree to transmit a supplemental synchronization signal on each radio frame in accordance with the mapping relationship shown in FIG.
  • the base station and the terminal performing cell search based on the supplementary synchronization signal may also agree to: use m radio frames greater than 1 as a period, and in each of the n radio frames, according to FIG.
  • the mapping relationship sends a supplemental synchronization signal.
  • the base station and the terminal for performing cell search based on the supplementary synchronization signal in the frequency domain, carrying the primary synchronization sequence, the secondary synchronization sequence, the first supplementary primary synchronization sequence, the second supplementary primary synchronization sequence, and the first 62 subcarriers of the system bandwidth a supplementary secondary synchronization sequence and a second supplement a secondary synchronization sequence; in the time domain, a supplementary secondary synchronization sequence is carried on the 4th OFDM symbol and the 7th OFDM symbol of the first time slot on subframe 0 and subframe 5 (the two OFDM symbols can carry the same Supplementing the secondary synchronization sequence may also carry two different supplementary secondary synchronization sequences, and specifically stipulate the mapping relationship between each supplementary secondary synchronization sequence and the OFDM symbol), and the sixth of the first time slot on subframe 0 and subframe 5
  • the OFDM symbol and the sixth OFDM symbol of the second time slot carry a supplementary
  • the base station and the terminal performing cell search based on the supplemental synchronization signal may agree to transmit a supplemental synchronization signal on each radio frame in accordance with the mapping relationship shown in FIG.
  • the base station and the terminal performing cell search based on the supplementary synchronization signal may also agree to: use m radio frames greater than 1 as a period, and on the n radio frames, according to FIG.
  • the mapping relationship sends a supplemental synchronization signal.
  • the second time-frequency resource has the same pattern in two 5 ms half frames.
  • the base station may also agree with the terminal that the second time-frequency resource is different in the pattern of the two 5 ms half frames.
  • the base station and the terminal for performing cell search based on the supplementary synchronization signal in the frequency domain, carrying the primary synchronization sequence, the secondary synchronization sequence, the first supplementary primary synchronization sequence, the second supplementary primary synchronization sequence, and the first 62 subcarriers of the system bandwidth a supplementary secondary synchronization sequence and a second supplementary secondary synchronization sequence; in the time domain, the supplementary secondary synchronization sequence is carried on the 4th OFDM symbol and the 7th OFDM symbol of the first time slot on the subframe 0, on the subframe 0
  • the sixth OFDM symbol of the first slot and the sixth OFDM symbol of the second slot carry the supplemental primary synchronization sequence, and the fourth OFDM symbol of the first slot on subframe 5, the seventh
  • the OFDM symbol and the 4th OFDM symbol of the 2nd slot carry a supplementary secondary synchronization sequence, the 6th OFDM symbol of the first slot on the subframe 5, the 3r
  • the supplementary primary synchronization sequence carried by the OFDM symbol carrying the supplementary primary synchronization sequence may be the same or different, specifically from its convention.
  • the supplementary auxiliary synchronization sequence carried by the OFDM symbol carrying the supplementary secondary synchronization sequence may be the same or different, specifically from the convention.
  • the base station and the terminal performing cell search based on the supplemental synchronization signal may agree to transmit a supplemental synchronization signal on each radio frame in accordance with the mapping relationship shown in FIG.
  • the base station and the terminal performing cell search based on the supplementary synchronization signal may also agree to: use m radio frames greater than 1 as a period, and in each of the n radio frames, according to FIG.
  • the mapping relationship sends a supplemental synchronization signal.
  • the length of the supplemental primary synchronization sequence and the supplementary secondary synchronization sequence is 62, occupying 62 central subcarriers of the system bandwidth in the frequency domain. If the length N of the generated supplemental primary synchronization sequence and the supplementary secondary synchronization sequence is greater than 62, the central N subcarriers of the system bandwidth are occupied in the frequency domain. In addition, on existing frequency domain resources, system bandwidth Each subcarrier spacing is 15KHz. In order to enhance the transmission power of the synchronization signal and the supplemental synchronization signal, it may also be agreed that the interval of each subcarrier in the frequency domain corresponding to the OFDM symbol occupied by the supplementary synchronization signal is L*15 KHz, where L is an integer greater than 1. Or, L is greater than 0 and less than 1.
  • the embodiment of the present invention further provides a signal receiving processing method, which is implemented as shown in FIG. 5, and specifically includes the following operations:
  • Step 500 Receive a synchronization signal carried in a predetermined first time-frequency resource.
  • Step 510 Receive a supplemental synchronization signal that is carried in a predetermined second time-frequency resource.
  • Step 520 Perform downlink synchronization with the base station by using the synchronization signal and the supplementary synchronization signal, and determine a physical layer cell identifier, where the synchronization signal and the supplementary synchronization signal correspond to a same physical layer cell identifier.
  • the performing the downlink synchronization with the base station by using the synchronization signal and the supplementary synchronization signal, and determining the physical layer cell identifier specifically includes:
  • the synchronization signal determines the physical layer cell identity.
  • the embodiment of the present invention further provides another signal receiving processing method, and the implementation manner thereof is as shown in FIG. 6, which specifically includes the following operations:
  • Step 600 Receive a supplemental synchronization signal carried by a predetermined second time-frequency resource.
  • Step 610 Perform downlink synchronization with the base station by using the supplementary synchronization signal, and determine a physical layer cell identifier.
  • the method is particularly applicable to the case where multiple complementary synchronization signals are carried in one radio frame. Since a plurality of supplementary synchronization signals are carried in one radio frame, under the same coverage performance, the terminal completes downlink synchronization with the base station through correlation detection and determines that the amount of data to be buffered by the physical layer cell identifier is less than that of the prior art. And shorten the cell search time.
  • the performing the downlink synchronization with the base station by using the supplementary synchronization signal, and determining the physical layer cell identifier specifically includes:
  • the embodiment of the present invention further provides a base station, and its structure is shown in FIG. 7.
  • the specific implementation structure is as follows:
  • the synchronization signal sending module 701 is configured to send a synchronization signal to the terminal on the predetermined first time-frequency resource
  • the supplementary synchronization signal sending module 702 is configured to send the terminal to the terminal on the predetermined second time-frequency resource.
  • the supplemental synchronization signal of the synchronization signal is used by the terminal to complete downlink synchronization with the base station and determine a physical layer cell identifier, where the synchronization signal and the supplementary synchronization signal correspond to the same physical layer cell identifier.
  • the base station provided by the embodiment of the present invention further includes:
  • a supplementary primary synchronization sequence generating module configured to generate a supplementary primary synchronization sequence different from the primary synchronization sequence in the synchronization signal according to a predetermined rule, where the length of the supplementary primary synchronization sequence is N, and is within the physical layer cell identification group Corresponding to the physical layer identifier;
  • a supplementary secondary synchronization sequence generating module configured to generate a supplementary secondary synchronization sequence different from the secondary synchronization sequence in the synchronization signal according to a predetermined rule, where the length of the supplementary secondary synchronization sequence is N, and the physical layer cell identification group identifier Correspondingly, N is an integer not less than 62, and the supplementary synchronization signal is generated by the supplementary primary synchronization sequence and the supplementary secondary synchronization sequence, and the physical layer identifier and the physical layer cell identifier in the physical layer cell identification group.
  • the group identifier is used to determine the physical layer cell identity.
  • the supplementary primary synchronization sequence generating module is specifically configured to:
  • the supplementary primary synchronization sequence generating module is specifically configured to: when the at least one complementary primary synchronization sequence is generated by using a predefined formula, based on the physical layer identifier in the physical layer cell identifier group,
  • the supplementary secondary synchronization sequence generating module is specifically configured to:
  • the sequence is cyclically shifted to generate at least one supplemental secondary synchronization sequence.
  • the supplementary secondary synchronization sequence generating module is specifically configured to:
  • the at least one pair of associations The association of the complementary m-sequences is different from the association of the two m-sequences used to generate the secondary synchronization sequences.
  • the supplementary synchronization signal sending module 702 is specifically configured to:
  • the sub-carrier spacing corresponding to the OFDM symbol indicated by the mapping relationship is L*15KHz, L is an integer not less than 1, or L is greater than 0 and less than 1.
  • the OFDM symbol indicated by the mapping relationship is not occupied by the physical broadcast channel, the synchronization signal, and does not carry a common reference signal.
  • the supplementary synchronization signal sending module 902 is specifically configured to:
  • the mapping relationship of the second time-frequency resource determines that the m and n are integers not less than one.
  • the base station provided by the embodiment of the present invention further includes a time-frequency resource scheduling module, configured to: when determining that the terminal cannot know the second time-frequency resource occupied by the supplementary synchronization signal in advance:
  • the embodiment of the present invention further provides a terminal, and the specific implementation structure is as follows:
  • a first signal receiving module configured to receive a synchronization signal carried by a predetermined first time-frequency resource, and receive a supplementary synchronization signal carried by the predetermined second time-frequency resource;
  • a first cell search module configured to perform downlink synchronization with the base station by using the synchronization signal and the supplementary synchronization signal, and determine a physical layer cell identifier, where the synchronization signal and the supplementary synchronization signal are the same physical layer cell identifier correspond.
  • the first signal receiving module is specifically configured to:
  • the embodiment of the present invention further provides another terminal, and the specific implementation structure is as follows:
  • a second signal receiving module configured to receive a supplementary synchronization signal that is carried in a predetermined second time-frequency resource
  • a second cell search module configured to perform downlink synchronization with the base station by using the supplementary synchronization signal, and determine a physical layer cell identifier .
  • the second signal receiving module is specifically configured to:
  • An embodiment of the present invention further provides a base station, including a processor and a data transceiver interface, where:
  • the processor is configured to: send a synchronization signal to the terminal on a predetermined first time-frequency resource; send a supplementary synchronization signal different from the synchronization signal to the terminal on a predetermined second time-frequency resource,
  • the synchronization signal and the supplementary synchronization signal correspond to a same physical layer cell identifier;
  • the data transceiving interface is used to implement data communication with the terminal.
  • the embodiment of the invention further provides a terminal, including a processor and a data transceiver interface, wherein:
  • the processor is configured to: receive a synchronization signal carried by a predetermined first time-frequency resource, and receive a supplemental synchronization signal carried by a predetermined second time-frequency resource; using the synchronization signal and the supplemental synchronization
  • the signal is synchronized with the downlink of the base station, and the physical layer cell identifier is determined, and the synchronization signal and the supplementary synchronization signal correspond to the same physical layer cell identifier; or
  • the processor is configured to: receive a supplemental synchronization signal carried by a predetermined second time-frequency resource; perform downlink synchronization with the base station by using the supplementary synchronization signal, and determine a physical layer cell identifier;
  • the data transceiving interface is used to implement data communication with a base station.
