WO2014067414A1 - 一种增强型随机接入序列的传输方法及机器类型通信终端 - Google Patents

一种增强型随机接入序列的传输方法及机器类型通信终端 Download PDF

Info

Publication number
WO2014067414A1
WO2014067414A1 PCT/CN2013/085819 CN2013085819W WO2014067414A1 WO 2014067414 A1 WO2014067414 A1 WO 2014067414A1 CN 2013085819 W CN2013085819 W CN 2013085819W WO 2014067414 A1 WO2014067414 A1 WO 2014067414A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
access sequence
enhanced
preamble
node
Prior art date
Application number
PCT/CN2013/085819
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
夏树强
石靖
李新彩
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13851948.3A priority Critical patent/EP2903384B1/en
Priority to US14/439,692 priority patent/US9572181B2/en
Publication of WO2014067414A1 publication Critical patent/WO2014067414A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of communications, and in particular, to a transmission method of an enhanced random access sequence and a device type communication terminal. Background technique
  • Machine Type Communication (MTC) User Equipment (MTC UE) or Machine Type Communication Terminal (referred to as MTC Terminal) or Machine to Machine (referred to as Machine to Machine) Communication equipment is the main application form of the Internet of Things at this stage.
  • Low power consumption and low cost are important guarantees for large-scale applications.
  • the ⁇ 2 ⁇ devices currently deployed on the market are mainly based on the Global System of Mobile communication (GSM) system.
  • GSM Global System of Mobile communication
  • LTE/LTE-A Long Term Evolution/Long Term Evolution-Advanced
  • LTE/LTE-A Long Term Evolution/Long Term Evolution-Advanced
  • LTE/LTE-A Long Term Evolution/Long Term Evolution-Advanced
  • M2M multi-class data services based on LTE/LTE-A will also be more attractive. Only the cost of the LTE-M2M device can be lower than that of the MTC terminal of the GSM system, and the M2M service can be truly transferred from the GSM to the LTE
  • the main alternative methods for reducing the cost of the MTC terminal are to reduce the terminal receiving antenna, reduce the terminal baseband processing bandwidth, reduce the peak rate supported by the terminal, use the half-duplex mode, and the like.
  • the cost reduction means that the performance is degraded, and the demand for the LTE/LTE-A system cell coverage cannot be reduced. Therefore, the MTC terminal configured with low cost needs to take some measures to meet the coverage performance requirement of the existing LTE terminal. .
  • the MTC terminal may be located in a basement, a corner, etc., and the scene is worse than that of the ordinary LTE UE. In order to compensate for the drop in coverage caused by the penetration loss, some MTC terminals need higher performance improvement, so some MTC is performed for this scenario.
  • the technical problem to be solved by the present invention is to provide a method for transmitting and receiving an enhanced random access sequence, which solves the problem of poor access quality of the MTC terminal.
  • the present invention provides an enhanced random access sequence transmission method, including: Node 1 generates an enhanced random access sequence according to a random access sequence and enhanced configuration information, and the node 1 is enhanced.
  • the enhanced random access sequence is transmitted on a random access channel.
  • the above method may also have the following features:
  • the enhanced configuration information includes at least one of the following:
  • the arrangement information of the random access sequence and the resource allocation information of the enhanced random access channel are provided.
  • the above method may also have the following features:
  • the arrangement information of the random access sequence includes one of the following:
  • the above method may also have the following features:
  • the random access sequence is one or more random access sequences, which are pre-selected by the node 1.
  • the above method may also have the following features:
  • the sequence lengths of the multiple random access sequences are different.
  • the above method may also have the following features:
  • the resource allocation information of the enhanced random access channel includes at least one of the following: the starting subframe index of the enhanced random access channel is n, and the resource allocation interval is m subframes.
  • the above method may also have the following features:
  • the resource allocation interval m belongs to the resource allocation interval set M, and the index value of the resource allocation interval m in the resource allocation interval set M is configured by default in node 1 and node 2, or by a section. Point 2 is previously transmitted to node 1 by signaling or by index information of the random access sequence.
  • the above method may also have the following features:
  • the method includes: the random access sequence is taken from a determined random access sequence set, and the determined random access sequence set corresponds to one Resource allocation interval m.
  • the above method may also have the following features:
  • the resource location subframe determined by the node 1 according to the resource allocation information of the enhanced random access channel is a downlink subframe
  • the resource location subframe is changed to the last uplink subframe that is closest to the downlink subframe. Or in the next uplink subframe.
  • the above method may also have the following features:
  • the above method may also have the following features:
  • the subframe index occupied by the enhanced random access channel in one frame is configured by the node 2 and sent to the node 1 or the default configuration is stored in the node 1 and the node 2.
  • the above method may also have the following features:
  • the value of the resource allocation interval p belongs to the resource allocation interval set P, and the value of the resource allocation interval p in the resource allocation interval set P is configured by default in the node 1 and the node 2, or the node 2 passes the signaling in advance. Sent to node 1 or indicated by index information of the random access sequence.
  • the above method may also have the following features:
  • the method includes: the random access sequence is taken from a determined random access sequence set, and the determined random access sequence set corresponds to A resource allocation interval p.
  • the above method may also have the following features:
  • the node 2 detects the enhanced random access sequence sent by the node 1 on the enhanced random access channel according to the enhanced configuration information.
  • the above method may also have the following features:
  • the node 1 is a machine type communication terminal or a non-machine type communication terminal
  • the node 2 is a macro base station (MacroCell), a micro base station (MicroCell), and a pico base station.
  • MocroCell macro base station
  • MicroCell micro base station
  • pico base station a pico base station
  • the present invention provides a machine type communication terminal, and the machine type communication terminal includes an enhanced random access sequence generation module and an enhanced random access sequence transmission module;
  • the enhanced random access sequence generating module is configured to: generate an enhanced random access sequence according to the random access sequence and the enhanced configuration information;
  • the enhanced random access sequence sending module is configured to: send the enhanced random access sequence on an enhanced random access channel.
  • the above machine type communication terminal may further have the following features:
  • the enhanced configuration information includes an arrangement manner information of the random access sequence
  • the enhanced random access sequence generating module is configured to: after the random access sequence is repeatedly arranged K times according to the arrangement information, the enhanced random access sequence is formed, where K is an integer greater than 0 Or generating a plurality of derived random access sequences according to the predetermined principle according to the random access sequence, where L is an integer greater than 0, and arranging the random access sequence and the derived random access sequence according to a predetermined order
  • the random access long sequence is repeatedly arranged T times to form the enhanced random access sequence, where T is an integer greater than 0.
  • the above machine type communication terminal may further have the following features:
  • the enhanced configuration information includes resource allocation information of the enhanced random access channel; the resource allocation information includes at least one of the following: a starting subframe index of the enhanced random access channel is n, and a resource allocation interval Is m subframes;
  • the enhanced random access sequence sending module is configured to: determine, according to resource allocation information of the enhanced random access channel, an enhanced random access channel for transmitting the enhanced random access
  • the resources of the sequence are entered; the index of the value of the resource allocation interval m in the resource allocation interval set M is known from the default configuration or from the node 2.
  • the above machine type communication terminal may further have the following features:
  • the enhanced random access sequence sending module is configured to: determine, according to resource allocation information of the enhanced random access channel, an enhanced random access channel for transmitting the resource of the enhanced random access sequence;
  • the index of the resource allocation interval p in the resource allocation interval set P is known in the configuration or from the node 2.
  • the embodiment of the present invention provides an enhanced design for the Physical Random Access Channel (PRACH) of the LTE/LTE-A system, which can improve the access quality of the machine type communication terminal and ensure that the machine type communication terminal can normally access the system.
  • PRACH Physical Random Access Channel
  • 1 is a schematic diagram of a transmission method of an enhanced random access sequence
  • FIG. 2 is a schematic diagram of resource allocation of a first enhanced random access channel
  • FIG. 3 is a schematic diagram of resource allocation of a second enhanced random access channel
  • FIG. 4 is a schematic diagram of resource allocation of an enhanced random access channel according to specific embodiments 1 and 3;
  • FIG. 5 is a schematic diagram of resource allocation of an enhanced random access channel according to specific embodiments 2 and 4;
  • FIG. 7 is a schematic diagram of resource allocation of an enhanced random access channel according to Embodiments 6 and 8;
  • FIG. 8 is an enhanced random access channel of Embodiments 9 and 11.
  • FIG. 9 is a schematic diagram of resource allocation of an enhanced random access channel according to specific embodiments 10 and 12; and
  • FIG. 10 is a schematic diagram of resource allocation of an enhanced random access channel according to specific embodiments 13 and 14.
  • the transmission method of the enhanced random access sequence includes: the node 1 generates an enhanced random access sequence according to the random access sequence and the enhanced configuration information, where the node 1 transmits on the enhanced random access channel.
  • An enhanced random access sequence is
  • the random access sequence may be pre-selected, and the random access sequence may be a random access sequence configured by default or a random access sequence dedicated to generating an enhanced random access sequence.
  • the resources used by the enhanced random access channel may be resources that are used by the standard default configuration to transmit random access sequences, or resources that are dedicated to transmitting enhanced random access sequences.
  • the enhanced configuration information includes at least one of the following: an arrangement manner information of the random access sequence, and resource allocation information of the enhanced random access channel.
  • the arrangement information of the random access sequence includes one of the following:
  • the arrangement information of the random access sequence may be configured in the node 1 and the node 2 by default, or may be sent to the node 1 by the node 2 in advance by signaling.
  • the random access sequence is one or more random access sequences, and the sequence lengths of the multiple random access sequences may be different.
  • the resource allocation information of the enhanced random access channel includes at least one of the following:
  • the initial subframe index of the enhanced random access channel is n, and the resource allocation interval is m subframes.
  • the random access sequence is a plurality of random access sequences and the lengths are different, for example, one length is occupied by one subframe, and the other length is occupied by two subframes, and the initial subframe index of the enhanced random access channel is ⁇ , and is sent.
  • the position of the subframe of the previous random access sequence or the end of the derived random access sequence and the subframe of the start of the subsequent random access sequence or the derived random access sequence are m.
  • Resource allocation interval m can belong to the resource allocation interval set M, N M M available includes resource allocation interval, the resource allocation interval default value set index m interval M is arranged in nodes 1 and 2 in the allocation of resources, or It is sent to the node 1 by the node 2 in advance by signaling, or is indicated by the index information of the random access sequence. Or the resource allocation interval m may be indicated by the index information of the random access sequence, where the random access sequence is taken from a determined random access sequence set, and the determined random access sequence set corresponds to a resource. Assign the interval m.
  • the resource location subframe determined by the node 1 according to the resource allocation information of the enhanced random access channel is a downlink subframe
  • the resource location subframe is changed to the last uplink subframe or the lower one of the downlink subframes.
  • the most recent previous uplink subframe or the next uplink subframe is not in the subframe set defined by the resource allocation information.
  • the subframe index occupied by the enhanced random access channel in one frame is configured by node 2 and sent to node 1 or stored in node 1 and node 2 by default.
  • the special subframe may also be used to transmit the enhanced random access sequence.
  • the value of the resource allocation interval p may belong to the resource allocation interval set P, and the value of the resource allocation interval p in the resource allocation interval set P is configured by default in the node 1 and the node 2, or is sent by the node 2 in advance by signaling. To node 1, or by index information of the random access sequence. Or, the value of the resource allocation interval p may be indicated by the index information of the random access sequence, including: the random access sequence is taken from a determined random access sequence set, and the determined random access sequence is determined. The set corresponds to a resource allocation interval p.
  • a random access sequence or a derived random access sequence is transmitted on a resource location (per subframe or each frame) of the enhanced random access channel resource.
  • the node 2 detects the enhanced random access sequence sent by the node 1 on the enhanced random access channel according to the enhanced configuration information.
  • Node 1 is a machine type communication terminal or a non-machine type communication terminal.
  • Node 2 is one of a MacroCell, a MicroCell, a PicoCell, a Femtocell, and a Relay.
  • the machine type communication terminal in the solution includes an enhanced random access sequence generating module and an enhanced random access sequence sending module;
  • the enhanced random access sequence generating module is configured to generate an enhanced random access sequence according to the random access sequence and the enhanced configuration information
  • the enhanced random access sequence sending module is configured to send the enhanced random access sequence on an enhanced random access channel.
  • the enhanced configuration information includes an arrangement manner information of the random access sequence
  • the enhanced random access sequence generating module is configured to repeatedly arrange the K random access sequences according to the arrangement information to form the enhanced random access sequence, where K is an integer greater than 0; Or generating, according to a predetermined principle, L derived random access sequences according to the random access sequence, where L is an integer greater than 0, and randomly connecting the random access sequence and the derivative
  • the incoming sequence is arranged in a predetermined order to form a random access long sequence, and the random access long sequence is repeatedly arranged T times to form the enhanced random access sequence, where T is an integer greater than zero.
  • the enhanced random access sequence sending module is configured to determine, according to resource allocation information of the enhanced random access channel, a resource used for sending the enhanced random access sequence in an enhanced random access channel;
  • the index of the value of the resource allocation interval m in the resource allocation interval set M is known from the default configuration or from the node 2.
  • the enhanced random access sequence sending module is configured to determine, according to the resource allocation information of the enhanced random access channel, an enhanced random access channel, used to send the resource of the enhanced random access sequence;
  • the index of the resource allocation interval p in the resource allocation interval set P is known from the default configuration or from the node 2.
  • the random access sequence is arranged in one, the high-level configuration parameter value, and the random access sequence is a random access sequence.
  • node 1 and node 2 in the network, where a typical node 1 is a non-MTC terminal MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), Home base station (Femtocell), relay (Relay) One or several of them.
  • macroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell Home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is the UE1
  • the random access sequence obtained by the UE1 is the LC-Preamble-1
  • the random access sequence is taken from the non-MTC terminal, and may be taken from the variant of the specific embodiment.
  • a random access sequence dedicated to generating an enhanced random access sequence (unlike a random access sequence of a non-MTC terminal).
  • UE1 needs to repeat LC-Preamble-1 for K times to form an enhanced random access sequence E-Preamble-1.
  • the value of K may be configured by default in UE1 and node 2, or sent by node 2 to UE1 through signaling.
  • K may be ⁇ 0, 1, 4, 10, 20, 30, 50, 80, 100 ⁇
  • node 2 sends the specific value of K to UE1 in advance through downlink signaling, for example.
  • K 10.
  • the two repetitions of the LC Preamble l are separated by m subframes (subframes), where the value of m can be configured by default in UE1 and Node 2, or sent by Node 2 to UE1 by signaling.
  • the schematic diagram of the enhanced random access sequence E-Preamble-1 transmitted on the enhanced random access channel is shown in FIG. 4; wherein the resources occupied by the E-Preamble-1 in each subframe can be randomly connected with the UE.
