WO2016161778A1 - 一种随机接入的方法、节点以及系统 - Google Patents

一种随机接入的方法、节点以及系统 Download PDF

Info

Publication number
WO2016161778A1
WO2016161778A1 PCT/CN2015/090170 CN2015090170W WO2016161778A1 WO 2016161778 A1 WO2016161778 A1 WO 2016161778A1 CN 2015090170 W CN2015090170 W CN 2015090170W WO 2016161778 A1 WO2016161778 A1 WO 2016161778A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
level
index
logical unit
levels
Prior art date
Application number
PCT/CN2015/090170
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
鲁照华
夏树强
陈宪明
石靖
张雯
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016161778A1 publication Critical patent/WO2016161778A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • Embodiments of the present invention relate to, but are not limited to, mobile communication technologies, and in particular, to a random access method, node, and system.
  • MTC UE Machine Type Communication (MTC) User Terminal (MTC UE), also known as Machine to Machine (M2M) user communication equipment, is the main application form of the Internet of Things at this stage. Low power consumption and low cost are important guarantees for large-scale applications.
  • M2M devices currently deployed on the market are mainly based on the Global System of Mobile communication (GSM) system.
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • M2M multi-class data services based on LTE or LTE-A will also be more attractive. Only when the cost of the LTE-M2M device can be lower than the MTC terminal of the GSM system can the M2M service be truly transferred from the GSM to the LTE system.
  • the main alternative methods for reducing the cost of the MTC UE include: reducing the number of terminal receiving antennas, reducing the baseband processing bandwidth of the terminal, reducing the peak rate supported by the terminal, adopting a half-duplex mode, and the like. Due to the reduction of the cost configuration of the MTC UE, the performance of the MTC UE will also decrease. However, the cell coverage of the LTE or LTE-A system has high requirements for the performance requirements of the LTE terminal. In addition, the MTC UE may be located in a basement, a corner, etc., and the scene is worse than that of the ordinary LTE UE. In order to compensate for the decrease in coverage caused by the penetration loss, some MTC UEs need higher performance improvement. Therefore, in a manner of reducing the cost configuration of the MTC UE based on the LTE or LTE-A system, the MTC UE may not be able to access the network normally.
  • the embodiments of the present invention provide a method, a node, and a system for random access, which can ensure that a low-cost configuration of an MTC UE based on an LTE or LTE-A system normally accesses the network.
  • An embodiment of the present invention provides a method for random access, where the method includes:
  • the base station sends the random access configuration information to the user equipment by using the downlink channel, where the random access configuration information is used to indicate that the user equipment accesses the network according to the random access configuration information;
  • the random access configuration information includes at least one of the following: configuration information of a time-frequency resource occupied by a random access channel, configuration information of a random access sequence, and repeated transmission times of random access signaling corresponding to each level. Configuration information.
  • the configuration information of the repeated transmission times of the random access signaling corresponding to each level includes at least one of the following:
  • the first class level and the second class level are two level sets obtained by dividing the all levels according to a preset rule.
  • the configuration information of the time-frequency resource occupied by the random access channel includes at least one of the following:
  • the configuration period indicated by the indication information of the configuration period is at least one of the following:
  • the unit random access resource is a random access channel time-frequency resource required for transmitting random access signaling in a selected one of the all levels, and K 1 , K 2 , and K 3 are greater than The number of 0.
  • the level comprises:
  • Coverage enhancement level physical random access channel PRACH channel coverage enhancement level, or PRACH channel repetition transmission level.
  • the first class level includes at least one of the following:
  • a level configured by the base station in all levels a level configured by the base station in all levels, a level of repeated transmission of the random access signaling configured by the base station in all levels, and the level configured by the base station in all levels The maximum number of repeated transmissions of random access signaling.
  • the second class level comprises:
  • the information indicating that the random access signaling repeated transmission times corresponding to the second type of level includes:
  • the number of repeated transmissions of the random access signaling corresponding to the second type of level is a multiple of the number of repeated transmissions of the random access signaling corresponding to the first type of level.
  • the configuration information of the random access channel time-frequency resource corresponding to each level includes at least one of the following:
  • the configuration information of the first type of random access channel in the time domain during the configuration period ; and the configuration information of the second type of random access channel in the frequency domain during the configuration period.
  • the configuration information of the first type of random access channel in the time domain includes: configuration information of the random access channel corresponding to the P levels in the time domain, where 1 ⁇ P ⁇ the number of the levels;
  • the configuration information of the second type of random access channel in the frequency domain includes: configuration information of the random access channel corresponding to the Q levels in the frequency domain, and 1 ⁇ Q ⁇ the number of the levels.
  • the P levels are taken from all levels configured by the base station; or the P levels are taken from the Q levels.
  • the Q levels are taken from all levels configured by the base station; or, the Q levels are taken from the P levels.
  • the indexes of the P levels are continuously distributed; the indexes of the Q levels are continuously distributed.
  • the method further includes:
  • the random access channel time domain resource required for transmitting the random access signaling corresponding to the selected one of the ranks is used as a quantization unit, and the random access channel time domain resource in the configuration period is divided into N
  • the logical unit has an index of 0 to (N-1) and N is a positive integer.
  • the selected one level comprises:
  • the dividing the random access channel time domain resource in the configuration period into N logical units including: dividing the first type random access channel time domain resource into the N in the configuration period 1 logical unit, the N 1 logical units occupied by the time domain resources of the first type of random access channel are continuous; wherein 0 ⁇ N 1 ⁇ N.
  • the N 1 logical units include a logical unit with an index of 0, the first type of random access channel time domain resources are allocated to at least a minimum level of random access signaling among the P levels; or
  • the N 1 logical units include a logical unit with an index of N-1
  • the first type of random access channel time domain resources are allocated to at least a maximum level of random access signaling among the P levels; or,
  • the N1 logical units include a logical unit with an index of 0 and a logical unit with an index of N-1
  • the first type of random access channel time domain resources are allocated to at least a minimum level of the P levels. Maximum level of random access signaling.
  • N logical units correspond to N consecutive quantized units that are physically continuous or discrete.
  • the N 1 logical units include a logical unit with an index of 0 but not a logical unit with an index of N-1
  • the first type of random access channel time domain resources are allocated to random levels 0 and 1 Access signaling; the remaining random access channel time domain resources are allocated to level 2 in the configuration period; or
  • the N 1 logical units include a logical unit with an index of N-1 but does not include a logical unit with an index of 0, the first type of random access channel time domain resources are allocated to random levels 1 and 2 Access signaling; the remaining random access channel time domain resources are allocated to level 0 in the configuration period; or
  • the N 1 logical units include a logical unit with an index of N-1 and a logical unit with an index of 0, the first type of random access channel time domain resources are allocated to level 0, level 1, and level 2 Random access signaling; or,
  • the N 1 logical units include neither the logical unit with the index N-1 nor the logical unit with the index 0, the first type of random access channel time domain resources are allocated to the level 1 random connection.
  • the logical unit index is smaller than the logical unit allocated to the minimum logical unit index of level 1 and assigned to level 0; in the configuration period, the logical unit index is greater than the maximum logical unit index assigned to level 1 Logical unit assigned to level 2; or,
  • the first type of random access channel time domain resources are allocated to random access signaling of level 0, level 1, and level 2.
  • the first type of random access channel time domain resources are allocated to the level 0 random access signal.
  • the remaining random access channel time domain resources are allocated to level 1; or,
  • the first type of random access channel time domain resources are allocated to the level 1 random access signal.
  • the remaining random access channel time domain resources are allocated to level 0; or,
  • the N 1 logical units include a logical unit with an index of N-1 and a logical unit with an index of 0, the first type of random access channel time domain resources are allocated to random accesses of level 0 and level 1 Signaling; or,
  • the first type of random access channel time domain resources are allocated to level 0 and level 1 random access signaling.
  • the method further includes:
  • the frequency domain resource of the random access channel required for transmitting the random access signaling corresponding to the selected one of the levels is used as a quantization unit, and the frequency domain resources of the random access channel in the configuration period are divided into M
  • the logical unit has an index of 0 to (M-1) and M is a positive integer.
  • the dividing the frequency domain resources of the random access channel in the configuration period into M logical units including: dividing the frequency domain resources of the second type of random access channels in the configuration period into M 1 logical unit, the M 1 logical units occupied by the frequency domain resources of the second type of random access channel are continuous; wherein 0 ⁇ M 1 ⁇ M.
  • M 1 comprises a logic unit, the second type of random access channel frequency domain resource assigned to at least the random access signaling levels in the Q maximum level;
  • the M 1 logical unit includes a logical unit with an index of 0 and a logical unit with an index of M-1
  • the second type of random access channel frequency domain resources are allocated to at least a minimum of the Q levels. And the highest level of random access signaling.
  • the M logical units correspond to M consecutive units of quantization that are physically continuous or discrete.
  • the M 1 logical unit includes a logical unit with an index of 0 but does not include a logical unit with an index of M-1
  • the second type of random access channel frequency domain resources are allocated to random levels 0 and 1 Access signaling; in the configuration period, the remaining random access channel frequency domain resources are allocated to level 2; or
  • the M 1 logical unit includes a logical unit with an index of M-1 but does not include a logical unit with an index of 0, the second type of random access channel frequency domain resources are allocated to random levels 1 and 2 Access signaling; in the configuration period, the remaining random access channel frequency domain resources are allocated to level 0; or
  • the M 1 logical unit includes a logical unit with an index of M-1 and a logical unit with an index of 0, the second type of random access channel frequency domain resources are allocated to level 0, level 1, and level 2 Random access signaling; or,
  • the M 1 logical units include neither the logical unit with the index M-1 nor the logical unit with the index 0, the second type of random access channel time domain resources are allocated to the level 1 random connection.
  • the logical unit index is smaller than the logical unit allocated to the minimum logical unit index of level 1 and assigned to level 0; in the configuration period, the logical unit index is greater than the maximum logical unit index assigned to level 1 Logical unit assigned to level 2; or,
  • the second type of random access channel frequency domain resources are allocated to random access signaling of level 0, level 1, and level 2.
  • the M 1 logical unit includes a logical unit with an index of 0 but does not include a logical unit with an index of M-1
  • the second type of random access channel frequency domain resource is allocated to the random access signal of level 0.
  • the remaining random access channel frequency domain resources are allocated to level 1; or
  • the second type of random access channel frequency domain resource is allocated to the level 1 random access signal.
  • the remaining random access channel frequency domain resources are allocated to level 0; or,
  • the M 1 logical units include a logical unit with an index of M-1 and a logical unit with an index of 0, the second type of random access channel frequency domain resources are allocated to random accesses of level 0 and level 1 Signaling; or,
  • the second type of random access channel frequency domain resources are allocated to the random access signaling of level 0 and level 1.
  • configuration information of the random access sequence includes at least one of the following:
  • the indication information of the quantization unit of the random access sequence wherein the L preamble sequences are one quantization unit of the random access sequence, and L is a positive integer;
  • Configuration information of random access sequences corresponding to C levels wherein, 0 ⁇ C ⁇ A, A ranks are taken from the P ranks, or A ranks are taken from the Q ranks, or A ranks
  • the method further includes:
  • the random access sequence resources in the configuration period are divided into S logical units, and the index is 0 to (S-1), and S is a positive integer.
  • sequence of random access resources within the S configuration cycle is divided into logical units, comprising: dividing the configuration within a period corresponding to the class C sequence resources for random access logical units.
  • S The S 1 logical units occupied by the random access sequence resources corresponding to the C levels are continuous; wherein 0 ⁇ S 1 ⁇ S.
  • the C levels includes at least the minimum level A levels
  • the C levels includes at least the maximum level A levels
  • the C levels A levels include at least the minimum level and maximum level.
  • the random access sequence is allocated to random access signaling of level 0 and level 1; During the configuration period, the remaining random access sequences are assigned to level 2; or,
  • the random access sequence is allocated to random access signaling of level 1 and level 2; During the configuration period, the remaining random access sequences are assigned to level 0; or,
  • the random access sequence is assigned to random access signaling of level 0, level 1, and level 2.
  • S 1 when the logic unit comprises an index to a logic unit of S-1 but does not include a logic unit 0 is the index of the random access sequence assigned to level 1, the random access signaling;
  • S 1 when the logic unit comprises an index is neither a logic unit of S-1 is not logic unit 0 includes an index of the random access sequence assigned to level 1, the random access signaling; the During the configuration period, the logical unit whose logical unit index is smaller than the smallest logical unit index assigned to level 1 is assigned to level 0; during the configuration period, the logical unit index is greater than the logical unit assigned to the maximum logical unit index of level 1 2; or,
  • the random access configuration information further includes at least one of the following:
  • the random access signaling frequency hopping transmission enable indication information the frequency hopping time domain granularity indication information L, L is a natural number.
  • the random access signaling does not support frequency hopping transmission.
  • the configuration period includes at least the following One: at least one special subframe and at least one uplink subframe.
  • subframe indication information includes at least one of the following:
  • the uplink subframe index used for random access signaling in one frame included in the configuration period is the number of frames included in the configuration period.
  • the random access signaling is repeatedly sent Y times in mode 4.
  • the configuration period includes at least one of: at least one special subframe, at least one uplink subframe.
  • the subframe indication information includes at least one of the following:
  • the uplink subframe index used for random access signaling in one frame included in the configuration period is the number of frames included in the configuration period.
  • the random access signaling is sent by using a mode Format 0; in the at least one special subframe, the random access signaling is sent by using a mode Format 4.
  • the random access configuration information further includes at least one of the following:
  • the allocation information of the random access channel time-frequency resources and/or the random access sequence resources allocated by each level In the multiplexing scheme of the random access channels corresponding to all the levels, the allocation information of the random access channel time-frequency resources and/or the random access sequence resources allocated by each level.