  • the embodiment of the present invention further provides a communication system, and the structure thereof is as shown in FIG. 8.
  • the specific implementation structure is as follows:
  • the base station 101 is configured to send a synchronization signal to the terminal on the predetermined first time-frequency resource, and send a supplementary synchronization signal different from the synchronization signal to the terminal on the predetermined second time-frequency resource, the synchronization signal And the supplementary synchronization signal corresponds to the same physical layer cell identifier;
  • the terminal 102 is configured to receive a synchronization signal that is carried by the predetermined first time-frequency resource, and receive a supplementary synchronization signal that is carried by the predetermined second time-frequency resource, and use the synchronization signal and the supplementary synchronization signal to complete the Downlink synchronization, and determining a physical layer cell identifier; or for receiving the supplementary synchronization signal, performing downlink synchronization with the base station by using the supplementary synchronization signal, and determining a physical layer cell identifier.
  • the base station further transmits a supplemental synchronization signal based on the transmission of the synchronization signal, which is equivalent to increasing the transmission frequency of the synchronization signal.
  • increasing the transmission frequency of the synchronization signal can increase the probability that the terminal performs correlation detection on the same number of signals to complete the cell search, which not only shortens the time of terminal cell search, but also reduces the terminal buffer. The amount of data, which in turn reduces the need for terminal caching.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号处理方法、基站、终端及系统。其基站侧方法包括:在预定的第一时频资源上向终端发送同步信号,在预定的第二时频资源上向所述终端发送不同于所述同步信号的补充同步信号,同步信号和补充同步信号与同一个物理层小区标识对应。本申请实施例提供的技术方案,在发送同步信号的基础上,还发送补充同步信号,相当于增加了同步信号的发送频率。在网络覆盖性能较差的情况下,增加同步信号的发送频率能够增大终端对相同数量的信号进行相关检测以完成小区搜索的概率,不仅可以缩短终端小区搜索的时间,同时也减少了终端缓存数据量,进而降低了对终端缓存的要求。

Description

一种信号处理方法、 基站、 终端、 及系统 本申请要求在 2012年 11月 02日提交中国专利局、 申请号为 201210434756.8、发明名称为"一 种信号处理方法、 基站、 终端、 及系统"的中国专利申请的优先权, 其全部内容通过引用结合 在本申请中。 技术领域 本发明涉及无线通信技术领域, 尤其涉及一种信号处理方法、 基站、 终端及系统。 背景技术
LTE ( Long Term Evolution , 长期演进) 系统中的同步信号包括 PSS (Primary Synchronization Signal,主同步信号;)和 SSS (Secondary Synchronization Signal,辅同步信号;)。 终端基于基站发送的 PSS和 SSS完成小区搜索。
其中, PSS的序列可称为主同步序列, SSS的序列可称为辅同步序列。
小区搜索是终端进入小区的第一步操作。 终端通过小区搜索与基站下行同步(该同步 包括时间同步和频率同步), 并通过同步信号的检测获取小区的物理层小区 ID (标识), 进 而再接收并读取小区的广播信息。
LTE系统中的物理层小区 ID共有 504个, 被分为 168个物理层小区 ID组, 每一组包含 3 个物理层小区 ID。 这样, 一个物理层小区 ID就可以由代表物理层小区 ID组的物理层小区标 识组标识 N (范围是 0 - 167, 由辅同步信道承载), 和代表该物理层小区 ID组中的物理层 标识 (范围是 0~2 , 由主同步信道承载) 来唯一定义, 即 N 11 = 3N^' + N® , 为物 理层小区 ID。
物理层小区标识组内的物理层标识 与 PSS的序列——对应, 物理层小区标识组标 识 N 与 SSS的序列——对应。 基站才 居物理层小区 ID确定 PSS和 SSS的序列, 并在相应的 时频位置发送。
如前所述, 终端通过小区搜索与基站下行时频同步, 并通过同步信号的检测获取物理 层小区 ID。 由于终端在完成小区搜索前不知道基站的定时以及同步信号使用的序列, 因此 需要对于每个 OFDM符号使用所有的序列进行相关检测, 从而根据相关的结果得到本小区 的定时以及同步信号使用的序列。
对于 LTE网络覆盖性能较差的场景, 无线信号被严重遮挡, 受到很大的衰减, 终端需 要通过多次相关检测才能正确完成小区搜索。 对于覆盖性能较差的极端情况, 终端相关检 测次数可能达到几十次甚至上百次。 釆用现有技术, 同步信号每 5ms才出现一次, 终端需 要緩存几十个甚至上百个 5ms的信号, 对终端的緩存提出了非常高的要求。 此外, 小区搜 索的时间也较长。 发明内容 本发明的目的是提供一种信号处理方法、 基站、 终端及系统, 以解决网络覆盖性能较 差时, 终端为正确完成小区搜索需要緩存大量信号、 小区搜索时间长的问题。
本发明的目的是通过以下技术方案实现的:
一种信号发送处理方法, 包括:
在预定的第一时频资源上向终端发送同步信号;
在预定的第二时频资源上向所述终端发送不同于所述同步信号的补充同步信号, 所述 同步信号和所述补充同步信号与同一个物理层小区标识对应。
一种信号接收处理方法, 包括:
接收承载于预定的第一时频资源的同步信号;
接收承载于预定的第二时频资源的补充同步信号;
使用所述同步信号和所述补充同步信号完成与基站的下行同步, 并确定物理层小区标 识, 所述同步信号和所述补充同步信号与同一个物理层小区标识对应;
或者,
接收承载于预定的第二时频资源的补充同步信号;
使用所述补充同步信号完成与基站的下行同步, 并确定物理层小区标识。
一种基站, 包括:
同步信号发送模块, 用于在预定的第一时频资源上向终端发送同步信号;
补充同步信号发送模块, 用于在预定的第二时频资源上向所述终端发送不同于所述同 步信号的补充同步信号, 所述同步信号和所述补充同步信号与同一个物理层小区标识对 应。
一种基站, 包括处理器和数据收发接口, 其中:
所述处理器被配置为用于: 在预定的第一时频资源上向终端发送同步信号; 在预定的 第二时频资源上向所述终端发送不同于所述同步信号的补充同步信号, 所述同步信号和所 述补充同步信号与同一个物理层小区标识对应;
所述数据收发接口用于实现与终端的数据通信。
一种终端, 包括:
第一信号接收模块, 用于接收承载于预定的第一时频资源的同步信号, 并接收承载于 预定的第二时频资源的补充同步信号; 第一小区搜索模块, 用于使用所述同步信号和所述补充同步信号完成与基站的下行同 步, 并确定物理层小区标识, 所述同步信号和所述补充同步信号与同一个物理层小区标识 对应;
或者,
第二信号接收模块, 用于接收承载于预定的第二时频资源的补充同步信号; 第二小区搜索模块, 用于使用所述补充同步信号完成与基站的下行同步, 并确定物理 层小区标识。
一种终端, 包括处理器和数据收发接口, 其中:
所述处理器被配置为用于: 接收承载于预定的第一时频资源的同步信号, 并接收承载 于预定的第二时频资源的补充同步信号; 使用所述同步信号和所述补充同步信号完成与基 站的下行同步, 并确定物理层小区标识, 所述同步信号和所述补充同步信号与同一个物理 层小区标识对应; 或者,
所述处理器被配置为用于: 接收承载于预定的第二时频资源的补充同步信号; 使用所 述补充同步信号完成与基站的下行同步, 并确定物理层小区标识;
所述数据收发接口用于实现与基站间的数据通信。
一种通信系统, 包括:
基站, 用于在预定的第一时频资源上向终端发送同步信号, 以及在预定的第二时频资 源上向所述终端发送不同于所述同步信号的补充同步信号, 所述同步信号和所述补充同步 信号与同一个物理层小区标识对应;
终端, 用于接收承载于预定的第一时频资源的同步信号, 并接收承载于预定的第二时 频资源的补充同步信号, 使用所述同步信号和所述补充同步信号完成与基站的下行同步, 并确定物理层小区标识; 或者用于, 接收所述补充同步信号, 使用所述补充同步信号完成 与所述基站的下行同步并确定物理层小区标识。
本发明实施例提供的技术方案,基站在发送同步信号的基础上,还发送补充同步信号, 相当于增加了同步信号的发送频率。 在网络覆盖性能较差的情况下, 增加同步信号的发送 频率能够增大终端对相同数量的信号进行相关检测以完成小区搜索的概率, 不仅可以缩短 终端小区搜索的时间, 同时也减少了终端緩存数据量, 进而降低了对终端緩存的要求。 附图说明 图 1为本发明实施例提供的一种信号发送方法流程图;