  • the resources used in the sequence are the same, or occupy resources allocated specifically for the enhanced random access sequence (unlike the resources used by the existing UE to send the random access sequence).
  • the resource locations occupied by E-Preamble-1 in each subframe may be the same or different.
  • the resource location subframe is changed to the last uplink closest to the downlink subframe. In the subframe or the next uplink subframe. The latest previous uplink subframe or the next uplink subframe is not in the subframe set corresponding to n and m.
  • the resources used by the E-Preamble-1 are resources allocated specifically for the enhanced random access sequence, and the E-Preamble-1 has the same resource location in each subframe.
  • the node 2 Since the node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1 information.
  • the second embodiment corresponds to the enhanced random access channel resource allocation scheme 1, the random access sequence arrangement mode 2, the high-level configuration parameter value, and the random access sequence is a random access sequence.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is the UE1
  • the random access sequence obtained by the UE1 is the LC_Preamble_1, which is taken from the random access sequence of the non-MTC terminal, and may be taken from the special embodiment in the specific embodiment.
  • a random access sequence of an enhanced random access sequence (unlike a random access sequence of a non-MTC terminal).
  • UE1 needs to generate L derived random access sequences according to LC-Preamble-1 to form an enhanced random access sequence E-Preamble-1.
  • 10 derived random access sequences dedicated to generating an enhanced random access sequence are obtained by LC-Preamble-1, and the 10 derived random access sequences may include LC-Preamble-1,
  • the generated 10 sequences are LC-Preamble-1, LC-Preamble-3, LC-Preamble-2, LC-Preamble-5, LC-Preamble-8, LC-Preamble-14, LC. — Preamble — 7, LC—Preamble— 9, LC—Preamble—11, LC—Preamble— 4.
  • the resource allocation interval is m subframes, where the value of m can be configured by default in UE1 and node 2, or sent by node 2 to UE1 through signaling.
  • the resource location subframe is changed to the last uplink subframe or the next uplink that is closest to the downlink subframe. In the sub-frame. The latest previous uplink subframe or the next uplink subframe is not in the subframe set corresponding to n and m.
  • the schematic diagram of the enhanced random access sequence E-Preamble-1 transmitted on the enhanced random access channel is shown in FIG. 5; wherein the resources occupied by the E-Preamble-1 in each subframe can be randomly connected with the UE.
  • the resources used in the sequence are the same, or occupy resources allocated specifically for the enhanced random access sequence (unlike the resources used by the existing UE to send the random access sequence).
  • the resource locations occupied by E-Preamble-1 in each subframe may be the same or different.
  • the resources used by the E-Preamble-1 are resources allocated specifically for the enhanced random access sequence, and the E-Preamble-1 has the same resource location in each subframe.
  • the node 2 Since the node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1 information.
  • the specific embodiment 3 corresponds to the enhanced random access channel resource allocation scheme 1.
  • the random access sequence is arranged in a manner, the sequence index indicates a parameter value, and the random access sequence is a random access sequence.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is the UE1
  • the random access sequence obtained by the UE1 is the LC-Preamble-1
  • the random access sequence is taken from the non-MTC terminal, and may be taken from the variant of the specific embodiment.
  • a random access sequence dedicated to generating an enhanced random access sequence (unlike a random access sequence of a non-MTC terminal).
  • UE1 needs to repeat LC-Preamble-1 for K times to form an enhanced random access sequence E-Preamble-1.
  • the value of K is indicated by the index information of LC-Preamble-1.
  • the random access sequence allocated for the MTC terminal for generating the enhanced random access sequence is divided into N groups, each group including one or more random access sequences for generating an enhanced random access sequence, MTC
  • the terminal randomly selects a sequence from the corresponding group as a random access sequence for generating an enhanced random access sequence according to the required number of repetitions.
  • the two repetitions of the LC-Preamble-1 are separated by m subframes (frames), where the value of m can be configured by default in UE1 and node 2, or sent by node 2 to UE1 through signaling.
  • the schematic diagram of the enhanced random access sequence E-Preamble-1 transmitted on the enhanced random access channel is shown in FIG. 4; wherein the resources occupied by the E-Preamble-1 in each subframe can be randomly connected with the UE.
  • the resources used in the sequence are the same, or occupy resources allocated specifically for the enhanced random access sequence (unlike the resources used by the existing UE to send the random access sequence).
  • the resource locations occupied by E-Preamble-1 in each subframe may be the same or different.
  • the resources used by the E-Preamble-1 are resources allocated specifically for the enhanced random access sequence, and the E-Preamble-1 has the same resource location in each subframe.
  • the resource location subframe is changed to the last uplink subframe or the next uplink that is closest to the downlink subframe. In the sub-frame. The latest previous uplink subframe or the next uplink subframe is not in the subframe set corresponding to n and m.
  • node 2 Because node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1 information.
  • the specific embodiment 4 corresponds to the enhanced random access channel resource allocation scheme 1, the random access sequence is arranged in two ways, the sequence index indicates the parameter value, and the random access sequence is a random access sequence.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating an enhanced random access sequence for the MTC terminal may be taken from a random access sequence of a non-MTC terminal, or may be a random access sequence dedicated to generating an enhanced random access sequence (a random access sequence different from a non-MTC terminal).
  • the MTC terminal is the UE1
  • the random access sequence obtained by the UE1 is the LC-Preamble-1
  • the random access sequence is taken from the non-MTC terminal, and may be taken from the variant of the specific embodiment.
  • a random access sequence dedicated to generating an enhanced random access sequence (unlike a random access sequence of a non-MTC terminal).
  • UE1 needs to generate L derived random access sequences according to LC-Preamble-1 to form an enhanced random access sequence E-Preamble-1.
  • the value of L is indicated by the index information of LC-Preamble-1.
  • the random access sequence allocated for the MTC terminal for generating the enhanced random access sequence is divided into N groups, each group including one or more random access sequences for generating an enhanced random access sequence, MTC
  • the terminal randomly selects a sequence from the corresponding group as a random access sequence for generating an enhanced random access sequence according to the required number of repetitions.
  • UE1 selects LC-Preamble-1, and the corresponding L value is 10.
  • 10 derived random access sequences dedicated to generating an enhanced random access sequence are obtained by LC-Preamble-1, and the 10 derived random access sequences may include LC-Preamble-1,
  • the generated 10 sequences are LC-Preamble-1, LC-Preamble-3, LC-Preamble-2, LC-Preamble-5, LC-Preamble-8, LC-Preamble-14, LC. — Preamble — 7, LC—Preamble— 9, LC—Preamble—11, LC—Preamble— 4.
  • the resource allocation interval is m subframes, where the value of m can be configured by default in UE1 and node 2, or sent by node 2 to UE1 through signaling.
  • the value of m can be ⁇ 1, 2, 4, 6, 8, 10 ⁇ , and the value of m is indicated by the index information of LC_Preamble-1, and the randomness of LC-Preamble-1
  • the resource location subframe is changed to the last uplink subframe or the next uplink that is closest to the downlink subframe. In the sub-frame. The latest previous uplink subframe or the next uplink subframe is not in the subframe set corresponding to n and m. 3.
  • the schematic diagram of the enhanced random access sequence E-Preamble-1 transmitted on the enhanced random access channel is shown in FIG. 5; wherein the resources occupied by the E-Preamble-1 in each subframe can be randomly connected with the UE.
  • the resources used in the sequence are the same, or occupy resources allocated specifically for the enhanced random access sequence (unlike the resources used by the existing UE to send the random access sequence). And the resource locations occupied by E-Preamble-1 in each subframe may be the same or different.
  • the resources used by the E-Preamble-1 are resources allocated specifically for the enhanced random access sequence, and the E-Preamble-1 has the same resource location in each subframe.
  • node 2 Because node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1 information.
  • the random access sequence is arranged in one, the high-level configuration parameter value, and the random access sequence is a random access sequence.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is UE1
  • the random access sequence obtained by UE1 is
  • LC-Preamble-1 a random access sequence taken from a non-MTC terminal, and in a variation of this embodiment, may also be taken from a random access sequence dedicated to generating an enhanced random access sequence (unlike non- Random access sequence of the MTC terminal).
  • UE1 needs to repeat LC-Preamble-1 for K times to form an enhanced random access sequence E-Preamble-1.
  • the value of K may be configured in UE1 and Node 2 by default, or sent by Node 2 to UE1 through signaling.
  • K may be ⁇ 0, 1, 4, 10, 20, 30, 50, 80, 100 ⁇
  • node 2 sends the specific value of K to UE1 in advance through downlink signaling, for example.
  • K 10.
  • the schematic diagram of the enhanced random access sequence E-Preamble-1 transmitted on the enhanced random access channel is shown in FIG. 6.
  • the E-Preamble-1 occupies the subframes UL subframe2 and UL subframe7 in each frame, such that A total of 5 frames are required to send E-Preamble-1.
  • the frame interval of the E-Preamble-1 is 2 Frames.
  • the interval information of the E-Preamble-1 occupying the subframe information in each Frame and the Frame of the E-Preamble-1 can be configured by default on the UE1 and the node. 2 or node 2 is pre-transmitted to UE1 through downlink signaling.
  • the interval information of the E-Preamble-1 occupying the subframe information in each Frame and/or transmitting the frame of the E-Preamble-1 may also be indicated by the index information of the LC-Preamble-1, LC-Preamble-1
  • the random access sequence group is corresponding to an E-Preamble-1 occupying subframe configuration information in each Frame and/or an interval information of a Frame transmitting E-Preamble-1.
  • the resource used by the E-Preamble-1 may be the same as the resource used when the UE sends the random access sequence, or may occupy the resource allocated specifically for the enhanced random access sequence (unlike the existing UE sends the random access sequence) The same resources). And E-Preamble-1 may occupy the same or different resource locations in each subframe.
  • the resources used by the E-Preamble-1 are resources allocated specifically for the enhanced random access sequence, and the E-Preamble-1 has the same resource location in each subframe.
  • the node 2 Since the node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1 information.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is the UE1
  • the random access sequence obtained by the UE1 is the LC-Preamble-1
  • the random access sequence is taken from the non-MTC terminal, and may be taken from the variant of the specific embodiment.
  • a random access sequence dedicated to generating an enhanced random access sequence (unlike a random access sequence of a non-MTC terminal).
  • UE1 needs to generate L derived random access sequences according to LC-Preamble-1 to form an enhanced random access sequence E-Preamble-1.
  • the value of L may be configured by default in UE1 and node 2, or may be sent by node 2 to UE1 through signaling.
  • L may be ⁇ 0, 1, 4, 10, 20, 30, 50, 80, 100 ⁇
  • node 2 sends the specific value of L to UE1 in advance through downlink signaling, for example.
  • L 10.
  • 10 derived random access sequences are generated by LC-Preamble-1 for generating an enhanced random access sequence, and the 10 derived random access sequences may include LC-Preamble-1.
  • the schematic diagram of the enhanced random access sequence E-Preamble-1 transmitted on the enhanced random access channel is shown in FIG. 7.
  • the E-Preamble-1 occupies the subframes UL subframe2 and UL subframe7 in each frame, such that A total of 5 frames are required to send E-Preamble-1.
  • the frame interval of sending E-Preamble-1 is 2 frames.
  • the interval information of E-Preamble-1 occupying subframe information in each Frame and transmitting E-Preamble-1 frame can be configured by default.
  • UE1 and Node 2 or Node 2 are pre-transmitted to UE1 through downlink signaling.
  • the 10 sequences used to generate E-Preamble-1 are LC-Preamble-1, LC-Preamble-3, LC-Preamble-1, LC-Preamble-3, LC-Preamble-1, LC-Preamble-3, LC—Preamble—1, LC—Preamble— 3, LC—Preamble— 1 , LC—Preamble— 3 , that is, the random sequence sent within the Frame can be different and then repeated within each Frame.
  • the 10 sequences used to generate E-Preamble-1 can also be LC-Preamble-1, LC-Preamble-3, LC-Preamble-2, LC-Preamble-4, LC-Preamble-5, LC-Preamble-8 , LC—Preamble—9, LC—Preamble—10, LC—Preamble—7, LC—Preamble—13, that is, the random sequence sent between the Frame and the Frame can be different.
  • the 10 sequences used to generate E-Preamble-1 can also be LC-Preamble-1, LC-Preamble-1, LC-Preamble-3, LC-Preamble-3, LC-Preamble-5, LC-Preamble-5 LC-Preamble-7, LC-Preamble-7, LC-Preamble-9, LC-Preamble-9, that is, the random sequence sent in the Frame is the same, and the random sequence sent between the frames can be different.
  • the interval information of the E-Preamble-1 occupying the subframe information in each Frame and/or transmitting the frame of the E-Preamble-1 may also be indicated by the index information of the LC-Preamble-1, LC-Preamble-1
  • the random access sequence group is corresponding to an E-Preamble-1 occupying subframe configuration information in each Frame and/or an interval information of a Frame transmitting E-Preamble-1.
  • the resource used by the E-Preamble-1 may be the same as the resource used when the UE sends the random access sequence, or may occupy the resource allocated specifically for the enhanced random access sequence (unlike the existing UE sends the random access sequence) The same resources). And E-Preamble-1 may occupy the same or different resource locations in each subframe.
  • the resources used by the E-Preamble-1 are resources allocated specifically for the enhanced random access sequence, and the E-Preamble-1 has the same resource location in each subframe.
  • the node 2 Since the node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1 information. Specific embodiment 7
  • the enhanced random access channel resource allocation scheme 2 the random access sequence arrangement mode 1, the sequence index parameter value, and the random access sequence are a random access sequence.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is UE1
  • the random access sequence obtained by UE1 is
  • LC-Preamble-1 a random access sequence taken from a non-MTC terminal, and in a variation of this embodiment, may also be taken from a random access sequence dedicated to generating an enhanced random access sequence (unlike non- Random access sequence of the MTC terminal).
  • UE1 needs to repeat LC-Preamble-1 for K times to form an enhanced random access sequence E-Preamble-1.
  • the value of K is indicated by the index information of LC-Preamble-1.
  • the random access sequence allocated for the MTC terminal for generating the enhanced random access sequence is divided into N groups, each group including one or more random access sequences for generating an enhanced random access sequence, MTC
  • the terminal randomly selects a sequence from the corresponding group as a random access sequence for generating an enhanced random access sequence according to the required number of repetitions.
  • the schematic diagram of the enhanced random access sequence E-Preamble-1 transmitted on the enhanced random access channel is shown in FIG. 6.
  • the E-Preamble-1 occupies the subframes UL subframe2 and UL subframe7 in each frame, such that A total of 5 frames are required to send E Preamble 1.
  • send The interval of the Frame of E-Preamble-1 is 2 Frames.
  • the interval information of E-Preamble-1 occupying subframe information in each Frame and transmitting Frame of E-Preamble-1 can be configured by default in UE1 and Node2.
  • the middle node 2 is pre-transmitted to the UE1 through downlink signaling.
  • the interval information of the E-Preamble-1 occupying the subframe information in each Frame and/or transmitting the frame of the E-Preamble-1 may also be indicated by the index information of the LC-Preamble-1, LC-Preamble-1
  • the random access sequence group is corresponding to an E-Preamble-1 occupying subframe configuration information in each Frame and/or an interval information of a Frame transmitting E-Preamble-1.
  • the resource used by the E-Preamble-1 may be the same as the resource used when the UE sends the random access sequence, or may occupy the resource allocated specifically for the enhanced random access sequence (unlike the existing UE sends the random access sequence) The same resources). And E-Preamble-1 may occupy the same or different resource locations in each subframe.
  • the resources used by the E-Preamble-1 are resources allocated specifically for the enhanced random access sequence, and the E-Preamble-1 has the same resource location in each subframe.
  • node 2 Because node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1 information.
  • the enhanced random access channel resource allocation scheme 2, the random access sequence arrangement mode 2, the sequence index parameter value, and the random access sequence is a random access sequence.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is the UE1
  • the random access sequence obtained by the UE1 is the LC-Preamble-1
  • the random access sequence is taken from the non-MTC terminal, and may be taken from the variant of the specific embodiment.
  • a random access sequence dedicated to generating an enhanced random access sequence (unlike a random access sequence of a non-MTC terminal).
  • UE1 needs to generate L derived random access sequences according to LC-Preamble-1 to form an enhanced random access sequence E-Preamble-1.
  • the value of L is indicated by the index information of LC-Preamble-1.
  • the random access sequence allocated for the MTC terminal for generating the enhanced random access sequence is divided into N groups, each group including one or more random access sequences for generating an enhanced random access sequence, MTC
  • the terminal randomly selects a sequence from the corresponding group as a random access sequence for generating an enhanced random access sequence according to the required number of repetitions.