  • the method further includes:
  • the multiplexing scheme includes at least one of the following: a frequency division multiplexing scheme, a time division multiplexing scheme, and a code division multiplexing scheme, where the code division multiplexing scheme refers to a random access sequence allocated by user equipment of different levels. different.
  • the method further includes: when the random access channel allocated for the user equipment has only one location in the frequency domain, the frequency division is not supported in the multiplexing scheme of the random access channel corresponding to all the levels. Reuse scheme.
  • the configuration information of the random access channel time-frequency resource and/or the random access sequence resource allocated by each level includes the following At least one:
  • the ratio information of the random access sequence resources allocated by the level of the code division multiplexing scheme is the ratio information of the random access sequence resources allocated by the level of the code division multiplexing scheme.
  • An embodiment of the present invention further provides a base station, where the base station includes:
  • a determining unit configured to determine random access configuration information, where the random access configuration information is used to indicate that the user equipment accesses the network, where the random access configuration information includes at least one of the following: when the random access channel is occupied Configuration information of the frequency resource, configuration information of the random access sequence, configuration information of the number of times of repeated transmission of the random access signaling corresponding to each level;
  • a sending unit configured to send the random access configuration information determined by the determining unit to the user equipment by using a downlink channel.
  • An embodiment of the present invention further provides a user equipment, where the user equipment includes:
  • a receiving unit configured to receive, by using a downlink channel, random access configuration information that is sent by the base station, where the random access configuration information is used to indicate that the user equipment accesses the network according to the random access configuration information;
  • the configuration information includes at least one of the following: configuration information of a time-frequency resource occupied by the random access channel, configuration information of the random access sequence, and configuration information of the number of times of repeated transmission of the random access signaling corresponding to each level;
  • the access unit is configured to access the network according to the random access configuration information received by the receiving unit.
  • An embodiment of the present invention further provides a system, where the system includes: a base station as described above; and a user equipment as described above; the base station sends random access configuration information to the user equipment through a downlink channel, where the user The device accesses the system according to the received random access configuration information.
  • the embodiment of the invention further provides a computer readable storage medium storing program instructions, which can be implemented when the program instructions are executed.
  • a method, a node, and a system for performing random access according to an embodiment of the present invention include: a base station sends random access configuration information to a user equipment by using a downlink channel, where the random access configuration information is used to indicate that the user equipment is configured according to the The random access configuration information accesses the network, where the random access configuration information includes at least one of the following: configuration information of a time-frequency resource occupied by the random access channel, configuration information of the random access sequence, and random connection corresponding to each level Configuration information of the number of repeated transmissions of incoming signaling.
  • the embodiments of the present invention are directed to the LTE and LTE-A systems.
  • the machine access channel PRACH is enhanced to ensure that the low-cost configured MTC UE can access the system normally.
  • FIG. 1 is a schematic flowchart of a method for random access according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram 1 of dividing a logic unit Unit according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram 1 of a logical unit unit for assigning random access signaling corresponding to each level according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram 2 of a logical unit unit for assigning random access signaling corresponding to each level according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram 3 of a logical unit unit for assigning random access signaling corresponding to each level according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram 4 of a logical unit unit for assigning random access signaling corresponding to each level according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram 2 of dividing a logical unit Unit according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram 5 of a logical unit unit for assigning random access signaling corresponding to each level according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram 3 of dividing a logical unit Unit according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram 4 of dividing a logical unit Unit according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram 5 of dividing a logical unit Unit according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of allocating block Blocks for random access signaling corresponding to each level according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the node in the embodiment of the present invention includes a base station and a user equipment
  • the base station in the embodiment of the present invention may be a common base station NodeB, an evolved base station (Evolutional Node B, eNodeB or eNB), a macro base station (Macrocell), and a micro base station ( Microcells, Picocells, Femtocells, and other
  • the base station is described by using an eNB as an example.
  • the user equipment UE described in the embodiment of the present invention may be a human to human (H2H) communication terminal, such as a mobile phone or a machine to machine M2M communication terminal.
  • H2H human to human
  • the MTC UE, or the Device to Device (D2D) communication terminal, and the like are not limited in this embodiment of the present invention, but for convenience of description, the user equipment in the following embodiments is described by the MTC UE;
  • the level described in the embodiment may be referred to as a coverage enhancement level, a physical random access channel (PRACH) channel coverage enhancement level, or a PRACH channel repeated transmission level, etc.
  • PRACH physical random access channel
  • PRACH PRACH channel repeated transmission level
  • the embodiments of the present invention provide a method, a node, and a system for random access.
  • the following embodiments describe a process in which a base station sends random access signaling to a user equipment to enable a user equipment to access the network.
  • Technical solutions describe a process in which a base station sends random access signaling to a user equipment to enable a user equipment to access the network.
  • the MTC UEs can support Coverage Enhancement (CE).
  • CE Coverage Enhancement
  • the Physical Random Access Channel (PRACH) supports a total of three Coverage Enhancement Levels (CELs), that is, the number of levels is 3, and the three levels are respectively recorded as CEL0.
  • the random access method in this embodiment includes:
  • the base station eNB sends random access configuration information to the MTC UE through the downlink channel, where the random access configuration information is used to instruct the MTC UE to randomly access the network according to the random access configuration information.
  • the random access configuration information includes at least one of the following:
  • three CELs may be divided into two level sets according to a preset rule, wherein CEL0 is divided into one level set and the level set is recorded as a first class level, and CEL1 and CEL2 are divided into In another level set and the level set is recorded as the second class level, CEL0 belongs to the first class level, and CEL1 and CEL2 belong to the second class level.
  • the preset rule may be based on actual conditions. The formulation is not limited to the above-mentioned rule of dividing CEL0 into the first class level and dividing CEL1 and CEL2 into the second class level.
  • the number of repeated transmissions of the random access signaling corresponding to the CEL0 is three
  • the number of repeated transmissions of the random access signaling corresponding to the CEL1 is six
  • the number of repeated transmissions of the random access signaling corresponding to the CEL2 is twelve.
  • the foregoing “configuration information of the number of repeated transmissions of random access signaling corresponding to each level” includes:
  • the number of repeated transmission times of the random access signaling corresponding to the CEL1 is 2 times; that is, the number of repeated transmissions of the random access signaling corresponding to the CEL1 is twice the number of repeated transmissions of the random access signaling corresponding to the CEL0;
  • the number of repeated transmission times of the random access signaling corresponding to the CEL1 is 4 times; that is, the number of repeated transmissions of the random access signaling corresponding to the CEL1 is four times the number of repeated transmissions of the random access signaling corresponding to the CEL0.
  • the configuration information of the time-frequency resource occupied by the random access channel includes:
  • configuration information of the first type of random access channel in the time domain in the configuration period wherein the configuration information of the first type of random access channel in the time domain refers to random access corresponding to P CELs
  • each frame has 10 uplink sub-frames, and the sub-frame index is 0 to 9, and Subframes 0, 2, 4, and 6 can be configured as PRACH, and each configuration is PRACH.
  • Only one frequency domain resource block in the Subframe is configured as PRACH, where One frequency resource block is six physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • the 24 PRACH resources in the 6 frames are sorted, and the index (Index) is 0-23.
  • the random access signaling is transmitted in the preamble format 0, that is, the Preamble format 0 mode, that is, the time domain length of the random access signaling is one Subframe, and the frequency domain length is 6 PRBs.
  • MTC UEs in the LTE or LTE-A system, and the MTC UEs can support Coverage Enhancement (CE).
  • CE Coverage Enhancement
  • PRACH supports a total of 2 Coverage Enhancement Levels (CELs), that is, the number of levels is 2, and The two levels are recorded as CEL0 and CEL1, respectively.
  • CELs Coverage Enhancement Levels
  • the number of repeated transmissions of the random access signaling corresponding to CEL0 is six
  • the number of repeated transmissions of the random access signaling corresponding to CEL1 is twelve.
  • the base station eNB sends random access configuration information to the MTC UE through the downlink channel, where the random access configuration information is used to instruct the MTC UE to randomly access the network according to the random access configuration information.
  • the random access configuration information includes at least one of the following:
  • the random access signaling frequency hopping transmission enable indication information the frequency hopping time domain granularity indication information L.
  • each frame has 10 uplink sub-frames, and the sub-frame index is 0 to 9, and Subframes 0, 2, 4, and 6 can be configured as PRACH, and each configuration is PRACH. Only one frequency domain resource block in the Subframe is configured as PRACH, and one frequency resource block is 6 PRBs.
  • the 24 PRACH resources in the 6 frames are sorted, and the index (Index) is 0-23.
  • the random access signaling is transmitted in the preamble format 0, that is, the Preamble format 0 mode, that is, the time domain length of the random access signaling is one Subframe, and the frequency domain length is 6 PRBs.
  • the random access signaling is sent by using a frequency hopping.
  • the MTC UEs of the CEL0 can randomly select one unit to send in Unit0 ⁇ Unit1, Unit2 ⁇ Unit3, Unit4 ⁇ Unit5 or Unit6 ⁇ Unit7.
  • the MTC UEs of CEL1 can randomly select a Unit combination to send in Unit0 ⁇ Unit3 or Unit4 ⁇ Unit7, as shown in Figure 6.
  • the MTC UEs can support Coverage Enhancement (CE).
  • CE Coverage Enhancement
  • the PRACH supports a total of two Coverage Enhancement Levels (CELs), that is, the number of levels is 2, and the two levels are respectively recorded as CEL0 and CEL1.
  • CELs Coverage Enhancement Levels
  • the random access signaling corresponding to CEL0 The number of repeated transmissions is 6 times, and the number of repeated transmissions of random access signaling corresponding to CEL1 is 12 times.
  • the base station eNB sends random access configuration information to the MTC UE through the downlink channel, where the random access configuration information is used to instruct the MTC UE to randomly access the network according to the random access configuration information.
  • the random access configuration information includes at least one of the following:
  • Random access signaling hopping transmission enable indication information frequency hopping time domain granularity indication information L;
  • each frame has 10 uplink sub-frames, and the sub-frame index is 0 to 9, and the sub-frames 0, 2, 4, and 6 can be configured as PRACH, and each configuration is In the subframe of the PRACH, two frequency domain resource blocks are configured as PRACH, and one frequency resource block is six PRBs.
  • the 48 PRACH resources in the 6 frames are sorted, and the index is (Index) 0 to 47.
  • the random access signaling is transmitted in the preamble format 0, that is, the Preamble format 0 mode, that is, the time domain length of the random access signaling is one Subframe, and the frequency domain length is 6 PRBs.
  • the random access signaling is sent by using frequency hopping.
  • the MTC UEs of the CEL0 may be in (Unit0+Unit9), (Unit2+Unit11), (Unit4+Unit13), (Unit6+Unit15).
  • CEL1's MTC UEs can be in (Unit0+Unit9+Unit2+Unit11), (Unit4 +Unit13+Unit6+Unit15), (Unit8+Unit1+Unit10+Unit3) or (Unit12+Unit5+Unit14+Unit7) randomly select a Unit combination to send, as shown in Figure 8.
  • MTC UEs in the LTE or LTE-A system, and the MTC UEs can support Coverage Enhancement (CE).
  • CE Coverage Enhancement
  • PRACH supports a total of 3 coverages.
  • the base station eNB sends random access configuration information to the MTC UE through the downlink channel, where the random access configuration information is used to instruct the MTC UE to randomly access the network according to the random access configuration information.
  • the random access configuration information includes at least one of the following:
  • the number of repeated transmissions of the random access signaling corresponding to the CEL0 is three
  • the number of repeated transmissions of the random access signaling corresponding to the CEL1 is six
  • the number of repeated transmissions of the random access signaling corresponding to the CEL2 is 12 times.
  • the configuration information of the time-frequency resource occupied by the random access channel includes:
  • configuration information of the second type of random access channel in the frequency domain in the configuration period refers to random access corresponding to Q CELs
  • each frame has 10 uplink sub-frames, and the sub-frame index is 0 to 9, and the sub-frames 0, 2, 4, and 6 can be configured as PRACH, and each configuration is Only four frequency domain resource blocks in the PRACH sub-frame are configured as PRACH, and one frequency resource block is six PRBs.
  • the 96 PRACH resources in the 6 frames are sorted, and the index is 0 to 95.
  • the random access signaling is transmitted in the preamble format 0, that is, the Preamble format 0 mode, that is, the time domain length of the random access signaling is one Subframe, and the frequency domain length is 6 PRBs.
  • the MTC UEs can support Coverage Enhancement (CE).
  • CE Coverage Enhancement
  • the PRACH supports a total of three Coverage Enhancement Levels (CELs), that is, the number of levels is 3, and the three levels are respectively recorded as CEL0, CEL1, and CEL2.
  • CELs Coverage Enhancement Levels
  • the base station eNB sends random access configuration information to the MTC UE through the downlink channel, where the random access configuration information is used to instruct the MTC UE to randomly access the network according to the random access configuration information.
  • the random access configuration information includes at least one of the following:
  • the random access sequence quantization unit is a sequence of N PRACH preambles as a quantization unit
  • Random access signaling; Unit0 ⁇ Unit4 are assigned to random access signaling corresponding to CEL0 (ie, level 0);
  • Unit9 ⁇ Unit15 are assigned to random access signaling corresponding to CEL2 (ie, level 2).
  • the MTC UEs can support Coverage Enhancement (CE).
  • CE Coverage Enhancement
  • the PRACH supports a total of three Coverage Enhancement Levels (CELs), that is, the number of levels is 3, and the three levels are respectively recorded as CEL0, CEL1, and CEL2.
  • CELs Coverage Enhancement Levels
  • the base station eNB sends random access configuration information to the MTC UE through the downlink channel, where the random access configuration information is used to instruct the MTC UE to randomly access the network according to the random access configuration information.
  • the random access configuration information includes at least one of the following:
  • the number of repeated transmissions of the random access signaling corresponding to the CEL0 is three
  • the number of repeated transmissions of the random access signaling corresponding to the CEL1 is six
  • the number of repeated transmissions of the random access signaling corresponding to the CEL2 is 12 times.