图 2为本发明实施例提供的第一种时频资源占用示意图;
图 3为本发明实施例提供的第二种时频资源占用示意图; 图 4为本发明实施例提供的第三种时频资源占用示意图;
图 5为本发明实施例提供的一种信号接收方法流程图;
图 6为本发明实施例提供的另一种信号接收方法流程图;
图 7为本发明实施例提供的基站结构示意图;
图 8为本发明实施例提供的通信系统结构示意图。 具体实施方式 为了使终端尽快完成小区搜索, 减少緩存数据量, 本发明实施例提供了一种信号发送 处理方法, 基站在预定的第一时频资源上向终端发送同步信号, 且在预定的第二时频资源 上向所述终端发送不同于所述同步信号的补充同步信号, 所述补充同步信号用于使终端完 成与基站的下行同步并确定物理层小区标识, 所述同步信号和所述补充同步信号均与同一 个物理层小区标识对应。
本发明实施例中, 在第一时频资源上向终端发送的同步信号, 为现有通信标准中定义 的同步信号。
本发明实施例中, 所述的第一时频资源是指用于承载现有通信标准中定义的同步信号
(上述 PSS和 SSS )的时频资源, 所述的第二时频资源是指用于承载本发明实施例定义的 补充同步信号的时频资源。
其中, 基站与基于补充同步信号完成小区搜索的终端预先约定第二时频资源, 即该终 端预先获知预定的第二时频资源。 本发明实施例提供的方法, 在发送同步信号的基础上, 还发送补充同步信号,相当于增加了同步信号的发送频率。在网络覆盖性能较差的情况下, 增加同步信号的发送频率能够增大终端对相同数量的信号进行相关检测以完成小区搜索 的概率, 不仅可以缩短终端小区搜索的时间, 同时也减少了终端緩存数据量, 进而降低了 对终端緩存的要求。
本发明实施例中, 将预先获知补充同步信号占用的第二时频资源, 并且利用补充同步 信号完成小区搜索的终端称为第一类终端, 将预先无法预先获知补充同步信号占用的第二 时频资源的传统终端称为第二类终端。
下面将结合附图对本发明实施例提供的技术方案进行详细说明。
本发明实施例提供一种信号发送处理方法, 其实现方式如图 1所示, 具体包括如下操 作:
步骤 100、 在预定的第一时频资源上向终端发送同步信号;
步骤 110、 在预定的第二时频资源上向所述终端发送不同于所述同步信号的补充同步 信号。
所述补充同步信号用于使终端完成与基站的下行同步并确定物理层小区标识。 具体 的, 补充同步信号用于第一类终端完成与基站的下行同步并确定物理层小区标识。
所述同步信号和所述补充同步信号均与同一个物理层小区标识对应。
应当指出的是, 上述步骤编号并不是对这两个步骤时序关系的限定。 同步信号与补充 同步信号发送的时序关系由它们所占用的时频资源确定。
本发明实施例提供的方法应用于 LTE系统中, 特别适用于覆盖性能较差的 LTE网络。 相应的,本发明实施例中所述的同步信号由主同步序列和辅同步序列生成,具体是指 3GPP Release 11 (第三代合作伙伴计划 版本 11 )及其之前版本定义的主同步序列和辅同步序列。 本发明实施例中所述的补充同步信号由补充主同步序列和补充辅同步序列生成。
如上所述, 同步信号由主同步序列和辅同步序列生成。
现有协议中定义了 3 个主同步序列, 它们与一个物理层小区 ID组中的 3 个物理层 ID N^有——映射关系。 主同步序列 du (n)由频域 Zadoff-Chu序列 (一种具有理想周期自 相关函数和最佳周期互相关函数的序列)产生, 长度为 62, 其使用的 Zadoff-Chu序列的根 索引 u与 N^的一一对应。
辅同步序列是两个长度为 31 的序列通过循环移位公式获得的, 且两个序列的合并方 式在子帧 0和子帧 5是不同的, 本实施例称生成辅同步序列的上述长度为 31的序列为补 充 m序列。
基于同步信号进行小区搜索的终端在完成小区搜索之前不知道基站的定时及其所使 用的同步信号的序列, 因此, 终端在进行小区搜索时会对每个 OFDM符号使用所有同步信 号的序列进行相关,根据相关的结果确定基站的定时及同步信号的序列。所谓基站的定时, 是指无线帧的起始位置。
相应的, 同步信号不仅用于确定物理层小区标识, 还用于确定小区的定时。 具体的, 当基于同步信号进行小区搜索的终端接收到同步信号后, 由于已知同步信号所占用的时频 资源, 因此可以确定无线帧或者子帧的起始位置。 可见, 本发明实施例中定义的补充主同 步序列不能与现有技术中定义的主同步序列相同, 补充辅同步序列不能与现有技术中定义 的辅同步序列相同。 否则, 基于同步信号进行小区搜索的终端无法确定基站的定时。
较佳地, 本发明实施例提供的方法中, 在第二时频资源上向所述终端发送不同于所述 同步信号的补充同步信号之前, 按照预定的规则生成不同于所述同步信号中的主同步序列 的补充主同步序列, 所述补充主同步序列的长度为 N、 且与物理层小区标识组内的物理层 标识对应; 按照预定的规则生成不同于所述同步信号中的辅同步序列的补充辅同步序列, 所述补充辅同步序列的长度为 N、且与物理层小区标识组标识对应,Ν为不小于 62的整数, 所述补充同步信号由所述补充主同步序列和所述补充辅同步序列生成, 所述物理层小区标 识组内的物理层标识和所述物理层小区标识组标识用于确定所述物理层小区标识。
需要说明的是, 上述生成补充主同步序列的预定规则, 与生成补充辅同步序列的预定 规则, 为单独预定的规则, 可以是相同的规则, 也可以是不同的规则,。
本发明实施例中, 补充主同步序列与物理层小区标识组内的物理层标识对应, 即根据 补充主同步序列可以确定物理层小区标识组内的物理层标识。 补充辅同步序列与物理层小 区标识组标识对应, 即才 居补充辅同步序列可以确定物理层小区标识组标识。
本发明实施例中, 预先确定生成补充同步信号所使用的规则。 其中, 如果生成两个或 两个以上的补充同步信号, 则每个补充同步信号各不相同, 预先确定生成各个补充同步信 号所使用的规则。
本发明实施例提供的方法中,生成补充同步信号的方法有多种,下面将例举其中几种。 对于补充主同步序列, 可以基于所述物理层小区标识组内的物理层标识, 使用预定义 的公式生成至少一个补充主同步序列。 此外, 也可以使用至少一个加扰序列对主同步序列 进行加扰, 生成至少一个补充主同步序列, 还可以使用至少一个循环移位数对主同步序列 进行循环移位, 生成至少一个补充主同步序列。 本发明实施例中, 所谓的循环移位数即循 环移位的位数。
其中, 本发明对上述生成补充主同步序列所使用的公式不作限定, 只要按照该公式可 以生成与物理层小区标识组内的物理层标识——对应的补充主同步序列即可。 具体的, 可 以定义与现有的用于生成主同步序列的根索引不同的补充根索引, 并确定至少一组的物理 层小区标识组内的物理层标识与补充 # ^索引的对应关系, 才艮据至少一组的物理层小区标识 组内的物理层标识与补充 # ^索引的对应关系, 确定物理层小区标识组内的物理层标识对应 的频域序列 (例如频域 Zadoff-Chu序列)的至少一个补充根索引, 进而以所述至少一个补 充根索引为参数, 使用基于所述频域序列的公式生成至少一个补充主同步序列, 所述至少 —个补充根索引不同于生成所述主同步序列所使用的根索引。
具体的,可以使用与生成主同步序列相同的频域 Zadoff-Chu序列生成所述补充主同步 序列, 生成的补充主同步序列的长度与主同步序列的长度相同, 均为 62。 生成补充主同步 序列 d (")所使用的公式如下: w = 0,l,...,30
Figure imgf000007_0001
w = 31,32,...,61 对于生成补充主同步序列所使用的频域 Zadoff-Chu序列的补充根索引 u,,既可以直接 约定补充根索引 u'与物理层小区标识组内的物理层标识 的——对应关系; 也可以约定 补充根索引 u'与生成主同步序列所使用的频域 Zadoff-Chu序列的根索引 u的——对应关 系, 进而确定补充根索引 u'与物理层小区标识组内的物理层标识 N 的——对应关系。
其中, 当补充同步序列长度增加时, 可以进一步提高自相关, 从而提升检测概率; 此 夕卜, 随着同步序列长度的增加, 信号所占用的频带也相应变宽, 会增强补充同步信号的发 送功率, 进一步增大终端成功进行相关检测确定补充同步信号的概率。 因此, 本发明实施 例中, 生成的补充同步信号的长度可以大于 62。 具体到补充主同步序列, 可以基于频域 Zadoff-Chu序列生成补充主同步序列, 该频域 Zadoff-Chu序列不同于生成主同步序列所使 用的频域 Zadoff-Chu序列,对频域 Zadoff-Chu序列选择只要满足生成的补充主同步序列长 度大于 62 即可。 相应的, 当生成两个或两个以上补充主同步序列时, 生成每个补充主同 步序列所使用的公式的参数不完全相同具体是指 , 生成每个补充主同步序列所使用的补充 根索引各不相同。
其中, 对主同步序列进行加扰生成补充主同步序列时, 所使用的加扰序列本发明不作 限定。 如果生成两个或两个以上补充主同步序列, 则当生成两个或两个以上补充主同步序 列时, 生成每个补充主同步序列所使用的加扰序列各不相同。
其中, 对主同步序列进行循环移位生成补充主同步序列时, 具体的循环移位方式本发 明不作限定。 如果生成两个或两个以上补充主同步序列, 则当生成两个或两个以上补充主 同步序列时, 生成每个补充主同步序列进行循环移位的位数各不相同。
对于补充辅同步序列, 可以预先定义产生补充辅同步序列的公式, 基于所述物理层小 区标识组标识, 使用预定义的公式生成至少一个补充辅同步序列。 此外, 也可以使用至少 一个加扰序列对辅同步序列进行加扰, 生成至少一个补充辅同步序列, 还可以使用至少一 个循环移位数对辅同步序列进行循环移位, 生成至少一个补充辅同步序列。
以所述至少一对关联的补充 m序列为参数,使用预定的循环移位公式生成至少一个补 充辅同步序列, 所述至少一对关联的补充 m序列的关联关系, 不同于生成所述辅同步序列 所用到的两个 m序列的关联关系。
其中, 本发明对上述生成补充辅同步序列所使用的公式不作限定, 只要按照该公式可 以生成与物理层小区标识组标识——对应的补充辅同步序列即可。 具体的, 可以才 居物理 层小区标识组标识 N 与两组关联的补充 m序列的对应关系, 确定物理层小区标识的物理 层小区标识组标识对应的至少一对关联的补充 m序列, 以所述至少一对关联的补充 m序 列为参数, 使用预定的循环移位公式生成至少一个补充辅同步序列。 如果生成两个或两个 以上补充辅同步序列, 生成每个补充辅同步序列所使用的两个 m序列的关联关系各不相 同、 且不同于与生成辅同步序列所用到的两个 m序列的关联关系。
具体的,基于两个 m序列生成补充辅同步序列时, 其具体实现方式可以通过如下公式 表示, 两个 m序列的合并方式在子帧 0和子帧 5是不同的:
in subframe 0
d'(2n) =
Figure imgf000009_0001
in subframe 5 ί s,(mi)(n) (n) 1 (m,°) in) in subframe 0
d 2n + \) = \ l ' ;
^m'o)(«)c1(«) ] (m,l)(«) in subframe 5 其中, ί/'(2«)和 ί/'(2« + 1)为补充辅同步序列, 0≤w≤30, 。和 ^ 由^^确定, 具体 如下式, 两组关联的 '。和 与 N 有——对应关系:
m =m'mod31 )+ ' + 1)/2 | g, = | /30