  • 10 derived random access sequences are generated by LC-Preamble-1 for generating an enhanced random access sequence, and the 10 derived random access sequences may include LC-Preamble-1.
  • the schematic diagram of the enhanced random access sequence E-Preamble-1 transmitted on the enhanced random access channel is shown in FIG. 7.
  • the E-Preamble-1 occupies the subframes UL subframe2 and UL subframe7 in each frame, such that A total of 5 frames are required to send E-Preamble-1.
  • the frame interval of the E-Preamble-1 is 2 Frames.
  • the interval information of the E-Preamble-1 occupying the subframe information in each Frame and the Frame of the E-Preamble-1 can be configured by default on the UE1 and the node. 2 or node 2 is pre-transmitted to UE1 through downlink signaling.
  • the 10 sequences used to generate E-Preamble-1 are respectively LC-Preamble-1.
  • the 10 sequences used to generate E-Preamble-1 can also be LC-Preamble-1, LC-Preamble-3, LC-Preamble-2, LC-Preamble-4, LC-Preamble-5, LC-Preamble-8 , LC—Preamble—9, LC—Preamble—10, LC—Preamble—7, LC—Preamble—13, that is, the random sequence sent between the Frame and the Frame can be different.
  • the 10 sequences used to generate E-Preamble-1 can also be LC-Preamble-1.
  • E-Preamble-1 occupies sub-frame information and/or sends in each Frame
  • the interval information of the Frame of E-Preamble-1 can also be indicated by the index information of LC-Preamble-1, and the random access sequence group where LC-Preamble-1 is located corresponds to an E-Preamble-1.
  • the resource used by the E-Preamble-1 may be the same as the resource used when the UE sends the random access sequence, or may occupy the resource allocated specifically for the enhanced random access sequence (unlike the existing UE sends the random access sequence) The same resources). And E-Preamble-1 may occupy the same or different resource locations in each subframe.
  • the resources used by the E-Preamble-1 are resources allocated specifically for the enhanced random access sequence, and the E-Preamble-1 has the same resource location in each subframe.
  • node 2 Because node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1 information.
  • the enhanced random access channel resource allocation scheme 1 is used, the random access sequence is arranged in a manner 1, the high-level configuration parameter value, and the random access sequence is multiple random access sequences.
  • node 1 and node 2 exist in the network, wherein node 1 can The non-MTC terminal or the MTC terminal; the node 2 may be one or more of a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), a home base station (Femtocell), and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is UE1, and the UE1 obtains more than one random access sequence, for example, LC-Preamble-1 and LC-Preamble-2, which are taken from a random access sequence of the non-MTC terminal.
  • the sequence lengths of LC-Preamble-1 and LC-Preamble-2 may be different.
  • LC Preamble l and LC_Preamble_2 are from a random access sequence set of different formats of non-MTC terminals.
  • UE1 needs to repeat LC-Preamble-1 and LC-Preamble-2 for K times to form an enhanced random access sequence E-Preamble-1&2.
  • the value of K may be configured by default in UE1 and node 2, or sent by node 2 to UE1 through signaling.
  • K may be ⁇ 0, 1, 4, 10, 20, 30, 50, 80, 100 ⁇
  • node 2 sends the specific value of K to UE1 in advance through downlink signaling, for example.
  • K 10.
  • the interval between the LC-Preamble-1 and the LC-Preamble-2 and its repetition sequence constituting E-Preamble-1&2 is m subframes (frames), where the value of m can be configured by default in UE1 and node 2, or It is sent by Node 2 to UE1 through signaling.
  • the resource location subframe is changed to the last uplink subframe or the next uplink that is closest to the downlink subframe. In the sub-frame. The latest previous uplink subframe or the next uplink subframe is not in the subframe set corresponding to n and m. 3.
  • the schematic diagram of the enhanced random access sequence E-Preamble-1&2 transmitted on the enhanced random access channel is shown in Figure 8, where LC_Preamble-1 has a length of 1 subframe and LC-Preamble-2 has a length of 2 Subframes.
  • E-Preamble-1 and LC-Preamble-2 may occupy the same resources in each subframe as the resources used by the non-MTC terminal to send the random access sequence, or occupy resources allocated specifically for the enhanced random access sequence. . And the resource locations occupied by E-Preamble-1 and LC-Preamble-2 in each subframe may be the same or different.
  • the resources used by E-Preamble-1&2 are resources allocated specifically for the enhanced random access sequence, and E-Preamble-1&2 have the same location of resources in each subframe.
  • the node 2 Since the node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1&2 information.
  • the random access sequence is arranged in two, the high-level configuration parameter value, and the random access sequence is multiple random access sequences.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is UE1
  • the random access sequence obtained by UE1 is greater than one, for example, LC-Preamble-1 and LC-Preamble-2, and the random access sequence is taken from the non-MTC terminal.
  • the LC-Preamble-1 and LC_Preamble-2 may have different sequence lengths, for example, LC Preamble 1 and LC_Preamble_2 are from a random access sequence set of different formats of non-MTC terminals.
  • UE1 needs to generate L derived random access sequences according to LC Preamble l and LC-Preamble-2, and then form an enhanced random access sequence E-Preamble-1&2.
  • the value of L may be configured by default in UE1 and node 2, or may be sent by node 2 to UE1 through signaling.
  • L may be ⁇ 0, 1, 4, 10, 20, 30, 50, 80, 100 ⁇
  • node 2 sends the specific value of L to UE1 in advance through downlink signaling, for example.
  • L 10.
  • 10 derived random access sequences for generating an enhanced random access sequence are obtained by LC-Preamble-1 and LC_Preamble-2, and the 10 derived random access sequences may include LC- Preamble-1 and LC_Preamble-2, and the length of the derived random access sequence may be different.
  • the generated 10 sequences are respectively LC_Preamble_1 (occupying 1 subframe), LC_Preamble_2 (occupying 2 subframes) ), LC_Preamble_3 (occupying 2 subframes), LC_Preamble_5 (occupying 1 subframe), LC_Preamble_8 (occupying 1 subframe), LC_Preamble_14 (occupying 2 subframes), LC_Preamble_7 (occupying 1 subframe), LC_Preamble_9 (occupying 1 subframe), LC_Preamble_l l (occupying 1 subframe), LC_Preamble_4 (occupying 1 subframe).
  • the resource allocation interval is m subframes, where the value of m can be configured by default in UE1 and node 2, or sent by node 2 to UE1 through signaling.
  • the resource location subframe is changed to the last uplink subframe or the next uplink that is closest to the downlink subframe. In the sub-frame. The latest previous uplink subframe or the next uplink subframe is not in the subframe set corresponding to n and m.
  • FIG. 9 The schematic diagram of the enhanced random access sequence E-Preamble-1&2 transmitted on the enhanced random access channel is shown in FIG. 9; wherein the resources occupied by E-Preamble-1&2 in each subframe can be sent with the non-MTC terminal.
  • the resources used in the random access sequence are the same, or occupy resources allocated specifically for the enhanced random access sequence.
  • E-Preamble-1&2 is occupied in each subframe Resource locations can be the same or different.
  • the resources used by E-Preamble-1&2 are resources allocated specifically for the enhanced random access sequence, and E-Preamble-1&2 have the same location of resources in each subframe.
  • the node 2 Since the node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1&2 information.
  • the specific embodiment 11 corresponds to the enhanced random access channel resource allocation scheme 1.
  • the random access sequence is arranged in a manner, the sequence index indicates a parameter value, and the random access sequence is a plurality of random access sequences.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is UE1, and the UE1 obtains more than one random access sequence, for example, LC-Preamble-1 and LC-Preamble-2, which are taken from a random access sequence of the non-MTC terminal.
  • the sequence lengths of LC-Preamble-1 and LC-Preamble-2 may be different, for example, LC-Preamble-1 and LC-Preamble-2 are random access sequence sets from different formats of non-MTC terminals.
  • UE1 needs to repeat LC-Preamble-1 and LC-Preamble-2 to form an enhanced random access sequence E-Preamble-1&2.
  • K is taken from LC-Preamble-1 and/or LC—Preamble-2 indicates the index information.
  • the random access sequence allocated for the MTC terminal for generating the enhanced random access sequence is divided into N groups, each group including one or more random access sequences for generating an enhanced random access sequence, and Each group corresponds to a repetition number.
  • LC-Preamble-1 and LC-Preamble-2 can also come from different groups, but the MTC terminal and node 2 have to pre-arrange the group corresponding to the number of repetitions K.
  • the interval between the LC-Preamble-1 and the LC-Preamble-2 and its repetition sequence constituting E-Preamble-1&2 is m subframes (frames), where the value of m can be configured by default in UE1 and node 2, or It is sent by the node 2 to the UE1 by signaling, or by the index information of the LC-Preamble-1 and/or the LC-Preamble-2.
  • the resource location subframe is changed to the last uplink subframe or the next uplink that is closest to the downlink subframe. In the sub-frame. The latest previous uplink subframe or the next uplink subframe is not in the subframe set corresponding to n and m.
  • E-Preamble-1&2 transmitted on the enhanced random access channel is shown in Figure 8, where LC_Preamble-1 has a length of 1 subframe and LC-Preamble-2 has a length of 2 Subframes.
  • E-Preamble-1 and LC-Preamble-2 may occupy the same resources in each subframe as the resources used by the non-MTC terminal to send the random access sequence, or occupy resources allocated specifically for the enhanced random access sequence.
  • E-Preamble-1 and LC-Preamble-2 may occupy the same or different resource locations in each subframe.
  • the resources used by E-Preamble-1&2 are resources allocated specifically for the enhanced random access sequence, and E-Preamble-1&2 have the same location of resources in each subframe.
  • node 2 Because node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1&2 information. Specific embodiment 12
  • the specific embodiment 12 corresponds to the enhanced random access channel resource allocation scheme 1.
  • the random access sequence is arranged in two ways, the sequence index indicates a parameter value, and the random access sequence is a plurality of random access sequences.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is UE1, and the UE1 obtains more than one random access sequence, for example, LC-Preamble-1 and LC-Preamble-2, which are taken from a random access sequence of the non-MTC terminal.
  • the sequence lengths of LC-Preamble-1 and LC-Preamble-2 may be different.
  • LC Preamble l and LC_Preamble_2 are from a random access sequence set of different formats of non-MTC terminals.
  • UE1 needs to generate L derived random access sequences according to LC Preamble l and LC-Preamble-2, and then form an enhanced random access sequence E-Preamble-1&2.
  • the value of L can be indicated by the index information of LC-Preamble-1 and/or LC-Preamble-2.
  • the random access sequence allocated for the MTC terminal for generating the enhanced random access sequence is divided into N groups, each group including one or more random access sequences for generating an enhanced random access sequence, and Each group corresponds to the value of one L.
  • LC-Preamble-1 and LC-Preamble-2 can also come from different groups, but MTC The terminal and node 2 have to pre-agreed the packet corresponding to L.
  • 10 derived random access sequences for generating an enhanced random access sequence are obtained by LC-Preamble-1 and LC_Preamble-2, and the 10 derived random access sequences may include LC- Preamble-1 and LC-Preamble-2
  • the 10 sequences generated by the scheme are LC_Preamble-1 (occupying 1 subframe), LC-Preamble-2 (occupying 2 subframes), LC_Preamble_3 (occupying 2 subframes), LC_Preamble_5 (occupying 1 subframe), LC_Preamble_8 (occupying 1 subframe), LC_Preamble_14 (occupying 2 subframes), LC_Preamble_7 (occupying 1 subframe), LC_Preamble_9 (occupying 1 subframe), LC_Preamble_l l ( Occupies 1 subframe), LC_Preamble_4 (occupies 1 subframe).
  • the resource allocation interval is m subframes (subframes), where the value of m can be configured by default.
  • either node 2 sends signaling to UE1, or is indicated by LC-Preamble-1 and/or LC-Preamble-2 index information.
  • the resource location subframe is changed to the last uplink subframe or the next uplink that is closest to the downlink subframe. In the sub-frame. The latest previous uplink subframe or the next uplink subframe is not in the subframe set corresponding to n and m.
  • FIG. 9 The schematic diagram of the enhanced random access sequence E-Preamble-1&2 transmitted on the enhanced random access channel is shown in FIG. 9; wherein the resources occupied by E-Preamble-1&2 in each subframe can be sent with the non-MTC terminal.
  • the resources used in the random access sequence are the same, or occupy resources allocated specifically for the enhanced random access sequence.
  • E-Preamble-1&2 can occupy the same or different resource locations in each subframe.
  • the resources used by E-Preamble-1&2 are resources allocated specifically for the enhanced random access sequence, and E-Preamble-1&2 have the same location of resources in each subframe.
  • the node 2 Since the node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1&2 information.
  • the random access sequence is arranged in a manner 1, the high-level configuration parameter value, and the random access sequence is a plurality of random access sequences.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is UE1, and the UE1 obtains more than one random access sequence, for example, LC-Preamble-1 and LC-Preamble-2, which are taken from a random access sequence of the non-MTC terminal.
  • the sequence lengths of LC-Preamble-1 and LC-Preamble-2 may be different.
  • LC Preamble l and LC_Preamble_2 are from a random access sequence set of different formats of non-MTC terminals.
  • UE1 needs to repeat LC-Preamble-1 and LC-Preamble-2 for K times to form an enhanced random access sequence E-Preamble-1&2.
  • the value of K may be configured by default in UE1 and node 2, or sent by node 2 to UE1 through signaling.
  • the assumed value may be ⁇ 0, 1, 5, 10, 20, 30, 50, 80, 100 ⁇
  • E-Preamble-1&2 occupies subframes UL subframe2 and UL subframe7, UL in each frame.
  • Subframe8 which requires a total of 5 frames to send E-Preamble-1&2.
  • the interval information of the E-Preamble-1 & 2 occupying the subframe information in each frame and the Frame of the E-Preamble-1 & 2 may be configured in the UE1 and the node 2 by default or the node 2 may be pre- Send to UE1.
  • interval information of E-Preamble-1 & 2 occupying subframe information in each Frame and/or transmitting Frame of E-Preamble-1&2 may also be LC-Preamble-1 and/or LC-Preamble-2 The index information is indicated.
  • E-Preamble-1&2 can be the same as those used when non-MTC terminals send random access sequences, or occupy resources allocated specifically for enhanced random access sequences. And E-Preamble-1&2 may occupy the same or different resource locations in each subframe.
  • the resources used by E-Preamble-1&2 are resources allocated specifically for the enhanced random access sequence, and E-Preamble-1&2 have the same location of resources in each subframe.
  • the node 2 Since the node 2 knows the resource location information of the enhanced random access channel and the configuration of the enhanced random access sequence, the node 2 can perform the reception detection directly on the enhanced random access channel, and obtain the E sent by the UE1. — Preamble — 1&2 information.
  • the random access sequence is arranged in a sequence 1, the sequence index parameter value, and the random access sequence is a plurality of random access sequences.
  • node 1 and node 2 are present in the network, where node 1 may be a non-MTC terminal or an MTC terminal; node 2 may be a macro base station (MacroCell), a micro base station (MicroCell), a pico base station (PicoCell), One or more of a home base station (Femtocell) and a relay (Relay).
  • MacroCell macro base station
  • MicroCell micro base station
  • PicoCell pico base station
  • Femtocell home base station
  • Relay relay
  • the random access sequence allocated by the system for generating the enhanced random access sequence for the MTC terminal may be taken from a random access sequence of the non-MTC terminal, or may be a random connection specifically for generating the enhanced random access sequence. In sequence (different from random access sequences of non-MTC terminals).
  • the MTC terminal is UE1, and the UE1 obtains a random access sequence greater than one, for example, LC-Preamble-1 and LC-Preamble-2, and is obtained from a random access sequence of the non-MTC terminal.
  • the sequence lengths of LC Preamble 1 and LC Preamble 2 can be different, for example
  • the LC Preamble l and LC_Preamble_2 are from a random access sequence set of different formats (Formats) of non-MTC terminals.
  • UE1 needs to repeat LC-Preamble-1 and LC-Preamble-2 for K times to form an enhanced random access sequence E-Preamble-1&2.
  • the value of K is indicated by the index information of LC-Preamble-1 and/or LC-Preamble-2.
  • the random access sequence allocated for the MTC terminal for generating the enhanced random access sequence is divided into N groups, each group including one or more random access sequences for generating an enhanced random access sequence, and Each group corresponds to a repetition number.
  • LC-Preamble-1 and LC-Preamble-2 can also come from different groups, but the MTC terminal and node 2 have to pre-arrange the group corresponding to the number of repetitions K.
  • FIG. 10 Schematic diagram of the enhanced random access sequence E-Preamble-1&2 transmitted on the enhanced random access channel is shown in FIG. 10, and E-Preamble-1&2 occupies subframes UL subframe2 and UL subframe7, UL in each frame. Subframe8, which requires a total of 5 frames to send E-Preamble-1&2.
  • the frame interval for sending E-Preamble-1&2 is 2 frames.
  • the interval information of the E-Preamble-1 & 2 occupying the subframe information in each frame and the Frame of the E-Preamble-1 & 2 may be configured in the UE1 and the node 2 by default or the node 2 may be pre- Send to UE1.
  • E-Preamble-1 & 2 occupy subframe information and/or send in each Frame
  • the interval information of the frame of E-Preamble-1&2 can also be indicated by the index information of LC-Preamble-1 and/or LC-Preamble-2.
  • E-Preamble-1&2 can be the same as those used when non-MTC terminals send random access sequences, or occupy resources allocated specifically for enhanced random access sequences. And E-Preamble-1&2 may occupy the same or different resource locations in each subframe.
  • the resources used by E-Preamble-1&2 are resources allocated specifically for the enhanced random access sequence, and E-Preamble-1&2 have the same location of resources in each subframe.
  • the embodiment of the invention is directed to a random access channel of the LTE/LTE-A system (
  • PRACH PRACH