  • the “configuration information of the number of repeated transmissions of random access signaling corresponding to each level” includes:
  • the number of repeated transmission times of the random access signaling corresponding to the CEL1 is 2 times; that is, the number of repeated transmissions of the random access signaling corresponding to the CEL1 is twice the number of repeated transmissions of the random access signaling corresponding to the CEL0;
  • the number of repeated transmission times of the random access signaling corresponding to the CEL1 is 4 times; that is, the number of repeated transmissions of the random access signaling corresponding to the CEL1 is four times the number of repeated transmissions of the random access signaling corresponding to the CEL0.
  • the foregoing "configuration information of time-frequency resources occupied by the random access channel” includes:
  • configuration information of the first type of random access channel in the time domain in the configuration period wherein the configuration information of the first type of random access channel in the time domain refers to random access corresponding to P CELs
  • the configuration information of the channel in the time domain 1 ⁇ P ⁇ 3.
  • each frame has 10 uplink sub-frames, and the sub-frame index is 0 to 9, and the sub-frames 0, 2, 4, and 6 can be configured as PRACH, and each configuration is Only one frequency domain resource block in the PRACH sub-frame is configured as PRACH, and one frequency resource block is 6 PRBs.
  • the 24 PRACH resources in the 6 frames are sorted, and the index is (Index) 0-23.
  • the random access signaling is transmitted in the preamble format 0, that is, the Preamble format 0 mode, that is, the time domain length of the random access signaling is one Subframe, and the frequency domain length is 6 PRBs.
  • the number of random access channels (3 subframes) required for random access signaling corresponding to CEL0 is used as a quantization unit, and 24 PRACH resources are divided into 8 logical units (Unit), and the index is Unit0-7, as shown in FIG. Shown.
  • the MTC UEs can support Coverage Enhancement (CE).
  • CE Coverage Enhancement
  • the PRACH supports a total of three Coverage Enhancement Levels (CELs), that is, the number of levels is 3, and the three levels are respectively recorded as CEL0, CEL1, and CEL2.
  • CELs Coverage Enhancement Levels
  • the base station eNB sends random access configuration information to the MTC UE through the downlink channel, where the random access configuration information is used to instruct the MTC UE to randomly access the network according to the random access configuration information.
  • the random access configuration information includes at least one of the following:
  • the number of repeated transmissions of the random access signaling corresponding to the CEL0 is three
  • the number of repeated transmissions of the random access signaling corresponding to the CEL1 is six
  • the number of repeated transmissions of the random access signaling corresponding to the CEL2 is 12 times.
  • the “configuration information of the number of repeated transmissions of random access signaling corresponding to each level” includes:
  • the number of repeated transmission times of the random access signaling corresponding to the CEL1 is 2 times; that is, the number of repeated transmissions of the random access signaling corresponding to the CEL1 is twice the number of repeated transmissions of the random access signaling corresponding to the CEL0;
  • the number of repeated transmission times of the random access signaling corresponding to the CEL1 is 4 times; that is, the number of repeated transmissions of the random access signaling corresponding to the CEL1 is four times the number of repeated transmissions of the random access signaling corresponding to the CEL0.
  • the configuration information of the time-frequency resource occupied by the random access channel includes:
  • each frame has 10 Uplink Subframes, the Subframe index is 0-9, and Subframes 0, 2, 4, and 6 can be configured as PRACH, and there are 4 frequency domains in each Subframe configured as PRACH.
  • the resource block is configured as PRACH, and one frequency resource block is 6 PRBs.
  • the 96 PRACH resources in the 6 frames are sorted, and the index is 0 to 95.
  • the random access signaling is sent in the Preamble format 0 format, that is, the random access signaling time domain length is one Subframe, and the frequency domain length is 6 PRBs.
  • the number of random access channels (3 subframes) required for random access signaling corresponding to CEL0 is used as a quantization unit, and 96 PRACH resources are divided into 8 logical units (Unit), and the index is Unit0-7, as shown in FIG. Shown.
  • the configuration information of the first type of random access channel in the time domain indicates that Unit0 to Unit1 are allocated to the random access signaling corresponding to CEL0 and CEL1; and Unit2 to Unit7. Assigned to the random access signaling corresponding to CEL2.
  • the configuration information of the second type of random access channel in the frequency domain describes how the frequency domain resource blocks in Unit0 to Unit1 (each PRB size of the frequency domain are 6 PRBs) are allocated to the random corresponding to CEL0 and CEL1.
  • the configuration information of the second type of random access channel in the frequency domain indicates that blocks Block 2 to Block 3 are allocated to the random access signaling corresponding to CEL1; Block 0 to Block 1 is assigned to the random access signaling corresponding to CEL0.
  • the MTC UEs can support Coverage Enhancement (CE).
  • CE Coverage Enhancement
  • the PRACH supports a total of three Coverage Enhancement Levels (CELs), that is, the number of levels is 3, and the three levels are respectively recorded as CEL0, CEL1, and CEL2.
  • CELs Coverage Enhancement Levels
  • the base station eNB sends random access configuration information to the MTC UE through the downlink channel, where the random access
  • the ingress configuration information is used to indicate that the MTC UE randomly accesses the network according to the random access configuration information.
  • the random access configuration information includes at least one of the following:
  • the allocation information of the random access channel time-frequency resources and/or the random access sequence resources allocated by each level In the multiplexing scheme of the random access channels corresponding to all the levels, the allocation information of the random access channel time-frequency resources and/or the random access sequence resources allocated by each level.
  • the configuration information of the multiplexing scheme of the random access channel corresponding to the all levels may determine at least one of the following:
  • the multiplexing scheme includes at least one of the following: a Frequency Division Multiplexing (FDM) scheme, a Time Division Multiplexing (TDM) scheme, and a Code Division Multiplexing (CDM) scheme.
  • FDM Frequency Division Multiplexing
  • TDM Time Division Multiplexing
  • CDM Code Division Multiplexing
  • the CDM multiplexing scheme refers to different random access sequences allocated by different levels of MTC UEs.
  • the frequency division multiplexing is not supported in the multiplexing scheme of the random access channels corresponding to all the levels. Program.
  • the number of repeated transmissions of the random access signaling corresponding to the CEL0 is three, and the number of repeated transmissions of the random access signaling corresponding to the CEL1 is six, and the number of repeated transmissions of the random access signaling corresponding to the CEL2 is 12 times.
  • each Frame has 10 Uplink Subframes, the Subframe index is 0-9, and Subframes 0, 2, 4, and 6 can be configured as PRACH, and each of the subframes configured as PRACH has 4 frequency domain resources.
  • the block is configured as PRACH, and one frequency resource block is 6 PRBs.
  • the 96 PRACH resources in the 6 frames are sorted, and the index is 0 to 95.
  • the random access signaling is sent in the Preamble format 0 format, that is, the random access signaling time domain length is one Subframe, and the frequency domain length is 6 PRBs.
  • the random access signaling time domain length is one Subframe
  • the frequency domain length is 6 PRBs.
  • Six PRBs are used as the quantization unit of the frequency domain resource block, and 96 PRACH resources are divided into four logical units (Unit), and the index is Unit0 ⁇ 3, as shown in FIG.
  • the MTC UEs decode the random access channel corresponding to each level according to the decoding.
  • the multiplexing scheme configuration information is used to learn that the base station eNB supports three CELs to adopt a frequency division multiplexing scheme. Further, the MTC UEs decode the randomization of each level according to the multiplexing scheme of the random access channels corresponding to all levels.
  • the configuration information of the access channel time-frequency resource and/or the random access sequence resource is used to obtain the ratio information of the random access channel resources allocated by the CEL0, CEL1, and CEL2 in the frequency domain, which is 1:1:2 in this embodiment; Then, Unit0 is assigned to the random access signaling corresponding to CEL0; Unit1 is allocated to the random access signaling corresponding to CEL1; and Unit2 and Unit3 are allocated to the random access signaling corresponding to CEL2.
  • the MTC UEs can support Coverage Enhancement (CE).
  • CE Coverage Enhancement
  • the PRACH supports a total of three Coverage Enhancement Levels (CELs), that is, the number of levels is 3, and the three levels are respectively recorded as CEL0, CEL1, and CEL2.
  • CELs Coverage Enhancement Levels
  • the base station eNB sends random access configuration information to the MTC UE through the downlink channel, where the random access configuration information is used to instruct the MTC UE to randomly access the network according to the random access configuration information.
  • the random access configuration information includes at least one of the following:
  • the number of repeated transmissions of the random access signaling corresponding to the CEL0 is three, and the number of repeated transmissions of the random access signaling corresponding to the CEL1 is six, and the number of repeated transmissions of the random access signaling corresponding to the CEL2 is 12 times.
  • each Frame has 10 Uplink Subframes
  • the Subframe index is 0-9
  • Subframes 0, 2, 4, and 6 can be configured as PRACH
  • each of the subframes configured as PRACH has 4 frequency domain resources.
  • the block (each PRB resource block size is 6 PRBs) is configured as PRACH.
  • the 96 PRACH resources in the 6 frames are sorted, and the index is 0 to 95.
  • the random access signaling is sent in the Preamble format 0 format, that is, the random access signaling time domain length is one Subframe, and the frequency domain length is 6 PRBs. Take 6 PRBs as The quantization unit of the frequency domain resource block divides 96 PRACH resources into 4 logical units (Unit), and the index is Unit0 ⁇ 3, as shown in FIG. 9;
  • the MTC UEs learn that the eNB supports three CELs using the FDM+CDM multiplexing scheme according to the decoding of the “multiplexing scheme configuration information of the random access channel corresponding to each level”, wherein the CEL0 and the CEL1 adopt the CDM.
  • the multiplexing scheme, and (CEL0, CEL1) and CEL2 adopt an FDM multiplexing scheme.
  • the MTC UEs are informed according to the decoding of the "configuration information of the random access channel time-frequency resources and/or random access sequence resources allocated for each level under the multiplexing scheme of the random access channels corresponding to all levels" (CEL0, CEL1)
  • the ratio information of the random access channel resources allocated by the CEL2 in the frequency domain is 1:1 in this embodiment; then Unit0 and Unit1 are assigned to the random access signaling corresponding to (CEL0, CEL1); Unit2, Unit3 Then allocated to the random access signaling corresponding to CEL1;
  • the MTC UEs learn CEL0 and CEL1 according to the decoding of the "configuration information of random access channel time-frequency resources and/or random access sequence resources allocated for each level under the multiplexing scheme of random access channels corresponding to all levels".
  • the ratio information of the allocated random access sequence resources is 1:1 in this embodiment.
  • the base station eNB configures 64 available PRACH Preamble sequences for CEL0 and CEL1, and 32 of them are allocated to CEL0. The next 32 are assigned to CEL1.
  • the embodiments of the present invention are directed to LTE and LTE, in order to ensure that the MTC UEs that are configured in a low-cost manner can normally access the LTE or LTE-A system.
  • the random access channel PRACH of the -A system is enhanced to ensure that the MTC UE can access the system normally.
  • the embodiment of the invention further provides a base station, as shown in FIG. 13, comprising:
  • the determining unit 1301 is configured to determine random access configuration information, where the random access configuration information is used to indicate that the user equipment accesses the network, where the random access configuration information includes at least one of the following: a random access channel occupation Configuration information of the time-frequency resource, configuration information of the random access sequence, configuration information of the number of repeated transmissions of the random access signaling corresponding to each level;
  • the sending unit 1302 is configured to send, by using the downlink channel, the random access configuration information determined by the determining unit 1301 to the user equipment.
  • the sending unit 1302 may be a transmitter of a base station.
  • the function of the determining unit 1301 may be implemented by a separately set processor, or may be integrated in a processor of the base station, or may be stored in the memory of the base station in the form of program code, by a processor of the base station. Call and execute the functions of the above determination unit.
  • the processor described herein may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated systems configured to implement embodiments of the present invention. Circuit.
  • An embodiment of the present invention further provides a user equipment, as shown in FIG. 14, including:
  • the receiving unit 1401 is configured to receive the random access configuration information that is sent by the base station by using the downlink channel, where the random access configuration information includes at least one of the following: configuration information of the time-frequency resource occupied by the random access channel, and random access The configuration information of the sequence, the configuration information of the number of times of repeated transmission of the random access signaling corresponding to each level; the random access configuration information is used to indicate that the user equipment accesses the network according to the random access configuration information;
  • the access unit 1402 is configured to access the network according to the random access configuration information received by the receiving unit 1401.
  • the receiving unit 1401 may be a receiver of the user equipment.
  • the function of the access unit 1402 may be implemented by a separately set processor, or may be implemented in a processor of the user equipment, or may be stored in the memory of the user equipment in the form of program code, by the user equipment.
  • a processor calls and executes the functions of the above access units.
  • the processor described herein may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated systems configured to implement embodiments of the present invention. Circuit.
  • the embodiment of the present invention further provides a system, including the foregoing base station and user equipment, where the base station sends random access configuration information to the user equipment through the downlink channel, and the user equipment accesses the network according to the received random access configuration information, the base station and the
  • the base station sends random access configuration information to the user equipment through the downlink channel
  • the user equipment accesses the network according to the received random access configuration information, the base station and the
  • the division of modules is only a logical function division, and there may be another division manner in actual implementation.
  • the modules shown or discussed may be connected to each other through some interface, and may be in electrical, mechanical or other form.
  • the modules may or may not be physically separate and may or may not be physical units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional modules in the embodiments of the present invention may be integrated into one processing module, or each module may be physically included, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of hardware plus software function modules.
  • the above-described integrated modules implemented in the form of software functional units can be stored in a computer readable storage medium.
  • the software functional modules described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform some of the steps of the method of each embodiment of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .
  • a method, a node, and a system for performing random access according to an embodiment of the present invention include: a base station sends random access configuration information to a user equipment by using a downlink channel, where the random access configuration information is used to indicate that the user equipment is configured according to the The random access configuration information accesses the network, where the random access configuration information includes at least one of the following: configuration information of a time-frequency resource occupied by the random access channel, configuration information of the random access sequence, and random connection corresponding to each level Configuration information of the number of repeated transmissions of incoming signaling.
  • the embodiment of the present invention provides an enhanced design for the random access channel PRACH of the LTE and LTE-A systems, so that the low-cost configured MTC UE can access the system normally.

Abstract

本发明实施例公布了一种随机接入的方法、节点以及系统,包括:基站通过下行信道向用户设备发送随机接入配置信息;其中,随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息;该随机接入配置信息用于指示所述用户设备根据所述随机接入配置信息随机接入网络。

Description

一种随机接入的方法、节点以及系统 技术领域
本发明实施例涉及但不限于移动通信技术,尤指一种随机接入的方法、节点以及系统。
背景技术
机器类型通信(Machine Type Communication,MTC)用户终端(MTC User Equipment,MTC UE),又称机器到机器(Machine to Machine,M2M)用户通信设备,是现阶段物联网的主要应用形式。低功耗低成本是其可大规模应用的重要保障。目前市场上部署的M2M设备主要基于全球移动通信(Global System of Mobile communication,GSM)系统。近年来,由于长期演进(Long Term Evolution,LTE)及长期演进的后续演进(LTE-A)的频谱效率的提高,越来越多的移动运营商选择LTE或LTE-A作为未来宽带无线通信系统的演进方向。基于LTE或LTE-A的M2M多种类数据业务也将更具吸引力。只有当LTE-M2M设备的成本能做到比GSM系统的MTC终端低时,M2M业务才能真正从GSM转到LTE系统上。
目前对于降低MTC UE成本的主要备选方法包括:减少终端接收天线的数目、降低终端基带处理带宽、降低终端支持的峰值速率、采用半双工模式等等。由于MTC UE成本配置的降低,从而MTC UE性能也会随之下降,然而,LTE或LTE-A系统小区覆盖对于LTE终端的性能需求是有很高的要求的。另外,MTC UE可能位于地下室、墙角等位置,所处场景要比普通LTE UE恶劣,为了弥补穿透损耗导致的覆盖下降,部分MTC UE需要更高的性能提升。因此,在降低基于LTE或LTE-A系统的MTC UE的成本配置的方式下,可能导致MTC UE无法正常接入网络。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求 的保护范围。
本发明实施例提供了一种随机接入的方法、节点以及系统,可以保证基于LTE或LTE-A系统的低成本配置MTC UE正常接入网络。
本发明实施例提供了一种随机接入的方法,所述方法包括:
基站通过下行信道向用户设备发送随机接入配置信息,所述随机接入配置信息用于指示所述用户设备根据所述随机接入配置信息接入网络;
其中,所述随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息。
可选地,其中,所述每个等级对应的随机接入信令的重复发送次数的配置信息包括以下至少之一:
第一类等级中的等级对应的随机接入信令重复发送次数信息;
第二类等级中的等级对应的随机接入信令重复发送次数指示信息;
其中,所述第一类等级和所述第二类等级是根据预设规则对所述所有等级进行划分得到的两个等级集合。
可选地,其中,所述随机接入信道占用的时频资源的配置信息包括以下至少之一:
配置周期的指示信息;
随机接入信道占用的时频资源在频域上间隔大小的指示信息;
所述等级的数量的指示信息;
所述每个等级对应的随机接入信道时频资源的配置信息;
可选地,其中,所述配置周期的指示信息所指示的配置周期为以下至少之一:
K1个帧、K2个子帧、K3个单位随机接入资源;
其中,所述单位随机接入资源为所述所有等级中选定的一个等级的发送随机接入信令时所需要的随机接入信道时频资源,K1、K2、K3均为大于0的数。
可选地,其中,所述等级包括:
覆盖增强等级、物理随机接入信道PRACH信道覆盖增强等级、或PRACH信道重复发送等级。
可选地,其中,所述第一类等级包括以下至少之一:
由所述基站在所有等级中配置的一个等级、由所述基站在所有等级中配置的所述随机接入信令的重复发送次数最小的等级、由所述基站在所有等级中配置的所述随机接入信令的重复发送次数最大的等级。
可选地,其中,所述第二类等级包括:
由所述基站在所有等级中配置的一个或多个等级;或,所有等级中除所述第一类等级之外剩余的等级中的一个或多个等级。
可选地,其中,所述第二类等级对应的随机接入信令重复发送次数指示信息包括:
所述第二类等级对应的随机接入信令重复发送次数为所述第一类等级对应的随机接入信令重复发送次数的倍数信息。
可选地,其中,所述每个等级对应的随机接入信道时频资源的配置信息包括以下至少之一:
所述配置周期内,第一类随机接入信道在时域的配置信息;所述配置周期内,第二类随机接入信道在频域的配置信息。
可选地,其中,所述第一类随机接入信道在时域的配置信息包括:P个等级对应的随机接入信道在时域的配置信息,1≤P≤所述等级的数量;
所述第二类随机接入信道在频域的配置信息包括:Q个等级对应的随机接入信道在频域的配置信息,1≤Q≤所述等级的数量。
可选地,其中,所述P个等级取自于所述基站配置的所有等级;或,所述P个等级取自于所述Q个等级。
可选地,其中,所述Q个等级取自于所述基站配置的所有等级;或,Q个所述等级取自于所述P个等级。
可选地,所述P个等级的索引连续分布;所述Q个等级的索引连续分布。
可选地,所述方法还包括:
以所有等级中选定的一个等级对应的发送随机接入信令时所需要的随机接入信道时域资源作为量化单位,将所述配置周期内的随机接入信道时域资源划分为N个逻辑单元,索引为0~(N-1),N为正整数。
可选地,其中,所述选定的一个等级包括:
所述基站在所有等级中配置的最小等级;或所述P个等级中最小等级。
可选地,其中,将所述配置周期内的随机接入信道时域资源划分为N个逻辑单元,包括:将所述配置周期内所述第一类随机接入信道时域资源划分为N1个逻辑单元,所述第一类随机接入信道时域资源占用的N1个逻辑单元是连续的;其中,0≤N1≤N。
可选地,其中:
当所述N1个逻辑单元中包括索引为0的逻辑单元时,所述第一类随机接入信道时域资源至少分配给所述P个等级中最小等级的随机接入信令;或,
当所述N1个逻辑单元中包括索引为N-1的逻辑单元时,所述第一类随机接入信道时域资源至少分配给所述P个等级中最大等级的随机接入信令;或,
当所述N1个逻辑单元中包括索引为0的逻辑单元和索引为N-1的逻辑单元时,所述第一类随机接入信道时域资源至少分配给所述P个等级中最小等级和最大等级的随机接入信令。
可选地,其中,所述N个逻辑单元对应物理上连续或离散的N个所述量化单位。
可选地,其中,当P=3且所述P个等级为等级0、等级1和等级2时,
当所述N1个逻辑单元中包括索引为0的逻辑单元但不包括索引为N-1的逻辑单元时,所述第一类随机接入信道时域资源分配给等级0和等级1的随机接入信令;所述配置周期内,剩余的随机接入信道时域资源分配给等级2;或,
当所述N1个逻辑单元中包括索引为N-1的逻辑单元但不包括索引为0的逻辑单元时,所述第一类随机接入信道时域资源分配给等级1和等级2的随机接入信令;所述配置周期内,剩余的随机接入信道时域资源分配给等级0; 或,
当所述N1个逻辑单元中包括索引为N-1的逻辑单元和索引为0的逻辑单元时,所述第一类随机接入信道时域资源分配给等级0、等级1和等级2的随机接入信令;或,
当所述N1个逻辑单元中既不包括索引为N-1的逻辑单元又不包括索引为0的逻辑单元时,所述第一类随机接入信道时域资源分配给等级1的随机接入信令;所述配置周期内,逻辑单元索引小于分配给等级1的最小逻辑单元索引的逻辑单元分配给等级0;所述配置周期内,逻辑单元索引大于分配给等级1的最大逻辑单元索引的逻辑单元分配给等级2;或,
当所述N1=0时,所述第一类随机接入信道时域资源分配给等级0、等级1和等级2的随机接入信令。
可选地,其中,当P=2且所述P个等级为等级0和等级1时,
当所述N1个逻辑单元中包括索引为0的逻辑单元但不包括索引为N-1的逻辑单元时,所述第一类随机接入信道时域资源分配给等级0的随机接入信令;所述配置周期内,剩余的随机接入信道时域资源分配给等级1;或,
当所述N1个逻辑单元中包括索引为N-1的逻辑单元但不包括索引为0的逻辑单元时,所述第一类随机接入信道时域资源分配给等级1的随机接入信令;所述配置周期内,剩余的随机接入信道时域资源分配给等级0;或,
当所述N1个逻辑单元中包括索引为N-1的逻辑单元和索引为0的逻辑单元时,所述第一类随机接入信道时域资源分配给等级0和等级1的随机接入信令;或,
当所述N1=0时,所述第一类随机接入信道时域资源分配给等级0和等级1的随机接入信令。
可选地,所述方法还包括:
以所有等级中选定的一个等级对应的发送随机接入信令时所需要的随机接入信道频域资源作为量化单位,将所述配置周期内的随机接入信道频域资源划分为M个逻辑单元,索引为0~(M-1),M为正整数。
可选地,其中,将所述配置周期内的随机接入信道频域资源划分为M个 逻辑单元,包括:将所述配置周期内所述第二类随机接入信道频域资源划分为M1个逻辑单元,所述第二类随机接入信道频域资源占用的M1个逻辑单元是连续的;其中,0≤M1≤M。
可选地,其中:
当所述M1个逻辑单元中包括索引为0的逻辑单元时,所述第二类随机接入信道频域资源至少分配给所述Q个等级中最小等级的随机接入信令;或,
当所述M1个逻辑单元中包括索引为M-1的逻辑单元时,所述第二类随机接入信道频域资源至少分配给所述Q个等级中最大等级的随机接入信令;或,
当所述M1个逻辑单元中包括索引为0的逻辑单元和索引为M-1的逻辑单元时,所述第二类随机接入信道频域资源至少分配给所述Q个等级中最小等级和最大等级的随机接入信令。
可选地,其中,所述M个逻辑单元对应物理上连续或离散的M个所述量化单位。
可选地,其中,当Q=3且所述Q个等级为等级0、等级1和等级2时,
当所述M1个逻辑单元中包括索引为0的逻辑单元但不包括索引为M-1的逻辑单元时,所述第二类随机接入信道频域资源分配给等级0和等级1的随机接入信令;所述配置周期内,剩余的随机接入信道频域资源分配给等级2;或,
当所述M1个逻辑单元中包括索引为M-1的逻辑单元但不包括索引为0的逻辑单元时,所述第二类随机接入信道频域资源分配给等级1和等级2的随机接入信令;所述配置周期内,剩余的随机接入信道频域资源分配给等级0;或,
当所述M1个逻辑单元中包括索引为M-1的逻辑单元和索引为0的逻辑单元时,所述第二类随机接入信道频域资源分配给等级0、等级1和等级2的随机接入信令;或,
当所述M1个逻辑单元中既不包括索引为M-1的逻辑单元又不包括索引为0的逻辑单元时,所述第二类随机接入信道时域资源分配给等级1的随机 接入信令;所述配置周期内,逻辑单元索引小于分配给等级1的最小逻辑单元索引的逻辑单元分配给等级0;所述配置周期内,逻辑单元索引大于分配给等级1的最大逻辑单元索引的逻辑单元分配给等级2;或,
当所述M1=0时,所述第二类随机接入信道频域资源分配给等级0、等级1和等级2的随机接入信令。
可选地,其中,当Q=2且所述Q个等级为等级0和等级1时,
当所述M1个逻辑单元中包括索引为0的逻辑单元但不包括索引为M-1的逻辑单元时,所述第二类随机接入信道频域资源分配给等级0的随机接入信令;所述配置周期内,剩余的随机接入信道频域资源分配给等级1;或,
当所述M1个逻辑单元中包括索引为M-1的逻辑单元但不包括索引为0的逻辑单元时,所述第二类随机接入信道频域资源分配给等级1的随机接入信令;所述配置周期内,剩余的随机接入信道频域资源分配给等级0;或,
当所述M1个逻辑单元中包括索引为M-1的逻辑单元和索引为0的逻辑单元时,所述第二类随机接入信道频域资源分配给等级0和等级1的随机接入信令;或,
当所述M1=0时,所述第二类随机接入信道频域资源分配给等级0和等级1的随机接入信令。
可选地,其中,所述随机接入序列的配置信息包括以下至少之一:
随机接入序列的配置周期的指示信息;
随机接入序列量化单位的指示信息,其中,L个前导序列为一个所述随机接入序列量化单位,L为正整数;
C个等级对应的随机接入序列的配置信息;其中,0≤C≤A,A个等级取自于所述P个等级、或A个等级取自于所述Q个等级、或A个等级取自于所述基站配置的B个所述等级、或A个等级取自于(B-P)个等级、或A个等级取自于(B-Q)个所述等级。
可选地,所述方法还包括:
按照所述随机接入序列量化单位,将所述配置周期内的随机接入序列资源划分为S个逻辑单元,索引为0~(S-1),S为正整数。
可选地,其中,将所述配置周期内的随机接入序列资源划分为S个逻辑单元,包括:将所述配置周期内C个等级对应的随机接入序列资源划分为S1个逻辑单元,C个等级对应的随机接入序列资源占用的S1个逻辑单元是连续的;其中,0≤S1≤S。
可选地,其中,当所述S1个逻辑单元中包括索引为0的逻辑单元时,所述C个等级中至少包括A个等级中最小等级;或,
当所述S1个逻辑单元中包括索引为S-1的逻辑单元时,所述C个等级中至少包括A个等级中最大等级;或,
当所述S1个逻辑单元中包括索引为0的逻辑单元和索引为S-1的逻辑单元时,所述C个等级中至少包括A个等级中最小等级和最大等级。
可选地,其中:当A=3且所述A个等级为等级0、等级1和等级2时,
当所述S1个逻辑单元中包括索引为0的逻辑单元但不包括索引为S-1的逻辑单元时,所述随机接入序列分配给等级0和等级1的随机接入信令;所述配置周期内,剩余的随机接入序列分配给等级2;或,
当所述S1个逻辑单元中包括索引为S-1的逻辑单元但不包括索引为0的逻辑单元时,所述随机接入序列分配给等级1和等级2的随机接入信令;所述配置周期内,剩余的随机接入序列分配给等级0;或,
当所述S1个逻辑单元中包括索引为S-1的逻辑单元和索引为0的逻辑单元时,所述随机接入序列分配给等级0、等级1和等级2的随机接入信令;或,
当所述S1=0时,所述随机接入序列分配给等级0、等级1和等级2的随机接入信令。
可选地,其中:当A=2且所述A个等级为等级0和等级1时,
当所述S1个逻辑单元中包括索引为0的逻辑单元但不包括索引为S-1的逻辑单元时,所述随机接入序列分配给等级0的随机接入信令;或,
当所述S1个逻辑单元中包括索引为S-1的逻辑单元但不包括索引为0的逻辑单元时,所述随机接入序列分配给等级1的随机接入信令;或,
当所述S1个逻辑单元中包括索引为S-1的逻辑单元和索引为0的逻辑单 元时,所述随机接入序列分配给等级0、等级1的随机接入信令;或,
当所述S1个逻辑单元中既不包括索引为S-1的逻辑单元又不包括索引为0的逻辑单元时,所述随机接入序列分配给等级1的随机接入信令;所述配置周期内,逻辑单元索引小于分配给等级1的最小逻辑单元索引的逻辑单元分配给等级0;所述配置周期内,逻辑单元索引大于分配给等级1的最大逻辑单元索引的逻辑单元分配给等级2;或,
当所述S1=0时,所述随机接入序列分配给等级0、等级1的随机接入信令。
可选地,其中,所述随机接入配置信息还包括以下至少之一:
随机接入信令跳频发送使能指示信息;跳频的时域粒度指示信息L,L为自然数。
可选地,其中,所述跳频的时域粒度是根据预设公式计算得到的;其中,所述预设公式为:所述跳频的时域粒度=Rep/L,Rep为所有等级中选定的一个等级对应的发送随机接入信令的重复发送次数。
可选地,其中,当L=0时,所述随机接入信令不支持跳频发送。
可选地,其中,当所述方法应用于长期演进LTE或长期演进的后续演进LTE-A系统中,且所述随机接入信令采用模式Format 4发送时,所述配置周期包括以下至少之一:至少一个特殊子帧、至少一个上行子帧。
可选地,其中,所述至少一个上行子帧是由子帧指示信息指示的,所述子帧指示信息包括以下至少之一:
所述配置周期包括的一个帧中用于随机接入信令发送的上行子帧索引;所述配置周期中包括的帧的数量。
可选地,其中,在所述至少一个上行子帧中,所述随机接入信令采用模式4重复发送Y次。
可选地,其中,当所述方法应用于长期演进LTE或长期演进的后续演进LTE-A系统中时,所述配置周期包括以下至少之一:至少一个特殊子帧、至少一个上行子帧。
可选地,其中,所述至少一个上行子帧是由子帧指示信息指示的,所述 子帧指示信息包括以下至少之一:
所述配置周期包括的一个帧中用于随机接入信令发送的上行子帧索引;所述配置周期中包括的帧的数量。
可选地,其中,在所述至少一个上行子帧中,采用模式Format 0发送所述随机接入信令;在所述至少一个特殊子帧中,采用模式Format 4发送随机接入信令。
可选地,其中,所述随机接入配置信息还包括以下至少之一:
所有等级对应的随机接入信道的复用方案的配置信息;
在所有等级对应的随机接入信道的复用方案中,每个等级分配的随机接入信道时频资源和/或随机接入序列资源的配置信息。
可选地,所述方法还包括:
根据所有等级对应的随机接入信道的复用方案的配置信息确定以下至少之一:
采用所述复用方案的所述等级的数量信息;
采用所述复用方案的所述等级的索引信息;
其中,所述复用方案包括以下至少一种:频分复用方案、时分复用方案、码分复用方案,所述码分复用方案是指不同等级的用户设备分配的随机接入序列不同。
可选地,所述方法还包括,当为用户设备分配的随机接入信道时频资源块在频域上只有一个位置时,所有等级对应的随机接入信道的复用方案中不支持频分复用方案。
可选地,其中,所述在所有等级对应的随机接入信道的复用方案中,所述每个等级分配的随机接入信道时频资源和/或随机接入序列资源的配置信息包括以下至少之一:
采用频分复用方案的所述等级在频域上分配的随机接入信道资源的比例信息;
采用时分复用方案的所述等级在时域上分配的随机接入信道资源的比例 信息;
采用码分复用方案的所述等级分配的随机接入序列资源的比例信息。
本发明实施例还提供一种基站,所述基站包括:
确定单元,设置为确定随机接入配置信息,所述随机接入配置信息用于指示用户设备接入网络;其中,所述随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息;以及
发送单元,设置为通过下行信道向用户设备发送所述确定单元确定的随机接入配置信息。
本发明实施例还提供一种用户设备,所述用户设备包括:
接收单元,设置为通过下行信道接收基站发送的随机接入配置信息,所述随机接入配置信息用于指示所述用户设备根据所述随机接入配置信息接入网络;其中,所述随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息;以及
接入单元,设置为根据所述接收单元接收的所述随机接入配置信息接入网络。
本发明实施例还提供一种系统,所述系统包括:如上所述的基站;以及如上所述的用户设备;所述基站通过下行信道向所述用户设备发送随机接入配置信息,所述用户设备根据接收到的所述随机接入配置信息接入系统。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现上述方法。
本发明实施例提供的一种随机接入的方法、节点以及系统,包括:基站通过下行信道向用户设备发送随机接入配置信息,该随机接入配置信息用于指示所述用户设备根据所述随机接入配置信息接入网络;其中,随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息。相对于相关技术中的方案,本发明实施例针对LTE和LTE-A系统的随 机接入信道PRACH进行了增强设计,从而可以保证低成本配置的MTC UE可以正常接入系统。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的随机接入的方法的流程示意图;
图2为本发明实施例中划分逻辑单元Unit的示意图一;
图3为本发明实施例中为每个等级对应的随机接入信令分配逻辑单元Unit的示意图一;
图4为本发明实施例中为每个等级对应的随机接入信令分配逻辑单元Unit的示意图二;
图5为本发明实施例中为每个等级对应的随机接入信令分配逻辑单元Unit的示意图三;
图6为本发明实施例中为每个等级对应的随机接入信令分配逻辑单元Unit的示意图四;
图7为本发明实施例中划分逻辑单元Unit的示意图二;
图8为本发明实施例中为每个等级对应的随机接入信令分配逻辑单元Unit的示意图五;
图9为本发明实施例中划分逻辑单元Unit的示意图三;
图10为本发明实施例中划分逻辑单元Unit的示意图四;
图11为本发明实施例中划分逻辑单元Unit的示意图五;
图12为本发明实施例中为每个等级对应的随机接入信令分配块Block的示意图
图13为本发明实施例提供的基站的结构示意图;
图14为本发明实施例提供的用户设备的结构示意图。
本发明的实施方式
下文中将结合附图对本发明实施例进行详细说明。需要说明的是,在不冲突的情况下,本发明实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例中的节点包括基站和用户设备,本发明实施例中所述的基站可以是普通基站NodeB、演进型基站(Evolutional Node B,eNodeB或eNB)、宏基站(Macrocell)、微基站(Microcell)、微微基站(Picocell)、毫微微基站(Femtocell)又叫家庭基站、低功率节点(Lower Power Node,LPN)或中继站(Relay)等等,本发明实施例对此并不限定,但为描述方便,下述实施例中基站以eNB为例进行说明;本发明实施例中所述的用户设备UE可以是人到人(Human to Human,H2H)通信终端例如手机、机器到机器M2M通信终端例如MTC UE、或设备到设备(Device to Device,D2D)通信终端等等,本发明实施例对此并不限定,但为描述方便,下述实施例中用户设备以MTC UE进行说明;本发明实施例中所述的等级可以被称为覆盖增强等级、物理随机接入信道(PRACH)信道覆盖增强等级、或PRACH信道重复发送等级等等,本发明实施例对此并不限定,但为描述方便,下述实施例中等级以覆盖增强等级为例进行说明。
本发明实施例提供一种随机接入的方法、节点以及系统,以下实施例将以基站向用户设备发送随机接入信令以使用户设备接入网络的处理过程来描述本发明实施例提供的技术方案。
实施例1:
在LTE或LTE-A系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,物理随机接入信道(Physical Random Access Channel,PRACH)一共支持3个覆盖增强等级(Coverage Enhancement Level,CEL)也即等级的数量为3,且将三个等级分别记为CEL0、CEL1和CEL2。如图1所示,本实施例随机接入方法包括:
基站eNB通过下行信道向MTC UE发送随机接入配置信息,所述随机接入配置信息用于指示MTC UE根据该随机接入配置信息随机接入网络。
其中,所述随机接入配置信息中包括以下至少之一:
随机接入信道占用的时频资源的配置信息、随机接入序列(也可称为随机接入序列资源)的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息。
本实施例中,可以按照预设规则将3个CEL划分到两个等级集合中,其中,将CEL0划分到一个等级集合中且将该等级集合记为第一类等级,将CEL1和CEL2划分到另一个等级集合中且将该等级集合记为第二类等级,则CEL0属于第一类等级,CEL1和CEL2属于第二类等级,值得一提的是,所述预设规则可以根据实际情况来制定,并不限于上述将CEL0划分到第一类等级、以及将CEL1和CEL2划分到第二类等级这一条规则。CEL0对应的随机接入信令的重复发送次数为3次,CEL1对应的随机接入信令的重复发送次数为6次,CEL2对应的随机接入信令的重复发送次数为12次。则上述“每个等级对应的随机接入信令的重复发送次数的配置信息”中包括:
CEL0对应的随机接入信令的重复发送次数信息,3次;
CEL1对应的随机接入信令的重复发送次数指示信息,2倍;即表示CEL1对应的随机接入信令的重复发送次数为CEL0对应的随机接入信令的重复发送次数的2倍;
CEL1对应的随机接入信令的重复发送次数指示信息,4倍;即表示CEL1对应的随机接入信令的重复发送次数为CEL0对应的随机接入信令的重复发送次数的4倍。
所述“随机接入信道占用的时频资源的配置信息”中包括:
(1)配置周期的指示信息;在本实施例中,例如为K1=6个帧(Frame);
(2)所述配置周期内,第一类随机接入信道在时域的配置信息;其中,所述第一类随机接入信道在时域的配置信息是指P个CELs对应的随机接入信道在时域的配置信息,1≤P≤3(等级的数量=3)。
本实施例中,每个Frame有10个上行子帧(Uplink Subframe),子帧(Subframe)索引为0~9,且Subframe0、2、4、6可以配置为PRACH,且在每个配置为PRACH的Subframe中只有一个频域资源块配置为PRACH,其中 一个频率资源块为6个物理资源块(Physical Resource Block,PRB)。将6个Frame中的24个PRACH资源排序,索引(Index)为0~23。
本实施例中,随机接入信令采用前导格式0即Preamble format 0模式发送,也即随机接入信令时域长度为一个Subframe,频域长度为6个PRBs。以CEL0等级对应的发送随机接入信令时所需要的随机接入信道资源(3个Subframe)作为量化单位,将24个PRACH资源划分为N=8个逻辑单元(Unit),索引为Unit0~7,如图2所示。
本实施例中,所述配置周期内,第一类随机接入信道在时域的配置信息指示的是Unit2~Unit3(即N1=2,既不包括Unit0也不包括Unit7),则分配给CEL1(即等级1)对应的随机接入信令;Unit0~Unit1,则分配给CEL0(即等级0)对应的随机接入信令;Unit4~Unit7,则分配给CEL2(即等级2)对应的随机接入信令,如图3所示。
除本实施例外,所述配置周期内,第一类随机接入信道在时域的配置信息指示的是Unit0~Unit3(即N1=4,包括Unit0但不包括Unit7),则分配给CEL0(即等级0)和CEL1(即等级1)对应的随机接入信令;Unit4~Unit7,则分配给CEL2(即等级2)对应的随机接入信令,如图4所示。
除本实施例外,所述配置周期内,第一类随机接入信道在时域的配置信息指示的是Unit4~Unit7(即N1=4,包括Unit7但不包括Unit0),则分配给CEL1(即等级1)和CEL2(即等级2)对应的随机接入信令;Unit0~Unit3,则分配给CEL0(即等级0)对应的随机接入信令,如图5所示。
除本实施例外,所述配置周期内,第一类随机接入信道在时域的配置信息指示的Unit数量为0即N1=0时,则Unit0~Unit7分配给CEL0、CEL1、CEL2对应的随机接入信令。
实施例2:
在LTE或LTE-A系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,PRACH一共支持2个覆盖增强等级(Coverage Enhancement Level,CEL),也即等级的数量为2,且将 两个等级分别记为CEL0、CEL1。本实施例中,CEL0对应的随机接入信令的重复发送次数为6次,CEL1对应的随机接入信令的重复发送次数为12次。
基站eNB通过下行信道向MTC UE发送随机接入配置信息,所述随机接入配置信息用于指示MTC UE根据该随机接入配置信息随机接入网络。
其中,所述随机接入配置信息中至少包括以下至少之一:
随机接入信令跳频发送使能指示信息;跳频的时域粒度指示信息L。
可选地,所述跳频的时域粒度H,由以下预设公式计算得到:H=Rep/L;
其中,L为跳频的时域粒度指示信息,本实施例中L=2;Rep为CEL0对应的发送随机接入信令的重复发送次数,本实施例中Rep=6;则H=6/2=3。
本实施例中,每个Frame有10个上行子帧(Uplink Subframe),子帧(Subframe)索引为0~9,且Subframe0、2、4、6可以配置为PRACH,且在每个配置为PRACH的Subframe中只有一个频域资源块配置为PRACH,其中一个频率资源块为6个PRBs。将6个Frame中的24个PRACH资源排序,索引(Index)为0~23。
本实施例中,随机接入信令采用前导格式0即Preamble format 0模式发送,也即随机接入信令时域长度为一个Subframe,频域长度为6个PRBs。以H=3个配置为PRACH的Subframe作为量化单位,将24个PRACH资源划分为8个逻辑单元(Unit),索引为Unit0~7,如图2所示。
本实施例中,随机接入信令采用跳频发送,所述配置周期内,CEL0的MTC UEs可以在Unit0~Unit1、Unit2~Unit3、Unit4~Unit5或Unit6~Unit7中随机选择一个Unit组合发送,CEL1的MTC UEs可以在Unit0~Unit3或Unit4~Unit7中随机选择一个Unit组合发送,如图6所示。
实施例3:
在LTE或LTE-A系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,PRACH一共支持2个覆盖增强等级(Coverage Enhancement Level,CEL),也即等级的数量为2,且将两个等级分别记为CEL0、CEL1。本实施例中,CEL0对应的随机接入信令的 重复发送次数为6次,CEL1对应的随机接入信令的重复发送次数为12次。
基站eNB通过下行信道向MTC UE发送随机接入配置信息,所述随机接入配置信息用于指示MTC UE根据该随机接入配置信息随机接入网络。
其中,所述随机接入配置信息中至少包括以下至少之一:
随机接入信令跳频发送使能指示信息;跳频的时域粒度指示信息L;
可选地,所述跳频的时域粒度H,由以下预设式计算得到:H=Rep/L;
其中,L为跳频的时域粒度指示信息,本实施例中L=2;Rep为CEL0对应的随机接入信令的重复发送次数,本实施例中Rep=6;则H=6/2=3。
本实施例中,每个Frame有10个上行子帧(Uplink Subframe),子帧(Subframe)索引为0~9,且Subframe 0、2、4、6可以配置为PRACH,且在每个配置为PRACH的Subframe中有2个频域资源块配置为PRACH,其中一个频率资源块为6个PRBs。将6个Frame中的48个PRACH资源排序,索引为(Index)0~47。
本实施例中,随机接入信令采用前导格式0即Preamble format 0模式发送,也即随机接入信令时域长度为一个Subframe,频域长度为6个PRBs。以H=3个配置为PRACH的Subframe作为量化单位,将48个PRACH资源划分为16个逻辑单元(Unit),索引为Unit0~15,如图7所示。
本实施例中,随机接入信令采用跳频发送,所述配置周期内,CEL0的MTC UEs可以在(Unit0+Unit9)、(Unit2+Unit11)、(Unit4+Unit13)、(Unit6+Unit15),(Unit8+Unit1)、(Unit10+Unit3)、(Unit12+Unit5)或(Unit14+Unit7)中随机选择一个Unit组合发送,CEL1的MTC UEs可以在(Unit0+Unit9+Unit2+Unit11)、(Unit4+Unit13+Unit6+Unit15)、(Unit8+Unit1+Unit10+Unit3)或(Unit12+Unit5+Unit14+Unit7)中随机选择一个Unit组合发送,如图8所示。
实施例4:
在LTE或LTE-A系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,PRACH一共支持3个覆盖 增强等级(Coverage Enhancement Level,CEL),也即等级的数量为3,且将三个等级分别记为CEL0、CEL1和CEL2。
基站eNB通过下行信道向MTC UE发送随机接入配置信息,所述随机接入配置信息用于指示MTC UE根据该随机接入配置信息随机接入网络。
其中,所述随机接入配置信息中至少包括以下至少之一:
所述随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息;
本实施例中,CEL0对应的随机接入信令的重复发送次数为3次,CEL1对应的随机接入信令的重复发送次数为6次,CEL2对应的随机接入信令的重复发送次数为12次。
所述“随机接入信道占用的时频资源的配置信息”中包括:
(1)配置周期的指示信息;在本实施例中,例如为K1=6个帧(Frame);
(2)所述配置周期内,第二类随机接入信道在频域的配置信息;其中,所述第二类随机接入信道在频域的配置信息是指Q个CELs对应的随机接入信道在频域的配置信息,1≤Q≤3(等级的数量=3)。
本实施例中,每个Frame有10个上行子帧(Uplink Subframe),子帧(Subframe)索引为0~9,且Subframe 0、2、4、6可以配置为PRACH,且在每个配置为PRACH的Subframe中只有4个频域资源块配置为PRACH,其中一个频率资源块为6个PRBs。将6个Frame中的96个PRACH资源排序,索引(Index)为0~95。
本实施例中,随机接入信令采用前导格式0即Preamble format 0模式发送,也即随机接入信令时域长度为一个Subframe,频域长度为6个PRBs。以6个PRBs作为频域资源块的量化单位,将96个PRACH资源划分为M=4个逻辑单元(Unit),索引为Unit0~3,如图9所示;
本实施例中,所述配置周期内,第二类随机接入信道在频域的配置信息指示的是Unit1~Unit2(即M1=2,既不包括Unit0也不包括Unit3),则分配给CEL1(即等级1)对应的随机接入信令;Unit0则分配给CEL0(即等级0)对应的随机接入信令;Unit3则分配给CEL2(即等级2)对应的随机接入信 令,
除本实施例外,所述配置周期内,第二类随机接入信道在频域的配置信息指示的是Unit0~Unit2(即M1=3,包括Unit0但不包括Unit3),则分配给CEL0(即等级0)和CEL1(即等级1)对应的随机接入信令;Unit3则分配给CEL2(即等级2)对应的随机接入信令。
除本实施例外,所述配置周期内,第二类随机接入信道在频域的配置信息指示的是Unit1~Unit3(即N1=3,包括Unit3但不包括Unit0),则分配给CEL1(即等级1)和CEL2(即等级2)对应的随机接入信令;Unit0则分配给CEL0(即等级0)对应的随机接入信令。
除本实施例外,所述配置周期内,第二类随机接入信道在频域的配置信息指示的Unit数量为0即M1=0时,则Unit0~Unit3分配给CEL0、CEL1、CEL2对应的随机接入信令。
实施例5:
在LTE或LTE-A系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,PRACH一共支持3个覆盖增强等级(Coverage Enhancement Level,CEL),也即等级的数量为3,且将三个等级分别记为CEL0、CEL1和CEL2。
基站eNB通过下行信道向MTC UE发送随机接入配置信息,所述随机接入配置信息用于指示MTC UE根据该随机接入配置信息随机接入网络。
其中,所述随机接入配置信息中至少包括以下至少之一:
随机接入序列量化单位的指示信息;
C个等级对应的随机接入序列的配置信息;其中C大于等于0,小于等于覆盖增强等级数量(A=3);
其中,随机接入序列量化单位即为N个PRACH前导(Preamble)序列作为一个量化单位;
本实施例中,基站eNB配置了64个可用的PRACH Preamble序列,索引(Index)为0~63,且随机接入序列量化单位的指示信息指示N=4个连续的 或离散的Preamble索引作为一个量化单位,则64个可用的PRACH Preamble序列划分为S=16个逻辑单元(Unit),索引为Unit0~15;
本实施例中,C个等级对应的随机接入序列的配置信息指示的是Unit5~Unit8(即S1=4,既不包括Unit0也不包括Unit15),则分配给CEL1(即等级1)对应的随机接入信令;Unit0~Unit4则分配给CEL0(即等级0)对应的随机接入信令;Unit9~Unit15则分配给CEL2(即等级2)对应的随机接入信令。
除本实施例外,C个等级对应的随机接入序列的配置信息指示的是Unit0~Unit8(即S1=9,包括Unit0但不包括Unit15),则分配给CEL0(即等级0)和CEL1(即等级1)对应的随机接入信令;Unit9~Unit15则分配给CEL2(即等级2)对应的随机接入信令。
除本实施例外,C个等级对应的随机接入序列的配置信息指示的是Unit9~Unit15(即S1=7,包括Unit15但不包括Unit0),则分配给CEL1(即等级1)和CEL2(即等级2)对应的随机接入信令;Unit0~Unit8则分配给CEL0(即等级0)对应的随机接入信令。
除本实施例外,C个等级对应的随机接入序列的配置信息指示的Unit数量为0即S1=0时,则Unit0~Unit15分配给CEL0、CEL1、CEL2对应的随机接入信令。
实施例6:
在LTE或LTE-A系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,PRACH一共支持3个覆盖增强等级(Coverage Enhancement Level,CEL),也即等级的数量为3,且将三个等级分别记为CEL0、CEL1和CEL2。
基站eNB通过下行信道向MTC UE发送随机接入配置信息,所述随机接入配置信息用于指示MTC UE根据该随机接入配置信息随机接入网络。
其中,所述随机接入配置信息中至少包括以下至少之一:
所述随机接入信道占用的时频资源的配置信息;
随机接入序列的配置信息;
每个等级对应的随机接入信令的重复发送次数的配置信息;
本实施例中,CEL0对应的随机接入信令的重复发送次数为3次,CEL1对应的随机接入信令的重复发送次数为6次,CEL2对应的随机接入信令的重复发送次数为12次。则“每个等级对应的随机接入信令的重复发送次数的配置信息”中包括:
CEL0对应的随机接入信令的重复发送次数信息,3次;
CEL1对应的随机接入信令的重复发送次数指示信息,2倍;即表示CEL1对应的随机接入信令的重复发送次数为CEL0对应的随机接入信令的重复发送次数的2倍;
CEL1对应的随机接入信令的重复发送次数指示信息,4倍;即表示CEL1对应的随机接入信令的重复发送次数为CEL0对应的随机接入信令的重复发送次数的4倍。
上述“随机接入信道占用的时频资源的配置信息”中包括:
(1)配置周期的指示信息;在本实施例中,例如为K1=6个帧(Frame);
(2)所述配置周期内,第一类随机接入信道在时域的配置信息;其中,所述第一类随机接入信道在时域的配置信息是指P个CELs对应的随机接入信道在时域的配置信息,1≤P≤3。
本实施例中,每个Frame有10个上行子帧(Uplink Subframe),子帧(Subframe)索引为0~9,且Subframe 0、2、4、6可以配置为PRACH,且在每个配置为PRACH的Subframe中只有一个频域资源块配置为PRACH,其中一个频率资源块为6个PRBs。将6个Frame中的24个PRACH资源排序,索引为(Index)0~23。
本实施例中,随机接入信令采用前导格式0即Preamble format 0模式发送,也即随机接入信令时域长度为一个Subframe,频域长度为6个PRBs。以CEL0对应的随机接入信令所需的随机接入信道数量(3个Subframe)作为量化单位,将24个PRACH资源划分为8个逻辑单元(Unit),索引为Unit0~7,如图10所示。
本实施例中,所述配置周期内,第一类随机接入信道在时域的配置信息指示的是Unit2~Unit3,则分配给CEL1对应的随机接入信令;Unit1~Unit1,则分配给CEL0对应的随机接入信令;Unit4~Unit7,则分配给CEL2对应的随机接入信令,如图2所示。
实施例7:
在LTE或LTE-A系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,PRACH一共支持3个覆盖增强等级(Coverage Enhancement Level,CEL),也即等级的数量为3,且将三个等级分别记为CEL0、CEL1和CEL2。
基站eNB通过下行信道向MTC UE发送随机接入配置信息,所述随机接入配置信息用于指示MTC UE根据该随机接入配置信息随机接入网络。
其中,所述随机接入配置信息中至少包括以下至少之一:
所述随机接入信道占用的时频资源的配置信息;
随机接入序列的配置信息;
每个等级对应的随机接入信令的重复发送次数的配置信息;
本实施例中,CEL0对应的随机接入信令的重复发送次数为3次,CEL1对应的随机接入信令的重复发送次数为6次,CEL2对应的随机接入信令的重复发送次数为12次。则“每个等级对应的随机接入信令的重复发送次数的配置信息”中包括:
CEL0对应的随机接入信令的重复发送次数信息,3次;
CEL1对应的随机接入信令的重复发送次数指示信息,2倍;即表示CEL1对应的随机接入信令的重复发送次数为CEL0对应的随机接入信令的重复发送次数的2倍;
CEL1对应的随机接入信令的重复发送次数指示信息,4倍;即表示CEL1对应的随机接入信令的重复发送次数为CEL0对应的随机接入信令的重复发送次数的4倍。
所述“随机接入信道占用的时频资源的配置信息”中包括:
(1)配置周期的指示信息;在本实施例中,例如为K1=6个帧(Frame)
(2)所述配置周期内,第一类随机接入信道在时域的配置信息;
(3)所述配置周期内,第二类随机接入信道在时域的配置信息;
本实施例中,每个Frame有10个Uplink Subframe,Subframe索引为0~9,且Subframe 0、2、4、6可以配置为PRACH,且在每个配置为PRACH的Subframe中有4个频域资源块配置为PRACH,其中一个频率资源块为6个PRBs。将6个Frame中的96个PRACH资源排序,索引(Index)为0~95。
本实施例中,随机接入信令采用Preamble format 0格式发送,即随机接入信令时域长度为一个Subframe,频域长度为6个PRBs。以CEL0对应的随机接入信令所需的随机接入信道数量(3个Subframe)作为量化单位,将96个PRACH资源划分为8个逻辑单元(Unit),索引为Unit0~7,如图11所示。
除本实施例外,所述配置周期内,第一类随机接入信道在时域的配置信息指示的是Unit0~Unit1,则分配给CEL0和CEL1对应的随机接入信令;Unit2~Unit7,则分配给CEL2对应的随机接入信令。
所述第二类随机接入信道在频域的配置信息描述的是在Unit0~Unit1中的频域资源块(每个频域资源块大小为6个PRBs)如何分配给CEL0和CEL1对应的随机接入信令;
本实施例中,如图12所示,第二类随机接入信道在频域的配置信息指示的是块Block 2~Block 3,则分配给CEL1对应的随机接入信令;Block 0~Block 1则分配给CEL0对应的随机接入信令。
实施例8:
在LTE或LTE-A系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,PRACH一共支持3个覆盖增强等级(Coverage Enhancement Level,CEL),也即等级的数量为3,且将三个等级分别记为CEL0、CEL1和CEL2。
基站eNB通过下行信道向MTC UE发送随机接入配置信息,所述随机接 入配置信息用于指示MTC UE根据该随机接入配置信息随机接入网络。
其中,所述随机接入配置信息中至少包括以下至少之一:
所有等级对应的随机接入信道的复用方案配置信息、
在所有等级对应的随机接入信道的复用方案中,每个等级分配的随机接入信道时频资源和/或随机接入序列资源的配置信息。
根据所述所有等级对应的随机接入信道的复用方案的配置信息可以确定以下至少之一:
采用所述复用方案的所述等级的数量信息;
采用所述复用方案的所述等级的索引信息;
其中,所述复用方案包括以下至少一种:频分复用(Frequency Division Multiplexing,FDM)方案、时分复用(Time Division Multiplexing,TDM)方案、码分复用(Code Division Multiplexing,CDM)方案,其中CDM复用方案是指不同等级的MTC UE分配的随机接入序列不同。
需要特别说明的是,当为用户设备分配的随机接入信道时频资源块在频域上只有一个位置时,所述所有等级对应的随机接入信道的复用方案中不支持频分复用方案。
本实施例中,CEL0对应的随机接入信令的重复发送次数为3次,CEL1对应的随机接入信令的重复发送次数为6次,CEL2对应的随机接入信令的重复发送次数为12次。时频资源配置周期为K1=6个帧(Frame)。
本实施例中,每个Frame有10个Uplink Subframe,Subframe索引为0~9,且Subframe 0、2、4、6可以配置为PRACH,且每个配置为PRACH的Subframe中有4个频域资源块配置为PRACH,其中一个频率资源块为6个PRBs。将6个Frame中的96个PRACH资源排序,索引(Index)为0~95。
本实施例中,随机接入信令采用Preamble format 0格式发送,即随机接入信令时域长度为一个Subframe,频域长度为6个PRBs。以6个PRBs作为频域资源块的量化单位,将96个PRACH资源划分为4个逻辑单元(Unit),索引为Unit0~3,如图9所示。
本实施例中,MTC UEs根据解码所述“每个等级对应的随机接入信道的 复用方案配置信息”,获知基站eNB支持3个CEL采用频分复用方案。进而MTC UEs根据解码所述“在所有等级对应的随机接入信道的复用方案下,每个等级分配的随机接入信道时频资源和/或随机接入序列资源的配置信息”获知CEL0、CEL1、CEL2在频域上分配的随机接入信道资源的比例信息,本实施例中为1:1:2;则Unit0分配给CEL0对应的随机接入信令;Unit1则分配给CEL1对应的随机接入信令;Unit2、Unit3则分配给CEL2对应的随机接入信令。
实施例9:
在LTE或LTE-A系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,PRACH一共支持3个覆盖增强等级(Coverage Enhancement Level,CEL),也即等级的数量为3,且将三个等级分别记为CEL0、CEL1和CEL2。
基站eNB通过下行信道向MTC UE发送随机接入配置信息,所述随机接入配置信息用于指示MTC UE根据该随机接入配置信息随机接入网络。
其中,所述随机接入配置信息中至少包括以下至少之一:
所有等级对应的随机接入信道的复用方案配置信息、
在所有等级对应的随机接入信道的复用方案下,每个等级分配的随机接入信道时频资源和/或随机接入序列资源的配置信息;
本实施例中,CEL0对应的随机接入信令的重复发送次数为3次,CEL1对应的随机接入信令的重复发送次数为6次,CEL2对应的随机接入信令的重复发送次数为12次。时频资源配置周期为K1=6个帧(Frame)。
本实施例中,每个Frame有10个Uplink Subframe,Subframe索引为0~9,且Subframe 0、2、4、6可以配置为PRACH,且每个配置为PRACH的Subframe中有4个频域资源块(每个频域资源块大小为6个PRBs)配置为PRACH。将6个Frame中的96个PRACH资源排序,索引(Index)为0~95。
本实施例中,随机接入信令采用Preamble format 0格式发送,即随机接入信令时域长度为一个Subframe,频域长度为6个PRBs。以6个PRBs作为 频域资源块的量化单位,将96个PRACH资源划分为4个逻辑单元(Unit),索引为Unit0~3,如图9所示;
本实施例中,MTC UEs根据解码所述“每个等级对应的随机接入信道的复用方案配置信息”,获知eNB支持3个CEL采用FDM+CDM复用方案,其中,CEL0与CEL1采用CDM复用方案,并且(CEL0、CEL1)与CEL2采用FDM复用方案。
MTC UEs根据解码所述“在所有等级对应的随机接入信道的复用方案下,每个等级分配的随机接入信道时频资源和/或随机接入序列资源的配置信息”获知(CEL0、CEL1)与CEL2在频域上分配的随机接入信道资源的比例信息,本实施例中为1:1;则Unit0、Unit1分配给(CEL0、CEL1)对应的随机接入信令;Unit2、Unit3则分配给CEL1对应的随机接入信令;
MTC UEs根据解码所述“在所有等级对应的随机接入信道的复用方案下,每个等级分配的随机接入信道时频资源和/或随机接入序列资源的配置信息”获知CEL0与CEL1分配的随机接入序列资源的比例信息,本实施例中为1:1;本实施例中,基站eNB为CEL0与CEL1配置了64个可用的PRACH Preamble序列,则其中32个分配给CEL0,剩下的32个分配给CEL1。
最后,需要说明的是,通过上述实施例可以看出:相对于相关技术中的方案,为了保证低成本配置的MTC UE能够正常接入LTE或LTE-A系统,本发明实施例针对LTE和LTE-A系统的随机接入信道PRACH进行了增强设计,从而可以保证MTC UE可以正常接入系统。
本发明实施例还提供一种基站,如图13所示,包括:
确定单元1301,设置为确定随机接入配置信息,所述随机接入配置信息用于指示用户设备接入网络;其中,所述随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息;以及
发送单元1302,设置为通过下行信道向用户设备发送所述确定单元1301确定的随机接入配置信息。
本发明实施例提供的基站用于实现上述方法实施例,本实施例中基站的 工作流程和工作原理参见上述方法实施例中的描述,在此不再赘述。需要说明的是,本实施例中发送单元1302可以为基站的发射机。确定单元1301的功能可以由单独设立的处理器实现,也可以集成在基站的某一个处理器中实现,此外,也可以以程序代码的形式存储于基站的存储器中,由基站的某一个处理器调用并执行以上确定单元的功能。这里所述的处理器可以是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
本发明实施例还提供一种用户设备,如图14所示,包括:
接收单元1401,设置为通过下行信道接收基站发送的随机接入配置信息;其中,所述随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息;所述随机接入配置信息用于指示所述用户设备根据所述随机接入配置信息接入网络;以及
接入单元1402,设置为根据所述接收单元1401接收的所述随机接入配置信息接入网络。
本发明实施例提供的用户设备用于实现上述方法实施例,本实施例中用户设备的工作流程和工作原理参见上述方法实施例中的描述,在此不再赘述。需要说明的是,本实施例中接收单元1401可以为用户设备的接收机。接入单元1402的功能可以由单独设立的处理器实现,也可以集成在用户设备的某一个处理器中实现,此外,也可以以程序代码的形式存储于用户设备的存储器中,由用户设备的某一个处理器调用并执行以上接入单元的功能。这里所述的处理器可以是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
本发明实施例还提供一种系统,包括上述基站以及用户设备,其中,基站通过下行信道向用户设备发送随机接入配置信息,用户设备根据接收到的随机接入配置信息接入网络,基站和用户设备的工作流程和工作原理参见上述方法实施例中的描述,在此不再赘述。
以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另一点,所显示或讨论的模块相互之间的连接可以是通过一些接口,可以是电性,机械或其它的形式。所述模块可以是或者也可以不是物理上分开的,可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明实施例中的功能模块可以集成在一个处理模块中,也可以是每个模块单独物理包括,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
上述以软件功能单元的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明每个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质。
工业实用性
本发明实施例提供的一种随机接入的方法、节点以及系统,包括:基站通过下行信道向用户设备发送随机接入配置信息,该随机接入配置信息用于指示所述用户设备根据所述随机接入配置信息接入网络;其中,随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息。相对于相关技术中的方案,本发明实施例针对LTE和LTE-A系统的随机接入信道PRACH进行了增强设计,从而可以保证低成本配置的MTC UE可以正常接入系统。

Claims (49)

  1. 一种随机接入的方法,包括:
    基站通过下行信道向用户设备发送随机接入配置信息,所述随机接入配置信息用于指示所述用户设备根据所述随机接入配置信息接入网络;
    其中,所述随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息。
  2. 根据权利要求1所述的方法,其中,所述每个等级对应的随机接入信令的重复发送次数的配置信息包括以下至少之一:
    第一类等级中的等级对应的随机接入信令重复发送次数信息;
    第二类等级中的等级对应的随机接入信令重复发送次数指示信息;
    其中,所述第一类等级和所述第二类等级是根据预设规则对所有等级进行划分得到的两个等级集合。
  3. 根据权利要求1所述的方法,其中,所述随机接入信道占用的时频资源的配置信息包括以下至少之一:
    配置周期的指示信息;
    随机接入信道占用的时频资源在频域上间隔大小的指示信息;
    所述等级的数量的指示信息;
    所述每个等级对应的随机接入信道时频资源的配置信息。
  4. 根据权利要求3所述的方法,其中,所述配置周期的指示信息所指示的配置周期为以下至少之一:
    K1个帧、K2个子帧、K3个单位随机接入资源;
    其中,所述单位随机接入资源为所有等级中选定的一个等级的发送随机接入信令时所需要的随机接入信道时频资源,K1、K2、K3均为大于0的数。
  5. 根据权利要求1所述的方法,其中,所述等级包括:
    覆盖增强等级、物理随机接入信道PRACH信道覆盖增强等级、或PRACH 信道重复发送等级。
  6. 根据权利要求2所述的方法,其中,所述第一类等级包括以下至少之一:
    由所述基站在所有等级中配置的一个等级、由所述基站在所有等级中配置的所述随机接入信令的重复发送次数最小的等级、由所述基站在所有等级中配置的所述随机接入信令的重复发送次数最大的等级。
  7. 根据权利要求6所述的方法,其中,所述第二类等级包括:
    由所述基站在所有等级中配置的一个或多个等级;或,所有等级中除所述第一类等级之外剩余的等级中的一个或多个等级。
  8. 根据权利要求2所述的方法,其中,所述第二类等级对应的随机接入信令重复发送次数指示信息包括:
    所述第二类等级对应的随机接入信令重复发送次数为所述第一类等级对应的随机接入信令重复发送次数的倍数信息。
  9. 根据权利要求3所述的方法,其中,所述每个等级对应的随机接入信道时频资源的配置信息包括以下至少之一:
    所述配置周期内,第一类随机接入信道在时域的配置信息;
    所述配置周期内,第二类随机接入信道在频域的配置信息。
  10. 根据权利要求9所述的方法,其中,
    所述第一类随机接入信道在时域的配置信息包括:P个等级对应的随机接入信道在时域的配置信息,1≤P≤所述等级的数量;
    所述第二类随机接入信道在频域的配置信息包括:Q个等级对应的随机接入信道在频域的配置信息,1≤Q≤所述等级的数量。
  11. 根据权利要求10所述的方法,其中,所述P个等级取自于所述基站配置的所有等级;或,所述P个等级取自于所述Q个等级。
  12. 根据权利要求10所述的方法,其中,所述Q个等级取自于所述基站配置的所有等级;或,Q个所述等级取自于所述P个等级。
  13. 根据权利要求10所述的方法,其中,所述P个等级的索引连续分布; 所述Q个等级的索引连续分布。
  14. 根据权利要求9所述的方法,所述方法还包括:
    以所有等级中选定的一个等级对应的发送随机接入信令时所需要的随机接入信道时域资源作为量化单位,将所述配置周期内的随机接入信道时域资源划分为N个逻辑单元,索引为0~(N-1),N为正整数。
  15. 根据权利要求14所述的方法,其中,所述选定的一个等级包括:
    所述基站在所有等级中配置的最小等级;或所述P个等级中最小等级。
  16. 根据权利要求14所述的方法,其中,将所述配置周期内的随机接入信道时域资源划分为N个逻辑单元,包括:
    将所述配置周期内所述第一类随机接入信道时域资源划分为N1个逻辑单元,所述第一类随机接入信道时域资源占用的N1个逻辑单元是连续的;其中,0≤N1≤N。
  17. 根据权利要求16所述的方法,其中,
    当所述N1个逻辑单元中包括索引为0的逻辑单元时,所述第一类随机接入信道时域资源至少分配给所述P个等级中最小等级的随机接入信令;或,
    当所述N1个逻辑单元中包括索引为N-1的逻辑单元时,所述第一类随机接入信道时域资源至少分配给所述P个等级中最大等级的随机接入信令;或,
    当所述N1个逻辑单元中包括索引为0的逻辑单元和索引为N-1的逻辑单元时,所述第一类随机接入信道时域资源至少分配给所述P个等级中最小等级和最大等级的随机接入信令。
  18. 根据权利要求14所述的方法,其中,所述N个逻辑单元对应物理上连续或离散的N个所述量化单位。
  19. 根据权利要求17所述的方法,其中,当P=3且所述P个等级为等级0、等级1和等级2时,
    当所述N1个逻辑单元中包括索引为0的逻辑单元但不包括索引为N-1的逻辑单元时,所述第一类随机接入信道时域资源分配给等级0和等级1的随机接入信令;所述配置周期内,剩余的随机接入信道时域资源分配给等级2; 或,
    当所述N1个逻辑单元中包括索引为N-1的逻辑单元但不包括索引为0的逻辑单元时,所述第一类随机接入信道时域资源分配给等级1和等级2的随机接入信令;所述配置周期内,剩余的随机接入信道时域资源分配给等级0;或,
    当所述N1个逻辑单元中包括索引为N-1的逻辑单元和索引为0的逻辑单元时,所述第一类随机接入信道时域资源分配给等级0、等级1和等级2的随机接入信令;或,
    当所述N1个逻辑单元中既不包括索引为N-1的逻辑单元又不包括索引为0的逻辑单元时,所述第一类随机接入信道时域资源分配给等级1的随机接入信令;所述配置周期内,逻辑单元索引小于分配给等级1的最小逻辑单元索引的逻辑单元分配给等级0;所述配置周期内,逻辑单元索引大于分配给等级1的最大逻辑单元索引的逻辑单元分配给等级2;或,
    当所述N1=0时,所述第一类随机接入信道时域资源分配给等级0、等级1和等级2的随机接入信令。
  20. 根据权利要求17所述的方法,其中,当P=2且所述P个等级为等级0和等级1时,
    当所述N1个逻辑单元中包括索引为0的逻辑单元但不包括索引为N-1的逻辑单元时,所述第一类随机接入信道时域资源分配给等级0的随机接入信令;所述配置周期内,剩余的随机接入信道时域资源分配给等级1;或,
    当所述N1个逻辑单元中包括索引为N-1的逻辑单元但不包括索引为0的逻辑单元时,所述第一类随机接入信道时域资源分配给等级1的随机接入信令;所述配置周期内,剩余的随机接入信道时域资源分配给等级0;或,
    当所述N1个逻辑单元中包括索引为N-1的逻辑单元和索引为0的逻辑单元时,所述第一类随机接入信道时域资源分配给等级0和等级1的随机接入信令;或,
    当所述N1=0时,所述第一类随机接入信道时域资源分配给等级0和等级1的随机接入信令。
  21. 根据权利要求9所述的方法,所述方法还包括:
    以所有等级中选定的一个等级对应的发送随机接入信令时所需要的随机接入信道频域资源作为量化单位,将所述配置周期内的随机接入信道频域资源划分为M个逻辑单元,索引为0~(M-1),M为正整数。
  22. 根据权利要求21所述的方法,其中,将所述配置周期内的随机接入信道频域资源划分为M个逻辑单元,包括:
    将所述配置周期内所述第二类随机接入信道频域资源划分为M1个逻辑单元,所述第二类随机接入信道频域资源占用的M1个逻辑单元是连续的;其中,0≤M1≤M。
  23. 根据权利要求22所述的方法,其中,
    当所述M1个逻辑单元中包括索引为0的逻辑单元时,所述第二类随机接入信道频域资源至少分配给所述Q个等级中最小等级的随机接入信令;或,
    当所述M1个逻辑单元中包括索引为M-1的逻辑单元时,所述第二类随机接入信道频域资源至少分配给所述Q个等级中最大等级的随机接入信令;或,
    当所述M1个逻辑单元中包括索引为0的逻辑单元和索引为M-1的逻辑单元时,所述第二类随机接入信道频域资源至少分配给所述Q个等级中最小等级和最大等级的随机接入信令。
  24. 根据权利要求21所述的方法,其中,所述M个逻辑单元对应物理上连续或离散的M个所述量化单位。
  25. 根据权利要求23所述的方法,其中,当Q=3且所述Q个等级为等级0、等级1和等级2时,
    当所述M1个逻辑单元中包括索引为0的逻辑单元但不包括索引为M-1的逻辑单元时,所述第二类随机接入信道频域资源分配给等级0和等级1的随机接入信令;所述配置周期内,剩余的随机接入信道频域资源分配给等级2;或,
    当所述M1个逻辑单元中包括索引为M-1的逻辑单元但不包括索引为0的逻辑单元时,所述第二类随机接入信道频域资源分配给等级1和等级2的 随机接入信令;所述配置周期内,剩余的随机接入信道频域资源分配给等级0;或,
    当所述M1个逻辑单元中包括索引为M-1的逻辑单元和索引为0的逻辑单元时,所述第二类随机接入信道频域资源分配给等级0、等级1和等级2的随机接入信令;或,
    当所述M1个逻辑单元中既不包括索引为M-1的逻辑单元又不包括索引为0的逻辑单元时,所述第二类随机接入信道时域资源分配给等级1的随机接入信令;所述配置周期内,逻辑单元索引小于分配给等级1的最小逻辑单元索引的逻辑单元分配给等级0;所述配置周期内,逻辑单元索引大于分配给等级1的最大逻辑单元索引的逻辑单元分配给等级2;或,
    当所述M1=0时,所述第二类随机接入信道频域资源分配给等级0、等级1和等级2的随机接入信令。
  26. 根据权利要求23所述的方法,其中,当Q=2且所述Q个等级为等级0和等级1时,
    当所述M1个逻辑单元中包括索引为0的逻辑单元但不包括索引为M-1的逻辑单元时,所述第二类随机接入信道频域资源分配给等级0的随机接入信令;所述配置周期内,剩余的随机接入信道频域资源分配给等级1;或,
    当所述M1个逻辑单元中包括索引为M-1的逻辑单元但不包括索引为0的逻辑单元时,所述第二类随机接入信道频域资源分配给等级1的随机接入信令;所述配置周期内,剩余的随机接入信道频域资源分配给等级0;或,
    当所述M1个逻辑单元中包括索引为M-1的逻辑单元和索引为0的逻辑单元时,所述第二类随机接入信道频域资源分配给等级0和等级1的随机接入信令;或,
    当所述M1=0时,所述第二类随机接入信道频域资源分配给等级0和等级1的随机接入信令。
  27. 根据权利要求10所述的方法,其中,所述随机接入序列的配置信息包括以下至少之一:
    随机接入序列的配置周期的指示信息;
    随机接入序列量化单位的指示信息,其中,L个前导序列为一个所述随机接入序列量化单位,L为正整数;
    C个等级对应的随机接入序列的配置信息;其中,0≤C≤A,A个等级取自于所述P个等级、或A个等级取自于所述Q个等级、或A个等级取自于所述基站配置的B个所述等级、或A个等级取自于(B-P)个等级、或A个等级取自于(B-Q)个所述等级。
  28. 根据权利要求27所述的方法,所述方法还包括:
    按照所述随机接入序列量化单位,将所述配置周期内的随机接入序列资源划分为S个逻辑单元,索引为0~(S-1),S为正整数。
  29. 根据权利要28所述的方法,其中,将所述配置周期内的随机接入序列资源划分为S个逻辑单元,包括:
    将所述配置周期内C个等级对应的随机接入序列资源划分为S1个逻辑单元,C个等级对应的随机接入序列资源占用的S1个逻辑单元是连续的;其中,0≤S1≤S。
  30. 根据权利要29所述的方法,其中,
    当所述S1个逻辑单元中包括索引为0的逻辑单元时,所述C个等级中至少包括A个等级中最小等级;或,
    当所述S1个逻辑单元中包括索引为S-1的逻辑单元时,所述C个等级中至少包括A个等级中最大等级;或,
    当所述S1个逻辑单元中包括索引为0的逻辑单元和索引为S-1的逻辑单元时,所述C个等级中至少包括A个等级中最小等级和最大等级。
  31. 根据权利要29所述的方法,其中,当A=3且所述A个等级为等级0、等级1和等级2时,
    当所述S1个逻辑单元中包括索引为0的逻辑单元但不包括索引为S-1的逻辑单元时,所述随机接入序列分配给等级0和等级1的随机接入信令;所述配置周期内,剩余的随机接入序列分配给等级2;或,
    当所述S1个逻辑单元中包括索引为S-1的逻辑单元但不包括索引为0的逻辑单元时,所述随机接入序列分配给等级1和等级2的随机接入信令;所 述配置周期内,剩余的随机接入序列分配给等级0;或,
    当所述S1个逻辑单元中包括索引为S-1的逻辑单元和索引为0的逻辑单元时,所述随机接入序列分配给等级0、等级1和等级2的随机接入信令;或,
    当所述S1=0时,所述随机接入序列分配给等级0、等级1和等级2的随机接入信令。
  32. 根据权利要29所述的方法,其中,当A=2且所述A个等级为等级0和等级1时,
    当所述S1个逻辑单元中包括索引为0的逻辑单元但不包括索引为S-1的逻辑单元时,所述随机接入序列分配给等级0的随机接入信令;或,
    当所述S1个逻辑单元中包括索引为S-1的逻辑单元但不包括索引为0的逻辑单元时,所述随机接入序列分配给等级1的随机接入信令;或,
    当所述S1个逻辑单元中包括索引为S-1的逻辑单元和索引为0的逻辑单元时,所述随机接入序列分配给等级0、等级1的随机接入信令;或,
    当所述S1个逻辑单元中既不包括索引为S-1的逻辑单元又不包括索引为0的逻辑单元时,所述随机接入序列分配给等级1的随机接入信令;所述配置周期内,逻辑单元索引小于分配给等级1的最小逻辑单元索引的逻辑单元分配给等级0;所述配置周期内,逻辑单元索引大于分配给等级1的最大逻辑单元索引的逻辑单元分配给等级2;或,
    当所述S1=0时,所述随机接入序列分配给等级0、等级1的随机接入信令。
  33. 根据权利要求1所述的方法,其中,所述随机接入配置信息还包括以下至少之一:
    随机接入信令跳频发送使能指示信息;
    跳频的时域粒度指示信息L,L为自然数。
  34. 根据权利要求33所述的方法,其中,所述跳频的时域粒度是根据预设公式计算得到的;其中,所述预设公式为:所述跳频的时域粒度=Rep/L,Rep为所有等级中选定的一个等级对应的发送随机接入信令的重复发送次 数。
  35. 根据权利要求34所述的方法,其中,当L=0时,所述随机接入信令不支持跳频发送。
  36. 根据权利要求3所述的方法,其中,当所述方法应用于长期演进LTE或长期演进的后续演进LTE-A系统中,且所述随机接入信令采用模式Format4发送时,所述配置周期包括以下至少之一:至少一个特殊子帧、至少一个上行子帧。
  37. 根据权利要求36所述的方法,其中,所述至少一个上行子帧是由子帧指示信息指示的,所述子帧指示信息包括以下至少之一:
    所述配置周期包括的一个帧中用于随机接入信令发送的上行子帧索引;
    所述配置周期中包括的帧的数量。
  38. 根据权利要求36所述的方法,其中,在所述至少一个上行子帧中,所述随机接入信令采用模式4重复发送Y次。
  39. 根据权利要求3所述的方法,其中,当所述方法应用于长期演进LTE或长期演进的后续演进LTE-A系统中时,所述配置周期包括以下至少之一:至少一个特殊子帧、至少一个上行子帧。
  40. 根据权利要求39所述的方法,其中,所述至少一个上行子帧是由子帧指示信息指示的,所述子帧指示信息包括以下至少之一:
    所述配置周期包括的一个帧中用于随机接入信令发送的上行子帧索引;
    所述配置周期中包括的帧的数量。
  41. 根据权利要求39所述的方法,其中,在所述至少一个上行子帧中,采用模式Format 0发送所述随机接入信令;在所述至少一个特殊子帧中,采用模式Format 4发送随机接入信令。
  42. 根据权利要求1所述的方法,其中,所述随机接入配置信息还包括以下至少之一:
    所有等级对应的随机接入信道的复用方案的配置信息;
    在所有等级对应的随机接入信道的复用方案中,每个等级分配的随机接 入信道时频资源和/或随机接入序列资源的配置信息。
  43. 根据权利要求42所述的方法,所述方法还包括:
    根据所述所有等级对应的随机接入信道的复用方案的配置信息确定以下至少之一:
    采用所述复用方案的所述等级的数量信息;
    采用所述复用方案的所述等级的索引信息;
    其中,所述复用方案包括以下至少一种:频分复用方案、时分复用方案、码分复用方案,所述码分复用方案是指不同等级的用户设备分配的随机接入序列不同。
  44. 根据权利要求43所述的方法,所述方法还包括,当为用户设备分配的随机接入信道时频资源块在频域上只有一个位置时,所述所有等级对应的随机接入信道的复用方案中不支持频分复用方案。
  45. 根据权利要求43所述的方法,其中,所述在所述所有等级对应的随机接入信道的复用方案中,所述每个等级分配的随机接入信道时频资源和/或随机接入序列资源的配置信息包括以下至少之一:
    采用频分复用方案的所述等级在频域上分配的随机接入信道资源的比例信息;
    采用时分复用方案的所述等级在时域上分配的随机接入信道资源的比例信息;
    采用码分复用方案的所述等级分配的随机接入序列资源的比例信息。
  46. 一种基站,包括:
    确定单元,设置为确定随机接入配置信息,所述随机接入配置信息用于指示用户设备接入网络;其中,所述随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息;以及
    发送单元,设置为通过下行信道向用户设备发送所述确定单元确定的随机接入配置信息。
  47. 一种用户设备,包括:
    接收单元,设置为通过下行信道接收基站发送的随机接入配置信息,所述随机接入配置信息用于指示所述用户设备根据所述随机接入配置信息接入网络;其中,所述随机接入配置信息包括以下至少之一:随机接入信道占用的时频资源的配置信息、随机接入序列的配置信息、每个等级对应的随机接入信令的重复发送次数的配置信息;以及
    接入单元,设置为根据所述接收单元接收的所述随机接入配置信息接入网络。
  48. 一种系统,包括:
    如权利要求46所述的基站;以及
    如权利要求47所述的用户设备;
    所述基站通过下行信道向所述用户设备发送随机接入配置信息,所述用户设备根据接收到的所述随机接入配置信息接入网络。
  49. 一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现权利要求1-45任一项所述的方法。
PCT/CN2015/090170 2015-04-10 2015-09-21 一种随机接入的方法、节点以及系统 WO2016161778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510169307.9 2015-04-10
CN201510169307.9A CN106162921A (zh) 2015-04-10 2015-04-10 一种随机接入的方法、节点以及系统

Publications (1)

Publication Number Publication Date
WO2016161778A1 true WO2016161778A1 (zh) 2016-10-13

Family

ID=57071794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090170 WO2016161778A1 (zh) 2015-04-10 2015-09-21 一种随机接入的方法、节点以及系统

Country Status (2)

Country Link
CN (1) CN106162921A (zh)
WO (1) WO2016161778A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632790A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 一种资源配置方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787736B (zh) * 2017-11-15 2023-03-24 夏普株式会社 配置随机接入信道传输资源的方法及其设备
JP7026810B2 (ja) 2018-02-12 2022-02-28 華為技術有限公司 通信方法、通信デバイス、及びネットワークデバイス
CN110351852B (zh) 2018-04-04 2021-12-10 华为技术有限公司 一种通信方法及装置
CN110677916B (zh) * 2018-07-03 2021-09-10 中国移动通信有限公司研究院 一种随机接入信息的配置、传输和检测方法、终端及基站
CN113141240B (zh) * 2020-01-17 2022-10-28 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113645699A (zh) * 2020-05-11 2021-11-12 大唐移动通信设备有限公司 一种时域资源配置方法及终端
EP4175395A4 (en) * 2020-06-30 2024-01-31 Beijing Xiaomi Mobile Software Co Ltd INFORMATION TRANSMISSION METHOD AND DEVICE, COMMUNICATION DEVICE AND STORAGE MEDIUM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267284A (zh) * 2008-04-25 2008-09-17 中兴通讯股份有限公司 在物理上行共享信道进行确认信息反馈的方法
CN102655650A (zh) * 2012-01-05 2012-09-05 电信科学技术研究院 一种远端干扰基站的定位方法和设备
EP2750471A2 (en) * 2012-08-29 2014-07-02 ZTE Corporation Random access method and random access system for terminal in high-speed mobile environment
CN104349476A (zh) * 2013-08-09 2015-02-11 中兴通讯股份有限公司 随机接入信道资源配置方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267284A (zh) * 2008-04-25 2008-09-17 中兴通讯股份有限公司 在物理上行共享信道进行确认信息反馈的方法
CN102655650A (zh) * 2012-01-05 2012-09-05 电信科学技术研究院 一种远端干扰基站的定位方法和设备
EP2750471A2 (en) * 2012-08-29 2014-07-02 ZTE Corporation Random access method and random access system for terminal in high-speed mobile environment
CN104349476A (zh) * 2013-08-09 2015-02-11 中兴通讯股份有限公司 随机接入信道资源配置方法和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632790A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 一种资源配置方法及装置
CN108632790B (zh) * 2017-03-24 2023-06-13 中兴通讯股份有限公司 一种资源配置方法及装置

Also Published As

Publication number Publication date
CN106162921A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016161778A1 (zh) 一种随机接入的方法、节点以及系统
EP3324695B1 (en) Terminal, base station and method for d2d communications
KR102084202B1 (ko) 차량-투-차량 통신을 위한 위치 및 스케줄-이전-리스닝 기반 리소스 할당
CN105992383B (zh) 随机接入响应消息发送方法和节点
US20210212104A1 (en) Methods and apparatuses for transmitting and configuring sidelink data
KR102372581B1 (ko) 리소스 블록 그룹 크기를 결정하기 위한 방법 및 장치
WO2015110010A1 (zh) 一种寻呼消息传输方法及装置
CN105338589A (zh) 随机接入响应消息的传输方法及装置
WO2014176935A1 (zh) 随机接入信道资源配置方法和系统
CN105611646B (zh) 基站、用户设备及其方法
US20170048906A1 (en) Operation method of communication node supporting device to device communication in communication network
WO2016165388A1 (zh) 随机接入的处理方法及装置
US9572181B2 (en) Method for transmitting enhanced random access sequence and machine type communication terminal
EP3451760A1 (en) Method and device for sending and receiving control signaling in communications system
CN109392117B (zh) 一种正交频分复用系统中调度请求配置方法
CN113316236A (zh) 寻呼处理方法、装置、设备及存储介质
US11497022B2 (en) Grid design for introducing gaps in transmission for DL NB-IoT
KR102456934B1 (ko) 무선 통신 시스템에서의 데이터 송수신 방법 및 장치
US11368936B2 (en) Uneven paging load distribution for narrowband
US11109433B2 (en) Method, apparatus, and medium for configuring a first subframe set
US11974317B2 (en) Data transmission method and apparatus, computer device, and system
US20220086847A1 (en) Data transmission method and apparatus, computer device, and system
CN117158072A (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2016165428A1 (zh) 消息的资源配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888330

Country of ref document: EP

Kind code of ref document: A1