Figure imgf000009_0002
两个 s序列 ^"WO 和^" ^O?)由补充 m序列 0')做两种不同的循环移位得到, 具体如 下公式:
s0 ( 'o) (η) = 5((« + m'0)mod31)
5] (mi)(«) = s((n + m )mod3\)
其中, ) = 1_2JC(0, 0<7<30
x(T+5) = (x(T + 2) + x(T)) mod 2, 0<7<25
初始条件: (0) = 0, x(l) = 0, x(2) = 0, x(3) = 0, x(4) = 1
两个扰码序列 c0 (n)和 O)由补充主同步序列决定, 由补充 m序列 φ)按照不同的循 环移位获得, 具体如下公式:
c0(n) = c((n + N^)mod31)
c, (") = c((n + Ng + 3) mod 31)
c(/') = l-2x(/), 0</<30
初始条件: x(0) = 0, (l) = 0, (2) = 0, x(3) = 0, x(4) = 1
两个扰码序列 z ^ )和 ^^(w)由 m序列 按照不同的循环移位获得, 如下公式: (ri) = z((n + (m '0 mod 8)) mod 31) z x ) (n) = z((n + (m mod 8)) mod 31)
m '0和 可查表获得, ( ) = l— 2χ( ) , 0≤ζ·≤30
初始条件: (0) = 0, χ(1) = 0, χ(2) = 0, χ(3) = 0, χ(4) = 1。
对于生成补充辅同步序列所使用的两组关联的补充 m序列,既可以直接约定这两组关 联的补充 m序列与物理层小区标识组标识 N 的——对应关系; 也可以约定这两组关联的 补充 m序列与生成辅同步序列所使用的两组关联的 m序列的——对应关系, 进而确定这 两组关联的补充 m序列与物理层小区标识组标识 N 的——对应关系。 具体的, 两组关联 的补充 m序列与物理层小区标识组标识 N 的——对应关系是指,两组关联的补充 m序列 的 m值与物理层小区标识组标识 N 的——对应关系。
按照上述公式生成的补充辅同步序列的长度为 62。为进一步增大终端正确接收到补充 同步信号的概率, 本发明实施例中, 生成的补充同步信号的长度可以大于 62。 具体到补充 辅同步序列, 可以使用长度为 N/2的两个关联的 m序列生成补充辅同步序列。
其中, 对辅同步序列进行加扰生成补充辅同步序列时, 本发明实施例对所使用的加扰 序列不作限定。 当生成两个或两个以上补充辅同步序列时, 生成每个补充辅同步序列所使 用的加扰序列各不相同。
其中, 对辅同步序列进行循环移位生成补充辅同步序列时, 对具体的循环移位方式本 发明不作限定。 当生成两个或两个以上补充辅同步序列时, 生成每个补充辅同步序列进行 循环移位的位数各不相同。
本发明实施例提供的方法中, 基站和第一类终端还预先约定补充同步信号与第二时频 资源的映射关系。 例如, 预先约定一个无线帧的时频资源图样, 该时频资源图样中描述了 每个补充同步信号所占用的时频资源。 具体的, 在频域上, 可以将补充同步信号承载在系 统带宽的中心的 N个子载波上, N为补充同步信号的长度。 在时域上, 可以约定占用无线 帧的至少一个下行空闲 OFDM( Orthogonal Frequency Division Multiplexing,正交频分复用) 符号。 所谓的空闲 OFDM符号是指, 没有被 PBCH ( Physical Broadcast Channel, 物理广播 信号)、 现有的主同步序列和辅同步序列占用的符号, 进一步的, 所谓的空闲 OFDM符号 是指,没有被 PBCH、现有的主同步序列和辅同步序列占用、且没有 CRS( Common Reference Signal, 公共参考信号) 的符号。 补充同步信号占用的 OFDM符号对应的频域上的子载波 间隔为 L* 15KHz, L为不小于 1的整数, 或者, L大于 0且小于 1 , 其具体取值由基站和 终端预先约定。
相应的, 上述步骤 110的具体实现方式可以是: 按照预定的补充同步信号与所述第二 时频资源的映射关系, 在系统带宽的中心 N个子载波、 该映射关系指示的 OFDM符号的 时频资源上, 向所述终端发送所述补充同步信号。
其中, 在时域为该映射关系指示的 OFDM符号上向所述终端发送所述补充同步信号, 具体包括: 以 m个无线帧为周期, 在其中预定的 n个无线帧中的 OFDM符号上向所述终 端发送所述补充同步信号,每个无线帧中承载补充同步信号的 OFDM符号根据所述补充同 步信号与第二时频资源的映射关系确定。 !!!和!!为不小于 1的整数, 当 m为 1时, 即在时 域上的每个无线帧的 OFDM符号上向终端发送补充同步信号; 当 m大于 1时, 支设 m为 5 , n为 3 , 则以 5个无线帧为周期, 在每个周期中预定的 3个无线帧中的 OFDM符号上向 终端发送补充同步信号,这 3个无线帧中每个无线帧承载补充同步信号的 OFDM符号根据 上述映射关系确定。
本发明实施例中, 补充主同步序列与物理层小区标识组内的物理层标识 N 之间有一 一对应关系。 补充辅同步序列与物理层小区标识组标识 N 之间有——对应关系。 因此, 物理层小区标识可以由补充同步信号唯一确定。 第一类终端通过相关检测确定补充同步信 号后, 即可以确定出物理层小区标识。 另外, 补充同步信号占用的第二时频资源由基站与 终端预先约定, 那么, 第一类终端通过相关检测确定补充同步信号后, 可以根据补充同步 信号及其占用的时频资源, 确定基站的定时。 可见, 第一类终端如果能够正确接收到补充 同步信号, 可以基于该补充同步信号完成小区搜索。 或者, 第一类终端也可以使用同步信 号和补充同步信号一起确定物理层小区标识以及定时。
根据对上述本发明实施例提供的方法描述可知, 在发送补充同步信号之前, 基站与第 一类终端需要预先约定补充同步信号占用的第二时频资源。 对于第二类终端, 因为没有与 基站约定相应的第二时频资源, 即不具备接收补充同步信号的能力。 因此, 基站在为第二 类终端调度的时频资源中如果包含补充同步信号, 会导致第二类终端解码失败。 相应的, 当判断所述终端无法预先获知所述补充同步信号占用的所述第二时频资源时, 还可以为所 述终端调度所述第二时频资源之外的时频资源, 或者, 为所述终端调度包含所述第二时频 资源的时频资源, 并将所述第二时频资源通知给所述终端。
具体的, 可以通过检测终端的版本号判断终端的类型。
通过不为第二类终端调度补充同步信号占用的第二时频资源的方式, 避免第二类终端 解码失败。 或者通过将第二时频资源通知给第二类终端的方式, 使第二类终端能够在接收 数据时将补充同步信号占用的第二时频资源去除, 从而正确接收基站发送的下行数据。
下面将结合具体应用场景, 对本发明实施例提供的信号发送方法进行详细描述。 序列, 但频域 Zadoff-Chu序列使用的补充根索引 u'不同于生成主同步序列所使用的频域 Zadoff-Chu序列的根索引 u, 补充根索引 u'、 根索引 u、 和物理层小区标识组内的物理层 标识 的——对应关系如表 1所示。
表 1
Figure imgf000012_0001
应当指出的是, 表 1中补充根索引 u'的取值只是一种举例而非限定, 具体取值可以根 据生成的补充主同步序列与主同步序列的互相关性确定。 较佳地, 根据确定出的补充根索 引 u'生成的补充主同步序列之间以及与主同步序列之间的互相关性较小。
应当指出的是,使用与现有主同步序列生成公式相同的频域 Zadoff-Chu序列生成补充 主同步序列仅是一种举例, 也可以使用预定义的公式, 以物理层小区标识的物理层小区标 识组内的物理层标识为参数生成所述补充主同步序列。 还可以对主同步序列进行加扰或循 环移位生成补充主同步序列。 下面, 再举例说明使用预定义的公式, 以物理层小区标识的 物理层小区标识组内的物理层标识为参数生成所述补充主同步序列的实现方式。
定义补充主同步序列的长度为 N, (N为大于 62的偶数), 补充主同步序列 0)按如 下公式产生:
^ = 0, 1, ...,— -1
2
du,(n) =
Cw+l)Cw+2)
,N-1
2
其中, 补充主同步序列的补充#>索引 u'与物理层小区标识组内的物理层标识 N —— 对应。
基于两个补充 m序列生成补充辅同步序列时, 所使用的两组关联的补充 m序列的关 联关系 (具体是 m值 m0'和 mi '的关联关系) 不同于生成辅同步序列所使用的两组关联的 m序列的关联关系(具体是 m值 m0和 im的关联关系)。以物理层小区标识组标识 N 0-10 为例, 关联的 m值 mQ和 、关联的补充 m值 mQ'和 ιηΛ和物理层小区标识组标识 N 的 ——对应关系如表 2所示。 表 2
Figure imgf000013_0001
应当指出的是,表 2中两组关联的补充 m值 1¾'和1^ '的取值只是一种举例而非限定, 具体取值本发明不作限定, 只要保证 m0'和 mi '的关联关系与 m0mi不同即可。
应当指出的是,基于两个补充 m序列生成补充辅同步序列仅是一种举例, 也可以预先 定义产生补充辅同步序列的公式, 将物理层小区标识的物理层小区标识组标识作为参数, 使用该公式生成补充辅同步序列。 还可以对辅同步序列进行加扰或循环移位生成补充辅同 步序列。
应当指出的是, 以上仅以生成一个补充主同步序列和一个补充辅同步序列为例进行说 明。还可以按照上述方法,生成多个各不相同的主同步序列和多个各不相同的辅同步序列。
仍以频域 Zadoff-Chu序列生成补充主同步序列为例, 如果需要生成两个主同步序列, 才艮据预先确定的物理层小区标识组内的物理层标识与补充 索引的第一对应关系, 确定物 理层小区标识的物理层小区标识组内的物理层标识对应的频域 Zadoff-Chu序列的第一才艮索 引; 基于所述第一根索引, 使用频域 Zadoff-Chu序列生成第一补充主同步序列; 以及根据 预先确定的物理层小区标识组内的物理层标识与补充 # ^索引的第二对应关系, 确定物理层 小区标识的物理层小区标识组内的物理层标识对应的频域 Zadoff-Chu序列的第二才艮索引; 基于所述第二根索引, 使用频域 Zadoff-Chu序列生成第二补充主同步序列。
使用频域 Zadoff-Chu序列生成第一补充主同步序列和第二补充主同步序列时,生成第 一补充主同步序列时频域 Zadoff-Chu序列使用的补充根索弓 I u'和生成第二补充主同步序列 时频域 Zadoff-Chu序列使用的补充根索引 u"均不同于生成 PSS所使用的频域 Zadoff-Chu 序列的根索引 u, 补充根索引 u' 、 补充根索引 u" 、 根索引 u、 和物理层小区标识组内的 物理层标识 的——对应关系如表 3所示。 表 3
Figure imgf000014_0001
应当指出的是,表 3中补充根索引 u'和补充根索引 u"的取值只是一种举例而非限定, 具体取值可以根据生成的补充主同步序列与主同步序列的互相关性确定。 较佳地, 根据确 定出的补充根索引 u'生成的第一补充主同步序列、根据确定出的补充根索引 u"生成的第二 补充主同步序列以及与主同步序列之间的互相关性较小。