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种增强型随机接入序列的传输方法及机器类型通信终端,节点1根据随机接入序列和增强配置信息生成增强型随机接入序列,所述节点1在增强型随机接入信道上发送所述增强型随机接入序列。本发明实施例针对 LTE/LTE-A系统的随机接入信道进行增强设计,可以提高机器类型通信终端的接入质量,保证机器类型通信终端可以正常接入系统。

Description

一种增强型随机接入序列的传输方法及机器类型通信终端
技术领域
本发明涉及通信领域, 尤其涉及一种增强型随机接入序列的传输方法及 机器类型通信终端。 背景技术
机器类型通信 (Machine Type Communication,简称 MTC )用户设备( MTC User Equipment, 简称 MTC UE )或称为机器类型通信终端(简称为 MTC终 端)或称为机器到机器 ( Machine to Machine , 简称 Μ2Μ )用户通信设备 , 是现阶段物联网的主要应用形式。 低功耗低成本是其可大规模应用的重要保 障。 目前市场上部署的 Μ2Μ设备主要基于全球移动通信( Global System of Mobile communication, 简称 GSM ) 系统。 近年来, 由于长期演进 /增强长期 演进 ( Long Term Evolution/ Long Term Evolution- Advanced ,简称 LTE/LTE-A ) 的频谱效率高,越来越多的移动运营商选择 LTE/LTE-A作为未来宽带无线通 信系统的演进方向。基于 LTE/LTE-A的 M2M多种类数据业务也将更具吸引 力。 只有 LTE-M2M设备的成本能做到比 GSM系统的 MTC终端低, M2M 业务才能真正从 GSM转到 LTE系统上。
目前对于 MTC终端成本降低的主要的备选方法有减少终端接收天线、 降低终端基带处理带宽、 降低终端支持的峰值速率、 釆用半双工模式等等。 然而成本的降低意味着性能的下降,对于 LTE/LTE-A系统小区覆盖的需求是 不能降低的, 因此釆用低成本配置的 MTC终端需要釆取一些措施才能达到 现有 LTE终端的覆盖性能需求。 另外, MTC终端可能位于地下室、 墙角等 位置,所处场景要比普通 LTE UE恶劣,为了弥补穿透损耗导致的覆盖下降, 部分 MTC终端需要更高的性能提升,因此针对这种场景进行部分 MTC终端 的上下行覆盖增强是必要的, 如何保证用户的接入质量则是首先需要考虑的 问题。 发明内容 本发明要解决的技术问题是提供一种增强型随机接入序列的发送与接收 方法, 解决 MTC终端接入质量差的问题。
为了解决上述技术问题, 本发明提供了一种增强型随机接入序列的传输 方法, 包括: 节点 1根据随机接入序列和增强配置信息生成增强型随机接入 序列, 所述节点 1在增强型随机接入信道上发送所述增强型随机接入序列。
优选地, 上述方法还可以具有以下特点:
所述增强配置信息至少包括以下之一:
所述随机接入序列的排列方式信息、 所述增强型随机接入信道的资源分 配信息。
优选地, 上述方法还可以具有以下特点:
所述随机接入序列的排列方式信息包括以下之一:
将所述随机接入序列进行 K次重复排列后构成所述增强型随机接入序列, 其中 K为大于 0的整数;
按照预定原则根据所述随机接入序列生成 L个衍生随机接入序列, L为 大于 0的整数, 将所述随机接入序列以及所述衍生随机接入序列按照预定顺 序排列后构成随机接入长序列, 将所述随机接入长序列进行重复排列 T次构 成所述增强型随机接入序列, 其中, T为大于 0的整数。
优选地, 上述方法还可以具有以下特点:
所述随机接入序列是一条或多条随机接入序列,由所述节点 1预先选择。 优选地, 上述方法还可以具有以下特点:
所述多条随机接入序列的序列长度不同。
优选地, 上述方法还可以具有以下特点:
增强型随机接入信道的资源分配信息包括以下至少之一: 所述增强型随 机接入信道的起始子帧索引为 n, 资源分配间隔为 m个子帧。
优选地, 上述方法还可以具有以下特点:
所述资源分配间隔 m属于资源分配间隔集合 M, 所述资源分配间隔 m 在资源分配间隔集合 M中的索引值默认配置于节点 1和节点 2中,或者由节 点 2预先通过信令发送给节点 1 ,或者由所述随机接入序列的索引信息指示。 优选地, 上述方法还可以具有以下特点:
所述资源分配间隔 m由所述随机接入序列的索引信息指示时, 包括: 所 述随机接入序列取自于一个确定的随机接入序列集合, 所述确定的随机接入 序列集合对应一资源分配间隔 m。
优选地, 上述方法还可以具有以下特点:
所述节点 1根据所述增强型随机接入信道的资源分配信息确定的资源位 置子帧为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一 个上行子帧或下一个上行子帧中。
优选地, 上述方法还可以具有以下特点:
所述增强型随机接入信道的资源分配信息包括: 在标识为 e+q*p的帧上 发送所述增强型随机接入序列, 其中, e 为所述增强型随机接入信道的资源 起始帧索引, p为资源分配间隔, q = 0, l".., kFr ^ 为所述增强随机接入信 道占用的帧总数。
优选地, 上述方法还可以具有以下特点:
所述增强型随机接入信道在一帧内占用的子帧索引是由节点 2配置并发 送给节点 1或者默认配置存储于节点 1和节点 2中。
优选地, 上述方法还可以具有以下特点:
所述资源分配间隔 p的值属于资源分配间隔集合 P, 所述资源分配间隔 p的值在资源分配间隔集合 P中的索引默认配置于节点 1和节点 2中, 或者 由节点 2预先通过信令发送给节点 1 , 或者由所述随机接入序列的索引信息 指示。
优选地, 上述方法还可以具有以下特点:
当所述资源分配间隔 p由所述随机接入序列的索引信息指示时, 包括: 所述随机接入序列取自于一个确定的随机接入序列集合, 所述确定的随机接 入序列集合对应一资源分配间隔 p。
优选地, 上述方法还可以具有以下特点: 所述节点 2根据所述增强配置信息在所述增强型随机接入信道上检测节 点 1发送的所述增强型随机接入序列。
优选地, 上述方法还可以具有以下特点:
所述节点 1是机器类型通信终端或非机器类型通信终端;
所述节点 2 是宏基站(MacroCell ) 、 微基站 (MicroCell ) 、 微微基站
(PicoCell)、 家庭基站 (Femtocell ) 、 中继 (Relay ) 中的一种。
为了解决上述技术问题, 本发明提供了一种机器类型通信终端, 所述机 器类型通信终端包括增强型随机接入序列生成模块和增强型随机接入序列发 送模块;
所述增强型随机接入序列生成模块, 设置为: 根据随机接入序列和增强 配置信息生成增强型随机接入序列;
所述增强型随机接入序列发送模块, 设置为: 在增强型随机接入信道上 发送所述增强型随机接入序列。
优选地, 上述机器类型通信终端还可以具有以下特点:
所述增强配置信息包括所述随机接入序列的排列方式信息;
所述增强型随机接入序列生成模块, 设置为: 根据所述排列方式信息将 所述随机接入序列进行 K次重复排列后构成所述增强型随机接入序列,其中 K为大于 0的整数; 或者; 按照预定原则根据所述随机接入序列生成 L个衍 生随机接入序列, L为大于 0的整数, 将所述随机接入序列以及所述衍生随 机接入序列按照预定顺序排列后构成随机接入长序列, 将所述随机接入长序 列进行重复排列 T次构成所述增强型随机接入序列, 其中, T为大于 0的整 数。
优选地, 上述机器类型通信终端还可以具有以下特点:
所述增强配置信息包括所述增强型随机接入信道的资源分配信息; 所述 资源分配信息包括以下至少之一: 所述增强型随机接入信道的起始子帧索引 为 n, 资源分配间隔为 m个子帧;
所述增强型随机接入序列发送模块, 设置为: 根据所述增强型随机接入 信道的资源分配信息确定增强型随机接入信道中用于发送所述增强型随机接 入序列的资源;从默认配置中或从所述节点 2获知所述资源分配间隔 m的值 在资源分配间隔集合 M中的索引。
优选地, 上述机器类型通信终端还可以具有以下特点:
所述增强型随机接入信道的资源分配信息包括: 在标识为 e+q*p的帧上 发送所述增强型随机接入序列, 其中, e 为所述增强型随机接入信道的资源 起始帧索引, p为资源分配间隔, q = 0, l".., kFr ^ 为所述增强随机接入信 道占用的帧总数;
所述增强型随机接入序列发送模块, 设置为: 根据所述增强型随机接入 信道的资源分配信息确定增强型随机接入信道用于发送所述增强型随机接入 序列的资源; 从默认配置中或从所述节点 2获知所述资源分配间隔 p在资源 分配间隔集合 P中的索引。
本发明实施例针对 LTE/LTE-A系统的随机接入信道 ( Physical Random Access Channel, PRACH )进行增强设计, 可以提高机器类型通信终端的接 入质量, 保证机器类型通信终端可以正常接入系统。 附图概述
图 1是增强型随机接入序列的传输方法示意图;
图 2是第一种增强型随机接入信道的资源分配示意图;
图 3是第二种增强型随机接入信道的资源分配示意图;
图 4是具体实施例 1、 3的增强型随机接入信道的资源分配示意图; 图 5是具体实施例 2、 4的增强型随机接入信道的资源分配示意图; 图 6是具体实施例 5、 7的增强型随机接入信道的资源分配示意图; 图 7是具体实施例 6、 8的增强型随机接入信道的资源分配示意图; 图 8是具体实施例 9、 11的增强型随机接入信道的资源分配示意图; 图 9是具体实施例 10、 12的增强型随机接入信道的资源分配示意图; 图 10是具体实施例 13、 14的增强型随机接入信道的资源分配示意图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
如图 1所示, 增强型随机接入序列的传输方法包括: 节点 1根据随机接 入序列和增强配置信息生成增强型随机接入序列, 所述节点 1在增强型随机 接入信道上发送所述增强型随机接入序列。
其中, 随机接入序列可以是预先选定的, 随机接入序列可以是标准默认 配置的随机接入序列, 或者是专门用于生成增强型随机接入序列的随机接入 序列。 增强型随机接入信道使用的资源可以是标准默认配置用来发送随机接 入序列的资源, 或者是专门用于发送增强型随机接入序列的资源。
增强配置信息至少包括以下之一: 所述随机接入序列的排列方式信息、 所述增强型随机接入信道的资源分配信息。
随机接入序列的排列方式信息包括以下之一:
一,将所述随机接入序列进行 K次重复排列后构成所述增强型随机接入 序列,其中 K为大于 0的整数;例如 K的取值可以是 {0,1, 4,10,20,30,50,80,100} , κ=ο时表示将随机接入序列直接作为增强型随机接入序列。
二, 按照预定原则根据所述随机接入序列生成 L个衍生随机接入序列, L为大于 0的整数, 将所述随机接入序列以及所述衍生随机接入序列按照预 定顺序排列后构成随机接入长序列, 将所述随机接入长序列进行重复排列 Τ 次构成所述增强型随机接入序列, 其中, Τ为大于 0的整数。
随机接入序列的排列方式信息可以默认配置于节点 1和节点 2中, 或者 由节点 2预先通过信令发送给节点 1。
所述随机接入序列是一条或多条随机接入序列, 多条随机接入序列的序 列长度可以不同。
增强型随机接入信道的资源分配方案一: 增强型随机接入信道的资源分配信息包括以下至少之一: 增强型随机接 入信道的起始子帧索引为 n, 资源分配间隔为 m个子帧。
如图 2所示, 随机接入序列是一条随机接入序列且长度为占用 1个子帧 时, 在标识为 n+t*m的子帧上发送所述增强型随机接入序列, 其中, n为所 述增强型随机接入信道的起始子帧索引, m为资源分配间隔, t = 0X ..., ksubfmme -1 , 为所述增强随机接入信道占用的子帧总数。
随机接入序列是多条随机接入序列且长度不同时, 例如一长度为占用 1 个子帧, 另一长度为占用 2个子帧, 增强型随机接入信道的起始子帧索引为 η ,发送前一随机接入序或衍生随机接入序列结束位置的子帧与发送后一随机 接入序列或衍生随机接入序列的起始位置的子帧的位置间隔为 m。
资源分配间隔 m可以属于资源分配间隔集合 M, M包括 NM 个可用资 源分配间隔时, 所述资源分配间隔 m在资源分配间隔集合 M中的索引值默 认配置于节点 1和节点 2中, 或者由节点 2预先通过信令发送给节点 1 , 或 者由所述随机接入序列的索引信息指示。 或者, 资源分配间隔 m也可以由所 述随机接入序列的索引信息指示, 所述随机接入序列取自于一个确定的随机 接入序列集合, 所述确定的随机接入序列集合对应一资源分配间隔 m。
节点 1根据所述增强型随机接入信道的资源分配信息确定的资源位置子 帧为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一个上 行子帧或下一个上行子帧中, 其中, 最近的上一个上行子帧或下一个上行子 帧不在上述资源分配信息限定的子帧集合中。
增强型随机接入信道的资源分配方案二:
如图 3所示,增强型随机接入信道的资源分配信息包括:在标识为 e+q*p 的帧上发送所述增强型随机接入序列, 其中, e 为所述增强型随机接入信道 的资源起始帧索引, p为资源分配间隔, q = 0, l".., kFr ^ 为所述增强随机 接入信道占用的帧总数。
增强型随机接入信道在一帧内占用的子帧索引是由节点 2配置并发送给 节点 1或者默认配置存储于节点 1和节点 2中。 帧中包括特殊子帧时, 此特殊子帧也可以用来传输所述增强型随机接入 序列。
资源分配间隔 p的值可以属于资源分配间隔集合 P, 所述资源分配间隔 p的值在资源分配间隔集合 P中的索引默认配置于节点 1和节点 2中, 或者 由节点 2预先通过信令发送给节点 1 , 或者由所述随机接入序列的索引信息 指示。 或者, 资源分配间隔 p的值可以由所述随机接入序列的索引信息指示 时, 包括: 所述随机接入序列取自于一个确定的随机接入序列集合, 所述确 定的随机接入序列集合对应一资源分配间隔 p。
本方法中,在增强型随机接入信道资源的资源位置(每个子帧或每个帧 ) 上发送一个随机接入序列或一个衍生随机接入序列。
本方法中节点 2根据增强配置信息在增强型随机接入信道上检测节点 1 发送的增强型随机接入序列。
节点 1是机器类型通信终端或非机器类型通信终端。
节点 2是宏基站( MacroCell )、微基站( MicroCell )、微微基站 (PicoCell)、 家庭基站 (Femtocell ) 、 中继 (Relay ) 中的一种。
本方案中的机器类型通信终端包括增强型随机接入序列生成模块和增强 型随机接入序列发送模块;
所述增强型随机接入序列生成模块, 用于根据随机接入序列和增强配置 信息生成增强型随机接入序列;
所述增强型随机接入序列发送模块, 用于在增强型随机接入信道上发送 所述增强型随机接入序列。
所述增强配置信息包括所述随机接入序列的排列方式信息;
所述增强型随机接入序列生成模块,用于根据所述排列方式信息将 K个 所述随机接入序列进行重复排列后构成所述增强型随机接入序列,其中 K为 大于 0的整数; 或者; 按照预定原则根据所述随机接入序列生成 L个衍生随 机接入序列, L为大于 0的整数, 将所述随机接入序列以及所述衍生随机接 入序列按照预定顺序排列后构成随机接入长序列, 将所述随机接入长序列进 行重复排列 T次构成所述增强型随机接入序列, 其中, T为大于 0的整数。
所述增强配置信息包括所述增强型随机接入信道的资源分配信息; 所述 资源分配信息包括:在标识为 n+t*m的子帧上发送所述增强型随机接入序列, 其中, n为所述增强型随机接入信道的起始子帧索引, m为资源分配间隔, t = 0, \, ..., ksubframe - 1 , ksubfmme为所述增强随机接入信道占用的子帧总数;
所述增强型随机接入序列发送模块, 用于根据所述增强型随机接入信道 的资源分配信息确定增强型随机接入信道中用于发送所述增强型随机接入序 列的资源;还用于从默认配置中或从所述节点 2获知所述资源分配间隔 m的 值在资源分配间隔集合 M中的索引。
所述增强型随机接入信道的资源分配信息包括: 在标识为 e+q*p的帧上 发送所述增强型随机接入序列, 其中, e 为所述增强型随机接入信道的资源 起始帧索引, p为资源分配间隔, q = 0, l".., kFr ^ 为所述增强随机接入信 道占用的帧总数;
所述增强型随机接入序列发送模块, 用于根据所述增强型随机接入信道 的资源分配信息确定增强型随机接入信道用于发送所述增强型随机接入序列 的资源; 还用于从默认配置中或从所述节点 2获知所述资源分配间隔 p在资 源分配间隔集合 P中的索引。
下面通过具体实施例对本方案进行详细说明。
具体实施例 1
本具体实施例中对应于增强型随机接入信道资源分配方案一, 随机接入 序列的排列方式一, 高层配置参数值, 随机接入序列为一条随机接入序列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 典型的节 点 1是非 MTC终端 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的网 络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信道 的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC 终端为 UE1 , UE1 获得的随机接入序列为 LC— Preamble— 1 , 取自非 MTC终端的随机接入序列, 在本具体实施例的变例 中还中可以取自专门用于生成增强型随机接入序列的随机接入序列 (不同于 非 MTC终端的随机接入序列 ) 。
2、 UE1 需要将 LC— Preamble— 1 重复 K 次构成增强型随机接入序列 E— Preamble— 1。 其中, K的取值可以默认配置于 UE1和节点 2中, 或者是由 节点 2通过信令发送给 UE1。
本具体实施例中, 假设 K的取值可以是 {0,1,4,10,20,30,50,80,100} , 并且 节点 2通过下行信令预先发送给 UE1其 K的具体取值, 例如 K=10。
LC Preamble l 的两次重复之间间隔 m个子帧 ( subframe ) , 其中, m 的取值可以默认配置于 UE1和节点 2中, 或者是由节点 2通过信令发送给 UE1。
本具体实施例中, 假设 m的取值可以是 {1,2,4,6,8,10} , 并且节点 2通过 下行信令预先发送给 UE1其 m的具体取值, 例如 m=2。
3、 增强型随机接入序列 E— Preamble— 1在增强型随机接入信道上发送的 示意图如图 4所示; 其中 E— Preamble— 1在每个子帧中占用的资源可以同 UE 发送随机接入序列时使用的资源相同, 或者是占用专门为增强型随机接入序 列分配的资源 (不同于已有的 UE发送随机接入序列时使用的资源相同 ) 。 并且 E— Preamble— 1在各个子帧中占用的资源位置可以相同或不同。
如果 UE1按照间隔 m子帧确定的增强型随机接入信道的分配资源位置 为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一个上行 子帧或下一个上行子帧中。 其中, 最近的上一个上行子帧或下一个上行子帧 不在由 n和 m对应的子帧集合中。
本具体实施例中, E— Preamble— 1使用的资源是专门为增强型随机接入序 列分配的资源, 并且 E— Preamble— 1在各个子帧中资源的位置相同。
4、由于节点 2已知增强型随机接入信道的资源位置信息及增强型随机接 入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接收 检测, 获得 UE1发送的 E— Preamble— 1信息。
具体实施例 2
本具体实施例二中对应于增强型随机接入信道资源分配方案一, 随机接 入序列的排列方式二,高层配置参数值,随机接入序列为一条随机接入序列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC 终端为 UE1 , UE1 获得的随机接入序列为 LC_Preamble_l, 取自非 MTC终端的随机接入序列 , 在本具体实施例的变例 中还中可以取自专门用于生成增强型随机接入序列的随机接入序列 (不同于 非 MTC终端的随机接入序列 ) 。
2、 UE1需要根据 LC— Preamble— 1生成 L个衍生随机接入序列构成增强 型随机接入序列 E— Preamble— 1。 其中, L的取值可以默认配置于 UE1和节点 2中, 或者是由节点 2通过信令发送给 UE1。 本具体实施例中, 假设 L的取值可以是 {0,1,4,10,20,30,50,80,100} , 并且 节点 2通过下行信令预先发送给 UE1其 L的具体取值, 例如 L=10。
基于预先定义的原则由 LC— Preamble— 1获得 10条专门用于生成增强型 随机接入序列的衍生随机接入序列 ,所述 10条衍生随机接入序列中可以包括 LC— Preamble— 1 , 本具体实施例中, 假设生成的 10 条序列分别为 LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 2 、 LC— Preamble— 5 、 LC— Preamble— 8 、 LC— Preamble— 14 、 LC— Preamble— 7 、 LC— Preamble— 9 、 LC— Preamble— 11、 LC— Preamble— 4。
资源分配间隔 m个子帧(subframe ) , 其中, m的取值可以默认配置于 UE1和节点 2中, 或者是由节点 2通过信令发送给 UE1。
本具体实施例中, 假设 m的取值可以是 {1,2,4,6,8,10} , 并且节点 2通过 下行信令预先发送给 UE1其 m的具体取值, 例如 m=2。
如果 UE1按照间隔 m子帧确定的增强型随机接入信道的分配资源位置 为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一个上行 子帧或下一个上行子帧中。 其中, 最近的上一个上行子帧或下一个上行子帧 不在由 n和 m对应的子帧集合中。
3、 增强型随机接入序列 E— Preamble— 1在增强型随机接入信道上发送的 示意图如图 5所示; 其中 E— Preamble— 1在每个子帧中占用的资源可以同 UE 发送随机接入序列时使用的资源相同, 或者是占用专门为增强型随机接入序 列分配的资源 (不同于已有的 UE发送随机接入序列时使用的资源相同 ) 。 并且 E— Preamble— 1在各个子帧中占用的资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1使用的资源是专门为增强型随机接入序 列分配的资源, 并且 E— Preamble— 1在各个子帧中资源的位置相同。
4、由于节点 2已知增强型随机接入信道的资源位置信息及增强型随机接 入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接收 检测, 获得 UE1发送的 E— Preamble— 1信息。
具体实施例 3 本具体实施例 3对应于增强型随机接入信道资源分配方案一, 随机接入 序列的排列方式一, 序列索引指示参数值, 随机接入序列为一条随机接入序 列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC 终端为 UE1 , UE1 获得的随机接入序列为 LC— Preamble— 1 , 取自非 MTC终端的随机接入序列, 在本具体实施例的变例 中还中可以取自专门用于生成增强型随机接入序列的随机接入序列 (不同于 非 MTC终端的随机接入序列 ) 。
2、 UE1 需要将 LC— Preamble— 1 重复 K 次构成增强型随机接入序列 E— Preamble— 1。 其中, K的取值由 LC— Preamble— 1的索引信息指示。
将为 MTC终端分配的用于生成增强型随机接入序列的随机接入序列分 成 N个组,每个组中包括一条或多条用于生成增强型随机接入序列的随机接 入序列, MTC终端根据需要的重复次数选择从对应的组中随机选择一条序列 作为生成增强型随机接入序列的随机接入序列。 本具体实施例中, UE1选择 了 LC— Preamble— 1 , 对应的重复次数为 K=l 0。
LC— Preamble— 1 的两次重复之间间隔 m个子帧 ( subframe ) , 其中, m 的取值可以默认配置于 UE1和节点 2中, 或者是由节点 2通过信令发送给 UE1。
本具体实施例中,资源分配间隔 m的取值由 LC— Preamble— 1的索引信息 指示, LC— Preamble— 1所在的随机接入序列小组对应一个 m的取值, m=2。
3、 增强型随机接入序列 E— Preamble— 1在增强型随机接入信道上发送的 示意图如图 4所示; 其中 E— Preamble— 1在每个子帧中占用的资源可以同 UE 发送随机接入序列时使用的资源相同, 或者是占用专门为增强型随机接入序 列分配的资源 (不同于已有的 UE发送随机接入序列时使用的资源相同 ) 。 并且 E— Preamble— 1在各个子帧中占用的资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1使用的资源是专门为增强型随机接入序 列分配的资源, 并且 E— Preamble— 1在各个子帧中资源的位置相同。
如果 UE1按照间隔 m子帧确定的增强型随机接入信道的分配资源位置 为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一个上行 子帧或下一个上行子帧中。 其中, 最近的上一个上行子帧或下一个上行子帧 不在由 n和 m对应的子帧集合中。
4、 由于节点 2 已知增强型随机接入信道的资源位置信息及增强型随机 接入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接 收检测, 获得 UE1发送的 E— Preamble— 1信息。
具体实施例 4
本具体实施例 4对应于增强型随机接入信道资源分配方案一, 随机接入 序列的排列方式二, 序列索引指示参数值, 随机接入序列为一条随机接入序 列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC 终端为 UE1 , UE1 获得的随机接入序列为 LC— Preamble— 1 , 取自非 MTC终端的随机接入序列, 在本具体实施例的变例 中还中可以取自专门用于生成增强型随机接入序列的随机接入序列 (不同于 非 MTC终端的随机接入序列 ) 。
2、 UE1需要根据 LC— Preamble— 1生成 L个衍生随机接入序列构成增强 型随机接入序列 E— Preamble— 1。 其中, L的取值由 LC— Preamble— 1的索引信 息指示。
将为 MTC终端分配的用于生成增强型随机接入序列的随机接入序列分 成 N个组,每个组中包括一条或多条用于生成增强型随机接入序列的随机接 入序列, MTC终端根据需要的重复次数选择从对应的组中随机选择一条序列 作为生成增强型随机接入序列的随机接入序列。 本具体实施例中, UE1选择 了 LC— Preamble— 1 , 对应的 L值为 10。
基于预先定义的原则由 LC— Preamble— 1获得 10条专门用于生成增强型 随机接入序列的衍生随机接入序列 ,所述 10条衍生随机接入序列中可以包括 LC— Preamble— 1 , 本具体实施例中, 假设生成的 10 条序列分别为 LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 2 、 LC— Preamble— 5 、 LC— Preamble— 8 、 LC— Preamble— 14 、 LC— Preamble— 7 、 LC— Preamble— 9 、 LC— Preamble— 11、 LC— Preamble— 4。
资源分配间隔 m个子帧 (subframe ) , 其中, m的取值可以默认配置于 UE1和节点 2中, 或者是由节点 2通过信令发送给 UE1。
本具体实施例中, 假设 m 的取值可以是 {1,2,4,6,8,10} , m 的取值由 LC— Preamble— 1 的索引信息指示, LC— Preamble— 1 所在的随机接入序列小组 对应一个 m的取值, m=2。
如果 UE1按照间隔 m子帧确定的增强型随机接入信道的分配资源位置 为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一个上行 子帧或下一个上行子帧中。 其中, 最近的上一个上行子帧或下一个上行子帧 不在由 n和 m对应的子帧集合中。 3、 增强型随机接入序列 E— Preamble— 1在增强型随机接入信道上发送的 示意图如图 5所示; 其中 E— Preamble— 1在每个子帧中占用的资源可以同 UE 发送随机接入序列时使用的资源相同, 或者是占用专门为增强型随机接入序 列分配的资源 (不同于已有的 UE发送随机接入序列时使用的资源相同) 。 并且 E— Preamble— 1在各个子帧中占用的资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1使用的资源是专门为增强型随机接入序 列分配的资源, 并且 E— Preamble— 1在各个子帧中资源的位置相同。
4、 由于节点 2 已知增强型随机接入信道的资源位置信息及增强型随机 接入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接 收检测, 获得 UE1发送的 E— Preamble— 1信息。
具体实施例 5
本具体实施例 5中对应于增强型随机接入信道资源分配方案二, 随机接 入序列的排列方式一,高层配置参数值,随机接入序列为一条随机接入序列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC 终端为 UE1 , UE1 获得的随机接入序列为
LC— Preamble— 1 , 取自非 MTC终端的随机接入序列, 在本具体实施例的变例 中还中可以取自专门用于生成增强型随机接入序列的随机接入序列 (不同于 非 MTC终端的随机接入序列) 。 2、 UE1 需要将 LC— Preamble— 1 重复 K 次构成增强型随机接入序列 E— Preamble— 1。 其中, K的取值可以默认配置于 UE1和节点 2中, 或者是由 节点 2通过信令发送给 UE1。
本具体实施例中, 假设 K的取值可以是 {0,1,4,10,20,30,50,80,100} , 并且 节点 2通过下行信令预先发送给 UE1其 K的具体取值, 例如 K=10。
3、 增强型随机接入序列 E— Preamble— 1在增强型随机接入信道上发送的 示意图如图 6所示, E— Preamble— 1在每个 Frame中占用子帧 UL subframe2 和 UL subframe7 , 这样一共需要 5个 Frame才能发送 E— Preamble— 1。 发送 E— Preamble— 1的 Frame的间隔为 2个 Frame„其中 , E— Preamble— 1在每个 Frame 中占用子帧信息和发送 E— Preamble— 1 的 Frame的间隔信息可以默认配置于 UE1和节点 2中或是节点 2通过下行信令预先发送给 UE1。
另夕卜, E— Preamble— 1 在每个 Frame 中 占用子帧信息和 /或发送 E— Preamble— 1的 Frame的间隔信息还可以由 LC— Preamble— 1的索引信息指示, LC— Preamble— 1 所在的随机接入序列小组对应一种 E— Preamble— 1 在每个 Frame中占用子帧配置信息和 /或一种发送 E— Preamble— 1 的 Frame的间隔信 息。
E— Preamble— 1使用的资源可以同 UE发送随机接入序列时使用的资源相 同, 或者是占用专门为增强型随机接入序列分配的资源 (不同于已有的 UE 发送随机接入序列时使用的资源相同)。 并且 E— Preamble— 1在各个子帧中占 用的资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1使用的资源是专门为增强型随机接入序 列分配的资源, 并且 E— Preamble— 1在各个子帧中资源的位置相同。
4、由于节点 2已知增强型随机接入信道的资源位置信息及增强型随机接 入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接收 检测, 获得 UE1发送的 E— Preamble— 1信息。
具体实施例 6
本具体实施例 6中对应于增强型随机接入信道资源分配方案二, 随机接 入序列的排列方式二,高层配置参数值,随机接入序列为一条随机接入序列。 在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC 终端为 UE1 , UE1 获得的随机接入序列为 LC— Preamble— 1 , 取自非 MTC终端的随机接入序列, 在本具体实施例的变例 中还中可以取自专门用于生成增强型随机接入序列的随机接入序列 (不同于 非 MTC终端的随机接入序列 ) 。
2、 UE1需要根据 LC— Preamble— 1生成 L个衍生随机接入序列构成增强 型随机接入序列 E— Preamble— 1。 其中, L的取值可以默认配置于 UE1和节点 2中, 或者是由节点 2通过信令发送给 UE1。
本具体实施例中, 假设 L的取值可以是 {0,1,4,10,20,30,50,80,100} , 并且 节点 2通过下行信令预先发送给 UE1其 L的具体取值, 例如 L=10。
基于预先定义的原则由 LC— Preamble— 1获得 10条专门用于生成增强型 随机接入序列的衍生随机接入序列 ,所述 10条衍生随机接入序列中可以包括 LC— Preamble— 1 ,
3、 增强型随机接入序列 E— Preamble— 1在增强型随机接入信道上发送的 示意图如图 7所示, E— Preamble— 1在每个 Frame中占用子帧 UL subframe2 和 UL subframe7 , 这样一共需要 5个 Frame才能发送 E— Preamble— 1。 发送 E— Preamble— 1的 Frame的间隔为 2个 Frame„其中 , E— Preamble— 1在每个 Frame 中占用子帧信息和发送 E— Preamble— 1 的 Frame的间隔信息可以默认配置于 UE1和节点 2中或是节点 2通过下行信令预先发送给 UE1。
生成 E— Preamble— 1 所使用的 10 条序列分别为 LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 1 、 LC— Preamble— 3 , 即 Frame 内发送的随机序列可以不同, 然后在各个 Frame 内重复。
生成 E— Preamble— 1 所使用的 10 条序列还可以是 LC— Preamble— 1、 LC— Preamble— 3 、 LC— Preamble— 2 、 LC— Preamble— 4 、 LC— Preamble— 5 、 LC— Preamble— 8 、 LC— Preamble— 9 、 LC— Preamble— 10 、 LC— Preamble— 7 、 LC— Preamble— 13 , 即 Frame内和 Frame间发送的随机序列都可以不同。
生成 E— Preamble— 1 所使用的 10 条序列还可以是 LC— Preamble— 1、 LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 3 、 LC— Preamble— 5 、 LC— Preamble— 5 、 LC— Preamble— 7 、 LC— Preamble— 7 、 LC— Preamble— 9 、 LC— Preamble— 9 , 即 Frame内发送的随机序列相同, Frame间发送的随机序列 可以不同。
另夕卜, E— Preamble— 1 在每个 Frame 中 占用子帧信息和 /或发送 E— Preamble— 1的 Frame的间隔信息还可以由 LC— Preamble— 1的索引信息指示, LC— Preamble— 1 所在的随机接入序列小组对应一种 E— Preamble— 1 在每个 Frame中占用子帧配置信息和 /或一种发送 E— Preamble— 1 的 Frame的间隔信 息。
E— Preamble— 1使用的资源可以同 UE发送随机接入序列时使用的资源相 同, 或者是占用专门为增强型随机接入序列分配的资源 (不同于已有的 UE 发送随机接入序列时使用的资源相同)。 并且 E— Preamble— 1在各个子帧中占 用的资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1使用的资源是专门为增强型随机接入序 列分配的资源, 并且 E— Preamble— 1在各个子帧中资源的位置相同。
4、由于节点 2已知增强型随机接入信道的资源位置信息及增强型随机接 入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接收 检测, 获得 UE1发送的 E— Preamble— 1信息。 具体实施例 7
本具体实施例 7中对应于增强型随机接入信道资源分配方案二, 随机接 入序列的排列方式一,序列索引参数值,随机接入序列为一条随机接入序列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC 终端为 UE1 , UE1 获得的随机接入序列为
LC— Preamble— 1 , 取自非 MTC终端的随机接入序列, 在本具体实施例的变例 中还中可以取自专门用于生成增强型随机接入序列的随机接入序列 (不同于 非 MTC终端的随机接入序列 ) 。
2、 UE1 需要将 LC— Preamble— 1 重复 K 次构成增强型随机接入序列 E— Preamble— 1。 其中, K的取值由 LC— Preamble— 1的索引信息指示。
将为 MTC终端分配的用于生成增强型随机接入序列的随机接入序列分 成 N个组,每个组中包括一条或多条用于生成增强型随机接入序列的随机接 入序列, MTC终端根据需要的重复次数选择从对应的组中随机选择一条序列 作为生成增强型随机接入序列的随机接入序列。 本具体实施例中, UE1选择 了 LC— Preamble— 1 , 对应的重复次数为 K=l 0。
3、 增强型随机接入序列 E— Preamble— 1在增强型随机接入信道上发送的 示意图如图 6所示, E— Preamble— 1在每个 Frame中占用子帧 UL subframe2 和 UL subframe7 , 这样一共需要 5个 Frame才能发送 E Preamble 1。 发送 E— Preamble— 1的 Frame的间隔为 2个 Frame„其中 , E— Preamble— 1在每个 Frame 中占用子帧信息和发送 E— Preamble— 1 的 Frame的间隔信息可以默认配置于 UE1和节点 2中或是节点 2通过下行信令预先发送给 UE1。
另夕卜, E— Preamble— 1 在每个 Frame 中 占用子帧信息和 /或发送 E— Preamble— 1的 Frame的间隔信息还可以由 LC— Preamble— 1的索引信息指示 , LC— Preamble— 1 所在的随机接入序列小组对应一种 E— Preamble— 1 在每个 Frame中占用子帧配置信息和 /或一种发送 E— Preamble— 1 的 Frame的间隔信 息。
E— Preamble— 1使用的资源可以同 UE发送随机接入序列时使用的资源相 同, 或者是占用专门为增强型随机接入序列分配的资源 (不同于已有的 UE 发送随机接入序列时使用的资源相同)。 并且 E— Preamble— 1在各个子帧中占 用的资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1使用的资源是专门为增强型随机接入序 列分配的资源, 并且 E— Preamble— 1在各个子帧中资源的位置相同。
4、 由于节点 2 已知增强型随机接入信道的资源位置信息及增强型随机 接入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接 收检测, 获得 UE1发送的 E— Preamble— 1信息。
具体实施例 8
本具体实施例 8中对应于增强型随机接入信道资源分配方案二, 随机接 入序列的排列方式二、序列索引参数值,随机接入序列为一条随机接入序列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案: 1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC 终端为 UE1 , UE1 获得的随机接入序列为 LC— Preamble— 1 , 取自非 MTC终端的随机接入序列, 在本具体实施例的变例 中还中可以取自专门用于生成增强型随机接入序列的随机接入序列 (不同于 非 MTC终端的随机接入序列 ) 。
2、 UE1需要根据 LC— Preamble— 1生成 L个衍生随机接入序列构成增强 型随机接入序列 E— Preamble— 1。 其中, L的取值由 LC— Preamble— 1的索引信 息指示。
将为 MTC终端分配的用于生成增强型随机接入序列的随机接入序列分 成 N个组,每个组中包括一条或多条用于生成增强型随机接入序列的随机接 入序列, MTC终端根据需要的重复次数选择从对应的组中随机选择一条序列 作为生成增强型随机接入序列的随机接入序列。 本具体实施例中, UE1选择 了 LC— Preamble— 1 , 对应 L=10。
基于预先定义的原则由 LC— Preamble— 1获得 10条专门用于生成增强型 随机接入序列的衍生随机接入序列 ,所述 10条衍生随机接入序列中可以包括 LC— Preamble— 1。
3、 增强型随机接入序列 E— Preamble— 1在增强型随机接入信道上发送的 示意图如图 7所示, E— Preamble— 1在每个 Frame中占用子帧 UL subframe2 和 UL subframe7 , 这样一共需要 5个 Frame才能发送 E— Preamble— 1。 发送 E— Preamble— 1的 Frame的间隔为 2个 Frame„其中 , E— Preamble— 1在每个 Frame 中占用子帧信息和发送 E— Preamble— 1 的 Frame的间隔信息可以默认配置于 UE1和节点 2中或是节点 2通过下行信令预先发送给 UE1。
生成 E— Preamble— 1 所使用的 10 条序列分别为 LC— Preamble— 1 、
LC— Preamble— 3 、 LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 1 、 LC— Preamble— 3 , 即 Frame 内发送的随机序列可以不同, 然后在各个 Frame 内重复。 生成 E— Preamble— 1 所使用的 10 条序列还可以是 LC— Preamble— 1、 LC— Preamble— 3 、 LC— Preamble— 2 、 LC— Preamble— 4 、 LC— Preamble— 5 、 LC— Preamble— 8 、 LC— Preamble— 9 、 LC— Preamble— 10 、 LC— Preamble— 7 、 LC— Preamble— 13 , 即 Frame内和 Frame间发送的随机序列都可以不同。
生成 E— Preamble— 1 所使用的 10 条序列还可以是 LC— Preamble— 1、
LC— Preamble— 1 、 LC— Preamble— 3 、 LC— Preamble— 3 、 LC— Preamble— 5 、 LC— Preamble— 5 、 LC— Preamble— 7 、 LC— Preamble— 7 、 LC— Preamble— 9 、 LC— Preamble— 9 , 即 Frame内发送的随机序列相同, Frame间发送的随机序列 可以不同。
另夕卜, E— Preamble— 1 在每个 Frame 中 占用子帧信息和 /或发送
E— Preamble— 1的 Frame的间隔信息还可以由 LC— Preamble— 1的索引信息指示, LC— Preamble— 1 所在的随机接入序列小组对应一种 E— Preamble— 1 在每个 Frame中占用子帧配置信息和 /或一种发送 E— Preamble— 1 的 Frame的间隔信 息。
E— Preamble— 1使用的资源可以同 UE发送随机接入序列时使用的资源相 同, 或者是占用专门为增强型随机接入序列分配的资源 (不同于已有的 UE 发送随机接入序列时使用的资源相同)。 并且 E— Preamble— 1在各个子帧中占 用的资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1使用的资源是专门为增强型随机接入序 列分配的资源, 并且 E— Preamble— 1在各个子帧中资源的位置相同。
4、 由于节点 2 已知增强型随机接入信道的资源位置信息及增强型随机 接入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接 收检测, 获得 UE1发送的 E— Preamble— 1信息。
具体实施例 9
本具体实施例中对应于增强型随机接入信道资源分配方案一, 随机接入 序列的排列方式一, 高层配置参数值, 随机接入序列为多条随机接入序列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的网 络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信道 的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC终端为 UE1 , UE1获得的随机接入序列大于 1条, 例如为 LC— Preamble— 1和 LC— Preamble— 2 , 取自非 MTC终端的随机接入序 列。 且 LC— Preamble— 1 和 LC— Preamble— 2 的序列长度可以不同, 例如 LC Preamble l和 LC_Preamble_2来自于非 MTC终端的不同格式( Format ) 的随机接入序集合。
2、 UE1需要将 LC— Preamble— 1和 LC— Preamble— 2重复 K次构成增强型 随机接入序列 E— Preamble— 1&2。 其中, K的取值可以默认配置于 UE1和节 点 2中, 或者是由节点 2通过信令发送给 UE1。
本具体实施例中, 假设 K的取值可以是 {0,1,4,10,20,30,50,80,100} , 并且 节点 2通过下行信令预先发送给 UE1其 K的具体取值, 例如 K=10。
构成 E— Preamble— 1&2的 LC— Preamble— 1和 LC— Preamble— 2及其重复序 列发送的间隔为 m个子帧( subframe ) ,其中, m的取值可以默认配置于 UE1 和节点 2中, 或者是由节点 2通过信令发送给 UE1。
本具体实施例中, 假设 m的取值可以是 {1,2,4,6,8,10} , 并且节点 2通过 下行信令预先发送给 UE1其 m的具体取值, 例如 m=2。
如果 UE1按照间隔 m子帧确定的增强型随机接入信道的分配资源位置 为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一个上行 子帧或下一个上行子帧中。 其中, 最近的上一个上行子帧或下一个上行子帧 不在由 n和 m对应的子帧集合中。 3、增强型随机接入序列 E— Preamble— 1&2在增强型随机接入信道上发送 的示意图如图 8 所示, 其中 LC— Preamble— 1 长度为 1 个 subframe , LC— Preamble— 2长度为 2个 subframe。 其中 E— Preamble— 1和 LC— Preamble— 2 在每个子帧中占用的资源可以同非 MTC终端发送随机接入序列时使用的资 源相同, 或者是占用专门为增强型随机接入序列分配的资源。 并且 E— Preamble— 1和 LC— Preamble— 2在各个子帧中占用的资源位置可以相同或不 同。
本具体实施例中, E— Preamble— 1&2使用的资源是专门为增强型随机接入 序列分配的资源, 并且 E— Preamble— 1&2在各个子帧中资源的位置相同。
4、由于节点 2已知增强型随机接入信道的资源位置信息及增强型随机接 入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接收 检测, 获得 UE1发送的 E— Preamble— 1&2信息。
具体实施例 10
本具体实施例 10中对应于增强型随机接入信道资源分配方案一,随机接 入序列的排列方式二,高层配置参数值,随机接入序列为多条随机接入序列。
在一个无线通信系统中, 网络中存在节点 1和节点 2 , 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的网 络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信道 的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC终端为 UE1 , UE1获得的随机接入序列大于 1条, 例如为 LC— Preamble— 1和 LC— Preamble— 2 , 取自非 MTC终端的随机接入序 列。 且 LC— Preamble— 1 和 LC— Preamble— 2 的序列长度可以不同, 例如 LC Preamble l和 LC_Preamble_2来自于非 MTC终端的不同格式( Format ) 的随机接入序集合。
2、 UE1需要根据 LC Preamble l和 LC— Preamble— 2生成 L个衍生随机 接入序列, 然后构成增强型随机接入序列 E— Preamble— 1&2。 其中, L的取值 可以默认配置于 UE1和节点 2中, 或者是由节点 2通过信令发送给 UE1。
本具体实施例中, 假设 L的取值可以是 {0,1,4,10,20,30,50,80,100} , 并且 节点 2通过下行信令预先发送给 UE1其 L的具体取值, 例如 L=10。
基于预先定义的原则由 LC— Preamble— 1和 LC— Preamble— 2获得 10条用 于生成增强型随机接入序列的衍生随机接入序列,所述 10条衍生随机接入序 列中可以包括 LC— Preamble— 1和 LC— Preamble— 2 , 并且所述衍生随机接入序 列长度可以不同, 本具体实施例中, 假设生成的 10 条序列分别为 LC_Preamble_l (占用 1 个子帧) 、 LC_Preamble_2 (占用 2 个子帧) 、 LC_Preamble_3 (占用 2 个子帧) 、 LC_Preamble_5 (占用 1 个子帧) 、 LC_Preamble_8 (占用 1 个子帧) 、 LC_Preamble_14 (占用 2 个子帧) 、 LC_Preamble_7 (占用 1 个子帧) 、 LC_Preamble_9 (占用 1 个子帧) 、 LC_Preamble_l l (占用 1个子帧) 、 LC_Preamble_4 (占用 1个子帧) 。
资源分配间隔 m个子帧(subframe ) , 其中, m的取值可以默认配置于 UE1和节点 2中, 或者是由节点 2通过信令发送给 UE1。
本具体实施例中, 假设 m的取值可以是 {1,2,4,6,8,10} , 并且节点 2通过 下行信令预先发送给 UE1其 m的具体取值, 例如 m=2。
如果 UE1按照间隔 m子帧确定的增强型随机接入信道的分配资源位置 为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一个上行 子帧或下一个上行子帧中。 其中, 最近的上一个上行子帧或下一个上行子帧 不在由 n和 m对应的子帧集合中。
3、增强型随机接入序列 E— Preamble— 1&2在增强型随机接入信道上发送 的示意图如图 9所示; 其中 E— Preamble— 1&2在每个子帧中占用的资源可以 同非 MTC终端发送随机接入序列时使用的资源相同, 或者是占用专门为增 强型随机接入序列分配的资源。 并且 E— Preamble— 1&2在各个子帧中占用的 资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1&2使用的资源是专门为增强型随机接入 序列分配的资源, 并且 E— Preamble— 1&2在各个子帧中资源的位置相同。
4、由于节点 2已知增强型随机接入信道的资源位置信息及增强型随机接 入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接收 检测, 获得 UE1发送的 E— Preamble— 1&2信息。
具体实施例 11
本具体实施例 11对应于增强型随机接入信道资源分配方案一,随机接入 序列的排列方式一, 序列索引指示参数值, 随机接入序列为多条随机接入序 列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC终端为 UE1 , UE1获得的随机接入序列大于 1条, 例如为 LC— Preamble— 1和 LC— Preamble— 2 , 取自非 MTC终端的随机接入序 列。 且 LC— Preamble— 1 和 LC— Preamble— 2 的序列长度可以不同, 例如 LC— Preamble— 1和 LC— Preamble— 2来自于非 MTC终端的不同格式( Format ) 的随机接入序集合。
2、 UE1需要将 LC— Preamble— 1和 LC— Preamble— 2重复 K次构成增强型 随机接入序列 E— Preamble— 1&2。 其中, K 的取值由 LC— Preamble— 1 和 /或 LC— Preamble— 2的索引信息指示。
将为 MTC终端分配的用于生成增强型随机接入序列的随机接入序列分 成 N个组,每个组中包括一条或多条用于生成增强型随机接入序列的随机接 入序列, 并且每组对应一个重复次数。 本具体实施例中, UE1 选择了 LC— Preamble— 1 和 LC— Preamble— 2 , 假设其都来自同一个组, 对应的重复次 数为 K=10。
另外, LC— Preamble— 1和 LC— Preamble— 2还可以来自不同的组, 但 MTC 终端和节点 2要预先约定与重复次数 K对应的分组。
构成 E— Preamble— 1&2的 LC— Preamble— 1和 LC— Preamble— 2及其重复序 列发送的间隔为 m个子帧( subframe ) ,其中, m的取值可以默认配置于 UE1 和节点 2中, 或者是由节点 2通过信令发送给 UE1 , 或者由 LC— Preamble— 1 和 /或 LC— Preamble— 2的索引信息指示。
如果 UE1按照间隔 m子帧确定的增强型随机接入信道的分配资源位置 为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一个上行 子帧或下一个上行子帧中。 其中, 最近的上一个上行子帧或下一个上行子帧 不在由 n和 m对应的子帧集合中。
3、增强型随机接入序列 E— Preamble— 1&2在增强型随机接入信道上发送 的示意图如图 8 所示, 其中 LC— Preamble— 1 长度为 1 个 subframe , LC— Preamble— 2长度为 2个 subframe。 其中 E— Preamble— 1和 LC— Preamble— 2 在每个子帧中占用的资源可以同非 MTC终端发送随机接入序列时使用的资 源相同, 或者是占用专门为增强型随机接入序列分配的资源。 并且 E— Preamble— 1和 LC— Preamble— 2在各个子帧中占用的资源位置可以相同或不 同。
本具体实施例中, E— Preamble— 1&2使用的资源是专门为增强型随机接入 序列分配的资源, 并且 E— Preamble— 1&2在各个子帧中资源的位置相同。
4、 由于节点 2 已知增强型随机接入信道的资源位置信息及增强型随机 接入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接 收检测, 获得 UE1发送的 E— Preamble— 1&2信息。 具体实施例 12
本具体实施例 12对应于增强型随机接入信道资源分配方案一,随机接入 序列的排列方式二, 序列索引指示参数值, 随机接入序列为多条随机接入序 列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列 ) 。
本具体实施例中, MTC终端为 UE1 , UE1获得的随机接入序列大于 1条, 例如为 LC— Preamble— 1和 LC— Preamble— 2 , 取自非 MTC终端的随机接入序 列。 且 LC— Preamble— 1 和 LC— Preamble— 2 的序列长度可以不同, 例如 LC Preamble l和 LC_Preamble_2来自于非 MTC终端的不同格式( Format ) 的随机接入序集合。
2、 UE1需要根据 LC Preamble l和 LC— Preamble— 2生成 L个衍生随机 接入序列, 然后构成增强型随机接入序列 E— Preamble— 1&2。 其中, L的取值 可以取值由 LC— Preamble— 1和 /或 LC— Preamble— 2的索引信息指示。
将为 MTC终端分配的用于生成增强型随机接入序列的随机接入序列分 成 N个组,每个组中包括一条或多条用于生成增强型随机接入序列的随机接 入序列, 并且每组对应一个 L 的取值。 本具体实施例中, UE1 选择了 LC Preamble l和 LC— Preamble— 2 , 4叚设其都来自同一个组, 对应的 L= 10。
另外, LC— Preamble— 1和 LC— Preamble— 2还可以来自不同的组, 但 MTC 终端和节点 2要预先约定与 L对应的分组。
基于预先定义的原则由 LC— Preamble— 1和 LC— Preamble— 2获得 10条用 于生成增强型随机接入序列的衍生随机接入序列,所述 10条衍生随机接入序 列中可以包括 LC— Preamble— 1和 LC— Preamble— 2本具体实施例中 , 4叚设生成 的 10条序列分别为 LC— Preamble— 1 (占用 1个子帧) 、 LC— Preamble— 2 (占 用 2个子帧) 、 LC_Preamble_3 (占用 2个子帧) 、 LC_Preamble_5 (占用 1 个子帧) 、 LC_Preamble_8 (占用 1个子帧) 、 LC_Preamble_14 (占用 2个 子帧)、 LC_Preamble_7 (占用 1个子帧)、 LC_Preamble_9 (占用 1个子帧)、 LC_Preamble_l l (占用 1个子帧) 、 LC_Preamble_4 (占用 1个子帧) 。
资源分配间隔 m个子帧 (subframe ) , 其中, m的取值可以默认配置于
UE1 和节点 2 中, 或者是由节点 2 通过信令发送给 UE1 , 或者由 LC— Preamble— 1和 /或 LC— Preamble— 2的索引信息指示。
如果 UE1按照间隔 m子帧确定的增强型随机接入信道的分配资源位置 为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一个上行 子帧或下一个上行子帧中。 其中, 最近的上一个上行子帧或下一个上行子帧 不在由 n和 m对应的子帧集合中。
3、增强型随机接入序列 E— Preamble— 1&2在增强型随机接入信道上发送 的示意图如图 9所示; 其中 E— Preamble— 1&2在每个子帧中占用的资源可以 同非 MTC终端发送随机接入序列时使用的资源相同, 或者是占用专门为增 强型随机接入序列分配的资源。 并且 E— Preamble— 1&2在各个子帧中占用的 资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1&2使用的资源是专门为增强型随机接入 序列分配的资源, 并且 E— Preamble— 1&2在各个子帧中资源的位置相同。
4、由于节点 2已知增强型随机接入信道的资源位置信息及增强型随机接 入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接收 检测, 获得 UE1发送的 E— Preamble— 1&2信息。
具体实施例 13 本具体实施例 13中对应于增强型随机接入信道资源分配方案二,随机接 入序列的排列方式一,高层配置参数值,随机接入序列为多条随机接入序列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站( MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继( Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列) 。
本具体实施例中, MTC终端为 UE1 , UE1获得的随机接入序列大于 1条, 例如为 LC— Preamble— 1和 LC— Preamble— 2 , 取自非 MTC终端的随机接入序 列。 且 LC— Preamble— 1 和 LC— Preamble— 2 的序列长度可以不同, 例如 LC Preamble l和 LC_Preamble_2来自于非 MTC终端的不同格式( Format ) 的随机接入序集合。
2、 UE1需要将 LC— Preamble— 1和 LC— Preamble— 2重复 K次构成增强型 随机接入序列 E— Preamble— 1&2。 其中, K的取值可以默认配置于 UE1和节 点 2中, 或者是由节点 2通过信令发送给 UE1。
本具体实施例中, 假设 的取值可以是 {0,1,5,10,20,30,50,80,100} , 并且 节点 2通过下行信令预先发送给 UE1其 K的具体取值, 例如 K=5。
3、增强型随机接入序列 E— Preamble— 1&2在增强型随机接入信道上发送 的示意图如图 10 所示, E— Preamble— 1&2 在每个 Frame 中占用子帧 UL subframe2和 UL subframe7、 UL subframe8, 这样一共需要 5个 Frame才能发 送 E— Preamble— 1&2。 发送 E— Preamble— 1&2的 Frame的间隔为 2个 Frame。 其中, E— Preamble— 1 & 2在每个 Frame中占用子帧信息和发送 E— Preamble— 1 & 2 的 Frame的间隔信息可以默认配置于 UE1和节点 2中或是节点 2通过下行信 令预先发送给 UE1。 另夕卜, E— Preamble— 1 & 2 在每个 Frame 中占用子帧信息和 /或发送 E— Preamble— 1&2 的 Frame 的间隔信息还可以由 LC— Preamble— 1 和 /或 LC— Preamble— 2的索引信息指示。
E— Preamble— 1&2使用的资源可以同非 MTC终端发送随机接入序列时使 用的资源相同, 或者是占用专门为增强型随机接入序列分配的资源。 并且 E— Preamble— 1&2在各个子帧中占用的资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1&2使用的资源是专门为增强型随机接入 序列分配的资源, 并且 E— Preamble— 1&2在各个子帧中资源的位置相同。
4、由于节点 2已知增强型随机接入信道的资源位置信息及增强型随机接 入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接收 检测, 获得 UE1发送的 E— Preamble— 1&2信息。
具体实施例 14
本具体实施例 14中对应于增强型随机接入信道资源分配方案二,随机接 入序列的排列方式一,序列索引参数值,随机接入序列为多条随机接入序列。
在一个无线通信系统中, 网络中存在节点 1和节点 2, 其中, 节点 1可 以是非 MTC终端或 MTC终端; 节点 2可以是宏基站(MacroCell ) 、 微基 站(MicroCell )、微微基站 (PicoCell)、 家庭基站( Femtocell )、 中继(Relay ) 中的一种或几种。
现有的无线通信系统中, 考虑到 MTC终端的特性, 这类终端在现有的 网络中链路性能较差, 需要增强其链路性能, 下面具体描述一种随机接入信 道的增强方案:
1、 系统为 MTC终端分配的用于生成增强型随机接入序列的随机接入序 列可以取自非 MTC终端的随机接入序列, 也可以是专门用于生成增强型随 机接入序列的随机接入序列 (不同于非 MTC终端的随机接入序列 ) 。
本具体实施例中, MTC终端为 UE1 , UE1获得的随机接入序列大于 1条, 例如为 LC— Preamble— 1和 LC— Preamble— 2 , 取自非 MTC终端的随机接入序 列。 且 LC Preamble 1 和 LC Preamble 2 的序列长度可以不同, 例如 LC Preamble l和 LC_Preamble_2来自于非 MTC终端的不同格式( Format ) 的随机接入序集合。
2、 UE1需要将 LC— Preamble— 1和 LC— Preamble— 2重复 K次构成增强型 随机接入序列 E— Preamble— 1&2。 其中, K 的取值由 LC— Preamble— 1 和 /或 LC— Preamble— 2的索引信息指示。
将为 MTC终端分配的用于生成增强型随机接入序列的随机接入序列分 成 N个组,每个组中包括一条或多条用于生成增强型随机接入序列的随机接 入序列, 并且每组对应一个重复次数。 本具体实施例中, UE1 选择了 LC Preamble l 和 LC— Preamble— 2 , 假设其都来自同一个组, 对应的重复次 数为 K=5。
另外, LC— Preamble— 1和 LC— Preamble— 2还可以来自不同的组, 但 MTC 终端和节点 2要预先约定与重复次数 K对应的分组。
3、增强型随机接入序列 E— Preamble— 1&2在增强型随机接入信道上发送 的示意图如图 10 所示, E— Preamble— 1&2 在每个 Frame 中占用子帧 UL subframe2和 UL subframe7、 UL subframe8, 这样一共需要 5个 Frame才能发 送 E— Preamble— 1&2。 发送 E— Preamble— 1&2的 Frame的间隔为 2个 Frame。 其中, E— Preamble— 1 & 2在每个 Frame中占用子帧信息和发送 E— Preamble— 1 & 2 的 Frame的间隔信息可以默认配置于 UE1和节点 2中或是节点 2通过下行信 令预先发送给 UE1。
另夕卜, E— Preamble— 1 & 2 在每个 Frame 中占用子帧信息和 /或发送
E— Preamble— 1&2 的 Frame 的间隔信息还可以由 LC— Preamble— 1 和 /或 LC— Preamble— 2的索引信息指示。
E— Preamble— 1&2使用的资源可以同非 MTC终端发送随机接入序列时使 用的资源相同, 或者是占用专门为增强型随机接入序列分配的资源。 并且 E— Preamble— 1&2在各个子帧中占用的资源位置可以相同或不同。
本具体实施例中, E— Preamble— 1&2使用的资源是专门为增强型随机接入 序列分配的资源, 并且 E— Preamble— 1&2在各个子帧中资源的位置相同。
4、由于节点 2已知增强型随机接入信道的资源位置信息及增强型随机接 入序列的构成方式, 所以节点 2可以直接在增强型随机接入信道上进行接收 检测, 获得 UE1发送的 E— Preamble— 1&2信息。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
本发明实施例针对 LTE/LTE-A系统的随机接入信道 ( Physical Random
Access Channel, PRACH )进行增强设计, 可以提高机器类型通信终端的接 入质量, 保证机器类型通信终端可以正常接入系统。

Claims

权 利 要 求 书
1、 一种增强型随机接入序列的传输方法, 包括:
节点 1根据随机接入序列和增强配置信息生成增强型随机接入序列, 所 述节点 1在增强型随机接入信道上发送所述增强型随机接入序列。
2、 如权利要求 1所述的传输方法, 其中,
所述增强配置信息至少包括以下之一:
所述随机接入序列的排列方式信息、 所述增强型随机接入信道的资源分 配信息。
3、 如权利要求 2所述的传输方法, 其中,
所述随机接入序列的排列方式信息包括以下之一:
将所述随机接入序列进行 K次重复排列后构成所述增强型随机接入序列, 其中 K为大于 0的整数;
按照预定原则根据所述随机接入序列生成 L个衍生随机接入序列, L为 大于 0的整数, 将所述随机接入序列以及所述衍生随机接入序列按照预定顺 序排列后构成随机接入长序列, 将所述随机接入长序列进行重复排列 T次构 成所述增强型随机接入序列, 其中, T为大于 0的整数。
4、 如权利要求 3所述的传输方法, 其中,
所述随机接入序列是一条或多条随机接入序列,由所述节点 1预先选择。
5、 如权利要求 4所述的传输方法, 其中,
所述多条随机接入序列的序列长度不同。
6、 如权利要求 2所述的传输方法, 其中,
增强型随机接入信道的资源分配信息包括以下至少之一: 所述增强型随 机接入信道的起始子帧索引为 n, 资源分配间隔为 m个子帧。
7、 如权利要求 6所述的传输方法, 其中,
所述资源分配间隔 m属于资源分配间隔集合 M, 所述资源分配间隔 m 在资源分配间隔集合 M中的索引值默认配置于节点 1和节点 2中,或者由节 点 2预先通过信令发送给节点 1 ,或者由所述随机接入序列的索引信息指示。
8、 如权利要求 6所述的传输方法, 其中,
所述资源分配间隔 m由所述随机接入序列的索引信息指示时, 包括: 所 述随机接入序列取自于一个确定的随机接入序列集合, 所述确定的随机接入 序列集合对应一资源分配间隔 m。
9、 如权利要求 6所述的传输方法, 其中,
所述节点 1根据所述增强型随机接入信道的资源分配信息确定的资源位 置子帧为下行子帧时, 将此资源位置子帧更改为离所述下行子帧最近的上一 个上行子帧或下一个上行子帧中。
10、 如权利要求 2所述的传输方法, 其中,
所述增强型随机接入信道的资源分配信息包括: 在标识为 e+q*p的帧上 发送所述增强型随机接入序列, 其中, e 为所述增强型随机接入信道的资源 起始帧索引, p为资源分配间隔, q = 0,l,—,kFraBK为所述增强随机接入信 道占用的帧总数。
1 1、 如权利要求 10所述的传输方法, 其中,
所述增强型随机接入信道在一帧内占用的子帧索引是由节点 2配置并发 送给节点 1或者默认配置存储于节点 1和节点 2中。
12、 如权利要求 10所述的传输方法, 其中,
所述资源分配间隔 p的值属于资源分配间隔集合 P , 所述资源分配间隔 p的值在资源分配间隔集合 P中的索引默认配置于节点 1和节点 2中, 或者 由节点 2预先通过信令发送给节点 1 , 或者由所述随机接入序列的索引信息 指示。
13、 如权利要求 10所述的传输方法, 其中,
当所述资源分配间隔 p由所述随机接入序列的索引信息指示时, 包括: 所述随机接入序列取自于一个确定的随机接入序列集合, 所述确定的随机接 入序列集合对应一资源分配间隔 p。
14、 如权利要求 1至 13中任一权利要求所述的传输方法, 其中, 所述节点 2根据所述增强配置信息在所述增强型随机接入信道上检测节 点 1发送的所述增强型随机接入序列。
15、 如权利要求 14所述的传输方法, 其中,
所述节点 1是机器类型通信终端或非机器类型通信终端;
所述节点 2 是宏基站(MacroCell ) 、 微基站 (MicroCell ) 、 微微基站 (PicoCell)、 家庭基站 ( Femtocell ) 、 中继 (Relay ) 中的一种。
16、 一种机器类型通信终端,
所述机器类型通信终端包括增强型随机接入序列生成模块和增强型随机 接入序列发送模块;
所述增强型随机接入序列生成模块, 设置为: 根据随机接入序列和增强 配置信息生成增强型随机接入序列;
所述增强型随机接入序列发送模块, 设置为: 在增强型随机接入信道上 发送所述增强型随机接入序列。
17、 如权利要求 16所述的机器类型通信终端, 其中,
所述增强配置信息包括所述随机接入序列的排列方式信息;
所述增强型随机接入序列生成模块, 设置为: 根据所述排列方式信息将 所述随机接入序列进行 K次重复排列后构成所述增强型随机接入序列,其中 K为大于 0的整数; 或者; 按照预定原则根据所述随机接入序列生成 L个衍 生随机接入序列, L为大于 0的整数, 将所述随机接入序列以及所述衍生随 机接入序列按照预定顺序排列后构成随机接入长序列, 将所述随机接入长序 列进行重复排列 T次构成所述增强型随机接入序列, 其中, T为大于 0的整 数。
18、 如权利要求 16或 17所述的机器类型通信终端, 其中,
所述增强配置信息包括所述增强型随机接入信道的资源分配信息; 所述 资源分配信息包括以下至少之一: 所述增强型随机接入信道的起始子帧索引 为 n, 资源分配间隔为 m个子帧;
所述增强型随机接入序列发送模块, 设置为: 根据所述增强型随机接入 信道的资源分配信息确定增强型随机接入信道中用于发送所述增强型随机接 入序列的资源;从默认配置中或从所述节点 2获知所述资源分配间隔 m的值 在资源分配间隔集合 M中的索引。
19、 如权利要求 16或 17所述的机器类型通信终端, 其中,
所述增强型随机接入信道的资源分配信息包括: 在标识为 e+q*p的帧上 发送所述增强型随机接入序列, 其中, e 为所述增强型随机接入信道的资源 起始帧索引, p为资源分配间隔, q = 0,l,—,kFraBK为所述增强随机接入信 道占用的帧总数;
所述增强型随机接入序列发送模块, 设置为: 根据所述增强型随机接入 信道的资源分配信息确定增强型随机接入信道用于发送所述增强型随机接入 序列的资源; 从默认配置中或从所述节点 2获知所述资源分配间隔 p在资源 分配间隔集合 P中的索引。
PCT/CN2013/085819 2012-11-02 2013-10-23 一种增强型随机接入序列的传输方法及机器类型通信终端 WO2014067414A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13851948.3A EP2903384B1 (en) 2012-11-02 2013-10-23 Method for transmitting enhanced random access sequence and machine type communication terminal
US14/439,692 US9572181B2 (en) 2012-11-02 2013-10-23 Method for transmitting enhanced random access sequence and machine type communication terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210433419.7A CN103796329B (zh) 2012-11-02 2012-11-02 一种增强型随机接入序列的传输方法及机器类型通信终端
CN201210433419.7 2012-11-02

Publications (1)

Publication Number Publication Date
WO2014067414A1 true WO2014067414A1 (zh) 2014-05-08

Family

ID=50626471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085819 WO2014067414A1 (zh) 2012-11-02 2013-10-23 一种增强型随机接入序列的传输方法及机器类型通信终端

Country Status (4)

Country Link
US (1) US9572181B2 (zh)
EP (1) EP2903384B1 (zh)
CN (1) CN103796329B (zh)
WO (1) WO2014067414A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016107169A1 (zh) * 2014-12-31 2016-07-07 中兴通讯股份有限公司 重复发送处理方法、装置及节点

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6195467B2 (ja) * 2013-05-08 2017-09-13 株式会社Nttドコモ 無線通信システムおよび端末装置
EP2903378A1 (en) * 2014-01-30 2015-08-05 Alcatel Lucent Communication resource allocation in wireless networks
CN105323865A (zh) * 2014-07-18 2016-02-10 中兴通讯股份有限公司 资源、同步信息和随机接入信息的处理方法及装置
CN105764152B (zh) * 2014-12-19 2020-10-27 联想(北京)有限公司 信息处理方法及基站
CN106961709B (zh) * 2016-01-11 2021-08-03 中兴通讯股份有限公司 一种接入信号的生成方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046629A1 (en) * 2007-08-06 2009-02-19 Jing Jiang Signaling of Random Access Preamble Sequences in Wireless Networks
CN101500241A (zh) * 2008-01-31 2009-08-05 展讯通信(上海)有限公司 增强型fach中的基于新增签名的随机签名序列分配方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7664076B2 (en) 2004-12-13 2010-02-16 Electronics And Telecommunications Research Institute Random access apparatus and method
US8559382B2 (en) * 2007-03-15 2013-10-15 Electronics And Telecommunications Research Institute Preamble allocation method and random access method in mobile communication system
CN102665225A (zh) 2007-03-20 2012-09-12 朗讯科技公司 无线通信系统中用于范围扩展的可配置随机接入信道结构
WO2011087274A2 (en) * 2010-01-12 2011-07-21 Samsung Electronics Co., Ltd. Apparatus and method for accessing random access channel in a wireless communication system
KR20120041932A (ko) * 2010-10-22 2012-05-03 한국전자통신연구원 랜덤 액세스 자원 할당을 위한 기지국의 통신 방법 및 랜덤 액세스 자원 할당을 이용한 단말의 통신 방법 및 그 장치
KR101990487B1 (ko) * 2011-03-25 2019-06-18 베이징 뉴프론트 모바일 멀티미디어 테크놀로지 씨오., 엘티디 무선통신시스템 및 통신방법
US8983547B2 (en) * 2011-09-15 2015-03-17 Samsung Electronics Co., Ltd. Apparatus and method for beam selecting in beamformed wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046629A1 (en) * 2007-08-06 2009-02-19 Jing Jiang Signaling of Random Access Preamble Sequences in Wireless Networks
CN101500241A (zh) * 2008-01-31 2009-08-05 展讯通信(上海)有限公司 增强型fach中的基于新增签名的随机签名序列分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2903384A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016107169A1 (zh) * 2014-12-31 2016-07-07 中兴通讯股份有限公司 重复发送处理方法、装置及节点

Also Published As

Publication number Publication date
EP2903384B1 (en) 2019-12-11
EP2903384A4 (en) 2015-10-07
US9572181B2 (en) 2017-02-14
EP2903384A1 (en) 2015-08-05
CN103796329B (zh) 2018-09-11
CN103796329A (zh) 2014-05-14
US20150289291A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
US10945244B2 (en) System and method for small traffic transmissions
JP6486987B2 (ja) 無線通信システムで拡張アクセス遮断適用方法及び装置
WO2021232382A1 (zh) 侧行反馈资源配置方法、终端设备和网络设备
WO2014177092A1 (zh) 随机接入响应消息的处理方法、第一节点
CN104125610B (zh) D2d通信中的数据发送方法和设备
US10863532B2 (en) Method for transmitting data in a communication system and device therefor
CN109156013B (zh) 无线通信方法和无线通信设备
KR20180035643A (ko) RRC Inactive 및 active 상태에서 data 전송 결정 및 방법 및 장치
CN105101431B (zh) 一种设备到设备通信方法、装置及系统
CN102811496B (zh) 一种随机接入方法
WO2018113739A1 (zh) 资源配置方法、信息发送方法、基站及终端
WO2014176935A1 (zh) 随机接入信道资源配置方法和系统
KR20170051347A (ko) 무선 통신 시스템에서 사이드링크 통신 방법 및 장치
WO2014067414A1 (zh) 一种增强型随机接入序列的传输方法及机器类型通信终端
WO2014183474A1 (zh) 随机接入信道资源分配方法和系统
WO2015103874A1 (zh) 非竞争随机接入方法、节点、系统及计算机存储介质
WO2014180160A1 (zh) 一种随机接入方法及系统
EP2745605A1 (en) Mobile communications system, infrastructure equipment, mobile communications terminal and method to communicate user data within an uplink random access channel
CN105453676A (zh) 设备到设备通信中开放发现的资源分配的系统和方法
WO2016161778A1 (zh) 一种随机接入的方法、节点以及系统
CN105812092A (zh) 重复发送处理方法、装置及节点
JP2017522828A (ja) データ送信を判定するための方法および装置
CN106900032A (zh) 上行链路广播传输的方法、终端设备以及网络节点
CN109644464A (zh) 下行信道的接收方法和终端设备
JP5844385B2 (ja) 通信のためにワイヤレスネットワークにおいてランダムアクセスチャネルを提供する方法および対応するシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013851948

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14439692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE