WO2013112032A1 - 동기 신호 수신 방법 및 사용자기기와 동기 신호 전송 방법 및 기지국 - Google Patents

동기 신호 수신 방법 및 사용자기기와 동기 신호 전송 방법 및 기지국 Download PDF

Info

Publication number
WO2013112032A1
WO2013112032A1 PCT/KR2013/000713 KR2013000713W WO2013112032A1 WO 2013112032 A1 WO2013112032 A1 WO 2013112032A1 KR 2013000713 W KR2013000713 W KR 2013000713W WO 2013112032 A1 WO2013112032 A1 WO 2013112032A1
Authority
WO
WIPO (PCT)
Prior art keywords
sss
pss
cell
subframe
synchronization signal
Prior art date
Application number
PCT/KR2013/000713
Other languages
English (en)
French (fr)
Inventor
유향선
서동연
이윤정
안준기
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020147021130A priority Critical patent/KR20140126309A/ko
Priority to US14/375,095 priority patent/US9497719B2/en
Publication of WO2013112032A1 publication Critical patent/WO2013112032A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation

Definitions

  • the present invention relates to the synchronization of carriers.
  • the present invention relates to a method and apparatus for transmitting a synchronization signal and a method and apparatus for synchronizing a carrier wave.
  • a user equipment may receive data and / or various control information from a base station (BS) through a downlink (DL) and uplink (uplink, UL). Through the data and / or various information can be transmitted.
  • BS base station
  • DL downlink
  • uplink uplink
  • UL uplink
  • a UE that is powered on again in a power-off state or newly entered a cell, which is a geographic area serviced by the BS, performs an initial cell search involving operations such as synchronizing with the BS. Perform.
  • the UE may receive data and / or control information through a physical downlink channel and may transmit data and / or control information through a physical uplink channel. .
  • in the user equipment receives a synchronization signal, a cell for carrying the PSS and SSS using a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ( Hereafter, obtaining synchronization with the first cell); And detecting another SSS at a frequency different from that of the first cell, and using the other SSS to obtain synchronization with another cell carrying the other SSS (hereinafter, a second cell).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • a user equipment configured with carrier aggregation receives a synchronization signal, comprising: a radio frequency unit; And a processor configured to control the radio frequency unit, wherein the processor is configured to carry the PSS and the SSS using a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • a primary cell (PCell) configured to obtain synchronization with the PCell, and detect another SSS at a frequency different from the frequency of the PCell and use another SSS to carry the second SSS (secondary cell)
  • a user device is provided, configured to acquire synchronization with a cell, SCell).
  • the base station in transmitting a synchronization signal, transmits a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) through a cell (hereinafter, referred to as a first cell). send; And transmitting another SSS through a cell having a frequency different from that of the first cell (hereinafter, referred to as a second cell).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • a base station transmits a synchronization signal, comprising: a radio frequency unit; And a processor configured to control the radio frequency unit, wherein the process transmits a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) through a cell (hereinafter referred to as a first cell).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • a base station is provided which controls the radio frequency unit to transmit and controls the radio frequency unit to transmit another SSS through a cell having a frequency different from that of the first cell (hereinafter, a second cell).
  • in the user equipment receives the synchronization signal, a cell carrying the PSS and SSS using a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) Gaining motivation with; And determining whether a duplex mode of the cell is a time division duplex (TDD) or a frequency division duplex (FDD) based on a time distance between the PSS and the SSS.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • TDD time division duplex
  • FDD frequency division duplex
  • a user equipment receives a synchronization signal, comprising: a radio frequency unit; And a processor configured to control the radio frequency unit, the processor including a cell carrying the PSS and the SSS using a primary synchronization signal (PSS) and a secondary synchronization signal (SSS); Configured to obtain a synchronization of the cell, and whether the duplex mode of the cell is a time division duplex (TDD) or a frequency division duplex (FDD) based on the time distance between the PSS and the SSS.
  • a user device is provided, configured to determine.
  • a base station transmits a synchronization signal, wherein a duplex mode of a cell is configured of a time division duplex (TDD) or a frequency division duplex (FDD); And transmitting the PSS and the SSS through the cell such that a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) have different time distances according to the duplex mode of the cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • a base station transmits a synchronization signal, comprising: a radio frequency unit; And a processor configured to control the radio frequency unit, wherein the processor configures a duplex mode of a cell in time division duplex (TDD) or frequency division duplex (FDD), and
  • the radio frequency unit is configured to transmit the PSS and the SSS through the cell such that a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) have different time distances according to a duplex mode.
  • TDD time division duplex
  • FDD frequency division duplex
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • detecting a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) in a subframe detecting a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) in a subframe; And obtaining synchronization with a cell carrying the PSS and the SSS, wherein the SSS is located in a second OFDM symbol of OFDM symbols of a first slot of the subframe and the SSS is the first of the subframe.
  • a synchronization signal reception method is provided, which is located in a third OFDM symbol of the OFDM symbols of a slot.
  • a user equipment receives a synchronization signal, the radio frequency unit; And a processor configured to control the radio frequency unit, wherein the processor detects a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) in a subframe, and the PSS and SSS.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the SSS is located in a second OFDM symbol of the OFDM symbols of the first slot of the subframe
  • the SSS is of the OFDM symbols of the first slot of the subframe.
  • a user equipment is provided, located in the third OFDM symbol.
  • a base station in transmitting a synchronization signal, transmits a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) through a cell in a subframe; Wherein the SSS is located in a second OFDM symbol of OFDM symbols of the first slot of the subframe and the SSS is located in a third OFDM symbol of the OFDM symbols of the first slot of the subframe.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • a base station transmits a synchronization signal, comprising: a radio frequency unit; And a processor configured to control the radio frequency unit, wherein the processor transmits a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) through a cell in a subframe.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • Control a frequency unit, wherein the SSS is located in the second OFDM symbol of the OFDM symbols of the first slot of the subframe and the SSS is located in the third OFDM symbol of the OFDM symbols of the first slot of the subframe
  • the other SSS can be detected using the PSS of the first cell.
  • the detection interval of the other SSS in the second cell may be different from the detection interval of the SSS in the first cell.
  • the second cell may carry no PSS.
  • the first cell may be a primary cell (PCell) and the second cell may be a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • the PSS and SSS may be detected at an unequal interval in the second cell.
  • the PSS and the SSS may be detected on frequency resources deviated by a predetermined magnitude from the center frequency of the second cell.
  • the PSS and SSS may be detected in a different order according to the duplex mode of the second cell.
  • the PSS and the SSS may be detected in different orders according to the type of the cyclic prefix of the second cell.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 2 shows an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG 3 illustrates a radio frame structure for transmission of a synchronization signal (SS).
  • SS synchronization signal
  • FIG. 4 is a diagram illustrating a method of generating a secondary synchronization signal (SSS).
  • SSS secondary synchronization signal
  • FIG. 5 illustrates a downlink (DL) subframe structure used in a wireless communication system.
  • CRS cell specific reference signal
  • FIG. 7 shows an example of an uplink (UL) subframe structure used in a wireless communication system.
  • 8 is a diagram for describing single carrier communication and multicarrier communication.
  • FIG. 9 illustrates an embodiment of the present invention for performing synchronization in a new carrier type (NCT) component carrier (CC).
  • NCT new carrier type
  • CC component carrier
  • FIGS. 10 and 11 are diagrams for explaining another embodiment of the present invention for performing synchronization in an NCT CC.
  • FIG. 12 illustrates an example of positions of a primary synchronization signal (PSS) and an SSS in a subframe on an NCT CC according to an embodiment of the present invention.
  • PSS primary synchronization signal
  • FIG. 13 shows another example of positions of PSSs and SSSs in a subframe on an NCT CC according to an embodiment of the present invention.
  • FIG. 14 shows another example of positions of PSSs and SSSs in a subframe on an NCT CC according to an embodiment of the present invention.
  • FIG. 15 shows another example of positions of PSSs and SSSs in a subframe on an NCT CC according to an embodiment of the present invention.
  • FIG. 16 illustrates channel state information reference signal (CSI-RS) configurations.
  • CSI-RS channel state information reference signal
  • FIG 17 shows an example of a position of a synchronization signal (SS) in a subframe on an NCT CC according to an embodiment of the present invention.
  • SS synchronization signal
  • FIG. 18 shows another example of a position of an SS in a subframe on an NCT CC according to an embodiment of the present invention.
  • FIG. 19 shows another example of a position of an SS in a subframe on an NCT CC according to an embodiment of the present invention.
  • FIG. 20 shows another example of a position of an SS in a subframe on an NCT CC according to an embodiment of the present invention.
  • FIG. 21 shows another example of a position of an SS in a subframe on an NCT CC according to an embodiment of the present invention.
  • FIG. 22 shows an example of a center frequency of an NCT CC according to an embodiment of the present invention.
  • 23 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
  • LTE Long Term Evolution
  • LTE-Avanced 3rd Generation Partnership Project LTE
  • LTE-Avanced 3rd Generation Partnership Project LTE
  • LTE-Avanced 3rd Generation Partnership Project LTE
  • LTE-Avanced 3rd Generation Partnership Project LTE-A
  • a carrier configured according to an existing wireless communication standard is referred to as a legacy carrier type (LCT) carrier, an LCT component carrier (CC) or a normal carrier, and is relatively relative to the constraints of an LCT carrier.
  • LCT legacy carrier type
  • CC LCT component carrier
  • Specific embodiments of the present invention will be described by referring to a carrier configured according to fewer constraints as a new carrier type (NCT) carrier, an NCT CC, or an extended carrier.
  • NCT new carrier type
  • a user equipment may be fixed or mobile, and various devices which communicate with a base station (BS) to transmit and receive user data and / or various control information belong to the same.
  • the UE may be a terminal equipment (MS), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), or a wireless modem. It may be called a modem, a handheld device, or the like.
  • a BS generally refers to a fixed station communicating with the UE and / or another BS, and communicates with the UE and another BS to exchange various data and control information.
  • the BS may be referred to in other terms such as ABS (Advanced Base Station), NB (Node-B), eNB (evolved-NodeB), BTS (Base Transceiver System), Access Point (Access Point), and Processing Server (PS).
  • ABS Advanced Base Station
  • NB Node-B
  • eNB evolved-NodeB
  • BTS Base Transceiver System
  • Access Point Access Point
  • PS Processing Server
  • BS is collectively referred to as eNB.
  • a node refers to a fixed point capable of transmitting / receiving a radio signal by communicating with a UE.
  • Various forms of eNBs may be used as nodes regardless of their name.
  • the node may be a BS, an NB, an eNB, a pico-cell eNB (PeNB), a home eNB (HeNB), a relay, a repeater, and the like.
  • the node may not be an eNB.
  • it may be a radio remote head (RRH), a radio remote unit (RRU).
  • RRHs, RRUs, etc. generally have a power level lower than the power level of the eNB.
  • RRH or RRU, RRH / RRU is generally connected to an eNB by a dedicated line such as an optical cable
  • RRH / RRU and eNB are generally compared to cooperative communication by eNBs connected by a wireless line.
  • cooperative communication can be performed smoothly.
  • At least one antenna is installed at one node.
  • the antenna may mean a physical antenna or may mean an antenna port, a virtual antenna, or an antenna group. Nodes are also called points.
  • a cell refers to a certain geographic area in which one or more nodes provide communication services. Therefore, in the present invention, communication with a specific cell may mean communication with an eNB or a node that provides a communication service to the specific cell.
  • the downlink / uplink signal of a specific cell means a downlink / uplink signal from / to an eNB or a node that provides a communication service to the specific cell.
  • the cell providing uplink / downlink communication service to the UE is particularly called a serving cell.
  • the channel state / quality of a specific cell means a channel state / quality of a channel or communication link formed between an eNB or a node providing a communication service to the specific cell and a UE.
  • the UE transmits a downlink channel state from a specific node to a CRS in which antenna port (s) of the specific node are transmitted on a Cell-specific Reference Signal (CRS) resource allocated to the specific node. It may be measured using the CSI-RS (s) transmitted on the (s) and / or Channel State Information Reference Signal (CSI-RS) resources.
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • the 3GPP LTE / LTE-A system uses the concept of a cell to manage radio resources. Cells associated with radio resources are distinguished from cells in a geographical area. A cell associated with a radio resource is described in detail later with reference to FIG. 8.
  • the 3GPP LTE / LTE-A standard corresponds to downlink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Downlink physical signals are defined.
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels
  • reference signal and synchronization signal Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predetermined special waveform that the BS and the UE know each other.
  • a cell specific RS CRS
  • UE-specific RS CRS
  • PRS positioning RS
  • CSI-RS channel state information RS
  • the 3GPP LTE / LTE-A standard includes uplink physical channels corresponding to resource elements carrying information originating from an upper layer, and resource elements used by the physical layer but not carrying information originating from an upper layer. Uplink physical signals corresponding to are defined.
  • a physical uplink shared channel PUSCH
  • a physical uplink control channel PUCCH
  • a physical random access channel PRACH
  • DM RS demodulation reference signal
  • SRS sounding reference signal
  • RSs may be classified into a common RS and a dedicated RS according to whether they are dedicated to a specific UE or UE group. Since CRS, CSI-RS, etc. are shared by all UEs in a cell, they may be classified as a common RS, and DMRS, UE-specific RS, SRS, etc. may be classified as DRS since they are dedicated by a specific UE or UE group. .
  • Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a physical uplink control channel (PUCCH) / physical (PUSCH).
  • DCI Downlink Control Information
  • CFI Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a physical uplink control channel (PUCCH) / physical (PUSCH).
  • Uplink Shared CHannel / PACH Physical Random Access CHannel refers to a set of time-frequency resources or a set of resource elements that carry uplink control information (UCI) / uplink data / random access signals, respectively.
  • Resource elements (REs) are referred to as PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE or PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resources, respectively.
  • the expression that the user equipment transmits PUCCH / PUSCH / PRACH is used as the same meaning as transmitting uplink control information / uplink data / random access signal on or through the PUSCH / PUCCH / PRACH, respectively.
  • the expression that the eNB transmits PDCCH / PCFICH / PHICH / PDSCH is used in the same sense as transmitting downlink data / control information on or through the PDCCH / PCFICH / PHICH / PDSCH, respectively.
  • CRS / DMRS / CSI-RS / SRS / UE-specific RS is assigned or configured OFDM symbol / subcarrier / RE to CRS / DMRS / CSI-RS / SRS / UE-specific RS symbol / carrier It is called / subcarrier / RE.
  • a symbol to which a CSI-RS is assigned is called a CSI-RS symbol
  • a subcarrier to which a CSI-RS is assigned is referred to as a CSI-RS subcarrier
  • an RE to which a CSI-RS is assigned is referred to as a CSI-RS RE.
  • CRS-RS subframe configured for CSI-RS transmission.
  • a subframe in which the broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called a frame.
  • OFDM symbols / subcarriers / RE to which PSS / SSS is allocated or configured are referred to as PSS / SSS symbols / subcarriers / RE, respectively.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • Figure 1 (a) shows a frame structure for frequency division duplex (FDD) used in the 3GPP LTE / LTE-A system
  • Figure 1 (b) is used in the 3GPP LTE / LTE-A system
  • the frame structure for time division duplex (TDD) is shown.
  • a radio frame used in a 3GPP LTE / LTE-A system has a length of 10 ms (307200 T s ) and consists of 10 equally sized subframes (subframes). Numbers may be assigned to 10 subframes in one radio frame.
  • Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
  • the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink transmission and uplink transmission are divided by frequency, a radio frame includes only one of a downlink subframe or an uplink subframe for a specific frequency band. In the TDD mode, since downlink transmission and uplink transmission are separated by time, a radio frame includes both a downlink subframe and an uplink subframe for a specific frequency band.
  • Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the singular subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
  • DwPTS is a time interval reserved for downlink transmission
  • UpPTS is a time interval reserved for uplink transmission.
  • Table 2 illustrates the configuration of a singular frame.
  • FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG. 2 shows a structure of a resource grid of a 3GPP LTE / LTE-A system. There is one resource grid per antenna port.
  • a slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in a time domain and a plurality of resource blocks (RBs) in a frequency domain.
  • An OFDM symbol may mean a symbol period.
  • a signal transmitted in each slot may be represented by a resource grid including N DL / UL RB * N RB sc subcarriers and N DL / UL symb OFDM symbols.
  • N DL RB represents the number of resource blocks (RBs) in the downlink slot
  • N UL RB represents the number of RBs in the UL slot.
  • N DL RB and N UL RB depend on DL transmission bandwidth and UL transmission bandwidth, respectively.
  • N DL symb represents the number of OFDM symbols in the downlink slot
  • N UL symb represents the number of OFDM symbols in the UL slot.
  • N RB sc represents the number of subcarriers constituting one RB.
  • the OFDM symbol may be called an OFDM symbol, a Single Carrier Frequency Division Multiplexing (SC-FDM) symbol, or the like according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the cyclic prefix (CP). For example, in case of a normal CP, one slot includes 7 OFDM symbols, whereas in case of an extended CP, one slot includes 6 OFDM symbols.
  • FIG. 2 illustrates a subframe in which one slot includes 7 OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having other numbers of OFDM symbols in the same manner. Referring to FIG.
  • each OFDM symbol includes N DL / UL RB * N RB sc subcarriers in the frequency domain.
  • the type of subcarrier may be divided into a data subcarrier for data transmission, a reference signal subcarrier for transmission of a reference signal, a guard band, or a null subcarrier for a direct current (DC) component.
  • the DC component is mapped to a carrier frequency f 0 during an OFDM signal generation process or a frequency upconversion process.
  • the carrier frequency is also called a center frequency (f c ).
  • One RB is defined as N DL / UL symb (e.g., seven) consecutive OFDM symbols in the time domain and is defined by N RB sc (e.g., twelve) consecutive subcarriers in the frequency domain. Is defined.
  • N DL / UL symb e.g., seven
  • N RB sc e.g., twelve
  • a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is composed of N DL / UL symb * N RB sc resource elements.
  • Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot.
  • k is an index given from 0 to N DL / UL RB * N RB sc ⁇ 1 in the frequency domain
  • l is an index given from 0 to N DL / UL symb ⁇ 1 in the time domain.
  • one RB is mapped to one physical resource block (PRB) and one virtual resource block (VRB), respectively.
  • the PRB is defined as N DL / UL symb contiguous OFDM symbols (e.g. 7) or SC-FDM symbols in the time domain and N RB sc contiguous (e.g. 12) in the frequency domain Is defined by subcarriers. Therefore, one PRB is composed of N DL / UL symb x N RB sc resource elements.
  • Two RBs each occupied by N RB sc consecutive subcarriers in one subframe and one in each of two slots of the subframe, are referred to as a PRB pair.
  • Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
  • a time / frequency synchronization of the UE In order for a UE to receive a signal from an eNB or transmit a signal to the eNB, a time / frequency synchronization of the UE must be matched with a time / frequency synchronization of the eNB. This is because it must be synchronized with the eNB to determine the time and frequency parameters required for the UE to perform demodulation of the DL signal and transmission of the UL signal at the correct time.
  • FIG. 3 illustrates a radio frame structure for transmission of a synchronization signal (SS).
  • SS synchronization signal
  • FIG. 3 illustrates a radio frame structure for transmission of a synchronization signal and a PBCH in a frequency division duplex (FDD)
  • FIG. 3 (a) illustrates a radio frame configured with a normal cyclic prefix (CP).
  • CP normal cyclic prefix
  • 3 illustrates a transmission position of the SS and PBCH
  • FIG. 3B illustrates a transmission position of the SS and PBCH in a radio frame configured as an extended CP.
  • a cell search process such as obtaining time and frequency synchronization with the cell and detecting a physical cell identity of the cell (procedure)
  • the UE receives a synchronization signal from the eNB, for example, a primary synchronization signal (PSS) and a secondary synchronization signal (SSS), synchronizes with the eNB, and synchronizes with the eNB.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PSS is used to obtain time domain synchronization and / or frequency domain synchronization such as OFDM symbol synchronization, slot synchronization, etc.
  • SSS is used for frame synchronization, cell group ID and / or CP configuration of a cell (i.e., using a general CP or an extended CP). Information).
  • PSS and SSS are transmitted in two OFDM symbols of every radio frame, respectively.
  • the SS may be configured in the first slot of subframe 0 and the first slot of subframe 5 in consideration of 4.6 ms, which is a Global System for Mobile Communication (GSM) frame length.
  • GSM Global System for Mobile Communication
  • the PSS is transmitted in the last OFDM symbol of the first slot of subframe 0 and the last OFDM symbol of the first slot of subframe 5, respectively
  • the SSS is the second to second OFDM symbols and subframe of the first slot of subframe 0, respectively.
  • the boundary of the radio frame can be detected through the SSS.
  • the PSS is transmitted in the last OFDM symbol of the slot and the SSS is transmitted in the OFDM symbol immediately before the PSS.
  • the transmission diversity scheme of the SS uses only a single antenna port and is not defined in the standard. That is, a single antenna port transmission or a transparent transmission scheme (eg, Precoding Vector Switching (PVS), Time Switched Diversity (TSTD), and cyclic delay diversity (CDD)) may be used for transmission diversity of the SS. .
  • PVS Precoding Vector Switching
  • TSTD Time Switched Diversity
  • CDD cyclic delay diversity
  • the SS may represent a total of 504 unique physical layer cell IDs through a combination of three PSSs and 168 SSs.
  • the physical layer cell IDs are 168 physical-layer cell-identifier groups, each group including three unique identifiers such that each physical layer cell ID is part of only one physical-layer cell-identifier group. Are grouped together.
  • the physical layer cell identifier N cell ID 3N (1) ID + N (2) ID is a number N (1) ID in the range of 0 to 167 representing a physical-layer cell-identifier group and the physical-layer cell Uniquely defined by a number N (2) ID from 0 to 2 representing the physical-layer identifier in the identifier group.
  • the UE may detect the PSS to know one of three unique physical-layer identifiers, and may detect the SSS to identify one of the 168 physical layer cell IDs associated with the physical-layer identifier.
  • a Zadoff-Chu (ZC) sequence of length 63 is defined in the frequency domain and used as the PSS.
  • the ZC sequence may be defined by the following equation.
  • Nine remaining subcarriers of the 72 subcarriers always carry a value of 0, which serves as an element for facilitating filter design for synchronization.
  • the conjugate symmetry means the relationship of the following equation.
  • sequence d (n) used for PSS is generated from the frequency domain ZC sequence according to the following equation.
  • ZC root sequence index u is given by the following table.
  • the UE since the PSS is transmitted every 5 ms, the UE detects the PSS to know that the corresponding subframe is one of the subframe 0 and the subframe 5, but the subframe is specifically the subframe 0 and the subframe 5 I don't know what it is. Therefore, the UE does not recognize the boundary of the radio frame only by the PSS. That is, frame synchronization cannot be obtained only by PSS.
  • the UE detects the boundary of the radio frame by detecting the SSS transmitted twice in one radio frame but transmitted as different sequences.
  • FIG. 4 is a diagram illustrating a method of generating a secondary synchronization signal (SSS). Specifically, FIG. 4 illustrates a relationship in which two sequences in a logical domain are mapped to a physical domain.
  • SSS secondary synchronization signal
  • the sequence used for the SSS is an interleaved concatenation of two 31 length m-sequences, the concatenated sequence being scrambled by the scrambling sequence given by the PSS.
  • the m-sequence is a kind of pseudo noise (PN) sequence.
  • S1 and S2 are scrambled by different sequences.
  • the PSS based scrambling code can be obtained by cyclic shifting the m-sequence generated from the polynomial of x 5 + x 3 + 1, where six sequences are generated by the cyclic shift of the m-sequence according to the PSS index. S2 is then scrambled by the S1 based scrambling code.
  • the S1-based scrambling code can be obtained by cyclically shifting the m-sequence generated from a polynomial of x 5 + x 4 + x 2 + x 1 + 1, with eight sequences according to the index of S1 of the m-sequence. Generated by a cyclical transition.
  • the sign of the SSS is swapped every 5 ms but the PSS-based scrambling code is not swapped. For example, assuming that the SSS of subframe 0 carries a cell group identifier in a combination of (S1, S2), the SSS of subframe 5 carries a swapped sequence to (S2, S1). Through this, a radio frame boundary of 10 ms can be distinguished.
  • the SSS code used at this time is generated from a polynomial of x 5 + x 2 + 1, and a total of 31 codes can be generated through different cyclic shifts of an m-sequence of length 31.
  • the combination of the two length 31 m-sequences defining the SSS differs in subframe 0 and subframe 5, and total 168 cell group IDs according to the combination of the two length 31 m-sequences. ) Is expressed.
  • the m-sequence used as the sequence of SSS is characterized by robustness in the frequency selective environment.
  • the m-sequence is utilized as the SSS because it can be transformed by a fast m-sequence transformation using a fast Hadarmard transform, the amount of computation required for the UE to interpret the SSS can be reduced.
  • the SSS is configured as two short codes, the amount of computation of the UE can be reduced.
  • the generation of SSS the sequence d (0), ..., d (61) used for SSS is an interleaved concatenation of two length-31 binary sequences.
  • the concatenated sequence is scrambled with the scrambling sequence given by the PSS.
  • Indexes m 0 and m 1 are derived from the physical-layer cell-identifier group N (1) ID according to the following.
  • Two sequences S (m0) 0 (n) and S (m1) 1 (n) are defined as two different cyclic shifts of the m-sequence s (n) according to the following.
  • the two scrambling sequences c0 (n) and c1 (n) depend on the PSS and are defined according to the following equation by two different cyclic shifts of the m-sequence c (n).
  • the scrambling sequences Z (m0) 1 (n) and Z (m1) 1 (n) are defined by the cyclic shift of the m-sequence z (n) according to the following equation.
  • the UE which has performed the cell discovery process using the SSS to determine the time and frequency parameters required to perform demodulation of the DL signal and transmission of the UL signal at an accurate time point, is also determined by the eNB from the system configuration of the UE. The necessary system information must be obtained to communicate with the eNB.
  • System information is composed of a Master Information Block (MIB) and System Information Blocks (SIBs).
  • Each system information block includes a collection of functionally related parameters, and includes a master information block (MIB), a system information block type 1 (SIB1), and a system information block type according to the included parameters. It is divided into 2 (System Information Block Type 2, SIB2) and SIB3 ⁇ SIB8.
  • the MIB contains the most frequently transmitted parameters that are necessary for the UE to have initial access to the eNB's network.
  • SIB1 includes not only information on time domain scheduling of other SIBs, but also parameters necessary for determining whether a specific cell is a cell suitable for cell selection.
  • the UE may receive the MIB via a broadcast channel (eg, PBCH).
  • PBCH broadcast channel
  • the MIB includes a downlink system bandwidth (dl-Bandwidth, DL BW), a PHICH configuration, and a system frame number (SFN). Therefore, the UE can know the information on the DL BW, SFN, PHICH configuration explicitly by receiving the PBCH.
  • the information that the UE implicitly (implicit) through the reception of the PBCH includes the number of transmit antenna ports of the eNB.
  • Information about the number of transmit antennas of the eNB is implicitly signaled by masking (eg, XOR operation) a sequence corresponding to the number of transmit antennas to a 16-bit cyclic redundancy check (CRC) used for error detection of the PBCH.
  • masking eg, XOR operation
  • CRC cyclic redundancy check
  • the PBCH is mapped to four subframes in 40 ms.
  • the 40 ms time is blind detected and there is no explicit signaling for the 40 ms time.
  • the PBCH is transmitted in OFDM symbols 0 to 3 of slot 1 (second slot of subframe 0) in subframe 0 in a radio frame.
  • PSS / SSS and PBCH are transmitted only within a total of six RBs, that is, a total of 72 subcarriers, three on the left and right around a DC subcarrier within a corresponding OFDM symbol, regardless of the actual system bandwidth. Accordingly, the UE is configured to detect or decode the SS and the PBCH regardless of the downlink transmission bandwidth configured for the UE.
  • the UE accessing the eNB's network may acquire more specific system information by receiving the PDSCH according to the PDCCH and the information on the PDCCH. After performing the above-described procedure, the UE may perform PDCCH / PDSCH reception and PUSCH / PUCCH transmission as a general uplink / downlink signal transmission procedure.
  • FIG. 5 illustrates a downlink (DL) subframe structure used in a wireless communication system.
  • a DL subframe is divided into a control region and a data region in the time domain.
  • up to three (or four) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region.
  • the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHannel (PDSCH) is allocated.
  • PDSCH region a resource region available for PDSCH transmission in a DL subframe.
  • Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a Hybrid Automatic Repeat Request (HARQ) ACK / NACK (acknowledgment / negative-acknowledgment) signal as a response to the UL transmission.
  • HARQ Hybrid Automatic Repeat Request
  • DCI downlink control information
  • DCI includes resource allocation information and other control information for the UE or UE group.
  • the transmission format and resource allocation information of a downlink shared channel (DL-SCH) may also be called DL scheduling information or a DL grant, and may be referred to as an uplink shared channel (UL-SCH).
  • the transmission format and resource allocation information is also called UL scheduling information or UL grant.
  • the DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the UE may monitor the plurality of PDCCHs.
  • the BS determines the DCI format according to the DCI to be transmitted to the UE, and adds a cyclic redundancy check (CRC) to the DCI.
  • CRC cyclic redundancy check
  • the CRC is masked (or scrambled) with an identifier (eg, a radio network temporary identifier (RNTI)) depending on the owner or purpose of use of the PDCCH.
  • an identifier eg, cell-RNTI (C-RNTI) of the UE may be masked to the CRC.
  • a paging identifier eg, paging-RNTI (P-RNTI)
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs.
  • Four QPSK symbols are mapped to each REG.
  • the resource element RE occupied by the reference signal RS is not included in the REG. Thus, the number of REGs within a given OFDM symbol depends on the presence of RS.
  • the REG concept is also used for other downlink control channels (ie, PCFICH and PHICH).
  • the DCI format and the number of DCI bits are determined according to the number of CCEs.
  • CCEs are numbered consecutively, and to simplify the decoding process, a PDCCH having a format consisting of n CCEs can only be started in a CCE having a number corresponding to a multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the base station according to the channel state. For example, in case of PDCCH for a UE having a good downlink channel (eg, adjacent to an eNB), one CCE may be sufficient. However, in case of PDCCH for a UE having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness.
  • the power level of the PDCCH may be adjusted according to the channel state.
  • a CCE set in which a PDCCH can be located is defined for each UE.
  • the set of CCEs in which a UE can discover its PDCCH is referred to as a PDCCH search space, simply a search space (SS).
  • An individual resource to which a PDCCH can be transmitted in a search space is called a PDCCH candidate.
  • the collection of PDCCH candidates that the UE will monitor is defined as a search space.
  • the search space may have a different size, and a dedicated search space and a common search space are defined.
  • the dedicated search space is a UE specific search space and is configured for each individual UE.
  • the common search space is configured for a plurality of UEs.
  • All UEs are provided with information about a common search space.
  • the eNB sends the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the UE monitors the search space to find the PDCCH (DCI).
  • monitoring means attempting decoding of each PDCCH in a corresponding search space according to all monitored DCI formats.
  • the UE may detect its own PDCCH by monitoring the plurality of PDCCHs. Basically, since the UE does not know where its PDCCH is transmitted, every Pframe attempts to decode the PDCCH until every PDCCH of the corresponding DCI format has detected a PDCCH having its own identifier. It is called blind detection (blind decoding).
  • a specific PDCCH is masked with a cyclic redundancy check (CRC) with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, a frequency location) of "B” and a transmission of "C".
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identity
  • format information eg, transport block size, modulation scheme, coding information, etc.
  • CRS cell specific reference signal
  • CRSs are transmitted in the entire downlink band of a carrier in every DL subframe on one or a plurality of antenna ports according to the number of antenna ports.
  • the CRS is not only a measurement RS that can be used for downlink channel state measurement but also a demodulation RS that can be used for data demodulation.
  • the CRS is used for tracking such as maintaining time synchronization and correcting frequency offset after the UE acquires time synchronization and frequency synchronization of a carrier that the eNB uses for communication with the UE. Used.
  • FIG. 7 shows an example of an uplink (UL) subframe structure used in a wireless communication system.
  • a UL subframe may be divided into a control region and a data region in the frequency domain.
  • One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
  • One or several physical uplink shared channels may be allocated to a data region of a UL subframe to carry user data.
  • subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
  • subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information.
  • the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during frequency upconversion.
  • the PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
  • the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ-ACK A response to a PDCCH and / or a response to a downlink data packet (eg, codeword) on a PDSCH. This indicates whether the PDCCH or PDSCH is successfully received.
  • One bit of HARQ-ACK is transmitted in response to a single downlink codeword, and two bits of HARQ-ACK are transmitted in response to two downlink codewords.
  • HARQ-ACK response includes a positive ACK (simple, ACK), negative ACK (hereinafter, NACK), DTX (Discontinuous Transmission) or NACK / DTX.
  • the term HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
  • CSI Channel State Information
  • MIMO Multiple Input Multiple Output
  • RI rank indicator
  • PMI precoding matrix indicator
  • FIG. 8 is a diagram for describing single carrier communication and multicarrier communication.
  • FIG. 8 (a) shows a subframe structure of a single carrier
  • FIG. 8 (b) shows a subframe structure of a multicarrier.
  • a typical wireless communication system performs data transmission or reception through one DL band and one UL band corresponding thereto (in case of a frequency division duplex (FDD) mode).
  • FDD frequency division duplex
  • a predetermined radio frame is divided into an uplink time unit and a downlink time unit in a time domain, and data transmission or reception is performed through an uplink / downlink time unit (time division duplex). , TDD) mode).
  • TDD time division duplex
  • TDD time division duplex
  • carrier aggregation Since carrier aggregation performs DL or UL communication using a plurality of carrier frequencies, orthogonal frequency division for performing DL or UL communication by carrying a base frequency band divided into a plurality of orthogonal subcarriers on one carrier frequency multiplexing) system.
  • each carrier aggregated by carrier aggregation is called a component carrier (CC).
  • CC component carrier
  • FIG. 8B three 20 MHz CCs may be gathered in the UL and the DL to support a 60 MHz bandwidth.
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • a DL / UL CC limited to a specific UE may be referred to as a configured serving UL / DL CC at a specific UE.
  • the eNB may use it for communication with the UE by activating some or all of the serving CCs configured in the UE, or deactivating some CCs.
  • the eNB may change the number of CCs that are activated / deactivated and may change the number of CCs that are activated / deactivated.
  • PCC primary CC
  • SCC secondary CC
  • PCC and SCC may be divided based on control information. For example, specific control information may be set to be transmitted and received only through a specific CC, such specific CC may be referred to as PCC, and the remaining CC (s) may be referred to as SCC (s).
  • a cell is defined as a combination of DL resources and UL resources, that is, a combination of a DL CC and a UL CC.
  • the cell may be configured with only DL resources or a combination of DL resources and UL resources.
  • the linkage between the carrier frequency of the DL resource (or DL CC) and the carrier frequency of the UL resource (or UL CC) is indicated by system information.
  • system information can be.
  • a combination of a DL resource and a UL resource may be indicated by a system information block type 2 (SIB2) linkage.
  • SIB2 system information block type 2
  • the carrier frequency means a center frequency of each cell or CC.
  • a cell operating on a primary frequency is referred to as a primary cell (PCell) or a PCC
  • a cell operating on a secondary frequency is referred to as a secondary cell.
  • Cell, SCell or SCC.
  • the carrier corresponding to the PCell in the downlink is called a DL primary CC (DL PCC)
  • DL PCC DL primary CC
  • DL PCC UL primary CC
  • SCell refers to a cell that is configurable after RRC (Radio Resource Control) connection is established and can be used for providing additional radio resources.
  • RRC Radio Resource Control
  • the SCell may, together with the PCell, form a set of serving cells for the UE.
  • the carrier corresponding to the SCell in downlink is called DL secondary CC (DL SCC), and the carrier corresponding to the SCell in uplink is called UL secondary CC (UL SCC).
  • DL SCC DL secondary CC
  • UL SCC UL secondary CC
  • the term cell used in carrier aggregation is distinguished from the term cell which refers to a certain geographic area where communication service is provided by one eNB or one antenna group.
  • a cell of a carrier aggregation is referred to as a CC, and a cell of a geographic area is called a cell. This is called.
  • the SS when the UE attempts initial access to CC, the SS acquires time synchronization, frequency synchronization, subframe boundary, radio frame boundary, cell ID, and tracks the center frequency. (tracking)
  • the CC to be initially connected the SS is transmitted in a predetermined period and pattern between the eNB and the UE. Since the UE cannot know the frequency bandwidth of the CC to which the UE attempts initial access, the SS is transmitted at the most basic minimum frequency bandwidth.
  • radio resources available for transmission / reception of physical uplink / downlink channels and radio resources available for transmission / reception of physical uplink / downlink signals among radio resources operating in the LCT CC Resources are predetermined, as described in FIGS. 1 to 7.
  • the LCT CC is not configured to carry physical channels / signals through any time frequency in any time resource, but rather the corresponding physical channel / signals through a specific time frequency in a particular time resource according to the physical channel or type of physical signal. It must be configured to carry a signal.
  • physical downlink control channels may be configured only in the leading OFDM symbol (s) of the OFDM symbols of the DL subframe, and PDSCH is the leading OFDM symbol (s) in which the physical downlink control channels are likely to be mapped. Cannot be configured.
  • CRS (s) corresponding to the antenna port (s) of the eNB are transmitted every subframe in the REs shown in FIG. 6 over the entire band regardless of the DL BW of the eNB. Accordingly, when the number of antenna ports of an eNB is 1, the REs denoted by '0' in FIG. 6 are '0', '1', '2' and 'in FIG. 6 when the number of antenna ports of the eNB is 4.
  • the NCT CC has a constraint that a CRS must be configured in a corresponding CC every DL subframe, a constraint that a CRS must be configured in a corresponding CC per antenna port of an eNB, and a predetermined number of leading OFDM symbols of a DL subframe correspond. At least one of constraints that must be reserved for transmission of a control channel such as a PDCCH over the entire frequency band of the CC may not be satisfied. For example, on the NCT CC, the CRS may be configured in a predetermined number (> 1) of subframes rather than every subframe.
  • the CRS for one antenna port may be configured regardless of the number of antenna ports of the eNB on the NCT CC.
  • a tracking RS may be newly defined for tracking time synchronization and / or frequency synchronization instead of the existing CRS for channel state measurement and demodulation, and the tracking RS may be configured in some subframes and / or some frequency resources on the NCT CC.
  • the PDSCH may be configured in the leading OFDM symbols on the NCT CC
  • the PDCCH may be configured in the existing PDSCH region other than the leading OFDM symbols, or may be configured by using some PDCCH frequency resources.
  • the NCT CC is not configured according to the constraints of the existing system, it cannot be recognized by the UE implemented according to the existing system.
  • a UE implemented according to an existing system and unable to support an NCT CC is called a legacy UE, and a UE implemented to support an NCT CC is called an NCT UE.
  • such an NCT CC may be used as an SCC. Furthermore, it can also be used as a PCC. Since the NCT CC does not consider the use by the legacy UE, the legacy UE does not need to perform cell search, cell selection, cell reselection, etc. in the NCT CC.
  • the NCT CC When the NCT CC is not used as a PCC but the NCT CC is used only as an SCC, unnecessary constraints on the SCC can be reduced compared to the existing LCT CC that can also be used as a PCC, thereby enabling the use of a more efficient CC.
  • the UE since the time / frequency synchronization of the NCT CC may not match the synchronization of the PCC, the UE needs to perform time synchronization and frequency synchronization of the NCT CC.
  • the NCT CC for DL needs to be configured to allow the UE to perform time synchronization and frequency synchronization while preventing the legacy UE from detecting the PSS / SSS. Accordingly, the present invention proposes a scheme for enabling a UE to perform DL signal synchronization in an NCT CC and preventing a legacy UE from detecting an NCT CC through synchronization.
  • CRS CRS based data demodulation and UE-specific RS, i.e., demodulation reference signal (DMRS) based data demodulation
  • DMRS demodulation reference signal
  • a CRS or a new RS used only for tracking is collectively referred to as a tracking RS.
  • the synchronization signal may be used for the UE to perform time synchronization and / or frequency synchronization of the DL signal on the NCT CC.
  • the SS used may be the same as the signal used for the existing PSS / SSS, and a new SS may be used.
  • FIG. 9 is a view for explaining an embodiment of the present invention for performing synchronization in the NCT CC.
  • FIG. 9 (a) again illustrates OFDM symbols including PSS / SSS and PBCH in a radio frame configured as a normal CP, shown in FIG. 3 (a), and
  • FIG. 9 (b) shows PSS of PSS and SSS. It is shown to explain an example of performing synchronization using only.
  • the legacy UE cannot detect the NCT CCs even though it detects the PSSs.
  • the NCT UE may synchronize the subframe using the PSS, but the frame synchronization of 10 ms may not be achieved. Since the time duration of the PSS transmitted in subframe 0 and the PSS transmitted in subframe 5 has a period of 5 ms, the UE may recognize a 5 ms boundary through the PSS, but does not recognize a 10 ms boundary. Because. To solve this problem, two PSS may be defined to be transmitted in a time interval other than 5ms. For example, referring to FIG. 9 (b), two PSSs are located in subframe 0 and 5, respectively, but unlike the conventional OFDM symbol (see FIG. 9 (a)) having a PSS in each subframe.
  • the UE may enable the UE to detect the 10ms frame boundary.
  • the other PSS may configure the PSSs to be transmitted in another subframe other than subframe n + 5, thereby enabling the UE to detect a 10 ms frame boundary. That is, the PSS may be transmitted to have a period other than 5 ms, or the interval of consecutive PSSs may be configured differently from the existing interval.
  • the UE may detect a frame boundary of 10 ms by placing k PSSs at non-equal intervals during an n * 10 ms interval.
  • PSS0 PSS1, PSS2
  • PSS0 PSS1
  • PSS1 PSS1
  • PSS0, PSS1, and PSS2 may be used alternately as PSS.
  • one sequence may be cyclically shifted on a different frequency axis or time axis for each transmission time of the PSS. For example, if PSS0 is transmitted as the first PSS, a sequence in which PSS0 is cyclically shifted by k on the time axis may be transmitted as the second PSS.
  • the PSS on the LCT CC is configured on the center six RBs of the frequency axis, and the legacy UE is implemented to try to detect the SS on the six RBs close to the center frequency.
  • the PSS may be positioned so as to deviate by a predetermined size from the center frequency.
  • the legacy UE since the legacy UE will try to detect the PSS using only six RBs adjacent to the center frequency, the PSS of the NCT CC cannot be detected.
  • the legacy UE searches for the center frequency in units of 300 kHz. Therefore, in order to prevent the legacy UE from detecting the PSS and mistaken the NCT CC as the LCT CC, the deviation from the center frequency is preferably not a multiple of 300 kHz.
  • the PSS may not be configured at all on the NCT CC or may be configured at a position that is not the same as the existing one. For example, if the first PSS is located in subframe n, the second PSS will be located in subframe n + 5 on the LCT CC, but the legacy UE will not be able to locate the PSS by making the second PSS not in subframe n on the NCT CC. It may be possible to prevent the detection of the SSS and to detect the SSS.
  • the legacy UE may be prevented from recognizing the CC by detecting the PSS. Since the legacy UE detects the SSS using the PSS, if the PSS is not detected, the legacy UE cannot detect the SSS. Furthermore, the legacy UE cannot detect the presence of the NCT CC.
  • the 168 cell IDs to which the cell ID of the CC belongs may not be limited among the 3 * 168 cell IDs. Therefore, in principle, the UE cannot detect the cell ID of the CC. However, when the NCT CC is used only as the SCC, the NCT UE detects the cell ID using the PSS and the SSS on the PCC or receives the cell ID through another serving CC aggregated before the NCT CC so that the SSS of the NCT CC is not largely overhead. Can be detected.
  • the NCT UE may detect the SSS using the PSS of the PCC or the PSS of any LCT CC among the serving CCs. Furthermore, if the same physical layer cell IDs are used in the NCT CC and the same physical layer cell IDs of the CCs in the same cell are used, the NCT UE acquires the PCC or the physical layer cell ID received through any serving CC, and the PCC. Alternatively, since the PSS of any serving CC is known, the sequence of the SSS to be transmitted on the NCT CC can also be known.
  • the NCT UE can easily detect the SSS on the NCT CC and synchronize with the NCT CC. That is, since the NCT UE will be implemented to detect only the SSS without detecting the PSS on the NCT CC, the NCT UE may perform synchronization by detecting the SSS of the NCT CC.
  • different sequences may be used as two SSSs transmitted in one frame.
  • the NCT UE may detect 10 ms frame boundary as well as perform synchronization.
  • Two SSSs present in one 10ms frame may have intervals other than 5ms.
  • SSSs are configured in subframe 0 and subframe 5, respectively, but may be configured in different OFDM symbols.
  • the other SSS may not be located in subframe n + 5, thereby enabling the NCT UE to detect a 10 ms frame boundary.
  • the same sequence may be used as two SSSs in one frame of the NCT CC. If the same sequence is transmitted every 5ms as the SSS, since the UE cannot detect the 10ms frame boundary using the SSSs, the two SSSs may have intervals other than 5ms. For example, two SSSs may be located in subframe 0 and subframe 5, but unlike the conventional OFDM symbol having SSS in each subframe, the UE may detect a 10 ms frame boundary. As another example, if one PSS is transmitted in subframe n, the other PSS may configure the PSSs to be transmitted in another subframe other than subframe n + 5 to enable the UE to detect a 10 ms frame boundary. That is, the SSS may be transmitted to have a period other than 5 ms, or the interval of consecutive PSSs may be different.
  • the NCT UE may detect a 10ms frame boundary.
  • the one SSS may have one of two existing SSSs, and the two existing SSSs may be used as the one SSS alternately or in a predetermined pattern. It is also possible to use a new type of sequence different from the existing one as the one SSS transmitted on the NCT CC.
  • three or more SSSs may be configured not to be equal intervals during the 10 ms radio frame, thereby enabling the NCT UE to detect the 10 ms frame boundary. Extending this, the UE may detect a 10 ms frame boundary by placing k SSSs not equally spaced during the n * 10 ms interval.
  • the SSS used at this time may have one of two types of existing SSSs, or the two existing SSSs may be used as one SSS alternately or have a predetermined pattern. It is also possible to use a new sequence of a different type than the existing one as the one SSS transmitted on the NCT.
  • SSSs which are distinguished by two indices of m0 and m1.
  • 168 different SSSs may be used to perform synchronization with only SSS in the NCT CC.
  • m0 and m1 used for the first SSS and m0 and m1 used for the second SSS may be set differently.
  • several SSS sequences may be used in turn for the SSS.
  • one sequence may be cyclically shifted on a different frequency axis or time axis at each transmission point of the SSS.
  • a sequence having m0 and m1 as indices is used as the first SSS
  • a sequence in which the sequence is cyclically shifted by k on the time axis or the frequency axis may be used as the second SSS.
  • NCT CC can be used as PCC as well as SCC. In other words, the NCT CC may be used as a stand-alone CC rather than a secondary CC for another CC.
  • FIGS. 10 and 11 are diagrams for explaining another embodiment of the present invention for performing synchronization in an NCT CC.
  • the PSS and the SSS are located at six center RBs of the frequency axis on the LCT CC.
  • the PSS and the SSS may be positioned to deviate by a predetermined size from the center frequency on the NCT CC, as shown in FIG. 10 (b).
  • the legacy UE implemented to detect the PSS and SSS in the six RBs around the center frequency will attempt to detect the SS using only the six center RBs and thus cannot detect the SS configured to deviate from the center frequency.
  • the degree of SS deviation of the NCT CC from the center frequency is preferably not a multiple of 300 kHz.
  • the SSs may be placed in the NCT CC in the order of PSS and SSS as shown in FIG. 11 (a), rather than the order of the existing SSS and PSS. Can be.
  • SSs may be arranged in the order of SSS and PSS in subframe 0 as in the past, but may be arranged in the order of PSS and SSS differently in the subframe 5.
  • an OFDM symbol having the first PSS / SSS in a subframe having the first PSS / SSS as shown in FIG. SSs may be allocated such that positions of OFDM symbols having a second PSS / SSS are different from each other in a subframe having a position and a second PSS / SSS.
  • the other PSS / SSS may be allocated SSs so that they are not located in subframe n + 5, so that the legacy UE may not detect the SS.
  • the PSS and the SSS may be located in OFDM symbols adjacent to each other or may be located in OFDM symbols spaced apart from each other.
  • the SSS is located in OFDM symbol 5 and the PSS is located in OFDM symbol 7 to prevent the legacy UE from detecting the SS.
  • the SS may be configured such that whenever the PSS / SSS is transmitted, the position of the OFDM symbol with the PSS / SSS (periodically) varies within the subframe.
  • SSS and PSS configured in subframe 0 are located in OFDM symbols 5 and 6 of subframe 0, respectively.
  • SSS and PSS configured in subframe 5 are OFDM symbols 5 and OFDM symbol in subframe 5, respectively. 6 may be located.
  • the positions of the CRS, the DRS, and the CSI-RS may be considered to avoid collision with other physical signals in the subframe to which the PSS / SSS is mapped. For example, the following situation may be considered.
  • FIG. 12 illustrates an example of positions of PSSs and SSSs in a subframe on an NCT CC according to an embodiment of the present invention.
  • the CRS may be a tracking RS.
  • the PSS and SSS may be located in a symbol other than the OFDM symbol in which the CRS and the UE-specific RS are located.
  • the SSS and the PSS are located at least one subframe apart or in the order of the PSS and the SSS. SSs are assigned to be consecutively located at.
  • SSs are preferably allocated such that the SSS is located in the OFDM symbol n of the subframe and the PSS is not located in the OFDM symbol n + 3.
  • SSs may be allocated such that SSS and PSS are located in OFDM symbol 1 and OFDM symbol 3 of one slot of two slots in a subframe, respectively.
  • SSs may be allocated such that PSS and SSS are located in OFDM symbol 1 and OFDM symbol 3 of one slot of two slots in a subframe, respectively.
  • the PSS or SSS collides with the CSI-RS, that is, the time-frequency resource carrying the PSS or SSS overlaps with the time-frequency resource carrying the CSI-RS, the CSI-RS in the resource where the PSS / SSS collides with the CSI-RS It is possible to allow only the SS to be transmitted without being transmitted.
  • FIG. 13 shows another example of positions of PSSs and SSSs in a subframe on an NCT CC according to an embodiment of the present invention.
  • UE-specific RS may exist in one subframe as shown in FIG. 13 (a).
  • PSS and SSS may be located in a symbol other than the OFDM symbol in which the UE-specific RS is located.
  • the SSS and the PSS are located at least one subframe apart or in the order of the PSS and the SSS. SSs are assigned to be consecutively located at.
  • SSs are preferably allocated such that the SSS is located in the OFDM symbol n of the subframe and the PSS is not located in the OFDM symbol n + 3.
  • SSs may be allocated such that SSS and PSS are located in OFDM symbol 0 and OFDM symbol 2 of one slot of two slots in a subframe, respectively.
  • SSs may be allocated such that PSS and SSS are located in OFDM symbol 0 and OFDM symbol 2 of one slot of two slots in a subframe, respectively.
  • the PSS or SSS collides with the CSI-RS, that is, the time-frequency resource carrying the PSS or SSS overlaps with the time-frequency resource carrying the CSI-RS, the CSI-RS in the resource where the PSS / SSS collides with the CSI-RS It is possible to allow only the SS to be transmitted without being transmitted.
  • PSS and SSS are located in OFDM symbols without CRS and UE-specific RS among OFDM symbols in one subframe, while PSS and SSS are OFDM symbols n and OFDM symbols n ⁇ k (k is greater than 1). Natural numbers).
  • PSS and SSS may be located in OFDM symbols without CRS and UE-specific RS among OFDM symbols in one subframe, while PSS may be located in OFDM symbol n and SSS in OFDM symbol n + 1.
  • the PSS and the SSS should be located in adjacent OFDM symbols. If OFDM symbols 1 and 2 of the first slot of Table 5 and Table 6 are used for PSS and SSS or SSS and PSS, FDD with normal CP, FDD with extended CP, TDD with normal CP and extended CP For both TDDs, the CRS, UE-specific RS, CSI in the same form as the LCT CC in the NCT CC, while maintaining the distance between adjacent PSS and SSS equal or nearly similar to the distance between adjacent PSS and SSS on the LCT CC.
  • the position of the PDCCH may be considered together with the positions of the CRS, the DRS, and the CSI-RS. This may be to avoid collision with other physical signals and physical channels transmitted by the eNB transmitting the PSS / SSS in the subframe to which the PSS / SSS is mapped, and the physical signals and the physical signals transmitted by the other eNB in the subframe. It may be to avoid interference with the channel. For example, the following situation may be considered.
  • FIG. 14 shows another example of positions of PSSs and SSSs in a subframe on an NCT CC according to an embodiment of the present invention.
  • PSS and SSS may be located to avoid the position of the OFDM symbol where the CRS and UE-specific RS is located.
  • PSS and SSS are OFDM symbols 3 of the first slot of subframe A (A is one of the integers 0 to 9) and the second slot of subframe B (B is one of the integers 0 to 9).
  • the OFDM symbol 1 may be located in the order of PSS and SSS or in the order of SSS and PSS.
  • Subframe A and subframe B may be different subframes or adjacent subframes or the same subframe.
  • the present invention proposes to use the OFDM symbol 3 of the first slot and the OFDM symbol 1 of the second slot in the same subframe for PSS and SSS or SSS and PSS, respectively.
  • FIG. 15 shows another example of positions of PSSs and SSSs in a subframe on an NCT CC according to an embodiment of the present invention.
  • PSS and SSS may be located to avoid the position of the OFDM symbol where the CRS and UE-specific RS is located.
  • PSS and SSS are the OFDM slot 1 of the second slot of subframe A (A is one of the integers 0 to 9) and the second slot of subframe B (B is one of the integers 0 to 9). May be located in the order of PSS, SSS, or in the order of SSS and PSS.
  • Subframe A and subframe B may be different subframes or adjacent subframes or the same subframe.
  • the present invention proposes to use the OFDM symbol 1 of the second slot and the OFDM symbol 2 of the second slot in the same subframe for PSS and SSS or SSS and PSS, respectively.
  • PSS and / or SSS may be located in a DL subframe in the same manner as FDD having normal CP.
  • OFDM symbol 3 of the first slot and OFDM symbol 1 of the second slot of the DL subframe may be used for the SSs.
  • PSS or SSS may be located in OFDM symbol 2 of the first slot in which the PDCCH is not transmitted.
  • OFDM symbol 3 of the first slot of the DL subframe and OFDM symbol 3 of the second slot OFDM symbol 2 of subframe 1 and OFDM symbol 2 of subframe 6 may be used.
  • SSs are added to the OFDM symbol of the first slot of the DL subframe (eg, subframes 0 and 5) and the OFDM symbol 1 of the second slot in the order of PSS, SSS, or SSS, PSS. Can be located.
  • OFDM symbol 3 of the first slot of the DL subframe eg, subframes 0 and 5
  • OFDM symbol 1 of the second slot and OFDM symbol of the first slot of subframes 1 and 6 SSs may be located at 1 in the order of PSS and SSS, or in the order of SSS and PSS.
  • a PSS and / or an SSS may be located in a DL subframe in the same manner as an FDD having an extended CP.
  • OFDM symbol 1 of the second slot of the DL subframe and OFDM symbol 2 of the second slot may be used for the SSs.
  • PSS or SSS may be located in OFDM symbol 2 of the first slot in which the PDCCH is not transmitted.
  • OFDM symbol 1 of the second slot of the DL subframe OFDM symbol 2 of the second slot, and OFDM symbol 2 of the specific subframe may be used.
  • SS in the order of PSS, SSS or SSS, PSS in OFDM symbol 1 of the second slot and OFDM symbol 2 of the second slot of the DL subframe (eg, subframes 0 and 5). Can be located.
  • OFDM symbol 1 of the second slot of a DL subframe eg, subframes 0 and 5
  • OFDM symbol 2 of the second slot and OFDM symbol of the first slot of subframes 1 and 6 SSs may be located at 2 in the order of PSS and SSS, or in the order of SSS and PSS.
  • OFDM symbol 3 of the first slot of the subframe and OFDM symbol 1 of the second slot may be used for the SSs.
  • OFDM symbol 1 of the second slot of the subframe and OFDM symbol 2 of the second slot may be used for the SSs.
  • the normal CP and the extended CP may be distinguished by the distance difference between the PSS and the SSS.
  • OFDM symbol 3 of the second slot of the DL subframe (eg, subframes 0 and 5) and OFDM symbol 1 of the second slot may be used for the SSs.
  • OFDM symbol 1 of the second slot of the DL subframe (eg, subframes 0 and 5) and OFDM symbol 2 of the second slot may be used for the SSs.
  • the normal CP and the extended CP may be distinguished by the distance difference between the PSS and the SSS.
  • OFDM symbols in which the CSI-RS is located may be used for the PSS and the SSS.
  • OFDM symbols not used for transmission of UE-specific RS but used for transmission of CSI-RS are OFDM symbol 2 and OFDM symbol 3 of a second slot. It may be contemplated to use some or all of these OFDM symbols for PSS and SSS.
  • the transmission of both OFDM symbol 2 and OFDM symbol 3 of the second slot and PDCCH, UE-specific RS, CSI-RS and CRS, which are not used for transmission of UE-specific RS but used for transmission of CSI-RS OFDM symbol 1 of the second slot, which is not used for, may be used for transmission of the PSS and the SSS.
  • PSS and SSS may be located in two OFDM symbols among the three OFDM symbols.
  • OFDM symbol 2 or OFDM symbol 3 of the second slot and OFDM symbol 1 of the second slot may be used.
  • SSs may be arranged in two OFDM symbols in the order of PSS and SSS or in the order of SSS and PSS.
  • the positions of the PSS and the SSS may be determined in the same manner as in the FDD using the normal CP.
  • Some of the OFDM symbols where the CSI-RS is located may be used for PSS and SSS in TDD using regular CP.
  • OFDM symbols not used for transmission of UE-specific RS but used for transmission of CSI-RS are OFDM symbol 2 and OFDM symbol 3 of a second slot.
  • OFDM symbol 2 and OFDM symbol 3 of the second slot which are not used for transmission of UE-specific RS but used for transmission of CSI-RS, PDCCH, UE-specific RS
  • the OFDM symbol 1 of the second slot which is not used for transmission of both CSI-RS and CRS, may be used for transmission of the PSS and SSS.
  • OFDM symbol 2 of the first slot of subframes 1 and 6 may be used for the SS.
  • OFDM symbol 2 or OFDM symbol 3 of the second slot and OFDM symbol 1 of the second slot may be used.
  • SSs may be arranged in two OFDM symbols in the order of PSS and SSS or in the order of SSS and PSS.
  • the OFDM symbol 1 of the second slot of the DL subframe eg, subframes 0 and 5
  • the OFDM symbol 2 of the first slot of the subframes 1 and 6 are PSS and SSS.
  • Can be used for SSs may be located in the corresponding OFDM symbols in the order of PSS and SSS or in the order of SSS and PSS.
  • a CSI-RS is used for a subcarrier carrying a PSS / SSS (or an RB including a PSS / SSS RE or six central RBs carrying a PSS / SSS) in an OFDM symbol configured with both PSS / SSS and CSI-RS. It is proposed to puncture and transmit the PSS / SSS. For example, if OFDM symbol 2 of the second slot and OFDM symbol 1 of the second slot are used for PSS / SSS in a subframe using extended CP, OFDM symbol 2 and OFDM symbol 3 of the second slot are CSI-.
  • the CSI-RS is punctured and the PSS / SSS is punctured in the subcarriers occupied by PSS / SSS in OFDM symbol 2 of the second slot (or RB including PSS / SSS RE or six center RBs carrying PSS / SSS). May be transmitted through a corresponding subcarrier.
  • the UE may perform an RB or PSS / SSS including a subcarrier configured as a transmission resource of the PSS / SSS (or a transmission resource of the PSS / SSS). For the central six RBs carrying), the PSS / SSS is received and the CSI-RS is assumed not to be transmitted in the corresponding resource.
  • PSS and SSS transmitted twice in a 10ms radio frame on the LCT CC may be configured to be transmitted once in the NCT CC.
  • the legacy UE cannot detect the SS, but the NCT UE may detect the radio frame boundary of 10 ms while simultaneously synchronizing the NCT CC using the PSS and the SSS.
  • the NCT UE may be able to detect a frame boundary of 10ms. This may be extended to allow the NCT UEs to detect a 10 ms boundary by placing k PSS / SSSs at equal intervals during an n * 10 ms time interval.
  • PSS there are currently three distinct sequences, which can be identified by the root index.
  • SSS there are currently 168 distinct sequences, distinguished by two indices m0 and m1.
  • sequences used for the first SS and the second SS transmitted in one radio subframe may be different.
  • the sequence of the first PSS and the sequence of the second PSS may be distinguished by the root index, and the sequence of the first SSS and the sequence of the second SSS may be distinguished by two indexes m0 and m1.
  • one sequence may be used for the SS, but different cyclic shifts may be applied for the first SS and the second SS on the frequency axis or time axis.
  • one sequence is used for the SS, but different cyclic shifts can be applied for several SSs on the frequency axis or time axis.
  • PSS and SSS may be configured in the RE (hereinafter, CSI-RS RE) to which the CSI-RS is likely to be allocated.
  • Tables 7 and 8 show CSIs that can be used in the frame structure for FDD (hereinafter referred to as FS-1) described in FIG. 1 (a) and the frame structure for TDD (hereinafter referred to as FS-2) described in FIG. 1 (b).
  • -RS configurations are illustrated.
  • the CSI-RS configuration refers to the positions of REs occupied by the CSI-RSs in one RB pair and is also called a CSI-RS pattern.
  • Table 7 shows CSI-RS configurations in subframes with regular CPs
  • Table 8 shows CSI-RS configurations in subframes with extended CPs.
  • each antenna port (hereinafter referred to as CSI-RS port) transmitting CSI-RS is used to transmit the corresponding CSI-RS.
  • CSI-RS port each antenna port transmitting CSI-RS is used to transmit the corresponding CSI-RS.
  • the CSI-RS sequence is a complex-valued modulation used as reference symbols on the CSI-RS port p. symbols) a (p) is mapped to k, l according to
  • Equation 12 the resource index pair (k, l) that the CSI-RS port p uses for CSI-RS transmission is determined according to the following equation.
  • FIG. 16 illustrates channel state information reference signal (CSI-RS) configurations.
  • FIG. 16 (a) shows 20 CSI-RS configurations 0 to 19 available for CSI-RS transmission by two CSI-RS ports of the CSI-RS configurations of Table 7, and
  • FIG. 16 (b) Shows ten CSI-RS configurations 0 to 9 available by four CSI-RS ports of the CSI-RS configurations of Table 7, and
  • FIG. 16 (c) shows 8 of the CSI-RS configurations of Table 7. Five CSI-RS configurations 0 to 4 available by the CSI-RS ports are shown.
  • CSI-RS may be mapped to OFDM symbols 2 and 3 or OFDM symbols 5 and 6.
  • the CSI-RS does not transmit the CSI-RS in the subframe even if the subframe corresponding to the transmission time of the PSS / SSS corresponds to the CSI-RS transmission time. Assume that you do not.
  • An OFDM symbol including a CSI-RS RE used for transmission of the PSS / SSS may be defined separately for FDD and TDD.
  • CSI-RS REs included in OFDM symbols 1 and 3 may be used for transmission of PSS and SSS.
  • OFDM symbols 1 and 2 may be used for transmission of the PSS / SSS.
  • the PSS and the SSS may be mapped to the corresponding OFDM symbols in the order of the SSS and the PSS by mapping or changing the order of the PSS and the SSS. That is, assuming OFDM symbols 1 and 3 are used, it is possible that PSS is mapped to OFDM symbol 1 and SSS is mapped to OFDM symbol 3 or vice versa.
  • PSS and SSS may be transmitted using resources for CRS.
  • CRSs of port 0 are located in OFDM symbols 0 and 3.
  • PSS and SSS may be mapped to OFDM symbols 0 and 3, respectively, or may be mapped to OFDM symbols 3 and 1, respectively.
  • PSS and SSS may be mapped to OFDM symbols 0 and 3 in FDD
  • PSS and SSS may be mapped to OFDM symbols 3 and 0 in TDD. Or vice versa.
  • OFDM symbol 1 for CRS and one of OFDM symbols 3 and 4 corresponding to antenna port 2 may be used for PSS and SSS.
  • PSS and SSS may be present in two OFDM symbols of OFDM symbols 1, 3, and 4, and the order may be reversed.
  • an OFDM symbol for PSS and an OFDM symbol for SSS may be defined such that a gap between PSS and SSS is different in FDD and TDD.
  • information on a cell may be provided to the UE using the location of the PSS and the SSS.
  • the following information may be expressed using the positions of the PSS and the SSS.
  • the NCT UE may select which duplex the NCT CC has.
  • the advantage is that it can be identified as being configured in mode.
  • PSS and SSS may be located in OFDM symbols adjacent to each other or in OFDM symbols that are separated from each other.
  • the distance difference between PSS and SSS for FDD may be the same as or different from the distance difference between PSS and SSS for TDD.
  • the PSS and the SSS may be located in OFDM symbols adjacent to each other or in OFDM symbols that are separated from each other.
  • the distance difference between the PSS and the SSS for the extended CP may be the same as or different from the distance difference between the PSS and the SSS for the normal CP.
  • a new sequence other than the existing PSS / SSS may be used in the NCT CC.
  • the NCT CC is used as an SCC, since the cell ID does not need to be obtained through the SS in the NCT CC, the SS does not need to be determined according to the cell ID as before.
  • new sequences can be used in the NCT CC.
  • the existing SS sequences may be used independently without being connected to the cell ID.
  • the PSS and the SSS may be transmitted only once during a duration corresponding to a multiple of 10 ms so that the NCT UE can detect the 10 ms radio frame boundary.
  • two or more SSs may not be equally spaced during the 10 ms radio frame, that is, the PSS and the SSS are transmitted two or more times at an uneven interval so that the NCT UE may detect the 10 ms frame boundary. This can be extended to allow the UE to detect the 10 ms boundary by placing k SSs not equally spaced during the n * 10 ms interval.
  • two or more new SSs may be used to allow a 10 ms radio frame boundary to be detected by the NCT UE.
  • the location of the time and / or frequency at which the SS for the NCT CC is transmitted may be variously changed to prevent the legacy UE from detecting the SS of the NCT CC.
  • FIG 17 shows an example of a position of an SS in a subframe on an NCT CC according to an embodiment of the present invention.
  • an SS that has been transmitted over six RBs on an LCT CC may be transmitted over only three RBs.
  • an SS transmitted over six RBs in one OFDM symbol of a subframe on an LCT CC may be transmitted over three RBs in two OFDM symbols on an NCT CC.
  • FIG. 18 shows another example of a position of an SS in a subframe on an NCT CC according to an embodiment of the present invention.
  • the existing sequence transmitted over six RBs as shown in FIG. 18 (a) is repeated n times as shown in FIG. 18 (b) or 18 (c) to span k * 6 RBs.
  • the repeated sequence may be continuously transmitted on the frequency axis over the 12 RBs.
  • a repeated sequence may be transmitted while being intersected with an existing sequence.
  • FIG. 19 shows another example of a position of an SS in a subframe on an NCT CC according to an embodiment of the present invention.
  • the SS of the NCT CC may move in the frequency axis or the time axis in a predetermined pattern.
  • the movement of the SS on the frequency axis or time axis may be applied to only one of the PSS and the SSS, may be applied separately to the PSS and the SSS, or may be equally applied to both the PSS and the SSS. Or it may be applied even if a new sequence is used rather than the sequences for the existing PSS and SSS.
  • frequency axis shift may be applied for every SS as shown in FIG. 19.
  • the first SS can be transmitted using the center frequency as shown in FIG.
  • the second SS can be transmitted using the frequency of the upper end of the frequency band as shown in FIG. 19 (b). .
  • the third SS may be transmitted using the frequency of the lower end of the frequency band as shown in FIG. 19 (c).
  • FIG. 20 shows another example of a position of an SS in a subframe on an NCT CC according to an embodiment of the present invention.
  • a time axis position shift may be applied to every SS.
  • the first SS is transmitted using OFDM symbol 3 as shown in FIG. 10 (a) and the second SS is transmitted using OFDM symbol 7 as shown in FIG. 10 (b) and the third is transmitted.
  • the SS may be transmitted using OFDM symbol 11 (ie, OFDM symbol 4 of the second slot).
  • FIG. 21 shows another example of a position of an SS in a subframe on an NCT CC according to an embodiment of the present invention.
  • the frequency axis or time axis hopping pattern of the SS may be predefined or may indicate to the UE that the eNB uses the NCT CC.
  • the frequency or time axis hopping pattern of the SS may be fixed or may change from time to time.
  • the time axis position and the frequency axis position of the PSS sub-SSS of the NCT CC may be changed as shown in FIG. 21 (b).
  • SSS and PSS are transmitted over 6 RBs and 1 OFDM symbol, respectively.
  • FIG. 21B six RBs of an OFDM symbol carrying a PSS are divided into two parts on an LCT CC, and six RBs of an OFDM symbol carrying an SSS on an LCT CC are divided into two parts.
  • PSS as much as 3 RBs and SSS as much as 3 RBs may be transmitted, and in the second OFDM symbol, the remaining PSS as much as 3 RBs and the remaining SSS as much as 3 RBs may be transmitted.
  • the frequency axis position of the PSS and SSS transmitted in the second OFDM symbol may be different from the frequency axis position of the PSS and SSS transmitted in the first OFDM symbol.
  • the SS used for the NCT CC is a conventional PSS or SSS is used, so that the legacy UE can not detect the SS of the NCT CC, either PSS and SSS or one of the PSS and SSS It may be interleaved in a predetermined pattern and transmitted on the NCT CC.
  • both the PSS and the SSS generated in the same manner as the conventional method or one of the PSS and the SSS may be scrambled using a predetermined sequence and transmitted on the NCT CC.
  • FIG. 22 shows an example of a center frequency of an NCT CC according to an embodiment of the present invention.
  • the present invention proposes to shift the center frequency of the NCT CC from the original center frequency. For example, referring to FIG. 22, by shifting the center frequency of the NCT CC from the center frequency to be originally located, that is, ⁇ f c from the original frequency raster, the legacy UE may not detect the NCT CC. have. That is, the NCT CC and the LCT CC can be distinguished by applying an offset to the operating band itself.
  • ⁇ f c which is the difference between the original center frequency and the shifted center frequency, is not a multiple of 300 kHz.
  • the legacy UE Since the legacy UE will search for center frequencies in units of 300 kHz, it will not be able to detect center frequencies outside the 300 kHz frequency raster. Accordingly, the legacy UE may not recognize the NCT CC at all and may not detect the SS of the NCT CC.
  • 23 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
  • the transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system.
  • the device is operatively connected to components such as the memory 12 and 22 storing the communication related information, the RF units 13 and 23 and the memory 12 and 22, and controls the components.
  • a processor 11, 21 configured to control the memory 12, 22 and / or the RF units 13, 23, respectively, to perform at least one of the embodiments of the invention described above.
  • the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information.
  • the memories 12 and 22 may be utilized as buffers.
  • the processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
  • the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
  • application specific integrated circuits ASICs
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the firmware or software when implementing the present invention using firmware or software, may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
  • the firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
  • the processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13. For example, the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
  • the coded data string is also called a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer.
  • One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
  • the RF unit 13 may include an oscillator for frequency upconversion.
  • the RF unit 13 may include N t transmit antennas, where N t is a positive integer greater than or equal to one.
  • the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
  • the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10.
  • the RF unit 23 may include N r receive antennas, and the RF unit 23 frequency down-converts each of the signals received through the receive antennas to restore the baseband signal. .
  • the RF unit 23 may include an oscillator for frequency downconversion.
  • the processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
  • the RF units 13, 23 have one or more antennas.
  • the antenna transmits a signal processed by the RF units 13 and 23 to the outside or receives a radio signal from the outside according to an embodiment of the present invention under the control of the processors 11 and 21. , 23).
  • Antennas are also called antenna ports.
  • Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
  • a reference signal (RS) transmitted corresponding to the corresponding antenna defines an antenna viewed from the perspective of the receiving apparatus 20, and includes a channel or whether the channel is a single radio channel from one physical antenna.
  • RS reference signal
  • the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered.
  • the antenna In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
  • MIMO multi-input multi-output
  • the UE operates as the transmitter 10 in the uplink and the receiver 20 in the downlink.
  • the eNB operates as the receiving device 20 in the uplink, and operates as the transmitting device 10 in the downlink.
  • the processor, the RF unit and the memory provided in the UE will be referred to as a UE processor, the UE RF unit and the UE memory, respectively, and the processor, the RF unit and the memory provided in the eNB will be referred to as an eNB processor, the eNB RF unit and the eNB memory, respectively.
  • the eNB processor of the present invention configures the PSS and the SSS on the LCT CC as shown in FIG. 9.
  • the eNB processor controls the eNB RF unit to transmit the PSS and the SSS using six center RBs in OFDM symbols indicated by the PSS and the SSS in FIG. 9 every 10 ms radio frame.
  • the UE processor of the present invention is configured to detect the PSS and the SSS using the six center RBs in the OFDM symbols indicated by the PSS and the SSS in FIG.
  • the UE processor is configured to obtain a cell ID, time synchronization and frequency synchronization, 10 ms radio frame boundary, etc. of the LCT CC using the PSS and the SSS.
  • the eNB processor of the present invention may configure an SS in the NCT CC according to any one of the embodiments of the present invention described above.
  • the eNB processor may control the eNB RF unit to transmit the SS configured according to any one of the embodiments of the present invention described above on the NCT CC.
  • the UE RF unit of the present invention is configured to receive various signals (including SS, RS, etc.) transmitted from the eNB.
  • the UE processor of the present invention is configured to detect the SS of the NCT CC configured according to any one of the embodiments of the present invention from the signals received by the UE RF unit.
  • the UE processor is configured to detect an SS configured according to any one of the embodiments of the present invention on an NCT CC, and perform synchronization of the NCT CC using the SS.
  • the UE processor is configured to detect a 10 ms radio frame boundary using the SS.
  • the UE processor may be configured to detect a tracking RS to maintain time synchronization of the NCT CC and adjust a frequency offset of the NCT CC.
  • the eNB processor may control the eNB RF unit to configure only the PSS of the PSS and the SSS on the NCT CC, and transmit the PSS using the corresponding time-frequency resource on the NCT CC.
  • the eNB processor may control the eNB RF unit to transmit the PSS in a time duration other than 5 ms.
  • the UE RF unit may be configured to receive the PSS under the control of a UE processor.
  • the UE processor may be configured to detect a PSS in the corresponding time-frequency resource of the NCT CC from signals received by the UE RF unit and perform synchronization of the NCT CC carrying the PSS using the PSS.
  • the UE processor may detect a frame boundary of 10 ms using the PSS.
  • the eNB processor may configure only the SSS of the PSS and the SSS on the NCT CC, and control the eNB RF unit to transmit the SSS using the corresponding time-frequency resource on the NCT CC.
  • the eNB processor may generate the sequence of the SSS using the PSS on the LCT CC managed by the eNB processor.
  • the eNB processor may generate the sequence of the SSS such that the PSS on the LCT CC and the SSS on the NCT CC represent the same cell ID as the physical layer cell ID indicated by the PSS and the SSS on the LCT CC.
  • the eNB processor may control the eNB RF unit to transmit the same sequence as the SSS on the LCT CC as an SSS for synchronization of the NCT CC on the NCT CC.
  • the eNB processor may control the eNB RF unit to transmit the SSS in a time interval other than 5 ms.
  • the UE RF unit may be configured to receive the SSS under control of the UE processor.
  • the UE processor may be configured to detect an SSS, and may perform synchronization of the NCT CC carrying the SSS using the SSS.
  • the UE processor may be configured to use the PSS detected on the PCC or the PSS detected on any serving CC to detect the SSS.
  • the UE processor may be configured to use the PSS detected on the PCC or the PSS detected on any serving CC, and the physical layer cell ID obtained from the PCC or received through any serving CC for the detection of the SSS.
  • the UE processor may detect a 10 ms frame boundary using the SSS.
  • the UE processor may acquire a cell ID using the SS of the PCC.
  • the eNB processor may configure the PSS and SSS on the NCT CC, and control the eNB RF unit to transmit the PSS and SSS using corresponding time-frequency resources on the NCT CC.
  • the UE RF unit may be configured to receive the PSS and SSS under the control of a UE processor.
  • the UE processor may be configured to detect a PSS and an SSS in the corresponding time-frequency resources of the NCT CC.
  • the UE processor may perform synchronization of the NCT CC carrying the PSS and the SSS using the PSS and the SSS and detect a 10 ms frame boundary.
  • the eNB processor may be configured to generate a new sequence of PSS and / or SSS that is different from the sequence used as the PSS / SSS in the LCT CC and the UE processor may generate the new sequence. It can be configured to be detected.
  • the eNB processor controls the eNB RF unit to send the PSS and / or SSS at a different transmission interval than the PSS and / or SSS of the LCT CC, or OFDM symbols at other locations.
  • the eNB RF unit may be controlled to transmit at or the eNB RF unit may be controlled to transmit at a different frequency, or the eNB RF unit may be controlled to move by transmitting a center frequency of an NCT CC to be different from a 300 kHz raster.
  • the eNB processor may use an OFDM symbol to which the CRS, UE-specific RS or CSI-RS may be mapped to prevent the transmission of the CRS, UE-specific RS or CSI-RS from conflicting with the transmission of the PSS and / or SSS.
  • the SS may be configured such that the PSS and / or SSS are located in other OFDM symbol (s).
  • the UE processor performs PSS and / or SSS in an OFDM symbol other than an OFDM symbol to which a CRS, UE-specific RS, or CSI-RS can be mapped among OFDM symbols in a subframe corresponding to a transmission time of the PSS and / or SSS. Can be configured to detect.
  • the eNB processor may configure the PSS and / or SSS in OFDM symbol (s) other than the OFDM symbols for which the PDCCH may be transmitted.
  • the UE processor may not be configured to detect the PSS and / or SSS in OFDM symbols to which the PDCCH may be mapped and may be configured to detect the PSS and / or SSS in other OFDM symbols.
  • the eNB processor may differently set the time distance between the PSS and the SSS or the order of the PSS and the SSS in the FDD radio frame and the TDD radio frame.
  • the UE processor may distinguish the FDD and the TDD based on the time distance at which the PSS and the SSS are detected or the order of the PSS and the SSS.
  • the eNB processor may differently set the time distance between the PSS and the SSS or the order of the PSS and the SSS in the subframe for the regular CP and the subframe for the extended CP.
  • the UE processor may distinguish the CP length used in the corresponding subframe or the radio frame based on the time distance at which the PSS and the SSS are detected or the order of the PSS and the SSS.
  • Embodiments of the present invention may be used in a base station, relay or user equipment, and other equipment in a wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 기존 반송파의 구성과는 다르게 구성되는 새로운 타입의 반송파에 관한 것이다. 상기 새로운 타입의 반송파는 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization signal, SSS) 중 적어도 하나를 이용하여 검출된다. 상기 새로운 타입의 반송파는 PSS 및 SSS 중 하나만을 이용하여 검출되도록 구성되거나, PSS 및 SSS 둘 다를 이용하여 검출되는 경우 기존 PSS 및 SSS의 전송과는 다르게 구성된 PSS 및 SSS 전송이 상기 새로운 타입의 반송파에 구성된다.

Description

동기 신호 수신 방법 및 사용자기기와 동기 신호 전송 방법 및 기지국
본 발명은 반송파의 동기화에 관한 것이다. 본 발명은 반송파의 동기화를 위한 동기 신호의 전송 방법 및 장치와 수신 방법 및 장치에 관한 것이다.
무선 통신 시스템에서 사용자기기(user equipment, UE)는 기지국(base station, BS)로부터 하향링크(downlink, DL)를 통해 데이터 및/또는 다양한 제어 정보를 수신할 수 있으며, 상향링크(uplink, UL)를 통해 데이터 및/또는 다양한 정보를 전송할 수 있다. UE가 BS와 통신하기 위해서는 상기 BS와 동기(synchronization)를 맞춰야 한다. 이를 위해, 전원이 꺼진 상태에서 다시 전원이 켜지거나 상기 BS에 의해 서비스되는 지리적 영역인 셀에 새로이 진입한 UE는 상기 BS와 동기를 맞추는 등의 작업을 수반하는 초기 셀 탐색(initial cell search)을 수행한다. 초기 셀 탐색을 마친 UE는 물리 하향링크 채널(physical downlink channel)을 통해 데이터 및/또는 제어 정보를 수신할 수 있으며 물리 상향링크 채널(physical uplink channel)을 통해 데이터 및/또는 제어 정보를 전송할 수 있다.
셀 탐색, UE와 BS 사이의 동기화 후 시간 동기의 유지, 주파수 오프셋의 보정 등의 다양한 이유로 인하여 지금까지 논의된 무선 통신 시스템은 다양한 필수(mandatory) 신호를 지정된 무선 자원에서 전송/수신할 것을 정의하고 있다.
이러한 필수 신호의 종류 및 양은 해당 무선 통신 시스템의 표준(standard)이 발전함에 따라 증가하였다. 해당 필수 신호가 할당되는 무선 자원에는 다른 신호가 할당될 수 없으므로, 해당 무선 통신 시스템이 발전함에 따라 늘어난 필수 신호들이 해당 무선 통신 시스템의 스케줄링(scheduling)의 자유도를 저해하고 있을 뿐만 아니라, 해당 무선 통신 시스템에 보다 효율적인 통신 기술을 도입하는 것에도 제약으로 작용하고 있는 실정이다.
최근 지금까지 정의된 필수 신호들의 제약에서 자유로운 새로운 반송파를 구성하는 것이 고려되고 있다. 기존 시스템에 따라 구성된 장치와의 호환성을 유지하면서 상기 새로운 반송파를 구성 혹은 인식할 수 있도록 하는 방법 및/또는 장치가 요구된다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 사용자기기가 동기 신호를 수신함에 있어서, 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 이용하여 상기 PSS 및 SSS를 나르는 셀(이하, 제1 셀)과의 동기를 획득; 및 상기 제1 셀의 주파수와는 다른 주파수에서 다른 SSS를 검출하고, 상기 다른 SSS를 이용하여 상기 다른 SSS를 나르는 다른 셀(이하, 제2 셀)과의 동기를 획득하는 것을 포함하는, 동기 신호 수신 방법이 제공된다.
본 발명의 다른 양상으로, 반송파 집성이 구성된 사용자기기가 동기 신호를 수신함에 있어서, 무선 주파수 유닛; 및 상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 이용하여 상기 PSS 및 SSS를 나르는 1차 셀(primary cell, PCell)의 상기 PCell과의 동기를 획득하도록 구성되며, 상기 PCell의 주파수와는 다른 주파수에서 다른 SSS를 검출하고 상기 다른 SSS를 이용하여 상기 다른 SSS를 나르는 다른 2차 셀(secondary cell, SCell)과의 동기를 획득하도록 구성된, 사용자기기가 제공된다.
본 발명의 또 다른 양상으로, 기지국이 동기 신호를 전송함에 있어서, 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 셀(이하, 제1 셀)을 통해 전송; 및 상기 제1 셀의 주파수와는 다른 주파수를 갖는 셀(이하, 제2 셀)을 통해 다른 SSS를 전송하는, 동기 신호 전송 방법이 제공된다.
본 발명의 또 다른 양상으로, 기지국이 동기 신호를 전송함에 있어서, 무선 주파수 유닛; 및 상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세스는 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 셀(이하, 제1 셀)을 통해 전송하도록 상기 무선 주파수 유닛을 제어하고, 상기 제1 셀의 주파수와는 다른 주파수를 갖는 셀(이하, 제2 셀)을 통해 다른 SSS를 전송하도록 상기 무선 주파수 유닛을 제어하는, 기지국이 제공된다.
본 발명의 또 다른 양상으로, 사용자기기가 동기 신호를 수신함에 있어서, 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 이용하여 상기 PSS 및 SSS를 나르는 셀과의 동기를 획득; 및 상기 PSS와 상기 SSS 간의 시간 거리를 기반으로 상기 셀의 듀플렉스(duplex) 모드가 시분할듀플렉스(time division duplex, TDD)인지 아니면 주파수분할듀플렉스(frequency division duplex, FDD)인지를 판단하는 것을 포함하는, 동기 신호 수신 방법이 제공된다.
본 발명의 또 다른 양상으로 사용자기기가 동기 신호를 수신함에 있어서, 무선 주파수 유닛; 및 상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 이용하여 상기 PSS 및 SSS를 나르는 셀과의 동기를 획득하도록 구성되고, 상기 PSS와 상기 SSS 간의 시간 거리를 기반으로 상기 셀의 듀플렉스(duplex) 모드가 시분할듀플렉스(time division duplex, TDD)인지 아니면 주파수분할듀플렉스(frequency division duplex, FDD)인지를 판단하도록 구성된, 사용자기기가 제공된다.
본 발명의 또 다른 양상으로, 기지국이 동기 신호를 전송함에 있어서, 셀의 듀플렉스(duplex) 모드를 시분할듀플렉스(time division duplex, TDD) 혹은 주파수분할듀플렉스(frequency division duplex, FDD)로 구성; 및 상기 셀의 듀플렉스 모드에 따라 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)가 다른 시간 거리를 갖도록 상기 PSS와 SSS를 상기 셀을 통해 전송하는 것을 포함하는, 동기 신호 전송 방법이 제공된다.
본 발명의 또 다른 양상으로, 기지국이 동기 신호를 전송함에 있어서, 무선 주파수 유닛; 및 상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 셀의 듀플렉스(duplex) 모드를 시분할듀플렉스(time division duplex, TDD) 혹은 주파수분할듀플렉스(frequency division duplex, FDD)로 구성하고, 상기 셀이 듀플렉스 모드에 따라 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)가 다른 시간 거리를 갖도록 상기 PSS와 SSS를 상기 셀을 통해 전송하도록 상기 무선 주파수 유닛을 제어하는, 기지국이 제공된다.
본 발명의 또 다른 양상으로, 사용자기기가 동기 신호를 수신함에 있어서, 서브프레임에서 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 검출; 상기 PSS 및 SSS를 나르는 셀과의 동기를 획득하도록 구성하는 것을 포함하되, 상기 SSS는 상기 서브프레임의 첫 번째 슬롯의 OFDM 심볼들 중 두 번째 OFDM 심볼에 위치하고 상기 SSS는 상기 서브프레임의 상기 첫 번째 슬롯의 상기 OFDM 심볼들 중 세 번째 OFDM 심볼에 위치하는, 동기 신호 수신 방법이 제공된다.
본 발명의 또 다른 양상으로, 사용자기기가 동기 신호를 수신함에 있어서, 무선 주파수 유닛; 및 상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 서브프레임에서 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 검출하고, 상기 PSS 및 SSS를 나르는 셀과의 동기를 획득하도록 구성되되, 상기 SSS는 상기 서브프레임의 첫 번째 슬롯의 OFDM 심볼들 중 두 번째 OFDM 심볼에 위치하고 상기 SSS는 상기 서브프레임의 상기 첫 번째 슬롯의 상기 OFDM 심볼들 중 세 번째 OFDM 심볼에 위치하는, 사용자기기가 제공된다.
본 발명의 또 다른 양상으로, 기지국이 동기 신호를 전송함에 있어서, 서브프레임에서 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 셀을 통해 전송하되; 상기 SSS는 상기 서브프레임의 첫 번째 슬롯의 OFDM 심볼들 중 두 번째 OFDM 심볼에 위치하고 상기 SSS는 상기 서브프레임의 상기 첫 번째 슬롯의 상기 OFDM 심볼들 중 세 번째 OFDM 심볼에 위치하는, 동기 신호 전송 방법이 제공된다.
본 발명의 또 다른 양상으로, 기지국이 동기 신호를 전송함에 있어서, 무선 주파수 유닛; 및 상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 서브프레임에서 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 셀을 통해 전송하도록 상기 무선 주파수 유닛을 제어하며, 상기 SSS는 상기 서브프레임의 첫 번째 슬롯의 OFDM 심볼들 중 두 번째 OFDM 심볼에 위치하고 상기 SSS는 상기 서브프레임의 상기 첫 번째 슬롯의 상기 OFDM 심볼들 중 세 번째 OFDM 심볼에 위치하는, 기지국이 제공된다.
본 발명의 각 양상에 있어서, 상기 제1 셀의 PSS를 이용하여 상기 다른 SSS가 검출될 수 있다.
본 발명의 각 양상에 있어서, 상기 제2 셀에서의 상기 다른 SSS의 검출 간격은 상기 제1 셀에서의 상기 SSS의 검출 간격과는 다를 수 있다.
상기 제2 셀은 아무런 PSS를 나르지 않을 수 있다.
상기 제1 셀은 1차 셀(primary cell, PCell)이고 상기 제2 셀은 2차 셀(secondary cell, SCell)일 수 있다.
상기 PSS 및 SSS는 상기 제2 셀에서 부등(unequal) 간격으로 검출될 수 있다.
상기 PSS 및 SSS는 상기 제2 셀의 중심 주파수에서 일정 크기만큼 벗어난 주파수 자원 상에서 검출될 수 있다.
상기 PSS 및 SSS는 상기 제2 셀의 듀플렉스 모드에 따라 다른 순서로 검출될 수 있다.
상기 PSS 및 SSS는 상기 제2 셀의 순환 전치(cyclic prefix)의 종류에 따라 다른 순서로 검출될 수 있다.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 의하면 기존 시스템과의 호환성을 유지하면서 기존 시스템의 필수 신호들로부터 자유로운 새로운 반송파의 구성이 가능해진다.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조(radio frame structure)의 일 예를 나타낸 것이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯(slot) 구조의 일례를 나타낸 것이다.
도 3은 동기 신호(synchronization signal, SS)의 전송을 위한 무선 프레임 구조를 예시한 것이다.
도 4는 2차 동기 신호(secondary synchronization signal, SSS)의 생성 방식을 설명하기 위해 도시된 것이다.
도 5는 무선 통신 시스템에서 사용되는 하향링크(downlink, DL) 서브프레임(subframe) 구조를 예시한 것이다.
도 6은 셀 특정적 참조 신호(cell specific reference signal, CRS)를 예시한 것이다.
도 7은 무선 통신 시스템에 사용되는 상향링크(uplink, UL) 서브프레임 구조의 일례를 나타낸 것이다.
도 8은 단일 반송파 통신과 다중 반송파 통신을 설명하기 위한 도면이다.
도 9는 새 반송파 타입(new carrier type, NCT) 콤퍼넌트 반송파(component carrier, CC)에서의 동기화(synchronization) 수행을 위한 본 발명의 일 실시예를 설명하기 위한 도면이다.
도 10 및 도 11은 NCT CC에서의 동기화 수행을 위한 본 발명의 다른 실시예를 설명하기 위한 도면이다.
도 12는 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 PSS(Primary Synchronization Signal) 및 SSS의 위치의 일 예를 나타낸 것이다.
도 13은 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 PSS 및 SSS의 위치의 다른 예를 나타낸 것이다.
도 14는 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 PSS 및 SSS의 위치의 또 다른 예를 나타낸 것이다.
도 15는 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 PSS 및 SSS의 위치의 또 다른 예를 나타낸 것이다.
도 16은 채널 상태 정보 참조 신호(channel state information reference signal, CSI-RS) 구성들을 예시한 것이다.
도 17은 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 동기 신호(synchronization signal, SS)의 위치의 예를 나타낸 것이다.
도 18은 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 SS의 위치의 다른 예를 나타낸 것이다.
도 19는 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 SS의 위치의 또 다른 예를 나타낸 것이다.
도 20은 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 SS의 위치의 또 다른 예를 나타낸 것이다.
도 21은 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 SS의 위치의 또 다른 예를 나타낸 것이다.
도 22은 본 발명의 일 실시예에 따른 NCT CC의 중심 주파수의 예를 나타낸 것이다.
도 23은 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
설명의 편의를 위하여 본 발명의 구체적인 실시 예들은 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution) 혹은 3GPP LTE-A(LTE-Advanced)를 기반으로 설명되나 본 발명은 LTE/LTE-A 시스템뿐만 아니라 다른 무선 통신 시스템에도 적용될 수 있다.
이하에서는 기존 무선 통신 표준에 따라 구성되는 반송파를 레거시 반송파 타입(legacy carrier type, LCT) 반송파, LCT 콤퍼넌트 반송파(component carrier, CC) 혹은 정규 반송파(normal carrier)라 칭하고, LCT 반송파의 제약에 비해 상대적으로 적은 제약에 따라 구성되는 반송파를 새로운 타입 반송파(new carrier type, NCT) 반송파, NCT CC 혹은 확장 반송파(extended carrier)라 칭하여 본 발명의 구체적인 실시예들이 설명된다.
본 발명에 있어서, 사용자기기(user equipment, UE)는 고정되거나 이동성을 가질 수 있으며, 기지국(base station, BS)과 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, BS는 일반적으로 UE 및/또는 다른 BS와 통신하는 고정국(fixed station)을 말하며, UE 및 타 BS와 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point), PS(Processing Server) 등 다른 용어로 불릴 수 있다. 이하의 본 발명에 관한 설명에서는, BS를 eNB로 통칭한다.
본 발명에서 노드(node)라 함은 UE와 통신하여 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 다양한 형태의 eNB들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 예를 들어, BS, NB, eNB, 피코-셀 eNB(PeNB), 홈 eNB(HeNB), 릴레이, 리피터 등이 노드가 될 수 있다. 또한, 노드는 eNB가 아니어도 될 수 있다. 예를 들어, 무선 리모트 헤드(radio remote head, RRH), 무선 리모트 유닛(radio remote unit, RRU)가 될 수 있다. RRH, RRU 등은 일반적으로 eNB의 전력 레벨(power level) 보다 낮은 전력 레벨을 갖는다. RRH 혹은 RRU이하, RRH/RRU)는 일반적으로 광 케이블 등의 전용 회선(dedicated line)으로 eNB에 연결되어 있기 때문에, 일반적으로 무선 회선으로 연결된 eNB들에 의한 협력 통신에 비해, RRH/RRU와 eNB에 의한 협력 통신이 원활하게 수행될 수 있다. 일 노드에는 최소 하나의 안테나가 설치된다. 상기 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 노드는 포인트(point)라고 불리기도 한다.
본 발명에서 셀(cell)이라 함은 하나 이상의 노드가 통신 서비스를 제공하는 일정 지리적 영역을 말한다. 따라서, 본 발명에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드로부터의/로의 하향링크/상향링크 신호를 의미한다. UE에게 상/하향링크 통신 서비스를 제공하는 셀을 특히 서빙 셀(serving cell)이라고 한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다. LTE/LTE-A 기반의 시스템에서, UE는 특정 노드로부터의 하향링크 채널 상태를 상기 특정 노드의 안테나 포트(들)이 상기 특정 노드에 할당된 CRS (Cell-specific Reference Signal) 자원 상에서 전송되는 CRS(들) 및/또는 CSI-RS(Channel State Information Reference Signal) 자원 상에서 전송하는 CSI-RS(들)을 이용하여 측정할 수 있다. 한편, 3GPP LTE/LTE-A 시스템은 무선 자원을 관리하기 위해 셀(Cell)의 개념을 사용하고 있는데, 무선 자원과 연관된 셀(Cell)은 지리적 영역의 셀(cell)과 구분된다. 무선 자원과 연관된 셀(Cell)에 대해서는 이하 도 8에서 자세히 서술된다.
3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 BS와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS, CRS), UE-특정적 RS(UE-specific RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 한편, 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DM RS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
RS들은 특정 UE 혹은 UE 그룹에 전용되느냐 여부에 따라 공통 RS(common RS)와 전용 RS(dedicated RS, DRS)로 구별될 수 있다. CRS, CSI-RS 등은 셀 내 모든 UE들에 의해 공용되므로 공통 RS로 분류될 수 있고, DMRS, UE-특정적 RS, SRS 등은 특정 UE 혹은 UE 그룹에 의해 전용되므로 DRS로 분류될 수 있다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, eNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-특정적 RS가 할당된 혹은 구성된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-특정적 RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, CSI-RS가 할당된 심볼은 CSI-RS 심볼이라고 칭하며, CSI-RS가 할당된 부반송파는 CSI-RS 부반송파라 칭하며, CSI-RS가 할당된 RE는 CSI-RS RE라고 칭한다. 또한, CSI-RS 전송을 위해 구성된 CRS-RS 서브프레임이라 칭한다. 또한, 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 구성된 OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.
특히, 도 1(a)는 3GPP LTE/LTE-A 시스템에서 사용되는 주파수분할듀플렉스(frequency division duplex, FDD)용 프레임 구조를 나타낸 것이고, 도 1(b)는 3GPP LTE/LTE-A 시스템에서 사용되는 시분할듀플렉스(time division duplex, TDD)용 프레임 구조를 나타낸 것이다.
도 1을 참조하면, 3GPP LTE/LTE-A 시스템에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임(subframe, SF)으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송 시간 간격(transmission time interval, TTI)로 정의된다. 시간 자원은 무선 프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다.
무선 프레임은 듀플레스(duplex) 모드에 따라 다르게 구성(configure)될 수 있다. 예를 들어, FDD 모드에서, 하향링크 전송 및 상향링크 전송은 주파수에 의해 구분되므로, 무선 프레임은 특정 주파수 대역에 대해 하향링크 서브프레임 또는 상향링크 서브프레임 중 하나만을 포함한다. TDD 모드에서 하향링크 전송 및 상향링크 전송은 시간에 의해 구분되므로, 특정 주파수 대역에 대해 무선 프레임은 하향링크 서브프레임과 상향링크 서브프레임을 모두 포함한다.
표 1은 TDD 모드에서, 무선 프레임 내 서브프레임들의 DL-UL 구성(configuration)을 예시한 것이다.
표 1
DL-UL configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5ms D S U U U D S U U U
1 5ms D S U U D D S U U D
2 5ms D S U D D D S U D D
3 10ms D S U U U D D D D D
4 10ms D S U U D D D D D D
5 10ms D S U D D D D D D D
6 5ms D S U U U D S U U D
표 1에서, D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, S는 특이(special) 서브프레임을 나타낸다. 특이 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)의 3개 필드를 포함한다. DwPTS는 하향링크 전송용으로 유보되는 시간 구간이며, UpPTS는 상향링크 전송용으로 유보되는 시간 구간이다. 표 2는 특이 프레임의 구성(configuration)을 예시한 것이다.
표 2
Special subframe configuration Normal cyclic prefix in downlink Extended cyclic prefix in downlink
DwPTS UpPTS DwPTS UpPTS
Normal cyclic prefix in uplink Extended cyclic prefix in uplink Normal cyclic prefix in uplink Extended cyclic prefix in uplink
0 6592·Ts 2192·Ts 2560·Ts 7680·Ts 2192·Ts 2560·Ts
1 19760·Ts 20480·Ts
2 21952·Ts 23040·Ts
3 24144·Ts 25600·Ts
4 26336·Ts 7680·Ts 4384·Ts 5120·Ts
5 6592·Ts 4384·Ts 5120·Ts 20480·Ts
6 19760·Ts 23040·Ts
7 21952·Ts - - -
8 24144·Ts - - -
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 2는 3GPP LTE/LTE-A 시스템의 자원격자(resource grid)의 구조를 나타낸다. 안테나 포트당 1개의 자원격자가 있다.
도 2를 참조하면, 슬롯은 시간 도메인(time domain)에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 도메인(frequency domain)에서 복수의 자원 블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 도 2를 참조하면, 각 슬롯에서 전송되는 신호는 NDL/UL RB*NRB sc개의 부반송파(subcarrier)와 NDL/UL symb개의 OFDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, NDL RB은 하향링크 슬롯에서의 자원 블록(resource block, RB)의 개수를 나타내고, NUL RB은 UL 슬롯에서의 RB의 개수를 나타낸다. NDL RB와 NUL RB은 DL 전송 대역폭과 UL 전송 대역폭에 각각 의존한다. NDL symb은 하향링크 슬롯 내 OFDM 심볼의 개수를 나타내며, NUL symb은 UL 슬롯 내 OFDM 심볼의 개수를 나타낸다. NRB sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.
OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM(Single Carrier Frequency Division Multiplexing) 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP(cyclic prefix)의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 정규(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 2에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 도 2를 참조하면, 각 OFDM 심볼은, 주파수 도메인에서, NDL/UL RB*NRB sc개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호(reference signal)의 전송 위한 참조신호 부반송파, 가드 밴드(guard band) 또는 직류(Direct Current, DC) 성분을 위한 널(null) 부반송파로 나뉠 수 있다. DC 성분은 OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수(carrier frequency, f0)로 맵핑(mapping)된다. 반송파 주파수는 중심 주파수(center frequency, fc)라고도 한다.
일 RB는 시간 도메인에서 NDL/UL symb개(예를 들어, 7개)의 연속하는 OFDM 심볼로서 정의되며, 주파수 도메인에서 NRB sc개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다. 따라서, 하나의 RB는 NDL/UL symb*NRB sc개의 자원요소로 구성된다. 자원격자 내 각 자원요소는 일 슬롯 내 인덱스 쌍 (k, 1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 NDL/UL RB*NRB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 NDL/UL symb-1까지 부여되는 인덱스이다.
한편, 일 RB는 일 물리 자원 블록(physical resource block, PRB)와 일 가상자원 블록(virtual resource block, VRB)에 각각 맵핑된다. PRB는 시간 도메인에서 NDL/UL symb개(예를 들어, 7개)의 연속하는 OFDM 심볼 혹은 SC-FDM 심볼로서 정의되며, 주파수 도메인에서 NRB sc개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 따라서, 하나의 PRB는 NDL/UL symb×NRB sc개의 자원요소로 구성된다. 일 서브프레임에서 NRB sc개의 연속하는 동일한 부반송파를 점유하면서, 상기 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 PRB 쌍이라고 한다. PRB 쌍을 구성하는 2개의 RB는 동일한 PRB 번호(혹은, PRB 인덱스라고도 함)를 갖는다.
UE가 eNB로부터 신호를 수신하거나 상기 eNB에 신호를 전송하기 위해서는 상기 UE의 시간/주파수 동기를 상기 eNB의 시간/주파수 동기와 맞춰야 한다. eNB와 동기화되어야만, UE가 DL 신호의 복조(demodulation) 및 UL 신호의 전송을 정확한 시점에 수행하는 데 필요한 시간 및 주파수 파라미터를 결정할 수 있기 때문이다.
도 3은 동기 신호(synchronization signal, SS)의 전송을 위한 무선 프레임 구조를 예시한 것이다. 특히, 도 3은 주파수 분할 듀플렉스(frequency division duplex, FDD)에서 동기 신호 및 PBCH의 전송을 위한 무선 프레임 구조를 예시한 것으로서, 도 3(a)는 정규 CP(normal cyclic prefix)로써 구성된 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이고 도 3(b)는 확장 CP(extended CP)로써 구성된 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이다.
UE는 전원이 켜지거나 새로이 셀에 진입한 경우 상기 셀과의 시간 및 주파수 동기를 획득하고 상기 셀의 물리 셀 식별자(physical cell identity)를 검출(detect)하는 등의 셀 탐색(initial cell search) 과정(procedure)을 수행한다. 이를 위해, UE는 eNB로부터 동기신호, 예를 들어, 1차 동기신호(Primary Synchronization Signal, PSS) 및 2차 동기신호(Secondary Synchronization Signal, SSS)를 수신하여 eNB와 동기를 맞추고, 셀 식별자(identity, ID) 등의 정보를 획득할 수 있다.
도 3을 참조하여, SS를 조금 더 구체적으로 설명하면, 다음과 같다. SS는 PSS와 SSS로 구분된다. PSS는 OFDM 심볼 동기, 슬롯 동기 등의 시간 도메인 동기 및/또는 주파수 도메인 동기를 얻기 위해 사용되며, SSS는 프레임 동기, 셀 그룹 ID 및/또는 셀의 CP 구성(즉, 일반 CP 또는 확장 CP의 사용 정보)를 얻기 위해 사용된다. 도 3을 참조하면, PSS와 SSS는 매 무선 프레임의 2개의 OFDM 심볼에서 각각 전송된다. 구체적으로 SS는 인터-RAT(inter radio access technology) 측정의 용이함을 위해 GSM(Global System for Mobile communication) 프레임 길이인 4.6 ms를 고려하여 서브프레임 0의 첫 번째 슬롯과 서브프레임 5의 첫 번째 슬롯에서 각각 전송된다. 특히 PSS는 서브프레임 0의 첫 번째 슬롯의 마지막 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막 OFDM 심볼에서 각각 전송되고, SSS는 서브프레임 0의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼에서 각각 전송된다. 해당 무선 프레임의 경계는 SSS를 통해 검출될 수 있다. PSS는 해당 슬롯의 맨 마지막 OFDM 심볼에서 전송되고 SSS는 PSS 바로 앞 OFDM 심볼에서 전송된다. SS의 전송 다이버시티(diversity) 방식은 단일 안테나 포트(single antenna port)만을 사용하며 표준에서는 따로 정의하고 있지 않다. 즉, 단일 안테나 포트 전송 혹은 UE에 투명한(transparent) 전송 방식(예, PVS(Precoding Vector Switching), TSTD(Time Switched Diversity), CDD(cyclic delay diversity))이 SS의 전송 다이버시티를 위해 사용될 수 있다.
SS는 3개의 PSS와 168개의 SS의 조합을 통해 총 504개의 고유한 물리 계층 셀 식별자(physical layer cell ID)를 나타낼 수 있다. 다시 말해, 상기 물리 계층 셀 ID들은 각 물리 계층 셀 ID가 오직 하나의 물리-계층 셀-식별자 그룹의 부분이 되도록 각 그룹이 3개의 고유한 식별자들을 포함하는 168개의 물리-계층 셀-식별자 그룹들로 그룹핑된다. 따라서, 물리 계층 셀 식별자 Ncell ID = 3N(1) ID + N(2) ID는 물리-계층 셀-식별자 그룹을 나타내는 0부터 167까지의 범위 내 번호 N(1) ID와 상기 물리-계층 셀-식별자 그룹 내 상기 물리-계층 식별자를 나타내는 0부터 2까지의 번호 N(2) ID에 의해 고유하게 정의된다. UE는 PSS를 검출하여 3개의 고유한 물리-계층 식별자들 중 하나를 알 수 있고, SSS를 검출하여 상기 물리-계층 식별자에 연관된 168개의 물리 계층 셀 ID들 중 하나를 식별할 수 있다. 길이 63의 ZC(Zadoff-Chu) 시퀀스가 주파수 도메인에서 정의되어 PSS로서 사용된다. 예를 들어, ZC 시퀀스는 다음의 수학식에 의해 정의될 수 있다.
[규칙 제91조에 의한 정정 12.04.2013] 
수학식 1
Figure WO-DOC-MATHS-1
여기서, NZC=63이며, DC 부반송파에 해당하는 시퀀스 요소(sequence element)인 n=31은 천공(puncturing)된다.
PSS는 중심 주파수에 가까운 6개 RB(= 72개 부반송파)에 맵핑된다. 상기 72개의 부반송파들 중 9개의 남는 부반송파는 항상 0의 값을 나르며, 이는 동기 수행을 위한 필터 설계가 용이해지는 요소로서 작용한다. 총 3개의 PSS가 정의되기 위해 수학식 1에서 u=24, 29 및 34가 사용된다. u=24 및 u=34는 켤레대칭(conjugate symmetry) 관계를 가지고 있기 때문에 2개의 상관(correlation)이 동시에 수행될 수 있다. 여기서 켤레대칭이라 함은 다음의 수학식의 관계를 의미한다.
[규칙 제91조에 의한 정정 12.04.2013] 
수학식 2
Figure WO-DOC-MATHS-2
켤레대칭의 특성을 이용하면 u=29와 u=34에 대한 원샷 상관기(one-shot correlator)가 구현될 수 있으며, 켤레대칭이 없는 경우에 비해, 전체적인 연산량이 약 33.3% 감소될 수 있다.
조금 더 구체적으로는, PSS를 위해 사용되는 시퀀스 d(n)은 주파수 도메인 ZC 시퀀스로부터 다음 식에 따라 생성된다.
[규칙 제91조에 의한 정정 12.04.2013] 
수학식 3
Figure WO-DOC-MATHS-3
여기서, ZC 루트 시퀀스 인덱스 u는 다음의 표에 의해 주어진다.
[규칙 제91조에 의한 정정 12.04.2013] 
표 3
Figure WO-DOC-TABLE-90
도 3을 참조하면, PSS는 5ms마다 전송되므로 UE는 PSS를 검출함으로써 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 하나임을 알 수 있으나, 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 구체적으로 무엇인지는 알 수 없다. 따라서, UE는 PSS만으로는 무선 프레임의 경계를 인지하지 못한다. 즉, PSS만으로는 프레임 동기가 획득될 수 없다. UE는 일 무선 프레임 내에서 두 번 전송되되 서로 다른 시퀀스로서 전송되는 SSS를 검출하여 무선 프레임의 경계를 검출한다.
도 4는 2차 동기 신호(secondary synchronization signal, SSS)의 생성 방식을 설명하기 위해 도시된 것이다. 구체적으로, 도 4는 논리 도메인(logical domain)에서의 2개 시퀀스가 물리 도메인으로 맵핑되는 관계를 도시한 것이다.
SSS를 위해 사용되는 시퀀스는 2개의 길이 31의 m-시퀀스들의 인터리빙된 연결(interleaved concatenation)으로서, 상기 접합된 시퀀스는 PSS에 의해 주어지는 스크램블링 시퀀스에 의해 스크램블링된다. 여기서, m-시퀀스는 PN(Pseudo Noise) 시퀀스의 일종이다.
도 4를 참조하면, SSS 부호 생성을 위해 사용되는 2개의 m-시퀀스를 각각 S1, S2라고 하면, S1과 S2는 PSS 기반의 서로 다른 2개의 시퀀스들이 SSS에 스클램블링된다. 이때, S1과 S2는 서로 다른 시퀀스에 의해 스클램블링된다. PSS 기반의 스크램블링 부호는 x5 + x3 + 1의 다항식으로부터 생성된 m-시퀀스를 순환 천이하여 얻어질 수 있는데, PSS 인덱스에 따라 6개의 시퀀스가 상기 m-시퀀스의 순환 천이에 의해 생성된다. 그 후 S2는 S1 기반의 스크램블링 부호에 의해 스크램블링된다. S1 기반의 스크램블링 부호는 x5 + x4 + x2 + x1 + 1의 다항식으로부터 생성된 m-시퀀스를 순환 천이하여 얻어질 수 있는데, S1의 인덱스에 따라 8개의 시퀀스가 상기 m-시퀀스의 순환 천이에 의해 생성된다. SSS의 부호는 5ms마다 교환(swap)되지만 PSS 기반의 스클램블링 부호는 교환되지 않는다. 예를 들어, 서브프레임 0의 SSS가 (S1, S2)의 조합으로 셀 그룹 식별자를 나른다고 가정하면, 서브프레임 5의 SSS는 (S2, S1)으로 교환(swap)된 시퀀스를 나른다. 이를 통해, 10ms의 무선 프레임 경계가 구분될 수 있다. 이 때 사용되는 SSS 부호는 x5 + x2 + 1의 다항식으로부터 생성되며, 길이 31의 m-시퀀스의 서로 다른 순환 천이(circular shift)를 통해 총 31개의 부호가 생성될 수 있다.
SSS를 정의하는 2개의 길이 31인 m-시퀀스들의 조합(combination)은 서브프레임 0과 서브프레임 5에서 다르며, 2개의 길이 31인 m-시퀀스들의 조합에 따라 총 168개의 셀 그룹 식별자(cell group ID)가 표현된다. SSS의 시퀀스로서 사용되는 m-시퀀스는 주파수 선택적 환경에서 강건하다는 특성이 있다. 또한, 고속 하다마드 변환(fast Hadarmard transform)을 이용한 고속 m-시퀀스 변환에 의해 변환될 수 있기 때문에 m-시퀀스가 SSS로서 활용되면, UE가 SSS를 해석하는 데 필요한 연산량을 줄일 수 있다. 또한 2개의 짧은 부호(short code)로서 SSS가 구성됨으로써 UE의 연산량이 감소될 수 있다.
조금 더 구체적으로 SSS의 생성에 관해 설명하면, SSS를 위해 사용되는 시퀀스 d(0),...,d(61)은 2개의 길이-31의 이진(binary) 시퀀스들의 인터리빙된 연결이다. 상기 연결된 시퀀스는 PSS에 의해 주어지는 스크램블링 시퀀스로 스크램블링된다.
PSS를 정의하는 2개의 길이-31인 시퀀스들의 조합은 서브프레임 0와 서브프레임 5에서 다음에 따라 다르다.
수학식 4
Figure PCTKR2013000713-appb-M000004
여기서, 0≤n≤30이다. 인덱스 m0 및 m1은 물리-계층 셀-식별자 그룹 N(1) ID로부터 다음에 따라 유도된다.
수학식 5
Figure PCTKR2013000713-appb-M000005
수학식 5의 출력(output)은 수학식 11 다음의 표 4에 리스트된다.
2개의 시퀀스들 S(m0) 0(n) 및 S(m1) 1(n)는 다음에 따라 m-시퀀스 s(n)의 2개의 다른 순환 천이들로서 정의된다.
수학식 6
Figure PCTKR2013000713-appb-M000006
여기서, s(i) = 1 - 2x(i) (0≤i≤30)는 초기 조건(initial conditions) x(0)=0, x(1)=0, x(2), x(3)=0, x(4)=1로 다음 식에 의해 정의된다.
수학식 7
2개의 스크램블링 시퀀스들 c0(n) 및 c1(n)은 PSS에 의존하며 m-시퀀스 c(n)의 2개의 다른 순환 천이들에 의해 다음 식에 따라 정의된다.
수학식 8
Figure PCTKR2013000713-appb-M000008
여기서, N(2) ID∈{0,1,2}는 물리-계층 셀 식별자 그룹 N(1) ID 내의 물리-계층 식별자이고 c(i) = 1 - 2x(i) (0≤i≤30)는 초기 조건(initial conditions) x(0)=0, x(1)=0, x(2), x(3)=0, x(4)=1로 다음 식에 의해 정의된다.
수학식 9
Figure PCTKR2013000713-appb-M000009
스크램블링 시퀀스 Z(m0) 1(n) 및 Z(m1) 1(n)는 다음 식에 따라 m-시퀀스 z(n)의 순환 천이에 의해 정의된다.
수학식 10
Figure PCTKR2013000713-appb-M000010
여기서, m0 및 m1은 수학식 11 다음에 기재된 표 4로부터 얻어지며 z(i) = 1 - 2x(i) (0≤i≤30)는 초기 조건(initial conditions) x(0)=0, x(1)=0, x(2), x(3)=0, x(4)=1로 다음 식에 의해 정의된다.
[규칙 제91조에 의한 정정 12.04.2013] 
수학식 11
Figure WO-DOC-MATHS-11
표 4
N(1) ID m0 m1 N(1) ID m0 m1 N(1) ID m0 m1 N(1) ID m0 m1 N(1) ID m0 m1
0 0 1 34 4 6 68 9 12 102 15 19 136 22 27
1 1 2 35 5 7 69 10 13 103 16 20 137 23 28
2 2 3 36 6 8 70 11 14 104 17 21 138 24 29
3 3 4 37 7 9 71 12 15 105 18 22 139 25 30
4 4 5 38 8 10 72 13 16 106 19 23 140 0 6
5 5 6 39 9 11 73 14 17 107 20 24 141 1 7
6 6 7 40 10 12 74 15 18 108 21 25 142 2 8
7 7 8 41 11 13 75 16 19 109 22 26 143 3 9
8 8 9 42 12 14 76 17 20 110 23 27 144 4 10
9 9 10 43 13 15 77 18 21 111 24 28 145 5 11
10 10 11 44 14 16 78 19 22 112 25 29 146 6 12
11 11 12 45 15 17 79 20 23 113 26 30 147 7 13
12 12 13 46 16 18 80 21 24 114 0 5 148 8 14
13 13 14 47 17 19 81 22 25 115 1 6 149 9 15
14 14 15 48 18 20 82 23 26 116 2 7 150 10 16
15 15 16 49 19 21 83 24 27 117 3 8 151 11 17
16 16 17 50 20 22 84 25 28 118 4 9 152 12 18
17 17 18 51 21 23 85 26 29 119 5 10 153 13 19
18 18 19 52 22 24 86 27 30 120 6 11 154 14 20
19 19 20 53 23 25 87 0 4 121 7 12 155 15 21
20 20 21 54 24 26 88 1 5 122 8 13 156 16 22
21 21 22 55 25 27 89 2 6 123 9 14 157 17 23
22 22 23 56 26 28 90 3 7 124 10 15 158 18 24
23 23 24 57 27 29 91 4 8 125 11 16 159 19 25
24 24 25 58 28 30 92 5 9 126 12 17 160 20 26
25 25 26 59 0 3 93 6 10 127 13 18 161 21 27
26 26 27 60 1 4 94 7 11 128 14 19 162 22 28
27 27 28 61 2 5 95 8 12 129 15 20 163 23 29
28 28 29 62 3 6 96 9 13 130 16 21 164 24 30
29 29 30 63 4 7 97 10 14 131 17 22 165 0 7
30 0 2 64 5 8 98 11 15 132 18 23 166 1 8
31 1 3 65 6 9 99 12 16 133 19 24 167 2 9
32 2 4 66 7 10 100 13 17 134 20 25 - - -
33 3 5 67 8 11 101 14 18 135 21 26 - - -
SSS을 이용한 셀(cell) 탐색 과정을 수행하여 DL 신호의 복조(demodulation) 및 UL 신호의 전송을 정확한 시점에 수행하는 데 필요한 시간 및 주파수 파라미터를 결정한 UE는 또한 상기 eNB로부터 상기 UE의 시스템 구성에 필요한 시스템 정보를 획득해야 상기 eNB와 통신할 수 있다.
시스템 정보는 마스터정보블락(Master Information Block, MIB) 및 시스템정보블락(System Information Blocks, SIBs)에 의해 구성된다. 각 시스템정보블락은 기능적으로 연관된 파라미터의 모음을 포함하며, 포함하는 파라미터에 따라 마스터정보블락(Master Information Block, MIB) 및 시스템정보블락타입1(System Information Block Type 1, SIB1), 시스템정보블락타입2(System Information Block Type 2, SIB2), SIB3~SIB8으로 구분된다. MIB는 UE가 eNB의 네트워크(network)에 초기 접속(initial access)하는 데 필수적인, 가장 자주 전송되는 파라미터들을 포함한다. SIB1은 다른 SIB들의 시간 도메인 스케줄링에 대한 정보뿐만 아니라, 특정 셀이 셀 선택에 적합한 셀인지를 판단하는 데 필요한 파라미터들을 포함한다.
UE는 MIB를 브로드캐스트 채널(예, PBCH)를 통해 수신할 수 있다. MIB에는 하향링크 시스템 대역폭(dl-Bandwidth, DL BW), PHICH 구성(configuration), 시스템 프레임 넘버(SFN)가 포함된다. 따라서, UE는 PBCH를 수신함으로써 명시적(explicit)으로 DL BW, SFN, PHICH 구성에 대한 정보를 알 수 있다. 한편, PBCH를 수신을 통해 UE가 암묵적(implicit)으로 알 수 있는 정보로는 eNB의 전송 안테나 포트의 개수가 있다. eNB의 전송 안테나 개수에 대한 정보는 PBCH의 에러 검출에 사용되는 16-비트 CRC(Cyclic Redundancy Check)에 전송 안테나 개수에 대응되는 시퀀스를 마스킹(예, XOR 연산)하여 암묵적으로 시그널링된다.
PBCH는 40ms 동안에 4개의 서브프레임에 맵핑된다. 40ms의 시간은 블라인드 검출되는 것으로서 40ms의 시간에 대한 명시적인 시그널링이 별도로 존재하지는 않는다. 시간 도메인에서, PBCH는 무선프레임 내 서브프레임 0 내 슬롯 1(서브프레임 0의 두 번째 슬롯)의 OFDM 심볼 0~3에서 전송된다.
주파수 도메인에서, PSS/SSS 및 PBCH는 실제 시스템 대역폭과 관계없이 해당 OFDM 심볼 내에서 DC 부반송파를 중심으로 좌우 3개씩 총 6개의 RB, 즉 총 72개의 부반송파들 내에서만 전송된다. 따라서, UE는 상기 UE에게 구성된 하향링크 전송 대역폭과 관계없이 SS 및 PBCH를 검출 혹은 복호할 수 있도록 구성된다.
초기 셀 탐색을 마치고 eNB의 네트워크에 접속한 UE는 PDCCH 및 상기 PDCCH에 실린 정보에 따라 PDSCH를 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다. 상술한 바와 같은 절차를 수행한 UE는 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신 및 PUSCH/PUCCH 전송을 수행할 수 있다.
도 5는 무선 통신 시스템에서 사용되는 하향링크(downlink, DL) 서브프레임 구조를 예시한 것이다.
도 5를 참조하면, DL 서브프레임은 시간 도메인에서 제어 영역(control region)과 데이터 영역(data region)으로 구분된다. 도 5를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역(control region)에 대응한다. 이하, DL 서브프레임에서 PDCCH 전송에 이용가능한 자원 영역(resource region)을 PDCCH 영역이라 칭한다. 제어 영역으로 사용되는 OFDM 심볼(들)이 아닌 남은 OFDM 심볼들은 PDSCH(Physical Downlink Shared CHannel)가 할당되는 데이터 영역(data region)에 해당한다. 이하, DL 서브프레임에서 PDSCH 전송에 이용가능한 자원 영역을 PDSCH 영역이라 칭한다. 3GPP LTE에서 사용되는 DL 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 UL 전송에 대한 응답으로서 HARQ(Hybrid Automatic Repeat Request) ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 상향링크 제어 정보(downlink control information, DCI)라고 지칭한다. DCI는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷(Transmit Format) 및 자원 할당 정보는 DL 스케줄링 정보 혹은 DL 그랜트(DL grant)라고도 불리며, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보는 UL 스케줄링 정보 혹은 UL 그랜트(UL grant)라고도 불린다. 일 PDCCH가 나르는 DCI는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다.
복수의 PDCCH가 제어영역 내에서 전송될 수 있다. UE는 복수의 PDCCH를 모니터링 할 수 있다. BS는 UE에게 전송될 DCI에 따라 DCI 포맷을 결정하고, DCI에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹(또는 스크램블)된다. 예를 들어, PDCCH가 특정 UE을 위한 것일 경우, 해당 UE의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system information block, SIB))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다. CRC 마스킹(또는 스크램블)은 예를 들어 비트 레벨에서 CRC와 RNTI를 XOR 연산하는 것을 포함한다.
PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 네 개의 RE에 대응한다. 네 개의 QPSK 심볼이 각각의 REG에 맵핑된다. 참조신호(RS)에 의해 점유된 자원요소(RE)는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수는 RS의 존재 여부에 따라 달라진다. REG 개념은 다른 하향링크 제어채널(즉, PCFICH 및 PHICH)에도 사용된다. DCI 포맷 및 DCI 비트의 개수는 CCE의 개수에 따라 결정된다. CCE들은 번호가 매겨져 연속적으로 사용되고, 복호 프로세스를 간단히 하기 위해, n개 CCE들로 구성된 포맷을 가지는 PDCCH는 n의 배수에 해당하는 번호를 가지는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송에 사용되는 CCE의 개수는 채널 상태에 따라 기지국에 의해 결정된다. 예를 들어, 좋은 하향링크 채널을 가지는 UE(예, eNB에 인접함)을 위한 PDCCH의 경우 하나의 CCE로도 충분할 수 있다. 그러나, 열악한 채널을 가지는 UE(예, 셀 경계에 근처에 존재)를 위한 PDCCH의 경우 충분한 강건성(robustness)을 얻기 위해서는 8개의 CCE가 요구될 수 있다. 또한, PDCCH의 파워 레벨은 채널 상태에 맞춰 조정될 수 있다.
3GPP LTE/LTE-A 시스템의 경우, 각각의 UE을 위해 PDCCH가 위치할 수 있는 CCE 세트를 정의하였다. UE가 자신의 PDCCH를 발견할 수 있는 CCE 세트를 PDCCH 탐색 공간, 간단히 탐색 공간(Search Space, SS)라고 지칭한다. 탐색 공간 내에서 PDCCH가 전송될 수 있는 개별 자원을 PDCCH 후보(candidate)라고 지칭한다. UE가 모니터링(monitoring)할 PDCCH 후보들의 모음은 탐색 공간으로 정의된다. 탐색 공간은 다른 크기를 가질 수 있으며, 전용(dedicated) 탐색 공간과 공통(common) 탐색 공간이 정의되어 있다. 전용 탐색 공간은 UE 특정적 탐색 공간이며, 각각의 개별 UE을 위해 구성된다. 공통 탐색 공간은 복수의 UE들을 위해 구성된다. 모든 UE는 공통 탐색 공간에 관한 정보를 제공받는다. eNB는 탐색 공간 내의 임의의 PDCCH 후보 상에서 실제 PDCCH (DCI)를 전송하고, UE는 PDCCH (DCI)를 찾기 위해 탐색 공간을 모니터링한다. 여기서, 모니터링이라 함은 모든 모니터링되는 DCI 포맷들에 따라 해당 탐색 공간 내의 각 PDCCH의 복호(decoding)를 시도(attempt)하는 것을 의미한다. UE는 상기 복수의 PDCCH를 모니터링하여, 자신의 PDCCH를 검출할 수 있다. 기본적으로 UE는 자신의 PDCCH가 전송되는 위치를 모르기 때문에, 매 서브프레임마다 해당 DCI 포맷의 모든 PDCCH를 자신의 식별자를 가진 PDCCH를 검출할 때까지 PDCCH의 복호를 시도하는데, 이러한 과정을 블라인드 검출(blind detection)(블라인드 복호(blind decoding, BD))이라고 한다.
예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC(cyclic redundancy check) 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 DL 서브프레임을 통해 전송된다고 가정한다. UE는 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A"라는 RNTI를 가지고 있는 UE는 PDCCH를 검출하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 셀 특정적 참조 신호(cell specific reference signal, CRS)를 예시한 것이다. 현재 3GPP LTE/LTE-A 표준은 해당 시스템에 정의된 다양한 RS들 중에서 CRS가 PDSCH 전송을 지원하는 셀 내 모든 DL 서브프레임들에서 전송될 것을 요구하고 있다.
도 6을 참조하면, LTE/LTE-A 시스템에서, CRS들은 안테나 포트의 개수에 따라 하나 또는 복수의 안테나 포트들 상에서 매 DL 서브프레임에서 반송파의 전체 하향링크 대역에서 전송된다. CRS는 하향링크 채널 상태 측정에 사용될 수 있는 측정용 RS이기도 하면서 데이터 복조에 사용될 수 있는 복조용 RS이기도 하다. CRS는 채널 상태 측정 및 데이터 복조뿐만 아니라, UE가 eNB가 상기 UE와의 통신에 사용하는 반송파의 시간 동기 및 주파수 동기를 획득한 이후 시간 동기를 유지하고 주파수 오프셋을 보정하는 등의 트랙킹(tracking)에 사용된다.
도 7은 무선 통신 시스템에 사용되는 상향링크(uplink, UL) 서브프레임 구조의 일례를 나타낸 것이다.
도 7을 참조하면, UL 서브프레임은 주파수 도메인에서 제어 영역과 데이터 영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 상향링크 제어 정보(uplink control information, UCI)를 나르기 위해, 상기 제어 영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, UL 서브프레임의 데이터 영역에 할당될 수 있다.
UL 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어 영역으로 활용된다. 다시 말해, UL 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로서, 주파수 상향변환 과정에서 반송파 주파수 f0로 맵핑된다. 일 UE에 대한 PUCCH는 일 서브프레임에서, 일 반송파 주파수에서 동작하는 자원들에 속한 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB 쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ-ACK: PDCCH에 대한 응답 및/또는 PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. PDCCH 혹은 PDSCH가 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송된다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(이하, NACK), DTX(Discontinuous Transmission) 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK이라는 용어는 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보(feedback information)이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
도 8은 단일 반송파 통신과 다중 반송파 통신을 설명하기 위한 도면이다. 특히, 도 8(a)는 단일 반송파의 서브프레임 구조를 도시한 것이고 도 8(b)는 다중 반송파의 서브프레임 구조를 도시한 것이다.
도 8(a)를 참조하면, 일반적인 무선 통신 시스템은 하나의 DL 대역과 이에 대응하는 하나의 UL 대역을 통해 데이터 전송 혹은 수신을 수행(주파수분할듀플렉스(frequency division duplex, FDD) 모드의 경우)하거나, 소정 무선 프레임(radio frame)을 시간 도메인(time domain)에서 상향링크 시간 유닛과 하향링크 시간 유닛으로 구분하고, 상/하향링크 시간 유닛을 통해 데이터 전송 혹은 수신을 수행(시분할듀플렉스(time division duplex, TDD) 모드의 경우)한다. 그러나, 최근 무선 통신 시스템에서는 보다 넓은 주파수 대역을 사용하기 위하여 복수의 UL 및/또는 DL 주파수 블록을 모아 더 큰 UL/DL 대역폭을 사용하는 반송파 집성(carrier aggregation 또는 bandwidth aggregation) 기술의 도입이 논의되고 있다. 반송파 집성은 복수의 반송파 주파수를 사용하여 DL 혹은 UL 통신을 수행한다는 점에서, 복수의 직교하는 부반송파로 분할된 기본 주파수 대역을 하나의 반송파 주파수에 실어 DL 혹은 UL 통신을 수행하는 OFDM(orthogonal frequency division multiplexing) 시스템과 구분된다. 이하, 반송파 집성에 의해 집성되는 반송파 각각을 컴포넌트 반송파(component carrier, CC)라 칭한다. 도 8(b)를 참조하면, UL 및 DL에 각각 3개의 20MHz CC들이 모여서 60MHz의 대역폭이 지원될 수 있다. 각각의 CC들은 주파수 도메인에서 서로 인접하거나 비-인접할 수 있다. 도 8(b)는 편의상 UL CC의 대역폭과 DL CC의 대역폭이 모두 동일하고 대칭인 경우가 도시되었으나, 각 CC의 대역폭은 독립적으로 정해질 수 있다. 또한, UL CC의 개수와 DL CC의 개수가 다른 비대칭적 반송파 집성도 가능하다. 특정 UE에게 한정된 DL/UL CC를 특정 UE에서의 구성된 (configured) 서빙 (serving) UL/DL CC라고 부를 수 있다.
eNB는 상기 UE에 구성된 서빙 CC들 중 일부 또는 전부를 활성화(activate)하거나, 일부 CC를 비활성화(deactivate)함으로써, UE와의 통신에 사용할 수 있다. 상기 eNB는 활성화/비활성화되는 CC를 변경할 수 있으며, 활성화/비활성화되는 CC의 개수를 변경할 수 있다. eNB가 UE에 이용가능한 CC를 셀-특정적 혹은 UE-특정적으로 할당하면, 상기 UE에 대한 CC 할당이 전면적으로 재구성되거나 상기 UE가 핸드오버(handover)하지 않는 한, 일단 할당된 CC 중 적어도 하나는 비활성화되지 않는다. UE에 대한 CC 할당의 전면적인 재구성이 아닌 한 비활성화되지 않는 CC를 1차 CC(Primary CC, PCC)라고 칭하고, eNB가 자유롭게 활성화/비활성화할 수 있는 CC를 2차 CC(Secondary CC, SCC)라고 칭한다. PCC와 SCC는 제어정보를 기준으로 구분될 수도 있다. 예를 들어, 특정 제어정보는 특정 CC를 통해서만 송수신되도록 설정될 수 있는데, 이러한 특정 CC를 PCC로 지칭하고, 나머지 CC(들)을 SCC(s)로 지칭할 수 있다.
한편, 3GPP LTE(-A)는 무선 자원을 관리하기 위해 셀(Cell)의 개념을 사용한다. 셀이라 함은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL CC와 UL CC의 조합으로 정의된다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 구성될 수 있다. 반송파 집성이 지원되는 경우, DL 자원(또는, DL CC)의 반송파 주파수(carrier frequency)와 UL 자원(또는, UL CC)의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 예를 들어, 시스템 정보 블록 타입2(System Information Block Type2, SIB2) 링키지(linkage)에 의해서 DL 자원과 UL 자원의 조합이 지시될 수 있다. 여기서, 반송파 주파수라 함은 각 셀 혹은 CC의 중심 주파수(center frequency)를 의미한다. 이하에서는 1차 주파수(Primary frequency) 상에서 동작하는 셀을 1차 셀(Primary Cell, PCell) 혹은 PCC로 지칭하고, 2차 주파수(Secondary frequency)(또는 SCC) 상에서 동작하는 셀을 2차 셀(Secondary Cell, SCell) 혹은 SCC로 칭한다. 하향링크에서 PCell에 대응하는 반송파는 하향링크 1차 CC(DL PCC)라고 하며, 상향링크에서 PCell에 대응하는 반송파는 UL 1차 CC(DL PCC)라고 한다. SCell이라 함은 RRC(Radio Resource Control) 연결 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공을 위해 사용될 수 있는 셀을 의미한다. UE의 성능(capabilities)에 따라, SCell이 PCell과 함께, 상기 UE를 위한 서빙 셀의 모음(set)를 형성할 수 있다. 하향링크에서 SCell에 대응하는 반송파는 DL 2차 CC(DL SCC)라 하며, 상향링크에서 상기 SCell에 대응하는 반송파는 UL 2차 CC(UL SCC)라 한다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다.
앞서 언급한 바와 같이, 반송파 집성에서 사용되는 셀(Cell)이라는 용어는 일 eNB 혹은 일 안테나 그룹에 의해 통신 서비스가 제공되는 일정 지리적 영역을 지칭하는 셀(cell)이라는 용어와 구분된다. 일정 지리적 영역을 지칭하는 셀(cell)과 반송파 집성의 셀(Cell)을 구분하기 위하여, 본 발명에서는 반송파 집성의 셀(Cell)을 CC로 칭하고, 지리적 영역의 셀(cell)을 셀(cell)이라 칭한다.
기존 LTE/LTE-A 시스템에 따른 SS의 경우, UE가 CC로의 초기 접속을 시도할 때 SS를 통해서 시간 동기, 주파수 동기, 서브프레임 경계, 무선 프레임 경계, 셀 ID를 획득하고, 중심 주파수를 트랙킹(tracking)한다. 이와 같이 초기 접속되어야 할 CC의 경우, eNB와 UE 간에 미리 약속된 주기와 패턴으로 SS가 전송된다. UE는 상기 UE가 초기 접속을 시도하는 CC의 주파수 대역폭을 알 수 없기 때문에 SS는 가장 기본이 되는 최소 주파수 대역폭으로 전송된다.
한편, 기존 LTE/LTE-A 시스템에서는 복수의 CC들이 집성되어 사용될 때, 주파수 도메인 상에서 그리 멀리 떨어지지 않은 CC들이 집성된다는 가정 하에 SCC의 UL/DL 프레임 시간 동기가 PCC의 시간 동기와 일치한다고 가정하였다. 하지만, 향후 UE가 서로 다른 주파수 대역(band)에 속한 혹은 주파수 상에서 많이 이격된, 즉, 전파(propagation) 특성이 다른 복수의 CC들이 집성될 가능성이 있다. 이 경우, 종래와 같이 PCC의 시간 동기와 SCC의 시간 동기가 동일하다는 가정은 SCC의 DL/UL 신호의 동기화에 심각한 악영향을 미칠 수 있다.
한편, LCT CC의 경우, 상기 LCT CC에서 동작하는 무선 자원들 중에서 물리 상향링크/하향링크 채널들의 전송/수신에 이용 가능한 무선 자원들과 물리 상향링크/하향링크 신호들의 전송/수신에 이용 가능한 무선 자원들이, 도 1 내지 도 7에서 설명한 바와 같이, 미리 정해져 있다. 다시 말해, LCT CC는 임의의 시간 자원에서 임의의 시간 주파수를 통해 물리 채널/신호들을 나르도록 구성되는 것이 아니라 물리 채널 혹은 물리 신호의 종류에 따라 특정 시간 자원에서 특정 시간 주파수를 통해 해당 물리 채널/신호를 나르도록 구성되어야 한다. 예를 들어, 물리 하향링크 제어 채널들은 DL 서브프레임의 OFDM 심볼들 중 선두 OFDM 심볼(들)에만 구성될 수 있으며, PDSCH는 물리 하향링크 제어 채널들이 맵핑될 가능성이 있는 상기 선두 OFDM 심볼(들)에는 구성될 수 없다. 다른 예로, eNB의 안테나 포트(들)에 대응한 CRS(들)이 eNB의 DL BW에 관계없이 전 대역에 걸쳐 도 6에 도시된 RE들에서 매 서브프레임마다 전송된다. 이에 따라, eNB의 안테나 포트 개수가 1개인 경우에는 도 6에서 '0'으로 표시된 RE들이, eNB의 안테나 포트 개수가 4개인 경우에는 도 6에서 '0', '1', '2' 및 '3'으로 표시된 RE들이 다른 하향링크 신호 전송에 사용될 수 없다. 이 외에도 LCT CC의 구성에 관한 다양한 제약 조건들이 존재하며, 통신 시스템의 발달에 따라 이러한 제약 조건들이 매우 많이 늘어난 상태이다. 이러한 제약 조건들 중 몇몇은 해당 제약 조건이 만들어질 당시의 통신 기술 수준 때문에 생겨나 통신 기술이 발달함에 따라 불필요해진 제약 조건들도 있으며, 동일 목적을 위한 기존 기술의 제약 조건과 신규 기술의 제약 조건이 동시에 존재하는 경우도 있다. 이와 같이 제약 조건들이 너무 많아짐에 따라 통신 시스템의 발전을 위해 도입된 제약 조건들이 오히려 해당 CC의 무선 자원들을 효율적으로 사용할 수 없게 만드는 요인으로 작용하고 있다. 따라서, 통신 기술의 발달에 따라 불필요해진 제약 조건들로부터는 자유로우면서 기존 제약 조건들보다는 간소화된 제약 조건에 따라 구성될 수 있는 NCT CC의 도입이 논의되고 있다.
본 발명에서 NCT CC는 CRS가 매 DL 서브프레임마다 해당 CC에 구성되어야 한다는 제약 조건, eNB의 안테나 포트별로 CRS가 해당 CC에 구성되어야 한다는 제약 조건, DL 서브프레임의 소정 개수의 선두 OFDM 심볼이 해당 CC의 주파수 대역 전체에 걸쳐 PDCCH 등의 제어채널의 전송을 위해 유보되어야 한다는 제약 조건 중 적어도 하나를 만족하지 않을 수 있다. 예를 들어, NCT CC 상에서는 CRS가 매 서브프레임마다가 아닌 소정 개수(>1)의 서브프레임들마다에서 구성될 수 있다. 혹은, NCT CC 상에서는 eNB의 안테나 포트의 개수에 관계없이 1개 안테나 포트(예, 안테나 포트 0)에 대한 CRS만 구성될 수 있다. 혹은, 채널 상태 측정 및 복조를 위한 기존 CRS 대신에 시간 동기 및/또는 주파수 동기의 트랙킹을 위해 트랙킹 RS가 새로이 정의되고, 상기 트랙킹 RS가 NCT CC상의 일부 서브프레임 및/또는 일부 주파수 자원에 구성될 수 있다. 혹은, NCT CC 상의 선두 OFDM 심볼들에 PDSCH가 구성되거나, 상기 선두 OFDM 심볼들이 아닌 기존 PDSCH 영역에 PDCCH가 구성되거나, PDCCH 일부 주파수 자원을 이용하여 구성될 수 있다.
NCT CC는 기존 시스템의 제약 조건들에 따라 구성된 것이 아니기 때문에 기존 시스템에 따라 구현된 UE에 의해 인식될 수 없다. 이하, 기존 시스템에 따라 구현되어 NCT CC를 지원할 수 없는 UE를 레거시 UE라 칭하고, NCT CC를 지원하도록 구현된 UE를 NCT UE라 칭한다.
반송파 집성의 경우, 이러한 NCT CC는 SCC로 사용될 수 있다. 나아가, PCC로도 사용될 수 있다. NCT CC는 레거시 UE에 의한 사용을 고려하지 않기 때문에 레거시 UE는 NCT CC에서 셀 탐색, 셀 선택, 셀 재선택 등을 수행할 필요가 없다.
NCT CC가 PCC로 사용되지 않고 NCT CC가 SCC로만 사용되는 경우, PCC로도 사용될 수 있는 기존 LCT CC에 비해 SCC에 대한 불필요한 제약 조건들을 줄일 수 있어 보다 효율적인 CC의 사용이 가능해진다. 그러나, NCT CC의 시간/주파수 동기는 PCC의 동기와 일치하지 않을 수 있으므로, UE는 NCT CC의 시간 동기화와 주파수 동기화를 수행할 필요가 있다. 따라서, DL용 NCT CC는 UE가 시간 동기화 및 주파수 동기화를 수행할 수 있도록 함과 동시에 레거시 UE가 PSS/SSS를 검출하는 것을 방지하도록 구성될 필요가 있다. 따라서, 본 발명에서는 NCT CC에서 UE가 DL 신호의 동기화를 수행할 수 있게 함과 동시에 레거시 UE가 동기화 수행을 통해 NCT CC를 검출하는 것을 방지하는 방안들을 제안한다.
나아가, CRS가 트랙킹용으로만 사용되거나 트랙킹 RS가 정의되는 경우, CRS는 복조용으로 사용될 수 없기 때문에 CRS 기반의 데이터 복조와 UE-특정적 RS, 즉, 복조 참조 신호(DMRS) 기반의 데이터 복조 중 DMRS 기반의 데이터 복조만이 지원될 가능성이 있다. 이 경우, PSS/SSS가 맵핑되는 OFDM 심볼의 위치와 DMRS가 맵핑되는 심볼의 위치가 충돌할 때 DMRS RE의 천공(puncturing)하고 CRS 기반의 데이터 복조를 수행하는 것이 어려울 수 있다. 따라서, CRS가 트랙킹용으로만 사용되거나 트랙킹 RS가 정의되어 CRS가 복조용으로 사용될 수 없도록 NCT CC가 구성되는 경우에는 PSS/SSS의 위치가 변경될 필요가 있다. 이하, 트랙킹용으로만 사용되는 CRS 혹은 새로운 RS를 트랙킹 RS라 총칭한다.
NCT CC가 SCC로서 사용되는 경우, UE는 PCC를 통해 셀 ID, CP 길이, 시스템 정보 등의 정보를 획득할 있으므로, NCT CC에서의 SS는 셀 ID의 획득, CP 길이 검출에 사용될 필요가 없어진다. 따라서, 기존 시스템과 달리 PSS와 SSS가 모두 전송될 필요는 없다. UE가 NCT CC 상에서 DL 신호의 시간 동기화 및/또는 주파수 동기화를 수행하기 위해 동기 신호(SS)가 사용될 수 있다. 이 때, 사용되는 SS는 기존의 PSS/SSS에 사용된 신호와 동일할 수도 있고, 새로운 SS가 사용될 수도 있다.
1. PSS를 이용한 NCT CC의 동기화
PSS와 SSS 중 PSS만을 이용하여 NCT CC의 동기화가 수행되는 것이 가능하다.
도 9는 NCT CC에서의 동기화 수행을 위한 본 발명의 일 실시예를 설명하기 위한 도면이다. 도 9(a)는, 도 3(a)에 도시된, 정규 CP로써 구성된 무선 프레임 내 PSS/SSS 및 PBCH을 포함하는 OFDM 심볼들을 다시 도시한 것이고, 도 9(b)는 PSS와 SSS 중 PSS만을 사용하여 동기화를 수행하는 예를 설명하기 위해 도시된 것이다.
NCT CC의 동기화에 PSS만이 사용되는 경우, 레거시 UE는 PSS를 검출하더라도 SSS를 하지 못하므로 NCT CC를 검출할 수는 없다.
PSS만을 사용할 경우, NCT UE는 PSS를 이용하여 서브프레임의 동기를 맞출 수 있지만, 10ms의 프레임 동기는 맞출 수 없게 된다. 서브프레임 0에서 전송되는 PSS와 서브프레임 5에 전송되는 PSS의 시간 구간(time duration)은 5ms의 주기를 지니기 때문에 UE는 PSS를 통해 5ms의 경계는 인지할 수 있으나, 10ms의 경계는 인지하지 못하기 때문이다. 이러한 문제점을 해결하기 위해, 2개의 PSS가 5ms이 아닌 다른 시간 구간으로 전송되도록 정의될 수 있다. 예를 들어, 도 9(b)를 참조하면 2개의 PSS가 각각 서브프레임 0과 서브프레임 5에서 위치하지만 각 서브프레임 내에서 PSS를 갖는 OFDM 심볼을 기존(도 9(a) 참조)과 달리하여, UE로 하여금 10ms 프레임 경계를 검출할 수 있도록 할 수 있다. 다른 예로 하나의 PSS가 서브프레임 n에서 전송되면 다른 하나의 PSS는 서브프레임 n+5가 아닌 다른 서브프레임에서 전송되게 PSS들을 구성함으로써 UE로 하여금 10ms 프레임 경계를 검출할 수 있도록 할 수 있다. 즉, PSS가 5ms이 아닌 주기를 갖도록 전송되거나, 연속된 PSS들의 간격이 기존의 간격과 다르게 구성될 수 있다.
UE가 10ms 프레임 경계를 검출할 수 있도록 하는 다른 방법으로 10ms의 배수에 해당하는 구간(duration) 동안 하나의 PSS만을 전송하는 기법이 있을 수 있다. 또는 10ms 무선 프레임 동안 3개 이상의 PSS를 전송함으로써 PSS의 전송 간격이 등(equal) 간격이 아니도록 함으로써 UE로 하여금 10ms의 프레임 경계를 검출하도록 할 수도 있다. 이를 확장하여, n*10ms 간격 동안 k개의 PSS를 등 간격이 아니도록 위치시킴으로써 UE는 10ms의 프레임 경계를 검출하도록 할 수도 있다.
한편, 현재 PSS에는 루트(root) 인덱스에 의해 구별되는 세 종류의 시퀀스들이 존재한다. NCT CC에서 PSS만으로도 동기화가 수행될 수 있도록 하기 위해 3종류의 서로 다른 PSS들이 이용될 수 있다. 예를 들어, 3개의 PSS들을 PSS0, PSS1, PSS2라고 칭하면, PSS0가 첫 번째 PSS로서 사용되고, PSS1이 두 번째 PSS로서 사용될 수 있다. 또는 PSS0, PSS1, PSS2가 돌아가며 PSS로서 사용될 수도 있다. 혹은 하나의 시퀀스가 PSS의 전송 시점마다 서로 다른 주파수 축 혹은 시간 축으로 순환 천이되어 전송될 수도 있다. 예를 들어, PSS0가 첫 번째 PSS로서 전송되면 PSS0가 시간 축에서 k만큼 순환 천이된 시퀀스가 두 번째 PSS로서 전송될 수 있다.
LCT CC 상의 PSS는 주파수 축의 중심 6개 RB 상에 구성되며, 레거시 UE는 중심 주파수에 가까운 상기 6개 RB들 상에서 SS의 검출을 시도하도록 구현된다. PSS만으로 NCT CC의 동기화가 수행될 때 레거시 UE가 NCT CC 상의 PSS를 검출하는 것을 아예 막기 위하여 NCT CC 상에서는 PSS가 중심 주파수에서 정해진 크기만큼 벗어나도록 위치되는 것이 가능하다. 이 경우, 레거시 UE는 중심 주파수에 인접한 6개 RB들만을 이용해 PSS를 검출하려고 할 것이므로 NCT CC의 PSS는 검출할 수 없게 된다. 3GPP LTE/LTE-A 시스템에서 레거시 UE는 300kHz 단위로 중심 주파수를 탐색한다. 따라서, 레거시 UE가 PSS를 검출하여 NCT CC를 LCT CC로 오인하는 것을 방지하기 위해 중심 주파수에서 벗어나는 정도는 300kHz의 배수가 아닌 것이 바람직하다.
2. SSS를 이용한 NCT CC의 동기화
PSS와 SSS 중 SSS만을 이용하여 NCT CC의 동기화가 수행되는 것이 가능하다. 레거시 UE가 NCT CC 상에서 PSS를 검출하는 것을 방지하기 위해 NCT CC 상에는 PSS가 아예 구성되지 않거나 기존과 동일하지 않은 위치에 PSS가 구성될 수 있다. 예를 들어, 첫 번째 PSS가 서브프레임 n에 위치하면 LCT CC 상에서는 두 번째 PSS가 서브프레임 n+5에 위치할 것이나 NCT CC 상에서는 두 번째 PSS가 서브프레임 n에 위치하지 않게 함으로써 레거시 UE가 PSS를 제대로 검출하지 못하도록 하고 나아가 SSS를 검출하지 못하도록 할 수 있다. 특히 NCT CC 상에 PSS가 구성되지 않으면 레거시 UE가 PSS를 검출함으로써 CC를 인식하는 것을 방지할 수 있다. 레거시 UE는 PSS를 이용하여 SSS를 검출하므로 PSS를 검출하지 못하면 SSS도 검출할 수 없고 나아가 NCT CC의 존재를 인식할 수 없으므로 NCT CC를 검출할 수 없게 된다.
PSS를 검출하지 못하면 3*168개의 셀 ID들 중 해당 CC의 셀 ID가 속한 168개의 셀 ID들을 한정할 수 없으므로, 원칙적으로는 UE가 해당 CC의 셀 ID를 검출할 수 없다. 그러나 NCT CC가 SCC로만 사용되는 경우, NCT UE는 PCC 상의 PSS 및 SSS를 이용하여 셀 ID를 검출하거나 NCT CC 전에 반송파 집성된 다른 서빙 CC를 통해 셀 ID를 수신하므로 큰 오버헤드 없이 NCT CC의 SSS를 검출할 수 있다. 또한, NCT CC의 SSS 시퀀스가 LCT CC에서와 마찬가지로 PSS를 이용하여 결정되면 NCT UE는 PCC의 PSS 혹은 서빙 CC들 중 임의의 LCT CC의 PSS를 이용하여 SSS를 검출할 수 있다. 나아가 LCT CC를 동일한 물리 계층 셀 ID들이 NCT CC에서도 사용되고 동일 셀 내의 CC들의 물리 계층 셀 ID가 동일하다면, NCT UE는 PCC로부터 획득한 혹은 임의의 서빙 CC를 통해 수신한 물리 계층 셀 ID와, PCC 혹은 임의의 서빙 CC의 PSS를 알고 있으므로 NCT CC 상에서 전송될 SSS의 시퀀스도 알 수 있다. 따라서, NCT UE가 용이하게 NCT CC 상에서 SSS를 검출하여 상기 NCT CC와 동기화할 수 있다. 즉, NCT UE는 NCT CC 상에서 PSS의 검출없이 SSS만을 검출하는 것도 가능하도록 구현될 것이므로, NCT CC의 SSS를 검출하여 동기화를 수행하면 된다.
기존과 마찬가지로 서로 다른 시퀀스들이 하나의 프레임 내에서 전송되는 2개의 SSS들로서 사용될 수 있다. 서브프레임 0의 SSS와 서브프레임 5의 SSS가 기존과 마찬가지로 서로 다른 시퀀스인 경우, NCT UE는 동기화를 수행함과 동시에 10ms 프레임 경계도 검출할 수 있다. 하나의 10ms 프레임에 존재하는 2개의 SSS들은 5ms이 아닌 다른 간격으로 가질 수 있다. 예를 들어, 기존과 마찬가지로 서브프레임 0과 서브프레임 5에 SSS가 각각 구성되되 기존과 다른 OFDM 심볼에 구성될 수 있다. 다른 예로, 하나의 SSS가 서브프레임 n에 위치하면, 다른 하나의 SSS는 서브프레임 n+5에 위치하지 않도록 함으로써, NCT UE가 10ms 프레임 경계를 검출할 수 있도록 할 수 있다.
NCT CC의 하나의 프레임에서는 동일한 시퀀스가 2개의 SSS들로서 사용될 수 있다. 동일한 시퀀스가 SSS로서 기존과 마찬가지로 5ms마다 전송되면 UE가 SSS들을 이용하여 10ms 프레임 경계를 검출할 수 없으므로, 2개의 SSS가 5ms이 아닌 다른 간격을 지닐 수 있다. 예를 들어, 2개의 SSS가 서브프레임 0와 서브프레임 5에 위치하되 각 서브프레임 내 SSS를 갖는 OFDM 심볼을 기존과 달리하여, UE로 하여금 10ms 프레임 경계를 검출할 수 있도록 할 수 있다. 다른 예로, 하나의 PSS가 서브프레임 n에서 전송되면 다른 하나의 PSS는 서브프레임 n+5가 아닌 다른 서브프레임에서 전송되게 PSS들을 구성함으로써 UE로 하여금 10ms 프레임 경계를 검출할 수 있도록 할 수 있다. 즉, SSS가 5ms이 아닌 주기를 갖도록 전송하거나, 연속된 PSS들의 간격을 다르게 할 수 있다.
NCT CC에서 10ms의 배수에 해당하는 시간 간격 동안에 하나의 SSS만이 사용되는 것도 가능하다. 이 경우, NCT UE는 10ms 프레임 경계를 검출할 수 있다. 상기 하나의 SSS는 기존의 2가지 SSS들 중 하나의 형태를 지닐 수 있으며, 기존의 2가지 SSS들이 번갈아 가며 혹은 일정한 패턴을 가지고 상기 하나의 SSS로서 사용될 수도 있다. 기존과 다른 새로운 형태의 시퀀스가 NCT CC 상에서 전송되는 상기 하나의 SSS로서 사용되는 것도 가능하다.
NCT CC에서 10ms 무선 프레임 동안 3개 이상의 SSS가 등(equal) 간격이 아니도록 구성됨으로써 NCT UE로 하여금 10ms 프레임 경계를 검출할 수 있도록 할 수 있다. 이를 확장하여, n*10ms 간격 동안 k개의 SSS를 등 간격이 아니도록 위치시킴으로써 UE는 10ms의 프레임 경계를 검출하도록 할 수도 있다. 이 때 사용되는 SSS는 기존의 2가지 SSS들 중 하나의 형태를 가질 수도 있고, 기존의 2가지 SSS들이 번갈아 가며 혹은 일정한 패턴을 가지고 상기 하나의 SSS로서 사용될 수도 있다. 기존과 다른 형태의 새로운 시퀀스가 NCT 상에서 전송되는 상기 하나의 SSS로서 사용되는 것도 가능하다.
현재 168개의 서로 구분되는 시퀀스들이 SSS로서 존재하며, 상기 시퀀스들은 m0, m1의 2개 인덱스에 의해 구별된다. NCT CC에서 SSS만으로 동기화가 수행되기 위해 168개의 서로 다른 SSS들이 이용될 수 있다. 예를 들어, 첫 번째 SSS를 위해서 사용되는 m0, m1과 두 번째 SSS를 위해 사용되는 m0, m1이 다르게 설정될 수 있다. 혹은 SSS를 위해서 여러 개의 SSS 시퀀스들이 돌아가며 사용될 수도 있다. 혹은 하나의 시퀀스가 SSS의 전송 시점마다 서로 다른 주파수 축 혹은 시간 축으로 순환 천이될 수도 있다. 예를 들어, m0, m1을 인덱스로 갖는 시퀀스가 첫 번째 SSS로서 사용되면, 상기 시퀀스가 시간 축 혹은 주파수 축으로 k만큼 순환 천이된 시퀀스가 두 번째 SSS로서 사용될 수 있다.
3. PSS 및 SSS를 이용한 NCT CC의 동기화
PSS와 SSS 둘 다를 이용하여 NCT CC의 동기화가 수행되는 것이 가능하다. PSS와 SSS 둘 다가 NCT CC의 동기화에 사용되면 NCT CC는 SCC뿐만 아니라 PCC로도 사용될 수 있다. 다시 말해, NCT CC가 다른 CC에 대한 2차 CC가 아닌 독립형(stand-alone) CC로서 사용될 수도 있다.
도 10 및 도 11은 NCT CC에서의 동기화 수행을 위한 본 발명의 다른 실시예를 설명하기 위한 도면이다.
도 10(a)를 참조하면, LCT CC 상에서 PSS와 SSS는 주파수 축의 중심 6개 RB에 위치한다. 레거시 UE가 NCT CC의 동기화를 위한 SS를 검출하는 것을 막기 위하여, 도 10(b)에 도시된 바와 같이, NCT CC 상에서는 중심 주파수에서 정해진 크기만큼 벗어나도록 PSS와 SSS가 위치될 수 있다. 중심 주파수를 중심으로 6개 RB들에서 PSS와 SSS를 검출하도록 구현된 레거시 UE는 중심 6개 RB들만을 이용해 SS의 검출을 시도할 것이므로 중심 주파수에서 벗어나도록 구성된 SS를 검출할 수 없다.
NCT CC의 SS가 중심 주파수에서 벗어나는 정도는 300kHz의 배수가 아닌 것이 바람직하다. 또한, NCT CC의 SS가 중심 주파수로부터 RB 단위로 벗어나도록 정의되는 경우, NCT CC의 SS가 중심 주파수로부터 벗어나는 정도는 5개 RB들(=900kHz)의 배수가 아닌 것이 좋다.
레거시 UE가 NCT CC의 SS를 검출하는 것을 막기 위한 다른 방법으로, SS들이 기존의 SSS, PSS의 순서가 아니라, 도 11(a)에 도시된 것과 같이 PSS, SSS의 순서로 NCT CC에 배치될 수 있다. 또는 도 11(b)에 도시된 것과 같이 SS들이 서브프레임 0에서는 기존과 마찬가지로 SSS, PSS의 순서로 배치되나 서브프레임 5에서는 기존과 다르게 PSS, SSS의 순서로 배치될 수도 있다.
또는 레거시 UE가 NCT CC의 SS를 검출하는 것을 막기 위한 또 다른 방법으로, 도 11(c)에 도시된 것과 같이 첫 번째 PSS/SSS를 갖는 서브프레임에서 상기 첫 번째 PSS/SSS를 갖는 OFDM 심볼의 위치와 두 번째 PSS/SSS를 갖는 서브프레임에서 상기 두 번째 PSS/SSS를 갖는 OFDM 심볼의 위치가 서로 다르도록 SS들이 할당될 수 있다. 또는 하나의 PSS/SSS가 서브프레임 n에 위치되면, 다른 PSS/SSS는 서브프레임 n+5에 위치하지 않도록 SS들이 할당되어, 레거시 UE가 SS를 검출하지 못하도록 할 수 있다.
PSS와 SSS는 서로 인접한 OFDM 심볼들에 위치할 수도 있고, 서로 떨어져 있는 OFDM 심볼들에 위치할 수도 있다. 예를 들어, OFDM 심볼 5에 SSS가 위치되고 OFDM 심볼 7에 PSS가 위치되어 레거시 UE가 SS를 검출하지 못하도록 할 수 있다. 이를 확장하여, PSS/SSS가 전송될 때마다 (주기적으로) PSS/SSS를 갖는 OFDM 심볼의 위치가 서브프레임 내에서 달라지도록 SS가 구성될 수도 있다. 예를 들어, 서브프레임 0에서 구성되는 SSS와 PSS는 상기 서브프레임 0의 OFDM 심볼 5와 6에 각각 위치되지만, 서브프레임 5에 구성되는 SSS와 PSS는 상기 서브프레임 5의 OFDM 심볼 5와 OFDM 심볼 6에 위치될 수 있다.
PSS와 SSS의 위치가 기존과 다르게 변경될 때, PSS/SSS가 맵핑되는 서브프레임에서 다른 물리 신호와의 충돌을 피하기 위하여, CRS, DRS 및 CSI-RS의 위치가 고려될 수 있다. 예를 들어, 다음과 같은 상황이 고려될 수 있다.
1) CRS, UE-특정적 RS, CSI-RS가 존재하는 서브프레임
도 12는 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 PSS 및 SSS의 위치의 일 예를 나타낸 것이다.
한 서브프레임 내에 도 12(a)와 같이 CRS와 UE-특정적 RS가 존재할 수 있다. 여기서 CRS는 트랙킹 RS일 수 있다. PSS와 SSS는 CRS와 UE-특정적 RS가 위치하는 OFDM 심볼이 아닌 다른 심볼에 위치될 수 있다. 이 때, SSS, PSS의 순서로 2개의 연속하는 OFDM 심볼들에 SS들이 위치하면, 레거시 UE가 NCT CC를 인식할 수 있으므로, SSS와 PSS가 1개 서브프레임 이상 떨어져 위치하거나 PSS와 SSS의 순서로 연속하여 위치하도록 SS들이 할당된다.
SSS가 서브프레임의 OFDM 심볼 n에 위치하고 PSS가 상기 서브프레임의 OFDM 심볼 n+3에 위치하면 레거시 UE가 해당 프레임을 TDD 프레임으로 인지할 위험이 있다. 따라서, SSS가 서브프레임의 OFDM 심볼 n에 위치하고 PSS가 OFDM 심볼 n+3에 위치하지 않도록 SS들이 할당되는 것이 좋다. 예를 들어, 도 12(b)를 참조하면, 서브프레임 내 2개 슬롯 중 일 슬롯의 OFDM 심볼 1과 OFDM 심볼 3에 각각 SSS와 PSS가 위치하도록 SS들이 할당될 수 있다. 또는 서브프레임 내 2개 슬롯 중 일 슬롯의 OFDM 심볼 1과 OFDM 심볼 3에 각각 PSS와 SSS가 위치하도록 SS들이 할당될 수 있다.
PSS/SSS를 갖는 서브프레임에서 PSS 및 SSS가 맵핑되는 OFDM 심볼들의 위치를 CRS 및 UE-특정적 RS를 고려하여 예시하면 다음과 같다.
표 5
PSS SSS
OFDM 심볼 인덱스 1 of 1st slot 2 of 1st slot
1 of 1st slot 3 of 1st slot
2 of 1st slot 3 of 1st slot
2 of 1st slot 1 of 1st slot
3 of 1st slot 1 of 1st slot
3 of 1st slot 2 of 1st slot
1 of 2nd slot 2 of 2nd slot
1 of 2nd slot 3 of 2nd slot
2 of 2nd slot 3 of 2nd slot
2 of 2nd slot 1 of 2nd slot
3 of 2nd slot 1 of 2nd slot
3 of 2nd slot 2 of 2nd slot
PSS 또는 SSS와 CSI-RS가 충돌하면, 즉, PSS 또는 SSS를 나르는 시간-주파수 자원과 CSI-RS를 나르는 시간-주파수 자원이 겹치면, PSS/SSS와 CSI-RS가 충돌하는 자원에서는 CSI-RS가 전송되지 않고 SS만이 전송되도록 할 수 있다.
2) UE-특정적 RS, CSI-RS가 존재하는 서브프레임
도 13은 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 PSS 및 SSS의 위치의 다른 예를 나타낸 것이다.
한 서브프레임 내에 도 13(a)와 같이 UE-특정적 RS가 존재할 수 있다. PSS와 SSS는 UE-특정적 RS가 위치하는 OFDM 심볼이 아닌 다른 심볼에 위치될 수 있다. 이 때, SSS, PSS의 순서로 2개의 연속하는 OFDM 심볼들에 SS들이 위치하면, 레거시 UE가 NCT CC를 인식할 수 있으므로, SSS와 PSS가 1개 서브프레임 이상 떨어져 위치하거나 PSS와 SSS의 순서로 연속하여 위치하도록 SS들이 할당된다.
SSS가 서브프레임의 OFDM 심볼 n(n은 0부터 13까지의 정수 중 하나)에 위치하고 PSS가 상기 서브프레임의 OFDM 심볼 n+3에 위치하면 레거시 UE가 해당 프레임을 TDD 프레임으로 인지할 위험이 있다. 따라서, SSS가 서브프레임의 OFDM 심볼 n에 위치하고 PSS가 OFDM 심볼 n+3에 위치하지 않도록 SS들이 할당되는 것이 좋다. 예를 들어, 도 13(b)를 참조하면, 서브프레임 내 2개 슬롯 중 일 슬롯의 OFDM 심볼 0과 OFDM 심볼 2에 각각 SSS와 PSS가 위치하도록 SS들이 할당될 수 있다. 또는 서브프레임 내 2개 슬롯 중 일 슬롯의 OFDM 심볼 0과 OFDM 심볼 2에 각각 PSS와 SSS가 위치하도록 SS들이 할당될 수 있다.
UE-특정적 RS를 갖는 서브프레임에서 PSS 및 SSS가 맵핑되는 OFDM 심볼들의 위치를 예시하면 다음과 같다.
[규칙 제91조에 의한 정정 12.04.2013] 
표 6
Figure WO-DOC-TABLE-6

Figure WO-DOC-6II

PSS 또는 SSS와 CSI-RS가 충돌하면, 즉, PSS 또는 SSS를 나르는 시간-주파수 자원과 CSI-RS를 나르는 시간-주파수 자원이 겹치면, PSS/SSS와 CSI-RS가 충돌하는 자원에서는 CSI-RS가 전송되지 않고 SS만이 전송되도록 할 수 있다.
정리하면, PSS와 SSS는 한 서브프레임 내 OFDM 심볼들 중 CRS와 UE-특정적 RS가 없는 OFDM 심볼들에 위치하는 동시에 PSS와 SSS가 OFDM 심볼 n과 OFDM 심볼 n±k(k는 1보다 큰 자연수)에 각각 위치할 수 있다. 또는 PSS와 SSS는 한 서브프레임 내 OFDM 심볼들 중 CRS와 UE-특정적 RS가 없는 OFDM 심볼들에 위치하는 동시에 PSS는 OFDM 심볼 n에 SSS는 OFDM 심볼 n+1에 위치할 수 있다.
PSS와 SSS 사이의 거리가 길어지면 동기화의 성능에 영향을 미치므로 PSS와 SSS는 인접한 OFDM 심볼들에 위치하는 것이 좋다. 표 5 및 표 6 중 첫 번째 슬롯의 OFDM 심볼 1 및 2가 PSS 및 SSS 혹은 SSS 및 PSS를 위해 사용되면, 정규 CP를 갖는 FDD, 확장 CP를 갖는 FDD, 정규 CP를 갖는 TDD 및 확장 CP를 갖는 TDD 모두에 대해, 인접한 PSS와 SSS 사이의 거리가 LCT CC 상의 인접한 PSS와 SSS 사이의 거리와 동일 혹은 거의 유사하게 유지하면서, NCT CC에 LCT CC와 마찬가지로 형태로 CRS, UE-특정적 RS, CSI-RS가 사용되더라도 상기 RS들의 전송과 PSS/SSS의 전송이 충돌하는 것이 방지될 수 있다. 따라서, 첫 번째 슬롯의 OFDM 심볼 1 및 2가 SS를 위해 사용되면 정규 CP를 갖는 FDD, 확장 CP를 갖는 FDD, 정규 CP를 갖는 TDD 및 확장 CP를 갖는 TDD 모두에 대해 동일한 위치에 PSS 및 SSS 혹은 SSS 및 PSS를 위치시킬 수 있다.
PSS와 SSS의 위치가 기존과 다르게 변경될 때, CRS, DRS 및 CSI-RS의 위치와 함께 PDCCH의 위치가 고려될 수 있다. 이는 PSS/SSS가 맵핑되는 서브프레임에서 상기 PSS/SSS를 전송하는 eNB에 의해 전송된 다른 물리 신호 및 물리 채널과의 충돌을 피하기 위한 것일 수도 있고 다른 eNB가 상기 서브프레임에서 전송하는 물리 신호 및 물리 채널과의 간섭을 피하기 위한 것일 수 있다. 예를 들어, 다음과 같은 상황이 고려될 수 있다.
1) 정규 CP를 갖는 FDD (FDD with normal CP)
도 14는 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 PSS 및 SSS의 위치의 또 다른 예를 나타낸 것이다.
정규 CP를 사용하는 FDD의 경우, 한 서브프레임 내에 도 14와 같이 PDCCH, CSI-RS, CRS와 UE-특정적 RS가 위치할 수 있다. PSS와 SSS는 CRS 및 UE-특정적 RS가 위치하는 OFDM 심볼의 위치를 피하여 위치할 수 있다. 이 경우, PSS와 SSS는 서브프레임 A(A는 0부터 9까지의 정수 중 하나)의 첫 번째 슬롯의 OFDM 심볼 3과 서브프레임 B(B는 0부터 9까지의 정수 중 하나)의 두 번째 슬롯의 OFDM 심볼 1에 PSS, SSS의 순으로 또는 SSS, PSS 순으로 위치할 수 있다. 서브프레임 A와 서브프레임 B는 서로 다른 서브프레임 또는 서로 인접한 서브프레임 또는 동일한 서브프레임일 수 있다. 특히 본 발명에서는 동일 서브프레임 내의 첫 번째 슬롯의 OFDM 심볼 3과 두 번째 슬롯의 OFDM 심볼 1을 각각 PSS와 SSS 혹은 SSS와 PSS를 위해 사용할 것을 제안한다.
2) 확장 CP를 갖는 FDD (FDD with extended CP)
도 15는 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 PSS 및 SSS의 위치의 또 다른 예를 나타낸 것이다.
확장 CP를 사용하는 FDD의 경우, 한 서브프레임 내에 도 15와 같이 PDCCH, CSI-RS, CRS와 UE-특정적 RS가 위치할 수 있다. PSS와 SSS는 CRS와 UE-특정적 RS가 위치하는 OFDM 심볼의 위치를 피하여 위치할 수 있다. 이 경우, PSS와 SSS는 서브프레임 A(A는 0부터 9까지의 정수 중 하나)의 두 번째 슬롯의 OFDM 심볼 1과 서브프레임 B(B는 0부터 9까지의 정수 중 하나)의 두 번째 슬롯의 OFDM 심볼 2에 PSS, SSS의 순으로 또는 SSS, PSS 순으로 위치할 수 있다. 서브프레임 A와 서브프레임 B는 서로 다른 서브프레임 또는 서로 인접한 서브프레임 또는 동일한 서브프레임일 수 있다. 특히 본 발명에서는 동일 서브프레임 내의 두 번째 슬롯의 OFDM 심볼 1과 두 번째 슬롯의 OFDM 심볼 2를 각각 PSS와 SSS 혹은 SSS와 PSS를 위해 사용할 것을 제안한다.
3) 정규 CP를 갖는 TDD (TDD with normal CP)
정규 CP를 사용하는 TDD의 경우, DL 서브프레임에, 정규 CP를 갖는 FDD와 같은 방식으로 PSS 및/또는 SSS가 위치할 수 있다. 이 경우, DL 서브프레임의 첫 번째 슬롯의 OFDM 심볼 3과 두 번째 슬롯의 OFDM 심볼 1이 SS들을 위하여 사용될 수 있다. 또는 서브프레임 1와 서브프레임 6의 OFDM 심볼들 중, PDCCH가 전송되지 않는, 첫 번째 슬롯의 OFDM 심볼 2에 PSS 또는 SSS가 위치될 수 있다.
따라서 PSS 및 SSS를 위하여, DL 서브프레임의 첫 번째 슬롯의 OFDM 심볼 3과 두 번째 슬롯의 OFDM 심볼 3, 그리고 서브프레임 1의 OFDM 심볼 2와 서브프레임 6의 OFDM 심볼 2가 사용될 수 있다.
특별히 정규 CP를 갖는 TDD에서, DL 서브프레임(예, 서브프레임 0, 5)의 첫 번째 슬롯의 OFDM 심볼과 두 번째 슬롯의 OFDM 심볼 1에 PSS, SSS의 순서 혹은 SSS, PSS의 순서로 SS들이 위치할 수 있다.
특별히 정규 CP를 갖는 TDD에서, DL 서브프레임(예, 서브프레임 0, 5)의 첫 번째 슬롯의 OFDM 심볼 3 또는 두 번째 슬롯의 OFDM 심볼 1과, 서브프레임 1, 6의 첫 번째 슬롯의 OFDM 심볼 1에 PSS, SSS의 순서 혹은 SSS, PSS의 순서로 SS들이 위치할 수 있다. 특히 본 발명에서는 서브프레임 0(및/또는 서브프레임 5)의 첫 번째 슬롯의 OFDM 심볼 3 또는 두 번째 슬롯의 OFDM 심볼 1과 서브프레임 1(및/또는 서브프레임 6)의 첫 번째 슬롯의 OFDM 심볼 2가 PSS, SSS 혹은 SSS, PSS를 위해 사용될 것을 제안한다.
4) 확장 CP를 갖는 TDD (TDD with extended CP)
확장 CP를 사용하는 TDD의 경우, DL 서브프레임에, 확장 CP를 갖는 FDD와 같은 방식으로 PSS 및/또는 SSS가 위치할 수 있다. 이 경우, DL 서브프레임의 두 번째 슬롯의 OFDM 심볼 1과 두 번째 슬롯의 OFDM 심볼 2가 SS들을 위하여 사용될 수 있다. 또는 서브프레임 1과 서브프레임 6의 OFDM 심볼들 중, PDCCH가 전송되지 않는, 첫 번째 슬롯의 OFDM 심볼 2에 PSS 또는 SSS가 위치될 수 있다.
따라서 PSS 및 SSS를 위하여, DL 서브프레임의 두 번째 슬롯의 OFDM 심볼 1과 두 번째 슬롯의 OFDM 심볼 2, 그리고 특이 서브프레임의 OFDM 심볼 2가 사용될 수 있다.
특별히 확장 CP를 갖는 TDD에서, DL 서브프레임(예, 서브프레임 0, 5)의 두 번째 슬롯의 OFDM 심볼 1과 두 번째 슬롯의 OFDM 심볼 2에 PSS, SSS의 순서 혹은 SSS, PSS의 순서로 SS들이 위치할 수 있다.
특별히 확장 CP를 갖는 TDD에서, DL 서브프레임(예, 서브프레임 0, 5)의 두 번째 슬롯의 OFDM 심볼 1 또는 두 번째 슬롯의 OFDM 심볼 2와, 서브프레임 1, 6의 첫 번째 슬롯의 OFDM 심볼 2에 PSS, SSS의 순서 혹은 SSS, PSS의 순서로 SS들이 위치할 수 있다. 특히, 본 발명에서는 서브프레임 0(및/또는 서브프레임 5)의 두 번째 슬롯의 OFDM 심볼 1 또는 두 번째 슬롯의 OFDM 심볼 2와 서브프레임 1(및/또는 서브프레임 6)의 첫 번째 슬롯의 OFDM 심볼 2가 PSS, SSS 혹은 SSS, PSS를 위해 사용될 것을 제안한다.
5) 정규 CP와 확장 CP의 구별
정규 CP를 사용하는 FDD의 경우, 서브프레임의 첫 번째 슬롯의 OFDM 심볼 3과 두 번째 슬롯의 OFDM 심볼 1가 SS들을 위해 사용될 수 있다. 확장 CP를 사용하는 FDD 경우, 서브프레임의 두 번째 슬롯의 OFDM 심볼 1과 두 번째 슬롯의 OFDM 심볼 2가 SS들을 위해 사용될 수 있다. 이 경우, 정규 CP와 확장 CP는 PSS와 SSS간의 거리 차에 의해 구별될 수 있다.
정규 CP를 사용하는 TDD의 경우, DL 서브프레임(예, 서브프레임 0, 5)의 두 번째 슬롯의 OFDM 심볼 3과 두 번째 슬롯의 OFDM 심볼 1이 SS들을 위해 사용될 수 있다. 확장 CP를 사용하는 FDD의 경우, DL 서브프레임(예, 서브프레임 0, 5)의 두 번째 슬롯의 OFDM 심볼 1과 두 번째 슬롯의 OFDM 심볼 2가 SS들을 위해 사용될 수 있다. 이 경우, 정규 CP와 확장 CP는 PSS와 SSS간의 거리 차에 의해 구별될 수 있다.
NCT CC에서의 PSS와 SSS를 위치를 정하기 위해 앞에서와 같이 PDCCH, CRS, DRS와 CSI-RS의 위치를 고려될 경우, 정규 CP를 사용하는 FDD의 경우, PSS와 SSS의 거리가 많이 떨어지게 되어 SS의 검출 및 동기화 성능이 저하될 수 있다. 이를 해결하기 위하여, CSI-RS가 위치되는 OFDM 심볼들 중 일부를 PSS 및 SSS를 위해 사용할 수 있다. 도 14를 참조하면, UE-특정적 RS의 전송에는 사용되지 않으나 CSI-RS의 전송에 사용되는 OFDM 심볼은 두 번째 슬롯의 OFDM 심볼 2와 OFDM 심볼 3이다. 이러한 OFDM 심볼들의 일부 또는 전부를 PSS 및 SSS를 위해 사용하는 것이 고려될 수 있다. 따라서 UE-특정적 RS의 전송에는 사용되지 않으나 CSI-RS의 전송에 사용되는, 두 번째 슬롯의 OFDM 심볼 2와 OFDM 심볼 3과, PDCCH, UE-특정적 RS, CSI-RS 및 CRS 모두의 전송에 사용되지 않는 두 번째 슬롯의 OFDM 심볼 1이 PSS 및 SSS의 전송에 사용될 수 있다. 이 3개의 OFDM 심볼들 중 2개의 OFDM 심볼들에 PSS와 SSS가 위치할 수 있다. 특히, PSS와 SSS의 거리를 고려하여 두 번째 슬롯의 OFDM 심볼 2 또는 OFDM 심볼 3과, 두 번째 슬롯의 OFDM 심볼 1이 사용될 수 있다. 2개의 OFDM 심볼들에 PSS, SSS의 순서 혹은 SSS, PSS의 순서로 SS들이 배치될 수 있다.
정규 CP를 사용하는 TDD의 경우도 정규 CP를 사용하는 FDD에서와 마찬가지 원리로 PSS 및 SSS의 위치가 정해질 수 있다. CSI-RS가 위치되는 OFDM 심볼들 중 일부가 정규 CP를 사용하는 TDD에서 PSS 및 SSS를 위해 사용할 수 있다. 도 14를 참조하면, UE-특정적 RS의 전송에는 사용되지 않으나 CSI-RS의 전송에 사용되는 OFDM 심볼은 두 번째 슬롯의 OFDM 심볼 2와 OFDM 심볼 3이다. 따라서 DL 서브프레임의 OFDM 심볼들 중, UE-특정적 RS의 전송에는 사용되지 않으나 CSI-RS의 전송에 사용되는, 두 번째 슬롯의 OFDM 심볼 2와 OFDM 심볼 3과, PDCCH, UE-특정적 RS, CSI-RS 및 CRS 모두의 전송에 사용되지 않는 두 번째 슬롯의 OFDM 심볼 1이 PSS 및 SSS의 전송에 사용될 수 있다. 또한 서브프레임 1, 6의 첫 번째 슬롯의 OFDM 심볼 2가 SS를 위해 사용될 수 있다. 특히, PSS와 SSS의 거리를 고려하여 두 번째 슬롯의 OFDM 심볼 2 또는 OFDM 심볼 3과, 두 번째 슬롯의 OFDM 심볼 1이 사용될 수 있다. 2개의 OFDM 심볼들에 PSS, SSS의 순서 혹은 SSS, PSS의 순서로 SS들이 배치될 수 있다. 또 다른 예로, PSS와 SSS의 거리를 고려하여 DL 서브프레임(예, 서브프레임 0, 5)의 두 번째 슬롯의 OFDM 심볼 1과 서브프레임 1, 6의 첫 번째 슬롯의 OFDM 심볼 2가 PSS 및 SSS를 위해 사용될 수 있다. 해당 OFDM 심볼들에 PSS, SSS의 순서 혹은 SSS, PSS의 순서로 SS들이 위치할 수 있다.
NCT CC에서는 PSS/SSS의 전송을 위한 OFDM 심볼들과 CSI-RS의 전송을 위한 OFDM 심볼들의 전부 혹은 일부가 겹칠 수 있다. 이 경우, PSS/SSS와 CSI-RS 모두가 구성된 OFDM 심볼 내에서는 PSS/SSS를 나르는 부반송파(또는 PSS/SSS RE를 포함하는 RB 또는 PSS/SSS를 나르는 중심 6개 RB들)에서는 CSI-RS를 천공하고 PSS/SSS가 전송될 것을 제안한다. 예를 들어 확장 CP를 사용하는 서브프레임에서 PSS/SSS를 위해 두 번째 슬롯의 OFDM 심볼 2와 두 번째 슬롯의 OFDM 심볼 1이 사용되는 경우, 두 번째 슬롯의 OFDM 심볼 2와 OFDM 심볼 3가 CSI-RS RE를 포함할 수 있다. 이 경우, 두 번째 슬롯의 OFDM 심볼 2에서 PSS/SSS가 점유하는 부반송파(또는 PSS/SSS RE를 포함하는 RB 또는 PSS/SSS를 나르는 중심 6개 RB들)에서는 CSI-RS가 천공되고 PSS/SSS는 해당 부반송파를 통해 전송될 수 있다. 따라서 UE는 CSI-RS가 구성된 OFDM 심볼과 PSS/SSS의 전송을 위한 OFDM 심볼이 충돌할 경우, PSS/SSS의 전송 자원으로서 설정된 부반송파 (또는 PSS/SSS의 전송 자원을 포함하는 RB 또는 PSS/SSS를 나르는 중심 6개 RB들)에 대해서는 PSS/SSS의 수신을 수행하고, CSI-RS는 해당 자원에서 전송되지 않는다고 가정(assume)한다.
한편, LCT CC 상에서 10ms 무선 프레임에서 두 번에 전송되는 PSS 및 SSS가 NCT CC에서는 한 번 전송되도록 구성되는 것도 가능하다. 이 경우, 레거시 UE는 SS를 검출할 수 없으나, NCT UE는 PSS 및 SSS를 이용하여 NCT CC의 동기화를 수행함과 동시에 10ms의 무선 프레임 경계를 검출할 수 있다. 또는 10ms 무선 프레임 동안 3개 이상의 PSS 및 SSS를 등 간격이 아니도록 위치시킴으로써 NCT UE로 하여금 10ms의 프레임 경계를 검출할 수 있도록 할 수 있다. 이를 확장하여 n*10ms의 시간 구간 동안 k개의 PSS/SSS를 등 간격이 아니도록 위치시킴으로써 NCT UE로 하여금 10ms의 경계를 검출할 수 있도록 할 수 있다.
PSS를 위해, 현재 3개로 구분되는 시퀀스들이 존재하며 이 시퀀스들은 루트 인덱스에 의해 구분될 수 있다. SSS를 위해, 현재 168개로 구분되는 시퀀스들이 존재하며, 이 시퀀스들은 m0, m1의 두 개의 인덱스에 의해 구별한다. NCT CC에서의 동기화 수행을 위해 PSS와 SSS가 이용되는 경우, PSS와 SSS 각각에 대하여 또는 PSS, SSS 모두에 대하여 다음과 같은 기법이 적용될 수 있다. 먼저 하나의 무선 서브프레임에서 전송되는 첫 번째 SS와 두 번째 SS에 사용되는 시퀀스들을 다르게 할 수 있다. 이 때, 첫 번째 PSS의 시퀀스와 두 번째 PSS의 시퀀스는 루트 인덱스에 의해 구분될 수 있으며, 첫 번째 SSS의 시퀀스와 두 번째 SSS의 시퀀스는 m0, m1라는 2개의 인덱스에 의해 구분될 수 있다. 또는 SS를 위하여 하나의 시퀀스가 사용되되, 서로 다른 순환 천이가 주파수 축 혹은 시간 축에서 첫 번째 SS와 두 번째 SS에 대해 적용될 수 있다. 또는 이를 확장하여, SS를 위하여 하나의 시퀀스가 사용되되, 서로 다른 순환 천이가 주파수 축 혹은 시간 축에서 여러 개의 SS들에 대해 적용될 수 있다.
6) CSI-RS 자원 혹은 CRS 자원을 이용한 PSS/SSS의 전송
PSS와 SSS가 CSI-RS가 할당될 가능성이 있는 RE(이하, CSI-RS RE)에 구성될 수 있다.
표 7 및 표 8은 도 1(a)에서 설명된 FDD용 프레임 구조(이하, FS-1)과 도 1(b)에서 설명된 TDD용 프레임 구조(이하, FS-2)에서 사용될 수 있는 CSI-RS 구성들을 예시한 것이다. CSI-RS 구성이라 함은 하나의 RB 쌍에서 CSI-RS들이 점유하는 RE들의 위치를 의미하며, CSI-RS 패턴이라고도 불린다. 특히 표 7은 정규 CP를 갖는 서브프레임에서의 CSI-RS 구성들을 나타내며, 표 8은 확장 CP를 갖는 서브프레임에서의 CSI-RS 구성들을 나타낸다.
표 7
CSI-RS configuration Number of CSI-RSs configured
1 or 2 4 8
(k',l') nsmod2 (k',l') nsmod2 (k',l') nsmod2
FS-1 and FS-2 0 (9,5) 0 (9,5) 0 (9,5) 0
1 (11,2) 1 (11,2) 1 (11,2) 1
2 (9,2) 1 (9,2) 1 (9,2) 1
3 (7,2) 1 (7,2) 1 (7,2) 1
4 (9,5) 1 (9,5) 1 (9,5) 1
5 (8,5) 0 (8,5) 0
6 (10,2) 1 (10,2) 1
7 (8,2) 1 (8,2) 1
8 (6,2) 1 (6,2) 1
9 (8,5) 1 (8,5) 1
10 (3,5) 0
11 (2,5) 0
12 (5,2) 1
13 (4,2) 1
14 (3,2) 1
15 (2,2) 1
16 (1,2) 1
17 (0,2) 1
18 (3,5) 1
19 (2,5) 1
FS-2 only 20 (11,1) 1 (11,1) 1 (11,1) 1
21 (9,1) 1 (9,1) 1 (9,1) 1
22 (7,1) 1 (7,1) 1 (7,1) 1
23 (10,1) 1 (10,1) 1
24 (8,1) 1 (8,1) 1
25 (6,1) 1 (6,1) 1
26 (5,1) 1
27 (4,1) 1
28 (3,1) 1
29 (2,1) 1
30 (1,1) 1
31 (0,1) 1
표 8
CSI-RS configuration Number of CSI-RSs configured
1 or 2 4 8
(k',l') nsmod2 (k',l') nsmod2 (k',l') nsmod2
FS-1 and FS-2 0 (11,4) 0 (11,4) 0 (11,4) 0
1 (9,4) 0 (9,4) 0 (9,4) 0
2 (10,4) 1 (10,4) 1 (10,4) 1
3 (9,4) 1 (9,4) 1 (9,4) 1
4 (5,4) 0 (5,4) 0
5 (3,4) 0 (3,4) 0
6 (4,4) 1 (4,4) 1
7 (3,4) 1 (3,4) 1
8 (8,4) 0
9 (6,4) 0
10 (2,4) 0
11 (0,4) 0
12 (7,4) 1
13 (6,4) 1
14 (1,4) 1
15 (0,4) 1
FS-2 only 16 (11,1) 1 (11,1) 1 (11,1) 1
17 (10,1) 1 (10,1) 1 (10,1) 1
18 (9,1) 1 (9,1) 1 (9,1) 1
19 (5,1) 1 (5,1) 1
20 (4,1) 1 (4,1) 1
21 (3,1) 1 (3,1) 1
22 (8,1) 1
23 (7,1) 1
24 (6,1) 1
25 (2,1) 1
26 (1,1) 1
27 (0,1) 1
표 7 또는 표 8의 (k',l') 및 ns가 다음 식에 적용되면, CSI-RS 전송하는 각 안테나 포트(이하, CSI-RS 포트)가 해당 CSI-RS의 전송에 이용하는 RE가 결정될 수 있다. 즉, CSI-RS 전송을 위해 구성된 서브프레임(이하, CSI-RS 서브프레임)에서, CSI-RS 시퀀스는 CSI-RS 포트 p상의 참조심볼(reference symbols)로서 사용되는 복소변조심볼(complex-valued modulation symbols) a(p) k,l에 다음 식에 따라 맵핑된다
수학식 12
Figure PCTKR2013000713-appb-M000012
수학식 12에서, CSI-RS 포트 p가 CSI-RS 전송에 이용하는 자원 인덱스 쌍 (k,l)은 다음 식에 따라 결정된다.
수학식 13
Figure PCTKR2013000713-appb-M000013
도 16은 채널 상태 정보 참조 신호(channel state information reference signal, CSI-RS) 구성들을 예시한 것이다. 특히 도 16(a)는 표 7의 CSI-RS 구성들 중 2개의 CSI-RS 포트들에 의한 CSI-RS 전송에 이용가능한 20가지 CSI-RS 구성 0 내지 19를 나타낸 것이고, 도 16(b)는 표 7의 CSI-RS 구성들 중 4개의 CSI-RS 포트들에 의해 이용가능한 10가지 CSI-RS 구성 0 내지 9를 나타낸 것이며, 도 16(c)는 표 7의 CSI-RS 구성들 중 8개의 CSI-RS 포트들에 의해 이용가능한 5가지 CSI-RS 구성 0 내지 4를 나타낸 것이다.
표 7, 수학식 13와 도 16을 참조하면, 정규 CP를 사용하는 FDD의 경우, OFDM 심볼 2 및 3 또는 OFDM 심볼 5 및 6에 CSI-RS가 맵핑될 수 있다. SS가 CSI-RS RE를 이용하여 전송되는 경우, CSI-RS는 PSS/SSS의 전송 시점에 해당하는 서브프레임이 CSI-RS 전송 시점에 해당하더라도, UE는 상기 서브프레임에서는 CSI-RS가 전송되지 않는다고 가정(assume)한다. PSS/SSS의 전송을 위해 사용되는 CSI-RS RE를 포함하는 OFDM 심볼은 FDD와 TDD에 대해 따로 정의될 수 있다. 표 7 및 수학식 13을 참조하면, 정규 CP를 사용하는 TDD의 경우, OFDM 심볼 1 및 3에 포함되는 CSI-RS RE들이 PSS 및 SSS의 전송에 사용될 수 있다. 확장 CP를 사용하는 TDD의 경우, OFDM 심볼 1 및 2가 PSS/SSS의 전송에 사용될 수 있다. PSS와 SSS는 PSS, SSS의 순서대로 맵핑되거나 순서를 바꾸어 SSS, PSS의 순서대로 해당 OFDM 심볼들에 맵핑될 수 있다. 즉, OFDM 심볼 1 및 3가 사용된다고 가정하면, PSS는 OFDM 심볼 1에 맵핑되고 SSS는 OFDM 심볼 3에 맵핑되거나, 그 역으로 맵핑되는 것이 가능하다.
PSS와 SSS가 CRS를 위한 자원을 이용하여 전송되는 것도 가능하다. 도 6을 참조하면, 포트 0의 CRS는 OFDM 심볼 0 및 3에 위치한다. 이 경우, PSS 및 SSS가 각각 OFDM 심볼 0과 3에 맵핑되거나, 각각 OFDM 심볼 3과 1에 맵핑될 수 있다. FDD와 TDD의 구분을 위하여, FDD일 때는 PSS와 SSS가 OFDM 심볼 0 및 3에 각각 맵핑되고 TDD일 때는 PSS와 SSS가 OFDM 심볼 3 및 0에 각각 맵핑될 수 있다. 혹은 그 반대도 가능하다. 이 경우, CRS와 PSS/SSS는 같은 서브프레임에서 전송되지 않는다고 가정한다. 한편, 4개의 안테나 포트를 가정하면, 안테나 포트 2에 대응하는 CRS를 위한 OFDM 심볼 1과, OFDM 심볼 3 및 4 중 하나가 PSS와 SSS를 위해 사용될 수 있다. PSS와 SSS는 OFDM 심볼 1, 3 및 4 중 2개의 OFDM 심볼에 존재할 수 있고, 순서는 바뀔 수 있다. FDD와 TDD의 구분을 위하여 PSS와 SSS 간의 갭(gap)이 FDD와 TDD에서 달라지도록 PSS를 위한 OFDM 심볼과 SSS를 위한 OFDM 심볼이 정의될 수 있다.
7) PSS와 SSS의 위치를 이용한 정보
NCT CC에서 PSS와 SSS의 위치를 이용하여 UE에게 셀에 대한 정보가 제공될 있다. NCT CC에 PSS와 SSS가 모두 존재하는 경우, PSS와 SSS의 위치를 이용하여 다음과 같은 정보가 표현될 수 있다.
① PSS와 SSS의 거리 차이를 이용
- FDD에 사용되는 PSS와 SSS의 거리 차, 즉, 전송 시점 간의 시간 차와 TDD에 사용되는 PSS와 SSS의 시간 축 상에서의 거리 차를 다르게 설정하여 FDD와 TDD를 구별. 기존에는 집성되는 CC들은 동일한 듀플렉스 모드로 구성되는 것으로 가정되었다. 그러나, 서로 다른 듀플렉스 모드로 동작하는 CC들의 집성이 허용될 것이 요구되고 있고, 이 경우, 본 발명에 의하면 해당 CC의 듀플렉스 모드를 나타내는 정보가 별도로 UE에게 시그널링되지 않더라도 NCT UE는 NCT CC이 어떤 듀플렉스 모드로 구성된 것인지를 식별할 수 있다는 장점이 있다.
- 확장 CP용 서브프레임에 사용되는 PSS와 SSS의 거리 차와 정규 CP용 서브프레임에 사용되는 PSS와 SSS의 거리 차를 다르게 설정하여 확장 CP와 정규 CP를 구별
② PSS와 SSS의 순서를 이용 (PSS/SSS 스와핑(swapping))
- FDD에 사용되는 PSS와 SSS의 순서와 TDD에서 사용되는 PSS와 SSS의 순서를 다르게 설정하여 FDD와 TDD를 구별. 이 때, PSS와 SSS는 서로 인접한 OFDM 심볼들에 위치할 수도 있고 떨어져 있는 OFDM 심볼들에 위치할 수도 있다. FDD를 위한 PSS와 SSS 사이의 거리 차는 TDD를 위한 PSS와 SSS 사이의 거리 차와 동일할 수도 있고 다를 수도 있다.
- 확장 CP용 서브프레임에서의 PSS와 SSS의 순서와 정규 CP용 서브프레임에서의 PSS와 SSS의 순서를 다르게 설정하여 확장 CP와 정규 CP를 구별. 이 때, PSS와 SSS는 서로 인접한 OFDM 심볼들에 위치할 수도 있고 떨어져 있는 OFDM 심볼들에 위치할 수도 있다. 확장 CP를 위한 PSS와 SSS 사이의 거리 차는 정규 CP를 위한 PSS와 SSS 사이의 거리 차와 동일할 수도 있고 다를 수도 있다.
4. 새로운 SS
레거시 UE가 NCT CC에서 SS를 검출하는 것을 방지하기 위해 NCT CC에서는 기존의 PSS/SSS가 아닌 새로운 시퀀스가 사용될 수 있다. NCT CC가 SCC로 사용되면, NCT CC에서는 SS를 통해 셀 ID를 얻어질 필요가 없으므로, 기존과 같이 셀 ID에 따라 SS가 결정되지 않아도 된다. 따라서, NCT CC에서는 새로운 시퀀스들이 사용될 수 있다. 혹은 기존의 SS 시퀀스들이 셀 ID에 연결되지 않고 독립적으로 사용될 수 있다. 동기화를 위한 N개의 시퀀스들이 존재하는 경우, eNB는 NCT CC의 동기화를 위해 사용되는 시퀀스의 인덱스 n(여기서, n = 0, 1, , (N-1)) 혹은 시퀀스 인덱스 n이 속한 그룹을 UE에게 알려줌으로써 UE가 NCT CC의 SS를 검출하도록 할 수 있다. 만일 새로운 시퀀스들이 SS로서 NCT CC에서 사용되면, 상기 새로운 시퀀스들은 레거시 UE가 사용하지 않는 SS이므로, 레거시 UE가 NCT CC의 SS를 검출하는 것을 방지할 수 있다.
NCT CC의 동기화를 위해 새로운 시퀀스가 사용될 때 NCT UE가 10ms 무선 프레임 경계를 검출할 수 있도록 하기 위해 10ms의 배수에 해당하는 구간(duration) 동안 PSS와 SSS가 한 번씩만 전송될 수 있다. NCT CC에서 10ms 무선 프레임 동안 2개 이상의 SS가 등 간격이 아니도록, 즉, PSS와 SSS가 부등 간격으로 2번 이상 전송됨으로써 NCT UE가 10ms 프레임 경계를 검출하도록 할 수 있다. 이를 확장하여, n*10ms 구간 동안 k개의 SS를 등 간격이 아니도록 위치시킴으로써 UE가10ms 경계를 검출하도록 할 수 있다. 혹은 서로 다른 2개 이상의 새로운 SS들을 사용하여 10ms 무선 프레임 경계가 NCT UE에 의해 검출되도록 할 수 있다.
5. SS의 시간 및/또는 주파수 위치의 변경 및 확장
앞서 설명한 실시예들 이외에도 NCT CC를 위한 SS가 전송되는 시간 및/또는 주파수의 위치는 다양하게 변화되어 레거시 UE가 NCT CC의 SS를 검출하는 것을 방지할 수 있다.
도 17은 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 SS의 위치의 예를 나타낸 것이다.
예를 들면 LCT CC 상의 6개 RB들에 걸쳐 전송되던 SS가 3개 RB들에만 걸쳐 전송되도록 할 수 있다. 도 17을 참조하면, LCT CC 상에서는 서브프레임의 1개 OFDM 심볼에서 6개 RB들에 걸쳐 전송되던 SS가 NCT CC 상에서는 2개 OFDM 심볼들에서 3개 RB들에 걸쳐 전송될 수 있다.
도 18은 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 SS의 위치의 다른 예를 나타낸 것이다.
혹은 도 18(a)에 도시된 것과 같이 6개 RB들에 걸쳐 전송되는 기존 시퀀스가 도 18(b) 또는 도 18(c)에 도시된 것과 같이 n만큼 반복되어 k*6개 RB들에 걸쳐 전송될 수 있다. 예를 들어 도 18(b)를 참조하면 12개 RB들에 걸쳐 SS가 전송될 때 반복된 시퀀스는 상기 12개 RB들에 걸쳐 주파수 축으로 연속적으로 전송될 수 있다. 다른 예로 도 18(c)를 참조하면 반복된 시퀀스가 기존 시퀀스와 교차되어 전송될 수도 있다.
도 19는 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 SS의 위치의 또 다른 예를 나타낸 것이다.
NCT CC를 사용하지 못하는 레거시 UE가 상기 NCT CC를 검출하지 못하도록 하기 위하여 NCT CC의 SS가 일정한 패턴으로 주파수 축 또는 시간 축에서 이동할 수 있다. SS의 주파수 축 또는 시간 축에서의 이동은 PSS와 SSS 중 하나에만 적용되거나 PSS와 SSS에 따로따로 적용되거나 PSS와 SSS 모두에 동일하게 적용될 수 있다. 또는 기존의 PSS 및 SSS를 위한 시퀀스들이 아닌 새로운 시퀀스가 사용되더라도 적용될 수 있다. 예를 들어, 매 SS에 대하여 도 19에 도시된 것과 같이 주파수 축 이동이 적용될 수 있다. 첫 번째 SS는 도 19(a)에 도시된 것과 같이 중심 주파수를 이용하여 전송되고 두 번째 SS는 도 19(b)에 도시된 것과 같이 주파수 대역의 위쪽 끝 부분의 주파수를 이용하여 전송될 수 있다. 마찬가지로 세 번째 SS는 도 19(c)에 도시된 것과 같이 주파수 대역의 아래쪽 끝 부분의 주파수를 이용하여 전송될 수 있다. 이러한 3가지 주파수 위치가 SS가 전송될 때마다 돌아가며 적용될 수 있다.
도 20은 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 SS의 위치의 또 다른 예를 나타낸 것이다.
도 20을 참조하면, 매 SS에 대하여 시간 축 위치 이동이 적용될 수 있다. 예를 들어, 첫 번째 SS는 도 10(a)에 도시된 것과 같이 OFDM 심볼 3을 이용하여 전송되고 두 번째 SS는 도 10(b)에 도시된 것과 같이 OFDM 심볼 7을 이용하여 전송되고 세 번째 SS는 OFDM 심볼 11(즉, 두 번째 슬롯의 OFDM 심볼 4)를 이용하여 전송될 수 있다. 이러한 세 가지 시간 축 위치가 SS가 전송될 때마다 돌아가면서 적용될 수 있다.
도 21은 본 발명의 일 실시예에 따른 NCT CC 상의 서브프레임 내 SS의 위치의 또 다른 예를 나타낸 것이다.
SS의 주파수 축 혹은 시간 축 호핑(hopping) 패턴은 기정의(predefine)되거나 eNB가 NCT CC를 사용하는 UE에게 지시해 줄 수 있다. SS의 주파수 축 혹은 시간 축 호핑 패턴은 고정될 수도 있고 수시로 변할 수도 있다.
NCT CC를 사용하지 못하는 레거시 UE가 NCT CC를 검출하는 것을 방지하기 위하여 NCT CC의 PSS아 SSS의 시간 축 위치와 주파수 축 위치가 도 21(b)에 도시된 것과 같이 변경될 수 있다. 도 21(a)를 참조하면 LCT CC에서는 각각 6개 RB들과 1개 OFDM 심볼에 걸쳐 SSS와 PSS가 전송된다. 도 21(b)를 참조하면, LCT CC 상에서는 PSS를 나르던 OFDM 심볼의 6개 RB들이 2개의 부분으로 나뉘고 LCT CC 상에서 SSS를 나르던 OFDM 심볼의 6개 RB들이 2개의 부분으로 나뉘어, 첫 번째 OFDM 심볼에서는 3개 RB들 만큼의 PSS와 3개 RB들 만큼의 SSS가 전송되고 두 번째 OFDM 심볼에서는 3개 RB들 만큼의 나머지 PSS와 나머지 3개 RB들 만큼의 나머지 SSS가 전송될 수 있다. 이 때, 두 번째 OFDM 심볼에서 전송되는 PSS와 SSS의 주파수 축 위치는 첫 번째 OFDM 심볼에서 전송되는 PSS와 SSS의 주파수 축 위치와 다를 수 있다.
6. 기타
전술한 실시예들 외에도, NCT CC를 위해 사용되는 SS는 기존의 PSS 혹은 SSS가 사용되되, 레거시 UE가 NCT CC의 SS를 검출할 수 없도록 하기 위해, PSS와 SSS 모두 혹은 PSS와 SSS 중 하나가 정해진 패턴으로 인터리빙(interleaving)되어 NCT CC 상에서 전송될 수 있다. 또 다른 방법으로 기존과 같은 방법으로 생성된 PSS와 SSS 모두 혹은 PSS와 SSS 중 하나가 정해진 시퀀스를 사용해 스크램블링되어 NCT CC 상에서 전송될 수 있다.
도 22은 본 발명의 일 실시예에 따른 NCT CC의 중심 주파수의 예를 나타낸 것이다.
한편, 레거시 UE가 NCT CC를 검출하지 못하도록 하기 위하여 본 발명은 NCT CC의 중심 주파수를 원래의(original) 중심 주파수로부터 이동시킬 것을 제안한다. 예를 들어, 도 22를 참조하면, NCT CC의 중심 주파수를 원래 위치해야 할 중심 주파수, 다시 말해 원래의 주파수 래스터(frequency raster)로부터 Δfc만큼 옮김으로써 레거시 UE가 NCT CC를 검출하지 못하도록 할 수 있다. 즉, CC의 동작 대역(operating band) 자체에 오프셋을 적용함으로써 NCT CC와 LCT CC를 구분할 수 있다. NCT CC의 중심 주파수가 원래의 중심 주파수에서 벗어나 위치하는 경우, 원래의 중심 주파수와 이동된 중심 주파수의 차이인 Δfc는 300kHz의 배수가 아닌 것이 바람직하다. 레거시 UE는 300kHz 단위로 중심 주파수를 탐색할 것이므로 300kHz의 주파수 래스터를 벗어난 중심 주파수는 검출할 수 없을 것이다. 이에 따라, 레거시 UE는 NCT CC를 아예 인식할 수 없게 되며 NCT CC의 SS도 검출할 수 없게 된다.
도 23은 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22)등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13,23)을 제어하도록 구성된 프로세서(11, 21)를 각각 포함한다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다.
프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(400a, 400b)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가이다. 일 전송블록(transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 Nt개(Nt는 1보다 이상의 양의 정수)의 전송 안테나를 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 Nr개의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더 이상 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다.
본 발명의 실시예들에 있어서, UE는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, eNB는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다. 이하, UE에 구비된 프로세서, RF 유닛 및 메모리를 UE 프로세서, UE RF 유닛 및 UE 메모리라 각각 칭하고, eNB에 구비된 프로세서, RF 유닛 및 메모리를 eNB 프로세서, eNB RF 유닛 및 eNB 메모리라 각각 칭한다.
본 발명의 eNB 프로세서는 도 9와 같이 PSS와 SSS를 LCT CC 상에 구성한다. 상기 eNB 프로세서는 10ms 무선 프레임마다 도 9에 PSS와 SSS가 표시된 OFDM 심볼들에서 중심 6개 RB들을 이용하여 PSS와 SSS를 전송하도록 eNB RF 유닛을 제어한다. 본 발명의 UE 프로세서는 도 9에 PSS와 SSS가 표시된 OFDM 심볼들 내 중심 6개 RB들을 이용하여 PSS와 SSS를 검출하도록 구성된다. 상기 UE 프로세서는 상기 PSS와 SSS를 이용하여 상기 LCT CC의 셀 ID, 시간 동기 및 주파수 동기, 10ms 무선 프레임 경계 등을 획득하도록 구성된다.
본 발명의 eNB 프로세서는 전술한 본 발명의 실시예들 중 어느 하나에 따라 NCT CC에 SS를 구성할 수 있다. 상기 eNB 프로세서는 전술한 본 발명의 실시예들 중 어느 하나에 따라 구성된 SS를 NCT CC 상에서 전송하도록 eNB RF 유닛을 제어할 수 있다. 본 발명의 UE RF 유닛은 eNB로부터 전송된 각종 신호들(SS, RS 등 포함)을 수신하도록 구성된다. 본 발명의 UE 프로세서는 UE RF 유닛이 수신한 신호들로부터 본 발명의 실시예들 중 어느 하나에 따라 구성된 NCT CC의 SS를 검출하도록 구성된다. 상기 UE 프로세서는 본 발명의 실시예들 중 어느 하나에 따라 구성된 SS를 NCT CC 상에서 검출하고, 상기 SS를 이용하여 상기 NCT CC의 동기화를 수행하도록 구성된다. 상기 UE 프로세서는 상기 SS를 이용하여 10ms 무선 프레임 경계를 검출하도록 구성된다. 상기 UE 프로세서는 트랙킹 RS를 검출하여 NCT CC의 시간 동기를 유지하고 상기 NCT CC의 주파수 오프셋을 조정하도록 구성될 수 있다.
예를 들어, eNB 프로세서는 PSS와 SSS 중 PSS만을 NCT CC 상에 구성하고, 상기 PSS를 상기 NCT CC 상의 해당 시간-주파수 자원을 이용하여 전송하도록 eNB RF 유닛을 제어할 수 있다. 상기 eNB 프로세서는 5ms이 아닌 다른 시간 구간(time duration)으로 PSS를 전송하도록 상기 eNB RF 유닛을 제어할 수 있다. UE RF 유닛은 UE 프로세서의 제어 하에 상기 PSS를 수신하도록 구성될 수 있다. UE 프로세서는 UE RF 유닛이 수신한 신호들로부터 NCT CC의 상기 해당 시간-주파수 자원에서 PSS를 검출하고 상기 PSS를 이용하여 상기 PSS를 나르는 상기 NCT CC의 동기화를 수행하도록 구성될 수 있다. 상기 UE 프로세서는 상기 PSS를 이용하여 10ms의 프레임 경계를 검출할 수 있다.
다른 예로, eNB 프로세서는 PSS와 SSS 중 SSS만을 NCT CC 상에 구성하고, 상기 SSS를 상기 NCT CC 상의 해당 시간-주파수 자원을 이용하여 전송하도록 eNB RF 유닛을 제어할 수 있다. 상기 eNB 프로세서는 상기 SSS의 시퀀스를 상기 eNB 프로세서가 관리하는 LCT CC 상의 PSS를 이용하여 생성할 수 있다. 상기 eNB 프로세서는 LCT CC 상의 PSS와 NCT CC 상의 SSS가 상기 LCT CC 상의 PSS 및 SSS가 나타내는 물리 계층 셀 ID와 동일한 셀 ID를 나타내도록 상기 SSS의 시퀀스를 생성할 수 있다. 상기 eNB 프로세서는 상기 LCT CC 상의 SSS와 동일한 시퀀스를 상기 NCT CC 상에서 상기 NCT CC의 동기화를 위한 SSS로서 전송하도록 상기 eNB RF 유닛을 제어할 수 있다. 상기 eNB 프로세서는 5ms이 아닌 다른 시간 구간으로 SSS를 전송하도록 상기 eNB RF 유닛을 제어할 수 있다. UE RF 유닛은 UE 프로세서의 제어 하에 상기 SSS를 수신하도록 구성될 수 있다. 상기 UE 프로세서는 SSS를 검출하도록 구성될 수 있으며, 상기 SSS를 이용하여 상기 SSS를 나르는 상기 NCT CC의 동기화를 수행할 수 있다. 상기 UE 프로세서는 PCC 상에서 검출된 PSS 혹은 임의 서빙 CC 상에서 검출된 PSS를 상기 SSS의 검출에 이용하도록 구성될 수 있다. 상기 UE 프로세서는 PCC 상에서 검출된 PSS 혹은 임의의 서빙 CC 상에서 검출된 PSS와, PCC로부터 획득하거나 임의의 서빙 CC를 통해 수신한 물리 계층 셀 ID를 상기 SSS의 검출에 이용하도록 구성될 수 있다. 상기 UE 프로세서는 상기 SSS를 이용하여 10ms 프레임 경계를 검출할 수 있다. UE가 반송파 집성으로 구성되고 상기 NCT CC가 SCC로서 부가된 경우, 상기 UE 프로세서는 PCC의 SS를 이용하여 셀 ID를 획득할 수 있다.
또 다른 예로, eNB 프로세서는 PSS와 SSS를 NCT CC 상에 구성하고, 상기 PSS와 SSS를 상기 NCT CC 상의의 해당 시간-주파수 자원들을 이용하여 전송하도록 eNB RF 유닛을 제어할 수 있다. UE RF 유닛은 UE 프로세서의 제어 하에 상기 PSS와 SSS를 수신하도록 구성될 수 있다. 상기 UE 프로세서는 NCT CC의 상기 해당 시간-주파수 자원들에서 PSS와 SSS를 검출하도로 구성될 수 있다. 상기 UE 프로세서는 상기 PSS와 SSS를 이용하여 상기 PSS 및 SSS를 나르는 상기 NCT CC의 동기화를 수행하고 10ms 프레임 경계를 검출할 수 있다.
레거시 UE가 NCT CC를 검출하는 것을 방지하기 위하여, eNB 프로세서는 LCT CC에서 PSS/SSS로서 사용되는 시퀀스와 다른 새로운 시퀀스의 PSS 및/또는 SSS를 생성하도록 구성될 수 있으며 UE 프로세서는 상기 새로운 시퀀스를 검출할 수 있도록 구성될 수 있다. 레거시 UE가 NCT CC를 검출하는 것을 방지하기 위하여, eNB 프로세서는 PSS 및/또는 SSS를 LCT CC의 PSS 및/또는 SSS와는 다른 전송 간격으로 전송하도록 eNB RF 유닛을 제어하거나, 다른 위치의 OFDM 심볼들에서 전송하도록 상기 eNB RF 유닛을 제어하거나, 다른 주파수에서 전송하도록 상기 eNB RF 유닛을 제어하거나, NCT CC의 중심 주파수를 300kHz 래스터와는 달라지도록 이동시켜 전송하도록 상기 eNB RF 유닛을 제어할 수 있다.
eNB 프로세서는 CRS, UE-특정적 RS 또는 CSI-RS의 전송과 PSS 및/또는 SSS의 전송이 충돌하는 것을 방지하기 위하여 CRS, UE-특정적 RS 또는 CSI-RS가 맵핑될 수 있는 OFDM 심볼이 아닌 다른 OFDM 심볼(들)에 PSS 및/또는 SSS가 위치하도록 SS를 구성할 수 있다. UE 프로세서는 PSS 및/또는 SSS의 전송 시점에 해당하는 서브프레임 내 OFDM 심볼들 중 CRS, UE-특정적 RS 또는 CSI-RS가 맵핑될 수 있는 OFDM 심볼이 아닌 OFDM 심볼에서 PSS 및/또는 SSS를 검출하도록 구성될 수 있다. eNB 프로세서는 PDCCH가 전송될 수 있는 OFDM 심볼들이 아닌 다른 OFDM 심볼(들)에 PSS 및/또는 SSS를 구성할 수 있다. UE 프로세서는 PDCCH가 맵핑될 수 있는 OFDM 심볼들에서는 PSS 및/또는 SSS를 검출하도록 구성되지 않을 수 있으며 다른 OFDM 심볼들에서 PSS 및/또는 SSS를 검출하도록 구성될 수 있다.
eNB 프로세서는 FDD용 무선 프레임과 TDD용 무선 프레임에서 PSS와 SSS 사이의 시간 거리 혹은 PSS와 SSS의 순서를 다르게 설정할 수 있다. UE 프로세서는 PSS와 SSS가 검출된 시간 거리 혹은 PSS와 SSS의 순서를 기반으로 FDD와 TDD를 구분할 수 있다.
eNB 프로세서는 정규 CP용 서브프레임과 확장 CP용 서브프레임에서 PSS와 SSS 사이의 시간 거리 혹은 PSS와 SSS의 순서를 다르게 설정할 수 있다. UE 프로세서는 PSS와 SSS가 검출된 시간 거리 혹은 PSS와 SSS의 순서를 기반으로 해당 서브프레임 혹은 해당 무선 프레임에서 사용된 CP 길이를 구분할 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명의 실시예들은 무선 통신 시스템에서, 기지국, 릴레이 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.

Claims (19)

  1. 사용자기기가 동기 신호를 수신함에 있어서,
    1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 이용하여 상기 PSS 및 SSS를 나르는 셀(이하, 제1 셀)과의 동기를 획득; 및
    상기 제1 셀의 주파수와는 다른 주파수에서 다른 SSS를 검출하고, 상기 다른 SSS를 이용하여 상기 다른 SSS를 나르는 다른 셀(이하, 제2 셀)과의 동기를 획득하는 것을 포함하는,
    동기 신호 수신 방법.
  2. 제1항에 있어서,
    상기 제1 셀의 PSS를 이용하여 상기 다른 SSS가 검출되는,
    동기 신호 수신 방법.
  3. 제1항에 있어서
    상기 제2 셀에서의 상기 다른 SSS의 검출 간격은 상기 제1 셀에서의 상기 SSS의 검출 간격과는 다른,
    동기 신호 수신 방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 제2 셀은 아무런 PSS를 나르지 않는,
    동기 신호 수신 방법.
  5. 제4항에 있어서,
    상기 제1 셀은 1차 셀(primary cell, PCell)이고 상기 제2 셀은 2차 셀(secondary cell, SCell)인,
    동기 신호 수신 방법.
  6. 반송파 집성이 구성된 사용자기기가 동기 신호를 수신함에 있어서,
    무선 주파수 유닛; 및
    상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 이용하여 상기 PSS 및 SSS를 나르는 1차 셀(primary cell, PCell)의 상기 PCell과의 동기를 획득하도록 구성되며, 상기 PCell의 주파수와는 다른 주파수에서 다른 SSS를 검출하고 상기 다른 SSS를 이용하여 상기 다른 SSS를 나르는 다른 2차 셀(secondary cell, SCell)과의 동기를 획득하도록 구성된,
    사용자기기.
  7. 기지국이 동기 신호를 전송함에 있어서,
    1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 셀(이하, 제1 셀)을 통해 전송; 및
    상기 제1 셀의 주파수와는 다른 주파수를 갖는 셀(이하, 제2 셀)을 통해 다른 SSS를 전송하는,
    동기 신호 전송 방법.
  8. 기지국이 동기 신호를 전송함에 있어서,
    무선 주파수 유닛; 및
    상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세스는 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 셀(이하, 제1 셀)을 통해 전송하도록 상기 무선 주파수 유닛을 제어하고, 상기 제1 셀의 주파수와는 다른 주파수를 갖는 셀(이하, 제2 셀)을 통해 다른 SSS를 전송하도록 상기 무선 주파수 유닛을 제어하는,
    기지국.
  9. 사용자기기가 동기 신호를 수신함에 있어서,
    1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 이용하여 상기 PSS 및 SSS를 나르는 셀과의 동기를 획득; 및
    상기 PSS와 상기 SSS 간의 시간 거리를 기반으로 상기 셀의 듀플렉스(duplex) 모드가 시분할듀플렉스(time division duplex, TDD)인지 아니면 주파수분할듀플렉스(frequency division duplex, FDD)인지를 판단하는 것을 포함하는,
    동기 신호 수신 방법.
  10. 제9항에 있어서,
    상기 PSS 및 SSS는 부등(unequal) 간격으로 검출되는,
    동기 신호 수신 방법.
  11. 제9항에 있어서,
    상기 PSS 및 SSS는 상기 셀의 중심 주파수에서 일정 크기만큼 벗어난 주파수 자원 상에서 검출되는,
    동기 신호 수신 방법.
  12. 제9항 내지 제11항 중 어느 한 항에 있어서,
    상기 PSS 및 SSS는 상기 셀의 듀플렉스 모드에 따라 다른 순서로 검출되는,
    동기 신호 수신 방법.
  13. 사용자기기가 동기 신호를 수신함에 있어서,
    무선 주파수 유닛; 및
    상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 이용하여 상기 PSS 및 SSS를 나르는 셀과의 동기를 획득하도록 구성되고, 상기 PSS와 상기 SSS 간의 시간 거리를 기반으로 상기 셀의 듀플렉스(duplex) 모드가 시분할듀플렉스(time division duplex, TDD)인지 아니면 주파수분할듀플렉스(frequency division duplex, FDD)인지를 판단하도록 구성된,
    사용자기기.
  14. 기지국이 동기 신호를 전송함에 있어서,
    셀의 듀플렉스(duplex) 모드를 시분할듀플렉스(time division duplex, TDD) 혹은 주파수분할듀플렉스(frequency division duplex, FDD)로 구성; 및
    상기 셀의 듀플렉스 모드에 따라 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)가 다른 시간 거리를 갖도록 상기 PSS와 SSS를 상기 셀을 통해 전송하는 것을 포함하는,
    동기 신호 전송 방법.
  15. 기지국이 동기 신호를 전송함에 있어서,
    무선 주파수 유닛; 및
    상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는 셀의 듀플렉스(duplex) 모드를 시분할듀플렉스(time division duplex, TDD) 혹은 주파수분할듀플렉스(frequency division duplex, FDD)로 구성하고, 상기 셀이 듀플렉스 모드에 따라 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)가 다른 시간 거리를 갖도록 상기 PSS와 SSS를 상기 셀을 통해 전송하도록 상기 무선 주파수 유닛을 제어하는,
    기지국.
  16. 사용자기기가 동기 신호를 수신함에 있어서,
    서브프레임에서 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 검출;
    상기 PSS 및 SSS를 나르는 셀과의 동기를 획득하도록 구성하는 것을 포함하되,
    상기 SSS는 상기 서브프레임의 첫 번째 슬롯의 OFDM 심볼들 중 두 번째 OFDM 심볼에 위치하고 상기 SSS는 상기 서브프레임의 상기 첫 번째 슬롯의 상기 OFDM 심볼들 중 세 번째 OFDM 심볼에 위치하는,
    동기 신호 수신 방법.
  17. 사용자기기가 동기 신호를 수신함에 있어서,
    무선 주파수 유닛; 및
    상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는 서브프레임에서 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 검출하고, 상기 PSS 및 SSS를 나르는 셀과의 동기를 획득하도록 구성되되,
    상기 SSS는 상기 서브프레임의 첫 번째 슬롯의 OFDM 심볼들 중 두 번째 OFDM 심볼에 위치하고 상기 SSS는 상기 서브프레임의 상기 첫 번째 슬롯의 상기 OFDM 심볼들 중 세 번째 OFDM 심볼에 위치하는,
    사용자기기.
  18. 기지국이 동기 신호를 전송함에 있어서,
    서브프레임에서 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 셀을 통해 전송하되;
    상기 SSS는 상기 서브프레임의 첫 번째 슬롯의 OFDM 심볼들 중 두 번째 OFDM 심볼에 위치하고 상기 SSS는 상기 서브프레임의 상기 첫 번째 슬롯의 상기 OFDM 심볼들 중 세 번째 OFDM 심볼에 위치하는,
    동기 신호 전송 방법.
  19. 기지국이 동기 신호를 전송함에 있어서,
    무선 주파수 유닛; 및
    상기 무선 주파수 유닛을 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는 서브프레임에서 1차 동기 신호(primary synchronization signal, PSS) 및 2차 동기 신호(secondary synchronization, SSS)를 셀을 통해 전송하도록 상기 무선 주파수 유닛을 제어하며,
    상기 SSS는 상기 서브프레임의 첫 번째 슬롯의 OFDM 심볼들 중 두 번째 OFDM 심볼에 위치하고 상기 SSS는 상기 서브프레임의 상기 첫 번째 슬롯의 상기 OFDM 심볼들 중 세 번째 OFDM 심볼에 위치하는,
    기지국.
PCT/KR2013/000713 2012-01-29 2013-01-29 동기 신호 수신 방법 및 사용자기기와 동기 신호 전송 방법 및 기지국 WO2013112032A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147021130A KR20140126309A (ko) 2012-01-29 2013-01-29 동기 신호 수신 방법 및 사용자기기와 동기 신호 전송 방법 및 기지국
US14/375,095 US9497719B2 (en) 2012-01-29 2013-01-29 User equipment and method for receiving synchronization signals, and base station and method for transmitting synchronization signals

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261591965P 2012-01-29 2012-01-29
US61/591,965 2012-01-29
US201261612957P 2012-03-19 2012-03-19
US61/612,957 2012-03-19
US201261625683P 2012-04-18 2012-04-18
US61/625,683 2012-04-18

Publications (1)

Publication Number Publication Date
WO2013112032A1 true WO2013112032A1 (ko) 2013-08-01

Family

ID=48873704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000713 WO2013112032A1 (ko) 2012-01-29 2013-01-29 동기 신호 수신 방법 및 사용자기기와 동기 신호 전송 방법 및 기지국

Country Status (3)

Country Link
US (1) US9497719B2 (ko)
KR (1) KR20140126309A (ko)
WO (1) WO2013112032A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150072359A (ko) * 2013-12-18 2015-06-29 한양대학교 산학협력단 무선통신 시스템의 동기신호 송수신 방법 및 장치
KR20160020849A (ko) * 2014-08-14 2016-02-24 (주)케이에스티테크놀로지 업링크와 다운링크를 스위칭하는 방법 및 중계기
WO2017164700A3 (ko) * 2016-03-24 2018-09-07 엘지전자 주식회사 동기 신호 전송 방법 및 기지국과, 동기 신호 수신 방법 및 사용자기기
US20180278355A1 (en) * 2015-09-15 2018-09-27 Lg Electronics Inc. Cell search method in wireless communication system and apparatus therefor

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795668B (zh) * 2012-11-02 2017-08-18 电信科学技术研究院 一种信号处理方法、基站、终端、及系统
TW201433190A (zh) * 2012-12-26 2014-08-16 Innovative Sonic Corp 在無線通訊系統中實現新載波類型的方法及裝置
US20160095077A1 (en) * 2013-04-30 2016-03-31 Intellectual Discovery Co., Ltd. New tdd frame structure for uplink centralized transmission
GB2513870A (en) 2013-05-07 2014-11-12 Nec Corp Communication system
WO2014181312A1 (en) * 2013-05-10 2014-11-13 Telefonaktiebolaget L M Ericsson (Publ) Synchronization sequences and carrier type detection
US9210690B2 (en) 2013-08-08 2015-12-08 Blackberry Limited Method and system for initial synchronization and collision avoidance in device to device communications without network coverage
US9872236B2 (en) * 2013-11-29 2018-01-16 Mediatek Inc. Communications apparatus and method for carrier search
US11395212B2 (en) * 2014-03-27 2022-07-19 Zte Wistron Telecom Ab Method and system for performing measurements based on synchronization signal properties
US20160135179A1 (en) * 2014-11-07 2016-05-12 Sharp Laboratories Of America, Inc. Systems and methods for synchronization signal
WO2017018966A1 (en) * 2015-07-24 2017-02-02 Intel Corporation Synchronization signals and channel structure for narrowband lte deployments
EP3369228B1 (en) * 2015-10-30 2019-09-18 Telefonaktiebolaget LM Ericsson (publ.) Transmitting and receiving reference signals
EP3361793B1 (en) * 2015-11-06 2021-03-03 Huawei Technologies Co., Ltd. Frequency determining method and device
KR102622879B1 (ko) * 2016-02-03 2024-01-09 엘지전자 주식회사 협대역 동기신호 송수신 방법 및 이를 위한 장치
WO2017160050A1 (ko) * 2016-03-15 2017-09-21 엘지전자(주) 무선 통신 시스템에서 심볼의 인덱스를 추정하는 방법 및 이를 위한 장치
US10554462B2 (en) * 2016-03-23 2020-02-04 Qualcomm Incorporated Communication of broadcast reference signal
US11563505B2 (en) * 2016-06-01 2023-01-24 Qualcomm Incorporated Time division multiplexing of synchronization channels
CN107623932B (zh) * 2016-07-15 2019-08-30 电信科学技术研究院 一种系统信息区域或网络区域的接入方法及装置
JP2019537289A (ja) * 2016-09-28 2019-12-19 ソニー株式会社 ビームフォーミング型nr(new radio)システムにおける同期
US10028203B2 (en) * 2016-10-14 2018-07-17 Qualcomm Incorporated System information block transmission
CA3042446C (en) * 2016-11-16 2023-10-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink signal transmission method and device
US10523476B2 (en) * 2017-01-11 2019-12-31 Qualcomm Incorporated Signal scrambling sequence techniques for wireless communications
US10194440B2 (en) * 2017-03-03 2019-01-29 Qualcomm Incorporated Channel raster design in wireless communications
WO2018171924A1 (en) * 2017-03-23 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless communication device, methods and computer programs
CN108632005B (zh) 2017-03-24 2023-12-15 华为技术有限公司 一种参考信号传输方法、装置及系统
US10701647B2 (en) 2017-03-24 2020-06-30 Electronics And Telecommunications Research Institute Operation method of communication node transmitting synchronization signal in communication network
US10484954B2 (en) * 2017-05-10 2019-11-19 Qualcomm Incorporated Synchronization for wideband coverage enhancement
JP7009506B2 (ja) * 2017-05-04 2022-01-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 処理装置、ネットワークノード、クライアント装置、およびそれらの方法
EP3399810B1 (en) * 2017-05-04 2021-03-31 Telefonaktiebolaget LM Ericsson (publ) Wireless communication device, network node, methods and computer programs for aiding finding of synchronisation signals
US10341946B2 (en) * 2017-05-05 2019-07-02 Qualcomm Incorporated Frequency scan in NR wireless communication
US10863461B2 (en) * 2017-05-05 2020-12-08 Lg Electronics Inc. Method and apparatus for receiving a synchronization signal
ES2934480T3 (es) * 2017-05-19 2023-02-22 Samsung Electronics Co Ltd Procedimiento y aparato para la reducción de la sobrecarga de transmisión CSI-RS en un sistema de comunicación inalámbrica
JP7210481B2 (ja) * 2017-06-21 2023-01-23 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて同期信号を送受信する方法及びそのための装置
US20190059012A1 (en) * 2017-08-21 2019-02-21 Qualcomm Incorporated Multiplexing channel state information reference signals and synchronization signals in new radio
US11012207B2 (en) * 2018-02-12 2021-05-18 Lg Electronics Inc. Method and device for transmitting tracking reference signal
US10764869B2 (en) * 2018-04-19 2020-09-01 Apple Inc. Channel configuration and downlink/uplink configuration for narrow band internet of things (NB-IoT) systems
US11006347B2 (en) 2018-05-07 2021-05-11 Qualcomm Incorporated Preventing user equipment that does not support cell-specific reference signal (CRS) muting from camping on CRS muted carriers
MX2021008360A (es) * 2019-01-10 2021-08-05 Sharp Kk Sincronizacion para la comunicacion de vehiculos con todo (v2x).
CN115462011A (zh) * 2020-04-28 2022-12-09 三星电子株式会社 无线通信系统中用于初始接入的下行链路信号的传输的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090065414A (ko) * 2007-12-17 2009-06-22 엘지전자 주식회사 무선통신 시스템에서 셀 탐색 과정을 수행하는 방법
KR20090115969A (ko) * 2007-05-17 2009-11-10 엘지전자 주식회사 무선통신 시스템에서 동기 신호를 전송하는 방법
EP2219304A1 (en) * 2008-01-25 2010-08-18 ZTE Corporation Method and apparatus of sending synchronization signals in tdd systems
EP2239864A2 (en) * 1999-05-28 2010-10-13 InterDigital Technology Corporation Cell search procedure for time division duplex communication systems using code division multiple access
US20110310878A1 (en) * 2010-06-22 2011-12-22 Telefonaktiebolaget L M Ericsson (Publ) Synchronization in Heterogeneous Networks

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050066562A (ko) * 2003-12-26 2005-06-30 삼성전자주식회사 직교 주파수 분할 다중화 방식의 무선 통신 시스템에서의프레임 프리앰블 구성 방법 및 그 프리앰블을 이용한프레임 동기 획득 및 셀 검색 방법
KR101417089B1 (ko) * 2008-01-03 2014-07-09 엘지전자 주식회사 무선통신 시스템에서 동기 신호 획득방법
CN101222272B (zh) * 2008-01-28 2012-10-10 中兴通讯股份有限公司 下行导频时隙中物理下行控制信道的信号发送方法
CN102265680B (zh) * 2008-12-26 2014-09-24 夏普株式会社 基站装置、移动台装置、通信系统以及通信方法
KR101738162B1 (ko) * 2009-04-10 2017-05-22 엘지전자 주식회사 무선 통신 시스템에서 포지셔닝 참조 신호 전송 방법 및 장치
US8902935B2 (en) * 2009-06-19 2014-12-02 Lg Electronics Inc. Synchronization acquisition method and apparatus in multi-carrier system
CN101938813B (zh) * 2009-06-30 2013-02-27 中兴通讯股份有限公司 联合辅同步信号检测与帧定时同步的方法
US8767711B2 (en) * 2009-10-07 2014-07-01 Sumitomo Electric Industries, Ltd. Base station apparatus, base station apparatus-use signal processing apparatus, PHY processing apparatus, and MAC processing apparatus
CN102316065B (zh) * 2010-07-09 2015-10-21 中兴通讯股份有限公司 同步前导码发送方法、同步方法、装置及系统
US8743785B2 (en) * 2011-08-15 2014-06-03 Futurewei Technologies, Inc. System and method for reducing interference

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2239864A2 (en) * 1999-05-28 2010-10-13 InterDigital Technology Corporation Cell search procedure for time division duplex communication systems using code division multiple access
KR20090115969A (ko) * 2007-05-17 2009-11-10 엘지전자 주식회사 무선통신 시스템에서 동기 신호를 전송하는 방법
KR20090065414A (ko) * 2007-12-17 2009-06-22 엘지전자 주식회사 무선통신 시스템에서 셀 탐색 과정을 수행하는 방법
EP2219304A1 (en) * 2008-01-25 2010-08-18 ZTE Corporation Method and apparatus of sending synchronization signals in tdd systems
US20110310878A1 (en) * 2010-06-22 2011-12-22 Telefonaktiebolaget L M Ericsson (Publ) Synchronization in Heterogeneous Networks

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150072359A (ko) * 2013-12-18 2015-06-29 한양대학교 산학협력단 무선통신 시스템의 동기신호 송수신 방법 및 장치
KR101652929B1 (ko) * 2013-12-18 2016-09-12 한양대학교 산학협력단 무선통신 시스템의 동기신호 송수신 방법 및 장치
KR20160020849A (ko) * 2014-08-14 2016-02-24 (주)케이에스티테크놀로지 업링크와 다운링크를 스위칭하는 방법 및 중계기
KR101706343B1 (ko) * 2014-08-14 2017-02-14 (주)케이에스티테크놀로지 업링크와 다운링크를 스위칭하는 방법 및 중계기
US20180278355A1 (en) * 2015-09-15 2018-09-27 Lg Electronics Inc. Cell search method in wireless communication system and apparatus therefor
US10560208B2 (en) * 2015-09-15 2020-02-11 Lg Electronics Inc. Cell search method in wireless communication system and apparatus therefor
US11115144B2 (en) 2015-09-15 2021-09-07 Lg Electronics Inc. Cell search method in wireless communication system and apparatus therefor
WO2017164700A3 (ko) * 2016-03-24 2018-09-07 엘지전자 주식회사 동기 신호 전송 방법 및 기지국과, 동기 신호 수신 방법 및 사용자기기
US11026193B2 (en) 2016-03-24 2021-06-01 Lg Electronics Inc. Method for transmitting synchronization signal and base station, and method for receiving synchronization signal and user equipment

Also Published As

Publication number Publication date
US9497719B2 (en) 2016-11-15
US20150016339A1 (en) 2015-01-15
KR20140126309A (ko) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2013112032A1 (ko) 동기 신호 수신 방법 및 사용자기기와 동기 신호 전송 방법 및 기지국
WO2013133673A1 (ko) 참조 신호 수신 방법 및 사용자기기와, 참조 신호 전송 방법 및 기지국
WO2017069474A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2018174689A1 (en) Apparatus and method for enhanced synchronization signals for coverage enhancements of low cost user equipment
WO2016018079A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2016085295A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말 간 직접 통신을 수행하는 방법 및 장치
WO2017160100A2 (ko) 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치
WO2017043878A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 하향링크 물리 방송 채널 수신 방법 및 장치
WO2016021979A1 (ko) 동기 신호 수신 방법 및 사용자기기와, 동기 신호 전송 방법 및 기지국
WO2014185673A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2017018759A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2017057987A1 (ko) D2d 통신에서의 참조신호 송신 방법 및 단말
WO2017099526A1 (ko) 하향링크 채널 수신 방법 및 사용자기기와, 하향링크 채널 전송 방법 및 기지국
WO2020145769A1 (ko) 무선 통신 시스템에서 상향링크 공유채널의 전송 방법 및 이를 이용하는 장치
WO2017018761A1 (ko) 제어 정보 수신 방법 및 사용자기기와, 제어 정보 수신 방법 및 기지국
WO2016021954A1 (ko) 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2016163802A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 cca를 수행하는 방법 및 이를 지원하는 장치
WO2016122258A1 (ko) 신호 수신 방법 및 사용자기기와, 신호 수신 방법 및 기지국
WO2014116074A1 (ko) 무선 통신 시스템에서 단말이 하향링크 제어 정보를 수신하는 방법 및 이를 위한 장치
WO2016126142A1 (ko) 시스템 정보를 수신하는 방법 및 사용자기기와, 시스템 정보를 전송하는 방법 및 기지국
WO2017010798A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2014069944A1 (ko) 무선 통신 시스템에서 데이터를 송/수신하는 방법 및 장치
WO2014208940A1 (ko) Mtc 기기의 동작 방법
WO2016129900A1 (ko) 기계타입통신을 지원하는 무선접속시스템에서 물리방송채널을 송수신하는 방법 및 장치
WO2013006006A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147021130

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14375095

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741337

Country of ref document: EP

Kind code of ref document: A1