仍以基于两个关联的 m序列生成补充辅同步序列为例, 根据物理层小区标识组标识 Ν^' 与两组关联的补充 m序列的对应关系, 确定物理层小区标识的物理层小区标识组标识 对应的两个 m序列, 基于所述两个 m序列生成第一补充辅同步序列, 所述两个 m序列的 关联关系与生成所述辅同步信号所用到的两个 m序列的关联关系不同; 以及,根据物理层 小区标识组标识 N 与另外两组关联的补充 m序列的对应关系, 确定物理层小区标识的物 理层小区标识组标识对应的另外两个 m序列, 基于所述另外两个 m序列生成第二补充辅 同步序列, 所述另外两个 m序列的关联关系与生成所述辅同步信号所用到的两个 m序列 的关联关系不同,且生成所述第一补充辅同步序列所用的两个 m序列的关联关系与生成所 述第二补充辅同步序列所用的两个 m序列的关联关系不同。
其中, 基于两个 m序列生成第一补充辅同步序列时, 所使用的两组关联的补充 m序 列的 m值 1¾'和1¾ '的关联关系不同于生成辅同步序列所使用的两组关联的 m序列的 m值 m0mi。 基于另外两个 m序列生成第二补充辅同步序列时, 所使用的两组关联的补充 m 序列的 m值 m0"和 im "的关联关系也不同于生成辅同步序列所使用的两组关联的 m序列的 m值 mQ和 rn^ 以物理层小区标识组标识 N 0~10为例, 关联的 m值 mQ和 、 关联的补 充 m值 mo'和 、 关联的补充 m值 mo"和 、 和物理层小区标识组标识 N 的—— 对应关系如表 4所示。 表 4
Figure imgf000015_0001
应当指出的是, 表 4中两组关联的补充 m值 1¾'和 mi '的取值以及另外两组关联的补 充 m值 m。"和 mi "的取值只是一种举例而非限定, 具体取值本发明不作限定, 只要保证 1¾'和1¾ '的关联关系、 1¾"和1^ "的关联关系与 m0和!^的关联关系不同即可。
如上所述, 基站和基于补充同步信号进行小区搜索的终端还预先约定补充同步信号与 第二时频资源的映射关系。
以一个补充同步信号在图 2所示的 FDD系统中的时频资源占用示意图为例。 基站和 基于补充同步信号进行小区搜索的终端约定: 频域上, 在系统带宽的中心 62 个子载波上 承载主同步序列、 辅同步序列、 补充主同步序列和补充辅同步序列; 时域上, 在时隙 0和 时隙 10的最后一个 OFDM符号上承载主同步序列,在时隙 0和时隙 10的倒数第二个 OFDM 符号上承载辅同步序列, 在时隙 0和时隙 10之外的每个时隙的最后一个 OFDM符号上承 载补充主同步序列, 在时隙 0和时隙 10之外的每个时隙的倒数第二个 OFDM符号上承载 补充辅同步序列。 在该实施例中, 将同步信号的发送频率提高了 20倍, 大大增加了终端 正确进行小区搜索的概率,从而可以缩短小区搜索的时间, 降低对终端緩存的要求。但是, 在同步信号发送频率提高 20倍的同时, 系统资源的开销也提高了 20倍。
基站和基于补充同步信号进行小区搜索的终端可以约定, 在每个无线帧上按照图 2所 示的映射关系发送补充同步信号。 为了平衡系统资源开销与终端緩存开销, 基站和基于补 充同步信号进行小区搜索的终端也可以约定: 以大于 1的 m个无线帧为周期, 在其中的 n 个无线帧上按照图 2所示的映射关系发送补充同步信号。
以图 3所示的 TDD系统中的时频资源占用示意图为例。 基站和基于补充同步信号进 行小区搜索的终端约定: 频域上, 在系统带宽的中心 62 个子载波上承载主同步序列、 辅 同步序列、 第一补充主同步序列、 第二补充主同步序列、 第一补充辅同步序列和第二补充 辅同步序列;时域上,在子帧 0和子帧 5上第一个时隙的第 4个 OFDM符号和第 7个 OFDM 符号上承载补充辅同步序列(这两个 OFDM符号既可以承载相同的补充辅同步序列,也可 以承载两个不同的补充辅同步序列,并具体约定每个补充辅同步序列与 OFDM符号的映射 关系), 子帧 0和子帧 5上第一个时隙的第 6个 OFDM符号和第二个时隙的第 6个 OFDM 符号上承载补充主同步序列(这两个 OFDM符号既可以承载相同的补充主同步序列,也可 以承载两个不同的补充主同步序列,并具体约定每个补充主同步序列与 OFDM符号的映射 关系)。
基站和基于补充同步信号进行小区搜索的终端可以约定, 在每个无线帧上按照图 3所 示的映射关系发送补充同步信号。 为了平衡系统资源开销与终端緩存开销, 基站和基于补 充同步信号进行小区搜索的终端也可以约定: 以大于 1的 m个无线帧为周期, 在其中的 n 个无线帧上按照图 3所示的映射关系发送补充同步信号。
图 3所示的 TDD系统中的时频资源占用示意图中, 第二时频资源在两个 5ms半帧的 图样相同。 可选的, 基站还可以与终端约定第二时频资源在两个 5ms半帧的图样不同。
以图 4所示的 TDD系统中的时频资源占用示意图为例。 基站和基于补充同步信号进 行小区搜索的终端约定: 频域上, 在系统带宽的中心 62 个子载波上承载主同步序列、 辅 同步序列、 第一补充主同步序列、 第二补充主同步序列、 第一补充辅同步序列和第二补充 辅同步序列; 时域上, 在子帧 0上第一个时隙的第 4个 OFDM符号和第 7个 OFDM符号 上承载补充辅同步序列, 子帧 0上第一个时隙的第 6个 OFDM符号和第二个时隙的第 6 个 OFDM符号上承载补充主同步序列, 在子帧 5上第一个时隙的第 4个 OFDM符号、 第 7个 OFDM符号和第 2个时隙的第 4个 OFDM符号上承载补充辅同步序列, 在子帧 5上 第一个时隙的第 6个 OFDM符号、第二个时隙的第 3个 OFDM符号和第 6个 OFDM符号 上承载补充主同步序列。承载补充主同步序列的 OFDM符号所承载的补充主同步序列可以 相同, 也可以不同, 具体从其约定。 承载补充辅同步序列的 OFDM符号所承载的补充辅同 步序列可以相同, 也可以不同, 具体从其约定。
基站和基于补充同步信号进行小区搜索的终端可以约定, 在每个无线帧上按照图 4所 示的映射关系发送补充同步信号。 为了平衡系统资源开销与终端緩存开销, 基站和基于补 充同步信号进行小区搜索的终端也可以约定: 以大于 1的 m个无线帧为周期, 在其中的 n 个无线帧上按照图 4所示的映射关系发送补充同步信号。
在上述各实施例中, 补充主同步序列和补充辅同步序列的长度为 62, 在频域上占用系 统带宽的中心 62个子载波。 如果生成的补充主同步序列和补充辅同步序列的长度 N大于 62, 则在频域上占用系统带宽的中心 N个子载波。 另外, 现有的频域资源上, 系统带宽的 每个子载波间隔为 15KHz。 为了增强同步信号及补充同步信号的发射功率, 还可以约定补 充同步信号占用的 OFDM符号对应的频域上的每个子载波的间隔为 L* 15KHz, 其中 L为 大于 1的整数。 或者, L大于 0且小于 1。
本发明实施例还提供一种信号接收处理方法, 其实现方式如图 5所示, 具体包括如下 操作:
步骤 500、 接收承载于预定的第一时频资源的同步信号。
步骤 510、 接收承载于预定的第二时频资源的补充同步信号。
步骤 520、 使用所述同步信号和所述补充同步信号完成与基站的下行同步, 并确定物 理层小区标识, 所述同步信号和所述补充同步信号与同一个物理层小区标识对应。
较佳地, 所述使用所述同步信号和所述补充同步信号完成与基站的下行同步, 并确定 物理层小区标识, 具体包括:
按照预定的补充同步信号与所述第二时频资源的映射关系、 预定的同步信号与所述第 一时频资源的映射关系, 使用所述同步信号和所述补充同步信号完成与基站的下行同步; 按照预定的补充同步信号与物理层小区标识的对应关系, 使用所述补充同步信号确定 所述物理层小区标识, 或者, 按照预定的同步信号与物理层小区标识的对应关系, 使用所 述同步信号确定所述物理层小区标识。
本发明实施例还提供另外一种信号接收处理方法, 其实现方式如图 6所示, 具体包括 如下操作:
步骤 600、 接收承载于预定的第二时频资源的补充同步信号。
步骤 610、 使用所述补充同步信号完成与基站的下行同步, 并确定物理层小区标识。 该方法尤其适用于一个无线帧中承载多个补充同步信号的情况。 由于一个无线帧中承 载多个补充同步信号, 在同样的覆盖性能下, 较之现有技术, 终端通过相关检测完成与基 站的下行同步并确定物理层小区标识所需緩存的数据量更少, 并缩短了小区搜索时间。
较佳地,所述使用所述补充同步信号完成与基站的下行同步,并确定物理层小区标识, 具体包括:
按照预定的补充同步信号与所述第二时频资源的映射关系, 使用所述补充同步信号完 成与基站的下行同步;
按照预定的补充同步信号与物理层小区标识的对应关系, 使用所述补充同步信号确定 所述物理层小区标识。
基于与上述信号发送方法同样的发明构思, 本发明实施例还提供一种基站, 其结构如 图 7所示, 具体实现结构如下: 同步信号发送模块 701 , 用于在预定的第一时频资源上向终端发送同步信号; 补充同步信号发送模块 702, 用于在预定的第二时频资源上向所述终端发送不同于所 述同步信号的补充同步信号, 所述补充同步信号用于终端完成与基站的下行同步并确定物 理层小区标识, 所述同步信号和所述补充同步信号与同一个物理层小区标识对应。
较佳地, 本发明实施例提供的基站还包括:
补充主同步序列生成模块, 用于按照预定的规则生成不同于所述同步信号中的主同步 序列的补充主同步序列, 所述补充主同步序列的长度为 N、 且与物理层小区标识组内的物 理层标识对应;
补充辅同步序列生成模块, 用于按照预定的规则生成不同于所述同步信号中的辅同步 序列的补充辅同步序列, 所述补充辅同步序列的长度为 N、 且与物理层小区标识组标识对 应, N为不小于 62的整数,所述补充同步信号由所述补充主同步序列和所述补充辅同步序 列生成, 所述物理层小区标识组内的物理层标识和所述物理层小区标识组标识用于确定所 述物理层小区标识。
较佳地, 所述补充主同步序列生成模块具体用于:
基于所述物理层小区标识组内的物理层标识, 使用预定义的公式生成至少一个补充主 同步序列; 或者, 使用至少一个加扰序列对所述主同步序列进行加扰, 生成至少一个补充 主同步序列; 或者, 使用至少一个循环移位数对所述主同步序列进行循环移位, 生成至少 一个补充主同步序列。
较佳地, 基于所述物理层小区标识组内的物理层标识, 使用预定义的公式生成至少一 个互不相同的补充主同步序列时, 所述补充主同步序列生成模块具体用于:
根据预先确定的至少一组的物理层小区标识组内的物理层标识与补充根索引的对应 关系, 确定所述物理层小区标识组内的物理层标识对应的频域序列的至少一个补充根索 引; 以所述至少一个补充根索引为参数, 使用基于所述频域序列的公式生成至少一个补充 主同步序列, 所述至少一个补充根索引不同于生成所述主同步序列所使用的根索引。
较佳地, 所述补充辅同步序列生成模块具体用于:
基于所述物理层小区标识组标识, 使用预定义的公式生成至少一个补充辅同步序列; 或者, 对所述辅同步序列进行加扰, 生成至少一个补充辅同步序列; 或者, 对所述辅同步 序列进行循环移位, 生成至少一个补充辅同步序列。
较佳地, 基于所述物理层小区标识组标识, 使用预定义的公式生成至少一个补充辅同 步序列时, 所述补充辅同步序列生成模块具体用于:
根据物理层小区标识组标识与两组关联的补充 m序列的对应关系,确定所述物理层小 区标识组标识对应的至少一对关联的补充 m序列, 以所述至少一对关联的补充 m序列为 参数, 使用预定的循环移位公式生成至少一个补充辅同步序列, 所述至少一对关联的补充 m序列的关联关系不同于生成所述辅同步序列所用到的两个 m序列的关联关系。
较佳地, 所述补充同步信号发送模块 702具体用于:
按照预定的补充同步信号与所述第二时频资源的映射关系,在系统带宽的中心 N个子 载波、所述映射关系指示的 OFDM符号的时频资源上,向所述终端发送所述补充同步信号, 所述映射关系指示的 OFDM符号对应的子载波间隔为 L*15KHz, L为不小于 1的整数, 或者, L大于 0且小于 1。
较佳地, 所述映射关系指示的 OFDM符号没有被物理广播信道、 所述同步信号占用, 且不携带公共参考信号。
较佳地,在时域为所述映射关系指示的 OFDM符号上向所述终端发送所述补充同步信 号时, 所述补充同步信号发送模块 902具体用于:
以 m个无线帧为周期, 在其中预定的 n个无线帧的 OFDM符号上向所述终端发送所 述补充同步信号,每个无线帧中承载补充同步信号的 OFDM符号根据所述补充同步信号与 第二时频资源的映射关系确定, 所述 m和 n为不小于 1的整数。
较佳地, 本发明实施例提供的基站还包括时频资源调度模块, 用于当判断所述终端无 法预先获知所述补充同步信号占用的所述第二时频资源时:
为所述终端调度所述第二时频资源之外的时频资源;
或者,
为所述终端调度包含所述第二时频资源的时频资源, 并将所述第二时频资源通知给所 述终端。
基于与上述信号接收方法同样的发明构思, 本发明实施例还提供一种终端, 其具体实 现结构如下:
第一信号接收模块, 用于接收承载于预定的第一时频资源的同步信号, 并接收承载于 预定的第二时频资源的补充同步信号;
第一小区搜索模块, 用于使用所述同步信号和所述补充同步信号完成与基站的下行同 步, 并确定物理层小区标识, 所述同步信号和所述补充同步信号与同一个物理层小区标识 对应。
较佳地, 所述第一信号接收模块具体用于:
按照预定的补充同步信号与所述第二时频资源的映射关系、 预定的同步信号与所述第 一时频资源的映射关系, 使用所述同步信号和所述补充同步信号完成与基站的下行同步; 按照预定的补充同步信号与物理层小区标识的对应关系, 使用所述补充同步信号确定 所述物理层小区标识, 或者, 按照预定的同步信号与物理层小区标识的对应关系, 使用所 述同步信号确定所述物理层小区标识。
基于与上述信号接收方法同样的发明构思, 本发明实施例还提供另一种终端, 其具体 实现结构如下:
第二信号接收模块, 用于接收承载于预定的第二时频资源的补充同步信号; 第二小区搜索模块, 用于使用所述补充同步信号完成与基站的下行同步, 并确定物理 层小区标识。
较佳地, 所述第二信号接收模块具体用于:
按照预定的补充同步信号与所述第二时频资源的映射关系, 使用所述补充同步信号完 成与基站的下行同步;
按照预定的补充同步信号与物理层小区标识的对应关系, 使用所述补充同步信号确定 所述物理层小区标识。
本发明实施例还提供一种基站, 包括处理器和数据收发接口, 其中:
所述处理器被配置为用于: 在预定的第一时频资源上向终端发送同步信号; 在预定的 第二时频资源上向所述终端发送不同于所述同步信号的补充同步信号, 所述同步信号和所 述补充同步信号与同一个物理层小区标识对应;
所述数据收发接口用于实现与终端的数据通信。
本发明实施例还提供一种终端, 包括处理器和数据收发接口, 其中:
所述处理器被配置为用于: 接收承载于预定的第一时频资源的同步信号, 并接收承载 于预定的第二时频资源的补充同步信号; 使用所述同步信号和所述补充同步信号完成与基 站的下行同步, 并确定物理层小区标识, 所述同步信号和所述补充同步信号与同一个物理 层小区标识对应; 或者,
所述处理器被配置为用于: 接收承载于预定的第二时频资源的补充同步信号; 使用所 述补充同步信号完成与基站的下行同步, 并确定物理层小区标识;
所述数据收发接口用于实现与基站间的数据通信。
基于与上述方法同样的发明构思, 本发明实施例还提供一种通信系统, 其结构如图 8 所示, 具体实现结构如下:
基站 101 , 用于在预定的第一时频资源上向终端发送同步信号, 以及在预定的第二时 频资源上向所述终端发送不同于所述同步信号的补充同步信号, 所述同步信号和所述补充 同步信号与同一个物理层小区标识对应; 终端 102, 用于接收承载于预定的第一时频资源的同步信号, 并接收承载于预定的第 二时频资源的补充同步信号, 使用所述同步信号和所述补充同步信号完成与基站的下行同 步, 并确定物理层小区标识; 或者用于, 接收所述补充同步信号, 使用所述补充同步信号 完成与所述基站的下行同步, 并确定物理层小区标识。
本发明实施例提供的基站及通信系统中, 基站在发送同步信号的基础上, 还发送补充 同步信号, 相当于增加了同步信号的发送频率。 在网络覆盖性能较差的情况下, 增加同步 信号的发送频率能够增大终端对相同数量的信号进行相关检测以完成小区搜索的概率, 不 仅可以缩短终端小区搜索的时间, 同时也减少了终端緩存数据量, 进而降低了对终端緩存 的要求。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种信号发送处理方法, 其特征在于, 包括:
在预定的第一时频资源上向终端发送同步信号;
在预定的第二时频资源上向所述终端发送不同于所述同步信号的补充同步信号, 所述 同步信号和所述补充同步信号与同一个物理层小区标识对应。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述在所述预定的第二时频资源上向 所述终端发送不同于所述同步信号的补充同步信号之前, 该方法还包括:
按照预定的规则生成不同于所述同步信号中的主同步序列的补充主同步序列, 所述补 充主同步序列的长度为 N、 且与物理层小区标识组内的物理层标识对应;
按照预定的规则生成不同于所述同步信号中的辅同步序列的补充辅同步序列, 所述补 充辅同步序列的长度为^^、且与物理层小区标识组标识对应, N为不小于 62的整数, 所述 补充同步信号由所述补充主同步序列和所述补充辅同步序列生成, 所述物理层小区标识组 内的物理层标识和所述物理层小区标识组标识用于确定所述物理层小区标识。
3、 根据权利要求 2 所述的方法, 其特征在于, 所述按照预定的规则生成不同于所述 同步信号中主同步序列的补充主同步序列, 具体包括:
基于所述物理层小区标识组内的物理层标识, 使用预定义的公式生成至少一个补充主 同步序列;
或者,
使用至少一个加扰序列对所述主同步序列进行加扰, 生成至少一个补充主同步序列; 或者,
使用至少一个循环移位数对所述主同步序列进行循环移位, 生成至少一个补充主同步 序列。
4、 根据权利要求 3 所述的方法, 其特征在于, 所述基于所述物理层小区标识组内的 物理层标识, 使用预定义的公式生成至少一个补充主同步序列, 具体包括:
# ^据预先确定的至少一组的物理层小区标识组内的物理层标识与补充 # ^索引的对应 关系, 确定所述物理层小区标识组内的物理层标识对应的至少一个补充 索引;
以所述至少一个补充根索引为参数, 使用基于所述频域序列的公式生成至少一个补充 主同步序列, 所述至少一个补充根索引不同于生成所述主同步序列所使用的根索引。
5、 根据权利要求 2 所述的方法, 其特征在于, 所述按照预定的规则生成不同于所述 同步信号中辅同步序列的补充辅同步序列, 具体包括:
基于所述物理层小区标识组标识, 使用预定义的公式生成至少一个补充辅同步序列; 或者,
使用至少一个加扰序列对所述辅同步序列进行加扰, 生成至少一个补充辅同步序列; 或者,
使用至少一个循环移位数对所述辅同步序列进行循环移位, 生成至少一个补充辅同步 序列。
6、 根据权利要求 5所述的方法, 其特征在于, 所述基于所述物理层小区标识组标识, 使用预定义的公式生成至少一个补充辅同步序列, 具体包括:
根据物理层小区标识组标识与两组关联的补充 m序列的对应关系,确定所述物理层小 区标识组标识对应的至少一对关联的补充 m序列, 以所述至少一对关联的补充 m序列为 参数, 使用预定的循环移位公式生成至少一个补充辅同步序列, 所述至少一对关联的补充 m序列的关联关系, 不同于生成所述辅同步序列所用到的两个 m序列的关联关系。
7、 根据权利要求 2~6任一项所述的方法, 其特征在于, 所述在预定的第二时频资源 上向所述终端发送不同于所述同步信号的补充同步信号, 具体包括:
按照预定的补充同步信号与所述第二时频资源的映射关系,在系统带宽的中心 N个子 载波、所述映射关系指示的正交频分复用 OFDM符号的时频资源上, 向所述终端发送所述 补充同步信号, 所述映射关系指示的 OFDM符号对应的子载波间隔为 L*15KHz, L为不 小于 1的整数, 或者, L大于 0且小于 1。
8、 根据权利要求 7所述的方法, 其特征在于, 所述映射关系指示的 OFDM符号未被 物理广播信道、 所述同步信号占用, 且不携带公共参考信号。
9、 根据权利要求 7所述的方法, 其特征在于, 在所述映射关系指示的 OFDM符号上 向所述终端发送所述补充同步信号, 具体包括:
以 m个无线帧为周期, 在其中预定的 n个无线帧的 OFDM符号上向所述终端发送所 述补充同步信号,每个无线帧中承载补充同步信号的 OFDM符号根据所述补充同步信号与 第二时频资源的映射关系确定, 所述 m和 n为不小于 1的整数。
10、 根据权利要求 1~6任一项所述的方法, 其特征在于, 当判断所述终端无法预先获 知所述补充同步信号占用的所述第二时频资源时, 该方法还包括:
为所述终端调度所述第二时频资源之外的时频资源;
或者,
为所述终端调度包含所述第二时频资源的时频资源, 并将所述第二时频资源通知给所 述终端。
11、 一种信号接收处理方法, 其特征在于, 包括:
接收承载于预定的第一时频资源的同步信号;
接收承载于预定的第二时频资源的补充同步信号; 使用所述同步信号和所述补充同步信号完成与基站的下行同步, 并确定物理层小区标 识, 所述同步信号和所述补充同步信号与同一个物理层小区标识对应;
或者,
接收承载于预定的第二时频资源的补充同步信号;
使用所述补充同步信号完成与基站的下行同步, 并确定物理层小区标识。
12、根据权利要求 11所述的方法, 其特征在于, 所述使用所述同步信号和所述补充同 步信号完成与基站的下行同步, 并确定物理层小区标识, 具体包括:
按照预定的补充同步信号与所述第二时频资源的映射关系、 预定的同步信号与所述第 一时频资源的映射关系, 使用所述同步信号和所述补充同步信号完成与基站的下行同步; 按照预定的补充同步信号与物理层小区标识的对应关系, 使用所述补充同步信号确定 所述物理层小区标识, 或者, 按照预定的同步信号与物理层小区标识的对应关系, 使用所 述同步信号确定所述物理层小区标识;
或者,
所述使用所述补充同步信号完成与基站的下行同步, 并确定物理层小区标识, 具体包 括:
按照预定的补充同步信号与所述第二时频资源的映射关系, 使用所述补充同步信号完 成与基站的下行同步;
按照预定的补充同步信号与物理层小区标识的对应关系, 使用所述补充同步信号确定 所述物理层小区标识。
13、 一种基站, 其特征在于, 包括:
同步信号发送模块, 用于在预定的第一时频资源上向终端发送同步信号;
补充同步信号发送模块, 用于在预定的第二时频资源上向所述终端发送不同于所述同 步信号的补充同步信号, 所述同步信号和所述补充同步信号与同一个物理层小区标识对 应。
14、 根据权利要求 13所述的基站, 其特征在于, 还包括:
补充主同步序列生成模块, 用于按照预定的规则生成不同于所述同步信号中的主同步 序列的补充主同步序列, 所述补充主同步序列的长度为 N、 且与标识对应;
补充辅同步序列生成模块, 用于按照预定的规则生成不同于所述同步信号中的辅同步 序列的补充辅同步序列, 所述补充辅同步序列的长度为 N、 且与物理层小区标识组标识对 应, N为不小于 62的整数,所述补充同步信号由所述补充主同步序列和所述补充辅同步序 列生成, 所述物理层小区标识组内的物理层标识和所述物理层小区标识组标识用于确定所 述物理层小区标识。
15、 根据权利要求 14 所述的基站, 其特征在于, 所述补充主同步序列生成模块具体 用于:
基于所述物理层小区标识组内的物理层标识, 使用预定义的公式生成至少一个补充主 同步序列; 或者, 使用至少一个加扰序列对所述主同步序列进行加扰, 生成至少一个补充 主同步序列; 或者, 使用至少一个循环移位数对所述主同步序列进行循环移位, 生成至少 一个补充主同步序列。
16、 根据权利要求 15 所述的基站, 其特征在于, 基于所述物理层小区标识组内的物 理层标识, 使用预定义的公式生成至少一个补充主同步序列时, 所述补充主同步序列生成 模块具体用于:
根据预先确定的至少一组的物理层小区标识组内的物理层标识与补充根索引的对应 关系, 确定所述物理层小区标识组内的物理层标识对应的至少一个补充#^索引; 以所述至 少一个补充根索引为参数, 使用基于所述频域序列的公式生成至少一个补充主同步序列, 所述至少一个补充根索引不同于生成所述主同步序列所使用的根索引。
17、 根据权利要求 14 所述的基站, 其特征在于, 所述补充辅同步序列生成模块具体 用于:
基于所述物理层小区标识组标识, 使用预定义的公式生成至少一个补充辅同步序列; 或者,使用至少一个加扰序列对所述辅同步序列进行加扰,生成至少一个补充辅同步序列; 或者, 使用至少一个循环移位数对所述辅同步序列进行循环移位, 生成至少一个补充辅同 步序列。
18、 根据权利要求 17 所述的基站, 其特征在于, 基于所述物理层小区标识组标识, 使用预定义的公式生成至少一个补充辅同步序列时, 所述补充辅同步序列生成模块具体用 于:
根据物理层小区标识组标识与两组关联的补充 m序列的对应关系,确定所述物理层小 区标识组标识对应的至少一对关联的补充 m序列, 以所述至少一对关联的补充 m序列为 参数, 使用预定的循环移位公式生成至少一个补充辅同步序列, 所述至少一对关联的补充 m序列的关联关系不同于生成所述辅同步序列所用到的两个 m序列的关联关系。
19、 根据权利要求 14~18任一项所述的基站, 其特征在于, 所述补充同步信号发送模 块具体用于:
按照预定的补充同步信号与所述第二时频资源的映射关系,在系统带宽的中心 N个子 载波、所述映射关系指示的 OFDM符号的时频资源上,向所述终端发送所述补充同步信号, 所述映射关系指示的 OFDM符号对应的子载波间隔为 L* 15KHz, L为不小于 1的整数, 或者, L大于 0且小于 1。
20、 根据权利要求 19所述的基站, 其特征在于, 所述映射关系指示的 OFDM符号未 被物理广播信道、 所述同步信号占用, 且不携带公共参考信号。
21、 根据权利要求 19所述的基站, 其特征在于, 在为所述映射关系指示的 OFDM符 号上向所述终端发送所述补充同步信号时, 所述补充同步信号发送模块具体用于:
以 m个无线帧为周期, 在其中预定的 n个无线帧的 OFDM符号上向所述终端发送所 述补充同步信号,每个无线帧中承载补充同步信号的 OFDM符号根据所述补充同步信号与 第二时频资源的映射关系确定, 所述 m和 n为不小于 1的整数。
22、根据权利要求 13~18任一项所述的基站, 其特征在于,还包括时频资源调度模块, 用于当判断所述终端无法预先获知所述补充同步信号占用的所述第二时频资源时:
为所述终端调度所述第二时频资源之外的时频资源;
或者,
为所述终端调度包含所述第二时频资源的时频资源, 并将所述第二时频资源通知给所 述终端。
23、 一种终端, 其特征在于, 包括:
第一信号接收模块, 用于接收承载于预定的第一时频资源的同步信号, 并接收承载于 预定的第二时频资源的补充同步信号;
第一小区搜索模块, 用于使用所述同步信号和所述补充同步信号完成与基站的下行同 步, 并确定物理层小区标识, 所述同步信号和所述补充同步信号与同一个物理层小区标识 对应;
或者,
第二信号接收模块, 用于接收承载于预定的第二时频资源的补充同步信号; 第二小区搜索模块, 用于使用所述补充同步信号完成与基站的下行同步, 并确定物理 层小区标识。
24、 根据权利要求 23所述的终端, 其特征在于, 所述第一信号接收模块具体用于: 按照预定的补充同步信号与所述第二时频资源的映射关系、 预定的同步信号与所述第 一时频资源的映射关系, 使用所述同步信号和所述补充同步信号完成与基站的下行同步; 按照预定的补充同步信号与物理层小区标识的对应关系, 使用所述补充同步信号确定 所述物理层小区标识, 或者, 按照预定的同步信号与物理层小区标识的对应关系, 使用所 述同步信号确定所述物理层小区标识;
或者,
所述第二信号接收模块具体用于:
按照预定的补充同步信号与所述第二时频资源的映射关系, 使用所述补充同步信号完 成与基站的下行同步;
按照预定的补充同步信号与物理层小区标识的对应关系, 使用所述补充同步信号确定 所述物理层小区标识。
25、 一种通信系统, 其特征在于, 包括:
基站, 用于在预定的第一时频资源上向终端发送同步信号, 以及在预定的第二时频资 源上向所述终端发送不同于所述同步信号的补充同步信号, 所述同步信号和所述补充同步 信号与同一个物理层小区标识对应;
终端, 用于接收承载于预定的第一时频资源的同步信号, 并接收承载于预定的第二时 频资源的补充同步信号, 使用所述同步信号和所述补充同步信号完成与基站的下行同步, 并确定物理层小区标识, 并确定物理层小区标识; 或者用于, 接收所述补充同步信号, 使 用所述补充同步信号完成与所述基站的下行同步。
PCT/CN2013/086325 2012-11-02 2013-10-31 一种信号处理方法、基站、终端、及系统 WO2014067472A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/438,330 US9980239B2 (en) 2012-11-02 2013-10-31 Signal processing method, base station, terminal, and system
EP13851028.4A EP2916601B1 (en) 2012-11-02 2013-10-31 Signal processing method, base station, terminal, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210434756.8 2012-11-02
CN201210434756.8A CN103795668B (zh) 2012-11-02 2012-11-02 一种信号处理方法、基站、终端、及系统

Publications (1)

Publication Number Publication Date
WO2014067472A1 true WO2014067472A1 (zh) 2014-05-08

Family

ID=50626510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086325 WO2014067472A1 (zh) 2012-11-02 2013-10-31 一种信号处理方法、基站、终端、及系统

Country Status (4)

Country Link
US (1) US9980239B2 (zh)
EP (1) EP2916601B1 (zh)
CN (1) CN103795668B (zh)
WO (1) WO2014067472A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734689A (zh) * 2016-08-12 2018-02-23 华为技术有限公司 信号发送装置、信号接收装置及方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49452E1 (en) * 2012-10-24 2023-03-07 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving common channel information in wireless communication system
EP3099123B1 (en) * 2014-01-26 2019-11-13 LG Electronics Inc. Method for transmitting synchronization signal and synchronization channel in wireless communication system supporting device-to-device communication and apparatus for same
CN106256152B (zh) * 2014-05-01 2019-07-02 Lg电子株式会社 在无线通信系统中由终端执行的小区搜索方法及使用该方法的终端
EP3143821B1 (en) 2014-05-16 2020-01-01 Sun Patent Trust D2d communication method and d2d-enabled wireless device
CN108769894B (zh) * 2014-07-25 2019-05-10 华为技术有限公司 一种高频系统下的通信设备及方法
JP6736043B2 (ja) * 2015-01-30 2020-08-05 京セラ株式会社 基地局
WO2016144214A1 (en) * 2015-03-06 2016-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and device for improved cell synchronization
EP3331292B1 (en) * 2015-08-27 2021-12-29 Huawei Technologies Co., Ltd. Method and device for indicating synchronous signal period
CN106856611B (zh) * 2015-12-08 2021-08-10 中兴通讯股份有限公司 波束处理方法、初始波束发现方法及基站和终端
CN114286436B (zh) * 2016-06-23 2023-06-23 中兴通讯股份有限公司 一种同步信号的发送方法、接收方法,通信节点
CN107547463A (zh) * 2016-06-29 2018-01-05 夏普株式会社 同步信令的映射方法、基站和用户设备
CN107592668B (zh) * 2016-07-07 2021-01-12 华为技术有限公司 传输信号的方法和装置
CN107623934B (zh) * 2016-07-15 2020-05-15 电信科学技术研究院 一种接入方法及装置
CN107734633A (zh) * 2016-08-12 2018-02-23 北京信威通信技术股份有限公司 一种传输同步信号的方法及装置
CN107733608B (zh) * 2016-08-12 2020-04-03 华为技术有限公司 一种同步信号发送方法及装置
US10389567B2 (en) 2016-11-03 2019-08-20 Samsung Electronics Co., Ltd. Method and apparatus for synchronization signal design
CN109644520A (zh) * 2016-12-16 2019-04-16 Oppo广东移动通信有限公司 资源映射的方法和通信设备
ES2867873T3 (es) * 2017-03-17 2021-10-21 Guangdong Oppo Mobile Telecommunications Corp Ltd Método para detectar el bloque de señal de sincronización y método, aparato y sistema para transmitir el bloque de señal de sincronización
CN108737049B (zh) * 2017-04-24 2020-11-06 中国移动通信有限公司研究院 辅助参考信号的发送、接收方法、网络侧设备及终端
US11751147B2 (en) 2017-09-08 2023-09-05 Qualcomm Incorporated Techniques and apparatuses for synchronization signal scanning based at least in part on a synchronization raster
CN111769926B (zh) * 2018-03-12 2024-04-16 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110830402B (zh) * 2018-08-09 2022-05-27 大唐移动通信设备有限公司 一种同步广播信息的发送、检测方法及装置
CN110830211A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种同步信号的传输方法和装置
US10834608B1 (en) 2019-07-16 2020-11-10 At&T Intellectual Property I, L.P. Facilitating model-driven automated cell allocation in fifth generation (5G) or other advanced networks
US20210051485A1 (en) * 2019-08-16 2021-02-18 Mediatek Inc. Radio resource management (rrm) procedure in a shared spectrum
US20230164574A1 (en) * 2021-11-22 2023-05-25 At&T Intellectual Property I, L.P. Facilitating assignment of physical cell identifier under technological and operational constraints
US11832294B2 (en) 2021-12-02 2023-11-28 At&T Intellectual Property I, L.P. Facilitating assignment of root sequence indexes while minimizing network changes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465830A (zh) * 2007-12-19 2009-06-24 华为技术有限公司 发送、接收同步信息的方法与系统、装置
CN101621308A (zh) * 2008-07-04 2010-01-06 展讯通信(上海)有限公司 一种提高无线通信系统主频带搜索速度的方法
CN101867981A (zh) * 2009-04-17 2010-10-20 中兴通讯股份有限公司 网络拓扑信息发送及获取方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101012857B1 (ko) * 2006-10-18 2011-02-08 삼성전자주식회사 제1차 동기채널과 제2차 동기채널이 tdm으로 구성된ofdm 셀룰라 시스템에서의 셀 탐색 방법
CN101267226B (zh) * 2007-03-14 2012-06-06 中兴通讯股份有限公司 一种辅助同步信道的信息发送方法和小区搜索方法
CN101527595B (zh) * 2008-03-07 2013-02-27 中兴通讯股份有限公司 一种时分双工系统同步信号的发送方法
EP2394461A4 (en) 2009-02-05 2016-06-08 Apple Inc METHOD AND SYSTEM FOR DETERMINING THE LOCATION OF USER EQUIPMENT IN A WIRELESS TRANSMISSION SYSTEM
US8937937B2 (en) * 2010-06-22 2015-01-20 Telefonaktiebolaget Lm Ericsson (Publ) Synchronization in heterogeneous networks
WO2012044227A1 (en) 2010-10-01 2012-04-05 Telefonaktiebolaget L M Ericsson (Publ) Methods providing aided signal synchronization and related network nodes and devices
CN102223696B (zh) * 2011-06-17 2013-09-25 电子科技大学 一种lte系统中小区搜索方法
US9332516B2 (en) * 2011-08-11 2016-05-03 Blackberry Limited Method and system for signaling in a heterogeneous network
WO2013112032A1 (ko) * 2012-01-29 2013-08-01 엘지전자 주식회사 동기 신호 수신 방법 및 사용자기기와 동기 신호 전송 방법 및 기지국

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465830A (zh) * 2007-12-19 2009-06-24 华为技术有限公司 发送、接收同步信息的方法与系统、装置
CN101621308A (zh) * 2008-07-04 2010-01-06 展讯通信(上海)有限公司 一种提高无线通信系统主频带搜索速度的方法
CN101867981A (zh) * 2009-04-17 2010-10-20 中兴通讯股份有限公司 网络拓扑信息发送及获取方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734689A (zh) * 2016-08-12 2018-02-23 华为技术有限公司 信号发送装置、信号接收装置及方法
CN107734689B (zh) * 2016-08-12 2023-08-25 华为技术有限公司 信号发送装置、信号接收装置及方法

Also Published As

Publication number Publication date
EP2916601B1 (en) 2019-04-03
US9980239B2 (en) 2018-05-22
CN103795668A (zh) 2014-05-14
US20150289216A1 (en) 2015-10-08
EP2916601A1 (en) 2015-09-09
EP2916601A4 (en) 2015-11-04
CN103795668B (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2014067472A1 (zh) 一种信号处理方法、基站、终端、及系统
TWI613898B (zh) 用於混合模式多載波調變之時序控制
CN105684324B (zh) 用于传输同步信号的系统和方法
JP6577577B2 (ja) 非権限周波数帯でのデータ伝送方法、データ受信方法及び装置
US10064188B2 (en) Methods and apparatuses for radio resource management
JP6918950B2 (ja) 伝送方法および伝送装置
CN102474859B (zh) 无线通信系统、基站装置、移动台装置以及随机接入方法
WO2012017841A1 (ja) 基地局装置、移動局装置、移動通信システム、通信方法、制御プログラムおよび集積回路
WO2012083766A1 (zh) 物理下行控制信道发送及检测方法、系统和设备
WO2014048177A1 (zh) 物理随机接入信道的资源确定方法及装置
WO2013139197A1 (zh) 一种增强的下行控制信道的传输方法及装置
WO2016070704A1 (zh) 一种在非授权频段上的数据传输方法及装置
WO2016000258A1 (zh) Lte同步方法和相关设备及系统
KR20100048900A (ko) 단일 주파수 대역만을 사용하는 제1 사용자 기기와 복수의 주파수 대역을 사용하는 제2 사용자 기기를 지원하는 무선 통신 시스템에 있어서, 사용자 기기와 기지국 간의 무선 통신 방법
WO2015168829A1 (zh) 同步信号收发方法、装置及设备
CN103813464A (zh) 基站、终端、搜索空间设定方法、通信方法及集成电路
WO2014110714A1 (zh) 无线通信方法、用户设备和网络侧设备
WO2014107994A1 (zh) 控制信息的发送、控制信息的接收方法和装置
WO2014023252A1 (zh) 信号发送及接收方法、设备及设备发现系统
WO2013166961A1 (zh) 载波类型的识别方法和设备
WO2018028689A1 (zh) 一种系统信息发送方法及装置
JP2019528591A (ja) 無線通信システムにおいて同期信号を送受信する方法及びこのための装置
CN111465022B (zh) 一种信号发送、接收方法及设备
KR102180410B1 (ko) 무선망에서 네트워크 동기를 획득하는 방법
WO2015018358A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14438330

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013851028

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE